WO2016158961A1 - ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体 - Google Patents

ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体 Download PDF

Info

Publication number
WO2016158961A1
WO2016158961A1 PCT/JP2016/060145 JP2016060145W WO2016158961A1 WO 2016158961 A1 WO2016158961 A1 WO 2016158961A1 JP 2016060145 W JP2016060145 W JP 2016060145W WO 2016158961 A1 WO2016158961 A1 WO 2016158961A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot stamping
hot
mass
less
Prior art date
Application number
PCT/JP2016/060145
Other languages
English (en)
French (fr)
Inventor
東 昌史
嘉宏 諏訪
雄介 近藤
佐藤 浩一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to RU2017135379A priority Critical patent/RU2683397C1/ru
Priority to KR1020177027982A priority patent/KR102000863B1/ko
Priority to JP2017510030A priority patent/JP6515356B2/ja
Priority to CA2979978A priority patent/CA2979978A1/en
Priority to BR112017020165-8A priority patent/BR112017020165A2/ja
Priority to US15/559,731 priority patent/US20180044754A1/en
Priority to EP16772842.7A priority patent/EP3278895B1/en
Priority to CN201680017529.1A priority patent/CN107427889B/zh
Priority to ES16772842T priority patent/ES2781465T3/es
Priority to MX2017012377A priority patent/MX2017012377A/es
Publication of WO2016158961A1 publication Critical patent/WO2016158961A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs

Definitions

  • the present invention relates to a steel sheet for hot stamping excellent in scale adhesion at the time of hot stamping, a method for producing the same, and a hot stamping shaped body that is a shaped body thereof.
  • Patent Document 6 discloses a technique for suppressing the generation of scale by setting the atmosphere in the heating furnace to a non-oxidizing atmosphere. However, it is necessary to strictly control the atmosphere in the heating furnace, resulting in an increase in equipment cost and inferior productivity.
  • JP 2008-214650 A Japanese Patent Laid-Open No. 1-2230715 JP-A-2-217425 JP 2002-143935 A JP 2003-154413 A JP 2002-18531 A JP 2004-106034 A JP 2002-18531 A JP 2008-240046 A JP 2010-174302 A JP 2008-214650 A
  • the present invention provides a steel sheet for hot stamping that is excellent in scale adhesion at the time of hot stamping and that does not cause adhesion of molten metal to a mold, a method for manufacturing the same, and a hot stamping molded body thereof. With the goal.
  • the present inventors diligently studied a method for solving the above problems.
  • 0.50 mass% to 3.00 mass% of Si is contained in the steel sheet, and the amount of rust preventive oil applied to the steel sheet is 50 mg / m.
  • the surface roughness of the steel sheet is Rz> 2.5 ⁇ m in the range of 2 to 1500 mg / m 2 .
  • S content contained in a rust prevention oil shall be 5 mass% or less.
  • the composition of the steel sheet is mass%, Ni: 0.01% to 2.00% Cu: 0.01% to 2.00% Cr: 0.01% to 2.00%, Mo: 0.01% to 2.00%, Nb: 0.005% to 0.100%, V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
  • composition of the steel sheet is mass%, One of the above-mentioned (1) to (3), which contains one or more selected from the group consisting of REM, Ca, Ce and Mg in a total amount of 0.0003% to 0.0300%
  • a method for producing a steel sheet for hot stamping characterized in that the residual amount of rust preventive oil on the steel sheet surface is limited to 50 mg / m 2 to 1500 mg / m 2 .
  • the method further includes a step of cold-rolling the pickled hot-rolled steel sheet to obtain a cold-rolled steel sheet,
  • the method further includes a step of cold rolling the pickled hot rolled steel sheet and further performing a heat treatment in a continuous annealing facility or a box annealing furnace to obtain a cold rolled steel sheet,
  • the composition of the slab is mass%, Ni: 0.01% to 2.00% Cu: 0.01% to 2.00% Cr: 0.01% to 2.00%, Mo: 0.01% to 2.00%, Nb: 0.005% to 0.100%, V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
  • composition of the slab is mass%, Any one of (1) or two or more selected from the group consisting of REM, Ca, Ce and Mg is contained in a total amount of 0.0003% to 0.0300%.
  • the surface of the hot stamping body has Si oxide, FeO, Fe 3 O 4 , and Fe 2 O 3 , and the scale has a thickness of 10 ⁇ m or less (12)
  • the composition of the hot stamping molded body is mass%, Ni: 0.01% to 2.00% Cu: 0.01% to 2.00% Cr: 0.01% to 2.00%, Mo: 0.01% to 2.00%, Nb: 0.005% to 0.100%, V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
  • composition of the hot stamping molded body is mass%, One of the above-mentioned (12) to (14), which contains one or more selected from the group consisting of REM, Ca, Ce and Mg in a total of 0.0003% to 0.0300%
  • the hot stamping molded article as described.
  • a steel sheet for hot stamping that is excellent in scale adhesion at the time of hot stamping and that does not cause adhesion of molten metal to the mold, a manufacturing method thereof, and a hot stamping molded body thereof.
  • FIG. 1 is a diagram showing the relationship between the amount of oil applied to a steel plate and the surface roughness Rz of the steel plate.
  • FIG. 2 is a diagram for explaining that the scale easily peels off as the S concentration in the oil coating increases.
  • FIG. 3 is a diagram showing the relationship between the pickling time and the surface roughness Rz of the steel sheet.
  • FIG. 4A is a photograph showing the microstructure of the surface layer of the hot-rolled steel sheet before pickling.
  • FIG. 4B is a photograph showing the surface layer microstructure after pickling.
  • FIG. 5 is a diagram showing the relationship between the oil coating amount and the thickness of the scale.
  • FIG. 6A is a photograph showing a cross section of the surface of the hot stamping molded body of the example of the present invention.
  • FIG. 6A is a photograph showing a cross section of the surface of the hot stamping molded body of the example of the present invention.
  • FIG. 6B is a photograph showing a cross section of the surface of the hot stamping molded body of the comparative example.
  • FIG. 7 is a diagram for explaining that the number density of irregularities after hot stamping heat treatment is less than 3 when the surface roughness Rz before hot stamping heat treatment is less than 2.5.
  • the steel sheet for hot stamping of the present invention contains 0.5 mass% to 3.0 mass% of Si in the steel sheet, and the amount of rust preventive oil applied to the steel sheet is 50 mg / m 2 to 1500 mg / m. 2 and the surface roughness of the steel sheet is Rz> 2.5 ⁇ m. And preferably, S content contained in antirust oil shall be 5 mass% or less.
  • the present inventors have investigated the surface properties of steel sheets and the effects of various treatments for the purpose of improving the scale adhesion of steel sheets that are not plated (cold-rolled steel sheets or hot-rolled steel sheets).
  • the steel sheet after degreasing showed excellent scale adhesion, but it was found that the scale adhesion deteriorates significantly when rust preventive oil is applied.
  • the relationship between the scale adhesion and the rust preventive oil was investigated, it was found that the scale tends to peel off as the amount of S contained as an impurity in the rust preventive oil increases.
  • S in the rust preventive oil affects the scale adhesion.
  • hot-rolled steel sheets for hot stamping that have been pickled, and cold-rolled steel sheets for hot stamping after cold rolling or annealing are used to prevent the occurrence of rust between production and use. It is necessary to apply anti-rust oil.
  • the steel plate after pickling is generally applied with oil exceeding 1500 mg / m 2 on the assumption that the period from delivery to customer to use becomes long.
  • the present inventors investigated the influence of the amount of oil applied for the purpose of achieving both scale adhesion and rust prevention. As shown in FIG. 1, the range of the amount of oil applied and the surface roughness of the steel sheet was strict. It has been found that the adhesion to the scale is improved by controlling to the above.
  • the effect is exhibited by setting the oil coating amount to 50 mg / m 2 to 1500 mg / m 2 .
  • the reason why the lower limit was set to 50 mg / m 2 was that 50 mg / m 2 was set as the lower limit oil amount because it was difficult to ensure excellent rust prevention properties if less than this oil amount.
  • it is 100 mg / m 2 or more, more preferably 200 mg / m 2 or more.
  • the reason why the upper limit of the oil coating amount is 1500 mg / m 2 is to obtain an excellent effect of scale adhesion. When the oil coating amount exceeds 1500 mg / m 2 , the scale adhesion deteriorates, so the upper limit is 1500 mg / m 2 .
  • the upper limit is 1000 mg / m 2 , more preferably the upper limit is 900 mg / m 2 , and still more preferably the upper limit is 800 mg / m 2 .
  • the oil coating on the surface of the steel plate burns during heating, it causes generation of soot. Also from this, it is preferable that the amount of oil coating is small.
  • the scale adhesion shown in FIG. 1 was evaluated by a hot shallow drawing test using a cylindrical mold having a diameter of 70 mm and a depth of 20 mm.
  • the steel sheet was heated in an electric heating device at a temperature of 50 ° C./s to a temperature range of 800 ° C. to 1100 ° C., held for 0 seconds to 120 seconds, then turned off and allowed to cool to 650 ° C. And was subjected to hot shallow drawing with the above mold.
  • the molded specimen is visually observed, and the scale peel-off area is 5% or less, the scale adhesion is good ( ⁇ ), the scale peel-off area is 5-15%, the scale is bad ( ⁇ ), the scale A case where the peeled area was more than 15% was regarded as poor (x).
  • the area where the scale peeled off was 5% or less within the scope of the present invention.
  • the heating method is not particularly limited, and scale adhesion can be evaluated.
  • any conditions of a heating furnace, far infrared rays, near infrared rays, and energization heating may be used.
  • the further excellent scale adhesiveness can be obtained by controlling the atmosphere in a heating furnace, suppressing the oxidation of a steel plate, and making a scale thin.
  • the shallow drawing test temperature may be any temperature range as long as the steel sheet can be processed, but in general, the hot stamping steel sheet has high strength and excellent strength by processing in the austenite area and subsequent die quenching. It has a shape freezing property. From this, characteristic evaluation was performed by hot shallow drawing at 650 ° C., which exceeds Ar 3.
  • oiling method electrostatic oiling, spraying, roll coater, etc. are generally used, but the oiling method is not limited as long as the amount of oiling can be secured.
  • the oil type is not specified.
  • NOX-RUST530F manufactured by Parker Kosan Co., Ltd.
  • the species is not limited.
  • the oil coating amount may be measured by any method as long as it can be measured, but the present inventors measured by the following method. First, the steel plate coated with rust preventive oil was cut into 150 mm squares, and then a tape was attached so that a 100 mm ⁇ 100 mm region was exposed. Then, the weight of the oil coating and the steel plate (including the weight of the tape) that has been sealed is measured in advance. Next, degrease by wiping off the rust preventive oil on the steel sheet surface with a cloth soaked with acetone, measure the weight of the degreased steel sheet, and compare the weight before and after degreasing to obtain the amount of oil per unit area. Was calculated. Each steel plate was carried out at three locations, and the average value of the adhesion amount was defined as the oil adhesion amount of each steel plate.
  • the present inventors investigated the relationship between the S content in the oil and the scale peeling area ratio. As the S content in the oil decreased, the scale adhesion improved. In particular, it has been found that when the S content in the oil coating is 5% by mass or less, the scale peeling area is almost 0%. Although the detailed mechanism is unknown, the oil contained in the rust preventive oil does not burn during heating, but the S contained as an impurity remains on the surface of the steel sheet and concentrates in the scale, degrading the scale adhesion. It is thought that For this reason, it is preferable to reduce the S content contained in the rust preventive oil.
  • the surface roughness of the steel sheet In order to ensure scale adhesion, the surface roughness of the steel sheet needs to be Rz> 2.5 ⁇ m.
  • the results obtained by investigating the relationship between the surface roughness Rz of the steel sheet and the scale adhesion are as shown in FIG.
  • the unevenness is formed at the interface between the base iron and the scale, and the adhesion is further improved.
  • This effect is generally called the anchor effect.
  • the scale produced during heating with this steel sheet is thin. As a result, the steel sheet having a thin scale is affected by the surface state of the ground iron, so that a scale having irregularities is formed.
  • the surface roughness of the steel sheet before hot stamping needs to be Rz> 2.5 ⁇ m.
  • Rz ⁇ 2.5 ⁇ m the surface roughness of the steel sheet is small and the anchor effect is insufficient, so that excellent scale adhesion during hot stamping cannot be ensured.
  • the upper limit of the scale adhesion of the present invention can be obtained without any particular provision, but if the scale adhesion is excessively improved, it is difficult to remove the scale in a subsequent process such as shot blasting. It becomes. Therefore, it is preferable that Rz ⁇ 8.0 ⁇ m. More preferably, Rz ⁇ 7.0 ⁇ m. However, even if Rz ⁇ 8.0 ⁇ m, it is possible to ensure excellent scale adhesion which is an effect of the present invention.
  • SURFCOM2000DX / SD3 manufactured by Tokyo Seimitsu Co., Ltd.
  • the scale may be a scale mainly composed of Si oxide, Fe 3 O 4 , Fe 2 O 3 , and FeO.
  • the Si oxide is present at the interface between the ground iron and the iron-based scale (FeO, Fe 2 O 3 , Fe 2 O 3 ), thereby controlling the thickness of the iron-based scale. For this reason, it is necessary to include Si oxide in the scale. Since the main purpose is to control the thickness of the iron-based oxide, it is sufficient that the Si oxide exists even if it is very thin. For example, even if it is 1 nm, the effect is exhibited.
  • composition analysis of the scale of the molded body was performed by X-ray diffraction after cutting a plate from the bottom of the cylindrical portion of the shallow drawing test piece. From the peak intensity ratio of each oxide, the volume fraction of each Fe-based oxide was measured. Since the Si oxide was very thin and the volume fraction was less than 1%, quantitative evaluation by X-ray diffraction was difficult. However, it is possible to confirm the presence of Si oxide at the interface between the scale and the ground iron by EPMA (Electron-Probe-Micro-Analyzer) line analysis.
  • EPMA Electro-Probe-Micro-Analyzer
  • the thickness of the scale is preferably 10 ⁇ m or less. If the thickness of the scale is 10 ⁇ m or less, the scale adhesion is further improved. If the thickness of the scale exceeds 10 ⁇ m, the scale tends to be peeled off due to thermal stress acting during cooling during hot stamping. On the other hand, after that, in a scale removal process such as shot blasting or wet blasting, cracks occur between Fe-based scales, and the scales existing outside peel off. As a result, there was a problem that it was inferior in scale removability. For this reason, the thickness of the scale is preferably 10 ⁇ m or less. More preferably, it is 7 micrometers or less, More preferably, it is 5 micrometers or less. The thickness of the scale is achieved by controlling the Si content of the steel sheet within a predetermined range and simultaneously controlling the oil coating amount within a predetermined range. FIG. 5 shows the relationship between the oil coating amount and the scale thickness.
  • FIG. 6A shows a photograph of the interface between the base metal and the scale of the molded article having excellent scale adhesion
  • FIG. 6B shows a photograph of the interface between the ground iron and scale having inferior scale adhesion. Since this unevenness contributes to the improvement of scale adhesion at the time of hot stamping, excellent scale adhesion can be ensured by controlling to the above range. With unevenness of less than 0.2 ⁇ m, the anchor effect is not sufficient and the scale adhesion is poor.
  • the thickness is 0.0 ⁇ m or less. More preferably, it is 6.0 micrometers or less, More preferably, it is 4.0 micrometers or less. However, even if the unevenness exceeds 8.0 ⁇ m, excellent scale adhesion which is the effect of the present invention can be ensured.
  • corrugation of a molded object has correlation with the surface roughness Rz of a steel plate, and can be controlled by setting it as the surface roughness Rz> 2.5micrometer of a steel plate.
  • C 0.100% to 0.600%
  • C is an element contained for increasing the strength of the steel sheet. If the C content is less than 0.100%, a tensile strength of 1180 MPa or more cannot be ensured, and a high-strength molded article that is the object of hot stamping cannot be ensured. On the other hand, if the C content exceeds 0.600%, weldability and workability become insufficient, so the C content is set to 0.100% to 0.600%. Preferably it is 0.100% to 0.550%, more preferably 0.150% to 0.500%. However, if the strength of the molded body is not required, excellent scale adhesion can be ensured even if the C content is less than 0.150%.
  • Si 0.50% to 3.00% Si is an essential element because it improves the scale adhesion by controlling the scale composition during hot stamping. If the Si content is less than 0.50%, the thickness of the Fe-based scale cannot be controlled, and excellent scale adhesion cannot be ensured. For this reason, the Si content needs to be 0.50% or more. Further, when considering application to a member having severe molding at the time of hot stamping, it is preferable to increase the Si content. Accordingly, the Si content is preferably 0.70% or more, more preferably 0.90% or more. On the other hand, Si increases the Ae3 point and increases the heating temperature necessary for making martensite as the main phase. Therefore, if it is excessively contained, productivity and economy are lowered. For this reason, the upper limit of the Si content is 3.00%. Preferably, the upper limit of the Si content is 2.5%, more preferably the upper limit is 2.0%. However, excellent scale adhesion can be ensured except for productivity and economy.
  • Mn 1.20% to 4.00%
  • Mn needs to be contained in an amount of 1.20% or more in order to delay the ferrite transformation in the cooling process during hot stamping and to make the hot stamping compact into a martensite main phase. If the Mn content is less than 1.20%, martensite cannot be used as the main phase, and it is difficult to ensure high strength, which is the purpose of the hot stamped molded article, so the lower limit of the Mn content is 1.20%. To do. However, if the strength of the molded body is not required, excellent scale adhesion can be ensured even if the Mn content is less than 1.20%.
  • the Mn content exceeds 4.00%, the effect is saturated and embrittlement occurs, and cracking occurs during casting, cold rolling, or hot rolling, so the upper limit of the Mn content is 4 0.000%.
  • the Mn content is preferably in the range of 1.50% to 3.50%, more preferably in the range of 2.00% to 3.00%.
  • Ti 0.005% to 0.100%
  • Ti is an element that suppresses B from becoming a nitride and improves hardenability by combining with N to form TiN. Since this effect becomes significant when the Ti content is 0.005% or more, the Ti content is set to 0.005% or more. However, if the Ti content exceeds 0.100%, Ti carbide is formed, the amount of C contributing to the strengthening of martensite is reduced and the strength is reduced, so the upper limit of the Ti content is 0.100. %.
  • the C content is in the range of 0.005% to 0.080%, more preferably in the range of 0.005% to 0.060%.
  • B 0.0005% to 0.0100% B improves the hardenability at the time of hot stamping and contributes to making the main phase martensite. Since this effect becomes remarkable when the B content is 0.0005% or more, the B content needs to be 0.0005% or more. On the other hand, if the B content exceeds 0.0100%, the effect is saturated and iron boride precipitates and loses the effect of B hardenability. Therefore, the upper limit of the B content is 0.0100%. %.
  • the B content is preferably in the range of 0.0005% to 0.0080%, more preferably in the range of 0.0005% to 0.0050%.
  • P 0.100% or less
  • P is an element that segregates in the central part of the plate thickness of the steel sheet and also an element that embrittles the weld. Therefore, the upper limit of the P content is 0.100%. A more preferred upper limit is 0.050%.
  • the P content is preferably low, and the lower limit is not particularly defined, and the effect of the present invention is exhibited. However, reducing P to less than 0.001% is economical from the viewpoint of de-P productivity and cost. Therefore, the lower limit is preferably set to 0.001%.
  • the upper limit of the S content is 0.0100%.
  • the lower limit of the S content is set to 0.0001%.
  • the S content is preferably in the range of 0.0001% to 0.0070%, more preferably in the range of 0.0003% to 0.0050%.
