CN114561591A - 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢 - Google Patents

一种添加y元素的无涂层增强抗高温氧化热冲压成形钢 Download PDF

Info

Publication number
CN114561591A
CN114561591A CN202210192327.8A CN202210192327A CN114561591A CN 114561591 A CN114561591 A CN 114561591A CN 202210192327 A CN202210192327 A CN 202210192327A CN 114561591 A CN114561591 A CN 114561591A
Authority
CN
China
Prior art keywords
steel
equal
hot
temperature oxidation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210192327.8A
Other languages
English (en)
Inventor
赵岩
刘雷
孙岱
汪健
王扬卫
桂林涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Innovation Center of Beijing University of Technology
Original Assignee
Chongqing Innovation Center of Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Innovation Center of Beijing University of Technology filed Critical Chongqing Innovation Center of Beijing University of Technology
Priority to CN202210192327.8A priority Critical patent/CN114561591A/zh
Publication of CN114561591A publication Critical patent/CN114561591A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

本发明提供一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,余量为Fe以及不可避免的杂质。本发明增强热成形零件韧性的同时可以抑制热冲压成形钢高温下疏松氧化皮的生成,防止模具的损坏、产品表面伤纹的产生,减免抛丸工序直接涂装后的漆膜附着力等同于现有涂层产品与抛丸后无涂层产品的水平,减少工序降低了生产成本并提高尺寸精度,可以满足热成形钢高温抗氧化性和力学性能的需求。

