WO2016163409A1 - 樹脂組成物及びその利用 - Google Patents

樹脂組成物及びその利用 Download PDF

Info

Publication number
WO2016163409A1
WO2016163409A1 PCT/JP2016/061287 JP2016061287W WO2016163409A1 WO 2016163409 A1 WO2016163409 A1 WO 2016163409A1 JP 2016061287 W JP2016061287 W JP 2016061287W WO 2016163409 A1 WO2016163409 A1 WO 2016163409A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
resin composition
oxide
doped
compounds
Prior art date
Application number
PCT/JP2016/061287
Other languages
English (en)
French (fr)
Inventor
春樹 上村
大道 千葉
小原 禎二
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020177029631A priority Critical patent/KR20170135863A/ko
Priority to EP16776575.9A priority patent/EP3281981A4/en
Priority to CN201680018143.2A priority patent/CN107406661B/zh
Priority to JP2017511023A priority patent/JPWO2016163409A1/ja
Priority to US15/564,868 priority patent/US20180086029A1/en
Publication of WO2016163409A1 publication Critical patent/WO2016163409A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10376Laminated safety glass or glazing containing metal wires
    • B32B17/10403Laminated safety glass or glazing containing metal wires for radiation shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties

Definitions

  • the present invention provides a resin composition suitable as an intermediate film forming material for laminated glass having an excellent heat shielding function and excellent in moisture resistance and durability, a resin sheet comprising the resin composition, and the resin
  • the present invention relates to a laminated glass using a sheet as an intermediate film.
  • a laminated glass having a heat ray shielding function is useful as a window glass of an automobile, a window glass of a building, and the like because it prevents the incidence of heat rays, enhances the cooling effect in summer, and is effective for energy saving (Patent Document 1). ⁇ 3).
  • laminated glass having a heat ray shielding function As laminated glass having a heat ray shielding function, (a) having a structure in which an intermediate film containing a metal fine particle that reflects infrared rays, metal oxide fine particles and / or a dye that absorbs near infrared rays is sandwiched between glass plates, (B) A heat ray reflective film having a structure in which a metal / metal oxide multi-layer coating is applied to the surface of a glass plate by vapor deposition, sputtering, or the like. (C) A metal / metal oxide film as a heat ray reflective film. There is a structure in which a transparent film with a multilayer coating is sandwiched between glass plates via an intermediate film.
  • the method of forming the heat ray reflective film (b) or (c) on the base material by vapor deposition, sputtering or the like is not industrially advantageous because the product becomes expensive.
  • the method (a) using an intermediate film having a heat ray shielding function can continuously produce a resin intermediate film by a melt extrusion method or the like, and a laminated glass using the intermediate film is also usually laminated. It is excellent in mass productivity in terms of being able to be produced in the glass manufacturing process and is industrially advantageous.
  • Patent Document 4 describes a laminated glass comprising a polyvinyl acetal resin (hereinafter sometimes referred to as “PVB”) and metal oxide fine particles having a heat ray shielding function.
  • PVB polyvinyl acetal resin
  • An interlayer film is disclosed.
  • Patent Documents 5 and 6 disclose an interlayer film for laminated glass obtained by blending PVB with a dye that absorbs light in the near infrared region.
  • the interlayer film described in these documents uses PVB with high hygroscopicity, and the laminated glass bonded using this interlayer film is used in a high temperature and high humidity environment or for a long period of time.
  • moisture permeated from the end of the glass whitening was likely to occur in the peripheral portion, and the durability of the peripheral portion was not necessarily sufficient, such as a decrease in adhesion to the glass.
  • the interlayer film using PVB also has a problem in use that the moisture content in the interlayer film must be strictly adjusted before being bonded to the glass ( Non-patent document 1).
  • Patent Document 7 discloses that a heat shielding property can be maintained for a long period of time by using an intermediate film made of a resin composition in which an organic pigment that absorbs near infrared rays is dispersed in a thermoplastic resin having a low hydroxyl group content.
  • a laminated glass excellent in durability is disclosed.
  • it is an intermediate film made of a resin composition in which an organic dye is dispersed in PVB, (meth) acrylic resin, ethylene-vinyl acetate copolymer resin, or ionomer resin, disclosed in this patent document. However, it may not always be said that it has sufficient durability.
  • JP 56-32352 A (US2013135142A1) JP 63-134232 A (US4895532A) JP-A-7-157344 JP 2001-302288 A JP 2012-66954 A JP 2013-209234 A JP 2011-42552 A
  • the present invention has been made in view of the actual situation of the prior art, and has solved the problems of conventional laminated glass having a heat ray shielding function, that is, moisture resistance and durability, and is excellent in practical use. It aims at providing the laminated glass which has a characteristic.
  • block copolymer hydride [D] a specific block copolymer hydride
  • a modified block copolymer hydride in which an alkoxysilyl group is introduced into a specific block copolymer hydride [D] (hereinafter sometimes referred to as “modified block copolymer hydride [E]”).
  • Laminated glass manufactured using a sheet of a resin composition containing a specific amount of metal oxide fine particles and / or near-infrared absorbing dyes having a function of shielding infrared rays as an intermediate film has an excellent heat ray reflection function.
  • the present inventors have found that it has excellent moisture resistance and durability, and has completed the present invention.
  • a resin composition of the following (1) to (3) a sheet comprising the resin composition of (4), and a laminated glass using the sheet of (5) as an intermediate film.
  • a polymer block (hereinafter referred to as “polymer block [A]”) composed mainly of a structural unit derived from an aromatic vinyl compound (hereinafter sometimes referred to as “structural unit [a]”).
  • structural unit [b] a structural unit derived from a chain conjugated diene compound (hereinafter sometimes referred to as “structural unit [b]”) as a main component (hereinafter referred to as “polymer block [ B] ”))), and
  • the weight fraction of the total amount of the structural unit [a] in the block copolymer (hereinafter sometimes referred to as “block copolymer [C]”) is w [a]
  • the total amount of the structural unit [b] is When the weight fraction of the block copolymer [C] is w [b], the ratio of w [a] to w [b] (w [a]: w [b]) is from 30:70 to More than 90% of the main-chain and side-chain carbon-carbon unsaturated bonds and the aromatic-carbon unsaturated bonds were hydrogenated in the block copolymer [C] of 60:40.
  • Metal oxide fine particles having a function of shielding infrared rays are tin oxide, aluminum doped tin oxide, indium doped tin oxide, antimony doped tin oxide, zinc oxide, aluminum doped zinc oxide, indium doped zinc oxide, gallium doped oxide.
  • a near-infrared absorbing dye having a function of shielding infrared rays is selected from phthalocyanine compounds, naphthalocyanine compounds, imonium compounds, diimonium compounds, polymethine compounds, diphenylmethane compounds, anthraquinone compounds, pentadiene compounds, azomethine compounds, and lanthanum hexaboride.
  • a resin sheet comprising the resin composition according to any one of (1) to (3) is interposed between glass plates, and a laminate including the glass plate and the resin sheet is bonded and integrated.
  • a laminated glass comprising a region having a light transmittance of 50% or less in a wavelength range of 800 to 2000 nm and a light transmittance of 60% or more at a wavelength of 550 nm.
  • a resin composition suitable as an intermediate film forming material for laminated glass having an excellent heat shielding function and excellent in moisture resistance and durability, a resin sheet comprising this resin composition, and A laminated glass using this resin sheet as an intermediate film is provided.
  • the resin composition of the present invention (hereinafter sometimes referred to as “resin composition [F]”) is converted into a specific block copolymer hydride [D] and / or a modified block copolymer hydride [E]. It is characterized by blending a specific amount of metal oxide fine particles and / or near-infrared absorbing pigments that shield infrared rays.
  • the resin sheet (hereinafter sometimes referred to as “resin sheet [G]”) molded with the resin composition [F] of the present invention has light transmittance in the visible light region (approximately 360 to 800 nm). And has a function of shielding light in the infrared region (wavelength 800 to 2000 nm).
  • laminated glass [H] is transparent and has a heat shielding function. It is characterized by having.
  • Block copolymer [C] The block copolymer [C] used in the present invention is a polymer containing at least two polymer blocks [A] and at least one polymer block [B].
  • the block copolymer [C] is a precursor of the block copolymer hydride [D].
  • the polymer block [A] is a polymer block having a structural unit [a] derived from an aromatic vinyl compound as a main component.
  • the content of the structural unit [a] in the polymer block [A] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • the polymer block [A] may contain components other than the structural unit [a].
  • Examples of other components include a structural unit [b] derived from a chain conjugated diene and / or a structural unit derived from another vinyl compound (hereinafter sometimes referred to as “structural unit [j]”).
  • the content thereof is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less based on the polymer block [A]. If the content of the structural unit [b] and / or the structural unit [j] in the polymer block [A] is too large, the heat resistance of the resin composition [F] of the present invention may be lowered.
  • the plurality of polymer blocks [A] contained in the block copolymer [C] may be the same as or different from each other as long as they satisfy the above range.
  • the polymer block [B] is a polymer block mainly composed of a structural unit [b] derived from a chain conjugated diene compound.
  • the content of the structural unit [b] in the polymer block [B] is usually 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more.
  • the resin composition [F] of the present invention has flexibility, and the molded sheet [G] is used as an intermediate film. Since the used laminated glass [H] is provided with thermal shock resistance and penetration resistance, it is preferable.
  • the polymer block [B] may contain components other than the structural unit [b].
  • the other component include a structural unit [a] derived from an aromatic vinyl compound and / or a structural unit [j] derived from another vinyl compound.
  • the content thereof is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less based on the polymer block [B].
  • the content of the structural unit [a] and / or the structural unit [j] in the polymer block [B] is too large, the flexibility of the resin composition [F] of the present invention is impaired, and the molded sheet [ When G] is used for the interlayer film, the thermal shock resistance and penetration resistance of the laminated glass [H] are impaired.
  • the block copolymer [C] has a plurality of polymer blocks [B]
  • the polymer blocks [B] may be the same as or different from each other.
  • aromatic vinyl compound examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent such as 5-t-butyl-2-methylstyrene; Styrene having an alkoxy group having 1 to 6 carbon atoms as a substituent such as 4-methoxystyrene Styrenes having an aryl group as a substituent, such as 4-phenylstyrene; vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene; and the like.
  • aromatic vinyl compounds that do not contain a polar group, such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, are preferable, because of easy industrial availability.
  • Styrene is particularly preferred.
  • chain conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like, and do not contain a polar group from the viewpoint of hygroscopicity.
  • a chain conjugated diene compound is preferred, and 1,3-butadiene and isoprene are particularly preferred from the viewpoint of industrial availability.
  • vinyl compounds include chain vinyl compounds, cyclic vinyl compounds, unsaturated cyclic acid anhydrides, unsaturated imide compounds, and the like. These compounds may have a substituent such as a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group, or a halogen atom.
  • the block copolymer [C] is a polymer containing at least two polymer blocks [A] and at least one polymer block [B].
  • the number of polymer blocks [A] in the block copolymer [C] is usually 4 or less, preferably 3 or less, more preferably 2, and the polymer block in the block copolymer [C]
  • the number of [B] is usually 3 or less, preferably 2 or less, and more preferably 1.
  • a hydrogenated polymer block derived from the polymer block [A] hereinafter sometimes referred to as “hydrogenated polymer block [A h ]”
  • a hydrogenated polymer block derived from the polymer block [B] hereinafter, the phase separation from the “hydrogenated polymer block [B h ]” may become unclear, and the glass transition temperature (hereinafter referred to as “the glass transition temperature on the high temperature side” based on the hydrogenated polymer block [A h ]).
  • the heat resistance of the resin composition [F] of the present invention is lowered due to a decrease in “Tg 2 ”.
  • the form of the block of the block copolymer [C] is not particularly limited, and may be a chain block or a radial block, but a chain block is preferable because of its excellent mechanical strength.
  • the most preferred form of the block copolymer [C] is a triblock copolymer ([A]-[B]-[A]) in which the polymer block [A] is bonded to both ends of the polymer block [B].
  • the polymer block [B] is bonded to both ends of the polymer block [A], and the polymer block [A] is bonded to the other end of the both polymer blocks [B]. [A]-[B]-[A]-[B]).
  • the weight fraction of the total amount of the structural unit [a] in the block copolymer [C] in the block copolymer [C] is w [a]
  • the total amount of the structural unit [b] is the block copolymer.
  • the ratio of w [a] to w [b] (w [a]: w [b]) is 30:70 to 60:40.
  • the molecular weight of the block copolymer [C] is a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, and is usually 40,000 to 200. , Preferably 50,000 to 150,000, more preferably 60,000 to 100,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer [C] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • the resin composition [F] using the block copolymer hydride [D] obtained by hydrogenating the block copolymer [C] and / or the resin composition [F] is used.
  • the sheet [G] has good heat resistance and mechanical strength.
  • the manufacturing method of block copolymer [C] is not specifically limited, A well-known method is employable.
  • the aromatic vinyl compound is a main component (the content of the aromatic vinyl compound is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more by a method such as living anion polymerization. The same shall apply hereinafter.)
  • the monomer mixture (a) and the chain conjugated diene compound as main components (the content of the chain conjugated diene compound is usually 70% by weight or more, preferably 80% by weight or more, more Preferably 90% by weight or more.
  • halogen compounds such as dimethyldichlorosilane, methyltrichlorosilane, butyltrichlorosilane, tetrachlorosilane, dibromoethane, bis (trichlorosilyl) ethane; epoxy compounds such as epoxidized soybean oil; diethyl adipate, adipic acid And diester compounds of dicarboxylic acids such as dimethyl, dimethyl terephthalic acid and diethyl terephthalic acid.
  • Block copolymer hydride [D] The block copolymer hydride [D] used in the present invention has carbon-carbon unsaturated bonds in the main chain and side chains of the block copolymer [C] and carbon-carbon unsaturated bonds in the aromatic ring. It is hydrogenated.
  • the hydrogenation rate is usually 90% or more, preferably 97% or more, more preferably 99% or more. The higher the hydrogenation rate, the better the weather resistance, heat resistance and transparency of the molded body.
  • the hydrogenation rate of the carbon-carbon unsaturated bond in the main chain and side chain of the block copolymer [C] is usually 90% or more, preferably Is 97% or more, more preferably 99% or more.
  • the hydrogenation rate of the carbon-carbon unsaturated bond of the aromatic ring is usually 90% or more, preferably 97% or more, and more preferably 99% or more.
  • the hydrogenation rate of the block copolymer hydride [D] can be determined by measuring 1 H-NMR of the block copolymer hydride [D].
  • the hydrogenation method and reaction mode of the unsaturated bond are not particularly limited, and may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferable.
  • Examples of such hydrogenation methods include the methods described in WO2011 / 096389 pamphlet, WO2012 / 043708 pamphlet and the like.
  • the block copolymer hydride [D] can be recovered from the resulting solution.
  • the form of the recovered block copolymer hydride [D] is not limited, it can usually be formed into a pellet shape and used for subsequent additive blending or alkoxysilyl group introduction reaction.
  • the molecular weight of the block copolymer hydride [D] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 40,000 to 200,000, preferably 50,000 to 150. , 000, more preferably 60,000 to 100,000.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride [D] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are within the above ranges, the heat resistance and mechanical strength of the resin composition [F] of the present invention are improved.
  • Modified block copolymer hydride [E] The modified block copolymer hydride [E] that can be used in the present invention is obtained by reacting the block copolymer hydride [D] with an ethylenically unsaturated silane compound in the presence of an organic peroxide. An alkoxysilyl group is introduced. By introducing an alkoxysilyl group into the block copolymer hydride [D], it is possible to impart strong adhesion to glass or metal.
  • alkoxysilyl group examples include a tri (C1-6 alkoxy) silyl group such as a trimethoxysilyl group and a triethoxysilyl group; a methyldimethoxysilyl group, a methyldiethoxysilyl group, an ethyldimethoxysilyl group, and an ethyldiethoxysilyl group.
  • the alkoxysilyl group is bonded to the block copolymer hydride [D] via a divalent organic group such as an alkylene group having 1 to 20 carbon atoms or an alkyleneoxycarbonylalkylene group having 2 to 20 carbon atoms. You may do it.
  • the amount of the alkoxysilyl group introduced into the block copolymer hydride [D] is usually 0.1 to 10 parts by weight, preferably 0.2 to 100 parts by weight with respect to 100 parts by weight of the block copolymer hydride [D]. 5 parts by weight, more preferably 0.3 to 3 parts by weight. If the introduction amount of the alkoxysilyl group is too large, cross-linking of the alkoxysilyl groups decomposed with a small amount of moisture or the like proceeds before melt-molding the resulting modified block copolymer hydride [E] into a desired shape, Problems such as gelation and a decrease in moldability due to a decrease in fluidity at the time of melting easily occur.
  • the introduction amount of the alkoxysilyl group is too small, a problem that a sufficient adhesive force for bonding the intermediate film to the glass plate cannot be obtained easily occurs.
  • the introduction of the alkoxysilyl group can be confirmed by IR spectrum.
  • the amount introduced can be calculated by 1 H-NMR spectrum.
  • the ethylenically unsaturated silane compound to be used is not particularly limited as long as it is graft-polymerized with the block copolymer hydride [D] to introduce an alkoxysilyl group into the block copolymer hydride [D].
  • vinyltrialkoxysilanes such as vinyltrimethoxysilane and vinyltriethoxysilane; allyltrialkoxysilanes such as allyltrimethoxysilane and allyltriethoxysilane; vinylalkyldialkoxysilanes such as dimethoxymethylvinylsilane and diethoxymethylvinylsilane; p-styryltrialkoxysilane such as p-styryltrimethoxysilane; 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane (Meth) acryloxytrialkoxysilane such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysila, etc. ) Acryloxy alkyl dialkoxy
  • the amount of the ethylenically unsaturated silane compound used is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0, per 100 parts by weight of the block copolymer hydride [D]. .3 to 3 parts by weight.
  • peroxide those having a one-minute half-life temperature of 170 to 190 ° C. are preferably used.
  • t-butyl cumyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, Di (2-t-butylperoxyisopropyl) benzene or the like is preferably used.
  • the amount of peroxide used is usually 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, more preferably 0.2 to 100 parts by weight per 100 parts by weight of the block copolymer hydride [D]. 0.5 weight.
  • the method of reacting the block copolymer hydride [D] with the ethylenically unsaturated silane compound in the presence of a peroxide is not particularly limited.
  • a block copolymer hydrogen is obtained by kneading a mixture of a block copolymer hydride [D], an ethylenically unsaturated silane compound and a peroxide at a desired temperature in a biaxial kneader for a desired time.
  • An alkoxysilyl group can be introduced into the compound [D].
  • the kneading temperature by the biaxial kneader is usually 180 to 220 ° C, preferably 185 to 210 ° C, more preferably 190 to 200 ° C.
  • the heat kneading time is usually about 0.1 to 10 minutes, preferably about 0.2 to 5 minutes, more preferably about 0.3 to 2 minutes. What is necessary is just to knead
  • the form of the obtained modified block copolymer hydride [E] is not limited, it can usually be formed into a pellet shape and used for subsequent blending of additives.
  • the molecular weight of the modified block copolymer hydride [E] is substantially the same as the molecular weight of the block copolymer hydride [D] used as a raw material because the amount of the introduced alkoxysilyl group is small. However, since it reacts with the ethylenically unsaturated silane compound in the presence of peroxide, the crosslinking reaction and cleavage reaction of the polymer occur simultaneously, and the molecular weight distribution value of the modified block copolymer hydride [E] is large. Become.
  • the molecular weight of the modified block copolymer hydride [E] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 40,000 to 200,000, preferably 50,000 to 150,000, more preferably 60,000 to 100,000.
  • Mw / Mn The molecular weight distribution (Mw / Mn) is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. When Mw and Mw / Mn are within the above ranges, the heat resistance and mechanical strength of the resin composition [F] and / or the sheet [G] comprising the resin composition [F] are maintained.
  • Resin composition [F] The resin composition [F] of the present invention is any region within a wavelength range of 800 to 2000 nm with respect to the block copolymer hydride [D] and / or the modified block copolymer hydride [E]. It is resin composition [F] which mix
  • the resin sheet [G] made of the resin composition [F] of the present invention has excellent heat shielding properties by shielding infrared rays in the wavelength range of 800 to 2000 nm.
  • the metal oxide fine particles used in the resin composition [F] of the present invention have a function of shielding infrared rays in any region within a wavelength range of 800 to 2000 nm.
  • “having a function of shielding infrared rays in any region within the wavelength range of 800 to 2000 nm” means “the metal oxide fine particles to be used are in any region within the wavelength range of 800 to 2000 nm. It has a function of absorbing infrared rays and blocking the passage of infrared rays as a result. " Even if the metal oxide fine particles to be used have a maximum absorption wavelength in any region within the wavelength range of 800 to 2000 nm, the maximum absorption wavelength outside any region outside the wavelength range of 800 to 2000 nm It may have.
  • the metal oxide fine particles used are tin oxide, aluminum-doped tin oxide, indium-doped tin oxide, antimony-doped tin oxide, zinc oxide, aluminum-doped zinc oxide, indium-doped zinc oxide, gallium-doped zinc oxide, tin-doped zinc oxide, silicon Examples thereof include fine particles such as doped zinc oxide, titanium oxide, niobium doped titanium oxide, tungsten oxide, sodium doped tungsten oxide, cesium doped tungsten oxide, thallium doped tungsten oxide, rubidium doped tungsten oxide, indium oxide, and tin doped indium oxide. These metal oxide fine particles can be used singly or in combination of two or more.
  • the average particle size of the metal oxide fine particles used is usually 0.001 to 0.2 ⁇ m, preferably 0.005 to 0.15 ⁇ m, more preferably 0.01 to 0.1 ⁇ m. When the average particle size is within this range, the transparency in the visible light region can be maintained and the heat ray shielding property can be imparted.
  • the compounding amount of the metal oxide fine particles is 100 parts by weight of the block copolymer hydride [D] and / or the modified block copolymer hydride [E].
  • the amount is usually 0.001 to 1.0 part by weight, preferably 0.002 to 0.5 part by weight, and more preferably 0.005 to 0.3 part by weight. When the blending amount is within this range, transparency in the visible light region can be maintained and heat ray shielding can be imparted.
  • the near-infrared absorbing dye used in the resin composition [F] of the present invention has a function of shielding infrared rays in any region within a wavelength range of 800 to 2000 nm.
  • “having a function of shielding infrared rays in any region within the wavelength range of 800 to 2000 nm” means that “the near infrared absorbing dye to be used is in any region within the wavelength range of 800 to 2000 nm. It has a function of absorbing infrared rays and blocking the passage of infrared rays as a result.
  • the near-infrared absorbing dye used has a maximum absorption wavelength in any region within the wavelength range of 800 to 2000 nm, but has a maximum absorption wavelength outside any region outside the wavelength range of 800 to 2000 nm. It may have.
  • Examples of the near-infrared absorbing dye having a function of shielding infrared rays in any region within a wavelength range of 800 to 2000 nm used for the resin composition [F] of the present invention include: 4,5-octakis (phenylthio) -3,6- ⁇ tetrakis (2,6-dimethylphenoxy) -tetrakis (n-hexylamino) ⁇ copper phthalocyanine, 4,5-octakis (phenylthio) -3,6- ⁇ tetrakis (2,6-dimethylphenoxy) -tetrakis (2-ethylhexylamino) ⁇ copper phthalocyanine, 4,5-octakis (4-chlorophenylthio) -3,6- ⁇ tetrakis (2,6-dimethylphenoxy) -tetrakis (n -Hexylamino) ⁇ copper phthalocyanine, 4,5-oc
  • the blending amount of the near-infrared absorbing dye is based on 100 parts by weight of the block copolymer hydride [D] and / or the modified block copolymer hydride [E].
  • the amount is usually 0.001 to 1.0 part by weight, preferably 0.002 to 0.7 part by weight, more preferably 0.005 to 0.5 part by weight.
  • the blending amount is within this range, the transparency in the visible light region can be maintained and the heat ray shielding property can be imparted.
  • the combination of the metal oxide fine particles and the near-infrared absorbing dye can be combined in a wide range of wavelengths from 800 to 2000 nm without significantly reducing the light transmittance in the visible light region. It is preferable because infrared rays can be shielded.
  • the resin composition [F] can be blended with various additives generally blended into the resin.
  • Preferred additives include softeners for adjusting flexibility, lowering of bonding temperature and adhesion to metals, ultraviolet absorbers for shielding ultraviolet rays, antioxidants and blocking for improving processability, etc. Examples thereof include an inhibitor and a light stabilizer for enhancing durability.
  • softening agent those that can be uniformly dissolved or dispersed in the block copolymer hydride [D] and / or the modified block copolymer hydride [E] are preferable, and hydrocarbons having a number average molecular weight of 300 to 5,000 are preferable. Polymers are preferred.
  • hydrocarbon polymer examples include low molecular weight substances such as polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, ethylene / ⁇ -olefin copolymer, and hydrides thereof; polyisoprene, Examples thereof include low molecular weight substances such as polyisoprene-butadiene copolymer and hydrides thereof.
  • a softener can be used individually by 1 type or in combination of 2 or more types.
  • a low molecular weight polyisobutylene hydride and a low molecular weight polyisoprene hydride are particularly preferable in terms of maintaining transparency and light resistance and being excellent in softening effect.
  • the blending amount of the low molecular weight hydrocarbon polymer is usually 20 parts by weight or less, preferably 100 parts by weight or less, preferably 100 parts by weight of the block copolymer hydride [D] and / or the modified block copolymer hydride [E]. 10 parts by weight or less.
  • UV absorber oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, triazine compounds, and the like can be used.
  • antioxidant phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like can be used.
  • light stabilizer a hindered amine light stabilizer or the like can be used.
  • the ultraviolet absorber, antioxidant, anti-blocking agent, light stabilizer, etc. blended in the block copolymer hydride [D] and / or the modified block copolymer hydride [E] are each one kind alone. Alternatively, two or more types can be used in combination.
  • the amount of these additives is usually 5 parts by weight or less, preferably 2 parts by weight or less, based on 100 parts by weight of the block copolymer hydride [D] and / or the modified block copolymer hydride [E]. More preferably, it is 1 part by weight or less.
  • the method for producing the resin composition [F] of the present invention a known method generally used as a method for producing a resin composition can be applied.
  • block copolymer hydride [D] and / or modified block copolymer hydride [E] pellets, metal oxide fine particles, near-infrared absorbing dye, and / or these are dispersed in a suitable solvent.
  • other compounding agents are mixed evenly using a mixer such as a tumbler, ribbon blender, Henschel type mixer, etc., and then melt mixed with a continuous melt kneader such as a twin screw extruder.
  • the resin composition [F] can be produced by extruding into a pellet.
  • a resin composition containing metal oxide fine particles and / or near-infrared absorbing dye and other compounding agent at a high concentration as necessary (hereinafter referred to as “master pellet [F 0 ]”).
  • the master pellet [F 0 ] is mixed with the block copolymer hydride [D] and / or the modified block copolymer hydride [E] pellets,
  • the resin composition [F] can also be produced by melt-mixing with a twin-screw extruder or the like and extruding it into a pellet.
  • Resin sheet [G] The resin sheet [G] of the present invention is obtained by molding the resin composition [F] of the present invention into a sheet shape.
  • the resin sheet [G] of the present invention has a wavelength in the range of 800 to 2000 nm when placed between two plate glasses and laminated together with or without an adhesive to form a laminated glass.
  • the light transmittance is 50% or less, preferably 40% or less, more preferably 30% or less, and the light transmittance at a wavelength of 550 nm is 60% or more, preferably 65% or more, more preferably 70. % Or more.
  • the thickness of the resin sheet [G] is not particularly limited, and can be appropriately selected so that the light transmittance is obtained when laminated glass is used.
  • the thickness of the resin sheet [G] is usually 0.1 to 3.0 mm, preferably 0.2 to 2.5 mm, more preferably 0.3 to 2.0 mm.
  • the method for producing the resin sheet [G] is not particularly limited, and conventionally known molding methods such as a melt extrusion molding method and a calendar molding method can be applied.
  • the resin temperature is appropriately selected in the range of usually 170 to 230 ° C., preferably 180 to 220 ° C., more preferably 190 to 210 ° C.
  • the resin temperature is too low, the fluidity is deteriorated, and the surface of the sheet [G] is liable to cause defects such as the skin and die line, and the extrusion speed cannot be increased, which is industrially disadvantageous.
  • the resin temperature is too high, the adhesion of the resin sheet [G] to the glass will be poor, or the storage stability of the resin sheet [G] will be reduced, and the resin sheet [G] will be kept at normal humidity (around 20 ° C. ) It tends to cause problems such as a decrease in adhesion to glass after long-term storage in the environment.
  • the surface of the resin sheet [G] can be flat or embossed. Moreover, in order to prevent blocking of resin sheet [G], a release film can also be accumulated and stored on the single side
  • Laminated glass The laminated glass [H] of the present invention is a laminated glass obtained by laminating and integrating at least two glass plates via at least one resin sheet [G]. Moreover, the contact bonding layer may be laminated
  • Laminated glass [H] has a light transmittance of 50% or less, preferably 40% or less, more preferably 30% or less within a wavelength range of 800 to 2000 nm, and has a light transmittance at a wavelength of 550 nm. 60% or more, preferably 65% or more, more preferably 70% or more.
  • the two or more glass plates to be used may be the same or different in thickness and material.
  • the thickness of the glass plate to be used is not particularly limited, but is usually about 0.5 to 10 mm.
  • An ultrathin glass plate having a thickness of about 0.05 to 0.5 mm can also be used.
  • glass plates having different thicknesses such as a three-layer structure of a glass plate having a thickness of 2.1 mm / a resin sheet [G] having a thickness of 2.4 mm / a thin film glass plate having a thickness of 0.5 mm may be used.
  • the resin sheet [G] made of the resin composition [F] produced using the modified block copolymer hydride [E] has strong adhesiveness to glass. It can be used as an interlayer film for laminated glass without using an adhesive.
  • the resin sheet [G] made of the resin composition [F] produced using the block copolymer hydride [D] has low adhesiveness to glass and is used as an interlayer film of laminated glass. Usually, it bonds with glass through an adhesive.
  • Acrylic resin adhesives, ⁇ -olefin adhesives, urethane resin adhesives, ethylene-vinyl acetate resin hot melt adhesives, epoxy resin adhesives, cyanoacrylate adhesives, silicone adhesives, polyvinyl butyral Resin-based adhesives can also be used.
  • the thermal expansion coefficient is reduced in order to maintain flexibility in a wide temperature range from a low temperature region of about ⁇ 50 ° C. to a high temperature region of about + 120 ° C.
  • Different glass plates can be bonded together, and glass breakage can be reduced by a sudden temperature change.
  • the material of the glass plate to be used is not particularly limited.
  • aluminosilicate glass, aluminoborosilicate glass, uranium glass, potassium glass, silicate glass, crystallized glass, germanium glass, quartz glass, soda glass, lead glass, barium examples thereof include ⁇ silicate glass and ⁇ silicate glass.
  • the method for producing the laminated glass is not particularly limited, and a method using an autoclave, a method using a vacuum laminator, and the like can be applied.
  • the first glass plate / resin sheet [G] / second glass plate are stacked in this order, put in a heat-resistant resin bag that can be decompressed, degassed, and then bonded under heat and pressure using an autoclave.
  • There are a method of manufacturing laminated glass a method of using a vacuum laminator, and vacuum bonding under heating to bond them.
  • the heating temperature is usually 120 to 150 ° C. and the pressure is 0.3 to 1.1 MPa.
  • the heating temperature is usually 130 to 170 ° C. and the pressure is 0. 01 to 0.1 MPa.
  • the laminated glass of the present invention is a metal oxide fine particle having a function of shielding infrared rays from a block copolymer hydride [D] and / or a modified block copolymer hydride [E] having low hygroscopicity and moisture permeability.
  • the resin sheet [G] which consists of resin composition [F] formed by mix
  • the laminated glass of the present invention has transparency in the visible light region and has shielding properties in the infrared region, it is possible to achieve both transparency and heat shielding properties. Therefore, it is useful as window glass for buildings, roof glass, room heat shield wall materials, automobile windshields, side glass, rear glass, sunroof glass, railcars and ship window glass.
  • the resin sheet [G] made of the resin composition [F] of the present invention has a light transmission property and a heat shielding property in the visible light region, like the laminated glass, so that it is an agricultural sheet and a glass window shield. It is also useful as a heat seat, stadium roofing material, etc.
  • test piece does not show any changes such as cracking, blistering, peeling, discoloration, foam, turbidity, etc., “ ⁇ ” (good)
  • the test piece has no cracking, blistering, peeling, discoloration
  • the case where there was any change such as foam and turbidity was evaluated as “x” (poor).
  • the polymerization conversion rate was 99.5%.
  • 50.0 parts of dehydrated isoprene was added to the reaction solution, and stirring was continued at 60 ° C. for 30 minutes. At this time, the polymerization conversion rate was 99.5%.
  • 25.0 parts of dehydrated styrene was added to the reaction solution, and the mixture was stirred at 60 ° C. for 60 minutes.
  • the polymerization conversion rate at this point was almost 100%.
  • 0.5 parts of ethyl alcohol was added to the reaction solution to stop the reaction, thereby obtaining a polymer solution.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the filtrate was then subjected to pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4, which is a phenolic antioxidant. -Hydroxyphenyl) propionate] (product name “Songnox 1010”, manufactured by Koyo Chemical Laboratory Co., Ltd.) 1.0 part of xylene solution in which 0.1 part was dissolved was added and dissolved. Next, the solution was filtered through a metal fiber filter (pore size 0.4 ⁇ m, manufactured by Nichidai Co., Ltd.) to remove minute solids.
  • a metal fiber filter pore size 0.4 ⁇ m, manufactured by Nichidai Co., Ltd.
  • cyclohexane, xylene and other volatile components as solvents are removed from the solution at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.). did.
  • the molten polymer was continuously extruded from the die in the form of a strand.
  • 94 parts of pellets of the block copolymer hydride [D1] were obtained by a pelletizer.
  • the pelletized block copolymer hydride [D1] had a weight average molecular weight (Mw) of 49,500, a molecular weight distribution (Mw / Mn) of 1.10, and a hydrogenation rate of almost 100%.
  • Example 1 Production of Resin Composition [F1] 100 parts of the modified block copolymer hydride [E1] produced in Reference Example 2 was mixed with a diimonium salt compound near infrared absorbing dye (product name “KAYASORB IRG-022”). “, Nippon Kayaku Co., Ltd.) 0.25 part was added and mixed with a mixer. This mixture was melt-kneaded using a twin-screw extruder (product name “TEM-37B”, manufactured by Toshiba Machine Co., Ltd.) equipped with a T die having a width of 300 mm under the conditions of a cylinder temperature of 200 ° C. and a screw rotation speed of 150 rpm.
  • a diimonium salt compound near infrared absorbing dye product name “KAYASORB IRG-022”. “, Nippon Kayaku Co., Ltd.
  • TEM-37B manufactured by Toshiba Machine Co., Ltd.
  • This laminate was put into a 75 ⁇ m thick bag made of NY (nylon) / PP (polypropylene), and the both sides of the bag were heat sealed with a heat sealer leaving 200 mm width at the center of the opening, and then sealed pack device (BH -951 (manufactured by Panasonic Corporation) was used to heat-seal the opening while degassing the inside of the bag, and the laminate was hermetically packaged. Thereafter, the hermetically packaged laminate was placed in an autoclave and heated and pressurized at a temperature of 140 ° C. and a pressure of 0.8 MPa for 30 minutes to produce a laminated glass [H1] -1. Similarly, a laminated glass [H1] -2 having a thickness of 2.1 mm, a length of 70 mm, and a width of 50 mm was also prepared for light transmittance measurement.
  • BH -951 manufactured by Panasonic Corporation
  • the light transmittance of the laminated glass [H1] -2 was measured at a wavelength of 300 to 2500 nm. As a result, it has a light transmittance of 85% at 550 nm, 3% at 1150 nm, and 83% at 2000 nm, has a good light transmittance in the visible region, and has a sufficient light shielding property in the near infrared region. I understood that. Further, as a result of evaluating the moisture resistance and heat resistance using the laminated glass [H1] -1, the evaluation of moisture resistance was ⁇ (good), and the evaluation of heat resistance was ⁇ (good).
  • Example 2 Production of resin composition [F2] The same dimonium salt compound-based near-infrared absorbing dye 0.25 as in Example 1 with respect to 100 parts of the block copolymer hydride [D1] produced in Reference Example 1 In the same manner as in Example 1, a sheet [G2] composed of a resin composition [F2] in which a near-infrared absorbing dye was blended with a 760 ⁇ m thick hydride of block copolymer [D1] was produced.
  • a sheet [J2] having a thickness of 50 ⁇ m made of the modified block copolymer hydride [E1] was produced in the same manner as in Example 1 except that no near-infrared absorbing dye was blended.
  • the water absorption of the sheet [G2] and the sheet [J2] measured in the same manner as in Example 1 was 0.01% / 24 hours and 0.01% / 24 hours, respectively.
  • the light transmittance of the laminated glass [H2] -2 was measured at a wavelength of 300 to 2500 nm. As a result, it has a light transmittance of 84% at 550 nm, 3% at 1150 nm, and 82% at 2000 nm, has a good light transmittance in the visible region, and has a sufficient light shielding property in the near infrared region. I understood that. Further, as a result of evaluating the moisture resistance and heat resistance using the laminated glass [H2] -1, the evaluation of moisture resistance was ((good), and the evaluation of heat resistance was ⁇ (good).
  • Example 3 Production of resin composition [F3] Antimony-doped tin oxide (ATO) fine particle aqueous dispersion that shields mid-infrared rays instead of near-infrared absorbing dye (average particle size 40 nm, manufactured by Sumitomo Osaka Cement Co., Ltd.) 0 .Sheet [G3] comprising a resin composition [F3] in which a mid-infrared shielding agent is blended with a 760 ⁇ m-thick modified block copolymer hydride [E1] except that 2 parts are used ] was produced. The water absorption of the sheet [G3] measured in the same manner as in Example 1 was 0.01% / 24 hours.
  • ATO Antimony-doped tin oxide
  • the light transmittance of the laminated glass [H3] -2 was measured at a wavelength of 300 to 2500 nm. As a result, the light transmittance of 79% at 550 nm, 49% at 150 nm, and 2% at 2000 nm, good light transmittance in the visible region, and sufficient light shielding property in the mid-infrared region. I understood that. Further, as a result of evaluating the moisture resistance and heat resistance using the laminated glass [H3] -1, the evaluation of moisture resistance was ⁇ (good), and the evaluation of heat resistance was ⁇ (good).
  • Example 4 Production of resin composition [F4]
  • lanthanum hexaboride which shields near-infrared rays (average particle size 50 nm, Sumitomo Metal Mining Co., Ltd.) Made in the same manner as in Example 1 except that 0.003 part is used, and consists of a resin composition [F4] in which a 760 ⁇ m-thick modified block copolymer hydride [E1] is mixed with a mid-infrared shielding agent.
  • Sheet [G4] was produced. The water absorption of the sheet [G4] measured in the same manner as in Example 1 was 0.01% / 24 hours.
  • the light transmittance of the laminated glass [H4] -2 was measured at a wavelength of 300 to 2500 nm. As a result, the light transmittance of 70% at 550 nm, 32% at 150 nm, and 82% at 2000 nm is exhibited, the light transmittance is good in the visible region, and the light shielding property is sufficient in the near infrared region. I understood that. Further, as a result of evaluating the moisture resistance and heat resistance using the laminated glass [H4] -1, the evaluation of moisture resistance was ⁇ (good), and the evaluation of heat resistance was) (good).
  • Example 1 Resin composition using modified ethylene / vinyl acetate copolymer [R1]
  • 100 parts of an ethylene / vinyl acetate copolymer pellet product name “Evaflex (registered trademark) EV150”, vinyl acetate content 33 wt%, melting point 61 ° C., manufactured by Mitsui DuPont Polychemical Co., Ltd.
  • the same near-infrared absorbing dye 0.05 part as used and 0.2 part of the same ATO fine particles used in Example 3 were mixed.
  • This mixture was melt-kneaded under the conditions of a cylinder temperature of 90 ° C. and a screw speed of 100 rpm using the same twin-screw extruder as that used in Example 1, and was extruded from the T die to absorb near infrared rays.
  • a sheet [S1] having a thickness of 760 ⁇ m made of an ethylene / vinyl acetate copolymer resin composition [R1] containing a dye and mid-infrared shielding fine particles was produced.
  • the water absorption of the sheet [S1] measured in the same manner as in Example 1 was 0.11% / 24 hours.
  • the light transmittance of the laminated glass [T1] -2 was measured at a wavelength of 300 to 2500 nm. As a result, it showed a light transmittance of 71% at 550 nm, 27% at 1150 nm, and 2% at 2000 nm, good light transmittance in the visible region, and sufficient light shielding properties in the near infrared and mid infrared regions. I found out that However, as a result of evaluation of moisture resistance and heat resistance using the laminated glass [T1] -1, no cracks, blisters, peeling, discoloration, or bubbles were generated on the test piece.
  • the specific block copolymer hydride [D] and / or modified block copolymer hydride [E] within the scope of the present invention has a function of shielding infrared rays in any region within a wavelength range of 800 to 2000 nm.
  • the laminated glass [H] produced using the sheet [G] made of the resin composition [F] in which the metal oxide fine particles and / or near-infrared absorbing pigments are blended is used as an intermediate film. It has good transparency, has sufficient light shielding properties in the near infrared and / or mid infrared region, and has good moisture resistance and heat resistance.
  • Example 1 Metal oxide fine particles and near-infrared absorbing dyes are blended with EVA, which is a resin having higher water absorption than block copolymer hydride [D] and / or modified block copolymer hydride [E].
  • EVA is a resin having higher water absorption than block copolymer hydride [D] and / or modified block copolymer hydride [E].
  • Laminated glass [T1] produced using sheet [S1] made of resin composition [R1] as an intermediate film has good light transmittance in visible light, and is sufficient in the near infrared and / or mid infrared region. Although it has light shielding properties, it is inferior in moisture resistance. (Comparative Example 1)
  • the specific block copolymer hydride [D] and / or the modified block copolymer hydride [E] have metal oxide fine particles and / or near-infrared absorbing dyes having a function of shielding infrared rays.
  • the sheet [G] composed of the resin composition [F] blended as an interlayer film for laminated glass a laminated glass having a heat shielding function with good moisture resistance and heat resistance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、特定のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]100重量部に、赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素の合計量で0.001~2.0重量部を配合してなる樹脂組成物[F]からなるシート[G]を中間膜として使用した合わせガラス[H]である。本発明によれば、優れた赤外線遮蔽機能を有し、かつ、耐湿性、耐熱性の良好な合わせガラスが提供される。

Description

樹脂組成物及びその利用
 本発明は、優れた遮熱機能を有し、かつ、耐湿性及び耐久性に優れた合わせガラスの中間膜形成材料として好適な樹脂組成物、この樹脂組成物からなる樹脂シート、及び、この樹脂シートを中間膜として使用した合わせガラスに関する。
 熱線遮蔽機能を有する合わせガラスは、熱線の入射を防ぎ、夏場の冷房効果を高め、省エネルギー化にも効果があるため、自動車の窓ガラスや建築物の窓ガラス等として有用である(特許文献1~3)。
 熱線遮蔽機能を有する合わせガラスとしては、(a)赤外線を反射する金属微粒子、金属酸化物微粒子及び/又は近赤外線を吸収する色素を含有させた中間膜をガラス板間に挟み込んだ構造のもの、(b)熱線反射膜として、蒸着、スパッタリング加工等によって、ガラス板の表面に金属/金属酸化物の多層コーティングが施された構造のもの、(c)熱線反射膜として、金属/金属酸化物の多層コーティングが施された透明フィルムを、中間膜を介してガラス板間に挟み込んだ構造のもの、等がある。
 これらの内、(b)、(c)の熱線反射膜を基材に蒸着、スパッタリング加工等によって形成する方法は、製品が高価になり工業的に有利ではない。一方、(a)の熱線遮蔽機能を有する中間膜を使用する方法は、樹脂製の中間膜を溶融押出し法等で連続的に生産でき、また、その中間膜を使用した合わせガラスも通常の合わせガラス製造工程で生産できる点で量産性に優れ、工業的に有利である。
 前記(a)の方法に関するものとして、特許文献4には、ポリビニルアセタール樹脂(以下、「PVB」ということがある。)に、熱線遮蔽機能を有する金属酸化物微粒子を含有してなる合わせガラス用中間膜が開示されている。また、特許文献5、6には、PVBに近赤外線の領域の光を吸収する色素を配合してなる合わせガラス用中間膜が開示されている。
 しかし、これらの文献に記載の中間膜は、吸湿性の高いPVBを使用しており、この中間膜を用いて貼り合わせた合わせガラスは、高温高湿環境下で使用したり、長期間使用した場合において、ガラスの端部から水分が浸透し、周辺部分に白化が生じ易く、周辺部はガラスとの接着性も低下するなど、耐久性が必ずしも十分なものとは言えなかった。また、PVBを使用した中間膜は、ガラスとの接着性を制御するために、ガラスと貼り合わせる前に中間膜中の含水率を厳密に調節しなければならないという使用上の問題もあった(非特許文献1)。
 また、特許文献7には、水酸基の含有率が少ない熱可塑性樹脂中に近赤外線を吸収する有機色素を分散させた樹脂組成物からなる中間膜を用いることにより、遮熱性を長期間にわたり維持できる、耐久性に優れた合わせガラスが開示されている。
 しかしながら、この特許文献に開示されている、PVB、(メタ)アクリル樹脂、エチレン-酢酸ビニル共重合体樹脂、アイオノマー樹脂中に、有機色素を分散させた樹脂組成物からなる中間膜であっても、必ずしも十分な耐久性を有しているものとは言えない場合があった。
特開昭56-32352号公報(US2013135142A1) 特開昭63-134232号公報(US4859532A) 特開平7-157344号公報 特開2001-302288号公報 特開2012-66954号公報 特開2013-209234号公報 特開2011-42552号公報
藤崎靖之、日化協月報、35(10)、28(1982)
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、従来の熱線遮蔽機能を有する合わせガラスの問題点、即ち、耐湿性及び耐久性の問題を解決し、実用面においても優れた特性を有する合わせガラスを提供することを目的とする。
 本発明者らは、上記目的を達成するために、鋭意検討した結果、特定のブロック共重合体水素化物(以下、「ブロック共重合体水素化物[D]」ということがある。)及び/又は特定のブロック共重合体水素化物[D]に、アルコキシシリル基が導入された変性ブロック共重合体水素化物(以下、「変性ブロック共重合体水素化物[E]」ということがある。)に、赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素を特定量配合してなる樹脂組成物からなるシートを中間膜として使用して製造された合わせガラスは、優れた熱線反射機能を有し、かつ、耐湿性及び耐久性に優れることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(3)の樹脂組成物、(4)のそれからなるシート、及び、(5)のこのシートを中間膜として使用した合わせガラスが提供される。
(1)芳香族ビニル化合物由来の構造単位(以下、「構造単位[a]」ということがある。)を主成分とする重合体ブロック(以下、「重合体ブロック[A]」ということがある。)の2つ以上と、鎖状共役ジエン化合由来の構造体単位(以下、「構造単位[b]」ということがある。)を主成分とする重合体ブロック(以下、「重合体ブロック[B]」ということがある。)の1つ以上とからなり、
構造単位[a]の全量がブロック共重合体(以下、「ブロック共重合体[C]」ということがある。)に占める重量分率をw[a]とし、構造単位[b]の全量がブロック共重合体[C]に占める重量分率をw[b]としたときに、w[a]とw[b]との比(w[a]:w[b])が30:70~60:40であるブロック共重合体[C]の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D]及び/又はブロック共重合体水素化物[D]にアルコキシシリル基が導入された変性ブロック共重合体水素化物[E]100重量部に、
波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する、金属酸化物微粒子及び/又は近赤外線吸収色素の合計量で0.001~2.0重量部を配合してなる樹脂組成物。
(2)赤外線を遮蔽する機能を有する金属酸化物微粒子が、酸化錫、アルミニウムドープ酸化錫、インジウムドープ酸化錫、アンチモンドープ酸化錫、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、錫ドープ酸化亜鉛、珪素ドープ酸化亜鉛、酸化チタン、ニオブドープ酸化チタン、酸化タングステン、ナトリウムドープ酸化タングステン、セシウムドープ酸化タングステン、タリウムドープ酸化タングステン、ルビジウムドープ酸化タングステン、酸化インジウム、及び、錫ドープ酸化インジウムからなる群より選択される1種以上であることを特徴とする(1)に記載の樹脂組成物。
(3)赤外線を遮蔽する機能を有する近赤外線吸収色素が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、アントラキノン化合物、ペンタジエン化合物、アゾメチン化合物、及び6ホウ化ランタンからなる群より選択される1種以上の近赤外線吸収色素であることを特徴とする(1)又は(2)に記載の樹脂組成物。
(4)(1)~(3)のいずれかに記載の樹脂組成物からなる樹脂シートをガラス板間に介在させ、前記ガラス板と樹脂シートを含む積層物を接着させて、一体化してなる合わせガラスであって、波長800~2000nmの範囲内に、光線透過率が50%以下の領域を有し、波長550nmでの光線透過率が60%以上であることを特徴とする合わせガラス。
 本発明によれば、優れた遮熱機能を有し、かつ、耐湿性及び耐久性に優れた合わせガラスの中間膜形成材料として好適な樹脂組成物、この樹脂組成物からなる樹脂シート、及び、この樹脂シートを中間膜として使用した合わせガラスが提供される。
 本発明の樹脂組成物(以下、「樹脂組成物[F]」ということがある。)は、特定のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に、赤外線を遮蔽する金属酸化物微粒子及び/又は近赤外線吸収色素を特定量配合してなることを特徴とする。
 また、本発明の樹脂組成物[F]で成形された樹脂シート(以下、「樹脂シート[G]」ということがある。)は、可視光線領域(およそ波長360~800nm)での光線透過性を有し、赤外線領域(波長800~2000nm)での光線を遮蔽する機能を有することを特徴とする。
 さらにまた、本発明の樹脂シート[G]を中間膜としてガラス板間に介在させて得られる合わせガラス(以下、「合わせガラス[H]」ということがある。)は、透明で遮熱機能を有することを特徴とする。
1.ブロック共重合体[C]
 本発明に用いるブロック共重合体[C]は、少なくとも2つの重合体ブロック[A]と少なくとも1つの重合体ブロック[B]を含有する高分子である。ブロック共重合体[C]は、ブロック共重合体水素化物[D]の前駆体である。
(重合体ブロック[A])
 重合体ブロック[A]は、芳香族ビニル化合物由来の構造単位[a]を主成分とする重合体ブロックである。重合体ブロック[A]中の、構造単位[a]の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。重合体ブロック[A]中の構造単位[a]の含有量が少な過ぎると、本発明の樹脂組成物[F]の耐熱性が低下するおそれがある。
 重合体ブロック[A]は、構造単位[a]以外の成分を含有していてもよい。他の成分としては、鎖状共役ジエン由来の構造単位[b]及び/又はその他のビニル化合物由来の構造単位(以下、「構造単位[j]」ということがある。)が挙げられる。その含有量は、重合体ブロック[A]に対し、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[A]中の構造単位[b]及び/又は構造単位[j]の含有量が多くなり過ぎると、本発明の樹脂組成物[F]の耐熱性が低下するおそれがある。
ブロック共重合体[C]に含まれる複数の重合体ブロック[A]同士は、上記の範囲を満足するものであれば、互いに同一であっても、相異してもよい。
(重合体ブロック[B])
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の構造単位[b]を主成分とする重合体ブロックである。重合体ブロック[B]中の、構造単位[b]の含有量は、通常70重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上である。重合体ブロック[B]中の、構造単位[b]の含有量が上記範囲にあると、本発明の樹脂組成物[F]は柔軟性を有し、成形したシート[G]を中間膜に使用した合わせガラス[H]に耐熱衝撃性や耐貫通性が付与されるため好ましい。
 重合体ブロック[B]は、構造単位[b]以外の成分を含有していてもよい。他の成分としては、芳香族ビニル化合物由来の構造単位[a]及び/又はその他のビニル化合物由来の構造単位[j]が挙げられる。その含有量は、重合体ブロック[B]に対して、通常30重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下である。重合体ブロック[B]中の、構造単位[a]及び/又は構造単位[j]の含有量があまりに多いと、本発明の樹脂組成物[F]の柔軟性が損なわれ、成形したシート[G]を中間膜に使用した場合、合わせガラス[H]の耐熱衝撃性や耐貫通性が損なわれるため好ましくない。
 ブロック共重合体[C]が重合体ブロック[B]を複数有する場合、重合体ブロック[B]同士は、互いに同一であっても、相異なっていてもよい。
 芳香族ビニル化合物としては、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基として炭素数1~6のアルキル基を有するスチレン類;4-メトキシスチレン等の、置換基として炭素数1~6のアルコキシ基を有するスチレン類;4-フェニルスチレン等の、置換基としてアリール基を有するスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類;等が挙げられる。これらの中でも、吸湿性の観点から、スチレン、置換基として炭素数1~6のアルキル基を有するスチレン類等の、極性基を含有しない芳香族ビニル化合物が好ましく、工業的な入手の容易さから、スチレンが特に好ましい。
 鎖状共役ジエン系化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられ、吸湿性の観点から、極性基を含有しない鎖状共役ジエン系化合物が好ましく、工業的な入手の容易さから、1,3-ブタジエン、イソプレンが特に好ましい。
 その他のビニル系化合物としては、鎖状ビニル化合物、環状ビニル化合物、不飽和の環状酸無水物、不飽和イミド化合物等が挙げられる。これらの化合物は、ニトリル基、アルコキシカルボニル基、ヒドロキシカルボニル基、ハロゲン原子等の置換基を有していてもよい。これらの中でも、吸湿性の観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の炭素数2~20の鎖状オレフィン;ビニルシクロヘキサン、ノルボルネン等の炭素数5~20の環状オレフィン;1,3-シクロヘキサジエン、ノルボルナジエン等の環状ジエン化合物;等の、極性基を含有しないものが好ましい。
(ブロック共重合体[C])
 ブロック共重合体[C]は、少なくとも2つの重合体ブロック[A]と少なくとも1つの重合体ブロック[B]を含有する高分子である。
 ブロック共重合体[C]中の重合体ブロック[A]の数は、通常4個以下、好ましくは3個以下、より好ましくは2個であり、ブロック共重合体[C]中の重合体ブロック[B]の数は、通常3個以下、好ましくは2個以下、より好ましくは1個である。
 ブロック共重合体[C]中の重合体ブロック[A]及び重合体ブロック[B]の数が多くなると、ブロック共重合体[C]を水素化して得られるブロック共重合体水素化物[D]において、重合体ブロック[A]由来の水素化重合体ブロック(以下、「水素化重合体ブロック[Ah]」ということがある。)と重合体ブロック[B]由来の水素化重合体ブロック(以下、「水素化重合体ブロック[Bh]」ということがある。)との相分離が不明瞭になり、水素化重合体ブロック[Ah]に基づく高温側のガラス転位温度(以下、「Tg2」ということがある。」が低下して、本発明の樹脂組成物[F]の耐熱性が低下するおそれがある。
 ブロック共重合体[C]のブロックの形態は、特に限定されず、鎖状型ブロックでもラジアル型ブロックでもよいが、鎖状型ブロックであるのが、機械的強度に優れ好ましい。
 ブロック共重合体[C]の最も好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体([A]-[B]-[A])、及び重合体ブロック[A]の両端に重合体ブロック[B]が結合し、更に、該両重合体ブロック[B]の他端にそれぞれ重合体ブロック[A]が結合したペンタブロック共重合体([A]-[B]-[A]-[B]-[A])である。
 また、ブロック共重合体[C]中の構造単位[a]の全量がブロック共重合体[C]に占める重量分率をw[a]とし、構造単位[b]の全量がブロック共重合体[C]に占める重量分率をw[b]としたときに、w[a]とw[b]との比(w[a]:w[b])は、30:70~60:40、好ましくは35:65~55:45、より好ましくは40:60~50:50である。w[a]が多過ぎる場合は、本発明に係る樹脂組成物[F]の耐熱性が高くなるが、柔軟性が低く、樹脂組成物[F]からなる中間膜を使用した合わせガラスでは、低温熱衝撃でガラスが割れ易くなる。一方、w[a]が少な過ぎる場合は、樹脂組成物[F]からなる中間膜の耐熱性が低下するおそれがある。
 ブロック共重合体[C]の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~150,000、より好ましくは60,000~100,000である。
 また、ブロック共重合体[C]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。Mw及びMw/Mnが上記範囲となるようにすると、ブロック共重合体[C]を水素化して得られるブロック共重合体水素化物[D]を用いた樹脂組成物[F]及び/又はそれからなるシート[G]は、耐熱性や機械的強度が良好となる。
 ブロック共重合体[C]の製造方法は、特に限定されず、公知の方法を採用することができる。例えば、リビングアニオン重合等の方法により、芳香族ビニル化合物を主成分(芳香族ビニル化合物の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。以下にて同じ。)として含有するモノマー混合物(a)と、鎖状共役ジエン系化合物を主成分(鎖状共役ジエン化合物の含有量は、通常70重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上である。以下にて同じ。)として含有するモノマー混合物(b)を交互に重合させる方法;芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を順に重合させた後、重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法等により、得ることができる。
 カップリング剤としては、ジメチルジクロロシラン、メチルトリクロロシラン、ブチルトリクロロシラン、テトラクロロシラン、ジブロモエタン、ビス(トリクロロシリル)エタン等のハロゲン化合物;エポキシ化大豆油等のエポキシ化合物;アジピン酸ジエチル、アジピン酸ジメチル、ジメチルテレフタル酸、ジエチルテレフタル酸等のジカルボン酸のジエステル化合物;が挙げられる。
2.ブロック共重合体水素化物[D]
 本発明に用いるブロック共重合体水素化物[D]は、上記のブロック共重合体[C]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合を水素化したものである。その水素化率は通常90%以上、好ましくは97%以上、より好ましくは99%以上である。水素化率が高いほど、成形体の耐候性、耐熱性及び透明性が良好である。
 本発明に用いるブロック共重合体水素化物[D]においては、上記のブロック共重合体[C]の主鎖及び側鎖の炭素-炭素不飽和結合の水素化率は、通常90%以上、好ましくは97%以上、より好ましくは99%以上である。また、芳香環の炭素-炭素不飽和結合の水素化率は、通常90%以上、好ましくは97%以上、より好ましくは99%以上である。
 ブロック共重合体水素化物[D]の水素化率は、ブロック共重合体水素化物[D]の1H-NMRを測定することにより求めることができる。
 不飽和結合の水素化方法や反応形態等は特に限定されず、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。このような水素化方法としては、例えば、WO2011/096389号パンフレット、WO2012/043708号パンフレット等に記載された方法を挙げることができる。
 水素化反応終了後においては、水素化触媒、又は水素化触媒及び重合触媒を反応溶液から除去した後、得られた溶液からブロック共重合体水素化物[D]を回収することができる。回収されたブロック共重合体水素化物[D]の形態は限定されるものではないが、通常はペレット形状にして、その後の添加剤の配合やアルコキシシリル基の導入反応に供することができる。
 ブロック共重合体水素化物[D]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~150,000、より好ましくは60,000~100,000である。また、ブロック共重合体水素化物[D]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、本発明の樹脂組成物[F]の耐熱性や機械的強度が良好となる。
3.変成ブロック共重合体水素化物[E]
 本発明で使用できる変成ブロック共重合体水素化物[E]は、上記ブロック共重合体水素化物[D]に、有機過酸化物の存在下で、エチレン性不飽和シラン化合物を反応させることにより、アルコキシシリル基が導入されたものである。ブロック共重合体水素化物[D]にアルコキシシリル基を導入することにより、ガラスや金属に対する強固な接着性を付与することができる。
 アルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基等の、トリ(炭素数1~6アルコキシ)シリル基;メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基、エチルジエトキシシリル基、プロピルジメトキシシリル基、プロピルジエトキシシリル基等の、(炭素数1~20アルキル)ジ(炭素数1~6アルコキシ)シリル基;フェニルジメトキシシリル基、フェニルジエトキシシリル基等の、(アリール)ジ(炭素数1~6アルコキシ)シリル基;等が挙げられる。また、アルコキシシリル基は、ブロック共重合体水素化物[D]に、炭素数1~20のアルキレン基や、炭素数2~20のアルキレンオキシカルボニルアルキレン基等の2価の有機基を介して結合していてもよい。
 ブロック共重合体水素化物[D]へのアルコキシシリル基の導入量は、通常、ブロック共重合体水素化物[D]100重量部に対し、0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 アルコキシシリル基の導入量が多過ぎると、得られる変性ブロック共重合体水素化物[E]を所望の形状に溶融成形する前に微量の水分等で分解されたアルコキシシリル基同士の架橋が進み、ゲル化したり、溶融時の流動性が低下して成形性が低下したりする等の問題が生じ易くなる。一方、アルコキシシリル基の導入量が少な過ぎると、前記中間膜をガラス板と接着するのに十分な接着力が得られないという不具合が生じ易くなる。アルコキシシリル基が導入されたことは、IRスペクトルで確認することができる。また、その導入量は、1H-NMRスペクトルにて算出することができる。
 用いるエチレン性不飽和シラン化合物としては、ブロック共重合体水素化物[D]とグラフト重合し、ブロック共重合体水素化物[D]にアルコキシシリル基を導入するものであれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン等のアリルトリアルコキシシラン;ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のビニルアルキルジアルコキシシラン;p-スチリルトリメトキシシラン等のp-スチリルトリアルコキシシラン;3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、等の(メタ)アクリロキシトリアルコキシシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラ等の(メタ)アクリロキシアルキルジアルコキシシラン;等が好適に用いられる。これらのエチレン性不飽和シラン化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。
 エチレン性不飽和シラン化合物の使用量は、ブロック共重合体水素化物[D]100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 過酸化物としては、1分間半減期温度が170~190℃のものが好ましく使用される。例えば、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン等が好適に用いられる。これらの過酸化物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。過酸化物の使用量は、ブロック共重合体水素化物[D]100重量部に対して、通常0.05~2重量部、好ましくは0.1~1重量部、より好ましくは0.2~0.5重量である。
 上記のブロック共重合体水素化物[D]とエチレン性不飽和シラン化合物とを、過酸化物の存在下で反応させる方法は、特に限定されない。例えば、ブロック共重合体水素化物[D]、エチレン性不飽和シラン化合物及び過酸化物からなる混合物を、二軸混練機にて所望の温度で所望の時間混練することにより、ブロック共重合体水素化物[D]にアルコキシシリル基を導入することができる。
 二軸混練機による混練温度は、通常180~220℃、好ましくは185~210℃、より好ましくは190~200℃である。また、加熱混練時間は、通常0.1~10分、好ましくは0.2~5分、より好ましくは0.3~2分程度である。加熱混練温度、加熱混練時間(滞留時間)が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 得られた変性ブロック共重合体水素化物[E]の形態は限定されるものではないが、通常はペレット形状にして、その後の添加剤の配合に供することができる。
 変性ブロック共重合体水素化物[E]の分子量は、導入されるアルコキシシリル基の量が少ないため、原料として用いたブロック共重合体水素化物[D]の分子量と実質的には変わらない。ただし、過酸化物の存在下で、エチレン性不飽和シラン化合物と反応させるため、重合体の架橋反応、切断反応が併発し、変性ブロック共重合体水素化物[E]の分子量分布の値は大きくなる。
 変性ブロック共重合体水素化物[E]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~150,000、より好ましくは60,000~100,000である。
 また、分子量分布(Mw/Mn)は、好ましくは3.5以下、より好ましくは2.5以下、特に好ましくは2.0以下である。Mw及びMw/Mnが上記範囲となるようにすると、本発の樹脂組成物[F]及び/又はそれからなるシート[G]の耐熱性や機械的強度が維持される。
4.樹脂組成物[F]
 本発明の樹脂組成物[F]は、前記ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に対して、波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する、金属酸化物微粒子及び/又は近赤外線吸収色素を配合してなる樹脂組成物[F]である。
 本発明の樹脂組成物[F]からなる樹脂シート[G]は、波長800~2000nmの範囲内の赤外線を遮蔽することにより遮熱性に優れたものとなる。
(金属酸化物)
 本発明の樹脂組成物[F]に用いる金属酸化物微粒子は、波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有するものである。
 ここで、「波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する」とは、「用いる金属酸化物微粒子が、波長800~2000nmの範囲内のいずれかの領域において、赤外線を吸収して、結果として赤外線が通過するのを遮断する機能を有する」という意味である。用いる金属酸化物微粒子は、波長800~2000nmの範囲内のいずれかの領域において、最大吸収波長を有するものであっても、波長800~2000nmの範囲外のいずれかの領域外において、最大吸収波長を有するものであってもよい。
 用いる金属酸化物微粒子としては、酸化錫、アルミニウムドープ酸化錫、インジウムドープ酸化錫、アンチモンドープ酸化錫、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、錫ドープ酸化亜鉛、珪素ドープ酸化亜鉛、酸化チタン、ニオブドープ酸化チタン、酸化タングステン、ナトリウムドープ酸化タングステン、セシウムドープ酸化タングステン、タリウムドープ酸化タングステン、ルビジウムドープ酸化タングステン、酸化インジウム、錫ドープ酸化インジウム等の微粒子が挙げられる。これらの金属酸化物微粒子は、1種単独で、あるいは2種以上を組み合わせて使用することができる。
 用いる金属酸化物微粒子の平均粒子径は、通常0.001~0.2μm、好ましくは0.005~0.15μm、より好ましくは0.01~0.1μmである。平均粒子径がこの範囲内であると、可視光領域の透明性を維持して、熱線の遮蔽性を付与することができる。
 本発明の樹脂組成物[F]において、上記金属酸化物微粒子の配合量は、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]の100重量部に対して、通常0.001~1.0重量部、好ましくは0.002~0.5重量部、より好ましくは0.005~0.3重量部である。配合量がこの範囲内であると、可視光領域の透明性を維持して、熱線の遮蔽性を付与することができる。
(近赤外線吸収色素)
 本発明の樹脂組成物[F]に用いる近赤外線吸収色素は、波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有するものである。
 ここで、「波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する」とは、「用いる近赤外線吸収色素が、波長800~2000nmの範囲内のいずれかの領域において、赤外線を吸収して、結果として赤外線が通過するのを遮断する機能を有する」という意味である。用いる近赤外線吸収色素は、波長800~2000nmの範囲内のいずれかの領域において、最大吸収波長を有するものであっても、波長800~2000nmの範囲外のいずれかの領域外において、最大吸収波長を有するものであってもよい。
 本発明の樹脂組成物[F]に用いられる、波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する近赤外線吸収色素としては、例えば、
4,5-オクタキス(フェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(n-ヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(フェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(2-エチルヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(4-クロロフェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(n-ヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(2-メチルフェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(n-ヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(4-メトキシフェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(n-ヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(フェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(3-エトキシプロピルアミノ)}銅フタロシアニン、4,5-オクタキス(5-tert-ブチル-2-メチルフェニルチオ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(n-ヘキシルアミノ)}銅フタロシアニン、4,5-オクタキス(2,5-ジクロロフェノキシ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(DL-1-フェニルエチルアミノ)}酸化バナジウムフタロシアニン、4,5-オクタキス(2,5-ジクロロフェノキシ)-3,6-{テトラキス(2,6-ジメチルフェノキシ)-テトラキス(ベンジルアミノ)}酸化バナジウムフタロシアニン等のフタロシアニン化合物;
バナジル 5,14,23,32-テトラキス(4-ニトロフェニル)-2,3-ナフタロシアニナト、バナジル 5,14,23,32-テトラキス(4-アセトアミドフェニル)-2,3-ナフタロシアニナト、バナジル 5,14,23,32-テトラキス(4-アセトアミドフェニル)-2,3-ナフタロシアニナト、テトラフエニルチオテトラヘキシル-1,2-ナフタロシアニンバナジルオキシ等のナフタロシアニン化合物;
ジイモニウム化合物(ヘキサフルオロリン酸-N,N,N’,N’-テトラキス{p-ジ(シクロヘキシルメチル)アミノフェニル}-p-フェニレンジイモニウム、ヘキサフルオロアンチモン酸-N,N,N’,N’-テトラキス{p-ジ(n-プロピル)アミノフェニル}-p-フェニレンジイモニウム、テトラフルオロホウ酸-N,N,N’,N’-テトラキス{p-ジ(n-プロピル)アミノフェニル}-p-フェニレンジイモニウム、N,N,N’,N’-テトラキス(p-ジ(iso-ブチル)アミノフェニル)-p-フェニレンジイモニウム等のイモニウム化合物;
5-アニリノ-2,3,3-トリメチルインドレニン、5,5’-[(1,2-エタンジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]、5,5’-[(1,3-プロパンジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]、5,5’-[(1,4-ブタンジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]、5,5’-[(1,5-ペンタンジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]、5,5’-[(1,6-ヘキサンジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]、5,5’-[(2-ブテン-1,4-ジイル)ビス(オキシ)ビス(3-メトキシ-4,1-フェニレン)ビス(4-シアノ-2,2-ジメチル-4-ペンテン-3-オン)]等のポリメチン化合物;
2,3,4-トリオクタデカノキシベンゾヒドロール、[フェニル(2,3,4-トリオクタデカノキシフェニル)メチル]アミン、4,4’-ジドコソキシベンゾヒドロール、ジ(4-ドコソキシフェニル)メチルアミン、4,4-ジ(12-ドコソキシドデシルオキシ)ベンゾヒドロール、アミノ-ビス[4-(12-ドコソキシドデシルオキシ)フェニル]メタン、N-ベンジル-[ビス(4-ドコシルオキシフェニル)]メチルアミン(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メタノール、{(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メチル}-アミン、[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン等のジフェニルメタン化合物;
1,4-ビス((エテニルフェニル)アミノ)-9,10-アントラキノン、1,8-ビス((エテニルフェニル)アミノ)-9,10-アントラキノン、1-((エテニルフェニル)アミノ)-9,10-アントラキノン、1-エテニルフェニルアミノ-4-ヒドロキシ-9,10-アントラキノン、1-((エテニルフェニル)アミノ)-4-((4-メチルフェニル)アミノ)-9,10-アントラキノン、1,4-ビス((アリルオキシエチルフェニル)アミノ)-9,10-アントラキノン、1-(アリルオキシメチルフェニル)アミノ-4-ヒドロキシ-9,10-アントラキノン、1-(アリルオキシエチルフェニル)アミノ-4-ヒドロキシ-9,10-アントラキノン、1-(4-(2-(アリルアミノカルボニルオキシ)エチル)フェニルアミノ-4-ヒドロキシアントラキノン、1-(4-(2-メタクリロイルオキシエチル)フェニル)アミノ-ヒドロキシ-9,10-アントラキノン等のアントラキノン化合物;
1,5-ビス(4-N,N-ジメチルアミノフェニル)-1-p-トリルスルホニル-2,4-トリメチレン-2,4-ペンタジエン、1,5-ビス(4-N,N-ジメチルアミノフェニル)-1-フェニルスルホニル-2,4-トリメチレン-2,4-ペンタジエン、1,5-ビス(4-N,N-ジメチルアミノフェニル)-3-p-トリルスルホニル-2,4-トリメチレン-1,4-ペンタジエン、1,5-ビス(4-N,N-ジメチルアミノフェニル)-3-フェニルスルホニル-2,4-トリメチレン-1,4-ペンタジエン、1,5-ビス(4-N,N-ジエチルアミノフェニル)-1-p-トリルスルホニル-2,4-トリメチレン-2,4-ペンタジエン、1,5-ビス(4-N,N-ジエチルアミノフェニル)-3-p-トリルスルホニル-2,4-トリメチレン-1,4-ペンタジエン、1,5-ビス(4-N,N-ジメチルアミノ-2-メチルフェニル)-1-p-トリルスルホニル-2,4-トリメチレン-2,4-ペンタジエン、1,5-ビス(4-N,N-ジメチルアミノ-2-メチルフェニル)-3-p-トリルスルホニル-2,4-トリメチレン-1,4-ペンタジエン、1,5-ビス(4-N,N-ジブチルアミノフェニル)-1-p-トリルスルホニル-2,4-トリメチレン-2,4-ペンタジエン、1,5-ビス(4-N,N-ジブチルアミノフェニル)-3-p-トリルスルホニル-2,4-トリメチレン-1,4-ペンタジエン、1,5-ビス(4-N,N-ジブチルアミノフェニル)-3-p-トリルスルホニル-2,4-トリメチレン-1,4-ペンタジエン等のペンタジエン化合物;
ピロロピリミジン-5-オンアゾメチン、ピロロピリミジン-7-オンアゾメチン、(2-ヒドロキシ-N-(2’-メチル-4’-メトキシフェニル)-1-{[4-[(4,5,6,7-テトラクロロ-1-オキソ-2,3-ジヒドロ-1H-イソインドール-3-イリデン)アミノ]フェニル]アゾ}-11H-ベンゾ[a]-カルバゾール-3-カルボキシアミド)等のアゾメチン化合物;6ホウ化ランタン;等が挙げられる。
これらの近赤外線吸収色素は、1種単独で、あるいは2種以上を組み合わせて使用することができる。
 本発明の樹脂組成物[F]において、上記近赤外線吸収色素の配合量は、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]の100重量部に対して、通常0.001~1.0重量部、好ましくは0.002~0.7重量部、より好ましくは0.005~0.5重量部である。配合量がこの範囲内であると、可視光領域の透性を維持して、熱線の遮蔽性を付与することができる。
 本発明の樹脂組成物[F]においては、金属酸化物微粒子及び近赤外線吸収色素を組み合わせて配合することが、可視光線領域の光線透過率を著しく低下させることなく、波長800~2000nmの広域の赤外線を遮蔽することができるため好ましい。
(その他の配合剤)
 本発明においては、樹脂組成物[F]に、樹脂に一般的に配合される各種の添加剤を配合することもできる。好ましい添加剤としては、柔軟性、接着温度の低下及び金属との接着性等を調整するための軟化剤、紫外線を遮蔽するための紫外線吸収剤、加工性等を高めるための酸化防止剤やブロッキング防止剤、耐久性を高めるための光安定剤等が挙げられる。
 軟化剤としては、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に均一に溶解ないし分散できるものが好ましく、数平均分子量300~5,000の炭化水素系重合体が好ましい。
 炭化水素系重合体の具体例としては、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、エチレン・α-オレフィン共重合体等の低分子量体及びその水素化物;ポリイソプレン、ポリイソプレン-ブタジエン共重合体等の低分子量体及びその水素化物等が挙げられる。
 軟化剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、特に透明性、耐光性を維持し、軟化効果に優れている点で、低分子量のポリイソブチレン水素化物、低分子量のポリイソプレン水素化物が好ましい。
 低分子量の炭化水素系重合体の配合量は、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]100重量部に対して、通常20重量部以下、好ましくは10重量部以下である。低分子量の炭化水素系重合体の配合量を多くすると、合わせガラス用の中間膜とした場合に、柔軟性は高められるが、耐熱性が低下したり、溶出物が増加し易くなる傾向がある。
 紫外線吸収剤としては、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物等が使用できる。
 酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が使用できる。光安定剤としては、ヒンダードアミン系光安定剤等が使用できる。
 ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に配合される、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、光安定剤等は、それぞれ1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの添加剤の配合量は、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]100重量部に対して、通常5重量部以下、好ましくは2重量部以下、より好ましくは1重量部以下である。
 本発明の樹脂組成物[F]の製造方法は、樹脂組成物の製造方法として一般に用いられる公知の方法が適用できる。例えば、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]のペレット、金属酸化物微粒子、近赤外線吸収色素、及び/又は、これらを適当な溶剤中に分散させたもの、必要に応じて他の配合剤を、タンブラー、リボンブレンダー、ヘンシェルタイプミキサー等の混合機を使用して均等に混合した後、二軸押出機等の連続式溶融混練機により溶融混合し、押出してペレット状にすることによって樹脂組成物[F]を製造することができる。
 また、上記と同様の方法で金属酸化物微粒子及び/又は近赤外線吸収色素、必要に応じて他の配合剤を高濃度に含有する樹脂組成物(以下、「マスターペレット[F0]」ということがある。)を作製し、このマスターペレット[F0]とブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]のペレットを混合して、単軸押出機、二軸押出機等により溶融混合し、押出してペレット状にすることによって樹脂組成物[F]を製造することもできる。
5.樹脂シート[G]
 本発明の樹脂シート[G]は、本発明の樹脂組成物[F]をシート状に成形して得られるものである。本発明の樹脂シート[G]は、2枚の板ガラスの間に配置して、接着剤を介するか又は介さずに一体に貼り合わせして合わせガラスとした際に、波長800~2000nmの範囲内に、光線透過率が50%以下、好ましくは40%以下、より好ましくは30%以下の領域を有し、波長550nmでの光線透過率が60%以上、好ましくは65%以上、より好ましくは70%以上となるものである。
 樹脂シート[G]の厚みは、特に限定されず、合わせガラスにした場合に上記光線透過率となるように適宜選定することができる。樹脂シート[G]の厚みは、通常0.1~3.0mm、好ましくは0.2~2.5mm、より好ましくは0.3~2.0mmである。
 樹脂シート[G]を作製する方法としては、特に限定されず、溶融押出し成形法、カレンダー成形法等の、従来公知の成形法が適用できる。例えば、溶融押出し成形法により、樹脂シート[G]を形成する場合、樹脂温度は、通常170~230℃、好ましくは180~220℃、より好ましくは190~210℃の範囲で適宜選択される。樹脂温度が低過ぎる場合は、流動性が悪化し、シート[G]の表面にゆず肌やダイライン等の不良を生じ易く、また、押出し速度が上げられず、工業的に不利となる。樹脂温度が高過ぎる場合は、樹脂シート[G]のガラスヘの接着性が不良となったり、樹脂シート[G]の貯蔵安定性が低下して、樹脂シート[G]を常湿(20℃付近)環境下で長期間貯蔵した後のガラスに対する接着性が低下したりする等の不具合を生じ易くなる。
 樹脂シート[G]の表面は、平面状やエンボス加工を施した形状等とすることができる。また、樹脂シート[G]同士のブロッキングを防止するために、樹脂シート[G]の片面に、離型フィルムを重ねて保管することもできる。
6.合わせガラス
 本発明の合わせガラス[H]は、少なくとも2枚以上のガラス板を、少なくとも1枚の樹脂シート[G]を介して積層一体化してなる合わせガラスである。また、ガラス板と樹脂シート[G]の間には接着層が積層されていてもよい。
 合わせガラス[H]は、波長800~2000nmの範囲内に、光線透過率が50%以下、好ましくは40%以下、より好ましくは30%以下の領域を有し、波長550nmでの光線透過率が60%以上、好ましくは65%以上、より好ましくは70%以上を有するものである。
 本発明の合わせガラス[H]において、用いる2枚以上のガラス板同士は、厚みや材質等が互いに同一であっても、相異なっていてもよい。
 使用するガラス板の厚みは特に限定されないが、通常0.5~10mm程度である。厚みが0.05~0.5mm程度の極薄ガラス板を使用することもできる。例えば、厚み2.1mmのガラス板/厚み2.4mmの樹脂シート[G]/厚み0.5mmの薄膜ガラス板の3層構成となるような、異なる厚みのガラス板を使用することもできる。
 樹脂シート[G]の内で、変性ブロック共重合体水素化物[E]を使用して製造した樹脂組成物[F]からなる樹脂シート[G]は、ガラスと強固な接着性を有するため、接着剤を用いることなく合わせガラスの中間膜として使用できる。
 一方、ブロック共重合体水素化物[D]を使用して製造した樹脂組成物[F]からなる樹脂シート[G]は、ガラスとの接着性が弱く、合わせガラスの中間膜として使用する場合は、通常、接着剤を介してガラスと貼り合わせる。
 用いる接着剤としては、変性ブロック共重合体水素化物[E]からなる樹脂シート、変性ブロック共重合体水素化物[E]を使用して製造した樹脂組成物[F]からなる樹脂シート[G]が挙げられる。また、アクリル樹脂系接着剤、α-オレフィン系接着剤、ウレタン樹脂系接着剤、エチレン-酢酸ビニル樹脂ホットメルト接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤、シリコーン系接着剤、ポリビニルブチラール樹脂系接着剤等も使用できる。
 接着剤を使用する合わせガラスの層構成としては、厚み1.1mmのガラス板/厚み0.38mmの、変性ブロック共重合体水素化物[E]からなる樹脂シート/厚み2.0mmの樹脂シート[G]/厚み0.38mmの、変性ブロック共重合体水素化物[E]からなる樹脂シート/厚み1.1mmのガラス板の5層構成等が挙げられる。
 合わせガラスの中間膜として、樹脂組成物[F]を使用した場合は、-50℃程度の低温領域から、+120℃程度の高温領域まで幅広い温度帯域で柔軟性を維持するため、熱膨張係数の異なるガラス板を貼り合わせることもでき、急激な温度変化によってもガラスの割れを低減することができる。
 使用するガラス板の材質は特に限定されず、例えば、アルミノシリケート酸ガラス、アルミノホウケイ酸ガラス、ウランガラス、カリガラス、ケイ酸ガラス、結晶化ガラス、ゲルマニウムガラス、石英ガラス、ソーダガラス、鉛ガラス、バリウム瑚珪酸ガラス、瑚珪酸ガラス等が挙げられる。
 合わせガラスを製造する方法は特に限定されず、オートクレーブを使用する方法、真空ラミネータを使用する方法等が適用できる。例えば、第1のガラス板/樹脂シート[G]/第2のガラス板の順に重ね、減圧可能な耐熱性の樹脂製袋に入れて脱気後、オートクレーブを使用して、加熱加圧下で接着させて合わせガラスを製造する方法、真空ラミネータを使用して、加熱下で真空圧着して接着させる方法等がある。
 オートクレーブを使用する場合は、通常、加熱温度は120~150℃、圧力は0.3~1.1MPaであり、真空ラミネータを使用する場合は、通常、加熱温度130~170℃、圧力は0.01~0.1MPaである。
 本発明の合わせガラスは、吸湿性及び透湿性が小さい、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に、赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素を配合してなる樹脂組成物[F]からなる樹脂シート[G]を使用することを特徴としている。従って、高温高湿度環境下で使用した場合であっても、樹脂シート[G]が白化する等の不具合が発生することが少ない。
 本発明の合わせガラスは、可視光線領域で透明性を有し、赤外線領域で遮蔽性を有しているため、透明性と遮熱性を両立させることが可能である。従って、建築物の窓ガラス、屋根用ガラス、部屋用遮熱壁材、自動車のフロントガラス、サイドガラス、リアガラス、サンルーフ用ガラス、鉄道車両や船舶用の窓ガラス等として有用である。
 また、本発明の樹脂組成物[F]からなる樹脂シート[G]は、合わせガラス同様に、可視光線領域の光透過性と遮熱性を有しているため、農業用シート、ガラス窓用遮熱シート、競技場用屋根材等としても有用である。
 以下に、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、「部」及び「%」は特に断りのない限り、重量基準である。
 本実施例における評価は、以下の方法によって行う。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体[C]及びブロック共重合体水素化物[D]の分子量は、THFを溶離液とするGPCによる標準ポリスチレン換算値として、38℃において測定した。測定装置として、東ソー社製、HLC8020GPCを用いた。
(2)水素化率
 ブロック共重合体水素化物[D]の主鎖、側鎖及び芳香環の水素化率は、1H-NMRスペクトルを測定して算出した。
(3)光線透過率
 光線透過率の測定は、分光光度計(V-670、日本分光社製)を使用して、波長550nm及び800~2500nmでの光線透過率を測定した。
(4)耐湿性
 試験法JIS R3212に準拠して、平面な合わせガラス試験片(縦300mm、横300mm)を、温度50℃、相対湿度95%RHの恒温恒湿槽内で、336時間ほぼ水平に配置して保存した後、外観変化の目視評価を行った。
 目視観察の結果、試験片に、ひび割れ、膨れ、剥離、変色、泡、濁り等の変化が認められない場合を「◎」(良好)、試験片に、ひび割れ、膨れ、剥離が無く、変色、泡、濁りが有っても、試験片端部から10mm以内に限られる場合を「○」(許容)、試験片に、ひび割れ、膨れ、剥離が有り、試験片端部から10mm以上内側に、変色、泡、濁り等のいずれかの変化がある場合を「×」(不良)と評価した。
(5)耐熱性
 平面な合わせガラス試験片(縦300mm、横300mm)を、沸騰水中で、鉛直の状態に浸漬し、2時間保持した後、外観変化の目視評価を行った。
 試験片にひび割れ、泡、その他欠点が認められない場合を「◎」(良好)、試験片にひび割れが無く、泡、その他欠点が有っても試験片端部から10mm以内に限られる場合を「○」(許容)、試験片にひび割れが有り、試験片端部から10mm以上内側に泡、その他欠点のいずれかの変化がある場合を「×」(不良)と評価した。
[参考例1]ブロック共重合体水素化物[D1]の製造
(ブロック共重合体[C1]の製造)
 内部が十分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン25.0部、及びn-ジブチルエーテル0.475部を入れた。次いで、全容を60℃で攪拌しながら、n-ブチルリチウムの15%シクロヘキサン溶液を0.88部加えて重合を開始させ、さらに、60℃で60分間全容を攪拌した。この時点で、反応液をガスクロマトグラフィーにより測定した結果、重合転化率は99.5%であった。
 その後、反応液に脱水イソプレン50.0部を加え、そのまま60℃で30分間攪拌を続けた。この時点で重合転化率は99.5%であった。
 その後更に、反応液に脱水スチレンを25.0部加え、60℃で60分間攪拌した。この時点での重合転化率はほぼ100%であった。
 ここで、反応液にエチルアルコール0.5部を加えて反応を停止させて、重合体溶液を得た。得られたブロック共重合体[C1]の重量平均分子量(Mw)は47,200、分子量分布(Mw/Mn)は1.04、w[a]:w[b]=50:50であった。
(ブロック共重合体水素化物[D1]の製造)
 上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)8.0部、及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応後のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は49,900、分子量分布(Mw/Mn)は1.06であった。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ろ液にフェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「Songnox1010」、コーヨ化学研究所社製)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にてろ過して微小な固形分を除去した。次いで、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーを、ダイから溶融ポリマーをストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体水素化物[D1]のペレット94部を得た。得られたペレット状のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は49,500、分子量分布(Mw/Mn)は1.10、水素化率はほぼ100%であった。
[参考例2]変性ブロック共重合体水素化物[E1]の製造
 参考例1で得たブロック共重合体水素化物[D1]のペレット100部に対して、ビニルトリメトキシシラン2.0部、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標)25B」、日油社製)0.2部を添加して混合物を得た。この混合物を、二軸押出機を用いて、樹脂温度200℃、滞留時間60~70秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有する変性ブロック共重合体水素化物[E1]のペレット93部を得た。
 得られた変性ブロック共重合体水素化物[E1]のペレット10部をシクロヘキサン100部に溶解した後、脱水したメタノール400部中に注いで変性ブロック共重合体水素化物[E1]を凝固させ、ろ取した。ろ過物を25℃で真空乾燥して、変性ブロック共重合体水素化物[E1]のクラム9.0部を単離した。
 このもののFT-IRスペクトルを測定した結果、1090cm-1にSi-OCH3基、825cm-1と739cm-1にSi-CH2基に由来する新たな吸収帯が観測された。また、ビニルトリメトキシシランのそれらの1075cm-1、808cm-1及び766cm-1と異なる位置に観測された。さらに、1H-NMRスペクトル(重クロロホルム中)を測定した結果、3.6ppmに、メトキシ基のプロトンに基づく吸収帯が観測された。ピーク面積比からブロック共重合体水素化物[D1]の100部に対して、ビニルトリメトキシシラン1.8部が結合したことが確認された。
[実施例1]樹脂組成物[F1]の製造
 参考例2で製造した変性ブロック共重合体水素化物[E1]100部に対し、ジイモニウム塩化合物系近赤外線吸収色素(製品名「KAYASORB IRG-022」、日本化薬社製)0.25部を加え、ミキサーにて混合した。この混合物を、幅300mmのTダイを備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)を用いて、シリンダー温度200℃、スクリュー回転数150rpmの条件で溶融混練し、Tダイから押出して厚さ760μmの変性ブロック共重合体水素化物[E1]に近赤外線吸収色素を配合した樹脂組成物[F1]からなる樹脂シート[G1]を作製した。
 得られたシート[G1]から、縦50mm、横50mmの試験片を切り出し、23℃の水に24時間浸漬した前後の測定重量の差から、樹脂シート[G1]の吸水性は、0.01%/24時間であった。
(合わせガラス[H1]の作製)
 得られた樹脂シート[G1]から、縦300mm、横300mmの試験片切り出した。
次いで、厚さ2.1mm、縦300mm、横300mmの2枚の青板ガラスの間に、樹脂シート[G1]の試験片を挟み、積層した。この積層物を、NY(ナイロン)/PP(ポリプロピレン)製の厚み75μmの袋に入れ、袋の開口部の中央部を200mm幅残して両側をヒートシーラーでヒートシールした後、密封パック器(BH-951、パナソニック社製)を使用して、袋内を脱気しながら開口部をヒートシールして積層物を密封包装した。その後、密封包装した積層物をオートクレーブに入れて、30分間、温度140℃、圧力0.8MPaで加熱加圧し、合わせガラス[H1]-1を作製した。
 同様にして、光線透過率測定用に、厚さ2.1mm、縦70mm、横50mmの合わせガラス[H1]-2も作製した。
 作製した合わせガラス[H1]-1及び[H1]-2を目視観察した結果、ひび割れ、膨れ、剥離、変色、泡、濁り等の異常は認められず、良好な外観であった。
 分光光度計を使用して、波長300~2500nmで、合わせガラス[H1]-2の光線透過率を測定した。その結果、550nmで85%、1150nmで3%、2000nmで83%の光線透過率を示し、可視領域での良好な光透過性を有し、近赤外線領域で十分な遮光性を有していることが分かった。
 また、合わせガラス[H1]-1を使用し、耐湿性及び耐熱性の評価を行った結果、耐湿性の評価は◎(良好)、耐熱性の評価も◎(良好)であった。
[実施例2]樹脂組成物[F2]の製造
 参考例1で製造したブロック共重合体水素化物[D1]100部に対し、実施例1と同様のジイモニウム塩化合物系近赤外線吸収色素0.25部を加え、実施例1と同様にして厚さ760μmのブロック共重合体水素化物[D1]に近赤外線吸収色素を配合した樹脂組成物[F2]からなるシート[G2]を作製した。
 これとは別に、近赤外線吸収色素を配合しないこと以外は実施例1と同様にして、変性ブロック共重合体水素化物[E1]からなる厚さ50μmのシート[J2]を作製した。
 実施例1と同様にして測定したシート[G2]及びシート[J2]の吸水性は、いずれも0.01%/24時間及び0.01%/24時間であった。
(合わせガラス[H2]の作製)
 得られたシート[G2]及びシート[J2]から、縦300mm、横300mmの試験片切り出した。次いで、厚さ2.1mm、縦300mm、横300mmの2枚の青板ガラスの間に、ガラス板/シート[J2]/シート[G2]/シート[J2]/ガラス板の順に試験片を積層した。この積層物を、実施例1と同様にして、NY/PP製の厚み75μmの袋に入れ、袋の開口部の中央部を200mm幅残して両側をヒートシーラーでヒートシールした後、密封パック器(BH-951、パナソニック社製)を使用して、合わせガラス[H2]-1を作製した。
 同様にして、ガラス板/シート[J2]/シート[G2]/シート[J2]/ガラス板の構成の光線透過率測定用の合わせガラス[H2]-2も作製した。
 作製した合わせガラス[H2]-1及び[H2]-2を目視観察した結果、ひび割れ、膨れ、剥離、変色、泡、濁り等の異常は認められず、良好な外観であった。
 分光光度計を使用して、波長300~2500nmで、合わせガラス[H2]-2の光線透過率を測定した。その結果、550nmで84%、1150nmで3%、2000nmで82%の光線透過率を示し、可視領域での良好な光透過性を有し、近赤外線領域で十分な遮光性を有していることが分かった。
 また、合わせガラス[H2]-1を使用し、耐湿性及び耐熱性の評価を行った結果、耐湿性の評価は◎(良好)、耐熱性の評価も◎(良好)であった。
[実施例3]樹脂組成物[F3]の製造
 近赤外線吸収色素に代えて、中赤外線を遮蔽するアンチモンドープ酸化錫(ATO)微粒子水分散体(平均粒径40nm、住友大阪セメント社製)0.2部を使用する以外は、実施例1と同様にして、厚さ760μmの変性ブロック共重合体水素化物[E1]に中赤外線遮蔽剤を配合した樹脂組成物[F3]からなるシート[G3]を作製した。
 実施例1と同様にして測定したシート[G3]の吸水性は、0.01%/24時間であった。
(合わせガラス[H3]の作製)
 得られたシート[G3]を使用して、縦300mm、横300mmの試験片及び縦70mm、横50mmの試験片を切り出し、実施例1と同様にして合わせガラス[H3]-1及び合わせガラス[H3]-2を作製した。
 作製した合わせガラス[H3]-1及び[H3]-2を目視観察した結果、ひび割れ、膨れ、剥離、変色、泡、濁り等の異常は認められず、良好な外観であった。
 分光光度計を使用して、波長300~2500nmで、合わせガラス[H3]-2の光線透過率を測定した。その結果、550nmで79%、1150nmで49%、2000nmで2%の光線透過率を示し、可視領域での良好な光透過性を有し、中赤外線領域で十分な遮光性を有していることが分かった。
 また、合わせガラス[H3]-1を使用し、耐湿性及び耐熱性の評価を行った結果、耐湿性の評価は◎(良好)、耐熱性の評価も◎(良好)であった。
[実施例4]樹脂組成物[F4]の製造
 実施例1で使用したジイモニウム塩化合物系近赤外線吸収色素に代えて、近赤外線を遮蔽する六ホウ化ランタン(平均粒径50nm、住友金属鉱山社製)0.003部を使用する以外は、実施例1と同様にして、厚さ760μmの変性ブロック共重合体水素化物[E1]に中赤外線遮蔽剤を配合した樹脂組成物[F4]からなるシート[G4]を作製した。
 実施例1と同様にして測定したシート[G4]の吸水性は、0.01%/24時間であった。
(合わせガラス[H4]の作製)
 得られたシート[G4]を使用して、縦300mm、横300mmの試験片及び縦70mm、横50mmの試験片を切り出し、実施例1と同様にして合わせガラス[H4]-1及び合わせガラス[H4]-2を作製した。
 作製した合わせガラス[H4]-1及び[H4]-2を目視観察した結果、ひび割れ、膨れ、剥離、変色、泡、濁り等の異常は認められず、良好な外観であった。
 分光光度計を使用して、波長300~2500nmで、合わせガラス[H4]-2の光線透過率を測定した。その結果、550nmで70%、1150nmで32%、2000nmで82%の光線透過率を示し、可視領域での良好な光透過性を有し、近赤外線領域で十分な遮光性を有していることが分かった。
 また、合わせガラス[H4]-1を使用し、耐湿性及び耐熱性の評価を行った結果、耐湿性の評価は◎(良好)、耐熱性の評価も◎(良好)であった。
[比較例1]変性エチレン・酢酸ビニル共重合体を使用した樹脂組成物[R1] 
 エチレン・酢酸ビニル共重合体(製品名「エバフレックス(登録商標)EV150」、酢酸ビニル含有量33重量%、融点61℃、三井・デュポンポリケミカル社製)のペレット100部に、実施例1で使用したのと同じ近赤外線吸収色素0.05部及び実施例3で使用したのと同じATO微粒子0.2部を混合した。この混合物100部に、更に、トリアリルイソシアヌレート7.0部、3-メタクリロキシプロピルトリメトキシシラン(商品名「KBM-503」、信越化学工業社製)1.0部及びジクミルパーオキサイド(商品名「パークミルD」、日油社製)0.5部を添加して混合した。
 この混合物を、実施例1で使用したのと同じTダイを備えた二軸押出し機を用いて、シリンダー温度90℃、スクリュー回転数100rpmの条件で溶融混練し、Tダイから押出して近赤外線吸収色素及び中赤外線遮蔽微粒子を含むエチレン・酢酸ビニル共重合体樹脂組成物[R1]からなる厚さ760μmのシート[S1]を作製した。
 実施例1と同様にして測定したシート[S1]の吸水性は、0.11%/24時間であった。
(合わせガラス[T1]の作製)
 得られたシート[S1]を使用して、縦300mm、横300mmの試験片及び縦70mm、横50mmの試験片を切り出し、オートクレーブの温度を150℃とする以外は、実施例1と同様にして合わせガラス[T1]-1及び合わせガラス[T1]-2を作製した。
 作製した合わせガラス[T1]-1及び[T1]-2を目視観察した結果、ひび割れ、膨れ、剥離、変色、泡、濁り等の異常は認められず、良好な外観であった。
 分光光度計を使用して、波長300~2500nmで、合わせガラス[T1]-2の光線透過率を測定した。その結果、550nmで71%、1150nmで27%、2000nmで2%の光線透過率を示し、可視領域での良好な光透過性を有し、近赤外線及び中赤外線領域で十分な遮光性を有していることが分かった。
 しかし、合わせガラス[T1]-1を使用し、耐湿性及び耐熱性の評価を行った結果、試験片に、ひび割れ、膨れ、剥離、変色、泡は発生していなかったが、合わせガラスの端部から約20mmの範囲に濁りが生じており、耐湿性の評価は×(不良)であった。一方、耐熱性の評価では、試験片に、ひび割れ、膨れ、剥離、変色、泡は発生しておらず、濁りの発生している領域も合わせガラスの端部から10mm以内であり、評価は○(許容)であった。
 本実施例及び比較例の結果から以下のことがわかる。
 本発明の範囲の特定のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に、波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素を配合してなる樹脂組成物[F]からなるシート[G]を中間膜として使用して作製した合わせガラス[H]は、可視光線での光透過性が良好で、近赤外線及び/又は中赤外線領域で十分な遮光性を有しており、耐湿性、耐熱性が良好である。(実施例1~4)
 ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に比較して吸水性の高い樹脂であるEVAに、金属酸化物微粒子及び近赤外線吸収色素を配合してなる樹脂組成物[R1]からなるシート[S1]を中間膜として使用して作製した合わせガラス[T1]は、可視光線での光透過性が良好で、近赤外線及び/又は中赤外線領域で十分な遮光性を有しているが、耐湿性に劣っている。(比較例1)
 本発明によれば、特定のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に、赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素を配合してなる樹脂組成物[F]からなるシート[G]を、合わせガラスの中間膜として使用することにより、耐湿性、耐熱性の良好な遮熱機能を有する合わせガラスが提供できる。

Claims (4)

  1.  芳香族ビニル化合物由来の構造単位[a]を主成分とする重合体ブロック[A]の2つ以上と、鎖状共役ジエン化合由来の構造体単位[b]を主成分とする重合体ブロック[B]の1つ以上とからなり、
    構造単位[a]の全量がブロック共重合体[C]に占める重量分率をw[a]とし、構造単位[b]の全量がブロック共重合体全体[C]に占める重量分率をw[b]としたときに、w[a]とw[b]との比(w[a]:w[b])が30:70~60:40であるブロック共重合体[C]の、主鎖及び側鎖の炭素-炭素不飽和結合並びに芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D]及び/又はブロック共重合体水素化物[D]にアルコキシシリル基が導入された変性ブロック共重合体水素化物[E]100重量部に、
    波長800~2000nmの範囲内のいずれかの領域の赤外線を遮蔽する機能を有する金属酸化物微粒子及び/又は近赤外線吸収色素の合計量で0.001~2.0重量部を配合してなる樹脂組成物。
  2.  赤外線を遮蔽する機能を有する金属酸化物微粒子が、酸化錫、アルミニウムドープ酸化錫、インジウムドープ酸化錫、アンチモンドープ酸化錫、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、錫ドープ酸化亜鉛、珪素ドープ酸化亜鉛、酸化チタン、ニオブドープ酸化チタン、酸化タングステン、ナトリウムドープ酸化タングステン、セシウムドープ酸化タングステン、タリウムドープ酸化タングステン、ルビジウムドープ酸化タングステン、酸化インジウム、及び錫ドープ酸化インジウムからなる群より選択される少なくとも1種であることを特徴とする請求項1記載の樹脂組成物。
  3.  赤外線を遮蔽する機能を有する近赤外線吸収色素が、フタロシアニン化合物、ナフタロシアニン化合物、イモニウム化合物、ジイモニウム化合物、ポリメチン化合物、ジフェニルメタン化合物、アントラキノン化合物、ペンタジエン化合物、アゾメチン化合物、及び6ホウ化ランタンからなる群より選択される少なくとも1種であることを特徴とする請求項1又は2に記載の樹脂組成物。
  4.  請求項1~3のいずれかに記載の樹脂組成物からなる樹脂シートを中間膜としてガラス板間に介在させ、当該ガラス板とシートを含む積層物を接着させて一体化してなる合わせガラスであって、波長800~2000nmの範囲内のいずれかの領域に、光線透過率が50%以下の領域を有し、波長550nmでの光線透過率が60%以上であることを特徴とする合わせガラス。
PCT/JP2016/061287 2015-04-09 2016-04-06 樹脂組成物及びその利用 WO2016163409A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177029631A KR20170135863A (ko) 2015-04-09 2016-04-06 수지 조성물 및 그의 이용
EP16776575.9A EP3281981A4 (en) 2015-04-09 2016-04-06 Resin composition and use of same
CN201680018143.2A CN107406661B (zh) 2015-04-09 2016-04-06 树脂组合物及其利用
JP2017511023A JPWO2016163409A1 (ja) 2015-04-09 2016-04-06 樹脂組成物及びその利用
US15/564,868 US20180086029A1 (en) 2015-04-09 2016-04-06 Resin composition and use of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080034 2015-04-09
JP2015080034 2015-04-09

Publications (1)

Publication Number Publication Date
WO2016163409A1 true WO2016163409A1 (ja) 2016-10-13

Family

ID=57072326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061287 WO2016163409A1 (ja) 2015-04-09 2016-04-06 樹脂組成物及びその利用

Country Status (6)

Country Link
US (1) US20180086029A1 (ja)
EP (1) EP3281981A4 (ja)
JP (1) JPWO2016163409A1 (ja)
KR (1) KR20170135863A (ja)
CN (1) CN107406661B (ja)
WO (1) WO2016163409A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180427A1 (ja) * 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
WO2020158934A1 (ja) * 2019-01-31 2020-08-06 日本ゼオン株式会社 合わせガラス
JPWO2020009064A1 (ja) * 2018-07-05 2021-08-02 日本ゼオン株式会社 積層体および合わせガラス
KR20230057339A (ko) 2020-08-27 2023-04-28 니폰 제온 가부시키가이샤 감광 필름 및 그 제조 방법, 그리고 적층체

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131932A (ko) * 2019-05-14 2020-11-25 삼성디스플레이 주식회사 표시 장치
KR102628602B1 (ko) * 2020-08-21 2024-01-26 (주)이녹스첨단소재 디스플레이용 접착필름

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176258A1 (ja) * 2012-05-25 2013-11-28 日本ゼオン株式会社 合わせガラス、及びブロック共重合体水素化物を合わせガラスの接着剤として使用する方法
JP2014024936A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd 繊維状無機充填剤含有樹脂組成物
WO2015002020A1 (ja) * 2013-07-01 2015-01-08 日本ゼオン株式会社 光学用フィルム及びその製造方法
WO2015178370A1 (ja) * 2014-05-20 2015-11-26 日本ゼオン株式会社 光学用フィルムの製造方法
WO2016076336A1 (ja) * 2014-11-10 2016-05-19 株式会社クラレ 合わせガラス用中間膜および合わせガラス

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2251909C (en) * 1996-04-18 2003-12-23 Kenji Yao Near-infrared absorbing film, and multi-layered panel comprising the film
US6911254B2 (en) * 2000-11-14 2005-06-28 Solutia, Inc. Infrared absorbing compositions and laminates
WO2003085010A1 (fr) * 2002-04-10 2003-10-16 Asahi Kasei Chemicals Corporation Polymeres modifies et compositions contenant ceux-ci
WO2005012424A1 (ja) * 2003-07-31 2005-02-10 Kureha Chemical Industry Company, Limited 樹脂組成物、シート状樹脂組成物及び積層体
US7494702B2 (en) * 2003-10-27 2009-02-24 Teijin Dupont Films Japan Limited Near-infrared ray shielding film
JP2005306326A (ja) * 2004-04-26 2005-11-04 Honda Motor Co Ltd 合せガラス及び合せガラス用中間膜
WO2006025484A1 (ja) * 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜及び合わせガラス
CN101243022B (zh) * 2005-08-16 2012-07-11 旭硝子株式会社 红外线反射玻璃板及车窗用夹层玻璃
JP4933780B2 (ja) * 2006-01-17 2012-05-16 日本板硝子株式会社 車両用窓ガラス及びその製造方法
US20070231571A1 (en) * 2006-04-04 2007-10-04 Richard Lane Pressure sensitive adhesive (PSA) laminates
JP2011500895A (ja) * 2007-10-09 2011-01-06 クレイトン ポリマーズ ユー.エス. エルエルシー 特定のブロックコポリマーから調製される最終使用用途
JP4275191B1 (ja) * 2008-03-10 2009-06-10 ニチバン株式会社 表面保護シート
EP2277949B1 (en) * 2008-04-30 2015-03-04 Asahi Kasei E-materials Corporation Resin composition and sheet using the same
US20120164457A1 (en) * 2009-08-24 2012-06-28 Juichi Fukatani Intermediate film for laminated glass, and laminated glass
WO2011096389A1 (ja) * 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012028884A1 (en) * 2010-09-02 2012-03-08 Elliptic Laboratories As Motion feedback
US20130244367A1 (en) * 2010-09-29 2013-09-19 Zeon Corporation Hydrogenated block copolymer having alkoxysilyl group and use therefor
US20130225020A1 (en) * 2012-02-24 2013-08-29 Kraton Polymers Us Llc High flow, hydrogenated styrene-butadiene-styrene block copolymer and applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176258A1 (ja) * 2012-05-25 2013-11-28 日本ゼオン株式会社 合わせガラス、及びブロック共重合体水素化物を合わせガラスの接着剤として使用する方法
JP2014024936A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd 繊維状無機充填剤含有樹脂組成物
WO2015002020A1 (ja) * 2013-07-01 2015-01-08 日本ゼオン株式会社 光学用フィルム及びその製造方法
WO2015178370A1 (ja) * 2014-05-20 2015-11-26 日本ゼオン株式会社 光学用フィルムの製造方法
WO2016076336A1 (ja) * 2014-11-10 2016-05-19 株式会社クラレ 合わせガラス用中間膜および合わせガラス
WO2016076340A1 (ja) * 2014-11-10 2016-05-19 株式会社クラレ 合わせガラス用中間膜および合わせガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3281981A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180427A1 (ja) * 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
JPWO2018180427A1 (ja) * 2017-03-29 2020-02-06 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
JPWO2020009064A1 (ja) * 2018-07-05 2021-08-02 日本ゼオン株式会社 積層体および合わせガラス
JP7259856B2 (ja) 2018-07-05 2023-04-18 日本ゼオン株式会社 積層体および合わせガラス
WO2020158934A1 (ja) * 2019-01-31 2020-08-06 日本ゼオン株式会社 合わせガラス
KR20230057339A (ko) 2020-08-27 2023-04-28 니폰 제온 가부시키가이샤 감광 필름 및 그 제조 방법, 그리고 적층체

Also Published As

Publication number Publication date
CN107406661B (zh) 2020-04-07
EP3281981A1 (en) 2018-02-14
US20180086029A1 (en) 2018-03-29
KR20170135863A (ko) 2017-12-08
CN107406661A (zh) 2017-11-28
EP3281981A4 (en) 2018-12-26
JPWO2016163409A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
CN107406661B (zh) 树脂组合物及其利用
TWI617526B (zh) 夾層玻璃及使用嵌段共聚物氫化物作爲夾層玻璃之接著劑之方法
JP7249926B2 (ja) 合わせガラス
JP6295962B2 (ja) 樹脂組成物およびそれからなる成形体
JP2017081775A (ja) 合わせガラス
JP6907946B2 (ja) 酸無水物基を有するブロック共重合体水素化物及びその利用
WO2018097146A1 (ja) 接着剤シート及び合わせガラス
JP6658743B2 (ja) 合わせガラス
JP2016204217A (ja) 複層ガラス
JPWO2019044267A1 (ja) 合わせガラス
JP7010241B2 (ja) 合わせガラス
WO2019159672A1 (ja) 酸無水物基含有ブロック共重合体、樹脂組成物、樹脂シート、および合わせガラス
JP6229460B2 (ja) 薄膜ガラス積層体
WO2020009064A1 (ja) 積層体および合わせガラス
WO2020158934A1 (ja) 合わせガラス
JPWO2019058953A1 (ja) 熱可塑性樹脂シートおよび積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511023

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029631

Country of ref document: KR

Kind code of ref document: A