  • Al 0.005% to 1.000% Since Al acts as a deoxidizer, the Al content is set to 0.005% or more. If the Al content is less than 0.005%, a sufficient deoxidation effect cannot be obtained, and a large amount of inclusions (oxides) are present in the steel sheet. These inclusions are not preferable because they become a starting point of breakage during hot stamping and cause breakage. Since this effect becomes remarkable when the Al content is 0.005% or more, the Al content needs to be 0.005% or more. On the other hand, if the Al content exceeds 1.000%, the Ac3 point is increased and the heating temperature during hot stamping is increased.
  • hot stamping is a high-strength that has a complicated shape by heating a steel plate to an austenite single-phase region, and performing hot mold pressing and quenching using a die that excels in formability.
  • This is a technique for obtaining a strong molded body.
  • Al is contained in a large amount, the Ac3 point is remarkably improved, the heating temperature necessary for the austenite single-phase region heating is increased, and the productivity is lowered.
  • the upper limit of the Al content needs to be 1.000%.
  • the Al content is preferably in the range of 0.005% to 0.500%, more preferably in the range of 0.005% to 0.300%.
  • N 0.0100% or less
  • N is an element that forms coarse nitrides and degrades bendability and hole expandability. If the N content exceeds 0.0100%, the bendability and hole expansibility deteriorate significantly, so the upper limit of the N content is 0.0100%.
  • the N content is preferably 0.0070 or less, more preferably 0.0050% or less.
  • the lower limit of the N content is not particularly required. However, if the N content is reduced to less than 0.0001%, the manufacturing cost is greatly increased, so 0.0001% is a practical lower limit. From the viewpoint of manufacturing cost, the N content is more preferably 0.0005% or more.
  • the steel sheet of the present invention further contains the following elements as necessary.
  • Ni, Cu, Cr, and Mo are elements that contribute to high strength by increasing the hardenability during hot stamping and making the main phase martensite. Since this effect becomes remarkable by containing 0.01% or more of one or more selected from the group consisting of Ni, Cu, Cr, and Mo, the content of these elements is Each is preferably 0.01%. If the content of each element exceeds a predetermined amount, the weldability, hot workability, etc. may deteriorate, or the strength of the steel sheet for hot stamping may be too high, resulting in production trouble.
  • the upper limit of the element content is preferably 2.00%.
  • Nb, V, and W are elements that reinforce fine grains by suppressing the growth of austenite during hot stamping and contribute to an increase in strength and an improvement in toughness. From this, you may contain 1 type, or 2 or more types chosen from the group which consists of these elements. Since this effect becomes remarkable when each element contains 0.005% or more, it is preferable that these elements contain 0.005% or more. If these elements are contained in excess of 0.100%, Nb, V, and W carbides are formed, and the amount of C that contributes to the strengthening of martensite is reduced, causing a decrease in strength. It is not preferable. Preferably, it is in the range of 0.005% to 0.090%, respectively.
  • Total of one or more selected from the group consisting of REM, Ca, Ce, and Mg 0.0003% to 0.0300%
  • a total of 0.0003% to 0.0300% of one or more selected from the group consisting of REM, Ca, Ce, and Mg may be contained.
  • REM, Ca, Ce, and Mg are elements that improve the strength and contribute to the improvement of the material. If the total of one or more selected from the group consisting of REM, Ca, Ce, and Mg is less than 0.0003%, a sufficient effect cannot be obtained, so the lower limit of the total is 0.0003%. It is preferable to do.
  • REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series.
  • REM is often added by misch metal, and may contain a lanthanoid series element in combination with Ce in addition to Ce.
  • the present invention even if a lanthanoid series element other than La and Ce is included as an unavoidable impurity, the effects of the present invention are exhibited, and even if other elements such as metals are contained as impurities, the present invention The effect of.
  • the features of the microstructure of the hot stamping steel plate and hot stamping molded body of the present invention will be described. If the chemical composition, the surface roughness of the steel sheet, and the amount of oil coating satisfy the scope of the present invention, the pickled hot-rolled steel sheet, the cold-rolled steel sheet obtained by cold-rolling the hot-rolled steel sheet, or after cold-rolling The effect of the present invention can be exhibited with any of the cold-rolled steel sheets that have been annealed.
  • the microstructure is not particularly limited, and the performance as a steel sheet for hot stamping having excellent scale adhesion which is an effect of the present invention is as follows. Demonstrated. However, when performing mechanical cutting and cold punching of a steel plate prior to hot stamping, the strength of the steel plate should be as low as possible in order to reduce wear of the die, cutting machine blade, or punching die. Is preferred. From this, it is preferable that the microstructure of the steel sheet for hot stamping is a ferrite and pearlite structure, or a structure obtained by tempering a bainite structure and martensite.
  • the microstructure of the molded body is preferably martensite as the main phase.
  • the volume ratio of martensite as the main phase is 60% or more.
  • the martensite may be tempered martensite by tempering after hot stamping. As a structure other than martensite, bainite, ferrite, pearlite, cementite, and retained austenite may be included. Even if the martensite volume fraction is less than 60%, the excellent scale adhesion of the present invention can be ensured.
  • the following methods are used to identify the microstructure (tempered martensite, martensite, bainite, ferrite, pearlite, retained austenite, and remaining structure) constituting the steel sheet structure, confirm the existing position, and measure the area ratio.
  • a scanning electron microscope SEM: Scanning Electron Microscope
  • SEM Scanning Electron Microscope
  • TEM transmission electron microscope
  • the inventors have collected a sample with a cross section of the plate thickness parallel to the rolling direction of the steel plate as an observation surface, polished the observation surface, etched by nital, and 1/8 to about 1/4 of the plate thickness.
  • the area of 3/8 thickness was observed with a field emission scanning electron microscope (FE-SEM: Field ⁇ Emission Electron Microscope), and the area fraction was measured.
  • the volume fraction of retained austenite was measured by performing X-ray diffraction using a plane parallel to the plate surface of the base steel sheet and a thickness of 1/4 as an observation surface, and measuring the volume fraction.
  • a slab having the same component composition as that of the steel plate described above is cast.
  • a continuously cast slab or a thin slab caster can be used.
  • the steel sheet manufacturing method of the present invention is suitable for a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
  • CC-DR continuous casting-direct rolling
  • Slab heating temperature is preferably 1100 ° C. or higher. Since the slab heating temperature in the temperature range below 1100 ° C. causes a decrease in the finish rolling temperature, the strength during finish rolling tends to be high. As a result, rolling may be difficult, or the shape of the steel sheet after rolling may be deteriorated, so the slab heating temperature is preferably 1100 ° C. or higher.
  • the finish rolling temperature is preferably not less than the Ar3 transformation point. If the finish rolling temperature is lower than the Ar3 transformation point, the rolling load becomes high, and rolling may become difficult or the shape of the steel sheet after rolling may be deteriorated. Therefore, the lower limit of the finish rolling temperature is Ar3 transformation. It is preferable to make it a point.
  • the upper limit of the finish rolling temperature is not particularly required, but if the finish rolling temperature is excessively increased, the slab heating temperature must be excessively increased in order to secure the temperature. Therefore, the upper limit of the finish rolling temperature is 1100. ° C is preferred.
  • the winding temperature is preferably 700 ° C. or lower.
  • the coiling temperature exceeds 700 ° C., the thickness of the oxide formed on the steel sheet surface is excessively increased and the pickling property is deteriorated, which is not preferable.
  • the rolled hot-rolled steel sheet is softened by heating in a box-type annealing furnace or continuous annealing equipment, it may be wound at a low temperature of less than 400 ° C.
  • rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.
  • the hot-rolled steel sheet thus manufactured is subjected to pickling for 30 seconds or more in an aqueous solution having a temperature of 80 ° C. or higher and lower than 100 ° C. and containing an inhibitor and containing 3% by mass to 20% by mass of acid.
  • pickling under these conditions is extremely important.
  • pickling under the above conditions is necessary.
  • the acid is generally an aqueous solution such as hydrochloric acid or sulfuric acid, and may be aqua regia.
  • the reason why the temperature of the aqueous solution was set to 80 ° C. or more and less than 100 ° C. is that when the temperature is less than 80 ° C., the reaction rate is slow, and it takes a long time to bring the surface roughness of the hot-rolled steel sheet to an appropriate range. On the other hand, heating at a temperature of 100 ° C. or higher is dangerous and unpreferable because the solution is boiled and scattered although there is no problem with the pickling reaction.
  • the reason that the acid concentration is set to 3% by mass to 20% by mass is to control the surface roughness Rz of the hot-rolled steel sheet within an appropriate range.
  • the acid concentration is less than 3% by mass, it takes a long time to control surface unevenness by pickling.
  • the acid concentration exceeds 20% by mass the pickling tank is greatly damaged, and equipment management becomes difficult, which is not preferable.
  • a preferable range of the acid concentration is in the range of 5 to 15% by mass.
  • the reason for the pickling time being 30 s or more is to stably impart predetermined irregularities (irregularities of Rz> 2.5 ⁇ m or more) to the steel sheet surface by pickling.
  • predetermined irregularities irregularities of Rz> 2.5 ⁇ m or more
  • hot rolling is performed.
  • the surface roughness Rz of the steel sheet can be within the scope of the present invention.
  • pickling may be carried out in a plurality of times.
  • hydrochloric acid containing an inhibitor was used.
  • other acids such as hydrochloric acid, sulfuric acid, nitric acid without using an inhibitor may be used as long as the surface roughness Rz can be controlled by pickling. Even if these are composites, the effects of the present invention can be obtained.
  • temper rolling may be performed on the hot-rolled steel sheet after pickling.
  • the roll roughness Rz for cold rolling is preferably cold-pressed in the range of 1.0 ⁇ m to 20.0 ⁇ m, and the cold rolling roll includes a temper rolling roll.
  • the hot-rolled steel sheet pickled under the above conditions may be cold-rolled at a reduction rate of 30% to 80% and passed through a continuous annealing facility. If the rolling reduction is less than 30%, it becomes difficult to keep the shape of the steel plate flat, and the ductility of the final product is deteriorated. Therefore, the lower limit of the rolling reduction is preferably 30%. On the other hand, if the rolling reduction exceeds 80%, the rolling load becomes too large and cold rolling becomes difficult, so the upper limit of the rolling reduction is preferably 80%. More preferably, the rolling reduction is 40% to 70%. Note that even if the number of rolling passes and the rolling reduction for each pass are not particularly defined, the effect of the present invention is exhibited. Therefore, it is not necessary to define the number of rolling passes and the rolling reduction for each pass.
  • the cold-rolled steel sheet may be passed through a continuous annealing line. Since the purpose of this treatment is to soften a steel plate that has been strengthened by cold rolling, any conditions may be used as long as the steel plate softens. For example, if the annealing temperature is in the range of 550 ° C. to 750 ° C., the dislocations introduced during cold rolling are released by recovery, recrystallization, or phase transformation, so annealing can be performed in this temperature range. preferable.
  • the steel sheet for hot stamping excellent in scale adhesion of the present invention can be obtained even if annealing is performed in a box furnace.
  • oiling is performed.
  • electrostatic oiling, spraying, roll coater and the like are generally used, but the method is not limited as long as the oil amount in the range of 50 mg / m 2 to 1500 mg / m 2 can be secured.
  • a predetermined amount of oiling was carried out with an electrostatic oiling machine.
  • degreasing may be performed by applying an antirust agent in an amount larger than that.
  • the hot stamping conditions are not particularly limited, and it is possible to achieve both excellent scale adhesion and rust prevention, which are the effects of the present invention. For example, it is possible to achieve both the excellent performance of a tensile strength of 1180 MPa or more and the productivity by manufacturing by the following manufacturing method.
  • the heating rate is 5 ° C./second or more, and further preferably 10 ° C./second or more.
  • the increase in the heating rate is also effective for increasing the productivity.
  • the annealing temperature when performing hot stamping is preferably in the range of 800 ° C to 1100 ° C.
  • the annealing temperature at this time is less than 800 ° C.
  • the structure at the time of annealing becomes a ferrite and austenite structure, and this ferrite grows in the cooling process, the ferrite volume ratio exceeds 10%, and the tensile strength of the hot stamping body Is less than 1180 MPa.
  • the lower limit of the annealing temperature is preferably 800 ° C.
  • the annealing temperature exceeds 1100 ° C., not only the effect is saturated, but also the scale thickness is greatly increased, and there is a concern that the scale adhesiveness is lowered. Therefore, it is preferable to perform annealing at 1100 ° C. or lower. More preferably, the annealing temperature is in the range of 830 ° C to 1050 ° C.
  • the holding may be held in a temperature range of 800 ° C. to 1100 ° C. after heating.
  • the carbide contained in the steel plate can be dissolved, which contributes to an increase in strength of the steel plate and improvement in hardenability.
  • Holding includes residence in this temperature range, heat removal, and heat removal. Since the purpose is to dissolve the carbide, the object can be achieved by securing the residence time in this temperature range.
  • the holding time it is preferable to set the upper limit to 1000 s because the scale thickness becomes excessive and the scale adhesion deteriorates when the holding time is 1000 s or more.
  • 700 ° C. is the mold cooling start temperature
  • 800 ° C. to 700 ° C. being 5 ° C./second or more avoids ferrite transformation, bainite transformation, and pearlite transformation, and makes the structure a martensite main phase. Because.
  • the cooling rate is less than 5 ° C./second, these soft structures are formed, and it is difficult to secure a tensile strength of 1180 MPa or more.
  • the effect of the present invention is exhibited without any particular limitation on the upper limit of the cooling rate.
  • the reason why the temperature range for cooling at 5 ° C./second or more is set to 800 ° C. to 700 ° C. is that a structure that causes a decrease in strength such as ferrite may be formed in this temperature range.
  • the cooling at this time is not limited to continuous cooling, and the effect of the present invention is exhibited as long as the average cooling rate is 5 ° C./second or more even if holding and heating in this temperature range.
  • the effect of the present invention can be exhibited without any particular limitation on the cooling method. That is, the effect of the present invention can be exhibited by either cooling using a mold or mold cooling combined with water cooling.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the finishing board thickness of the hot-rolled steel plate used for a hot stamp as a hot-rolled steel plate was 1.6 mm.
  • the thickness of the hot-rolled steel sheet used for cold rolling was set to 3.2 mm. Thereafter, pickling was performed under the conditions shown in Table 2, and the thickness was 50% (3.2 mm ⁇ 1.6 mm) when cold rolling was performed. Then, about some steel plates, it annealed with the continuous annealing equipment, and was set as the cold-rolled steel plate.
  • NOX-RUST503F Parker Kosan
  • NOX503F Parker Kosan
  • the steel sheet is cut into a predetermined size, then heated to 900 ° C. at 50 ° C./second, held at 900 ° C. for 10 seconds, then allowed to cool for 10 s, and 650 ° C. or higher. Quenching was performed with the above-mentioned hot shallow drawing die at a temperature of. The obtained hot stamping body was visually observed, and a steel plate without scale peeling was used as a steel plate excellent in scale adhesion.
  • a steel sheet that was kept at room temperature for 30 days and did not generate rust on the steel sheet surface was defined as a steel sheet with excellent rust prevention.
  • hot stamping was performed under the above conditions, and tensile properties were evaluated. The evaluation results are shown in Table 3.
  • the molded article of the present invention has a maximum tensile strength of 1180 MPa or more.
  • the composition analysis of the scale of the compact was carried out by X-ray diffraction after cutting a plate from the bottom of the cylindrical portion of the shallow drawn specimen. From the peak intensity ratio of each oxide, the volume fraction of each Fe-based oxide was measured. Since the Si oxide was very thin and the volume fraction was less than 1%, quantitative evaluation by X-ray diffraction was difficult. However, it was confirmed by the line analysis of EPMA that it exists at the interface between the scale and the ground iron. The unevenness evaluation of the interface between the scale formed on the formed body and the ground iron was performed by embedding and polishing the steel sheet cut out from the above position, and then SEM observation was performed at 3000 times from a cross section perpendicular to the rolling direction. Each test piece was observed with 5 visual fields, and the number density of irregularities in the range of 0.2 ⁇ m to 1.0 ⁇ m per 100 ⁇ m length was measured.
  • Those satisfying the conditions of the present invention were able to achieve both excellent rust prevention and excellent scale adhesion. Those not satisfying the conditions of the invention were inferior in scale adhesion or inferior in corrosion resistance.
  • the present invention it is possible to provide a steel plate having excellent scale adhesion at the time of hot stamping, and to solve the problems of die wear during hot stamping, plating adhesion to the die, and indentation flaws associated therewith. Therefore, it is possible to bring about a significant improvement in productivity and industrially great value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 ホットスタンプ用の鋼板が、質量%で、C:0.100%~0.600%、Si:0.50%~3.00%、Mn:1.20%~4.00%、Ti:0.005%~0.100%、B:0.0005%~0.0100%、P:0.100%以下、S:0.0001%~0.0100%、Al:0.005%~1.000%、N:0.0100%以下を少なくとも含有し、残部がFeおよび不純物からなる組成を有し、鋼板の表面粗度がRz>2.5μmであり、表面に50mg/m~1500mg/mの塗油が塗布されている。