Description

一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢
技术领域
本发明应用于钢铁材料技术领域,具体涉及一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢。
背景技术
使用超高强度钢是实现汽车轻量化的重要途径。但是随着强度性能的提高,传统冷成形工艺均存在回弹严重、成形性差等问题,难以制备复杂形状的零件。热成形技术将高温成形与淬火强化相结合,完美解决超高强度与良好成形性之间的矛盾,主要应用于汽车高强度、难成形零件的生产。钢在加热时表面的铁及合金元素与空气介质中的氧、二氧化碳及空气中的水分等反应形成氧化皮,即为氧化现象。钢板表面的氧化皮越厚附着力越低,从而在热成形过程中脱落的氧化皮会损伤模具,降低模具寿命,还会使热成形零件表面产生伤纹。另外,钢板表面生产氧化皮,会让零件后续的生产工序变得困难,如涂装、焊接等。同时,氧化皮变厚会使冷却时的热传导率降低,从而影响热成形钢淬火后的性能。为了去除氧化皮,通常在热成形后进行抛丸处理。但是,热成形后进行抛丸处理,不但增加成本,而且会使零件变形,降低零件精度。
为了解决热成形钢高温抗氧化的问题,目前主要存在两种解决方案:一是采用涂层技术,二是采用非涂层技术。对于涂层技术而言,涂层技术可以防止成形过程中表面氧化和脱碳,还能提高涂装后的防腐蚀性能,但也增加了生产工序,提高了生产成本。对于非涂层技术,其主要通过设计和调控合金元素及成分配比来改善热冲压成形钢的高温抗氧化性,但该技术目前研究甚少,商业应用程度不及涂层技术,且目前非涂层技术主要进行成形方法、强度、氧化程度等研究,对于热成形后钢板表面漆膜附着力没有进行过研究。中国CN109972061A公开了一种热冲压成形用抗氧化超高强钢板及低温热成形工艺,该专利技术通过扩大奥氏体区元素C和Mn的加入,Mn的含量提高至6~8%,进而显著降低奥氏体化加热温度,由此减轻钢板的高温氧化程度,同时通过计算和参考试验确定了合适的Cr、Si、Al合金元素添加量,提高了钢板的高温抗氧化性能,最终得到热冲压成形钢板的屈服强度不低于1400MPa,抗拉强度不低于1700MPa,延伸率大于10%。但是Mn含量过高对焊接、附着力等性能不利,同时其偏低的热成形温度容易降低零件的成形精度。专利CN111926248A公开了一种添加Ce合金的热冲压成形钢及热冲压成形工艺,其通过添加Ce(0.03~0.08%)元素来促进富Si氧化层的迅速形成,从而实现改善表面氧化层结构,并严格控制氧化层厚度,得到的氧化层厚度较薄。该专利技术的Ce元素含量过高,不但容易造成结晶器水口堵塞,无法实现钢的连续浇铸,而且降低加工性,提高生产成本。
可见现有技术中高温抗氧化性、漆膜附着力、韧性等性能难以同时实现,由于无涂层热冲压成形钢的表面高温氧化的问题,热成形后必须经过抛丸处理才能进行下一步的涂装,为了解决上述问题,本发明在现有技术的基础上进行研究,增强了热冲压成形钢高温抗氧化性及韧性,尤其是热成形后不用抛丸直接涂装就能保证漆膜附着力合格。
发明内容
本发明针对现有技术中存在的上述问题,提供一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,针对现有技术中钢难以同时解决高韧性、高温抗氧化性等问题进行研究,并能实现热冲压成形后免抛丸直接涂装,降低了生产成本,从而满足高端市场的需求。
本发明解决其技术问题是采用以下技术方案实现的:
本发明采用的技术方案如下:一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,余量为Fe以及不可避免的杂质。
进一步的,所述热冲压成形钢包含有0.2~0.4%的C。C是提高淬透性,增强钢强度的有效元素,在模具冷却时形成马氏体组织,为了得到期望强度值,必须添加0.2%以上的C;另外,C含量超过0.4%,模具冷却后的强度会太高,超过目标范围,而且延展性、韧性、焊接性、延迟破坏(氢脆)等性能都会降低。
进一步的,所述热冲压成形钢包含有1.3~2.0%的Si。Si影响氧化皮产生及其粘附性,是本发明的一个重要元素。加热时Si会在表面形成一层次生氧化皮,会起抑制氧化作用,在高温下疏松氧化皮生成量会明显减少;Si含量过高会降低焊接热影响区的韧性,恶化其可焊性,Si会增加钢板表面的脱碳敏感性从而降低热成形后零件整体强度。
进一步的,所述热冲压成形钢包含有1.0~1.8%的Mn。Mn是提高淬透性、增强钢强度的有效元素,为了得到模具冷却加工时的期望强度值,Mn必须控制在1.0%以上。但是超过1.8%的话,偏析将会变明显、热轧/模具冷却后材质的均匀性将会下降。优选的,Mn的含量为1.2-1.5%。
进一步的,所述热冲压成形钢包含有0.15~1.5%的Cr。Cr是影响氧化皮产生及其粘附性,是本发明的一个重要元素。加热时Cr会在表面形成一层次生氧化皮,会起抑制氧化作用,在高温下疏松氧化皮生成量会明显减少,同时也是显著提高淬透性的元素。Cr含量过高会影响热成形零件的可焊性,并且增加合金成本。
进一步的,所述热冲压成形钢包含有0.01~0.15%的Ti。Ti是氮化物形成元素,和B优先形成氮化物,从而阻止BN的产生,可以确保B的固溶强化。为了得到这些效果,含量必须控制在0.01%以上。但是,超过0.15%的话,热轧负荷会变大,使热轧变得非常困难的同时,会降低淬透性,更进一步会降低热成形零件的韧性。优选的,Ti的含量为0.01~0.05%。
进一步的,所述热冲压成形钢包含有0.0008~0.004%的B。B是在少量含有的前提下,是提高淬透性的有效元素,还可以提高韧性。为了得到这些效果,B含量必须控制在0.0008%以上。但是B超过0.004%的话,热轧负荷会明显增大,同时热轧后产生马氏体、贝氏体,发生钢板破损等后果。
进一步的,所述热冲压成形钢包含有0.0002~0.01%的Y。Y影响氧化皮产生及其粘附性,是本发明的重要元素之一。Y会抑制氧化皮的生产、提高氧化皮的附着力,其含量必须在0.0002%以上。另外,含量超过0.01%的话,上述效果会产生饱和,得不到想要的结果,而且会降低加工性,提高生产成本。
进一步的,所述热冲压成形钢的原材料中不包括Al,热冲压成形钢合金组分中的Al为制备过程中引入的脱氧剂。
进一步的,所述热冲压成形钢还包含有≤1.0%的Nb和/或V和/或W和/或Ni和/或Mo。Nb、V、W、Ni、Mo是强化钢、提高淬透性的有效元素,可以选择添加。
进一步的,所述热冲压成形钢在930℃加热5min后屈服强度≥1000MPa,抗拉强度≥1450MPa,总延伸率≥8.0%,强塑积≥12.0GPa·%
进一步的,所述热冲压成形钢氧化层厚度≤4.0μm。
进一步的,所述热冲压成形钢制备过程包括炼钢、连铸、热轧、酸洗、冷轧、退火的工序。
进一步的,所述热冲压成形工序为:将热冲压成形用钢板加热到880~950℃,保温3~10min,使钢板完全奥氏体化;钢板完全奥氏体化后,送入内部带有冷却系统的模具内冲压成形;保压快速冷却淬火,冷却速度控制在15~200℃/s,使奥氏体转变成马氏体,不用抛丸直接涂装,最终得到热成形零件。
综上所述,与现有技术相比,本发明的有益效果如下:
1、本发明中通过添加Y,一方面由于Y的氧化物与Cr的氧化物具有相似的晶格类型,优先形成的Y的氧化物作为核心,另一方面Y的原子半径较大,渗入钢板后使其点阵扩张,增加了短路扩散通道的密度,促进了热成形钢氧化皮的形成。同时,Y改变了阴阳离子的晶格短路扩散速度,从而使氧化皮的生长机制发生了逆转,即从以阳离子扩散为主的生长转变为以阴离子扩散为主的生长,和Ce相比,更有效的抑制了氧化皮的生长速率,可以减薄热成形钢高温氧化皮的厚度。
2、Y和Si、Cr的氧化物在氧化皮-基体界面处形成,Y堵塞了氧化皮中阳离子向外扩散的短路通道,使得氧离子沿着氧化皮晶界向内扩散,沿晶界或晶内深入基体形成钉扎效应,增大了氧化层与基体金属的实际接触面积,增加了氧化皮与基体的黏附力,从而提高了氧化膜的抗剥落性能。同时Y的氧化物作为空位陷阱,基本断绝了在氧化皮/基体界面上产生空腔的空位来源,使氧化皮的粘附性得到根本改善,提升了附着力,可以实现热成形后直接涂装。
3、本发明中通过添加Y元素,有效细化原奥氏体以及马氏体板条束,能够提高钢板的强度和韧性。
4、本发明针对现有技术中Cr与Al同时存在时虽然材料的抗氧化效果较好,但是材料的附着力较差,为了满足同时保持较好的抗氧化性能、高韧性、高附着力等特征,本发明中不添加Al元素,只利用制备过程中引入的微量Al元素改善材料的韧性,获得与现有技术相似的韧性性能;添加Cr元素能够改善材料的氧化层结构,从而控制氧化层的厚度,得到的材料的附着力达到0级,附着力效果好。Cr的添加提高钢的抗腐蚀性能和抗高温氧化性能,成形后无需再做抛丸处理直接挂片,降低生产成本,生产利润率大,适合工业化应用。
附图说明
图1为本发明一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢中实施例1与对比例2表面氧化层厚度及钉扎组织的形貌图(a图为对比例2的表面氧化层形貌图及厚度,b图为实施例1的表面氧化层形貌图厚度)。
图2为本发明一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢中附着力检测图(a图为对比例2的附着力检测图,b图为实施例1的附着力检测图)。
具体实施方式
以下结合附图和具体实施例对本发明技术方案作进一步详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
在一个实施例中,提供了一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,余量为Fe以及不可避免的杂质。