Description

ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
 本発明は、ホットスタンプ時のスケール密着性に優れたホットスタンプ用鋼板およびその製造方法、並びにその成形体であるホットスタンプ成形体に関するものである。
 自動車のドアガードバーやサイドメンバー等の部材は、近年の燃費効率化の動向に対応すべく軽量化が検討されており、材料面では、薄肉化しても強度および衝突安全性が確保されるという観点から鋼板の高強度化が進められている。以下、強度とは引張強度および降伏強度の両方を意味する。しかしながら、材料の成形性は強度が上昇するのに伴って劣化するので、上記部材の軽量化を実現するには、成形性と高強度との両方を満足する鋼板を製造する必要がある。高強度と同時に高成形性を得る手法としては特許文献1および特許文献2に記載されている残留オーステナイトのマルテンサイト変態を利用したTRIP(TRansformation Induced Plasticity)鋼があり、近年用途が拡大しつつある。しかし、この鋼により、成形時の深絞り性および伸びは改善されるものの、鋼板強度が高いため、プレス成形後の部材の形状凍結性が悪いという問題を有している。
 一方、成形性に劣る高強度鋼板を形状凍結性良く成形する手法としては、特許文献3および特許文献4に記載されている温間プレスと呼ばれる手法が存在する。この手法は、鋼板強度が低下する200℃から500℃程度の温度にて成形を行う手法である。ところが、780MPa以上の高強度鋼板の成形を考えた場合、成形温度を上昇させたとしても、依然として鋼板強度が高く成形しがたい場合があったり、加熱により成形後の鋼板強度が低下してしまい所定の強度が得られない場合があったりするという問題を有する。
 これら問題を解決する手法として、軟質な鋼板を所定のサイズに切断後、鋼板を800℃以上のオーステナイト単相域まで加熱した後、特許文献5に開示されているようなオーステナイト単相域でプレス成形を行い、その後焼き入れを行うホットスタンプと呼ばれる手法が存在する。この結果、980MPa以上の高強度かつ形状凍結性に優れた部材の製造が可能となった。
 しかしながら、ホットスタンプでは、鋼板を加熱炉に挿入するか、あるいは、大気中で通電加熱または遠赤外加熱によって800℃を超えるような高温まで加熱することから、鋼板表面にスケールが発生するという問題を有している。この発生したスケールがホットスタンプ時に脱離することによって金型が損耗することから、ホットスタンプ時でのスケール密着性が優れていることが求められる。これら課題を解決する技術として、例えば、特許文献6には加熱炉内の雰囲気を非酸化雰囲気とすることでスケールの発生を抑制する技術が知られている。しかしながら、加熱炉内の雰囲気制御を厳格に実施する必要があり設備コストが高くなると共に、生産性に劣る。また、取りだした鋼板は大気に曝されるので、スケールの形成を避けられないという問題を有していた。加えて、近年では、ホットスタンプの生産性向上を目的に、大気にて鋼板を通電加熱する手法が発達しつつある。大気中加熱時には、鋼板の酸化を避けることが難しく、ホットスタンプ時のスケール脱離による金型損耗の問題が顕在化し易い。この結果、定期的な金型の補修が必須である。
 これら課題を解決する鋼板として、鋼板表面に亜鉛めっきまたはAlめっきを施した鋼板をホットスタンプに用いることによりスケールの剥離による金型の損耗を抑制する技術が知られている。しかしながら、加熱時に亜鉛めっきまたはAlのめっきは溶融して液相となることから、鋼板の搬送時またはプレス時に加熱炉内および金型に亜鉛またはAlが付着するという問題を有していた。付着した亜鉛またはAlの堆積物は、ホットスタンプ成形体の押し込み疵の原因となり、成形体に付着し外観を悪化させるという問題を有していた。このことから、定期的に金型を補修することが必要であった。
 このことから、ホットスタンプ時にスケール剥離せず、かつ、金型への溶融金属の付着が生じないホットスタンプ用鋼板の開発が求められていた。
特開平1-230715号公報 特開平2-217425号公報 特開2002-143935号公報 特開2003-154413号公報 特開2002-18531号公報 特開2004-106034号公報 特開2002-18531号公報 特開2008-240046号公報 特開2010-174302号公報 特開2008-214650号公報
 本発明は前述の問題点を鑑み、ホットスタンプ時のスケール密着性に優れ、かつ金型への溶融金属の付着が生じないホットスタンプ用鋼板、その製造方法並びにそのホットスタンプ成形体を提供することを目的とする。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、鋼板のスケール密着性の改善を意図して、鋼板中にSiを0.50質量%~3.00質量%含有させると共に、鋼板に塗布されている防錆油の量を50mg/m~1500mg/mの範囲とし、鋼板の表面粗度をRz>2.5μmとする。また、好ましくは防錆油中に含まれるS含有量を5質量%以下とする。これにより、加熱時並びにホットスタンプ時のスケール密着性が改善することを見出した。一般的には塗油中の含有物が地鉄とスケールとの界面へ濃化することでスケール密着性を劣化させる。ところが、この含有物量を制限することと、鋼板表面の凹凸を利用したアンカー効果とを併用することにより、スケール密着性の確保が可能なことを見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)質量%で、
 C:0.100%~0.600%、
 Si:0.50%~3.00%、
 Mn:1.20%~4.00%、
 Ti:0.005%~0.100%、
 B:0.0005%~0.0100%、
 P:0.100%以下、
 S:0.0001%~0.0100%、
 Al:0.005%~1.000%、
 N:0.0100%以下、
 Ni: 0%~2.00%、
 Cu:0%~2.00%、
 Cr:0%~2.00%、
 Mo:0%~2.00%、
 Nb:0%~0.100%、
 V:0%~0.100%、
 W:0%~0.100%、および
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
 を含有し、残部がFeおよび不純物からなる組成であり、鋼板の表面粗度がRz>2.5μmであり、表面に塗油量50mg/m~1500mg/mの塗油が塗布されていることを特徴とするホットスタンプ用鋼板。
(2)前記鋼板に塗油される塗油中に含まれるS量が質量%で5%以下であることを特徴とする上記(1)に記載のホットスタンプ用鋼板。
(3)前記鋼板の組成が、質量%で、
 Ni: 0.01%~2.00%、
 Cu:0.01%~2.00%、
 Cr:0.01%~2.00%、
 Mo:0.01%~2.00%、
 Nb:0.005%~0.100%、
 V:0.005%~0.100%、および
 W:0.005%~0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載のホットスタンプ用鋼板。
(4)前記鋼板の組成が、質量%で、
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする上記(1)~(3)のいずれかに記載のホットスタンプ用鋼板。
(5)質量%で、
 C:0.100%~0.600%、
 Si:0.50%~3.00%、
 Mn:1.20%~4.00%、
 Ti:0.005%~0.100%、
 B:0.0005%~0.0100%、
 P:0.100%以下、
 S:0.0001%~0.0100%、
 Al:0.005%~1.000%、
 N:0.0100%以下、
 Ni: 0%~2.00%、
 Cu:0%~2.00%、
 Cr:0%~2.00%、
 Mo:0%~2.00%、
 Nb:0%~0.100%、
 V:0%~0.100%、
 W:0%~0.100%、および
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
 を含有し、残部がFeおよび不純物からなるスラブを鋳造して、直接または一旦冷却した後加熱して熱間圧延を行い、熱延鋼板を得る工程と、
 前記熱延鋼板を、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%~20質量%の水溶液にて30秒以上の酸洗を実施する工程と、
 前記酸洗を実施した後に防錆油を鋼板に塗布する工程と、
 を有し、
 鋼板表面の防錆油残存量を50mg/m~1500mg/mに制限することを特徴とするホットスタンプ用鋼板の製造方法。
(6)前記酸洗した熱延鋼板に前記防錆油を塗布することを特徴とする上記(5)に記載のホットスタンプ用鋼板の製造方法。
(7)前記酸洗した熱延鋼板に冷間圧延を実施して冷延鋼板を得る工程を更に有し、
 前記冷延鋼板に前記防錆油を塗布することを特徴とする上記(5)に記載のホットスタンプ用鋼板の製造方法。
(8)前記酸洗した熱延鋼板に冷間圧延を実施し、さらに連続焼鈍設備又は箱型焼鈍炉にて熱処理を行って冷延鋼板を得る工程を更に有し、
 前記冷延鋼板に前記防錆油を塗布することを特徴とする上記(5)に記載のホットスタンプ用鋼板の製造方法。
(9)前記鋼板に塗布する防錆油は、そのS量が質量%で5%以下であることを特徴とする上記(5)~(8)のいずれかに記載のホットスタンプ用鋼板の製造方法。
(10)前記スラブの組成が、質量%で、
 Ni: 0.01%~2.00%、
 Cu:0.01%~2.00%、
 Cr:0.01%~2.00%、
 Mo:0.01%~2.00%、
 Nb:0.005%~0.100%、
 V:0.005%~0.100%、および
 W:0.005%~0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(5)~(9)のいずれかに記載のホットスタンプ用鋼板の製造方法。
(11)前記スラブの組成が、質量%で、
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする上記(5)~(10)のいずれかに記載のホットスタンプ用鋼板の製造方法。
(12)質量%で、
 C:0.100%~0.600%、
 Si:0.50%~3.00%、
 Mn:1.20%~4.00%、
 Ti:0.005%~0.100%、
 B:0.0005%~0.0100%、
 P:0.100%以下、
 S:0.0001%~0.0100%、
 Al:0.005%~1.000%、
 N:0.0100%以下、
 Ni: 0%~2.00%、
 Cu:0%~2.00%、
 Cr:0%~2.00%、
 Mo:0%~2.00%、
 Nb:0%~0.100%、
 V:0%~0.100%、
 W:0%~0.100%、および
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
 を含有し、残部がFeおよび不純物からなる組成を有し、スケールと地鉄との界面に、深さ0.2μm~8.0μmの範囲となる凹凸が100μm辺り、3個以上存在し、引張強度が1180MPa以上であることを特徴とするホットスタンプ成形体。
(13)前記ホットスタンプ成形体の表面に、Si酸化物、FeO、Fe、およびFeを有し、前記スケールの厚みが10μm以下であることを特徴とする上記(12)に記載のホットスタンプ成形体。
(14)前記ホットスタンプ成形体の組成が、質量%で、
 Ni: 0.01%~2.00%、
 Cu:0.01%~2.00%、
 Cr:0.01%~2.00%、
 Mo:0.01%~2.00%、
 Nb:0.005%~0.100%、
 V:0.005%~0.100%、および
 W:0.005%~0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(12)又は(13)に記載のホットスタンプ成形体。
(15)前記ホットスタンプ成形体の組成が、質量%で、
 REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする上記(12)~(14)のいずれかに記載のホットスタンプ成形体。
 本発明によれば、ホットスタンプ時のスケール密着性に優れ、かつ金型への溶融金属の付着が生じないホットスタンプ用鋼板、その製造方法並びにそのホットスタンプ成形体を提供することができる。
図1は、鋼板の塗油量と鋼板の表面粗さRzとの関係を示す図である。 図2は、塗油中のS濃度が高くなるとスケールが剥離し易くなることを説明するための図である。 図3は、酸洗時間と鋼板の表面粗度Rzとの関係を示す図である。 図4Aは、酸洗前の熱延鋼板の表層のミクロ組織を示す写真である。 図4Bは、酸洗後の表層ミクロ組織を示す写真である。 図5は、塗油量とスケールの厚みとの関係を示す図である。 図6Aは、本発明例のホットスタンプ成形体表面の断面を示す写真である。 図6Bは、比較例のホットスタンプ成形体表面の断面を示す写真である。 図7は、ホットスタンプ熱処理前の表面粗度Rzが、2.5未満であると、ホットスタンプ熱処理後の凹凸の個数密度が3未満となることを説明するための図である。
 本発明のホットスタンプ用鋼板は、鋼板中にSiを0.5質量%~3.0%質量%含有させると共に、鋼板に塗布されている防錆油の量を50mg/m~1500mg/mの範囲とし、鋼板の表面粗度をRz>2.5μmとすることを特徴とする。そして、好ましくは防錆油中に含まれるS含有量を5質量%以下とする。
 まず、本発明者らが塗油に着目した理由に関して説明する。
 本発明者らは、めっきを施さない鋼板(冷延鋼板、あるいは、熱延鋼板)のスケール密着性の改善を目的に、鋼板の表面性状および各種処理の影響を調査してきた。その結果、脱脂後の鋼板であれば優れたスケール密着性を示すものの、防錆油を塗布するとスケール密着性が大幅に劣化することを見出した。より詳細に、スケール密着性と防錆油との関係を調査したところ、防錆油に不純物として含まれるS量が増えるとスケールが剥離し易い傾向があることが明らかとなった。詳細な理由は不明なものの防錆油中のSがスケール密着性に影響を及ぼしているものと考えられる。
 一方では、酸洗したホットスタンプ用熱延鋼板、冷間圧延あるいは焼鈍後のホットスタンプ用冷延鋼板は、製造から使用までの間に錆が発生するのを抑制するために、鉱物油などの防錆油を塗布することが必要である。特に、酸洗後の鋼板は顧客への納入から使用までの期間が長期間になることを想定し、1500mg/mを超える塗油をすることが一般的であった。本発明者らは、スケール密着性と防錆性との両立を目的に塗油量の影響を調査したところ、図1に示すように、塗油量と鋼板の表面粗度との範囲を厳格に制御することによりスケール密着性が向上することを見出した。塗油量は50mg/m~1500mg/mとすることで効果が発揮される。下限を50mg/mとしたのは、この塗油量未満では優れた防錆性の確保が困難であることから50mg/mを下限の塗油量とした。好ましくは、100mg/m以上であり、より好ましくは、200mg/m以上である。塗油量の上限を1500mg/mとしたのは、優れたスケール密着性の効果を得るためである。塗油量が1500mg/mを超えるとスケール密着性が劣化することからその上限を1500mg/mである。好ましくは、上限が1000mg/mであり、より好ましくは上限が900mg/mであり、さらに好ましくは上限が800mg/mである。また、鋼板表面の塗油は加熱時に燃えることから、煤を発生させる原因となる。このことからも、塗油量は少ない方が好ましい。
 図1に示すスケール密着性は、φ70mm深さ20mmの円筒金型での熱間浅絞り試験によって評価した。鋼板を通電加熱装置にて、50℃/sにて、800℃~1100℃の温度範囲に加熱し、0秒~120秒の保持を行った後、通電を停止し、放冷にて650℃まで冷却し、上記金型にて熱間浅絞り加工を行った。成形後の試験体を目視観察し、スケールが剥離した面積が5%以下のものをスケール密着性が良好(○)、スケールが剥離した面積が5~15%のものを不良(△)、スケールが剥離した面積が15%超のものを劣悪(×)とした。スケールが剥離した面積が5%以下のものを本発明の範囲内とした。
 加熱方法は特に限定することなく、スケール密着性の評価は可能である。例えば、加熱炉、遠赤外線、近赤外線、並びに、通電加熱のいずれの条件でも構わない。また、加熱炉にて鋼板を加熱する場合、加熱炉内の雰囲気を制御し鋼板の酸化を抑制してスケールを薄くすることで、更なる優れたスケール密着性を得ることができる。
 なお、浅絞り試験温度は、鋼板を加工できればどのような温度域でもよいが、一般的に、ホットスタンプ用鋼板はオーステナイト域での加工とその後の金型焼き入れとにより、高い強度と優れた形状凍結性とを有している。このことから、Ar3超となる650℃での熱間浅絞り加工により特性評価を実施した。
 塗油方法としては静電塗油、スプレー、ロールコーター等が一般的に使用されるが、塗油量が確保できれば塗油方法は限定しない。
 油種は特定しないが、例えば鉱物油系であれば、NOX-RUST530F(パーカー興産(株)製)等が一般的に使用されるが塗油量が本発明の範囲を満たすのであれば、油種は、限定しない。
 塗油量は測定できればどのような方法で測定しても構わないが、本発明者らは以下の方法で測定した。まず、防錆油が塗布された鋼板を150mm角に切断し、その後、100mm×100mmの領域が露出するようにテープを張り付けた。そして、この塗油とシールを実施した鋼板(テープの重量を含む)との重量を予め測定しておく。次に、アセトンを含ませた布で鋼板表面の防錆油を拭き取ることで脱脂し、この脱脂した鋼板の重量を測定し、脱脂前後での重量を比較することで単位面積当たりの塗油量を算出した。各鋼板3箇所実施し、その付着量の平均値をそれぞれの鋼板の塗油付着量とした。
 防錆油中に含まれるS含有量を5質量%以下に制限することが好ましい。本発明者らは、図2に示すように、塗油中のS含有量とスケール剥離面積率との関係を調査したところ、塗油中のS含有量が少なくなるほど、スケール密着性が向上し、特に塗油中のS含有量が5質量%以下であれば、スケール剥離面積がほぼ0%となることを見出した。詳細なメカニズムは不明なものの、加熱時に、防錆油中に含まれる油分は燃焼しなくなるものの、不純物として含まれるSが鋼板表面に残存してスケール中に濃化することでスケール密着性を劣化させるものと考えられる。このことから、防錆油中に含まれるS含有量は低減することが好ましい。好ましくは、4質量%以下であり、更に好ましくは3質量%以下である。防錆油中のSの分析は、分析できればどのような方法でも差し支えないが、本発明者らは、鋼板に塗布する防錆油を5mL採取し、蛍光X線(蛍光C線硫黄分析計 SLFA-2800/HORIBA)にて分析を実施した。測定にあたっては、n=3で実施し、その平均値をもってS含有量と定義した。
 次に、鋼板の表面粗度に関して説明する。スケール密着性を確保するためには、鋼板の表面粗度はRz>2.5μmとする必要がある。鋼板の表面粗度Rzとスケール密着性との関係を調査することで得られた結果は、前述の図1に示したとおりである。ホットスタンプ熱処理時に生成するスケールと地鉄との界面に凹凸を設けることで、地鉄とスケールとの界面に凹凸を形成し、密着性の更なる向上をもたらす。この効果は一般的には、アンカー効果と呼ばれる。特に、本鋼板で加熱時に生成されるスケールは薄い。この結果、スケールの厚みが薄い本鋼板は地鉄表面状態の影響を受けて凹凸をもったスケールが形成される。このことからホットスタンプ前の鋼板の表面粗度をRz>2.5μmとする必要がある。Rz≦2.5μmでは、鋼板の表面粗度が小さく、アンカー効果が不十分であることから、ホットスタンプ時の優れたスケール密着性を確保できない。上限は特に設けることなく本発明の優れたスケール密着性の効果を得ることが出来るが、過度にスケール密着性を向上させすぎると、例えば、ショットブラスト等の後工程でスケールを除去することが困難となる。そこで、Rz<8.0μmとすることが好ましい。より好ましくは、Rz<7.0μmである。ただし、Rz≧8.0μmとしたとしても本発明の効果である優れたスケール密着性を確保可能である。なお、Si含有量が0.50質量%未満の鋼板では、Rz>2.5μmの表面粗度としても、加熱時に厚いFe系スケールが形成されることから、鋼板表面に凹凸があったとしても過度な酸化により、地鉄とスケールとの界面がフラットになってしまう。この結果、スケールと地鉄との界面の凹凸がなくなり、本発明の効果である優れたスケール密着性の効果は発揮されない。
 表面粗度Rzの測定は、どのような方法でも構わないが、本発明者らは、触針の先端角が60°、先端Rが2μm接触式表面粗度計(SURFCOM2000DX/SD3東京精密社製)にて、長さ10mmの領域をn=3で測定し、平均値を個々の鋼板の表面粗度Rzとした。
 次に、ホットスタンプ成形体のスケール構造に関して説明する。本発明のホットスタンプ用鋼板は、スケールと地鉄との界面の凹凸制御によりスケール密着性を確保している。このことから、スケールは、Si酸化物、Fe、Fe、およびFeOを主体とするスケールであれば良い。Si酸化物は、地鉄と鉄系スケール(FeO、Fe、Fe)との界面に存在することにより、鉄系スケールの厚みを制御する。このことからスケールにSi酸化物を含む必要がある。鉄系酸化物の厚み制御が主な目的であることから、Si酸化物は非常に薄くとも存在すれば良く、例えば、1nmであってもその効果を発揮する。
 成形体のスケールの組成分析は、浅絞り試験片の円筒部の底から板を切り出し、X線回折にて実施した。各酸化物のピーク強度比から、各Fe系酸化物の体積率を測定した。Si酸化物は、非常に薄く存在しており、体積率も1%未満であったことから、X線回折での定量評価は困難であった。ただし、EPMA(Electron Probe Micro Analyzer)の線分析にて、スケールと地鉄との界面にSi酸化物が存在することを確認することは可能である。
 スケールの厚みは、10μm以下であることが好ましい。スケールの厚みが10μm以下とすれば、スケール密着性がより向上する。スケールの厚みが10μmを超えるとホットスタンプ時の冷却の際に働く熱応力が原因でスケールが剥離し易くなる傾向がある。一方では、その後、ショットブラストまたはウェットブラストといったスケール除去工程において、Fe系のスケール間で割れが生じ、外側に存在するスケールが剥離する。この結果、スケール除去性にも劣ると言う課題を有していた。このことから、スケールの厚みは10μm以下であることが好ましい。より好ましくは7μm以下であり、更に好ましくは5μm以下である。スケールの厚みは、鋼板のSi含有量を所定の範囲内に制御することと同時に、塗油量を所定の範囲に制御することで達成される。図5に、塗油量とスケール厚みとの関係を示す。
 本発明のホットスタンプ成形体における地鉄とスケールとの界面には、0.2μm~8.0μmの凹凸を100μm辺り3個以上存在する。図6Aにはスケール密着性に優れる成形体の地鉄とスケールとの界面の写真を示し、図6Bには、スケール密着性に劣る地鉄とスケールとの界面の写真を示す。この凹凸は、ホットスタンプ時のスケール密着性向上に寄与することから、上記範囲に制御することで優れたスケール密着性を確保出来る。0.2μm未満の凹凸ではアンカー効果が十分でなく、スケール密着性に劣る。8.0μm以上の凹凸では、スケール密着性が強すぎてしまい、その後のスケール除去工程において、例えば、ショットブラストまたはウェットブラストでスケール除去し難いことから、スケールと地鉄との界面の凹凸は8.0μm以下にすることが好ましい。より好ましくは、6.0μm以下であり、更に好ましくは、4.0μm以下である。ただし、凹凸が8.0μmを超えたとしても、本発明の効果である優れたスケール密着性は確保出来る。
 0.2μm~8.0μmの凹凸の100μm当たりの個数が3個未満では、スケール密着性の改善効果が十分でないことから、3個以上とする。一方、その個数の上限は特に定めることなく本発明の効果である優れたスケール密着性は確保可能である。なお、成形体の凹凸は、図7に示すように鋼板の表面粗度Rzと相関があり、鋼板の表面粗さRz>2.5μmとすることで制御可能である。
 次に、本発明の鋼板およびホットスタンプ成形体の化学組成について説明する。なお、以下、%は質量%を意味する。
 C:0.100%~0.600%
 Cは、鋼板の強度を高めるために含有される元素である。C含有量が0.100%未満であると、1180MPa以上の引張強度を確保することができず、ホットスタンプの目的である高強度な成形体を確保できない。一方、C含有量が0.600%を超えると、溶接性や加工性が不充分となるので、C含有量は0.100%~0.600%とする。好ましくは0.100%~0.550%であり、より好ましくは0.150%~0.500%である。ただし、成形体の強度を必要としないのであれば、C含有量が0.150%未満であっても優れたスケール密着性は確保出来る。
 Si:0.50%~3.00%
 Siはホットスタンプ時のスケール組成を制御することでスケール密着性を向上させることから必須の元素である。Si含有量が0.50%未満下であると、Fe系スケールの厚みを制御できず、優れたスケール密着性を確保できない。このことから、Si含有量は0.50%以上とする必要がある。また、ホットスタンプ時の成形が厳しい部材へ適用することを考えた場合、Si含有量を増加させることが好ましい。したがって、好ましくはSi含有量が0.70%以上であり、より好ましくは0.90%以上である。一方、Siは、Ae3点を増加させ、マルテンサイトを主相とするのに必要な加熱温度を増加させることから、過度に含まれていると生産性および経済性が低下する。このことから、Si含有量は3.00%を上限とする。好ましくはSi含有量の上限が2.5%であり、より好ましくは上限2.0%である。ただし、生産性および経済性を除いて優れたスケール密着性の確保は可能である。
 Mn:1.20%~4.00%
 Mnは、ホットスタンプ時の冷却過程でのフェライト変態を遅延し、ホットスタンプ成形体をマルテンサイト主相とする組織とするため、1.20%以上含有させる必要がある。Mn含有量が1.20%未満では、マルテンサイトを主相とすることが出来ず、ホットスタンプ成形体の目的である高強度の確保が難しいので、Mn含有量の下限を1.20%とする。ただし、成形体の強度を必要としないのであれば、Mn含有量が1.20%未満であっても優れたスケール密着性は確保出来る。一方、Mn含有量が4.00%を超えると効果が飽和するとともに、脆化を引き起こし、鋳造、冷間圧延、あるいは、熱間圧延の際に割れを引き起こすため、Mn含有量の上限は4.00%とする。好ましくはMn含有量が1.50%~3.50%の範囲であり、より好ましくは2.00%~3.00%の範囲である。
 Ti:0.005%~0.100%
 Tiは、Nと結合し、TiNを形成することで、Bが窒化物となることを抑制し、焼入れ性を向上させる元素である。この効果は、Ti含有量が0.005%以上で顕著となることから、Ti含有量は0.005%以上とする。但し、Ti含有量が0.100%を超えると、Ti炭化物が形成され、マルテンサイトの強化に寄与するC量が低減し、強度の低下が引き起こされるため、Ti含有量の上限は0.100%とする。好ましくはC含有量が0.005%~0.080%の範囲であり、より好ましくは、0.005%~0.060%の範囲である。
 B:0.0005%~0.0100%
 Bは、ホットスタンプ時の焼き入れ性を高め、主相をマルテンサイトとすることに寄与する。この効果は、B含有量が0.0005%以上で顕著となるため、B含有量は0.0005%以上とする必要がある。一方、B含有量が0.0100%を超えると、その効果が飽和するとともに、鉄系の硼化物が析出し、Bの焼き入れ性の効果を失うため、B含有量の上限は0.0100%とする。好ましくはB含有量が0.0005%~0.0080%の範囲であり、より好ましくは0.0005%~0.0050%の範囲である。
 P:0.100%以下
 Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。したがって、P含有量の上限を0.100%とする。より好ましい上限は0.050%である。P含有量は低い方が好ましく、下限は特に定めることなく本発明の効果が発揮されるが、Pを0.001%未満に低減することは、脱Pの生産性およびコストの観点から、経済的に不利であるので、下限を0.001%とすることが好ましい。
 S:0.0001%~0.0100%
 Sは、スケール密着性に大きな影響を及ぼすことから、鋼板中の含有量を制限する必要がある。したがって、S含有量の上限を0.0100%とする。一方、脱Pの生産性およびコストの観点から、経済的に不利であるので、S含有量の下限を0.0001%とする。好ましくはS含有量が0.0001%~0.0070%の範囲であり、より好ましくは0.0003%~0.0050%の範囲である。
 Al:0.005%~1.000%
 Alは、脱酸材として作用するので、Al含有量は0.005%以上とする。Al含有量が0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が存在することとなる。これら介在物は、ホットスタンプ時に破壊の起点となり、破断の原因となることから好ましくない。この効果は、Al含有量が0.005%以上となると顕著になるので、Al含有量は0.005%以上とする必要がある。一方、Al含有量が1.000%を超えると、Ac3点を増加させホットスタンプ時の加熱温度を増加させる。即ち、ホットスタンプは、鋼板をオーステナイト単相域に加熱し、鋼板を成形性に優れる熱間での金型プレスと、金型を用いた急冷とを実施することで、複雑な形状を有する高強度の成形体を得る技術である。この結果、Alが多量に含まれているとAc3点を著しく向上させ、オーステナイト単相域加熱に必要な加熱温度の増大を招き、生産性が低下してしまう。このことから、Al含有量の上限は1.000%とする必要がある。好ましくはAl含有量が0.005%~0.500%の範囲であり、より好ましくは0.005%~0.300%の範囲である。
 N:0.0100%以下
 Nは、粗大な窒化物を形成し、曲げ性および穴拡げ性を劣化させる元素である。N含有量が0.0100%を超えると、曲げ性および穴拡げ性が顕著に劣化するので、N含有量の上限は0.0100%とする。なお、Nは、溶接時のブローホールの発生原因になるので、少ない方が好ましい。したがって、好ましくはN含有量が0.0070以下であり、より好ましくは0.0050%以下である。一方、N含有量の下限は、特に定める必要はないが、N含有量を0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%が実質的な下限である。製造コストの観点から、N含有量は0.0005%以上がより好ましい。
 尚、その他不可避的元素を微量含有することがある。例えばOは、酸化物を形成し、介在物として存在する。
 本発明鋼板においては、さらに、必要に応じて、以下の元素を含有する。
 Ni:0.01%~2.00%
 Cu:0.01%~2.00%
 Cr:0.01%~2.00%
 Mo:0.01%~2.00%
 Ni、Cu、Cr、およびMoは、ホットスタンプ時の焼き入れ性を高め、主相をマルテンサイトとすることで高強度化に寄与する元素である。この効果は、Ni、Cu、Cr、およびMoからなる群から選ばれる1種又は2種以上を、それぞれ、0.01%以上含有することで顕著になることから、これらの元素の含有量がそれぞれ0.01%であることが好ましい。各元素の含有量が、所定量を超えると、溶接性、熱間加工性などが劣化するか、あるいは、ホットスタンプ用鋼板の強度が高すぎてしまい製造トラブルを招く可能性があるので、これらの元素の含有量の上限は2.00%とすることが好ましい。
 Nb:0.005~0.100%
 V:0.005~0.100%
 W:0.005~0.100%
 Nb、V、およびWは、ホットスタンプ時にオーステナイトの成長を抑制することによって細粒強化し、強度上昇および靭性向上に寄与する元素である。このことから、これらの元素からなる群から選ばれる1種又は2種以上を含有してもよい。この効果は、各元素が0.005%以上含有することにより顕著となることから、これらの元素が0.005%以上含有することが好ましい。なお、これらの元素がそれぞれ0.100%超含まれていると、Nb、V、およびW炭化物が形成され、マルテンサイトの強化に寄与するC量が低減し、強度の低下が引き起こされることから好ましくない。好ましくは、それぞれ0.005%~0.090%の範囲である。
 REM、Ca、Ce、およびMgからなる群から選ばれる1種または2種以上の合計:0.0003%~0.0300%
 本発明では、さらに、REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上を、合計で0.0003%~0.0300%含有してもよい。
 REM、Ca、Ce、およびMgは、強度を向上させるとともに、材質の改善に寄与する元素である。REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上の合計が0.0003%未満であると、充分な効果が得られないので、合計の下限を0.0003%とすることが好ましい。一方、REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上の合計が0.0300%を超えると、鋳造性および熱間での加工性を劣化させる可能性があるので、合計の上限を0.0300%とすることが好ましい。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明においては、REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。
 本発明では、不可避不純物として、La、Ce以外のランタノイド系列の元素を含んでいても、本発明の効果は発現するし、また、その他の金属等の元素を不純物として含有しても、本発明の効果は発現する。
 次に、本発明のホットスタンプ用鋼板並びにホットスタンプ成形体のミクロ組織の特徴について説明する。
 化学組成、鋼板の表面粗度、並びに、塗油量が本発明の範囲を満たすのであれば、酸洗した熱延鋼板、熱延鋼板を冷間圧延した冷延鋼板、あるいは、冷間圧延後に焼鈍を実施した冷延鋼板のいずれであっても本発明の効果は発揮可能である。
 これらの鋼板は、ホットスタンプ時に800℃超のオーステナイト域に加熱されることから、ミクロ組織は特に限定することなく本発明の効果である優れたスケール密着性を有するホットスタンプ用鋼板としての性能は発揮される。ただし、ホットスタンプに先立ち、鋼板の機械切断および冷間での打ち抜き加工を実施する場合は、金型、切断機の刃、あるいは、打ち抜きダイスの損耗を軽減するため、鋼板の強度はなるべく低い方が好ましい。このことから、ホットスタンプ用鋼板のミクロ組織は、フェライト及びパーライト組織、あるいは、ベイナイト組織およびマルテンサイトを焼き戻した組織とすることが好ましい。ただし、機械切断および冷間打ち抜き時のポンチおよびダイスの損耗を問題にしないのであれば、残留オーステナイト、焼き入れのままのマルテンサイト、およびベイナイトのうち1種または2種以上を含んでいたとしても、本発明の効果である優れたスケール密着性は確保可能である。また、鋼板の強度を低減するために、箱型焼鈍炉または連続焼鈍設備での熱処理を実施しても良い。あるいは、これら軟化処理の後、冷間圧延を実施し、所定の板厚に制御したとしても本発明の効果である優れたスケール密着性は確保される。
 ホットスタンプ後の成形体強度を高め、高い部材強度を得る場合は、成形体のミクロ組織は、マルテンサイトを主相とすることが好ましい。特に、引張強度を1180MPa以上確保するためには、主相であるマルテンサイトの体積率を60%以上とすることが好ましい。マルテンサイトは、ホットスタンプ後に焼き戻しを実施し、焼き戻しマルテンサイトとしても良い。マルテンサイト以外の組織として、ベイナイト、フェライト、パーライト、セメンタイト、および残留オーステナイトを含んでも良い。また、マルテンサイト体積率が60%未満であっても、本発明の優れたスケール密着性は確保可能である。
 鋼板組織を構成するミクロ組織(焼き戻しマルテンサイト、マルテンサイト、ベイナイト、フェライト、パーライト、残留オーステナイト及び残部組織)の同定、存在位置の確認、及び、面積率の測定は、以下の方法を用いる。例えば、ナイタール試薬及び特開昭59-219473号公報に開示の試薬で、鋼板圧延方向断面又は圧延方向直角方向断面を腐食して、1000~100000倍の走査型電子顕微鏡(SEM:Scanning Electron Microscope)及び透過型電子顕微鏡(TEM:Transmission Electron Microscope)で組織を観察することで可能である。本発明者らは、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、板厚の1/4を中心とする1/8~3/8厚の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して面積分率を測定し、それを持って体積分率とした。残留オーステナイトの体積分率は、母材鋼板の板面に平行かつ1/4厚の面を観察面としてX線回折を行い、体積分率を測定した。
 次に、本発明のホットスタンプ用鋼板の製造方法について説明する。
 その他の操業条件としては、常法によるが、以下の条件が生産性の上で好ましい。
 本発明における鋼板を製造するには、まず、上述した鋼板の成分組成と同じ成分組成を有するスラブを鋳造する。熱間圧延に供するスラブとして、連続鋳造スラブや、薄スラブキャスターなどで製造したもの用いることができる。本発明の鋼板の製造方法では、鋳造後、直ちに熱間圧延を行う連続鋳造-直接圧延(CC-DR)のようなプロセスに適合する。
・スラブ加熱温度:1100℃以上
・熱間圧延完了温度:Ar3変態点以上
・巻取り温度:700℃以下
・冷間圧延率:30~70%
 スラブ加熱温度は1100℃以上にすることが好ましい。1100℃未満の温度域でのスラブ加熱温度は、仕上げ圧延温度の低下を招くことから、仕上げ圧延時の強度も高くなりがちである。その結果、圧延が困難となったり、圧延後の鋼板の形状不良を招いたりする可能性があるので、スラブ加熱温度は1100℃以上とすることが好ましい。
 仕上げ圧延温度は、Ar3変態点以上とすることが好ましい。仕上げ圧延温度が、Ar3変態点を下回ると圧延荷重が高くなり、圧延が困難となったり、圧延後の鋼板の形状不良を招いたりする可能性があるので、仕上げ圧延温度の下限は、Ar3変態点とすることが好ましい。仕上げ圧延温度の上限は、特に定める必要はないが、仕上げ圧延温度を過度に高くすると、その温度を確保するため、スラブ加熱温度を過度に高くしなければならないので、仕上げ圧延温度の上限は1100℃が好ましい。
 巻取り温度は700℃以下とすることが好ましい。巻取り温度が700℃を超えると、鋼板表面に形成する酸化物の厚さを過度に増大させて、酸洗性を劣化させるので好ましくない。この後、冷間圧延を行う場合は、巻き取り温度の下限を400℃とすることが好ましい。巻取り温度が400℃未満であると、極端に熱延鋼板の強度が増大して、冷間圧延時の板破断および形状不良を誘発し易いので、巻取り温度の下限は400℃とすることが好ましい。ただし、巻き取った熱延鋼板を箱型焼鈍炉または連続焼鈍設備にて加熱することで軟質化を図るのであれば、400℃未満の低温で巻き取っても構わない。なお、熱間圧延時に粗圧延板同士を接合して連続的に仕上げ圧延を行ってもよい。また、粗圧延板を一旦巻き取っても構わない。
 次に、このようにして製造した熱延鋼板に、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%~20質量%の水溶液にて30秒以上酸洗を施す。本発明において、本条件での酸洗が極めて重要であり、鋼板の表面粗度Rzを2.5μm超に制御するために、上記条件での酸洗が必要である。尚、酸は塩酸、硫酸、などの水溶液が一般的で、王水などでも構わない。
 水溶液の温度を80℃以上100℃未満としたのは、80℃未満では反応速度が遅く、熱延鋼板の表面粗度を適正な範囲にするのに長時間を要するためである。一方、100℃以上の温度での加熱は、酸洗の反応は問題ないものの溶液が沸騰し、飛び散ることから危険であり好ましくない。
 また、酸の濃度を3質量%~20質量%としたのは、熱延鋼板の表面粗度Rzを適正な範囲に制御するためである。酸の濃度が3質量%未満では、酸洗による表面の凹凸制御に長時間を要する。一方、酸の濃度が20質量%を超えると、酸洗槽を大幅に損傷させ、設備管理が難しくなるので好ましくない。酸の濃度の好ましい範囲は、5質量%~15質量%の範囲である。
 また、酸洗時間を30s以上としたのは、酸洗により鋼板表面に所定の凹凸(Rz>2.5μm以上の凹凸)を安定的に付与するためである。なお、酸洗槽が複数に分かれている場合は、個々の酸洗槽の濃度または温度が異なっていても、一部、あるいは、合計の酸洗時間が上記条件を満たすのであれば、熱延鋼板の表面粗度Rzを本発明の範囲とすることができる。また、酸洗を複数回に分けて実施しても良い。なお、本発明者らの実験では、インヒビター入りの塩酸を用いたが、酸洗により表面粗度Rzを制御できるのであれば、インヒビターを用いない塩酸、硫酸、硝酸等の他の酸であったり、これらの複合物であったりしても本発明の効果を得ることができる。
 また、熱延鋼板の酸洗により形成される凹凸は、調質圧延、冷間圧延、あるいは、焼鈍を実施した後も残存することから、酸洗条件を制御し、酸洗後の板表面に凹凸を付与することは極めて重要である。このことから、酸洗後の熱延鋼板に調質圧延を実施しても良い。
 更に、冷間圧延のみを行った冷延鋼板、あるいは、冷間圧延後に連続焼鈍設備あるいは箱型焼鈍炉にて熱処理した冷延鋼板でも、冷間圧延前に酸洗を行うことにより、表面に凹凸を形成させて所定の効果を得ることができる。尚、冷間圧延用のロール粗度Rzは1.0μm~20.0μmの範囲で冷間圧することが好ましく、冷間圧延用ロールには調質圧延用ロールも含む。
 以上のような条件で酸洗した熱延鋼板に、圧下率30%~80%で冷間圧延を施し、連続焼鈍設備を通板しても良い。圧下率が30%未満であると、鋼板の形状を平坦に保つことが困難となり、また、最終製品の延性が劣化するので、圧下率の下限は30%とすることが好ましい。一方、圧下率が80%を超えると、圧延荷重が大きくなりすぎて、冷間圧延が困難となるので、圧下率の上限は80%とすることが好ましい。より好ましくは圧下率が40%~70%である。なお、圧延パスの回数、およびパス毎の圧下率は、特に規定しなくても、本発明の効果は発現するので、圧延パスの回数、およびパス毎の圧下率は、規定する必要がない。
 その後、冷延鋼板を、連続焼鈍ラインに通板しても良い。この処理の目的は、冷間圧延により高強度化した鋼板を軟化することが目的であることから、鋼板が軟化する条件であればどのような条件でも良い。例えば、焼鈍温度が550℃~750℃の範囲であれば、冷間圧延時に導入された転位が、回復、再結晶、あるいは、相変態により解放されるので、この温度域で焼鈍を行うことが好ましい。
 同様の目的で、箱型炉による焼鈍を行っても、本発明のスケール密着性に優れたホットスタンプ用の鋼板を得ることが出来る。
 その後、塗油を実施する。塗油方法としては静電塗油、スプレー、ロールコーター等が一般的に使用されるが、50mg/m~1500mg/mの範囲の塗油量が確保できれば方法は限定しない。本発明では、静電塗油機にて所定の量の塗油を実施した。また、50mg/m~1500mg/mの範囲の塗油量が確保できるのであれば、それ以上の量の防錆剤を塗油して脱脂を行ってもよい。
 ホットスタンプ条件は、特に限定することなく本発明の効果である優れたスケール密着性と防錆性との両立を図ることができる。例えば、以下に示す製造方法で製造することで、1180MPa以上の引張強度という優れた性能と生産性との両立が図れる。ホットスタンプを行う際に、800℃~1100℃の温度域に、2℃/秒以上の加熱速度で加熱することが好ましい。2℃/秒以上の速度で加熱することで、加熱時のスケール生成を抑制でき、スケール密着性の改善に効果がある。より好ましくは、加熱速度は5℃/秒以上であり、さらに好ましくは、10℃/秒以上である。また、加熱速度の増大は、生産性高めるためにも有効である。
 ホットスタンプを行う際の焼鈍温度は、800℃~1100℃の範囲とすることが好ましい。この温度域で焼鈍を行うことで、オーステナイト単相組織とすることが可能であり、引き続いて行われる冷却により組織をマルテンサイトを主相とする組織とすることができる。この際の焼鈍温度が800℃を下回ると、焼鈍時の組織がフェライトおよびオーステナイト組織となるとともに、冷却過程でこのフェライトが成長し、フェライト体積率が10%超となり、ホットスタンプ成形体の引張強度が1180MPaを下回ってしまう。このことから、焼鈍温度の下限は800℃にすることが好ましい。一方、焼鈍温度が1100℃を超えると、その効果が飽和するばかりでなく、スケール厚みを大幅に増大させてしまい、スケール密着性が低下する懸念がある。このことから、1100℃以下で焼鈍を行うことが好ましい。より好ましくは、焼鈍温度は830℃~1050℃の範囲である。
 加熱後に800℃~1100℃の温度域で保持を行っても良い。高温で保持を実施すると、鋼板に含まれる炭化物の溶解が可能であり、鋼板の強度上昇および焼き入れ性の向上に寄与する。保持とは、本温度域での滞留、除加熱、および除冷却を含む。炭化物の溶解が目的であることから、本温度域での滞留時間を確保さえすれば、その目的が達成される。保持時間の制限は特に設けないが、保持時間が1000s以上になるとスケール厚みが過大となり、スケール密着性が劣化することから1000sを上限とすることが好ましい。
 その後、800℃~700℃を5℃/秒以上の平均冷却速度で冷却することが好ましい。ここで、700℃は型冷却開始温度であり、800℃~700℃を5℃/秒以上とするのは、フェライト変態、ベイナイト変態、およびパーライト変態を回避し、組織をマルテンサイト主相とするためである。冷却速度が5℃/秒未満では、これら軟質な組織が形成してしまい、1180MPa以上の引張強度を確保することが難しい。一方、冷却速度の上限は特に定めることなく、本発明の効果は発揮される。5℃/秒以上で冷却する温度範囲を800℃~700℃とするのは、この温度範囲ではフェライトなどの強度の低下を引き起こす組織が形成される可能性があるためである。この際の冷却は、連続冷却に限定するものでなく、この温度域での保持および加熱を行っても、平均冷却速度が5℃/秒以上であれば、本発明の効果は発揮される。冷却方法も特に限定することなく本発明の効果を発揮できる。即ち、金型を用いた冷却、水冷を併用した金型冷却のいずれであっても、本発明の効果を発揮可能である。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 まず、表1に示すA~S、a~nの成分組成のスラブを鋳造し、一旦室温まで冷却した後、炉温=1230℃の加熱炉にて220分加熱を実施し、その仕上げ圧延温度=920℃~960℃にて熱間圧延を実施し、表2で示す温度条件にて巻き取りを実施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、熱延鋼板としてホットスタンプに供する熱延鋼板の仕上げ板厚は、1.6mmとした。一方、冷間圧延に供する熱延鋼板の板厚は3.2mmとした。その後、表2の条件にて酸洗を実施し、冷間圧延を行う場合は50%(3.2mm→1.6mm)の板厚とした。その後、一部の鋼板に関しては、連続焼鈍設備で焼鈍を行い、冷延鋼板とした。その後、NOX-RUST503F(パーカー興産)を用い、無塗油~6090mg/mの範囲でNOX503F(パーカー興産)を静電塗油機にて塗油を熱延鋼板および冷延鋼板に塗布した。
 その後に、鋼板を所定のサイズに切断した後、50℃/秒にて900℃まで通電加熱を行い、900℃で10秒の保持を実施し、その後、10sの放冷を行い、650℃以上の温度で上記熱間浅絞り金型にて焼き入れを行った。得られたホットスタンプ成形体の目視観察を行い、スケールの剥離のない鋼板をスケール密着に優れた鋼板とした。
 防錆性に関しては、室温にて、30日間保持を実施し、鋼板表面に錆が発生しなかった鋼板を防錆性に優れた鋼板と定義した。併せて、平板試験片を用い、上述の条件でホットスタンプを行い、引張特性を評価した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 引張特性は、JIS Z 2201に準拠した引張試験片を採取し、引張試験を、JIS Z 2241に準拠して行い、引張最大強度を測定した。引張最大強度が1180MPa以上のものを、本発明の成形体とした。
 成形体のスケールの組成分析は、浅絞り試験片の円筒部の底から板を切り出し、X線回折にて実施した。各酸化物のピーク強度比から、各Fe系酸化物の体積率を測定した。Si酸化物は、非常に薄く存在しており、体積率も1%未満であったことから、X線回折での定量評価は困難であった。ただし、EPMAの線分析にて、スケールと地鉄との界面に存在することは確認できた。
 成形体に形成されたスケールと地鉄との界面の凹凸評価は、上記位置より切り出した鋼板を埋め込み研磨を実施した後、圧延方向に垂直な断面から3000倍にてSEM観察した。各試験片5視野観察し、100μm長さ当たりの0.2μm~1.0μmの範囲となる凹凸の個数密度を測定した。
 本発明の条件を満たすものは、優れた防錆性と優れたスケール密着性とを両立できた。発明の条件を満たさないものは、スケール密着性に劣る、あるいは、耐食性に劣った。
 本発明によれば、ホットスタンプ時のスケール密着性に優れた鋼板を提供でき、ホットスタンプ時の金型の損耗、金型へのめっき付着、およびそれに伴う押し込み疵の問題を解決可能であることから、大幅な生産性の向上をもたらすことができ、工業的に大きな価値がある。

Claims (15)

  1.  質量%で、
     C:0.100%~0.600%、
     Si:0.50%~3.00%、
     Mn:1.20%~4.00%、
     Ti:0.005%~0.100%、
     B:0.0005%~0.0100%、
     P:0.100%以下、
     S:0.0001%~0.0100%、
     Al:0.005%~1.000%、
     N:0.0100%以下、
     Ni: 0%~2.00%、
     Cu:0%~2.00%、
     Cr:0%~2.00%、
     Mo:0%~2.00%、
     Nb:0%~0.100%、
     V:0%~0.100%、
     W:0%~0.100%、および
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
     を含有し、残部がFeおよび不純物からなる組成であり、鋼板の表面粗度がRz>2.5μmであり、表面に塗油量50mg/m~1500mg/mの塗油が塗布されていることを特徴とするホットスタンプ用鋼板。
  2.  前記鋼板に塗油される塗油中に含まれるS量が質量%で5%以下であることを特徴とする請求項1に記載のホットスタンプ用鋼板。
  3.  前記鋼板の組成が、質量%で、
     Ni: 0.01%~2.00%、
     Cu:0.01%~2.00%、
     Cr:0.01%~2.00%、
     Mo:0.01%~2.00%、
     Nb:0.005%~0.100%、
     V:0.005%~0.100%、および
     W:0.005%~0.100%、
    からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項1又は2に記載のホットスタンプ用鋼板。
  4.  前記鋼板の組成が、質量%で、
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする請求項1~3のいずれか1項に記載のホットスタンプ用鋼板。
  5.  質量%で、
     C:0.100%~0.600%、
     Si:0.50%~3.00%、
     Mn:1.20%~4.00%、
     Ti:0.005%~0.100%、
     B:0.0005%~0.0100%、
     P:0.100%以下、
     S:0.0001%~0.0100%、
     Al:0.005%~1.000%、
     N:0.0100%以下、
     Ni: 0%~2.00%、
     Cu:0%~2.00%、
     Cr:0%~2.00%、
     Mo:0%~2.00%、
     Nb:0%~0.100%、
     V:0%~0.100%、
     W:0%~0.100%、および
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
     を含有し、残部がFeおよび不純物からなるスラブを鋳造して、直接または一旦冷却した後加熱して熱間圧延を行い、熱延鋼板を得る工程と、
     前記熱延鋼板を、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%~20質量%の水溶液にて30秒以上の酸洗を実施する工程と、
     前記酸洗を実施した後に防錆油を鋼板に塗布する工程と、
     を有し、
     鋼板表面の防錆油残存量を50mg/m~1500mg/mに制限することを特徴とするホットスタンプ用鋼板の製造方法。
  6.  前記酸洗した熱延鋼板に前記防錆油を塗布することを特徴とする請求項5に記載のホットスタンプ用鋼板の製造方法。
  7.  前記酸洗した熱延鋼板に冷間圧延を実施して冷延鋼板を得る工程を更に有し、
     前記冷延鋼板に前記防錆油を塗布することを特徴とする請求項5に記載のホットスタンプ用鋼板の製造方法。
  8.  前記酸洗した熱延鋼板に冷間圧延を実施し、さらに連続焼鈍設備又は箱型焼鈍炉にて熱処理を行って冷延鋼板を得る工程を更に有し、
     前記冷延鋼板に前記防錆油を塗布することを特徴とする請求項5に記載のホットスタンプ用鋼板の製造方法。
  9.  前記鋼板に塗布する防錆油は、そのS量が質量%で5%以下であることを特徴とする請求項5~8のいずれか1項に記載のホットスタンプ用鋼板の製造方法。
  10.  前記スラブの組成が、質量%で、
     Ni: 0.01%~2.00%、
     Cu:0.01%~2.00%、
     Cr:0.01%~2.00%、
     Mo:0.01%~2.00%、
     Nb:0.005%~0.100%、
     V:0.005%~0.100%、および
     W:0.005%~0.100%、
    からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項5~9のいずれか1項に記載のホットスタンプ用鋼板の製造方法。
  11.  前記スラブの組成が、質量%で、
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする請求項5~10のいずれか1項に記載のホットスタンプ用鋼板の製造方法。
  12.  質量%で、
     C:0.100%~0.600%、
     Si:0.50%~3.00%、
     Mn:1.20%~4.00%、
     Ti:0.005%~0.100%、
     B:0.0005%~0.0100%、
     P:0.100%以下、
     S:0.0001%~0.0100%、
     Al:0.005%~1.000%、
     N:0.0100%以下、
     Ni: 0%~2.00%、
     Cu:0%~2.00%、
     Cr:0%~2.00%、
     Mo:0%~2.00%、
     Nb:0%~0.100%、
     V:0%~0.100%、
     W:0%~0.100%、および
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%~0.0300%
     を含有し、残部がFeおよび不純物からなる組成を有し、スケールと地鉄との界面に、深さ0.2μm~8.0μmの範囲となる凹凸が100μm辺り、3個以上存在し、引張強度が1180MPa以上であることを特徴とするホットスタンプ成形体。
  13.  前記ホットスタンプ成形体の表面に、Si酸化物、FeO、Fe、およびFeを有し、前記スケールの厚みが10μm以下であることを特徴とする請求項12に記載のホットスタンプ成形体。
  14.  前記ホットスタンプ成形体の組成が、質量%で、
     Ni: 0.01%~2.00%、
     Cu:0.01%~2.00%、
     Cr:0.01%~2.00%、
     Mo:0.01%~2.00%、
     Nb:0.005%~0.100%、
     V:0.005%~0.100%、および
     W:0.005%~0.100%、
    からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項12又は13に記載のホットスタンプ成形体。
  15.  前記ホットスタンプ成形体の組成が、質量%で、
     REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%~0.0300%含有することを特徴とする請求項12~14のいずれか1項に記載のホットスタンプ成形体。
PCT/JP2016/060145 2015-03-31 2016-03-29 ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体 WO2016158961A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2017135379A RU2683397C1 (ru) 2015-03-31 2016-03-29 Стальной лист для горячей штамповки, способ производства стального листа для горячей штамповки, а также формируемое горячей штамповкой тело
KR1020177027982A KR102000863B1 (ko) 2015-03-31 2016-03-29 핫 스탬프용 강판 및 그의 제조 방법, 그리고 핫 스탬프 성형체
JP2017510030A JP6515356B2 (ja) 2015-03-31 2016-03-29 ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
CA2979978A CA2979978A1 (en) 2015-03-31 2016-03-29 Steel sheet for hot stamping and method for producing steel sheet for hot stamping, and hot stamp formed body
BR112017020165-8A BR112017020165A2 (ja) 2015-03-31 2016-03-29 A steel plate for hot stamps, a manufacturing method for the same, and a hot stamp fabrication object
US15/559,731 US20180044754A1 (en) 2015-03-31 2016-03-29 Steel sheet for hot stamping and method for producing steel sheet for hot stamping, and hot stamp formed body
EP16772842.7A EP3278895B1 (en) 2015-03-31 2016-03-29 Steel sheet for hot stamping, method for manufacturing same, and hot stamp molded article
CN201680017529.1A CN107427889B (zh) 2015-03-31 2016-03-29 热冲压用钢板及其制造方法、以及热冲压成型体
ES16772842T ES2781465T3 (es) 2015-03-31 2016-03-29 Lámina de acero para estampado en caliente, método para su fabricación, y cuerpo moldeado por estampado en caliente
MX2017012377A MX2017012377A (es) 2015-03-31 2016-03-29 Lamina de acero para estampado en caliente, metodo para producir lamina de acero para estampado en caliente, y articulo moldeado por estampado en caliente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072280 2015-03-31
JP2015-072280 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158961A1 true WO2016158961A1 (ja) 2016-10-06

Family

ID=57004387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060145 WO2016158961A1 (ja) 2015-03-31 2016-03-29 ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体

Country Status (12)

Country Link
US (1) US20180044754A1 (ja)
EP (1) EP3278895B1 (ja)
JP (1) JP6515356B2 (ja)
KR (1) KR102000863B1 (ja)
CN (1) CN107427889B (ja)
BR (1) BR112017020165A2 (ja)
CA (1) CA2979978A1 (ja)
ES (1) ES2781465T3 (ja)
MX (1) MX2017012377A (ja)
RU (1) RU2683397C1 (ja)
TW (1) TWI597370B (ja)
WO (1) WO2016158961A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016163468A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
JPWO2016163469A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
JPWO2016163467A1 (ja) * 2015-04-08 2018-01-11 新日鐵住金株式会社 熱処理用鋼板
KR101938092B1 (ko) * 2017-09-26 2019-04-11 현대제철 주식회사 핫 스탬핑 부품의 제조방법 및 이에 의해 제조된 핫 스탬핑 부품
WO2019188622A1 (ja) * 2018-03-27 2019-10-03 株式会社神戸製鋼所 ホットスタンプ用鋼板
JP2019173158A (ja) * 2018-03-27 2019-10-10 株式会社神戸製鋼所 ホットスタンプ用鋼板
JP2019529713A (ja) * 2016-09-30 2019-10-17 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 一時的腐食防止層
JP2020521048A (ja) * 2017-05-22 2020-07-16 アルセロールミタル 鋼製部品の製造方法及び対応する鋼製部品
WO2022158469A1 (ja) * 2021-01-19 2022-07-28 日本製鉄株式会社 鋼材
TWI779686B (zh) * 2021-06-25 2022-10-01 中國鋼鐵股份有限公司 熱沖壓用鋼材與鋼材製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632240B (zh) * 2017-01-17 2018-08-11 新日鐵住金股份有限公司 Hot stamping formed body and method of manufacturing same
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
CN109136485A (zh) * 2018-09-30 2019-01-04 南京理工大学 汽车稳定杆用超高强度钢及稳定杆的制造方法
CN111801436B (zh) 2019-02-05 2021-10-29 日本制铁株式会社 钢构件、钢板及它们的制造方法
CN109706377A (zh) * 2019-03-01 2019-05-03 本钢板材股份有限公司 一种适合热成形加工的厚规格phs1500钢及其生产工艺
CN110257702B (zh) * 2019-06-24 2021-04-27 鞍钢股份有限公司 一种热冲压成形用钢及其热成形方法
JP7160203B2 (ja) * 2019-07-02 2022-10-25 日本製鉄株式会社 ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体
KR102236851B1 (ko) * 2019-11-04 2021-04-06 주식회사 포스코 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
CN111926248B (zh) * 2020-07-14 2021-11-30 辽宁科技学院 一种添加Ce合金的热冲压成形钢及热冲压成形工艺
CN112981069B (zh) * 2021-02-04 2022-04-26 山西太钢不锈钢股份有限公司 一种低光泽度不锈钢面板材料的制备方法
CN113755758B (zh) * 2021-09-03 2023-02-03 本钢板材股份有限公司 一种添加铈微合金制备的8mm厚热冲压钢以及其热冲压工艺
CN114012056B (zh) * 2021-10-14 2023-10-13 首钢集团有限公司 一种1500MPa级热成形钢及其制备方法
CN114561590A (zh) * 2022-02-28 2022-05-31 北京理工大学重庆创新中心 一种添加Ce元素的无涂层抗高温氧化热冲压成形钢
CN114561591A (zh) * 2022-02-28 2022-05-31 北京理工大学重庆创新中心 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢
DE102022108111A1 (de) 2022-04-05 2023-10-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Stahlbauteile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976004A (ja) * 1995-09-11 1997-03-25 Nisshin Steel Co Ltd プレス加工性にすぐれた潤滑防錆油塗布鋼板
JP2008240046A (ja) * 2007-03-27 2008-10-09 Nippon Steel Corp 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法
JP2010174302A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp ダイクエンチ用鋼板
WO2011158818A1 (ja) * 2010-06-14 2011-12-22 新日本製鐵株式会社 ホットスタンプ成形体、ホットスタンプ用鋼板の製造方法及びホットスタンプ成形体の製造方法
WO2012053636A1 (ja) * 2010-10-22 2012-04-26 新日本製鐵株式会社 ホットスタンプ成形体の製造方法及びホットスタンプ成形体
JP2014159624A (ja) * 2012-04-23 2014-09-04 Kobe Steel Ltd ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265968A (ja) * 1967-12-23 1972-03-08
JPH01230715A (ja) 1987-06-26 1989-09-14 Nippon Steel Corp プレス成形性の優れた高強度冷延鋼板の製造方法
JPH0733551B2 (ja) 1989-02-18 1995-04-12 新日本製鐵株式会社 優れた成形性を有する高強度鋼板の製造方法
JP3195509B2 (ja) * 1995-02-01 2001-08-06 株式会社神戸製鋼所 表面性状に優れた熱延鋼板の製造方法
JP3143046B2 (ja) * 1995-07-31 2001-03-07 日本鋼管株式会社 プレス成形性および耐孔あき腐食性に優れた有機複合被覆鋼板
JP3882474B2 (ja) 2000-07-06 2007-02-14 住友金属工業株式会社 金属板の熱間プレス成形方法
JP2002143935A (ja) 2000-11-13 2002-05-21 Sumitomo Metal Ind Ltd 金属板の温間プレス方法
JP3766626B2 (ja) 2001-11-22 2006-04-12 新日本製鐵株式会社 高強度鋼板プレス成形体の製造方法
JP3504655B2 (ja) * 2001-12-06 2004-03-08 新日本製鐵株式会社 プレス成形性と作業性に優れたフェライト系ステンレス鋼板およびその製造方法
JP4023248B2 (ja) * 2002-07-23 2007-12-19 住友金属工業株式会社 強加工用の潤滑処理鋼帯
JP2004106034A (ja) 2002-09-19 2004-04-08 Nippon Steel Corp シート状金属の加工装置および加工方法
JP4941003B2 (ja) 2007-02-28 2012-05-30 Jfeスチール株式会社 ダイクエンチ用熱延鋼板およびその製造方法
WO2008110670A1 (fr) * 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
PL2204463T3 (pl) * 2007-10-29 2019-10-31 Nippon Steel & Sumitomo Metal Corp Stal typu martenzytycznego niewymagająca obróbki cieplnej i elementy kute na gorąco ze stali niepoddanej obróbce cieplnej
JP5693463B2 (ja) * 2008-12-04 2015-04-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 片面または両面に亜鉛メッキされた鋼板から成形品を製造する方法
JP5029749B2 (ja) * 2010-09-17 2012-09-19 Jfeスチール株式会社 曲げ加工性に優れた高強度熱延鋼板およびその製造方法
WO2012053642A1 (ja) * 2010-10-22 2012-04-26 新日本製鐵株式会社 縦壁部を有するホットスタンプ成形体の製造方法及び縦壁部を有するホットスタンプ成形体
CA2865910C (en) * 2012-03-07 2017-10-17 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping, method for production thereof, and hot stamping steel material
WO2014157578A1 (ja) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 研磨後の表面耐食性に優れるフェライト系ステンレス鋼及びその製造方法
CN103614640B (zh) * 2013-12-12 2016-10-05 马鸣图 一种抗高温氧化的非镀层热冲压成形用钢

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976004A (ja) * 1995-09-11 1997-03-25 Nisshin Steel Co Ltd プレス加工性にすぐれた潤滑防錆油塗布鋼板
JP2008240046A (ja) * 2007-03-27 2008-10-09 Nippon Steel Corp 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法
JP2010174302A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp ダイクエンチ用鋼板
WO2011158818A1 (ja) * 2010-06-14 2011-12-22 新日本製鐵株式会社 ホットスタンプ成形体、ホットスタンプ用鋼板の製造方法及びホットスタンプ成形体の製造方法
WO2012053636A1 (ja) * 2010-10-22 2012-04-26 新日本製鐵株式会社 ホットスタンプ成形体の製造方法及びホットスタンプ成形体
JP2014159624A (ja) * 2012-04-23 2014-09-04 Kobe Steel Ltd ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016163468A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
JPWO2016163469A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
JPWO2016163467A1 (ja) * 2015-04-08 2018-01-11 新日鐵住金株式会社 熱処理用鋼板
JP2019529713A (ja) * 2016-09-30 2019-10-17 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 一時的腐食防止層
US11261514B2 (en) 2016-09-30 2022-03-01 Thyssenkrupp Steel Europe Ag Temporary corrosion protection layer
JP2020521048A (ja) * 2017-05-22 2020-07-16 アルセロールミタル 鋼製部品の製造方法及び対応する鋼製部品
KR101938092B1 (ko) * 2017-09-26 2019-04-11 현대제철 주식회사 핫 스탬핑 부품의 제조방법 및 이에 의해 제조된 핫 스탬핑 부품
WO2019188622A1 (ja) * 2018-03-27 2019-10-03 株式会社神戸製鋼所 ホットスタンプ用鋼板
JP2019173158A (ja) * 2018-03-27 2019-10-10 株式会社神戸製鋼所 ホットスタンプ用鋼板
JP7353768B2 (ja) 2018-03-27 2023-10-02 株式会社神戸製鋼所 ホットスタンプ用鋼板
WO2022158469A1 (ja) * 2021-01-19 2022-07-28 日本製鉄株式会社 鋼材
TWI779686B (zh) * 2021-06-25 2022-10-01 中國鋼鐵股份有限公司 熱沖壓用鋼材與鋼材製造方法

Also Published As

Publication number Publication date
JPWO2016158961A1 (ja) 2018-01-18
ES2781465T3 (es) 2020-09-02
CN107427889B (zh) 2019-10-25
KR20170122823A (ko) 2017-11-06
CA2979978A1 (en) 2016-10-06
JP6515356B2 (ja) 2019-05-22
CN107427889A (zh) 2017-12-01
EP3278895A4 (en) 2018-09-05
TW201702403A (zh) 2017-01-16
US20180044754A1 (en) 2018-02-15
BR112017020165A2 (ja) 2018-06-05
MX2017012377A (es) 2017-12-14
RU2683397C1 (ru) 2019-03-28
EP3278895A1 (en) 2018-02-07
TWI597370B (zh) 2017-09-01
EP3278895B1 (en) 2020-03-11
KR102000863B1 (ko) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2016158961A1 (ja) ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
CN110121568B (zh) 高强度镀锌钢板及其制造方法
CN107148487B (zh) 热浸镀锌钢板
KR101950618B1 (ko) 용융 아연 도금 강판
US10822684B2 (en) Hot-dip galvanized steel sheet
CN110914464B (zh) 热浸镀锌钢板
CN110959047B (zh) 热浸镀锌钢板
WO2013105633A1 (ja) ホットスタンプ成形体、及びホットスタンプ成形体の製造方法
JP5942841B2 (ja) 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP6136476B2 (ja) 冷延鋼板及び冷延鋼板の製造方法
JP7164024B2 (ja) 高強度鋼板およびその製造方法
JP5741413B2 (ja) 合金化溶融亜鉛めっき鋼帯およびその製造方法
JP7168073B2 (ja) 高強度鋼板およびその製造方法
WO2023132349A1 (ja) ホットスタンプ用鋼板、ホットスタンプ用鋼板の製造方法、及びホットスタンプ成形体
CN114981467B (zh) 热冲压成型体
WO2022091351A1 (ja) Zn系めっきホットスタンプ成形品
WO2023132350A1 (ja) ホットスタンプ用鋼板、ホットスタンプ用鋼板の製造方法、及びホットスタンプ成形体
TWI646219B (zh) Hot-dip galvanized steel sheet
TW201910535A (zh) 熔融鍍鋅鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510030

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2979978

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15559731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012377

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177027982

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017135379

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020165

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020165

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170921