在一具体实施例中,提供了一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,Ni:≤1.0%,余量为Fe以及不可避免的杂质。
在一具体实施例中,提供了一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,V≤1.0%,Nb≤1.0%,余量为Fe以及不可避免的杂质。
在一具体实施例中,提供了一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,以质量百分数计,其包含如下合金组分:C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,V≤1.0%,W≤1.0%,余量为Fe以及不可避免的杂质。
在一具体实施例中,热冲压成形钢的原材料中不包括Al,热冲压成形钢合金组分中的Al为制备过程中引入的脱氧剂。针对现有技术中Cr与Al同时加入对附着力等性能的影响,在原料中不加入Al元素,并对制备过程中引入的Al杂质的量进行控制,少量的Al改善材料的韧性、粘连性,使材料同时获得较好的抗氧化性能、高韧性、高附着力等特征,太高的Al元素会使得非金属夹杂物粗化降低屈服强度,影响钢板的附着力。
热冲压成形钢热冲压成形过程包括炼钢、连铸、热轧、酸洗、冷轧、退火的工序。
采用50kg真空感应炉进行冶炼并浇铸,冶炼过程中尽量控制杂质元素的含量,然后将钢锭加热到1200℃,保温2小时均匀化处理,开锻温度为1150℃,终锻温度为850℃;经多次锻造后将铸锭锻成长坯,然后再在1200℃保温1小时均质处理。经多次热轧得到热轧板,将热轧板酸洗去除表面氧化皮,在冷轧机上进行多道次轧制,直至冷轧板厚度为1.0~1.5mm。在780~820℃进行退火处理,采用N2-H2气氛保护,保证基体均匀化退火,消除带状组织。
冲压成形工序为:将热冲压成形用钢板加热到880~950℃,保温3~10min,使钢板完全奥氏体化;钢板完全奥氏体化后,送入内部带有冷却系统的模具内冲压成形;保压快速冷却淬火,冷却速度控制在15~30℃/s,使奥氏体转变成马氏体,不用抛丸直接涂装,最终得到热成形零部件。
为了更好地实施本发明,表1给出了本发明热冲压成形钢的部分实施例的合金成分以及对比例的合金成分(本发明各实施例及对比例中S的含量均≤0.01%、P:≤0.01%)。
表1各实施例与对比例的化学成分表(质量分数%)
Figure BDA0003524830770000051
Figure BDA0003524830770000061
对比例1为市场上典型的22MnB5钢的成分组成,对比例2为不添加Y元素的钢的成分组成。对本发明各实施例及对比例按照国家标准进行抗氧化性能测试及主要力学性能测试。抗氧化性能按照国标GB/T 13303-1991《钢的抗氧化性能测定方法》中增重法进行检测,检测结果如表2所示。
表2热冲压成形钢的单位面积增重(加热温度:930℃;保温时间:5min)
样品 氧化前(g) 氧化后(g) 氧化增重(g) 单位面积增重(g/m<sup>2</sup>)
实施例1 4.2068 4.2079 0.0006 0.78
实施例2 4.1669 4.1678 0.0006 0.78
实施例3 4.2239 4.2245 0.0006 0.78
实施例4 4.2158 4.2164 0.0006 0.78
对比例1 12.1334 12.1374 0.004 3.29
对比例2 12.3063 12.9839 0.6776 1.83
从表2中可以看出,与对比例相比较,单位面积增重下降了约77%,与22MnB5钢相比较,单位面积增重由3.29g/m2下降至0.78g/m2,添加Y元素能够改善材料的氧化层结构,从而控制氧化层的厚度,大大提高了钢板的高温抗氧化性。添加Y元素后氧化层的厚度≤4.0μm。参见附图1,对比例2不添加Y元素的钢板氧化层厚度为10.2μm,实施例2添加Y元素后氧化层的厚度为4.0μm。添加Y元素后,Y的氧化物首先在热冲压成形钢表面形成氧化质点,由于Y的氧化物与Cr的氧化物具有相似的晶格类型,优先形成的Y的氧化物作为核心使Cr的氧化物逐渐长大,促进了Cr2O3膜的形成,两者互溶,在表面形成保护性的氧化膜,改善了氧化膜的致密性,晶粒细小均匀。
对表1中各实施例和对比例按照以下工艺方法进行淬火处理,将无涂层增强抗高温氧化热冲压成形钢加热到930℃,保温5min,使钢板完全奥氏体化后,送入内部带有冷却系统的模具内保压快速冷却淬火,使奥氏体转变成马氏体。
分别对各实施例和对比例按照国家标准对屈服强度、抗拉强度、延伸率、强塑积等力学性能进行检测,具体检测数据见表3。
表3力学性能对比表
样品 屈服强度(Mpa) 抗拉强度(Mpa) 延伸率(%) 强塑积(Gpa·%)
实施例1 1094 1492 9.0 13.43
实施例2 1100 1528 8.2 12.53
实施例3 1097 1510 8.2 12.38
实施例4 1197 1805 7.4 13.36
对比例1 1055 1500 5.7 8.55
对比例2 1060 1580 7.1 11.22
由表3可以看出,热冲压成形钢在930℃加热5min淬火后屈服强度≥1000MPa,抗拉强度≥1450MPa,总延伸率≥8.0%,强塑积≥12GPa·%;通过添加Y元素,通过凝固过程中扩大等轴晶区以及抑制再结晶晶粒的长大实现细化原始奥氏体以及马氏体板束,提高钢板的强度和韧性。
参见附图1,为本发明实施例1与对比例2表面氧化层的形貌图,可以看出,与对比例相比,本发明添加Y元素后在氧化层表面形成钉扎效应,主要是因为:Y和Cr、Si的氧化物在氧化膜-基体界面处形成,并沿晶界或晶内深入基体,使氧化膜和基体结合牢固,这便是钉扎效应。这种锲形钉扎物增大了氧化层与基体金属的实际接触面积,延长裂纹再结晶的扩散距离,增加了氧化层与基体的黏附力,从而提高了氧化膜的抗剥落性能;同时由于Y元素堵塞了氧化皮中阳离子向外扩散的短路通道,使得阳离子沿着氧化皮晶界向内扩散。这时,在氧化皮/基体界面上产生空腔的空位来源基本断绝,由于在界面处不能形成空腔,使氧化皮的粘附性得到根本改善,配合氧化膜与基体形成的钉扎效应,抵消了高温下金属原子热振动力对膜的破坏,增加了氧化层与基体的粘附力,从而提高了氧化膜的抗剥落性能。
通过附着力测试仪对钢板热成形直接涂装后的漆膜附着力进行测试,经检测,各实施例的漆膜附着力均达到0级,参见附图2,不添加Y元素的钢板的漆膜附着力分布不均,平均附着力仅为3级。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所作任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于,以质量百分数计,其包含如下合金组分C:0.2~0.4%,Si:1.3~2.0%,Mn:1.0~1.8%,Al:≤0.05%,Cr:0.15~1.5%,Ti:0.01~0.15%,B:0.0008~0.004%,Y:0.0002~0.01%,S:≤0.01%,P:≤0.01%,余量为Fe以及不可避免的杂质。
2.如权利要求1所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述热冲压成形钢还包含有≤1.0%的Nb和/或V和/或W和/或Ni和/或Mo。
3.如权利要求1所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述Mn的含量为1.0~1.8%。
4.如权利要求1所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述Ti的含量为0.01~0.05%。
5.如权利要求1~4任一项所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述热冲压成形钢钢在930℃加热5min后迅速保压淬火的屈服强度≥1000MPa,抗拉强度≥1450MPa,总延伸率≥8.0%,强塑积≥12.0GPa·%。
6.如权利要求1所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述热冲压成形钢制备过程包括炼钢、连铸、热轧、酸洗、冷轧、退火的工序。
7.如权利要求6所述一种添加Y元素的无涂层增强抗高温氧化热冲压成形钢,其特征在于:所述热冲压成形工艺为:将热冲压成形用钢板加热到880~950℃,保温3~10min,使钢板完全奥氏体化;钢板完全奥氏体化后,送入内部带有冷却系统的模具内同步进行冲压成形与保压快速冷却淬火,冷却速度控制在15~200℃/s,使奥氏体转变成马氏体,不用抛丸直接涂装,最终得到热成形零件。
CN202210192327.8A 2022-02-28 2022-02-28 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢 Pending CN114561591A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210192327.8A CN114561591A (zh) 2022-02-28 2022-02-28 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210192327.8A CN114561591A (zh) 2022-02-28 2022-02-28 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢

Publications (1)

Publication Number Publication Date
CN114561591A true CN114561591A (zh) 2022-05-31

Family

ID=81716522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210192327.8A Pending CN114561591A (zh) 2022-02-28 2022-02-28 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢

Country Status (1)

Country Link
CN (1) CN114561591A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145563A2 (ko) * 2008-05-29 2009-12-03 주식회사 포스코 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
US20150050519A1 (en) * 2012-01-13 2015-02-19 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
US20180044754A1 (en) * 2015-03-31 2018-02-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping and method for producing steel sheet for hot stamping, and hot stamp formed body
WO2020204037A1 (ja) * 2019-04-01 2020-10-08 日本製鉄株式会社 ホットスタンプ成形品およびホットスタンプ用鋼板、並びにそれらの製造方法
CN111926248A (zh) * 2020-07-14 2020-11-13 辽宁科技学院 一种添加Ce合金的热冲压成形钢及热冲压成形工艺
CN113106338A (zh) * 2021-03-22 2021-07-13 北京科技大学 一种超高强度高塑性热冲压成形钢的制备方法
CN113403536A (zh) * 2021-06-16 2021-09-17 北京理工大学重庆创新中心 一种具有超强高温抗氧化的热冲压成形钢及其制备方法
JP2021155794A (ja) * 2020-03-26 2021-10-07 日本製鉄株式会社 ホットスタンプ部品用鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145563A2 (ko) * 2008-05-29 2009-12-03 주식회사 포스코 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
US20150050519A1 (en) * 2012-01-13 2015-02-19 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
US20180044754A1 (en) * 2015-03-31 2018-02-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping and method for producing steel sheet for hot stamping, and hot stamp formed body
WO2020204037A1 (ja) * 2019-04-01 2020-10-08 日本製鉄株式会社 ホットスタンプ成形品およびホットスタンプ用鋼板、並びにそれらの製造方法
JP2021155794A (ja) * 2020-03-26 2021-10-07 日本製鉄株式会社 ホットスタンプ部品用鋼板およびその製造方法
CN111926248A (zh) * 2020-07-14 2020-11-13 辽宁科技学院 一种添加Ce合金的热冲压成形钢及热冲压成形工艺
CN113106338A (zh) * 2021-03-22 2021-07-13 北京科技大学 一种超高强度高塑性热冲压成形钢的制备方法
CN113403536A (zh) * 2021-06-16 2021-09-17 北京理工大学重庆创新中心 一种具有超强高温抗氧化的热冲压成形钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余宗森等: "钢中稀土", 冶金工业出版社, pages: 409 *

Similar Documents

Publication Publication Date Title
EP3260569B1 (en) Forming process of hot stamping and hot-stamped component
KR101476866B1 (ko) 양호한 스탬핑성을 갖는 저밀도 강
CN104736736B (zh) 高强度冷轧钢板及其制造方法
JP5387073B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
CN106544590B (zh) 1000MPa级高韧性高性能均匀性易焊接特厚钢板及其制造方法
KR101657822B1 (ko) 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
CN114686777B (zh) 具有良好耐老化性的扁钢产品及其制造方法
KR101819345B1 (ko) 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
CN110475891A (zh) 热压构件及其制造方法
CN110088326A (zh) 热轧扁钢产品及其生产方法
EP2801636B1 (en) High carbon hot-rolled steel sheet and method for producing same
JP2012180594A (ja) 熱間プレス成形された鋼板部材および熱間プレス鋼板部材用鋼板ならびにそれらの製造方法
CN106133173A (zh) 材质均匀性优异的高强度冷轧钢板及其制造方法
KR20180072965A (ko) 인성이 우수한 선재, 강선 및 그 제조 방법
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
JP2011214081A (ja) 冷延鋼板およびその製造方法
CN116334489A (zh) 一种具有超强高温抗氧化的热冲压成形钢及其制备方法
US20190040506A1 (en) Martensitic stainless steel member and method for manufacturing same, and martensitic stainless steel component and method for manufacturing same
JP2008308732A (ja) 焼入れ鋼板部材および焼入れ用鋼板とそれらの製造方法
CN105102659A (zh) 氮化处理用钢板及其制造方法
EP3748030A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing same
CN111394654B (zh) 一种添加La微合金的热压成形钢板及其制备方法
CN109694983A (zh) 一种高镜面耐腐蚀塑料模具钢及其制造方法
KR101736634B1 (ko) 연성과 구멍가공성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
CN114561591A (zh) 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination