WO2022158469A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2022158469A1
WO2022158469A1 PCT/JP2022/001710 JP2022001710W WO2022158469A1 WO 2022158469 A1 WO2022158469 A1 WO 2022158469A1 JP 2022001710 W JP2022001710 W JP 2022001710W WO 2022158469 A1 WO2022158469 A1 WO 2022158469A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
content
protective film
steel plate
Prior art date
Application number
PCT/JP2022/001710
Other languages
English (en)
French (fr)
Inventor
進一郎 田畑
和久 楠見
優貴 鈴木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP22742591.5A priority Critical patent/EP4230766A4/en
Priority to MX2023006378A priority patent/MX2023006378A/es
Priority to CN202280007946.3A priority patent/CN116568826A/zh
Priority to KR1020237018592A priority patent/KR20230104213A/ko
Priority to JP2022576704A priority patent/JPWO2022158469A1/ja
Priority to US18/036,253 priority patent/US20230407428A1/en
Publication of WO2022158469A1 publication Critical patent/WO2022158469A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to steel materials. This application claims priority based on Japanese Patent Application No. 2021-006369 filed in Japan on January 19, 2021, the content of which is incorporated herein.
  • the ductility of steel sheets decreases as strength increases, and when processed into complex shapes, there is a problem of fractures at highly processed parts.
  • springback and wall warping occur due to residual stress after processing, and the problem of deterioration in dimensional accuracy also arises. Therefore, it is not easy to press-form a steel sheet having high strength, particularly a tensile strength of 780 MPa or more, into a product having a complicated shape.
  • Roll forming rather than press forming facilitates the processing of high-strength steel sheets, but its application is limited to parts with a uniform longitudinal cross-section.
  • Hot stamping technology has been adopted as a technology for press forming materials that are difficult to shape, such as high-strength steel plates.
  • Hot stamping technology is a hot molding technology in which a material to be molded is heated and then molded.
  • the material is heated and then molded. Therefore, the steel material is soft at the time of forming and has good formability. As a result, even a high-strength steel plate can be accurately formed into a complicated shape. Further, in the hot stamping technique, quenching is performed simultaneously with molding using a press die, so the steel material (steel member) after molding has sufficient strength.
  • Patent Document 1 discloses that it is possible to impart a tensile strength of 1400 MPa or more to a formed steel member by hot stamping technology.
  • Patent Document 2 discloses a hot-press-formed press-formed product having excellent toughness and a tensile strength of 1.8 GPa or more.
  • Patent Document 3 discloses a steel material having an extremely high tensile strength of 2.0 GPa or more, and further having good toughness and ductility.
  • Patent Document 4 discloses a steel material having a high tensile strength of 1.8 GPa or more and further having good toughness.
  • Patent Document 5 discloses a steel material having an extremely high tensile strength of 2.0 GPa or more and further having good toughness.
  • these steel materials have not been sufficiently studied from the viewpoint of hydrogen embrittlement resistance in corrosive environments, and further improvement in hydrogen embrittlement resistance is desired.
  • tempered martensite has an area ratio of 50% or more (including 100%) and has a structure in which the balance is ferrite, and the distribution of precipitates in the tempered martensite is The number of precipitates with an equivalent circle diameter of 1 to 10 nm is 20 or more per 1 ⁇ m 2 of the tempered martensite, and the number of precipitates containing V with an equivalent circle diameter of 20 nm or more is 10 or less per 1 ⁇ m 2 of the tempered martensite.
  • a high-strength cold-rolled steel sheet with excellent hydrogen embrittlement properties and workability is disclosed.
  • Patent Document 6 focuses on a high-strength steel sheet having a tempered martensite single phase or a dual-phase structure consisting of ferrite and tempered martensite, and by adding V as an alloying element to this, it works strongly as a hydrogen trap site. It is disclosed that by introducing carbides and carbonitrides of V into martensite with appropriate sizes, it is possible to improve stretch flangeability while securing hydrogen embrittlement resistance.
  • Patent Document 6 relates to a high-strength cold-rolled steel sheet of 980 MPa or more in the state of steel sheet before hot stamping. This high-strength cold-rolled steel sheet is not a steel sheet for hot stamping, and in addition to mechanical properties such as strength after hot stamping when hot stamped, hydrogen embrittlement resistance and the like are not studied. .
  • Japanese Patent Application Laid-Open No. 2002-102980 Japanese Patent Application Laid-Open No. 2012-180594 Japanese Patent Application Laid-Open No. 2012-1802 WO2015/182596 WO2015/182591 Japanese Patent No. 4712838
  • the present invention was made to solve the above problems, and aims to provide a steel material that has high tensile strength and excellent resistance to hydrogen embrittlement in corrosive environments.
  • the gist of the present invention is the following steel material.
  • a steel material includes a steel plate base material and a protective film formed on at least a part of the surface of the steel plate base material, and the chemical composition of the steel plate base material has a mass %, C: 0.25 to 0.65%, Si: 0.05 to 2.00%, Mn: 0.30 to 3.00%, P: 0.050% or less, S: 0.0100% Below, N: 0.010% or less, O: 0.010% or less, Cr: 0.05 to 1.00%, Cu: 0.10 to 1.00%, Ti: 0 to 0.10%, B : 0-0.0100%, Mo: 0-1.00%, Ni: 0-1.00%, Nb: 0-0.10%, V: 0-1.00%, Ca: 0-0.
  • the protective film in X-ray analysis measured using CuK ⁇ radiation.
  • the peak intensity at the diffraction angle (2 ⁇ ) of 36.6 ⁇ 0.5 ° is 100%
  • the peak intensity at the diffraction angle (2 ⁇ ) of 35.5 ⁇ 0.5 ° is 250 % and the tensile strength is over 1500 MPa.
  • the protective film may be formed on the entire surface of the steel plate base material.
  • a corrosion-resistant coating may be formed on a portion of the surface of the steel plate substrate where the protective film is not formed.
  • a corrosion-resistant coating is formed on two surfaces perpendicular to the thickness direction of the steel plate substrate, and two surfaces parallel to the thickness direction of the steel plate substrate A protective film may be formed.
  • the corrosion-resistant coating may be an Al--Fe-based coating or a Zn--Fe-based coating.
  • the ratio of the maximum Cu content in the protective film to the Cu content in the steel plate substrate is 1.5 or more.
  • the present inventors have developed a steel material with significantly improved resistance to hydrogen embrittlement in corrosive environments and a tensile strength of over 1.5 GPa.
  • a steel material has a high strength and a low risk of hydrogen embrittlement, so it can be applied to the vehicle body more safely.
  • steel material according to one embodiment of the present invention (steel material according to this embodiment) will be described in detail below.
  • the steel material 1 according to the present embodiment includes a steel plate substrate 11 having a predetermined chemical composition, and a protective film 12 formed on the surface of the steel plate substrate 11 and having excellent corrosion resistance.
  • the protective film 12 of the steel material 1 according to the present embodiment contains a large amount of Fe 3 O 4 and has a diffraction angle (2 ⁇ ) of 36 in X-ray analysis (X-ray diffraction method) measured using CuK ⁇ radiation.
  • X-ray analysis X-ray diffraction method
  • the protective film 12 is formed only on one surface of the steel plate substrate 11 in FIG. 1, it may be formed on the entire surface. A part of the surface of the steel plate base material 11 is covered with the corrosion-resistant coating 13 (the corrosion-resistant coating 13 is formed on a part of the surface), and the other surface is covered with the protective film 12 (the protective film 12 is formed on the other surface). is formed). In other words, a part of the surface of the steel plate base material 11 may be covered with the protective film 12 and the part not covered with the protective film 12 may be covered with the corrosion-resistant coating 13 . For example, as shown in FIG.
  • the corrosion-resistant coating 13 is formed on two surfaces perpendicular to the plate thickness direction of the steel plate substrate 11, and the two surfaces of the steel plate substrate 11 parallel to the plate thickness direction (for example, A protective film 12 may be formed on the cut end face of the steel plate base material 11 .
  • the steel material 1 according to this embodiment is formed by hot stamping in many cases, and the steel material 1 can also be called a hot stamped compact or a hot stamped member. Each of these will be described below.
  • the steel plate substrate 11 included in the steel material 1 according to this embodiment has a predetermined chemical composition.
  • the chemical composition of the steel plate base material 11 is, in mass %, C: 0.25 to 0.65%, Si: 0.05 to 2.00%, Mn: 0.30 to 3.00%.
  • P 0.050% or less, S: 0.0100% or less, N: 0.010% or less, O: 0.010% or less, Cr: 0.05 to 1.00%, Cu: 0.10 to 1.00%, Ti: 0-0.10%, B: 0-0.0100%, Mo: 0-1.00%, Ni: 0-1.00%, Nb: 0-0.10%, V: 0-1.00%, Ca: 0-0.010%, Mg: 0-0.010%, Al: 0-1.00%, Sn: 0-1.00%, W: 0-1 .00%, Sb: 0-1.00%, Zr: 0-1.00%, Co: 0-1.00%, REM: 0-0.30%, and the balance: Fe and impurities.
  • the reasons for limiting each element are as follows.
  • the chemical composition of the steel plate base material 11 refers to a portion excluding the surface protective film 12 (or the corrosion-resistant coating 13 when the protective film 12 is not formed and the corrosion-resistant coating 13 is formed) (for example, the steel plate base material 11 1/4 of the thickness from the surface) chemical composition.
  • % regarding content is % by mass unless otherwise specified.
  • C 0.25-0.65% C is an element that enhances the hardenability of steel and improves the strength of steel material obtained after hardening such as hot stamping. If the C content is less than 0.25%, it becomes difficult to ensure sufficient strength (over 1.5 GPa) in the steel material after quenching (after hot stamping). Therefore, the C content should be 0.25% or more. The C content is preferably 0.28% or more, 0.31% or more, or 0.33% or more. On the other hand, if the C content exceeds 0.65%, the strength of the steel material after quenching becomes excessively high, and the resistance to hydrogen embrittlement decreases significantly. Therefore, the C content should be 0.65% or less. The C content is preferably 0.60% or less, 0.55% or less, 0.50% or less, 0.45% or less, or 0.40% or less.
  • Si 0.05-2.00%
  • Si is an effective element for enhancing the hardenability of steel and stably ensuring the strength of the steel material after hardening.
  • it is an effective element for forming a tight scale with good adhesion during heat treatment, which will be described later.
  • Such tight scale can be used as a base for a protective film having excellent corrosion resistance.
  • the Si content should be 0.05% or more.
  • the Si content is preferably 0.10% or more, more preferably 0.15% or more, 0.25% or more, or 0.35% or more.
  • the Si content in the steel exceeds 2.00%, the heating temperature required for austenite transformation during heat treatment (quenching) becomes significantly high.
  • the Si content should be 2.00% or less.
  • the Si content is preferably 1.50% or less, 1.20% or less, 0.80% or less, or 0.60% or less.
  • Mn 0.30-3.00%
  • Mn is an extremely effective element for enhancing the hardenability of steel and stably ensuring the strength after hardening. Mn is also an element that lowers the Ac3 point and promotes lowering of the quenching treatment temperature. However, if the Mn content is less than 0.30%, the effect is not sufficient. Therefore, the Mn content is set to 0.30% or more.
  • the Mn content is preferably 0.40% or more, 0.50% or more, 0.60% or more, 0.70% or more, or 0.80% or more.
  • the Mn content should be 3.00% or less.
  • the Mn content is preferably 2.50% or less, and may be 1.50% or less, 1.20% or less, 1.00% or less, 0.90% or less, or 0.80% or less. more preferred.
  • P 0.050% or less
  • P is an element that reduces the hydrogen embrittlement resistance of the steel material after quenching.
  • the P content is limited to 0.050% or less.
  • the P content may be limited to 0.020% or less, 0.010% or less, or 0.006% or less. Since the P content is preferably as small as possible, it may be 0%, but from the viewpoint of cost, it may be 0.001% or more.
  • S 0.0100% or less
  • S is an element that reduces the hydrogen embrittlement resistance of the steel material after quenching.
  • the S content is limited to 0.0100% or less.
  • the S content is preferably limited to 0.0050% or less.
  • the S content may be limited to 0.0020% or less, 0.0010% or less, or 0.0006% or less. Since the S content is preferably as small as possible, it may be 0%, but from the viewpoint of cost, it may be 0.0001% or more.
  • N 0.010% or less
  • N is an element that reduces the hydrogen embrittlement resistance of the steel material after quenching.
  • the N content should be 0.010% or less.
  • the N content may be limited to 0.008% or less, 0.006% or less, or 0.004% or less.
  • the lower limit of the N content is not particularly limited and may be 0%.
  • the N content may be 0.0002% or more, 0.0008% or more, or 0.001% or more.
  • O 0.010% or less
  • O is an element that reduces the hydrogen embrittlement resistance of the steel material after quenching.
  • the O content should be 0.010% or less.
  • the O content may be limited to 0.008% or less, 0.006% or less, or 0.004% or less.
  • the lower limit of the O content is not particularly limited and may be 0%, but an O content of less than 0.0002% causes an increase in steelmaking costs, which is economically undesirable. Therefore, the O content may be 0.0002% or more, 0.0008% or more, or 0.001% or more.
  • Cr 0.05-1.00%
  • Cr is an element effective for enhancing the hardenability of steel and stably ensuring the strength of the steel material after hardening.
  • it is an effective element for forming a tight scale with good adhesion that can be used as a base for a protective film with excellent corrosion resistance during heat treatment, which will be described later.
  • the Cr content must be 0.05% or more.
  • the Cr content is preferably 0.10% or more.
  • the Cr content exceeds 1.00%, the above effects are saturated and the cost increases.
  • the Cr content should be 1.00% or less.
  • the Cr content is preferably 0.80% or less, 0.60% or less, 0.50% or less, or 0.40% or less.
  • Cu 0.10-1.00%
  • Cu is an element effective for enhancing the hardenability of steel and stably ensuring the strength of the steel material after hardening. In order to obtain this effect, it is necessary to contain 0.10% or more of Cu. Further, Cu is an element that further improves corrosion resistance by stabilizing a protective film, which will be described later. To obtain this effect, the Cu content is preferably 0.18% or more, more preferably 0.20% or more. It is not clear why the protective film is stabilized by the inclusion of Cu. It is thought that a stable protective film that is concentrated in the On the other hand, when the Cu content exceeds 1.00%, the above effects are saturated and the cost increases. Therefore, the Cu content is set to 1.00% or less. In order to reduce alloy costs, the Cu content is preferably 0.80% or less, 0.60% or less, 0.50% or less, or 0.30% or less.
  • Ti, B, Mo, Ni, Nb one or more elements selected from the group consisting of V, Ca, Mg, Al, Sn, W, Sb, Zr, Co and REM may be contained. Since these elements are optional elements and do not necessarily need to be contained, the lower limit is 0%.
  • Ti 0-0.100% Ti suppresses recrystallization and forms fine carbides to suppress grain growth when the steel sheet is heated to a temperature of Ac 3 or higher and subjected to heat treatment, thereby making the austenite grains finer. It is an element that has Therefore, by including Ti, the effect of improving the hydrogen embrittlement resistance of the steel material can be obtained.
  • Ti is an element that preferentially combines with N in steel to suppress the consumption of B due to the precipitation of BN, and promotes the effect of improving the hardenability due to B, which will be described later. Therefore, Ti may be contained. To obtain the above effects, the Ti content is preferably 0.010% or more, more preferably 0.015% or more.
  • the Ti content should be 0.100% or less.
  • the Ti content is preferably 0.080% or less, 0.060% or less, or 0.030% or less.
  • B 0 to 0.0100%
  • B is an element that has the effect of dramatically increasing the hardenability of steel even in a very small amount. Further, B is an element that strengthens the grain boundaries and improves hydrogen embrittlement resistance by segregating at the grain boundaries, and is an element that suppresses grain growth of austenite when the steel sheet is heated. Therefore, B may be contained. To obtain the above effects, the B content is preferably 0.0005% or more, more preferably 0.0010% or more. On the other hand, when the B content exceeds 0.0100%, a large amount of coarse compounds are precipitated, and the hydrogen embrittlement resistance of the steel is lowered. Therefore, when B is contained, the B content is set to 0.0100% or less. In order to reduce alloy costs, the B content is preferably 0.0080% or less, 0.0050% or less, or 0.0025% or less.
  • Mo 0-1.00%
  • Mo is an element that is extremely effective in enhancing the hardenability of steel and stably ensuring the strength of the steel material after hardening.
  • a synergistic effect of improving the hardenability can be obtained by containing B in combination with the above B. Therefore, Mo may be contained.
  • the Mo content is preferably 0.10% or more, more preferably 0.20% or more.
  • Mo is an element that has the effect of stabilizing iron carbide. If the Mo content exceeds 1.00%, coarse iron carbides remain undissolved during heating of the steel sheet, and the hydrogen embrittlement resistance of the steel material after quenching may decrease. Also, the cost increases significantly. Therefore, when Mo is contained, the Mo content is set to 1.00% or less. In order to reduce alloy costs, the Mo content is preferably 0.80% or less, 0.60% or less, or 0.32% or less.
  • Ni is an element effective for improving the hardenability of steel and stably ensuring the strength of the steel material after hardening. Therefore, Ni may be contained. To obtain the above effects, the Ni content is preferably 0.10% or more, more preferably 0.20% or more. On the other hand, when the Ni content exceeds 1.00%, the limit hydrogen content of the steel is lowered. Also, the cost increases significantly. Therefore, when Ni is contained, the Ni content is 1.00% or less. In order to reduce alloy costs, the Ni content is preferably 0.50% or less, more preferably 0.25% or less, and even more preferably 0.20% or less.
  • Nb 0-0.10%
  • Nb is an element that forms fine carbides in steel and has the effect of improving the hydrogen embrittlement resistance of steel due to the grain refining effect of the carbides. Therefore, Nb may be contained.
  • the Nb content is preferably 0.02% or more, more preferably 0.03% or more.
  • the Nb content is set to 0.10% or less. In order to reduce alloy costs, the Nb content is preferably 0.08% or less, 0.06% or less, or 0.04% or less.
  • V 0-1.00%
  • V is an element that forms fine carbides in steel and improves the hydrogen embrittlement resistance of the steel material by the grain refinement effect and hydrogen trapping effect of the carbides. Therefore, V may be contained.
  • the V content is preferably 0.01% or more, more preferably 0.10% or more. However, if the V content exceeds 1.00%, the above effects become saturated and the economy decreases. Therefore, when V is contained, the V content should be 1.00% or less.
  • the V content is preferably 0.50% or less, 0.30% or less, or 0.20% or less.
  • Ca is an element that has the effect of refining inclusions in steel and increasing the hydrogen embrittlement resistance of the steel material after quenching. Therefore, Ca may be contained.
  • the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
  • the Ca content exceeds 0.010%, the effect is saturated and the cost increases. Therefore, when Ca is contained, the Ca content shall be 0.010% or less.
  • the Ca content is preferably 0.005% or less, more preferably 0.004% or less or 0.003% or less.
  • Mg 0-0.010%
  • Mg is an element that has the effect of refining inclusions in steel and improving toughness after heat treatment. Therefore, Mg may be contained.
  • the Mg content is preferably 0.001% or more.
  • the Mg content is more preferably 0.002% or more.
  • the Mg content should be 0.010% or less.
  • the Mg content is preferably 0.005% or less, more preferably 0.004% or less.
  • Al is an element commonly used as a deoxidizing agent for steel. Therefore, Al may be contained. In order to obtain the above effects, the Al content is preferably 0.01% or more. On the other hand, if the Al content exceeds 1.00%, the above effects become saturated and the economy decreases. Therefore, when Al is contained, the Al content is set to 1.00% or less. In order to reduce alloy costs, the Al content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • Sn 0-1.00%
  • Sn is an element that stabilizes the protective film in a corrosive environment and improves corrosion resistance. Therefore, it is preferable to contain Sn. If the Sn content is less than 0.01%, these effects are not sufficient, so when Sn is included, the Sn content is preferably 0.01% or more. The Sn content is more preferably 0.03% or more, more preferably 0.05% or more. However, if the Sn content exceeds 1.00%, the intergranular strength decreases, and the hydrogen embrittlement resistance of the steel material after quenching decreases. Therefore, when Sn is contained, the Sn content is set to 1.00% or less. In order to reduce alloy costs, the Al content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • W 0-1.00%
  • W is an effective element for enhancing the hardenability of steel and stably ensuring the strength of the steel material after hardening. Therefore, W may be contained.
  • W is an element that improves corrosion resistance in a corrosive environment.
  • the W content is preferably 0.01% or more.
  • the W content should be 1.00% or less.
  • the W content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • Sb 0-1.00%
  • Sb is an element that improves corrosion resistance in corrosive environments. Therefore, Sb may be contained.
  • the Sb content is preferably 0.01% or more.
  • the Sb content is set to 1.00% or less.
  • the Sb content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • Zr 0-1.00%
  • Zr is an element that improves corrosion resistance in corrosive environments. Therefore, Zr may be contained.
  • the Zr content is preferably 0.01% or more.
  • the Zr content should be 1.00% or less.
  • the Zr content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • Co is an element that improves corrosion resistance in corrosive environments. Therefore, Co may be contained. In order to obtain the above effects, the Co content is preferably 0.01% or more. On the other hand, if the Co content exceeds 1.00%, the above effects become saturated and the economy decreases. Therefore, when Co is contained, the Co content should be 1.00% or less. In order to reduce alloy costs, the Co content is preferably 0.50% or less, 0.30% or less, 0.10% or less, 0.06% or less, or 0.04% or less.
  • REM 0-0.30% REM, like Ca, is an element that has the effect of refining inclusions in steel and improving the hydrogen embrittlement resistance of the steel material after quenching. Therefore, REM may be contained.
  • the REM content is preferably 0.01% or more, more preferably 0.02% or more.
  • the REM content exceeds 0.30%, the effect is saturated and the cost increases. Therefore, when REM is contained, the REM content is set to 0.30% or less.
  • the REM content is preferably 0.20% or less, 0.10% or less, or 0.04% or less.
  • REM refers to a total of 17 elements such as Sc, Y and lanthanoids such as La and Nd, and the content of REM means the total content of these elements.
  • REMs are added to molten steel using, for example, Fe--Si--REM alloys, which contain, for example, La, Nd, Ce, Pr.
  • elements other than the above-described elements that is, the balance are Fe and impurities.
  • impurities refers to components mixed in by various factors in raw materials such as ores, scraps, and manufacturing processes when steel sheets are industrially manufactured, and adversely affect the characteristics of the steel material according to the present embodiment. It means what is permissible within the range not given.
  • the chemical composition of the steel plate base material 11 can be obtained by the following method. It is obtained by performing an elemental analysis by a general method such as ICP-AES from a position ((1/4) thickness position) of 1/4 of the plate thickness from the surface in the plate thickness direction of the steel plate base material 11 .
  • C and S can be measured using a combustion-infrared absorption method
  • N can be measured using an inert gas fusion-thermal conductivity method
  • O can be measured using an inert gas fusion-nondispersive infrared absorption method.
  • the internal structure (metal structure) of the steel plate base material 11 included in the steel material 1 according to the present embodiment is not limited, but when obtaining a tensile strength of more than 1.5 GPa, high-strength martensite It is the main organization. Preferably, 70% or more in area fraction is martensite. It is more preferably 80% or more or 90% or more. Martensite may be 100%. If the area fraction of martensite is small, it becomes difficult to obtain a tensile strength of over 1.5 GPa.
  • the internal structure of the steel plate base material 11 may contain retained austenite, bainite, ferrite, and/or pearlite as the remainder other than martensite.
  • the total area fraction of martensite and bainite may be 90% or more.
  • the total area fraction of martensite and bainite is preferably 92% or more, 95% or more, or 98% or more.
  • the total area fraction of martensite and bainite may be 100%.
  • Martensite includes not only so-called fresh martensite but also tempered martensite and auto-tempered martensite. Auto-tempered martensite is tempered martensite generated during cooling during quenching without heat treatment for tempering. It is produced by tempering.
  • the structure fraction in the internal structure of the steel plate base material 11 can be measured by the following method.
  • the area fraction of martensite (including tempered martensite and auto-tempered martensite) is measured with a transmission electron microscope (TEM) and an electron diffraction device attached to the TEM. Measurement sample from a position 10 mm or more away from the edge of the steel plate substrate (the center portion if the width and length of the steel plate substrate is less than 20 mm) and the (1/4) thickness position of the steel plate substrate. is cut out and used as a thin film sample for TEM observation. A 400 ⁇ m 2 range of this thin film sample is observed by TEM.
  • TEM transmission electron microscope
  • martensite and bainite which are body-centered cubic lattices, and retained austenite, which is face-centered cubic lattices, are distinguished.
  • iron carbides (Fe 3 C) in martensite and bainite are found by diffraction patterns, and their precipitation forms are observed to measure the structural fractions of martensite and bainite. Specifically, if the precipitation form is precipitation in three directions, it is determined to be martensite, and if it is limited precipitation in one direction, it is determined to be bainite.
  • the structure fractions of martensite and bainite measured by TEM are measured as area %, but since the steel material according to the present embodiment has an isotropic metal structure, the area fraction value is directly used as the volume fraction. can be replaced with Carbide is observed to distinguish between martensite and bainite, but in this embodiment, carbide is excluded from the measurement of the microstructure fraction. If ferrite or pearlite exists as a residual structure, it can be easily confirmed with an optical microscope or a scanning electron microscope.
  • a position 10 mm or more away from the end of the steel plate substrate (if the width and length of the steel plate substrate are less than 20 mm, the central portion), and the (1/4) thickness of the steel plate substrate
  • a measurement sample including the position of is cut out and used as a sample for observation.
  • the cut sample is mechanically polished and then mirror-finished.
  • the sample is etched with a nital corrosive solution to expose ferrite and pearlite, and the presence of ferrite or pearlite is confirmed by observing a range of 40000 ⁇ m 2 in area using a scanning electron microscope.
  • Pearlite is a structure in which ferrite and cementite are alternately arranged in layers, and bainite, in which cementite precipitates in granular form, is distinguished.
  • a coating (corrosion-resistant coating) 13 may be provided on a part of the surface of the steel plate substrate 11 included in the steel material 1 according to the present embodiment.
  • the coating (corrosion-resistant coating) 13 may be a coating mainly composed of Al--Fe (Al--Fe-based coating) or a coating mainly composed of Zn--Fe (Zn--Fe-based coating). Coatings are also referred to as coatings, alloyed plating layers, or intermetallic layers.
  • the plated steel sheet In the state before receiving the heat treatment (C1) described later, which is the heat treatment of hot stamping (for example, the state of the steel sheet before hot stamping), the plated steel sheet mainly has a "plating layer" such as Al-based plating or Zn-based plating. be.
  • the plating layer in the state of the steel sheet before hot stamping does not necessarily have to be an alloyed plating layer, and may be a (non-alloyed) plating layer.
  • the steel material 1 for example, a hot stamped body
  • the plating layer that is, coating
  • the alloyed plating layer may also be simply referred to as the plating layer
  • the coating of the steel material 1 may be simply referred to as the plating layer.
  • the coating mainly composed of Al—Fe in the steel material 1 is a coating in which the average chemical composition of the entire coating contains 70% by mass or more of Fe and Al in total.
  • the average chemical composition of the entire coating contains 70% by mass or more of Fe and Al in total.
  • Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, B, V, Sn, W, Sb, Zn, Co, In, Bi It may contain Zr, Se, As, and REM, and the remainder may be impurities.
  • the Zn—Fe-based coating in the steel material 1 is a coating in which the average chemical composition of the entire coating contains 70% by mass or more of Fe and Zn in total.
  • the steel material 1 has a protective film 12 on at least part of the surface of the steel plate base material 11 described above.
  • the protective film 12 contains a large amount of Fe 3 O 4 and has a peak at a diffraction angle (2 ⁇ ) of 36.6 ⁇ 0.5° in X-ray analysis (X-ray diffraction method) measured using CuK ⁇ radiation. When the intensity is taken as 100%, there is a peak whose peak intensity exceeds 250% at a diffraction angle (2 ⁇ ) of 35.5 ⁇ 0.5°.
  • the substance corresponding to a diffraction angle (2 ⁇ ) of around 35.5° is Fe 3 O 4 (magnetite), and the substance corresponding to a diffraction angle (2 ⁇ ) of around 36.6° is FeOOH (oxyhydroxide).
  • iron (III)) and 35.5° and 36.6° are the main peak positions of each substance. That is, it means that the protective film 12 included in the steel material 1 according to the present embodiment has a large volume fraction of Fe 3 O 4 with respect to FeOOH.
  • the protective film 12 is a film mainly composed of iron oxide or iron oxyhydroxide, and preferably contains 70% by mass or more of Fe, O, and H in total.
  • the protective film 12 contains Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, which are components of the steel plate base material 11 described above. It may contain B, V, Sn, W, Sb, Zr, REM and Zn.
  • the above-described protective film 12 having excellent corrosion resistance is formed on the surface of the steel plate substrate 11 at a position where the corrosion-resistant coating 13 does not exist. Point. That is, in this case, the steel plate base material 11 has a portion provided with the corrosion-resistant coating 13 on the surface and a portion provided with the protective film 12 on the surface. For example, if the steel material 1 is obtained by cutting a steel plate having the corrosion-resistant coating 13, the corrosion-resistant coating 13 does not exist on the cut end surface. Therefore, the steel material 1 can have a protective film 12 formed on the surface of the cut end face and a corrosion-resistant coating 13 formed on the other surface (see FIG. 2, for example).
  • the protective film 12 may be formed on all surfaces of the steel plate substrate 11 .
  • the thickness of the protective film 12 is not particularly limited, it is preferably 5 ⁇ m or more in order to obtain a sufficient effect of improving corrosion resistance.
  • the thickness of the protective film 12 exceeds 300 ⁇ m, it becomes difficult to sufficiently ensure the strength of the steel material. Therefore, the thickness of protective film 12 is preferably 300 ⁇ m or less.
  • Cu is preferably concentrated in the protective film.
  • the ratio of the maximum Cu content in the protective film to the Cu content in the steel plate substrate is 1.5. Above, it is preferable that it is 1.7 or more, 1.9 or more, or 2.1 or more.
  • the Cu-enriched protective film is uniform, dense, and stable, and thus contributes to further improvement in corrosion resistance. A sufficient effect cannot be obtained if the ratio of the maximum Cu content in the protective film to the Cu content in the steel plate substrate is less than 1.5.
  • the upper limit of the ratio of the maximum Cu content in the protective film to the Cu content in the steel plate substrate it may be 5.0. If desired, the upper limit of the above ratio may be 4.5, 4.0, 3.5, 3.0 or 2.8.
  • the intensity of the peak at the diffraction angle of 35.5 ⁇ 0.5° and the peak at the diffraction angle of 36.6 ⁇ 0.5° in the protective film 12 are determined using X-ray diffraction (XRD). .
  • XRD X-ray diffraction
  • a fully automatic multi-purpose X-ray diffractometer (SmrtLab 3 kW manufactured by Rigaku) was used, CuK ⁇ radiation was used, the measurement was performed at a time interval of 2 ° / min, and the diffraction angle (2 ⁇ ) up to 90 ° was measured. Then, the intensities of the peak at the diffraction angle of 35.5 ⁇ 0.5° and the peak at the diffraction angle of 36.6 ⁇ 0.5° are determined.
  • the diffraction profile is fitted using the pseudo Voigt function using SmartLab Studio II manufactured by Rigaku as software, and the peak count number is defined as the peak intensity. Also, B-spline interpolation is performed as the background, and the peak intensity obtained by subtracting the value is used. From this result, the ratio of the peak intensity at the diffraction angle (2 ⁇ ) of 36.6 ⁇ 0.5° and the peak intensity at the diffraction angle (2 ⁇ ) of 35.5 ⁇ 0.5° can be calculated. .
  • peaks due to the presence of Fe 3 O 4 or FeOOH obtained from the protective film 12 include diffraction angles (2 ⁇ ) of 11°, 14°, 16°, 21°, 26°, 27°, 30°, 31°, 33°, 34°, 39°, 41°, 43°, 50°, 53°, 55°, 57°, 58°, 61°, 62°, 63°, 71°, 75°, 83° can be nearby.
  • most of these peaks are less intense than those around 35.5° and 36.6°. Therefore, there is no need to measure peak intensities other than around 35.5° and 36.6°.
  • the maximum Cu content in the protective film is obtained by performing GDS (glow discharge optical emission spectroscopy) on the protective film 12 .
  • GDS low discharge optical emission spectroscopy
  • GDS low discharge optical emission spectroscopy
  • This measurement is performed 5 times, and the average value of the maximum Cu content obtained in each measurement is taken as the maximum Cu content in the protective film.
  • the Fe content and O content are also measured, and the position where the total content of Fe and O is 85% is defined as the surface of the protective film.
  • the position where the Fe content is 95% is defined as the interface between the protective film and the steel plate substrate.
  • the steel material 1 according to the present embodiment has a high tensile strength of over 1500 MPa (1.5 GPa).
  • the tensile strength of the steel material 1 according to this embodiment is preferably 1800 MPa or more.
  • the upper limit of the tensile strength is not limited, the higher the tensile strength, the lower the moldability and workability. As will be described later, when the steel material is a tailored property material having different strength depending on the location, at least a part of the steel material should have a tensile strength of more than 1500 MPa.
  • the resistance to hydrogen embrittlement in a corrosive environment is evaluated by an exposure test in an actual use environment of steel materials and an accelerated corrosion test using a CCT (combined cycle test). For example, by bending steel at four points and exposing it to the outdoors while applying stress, it is evaluated by whether or not it cracks for a certain period of time.
  • CCT combined cycle test
  • the shape of the steel material 1 according to this embodiment is not particularly limited. That is, it is a steel plate member obtained by heat-treating a steel plate as a raw material (including processing during heat treatment and cooling), but the shape may be a flat plate, or a formed body (or hot stamped body). There may be. Hot formed steels are often compacts. However, in this embodiment, the term "steel material" includes both the compact and the flat plate. Further, the steel material may be a tailored property material having different strength depending on the location. In this case, it is preferable that at least part of the steel material has a tensile strength of 1.5 GPa or more. By obtaining regions with different strengths, it is possible to control the deformation of the portion having a tensile strength of more than 1500 MPa in the event of a collision, and to protect the occupants more safely.
  • the steel plate (hereinafter sometimes referred to as the steel sheet according to the present embodiment) that is the material of the steel plate base material 11 included in the steel material 1 according to the present embodiment will be described.
  • the steel plate substrate 11 can be obtained by subjecting the steel plate described below to the heat treatment described later.
  • the chemical composition range of the steel plate according to the present embodiment is the same as the chemical composition of the steel plate base material 11 of the steel material 1 according to the present embodiment described above, and the reason for the limitation is also the same.
  • the chemical composition of the steel sheet can be obtained, for example, by performing an elemental analysis at a representative position of 1/4 of the thickness in the thickness direction from the surface of the steel sheet by a general method such as ICP at this position.
  • the internal structure (metal structure) of the steel plate according to the present embodiment is not limited, but is often ferrite or pearlite. Bainite, martensite, and retained austenite may be contained within the conditions of the manufacturing method described later.
  • the martensite includes tempered martensite and auto-tempered martensite. Auto-tempered martensite is tempered martensite formed during cooling during quenching without heat treatment for tempering. It is what is returned and generated.
  • the internal structure of the steel plate means the structure of the steel plate excluding the boundary portion described above.
  • the internal structure of the steel plate can be determined by the same method as for the internal structure of the steel plate substrate 11 described above.
  • the steel material 1 according to the present embodiment can be manufactured by a manufacturing method including the following steps.
  • (C1) a heat treatment step of heat-treating a steel plate having a predetermined chemical composition to form the steel plate substrate 11;
  • (C2) A protective film stabilization treatment step of forming a protective film 12 on the steel plate base material 11 and stabilizing the protective film 12 .
  • Each step will be described below.
  • (C1) ⁇ Heat treatment step> a steel plate having a predetermined chemical composition is heat-treated to form the steel plate substrate 11 .
  • a steel plate obtained by the method described later is heated at an average heating rate of 1.0 to 1000 ° C./sec from Ac3 point to (Ac3 point + 300) ° C., and the upper part is heated to Ms point (° C.) or less. Cooling is performed at an average cooling rate equal to or higher than the critical cooling rate. If the heating rate is less than 1.0° C./second, the heat treatment productivity is lowered, which is not preferable.
  • the heating rate exceeds 1000° C./, a mixed grain structure is formed and the critical amount of hydrogen is lowered, which is not preferable. If the heat treatment temperature is less than the Ac3 point (° C.), ferrite remains after cooling, resulting in insufficient strength, which is not preferable. On the other hand, if the heat treatment temperature exceeds the Ac3 point +300° C., the structure becomes coarser and the limit hydrogen amount decreases, which is not preferable.
  • the upper critical cooling rate is the minimum cooling rate at which austenite is supercooled and martensite is formed without precipitating ferrite or pearlite in the structure. Ferrite or pearlite is formed when cooling below the upper critical cooling rate. and lack strength.
  • the heating temperature may be maintained within ⁇ 10° C. for 1 to 300 seconds. Further, after cooling to a temperature below the Ms point, tempering treatment may be performed in a temperature range of about 100 to 600° C. in order to adjust the strength of the steel material.
  • Ac3 point, Ms point and upper critical cooling rate are measured by the following method.
  • a strip-shaped test piece having a width of 30 mm and a length of 200 mm was cut out from the steel plate according to the present embodiment, and this test piece was heated in a nitrogen atmosphere to 1000° C. at a heating rate of 10° C./sec, and maintained at that temperature for 5 minutes. After holding, cool to room temperature at various cooling rates.
  • the cooling rate is set from 1° C./second to 100° C./second at intervals of 10° C./second (10° C./second after 1° C./second).
  • Ac3 point and Ms point are measured by measuring thermal expansion change of the test piece during heating and cooling at that time.
  • the minimum cooling rate at which ferrite phase precipitation does not occur is defined as the upper critical cooling rate.
  • the Ms point obtained from the change in thermal expansion when cooled at the upper critical cooling rate or higher is defined as the Ms point of the steel material.
  • Hot forming such as may be applied.
  • Hot forming includes bending, drawing, stretch forming, hole expanding forming, flanging forming, and the like.
  • the present invention may be applied to a forming method other than press forming, such as roll forming, as long as means for cooling the steel sheet at the same time as or immediately after forming is provided. Repeated hot forming may be performed provided that the thermal history described above is followed.
  • the steel material according to the present embodiment includes both hot-formed steel sheets and flat plates that are heat-treated only.
  • hot forming or heat treatment may be performed on a part of the steel plate as a material to obtain a steel material having regions with different strengths.
  • heating may be performed by high-frequency heating, electric heating, infrared heating, or furnace heating.
  • Cooling may also be performed by water cooling, mold cooling, or the like.
  • a corrosion acceleration test is used to form a protective film 12 on the surface of the steel plate base material 11 on which the corrosion-resistant coating 13 is not formed, and to stabilize the formed protective film 12.
  • the steel plate base material 11 obtained by the heat treatment process described above has iron oxide as a base of the protective film 12 formed thereon.
  • the salt concentration concentration of salt water
  • the wet rate ((salt water spray time + wetting time) / total time) is 30 to 70%
  • one cycle is 8 hours.
  • the protective film 12 containing a large amount of Fe 3 O 4 can be formed and stabilized. Each condition will be described below.
  • Salt concentration 1-10%
  • the protective film 12 is formed by the reaction between the surface of the steel plate substrate 11 and the chloride of the sprayed salt water.
  • a salt concentration of 1 to 10% is suitable for stabilizing the protective film 12 . If the salt concentration is less than 1%, the protective film may be unevenly formed, which is not preferable. On the other hand, if the salt concentration exceeds 10%, the corrosion rate is high and the protective film 12 may not be stably formed, which is not preferable.
  • a protective film 12 is formed by surface reaction with chloride.
  • a wet ratio of 30 to 70% is preferable for stabilizing the protective film 12 . If the wet rate is less than 30%, the corrosion rate is high and the protective film 12 may not be stably formed, which is not preferable. On the other hand, if the wet rate exceeds 70%, the protective film 12 may be unevenly formed, which is not preferable.
  • the protective film 12 is formed by repeating the cycle of spraying salt water, wetting, and drying. If the number of cycles is less than 30, the protective film 12 may not be sufficiently formed, which is not preferable. In terms of the formation of the protective film 12, it is not necessary to specify the upper limit of the number of cycles. Moreover, the thickness of the steel material 1 may be reduced, and the strength of the structure may be lowered. Therefore, the number of cycles is set to 100 or less.
  • the protective film it is preferable not to apply stress to the steel sheet before forming the protective film.
  • the formation behavior of the protective film varies between the stress-applied portion and the rest, and the protective film may not be stabilized even if the above-described protective film stabilization treatment is performed, which is not preferable.
  • a protective film stabilization process it is preferable to perform a protective film stabilization process at 100 degrees C or less. If the temperature is high, the steel sheet is oxidized preferentially, so that the ratio of the maximum Cu content in the protective film to the Cu content in the steel sheet substrate is less than 1.5.
  • a method for manufacturing a steel plate suitable as a material for the steel plate base material 11 included in the steel material 1 according to the present embodiment is not limited. can be done.
  • a slab preparation step of smelting steel having the above chemical composition and casting it to produce a slab
  • a hot rolling step of subjecting the obtained slab to hot rolling to form a hot rolled steel sheet
  • a winding step of winding the hot-rolled steel sheet
  • a cold-rolling step in which, if necessary, the hot-rolled steel sheet after the coiling step or after the hot-rolled plate annealing step is descaled and cold-rolled to form a cold-rolled steel sheet
  • the steel having the chemical composition described above is melted and cast to manufacture a slab to be subjected to hot rolling.
  • a slab produced by melting molten steel having the above-mentioned chemical composition using a converter or an electric furnace and producing it by a continuous casting method.
  • An ingot casting method, a thin slab casting method, or the like may be employed instead of the continuous casting method.
  • Hot rolling process In the hot rolling process, the slab is heated, rough rolled, then descaled as necessary, and finally finished rolled. Hot rolling conditions are not limited.
  • Winding process for example, the hot rolled steel sheet after the hot rolling process is wound in a temperature range of 800° C. or less. If the winding temperature exceeds 800° C., the coil is wound before the transformation has progressed, and the transformation progresses in the coil, which may result in a defective coil shape, which is not preferable.
  • Hot-rolled sheet annealing process In the annealing step of the hot-rolled steel sheet, if necessary, annealing is performed at 450 to 800° C. for 5 hours or more in an atmosphere of 80% by volume or more of nitrogen or in an air atmosphere. Hot-rolled steel sheet annealing is preferable because it softens the hot-rolled steel sheet and reduces the load in the subsequent cold-rolling process.
  • the hot-rolled steel sheet after the hot-rolled sheet annealing process (the hot-rolled steel sheet after the coiling process when the hot-rolled sheet annealing process is not performed) is descaled, and cold-rolled. Rolling is performed to obtain a cold-rolled steel sheet. Descaling and cold rolling are not necessarily performed, but when cold rolling is performed, the cumulative rolling reduction in cold rolling is preferably 30% or more from the viewpoint of ensuring good flatness. On the other hand, in order to avoid excessive rolling load, it is preferable that the cumulative rolling reduction in cold rolling is 80% or less.
  • the descaling method is not particularly limited, but pickling is preferred. Moreover, when pickling is carried out, it is preferable to remove only the iron scale by pickling with hydrochloric acid or sulfuric acid.
  • the hot-rolled steel sheet or cold-rolled steel sheet is annealed in a temperature range of 700 to 950° C. to obtain an annealed steel sheet.
  • the annealing process is preferable because it softens the cold-rolled steel sheet and facilitates threading in the subsequent plating process.
  • a coating (a corrosion-resistant coating that contributes to improved corrosion resistance) is formed to form a coated steel sheet.
  • the corrosion-resistant coating method is not particularly limited, and may be hot dipping, electroplating, vacuum deposition, clad, thermal spraying, or the like.
  • the hot-dip plating method is most widely used industrially. Coatings that contribute to the improvement of corrosion resistance include Al-based coatings containing Al and Zn-based coatings containing Zn.
  • Al-based coating part or all of Al is alloyed with Fe of the steel sheet by heat treatment to form an Al--Fe-based coating.
  • Zn-based coating becomes a Zn--Fe-based coating when part or all of Zn is alloyed with Fe of the steel sheet by heat treatment.
  • the plating bath When an Al-based coating is formed by hot-dip plating, the plating bath often contains Fe as an impurity in addition to Al. Further, as long as the Al content is 70% by mass or more, Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, B, V, and Sn are added to the plating bath in addition to the above elements. , W, Sb, Zn, Co, In, Bi, Zr, Se, As, misch metal and the like may be contained.
  • the annealed steel sheet after the annealing process may be cooled to room temperature and then heated again for plating.
  • Hot dip plating may be performed without When a Zn-based coating is formed by hot-dip plating, the plating bath often contains Fe as an impurity in addition to Zn. In addition, as long as Zn is contained in an amount of 70% by mass or more, Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, B, V, and Sn are added to the plating bath in addition to the above elements. , W, Sb, Zn, Co, In, Bi, Zr, Se, As, misch metal and the like may be contained. When hot-dip plating is performed, the annealed steel sheet after the annealing process may be cooled to room temperature and then heated again to perform plating. Hot dip plating may be performed without
  • Pre-treatment and post-treatment of the corrosion-resistant coating are not particularly limited, and pre-coating, solvent coating, alloying treatment, temper rolling, etc. are possible. Annealing at 450 to 800° C., for example, is possible as an alloying treatment. As a post-treatment, temper rolling is useful for shape adjustment and the like, and can reduce the thickness by, for example, 0.1 to 0.5%.
  • the martensite area ratio of the internal structure of the heat-treated steel material of 200 mm ⁇ 50 mm was obtained in the manner described above. The results are shown in Tables 2-3 and 2-4. The remainder of the internal structure was one or more of retained austenite, bainite, ferrite, and pearlite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この鋼材は、鋼板基材と、前記鋼板基材の表面の少なくとも一部に形成された保護膜と、を有し、前記鋼板基材の化学組成が、質量%で、C:0.25~0.65%、Si:0.05~2.00%、Mn:0.30~3.00%、P:0.050%以下、S:0.0100%以下、N:0.010%以下、O:0.010%以下、Cr:0.05~1.00%、Cu:0.10~1.00%を含有し、前記保護膜がCuKα放射線を使用して測定するX線解析において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置に、ピーク強度が250%超となるピークを有し、引張強さが1500MPa超である。

Description

鋼材
 本発明は、鋼材に関する。
 本願は、2021年01月19日に、日本に出願された特願2021-006369号に基づき優先権を主張し、その内容をここに援用する。
 自動車用鋼板の分野においては、昨今の環境規制および衝突安全基準の厳格化を背景に、燃費と衝突安全性との両方を向上させるため、高い引張強さを有する鋼板(高強度鋼板)の適用が拡大している。しかしながら、高強度化に伴い鋼板のプレス成形性が低下するので、複雑な形状の製品を製造することが困難になってきている。
 具体的には、高強度化に伴って鋼板の延性が低下し、複雑な形状に加工した場合に高加工部位で破断するという問題が生じている。また、鋼板の高強度化に伴って、加工後の残留応力によってスプリングバックおよび壁反りが発生し、寸法精度が劣化するという問題も生じている。したがって、高強度、特に780MPa以上の引張強さを有する鋼板を、複雑な形状を有する製品にプレス成形することは容易ではない。プレス成形ではなくロール成形によれば、高強度の鋼板を加工しやすいが、その適用先は長手方向に一様な断面を有する部品に限定される。
 そこで近年、例えば、特許文献1~3に開示されるように、高強度鋼板のような成形が困難な材料をプレス成形する技術として、ホットスタンプ技術が採用されている。ホットスタンプ技術とは、成形に供する材料を加熱してから成形する熱間成形技術である。
 この技術では、材料を加熱してから成形する。そのため、成形時には、鋼材が軟質であり、良好な成形性を有する。これにより、高強度な鋼板であっても、複雑な形状に精度よく成形することができる。また、ホットスタンプ技術では、プレス金型によって成形と同時に焼入れを行うので、成形後の鋼材(鋼部材)は十分な強度を有する。
 例えば、特許文献1によれば、ホットスタンプ技術により、成形後の鋼部材に1400MPa以上の引張強さを付与することが可能となることが開示されている。
 近年、世界各国がより高いCO削減目標を設定し、各自動車会社は衝突安全性に配慮した燃費削減を進めている。ガソリン車は勿論、急速に進む電動車においても、乗客だけでなくバッテリーを衝突から守り、またその重量増加分を相殺するため、その材料として、さらなる高強度材が求められている。例えば自動車等に用いられる鋼部材においては、前述の特許文献1や、現在ホットスタンプにより成形された鋼部材として一般的に使用されている強度を超える、より高強度な(1.5GPaを超える強度の)鋼材が必要とされている。
 しかしながら、金属材料の多くは、高強度化に伴い諸特性が劣化し、特に水素脆化の感受性が高まる。鋼部材においては、引張強さが1.2GPa以上になると水素脆化感受性が高まることが知られており、自動車分野に先んじて高強度化が進められてきたボルト鋼にて水素脆化割れの事例が存在する。そのため、1.5GPa超の引張強さを有するホットスタンプ部材においては、水素脆化感受性がさらに高まると懸念されている。
 自動車に用いられる鋼部材は、自動車の使用時、鋼材の腐食により発生する水素によって水素脆化割れするリスクがある。上述したように特に1.5GPa超の強度域では鋼材の水素脆化感受性が極めて高まるので、軽微な腐食による微量な水素によっても水素脆化し得ると考えられる。しかしながら、鋼材の腐食を完全に防ぐ自動車設計は難しい。そのため、さらなる車体軽量化のために1.5GPa超のホットスタンプ部材を車体へ適用するためには、水素脆化割れのリスクを十分に低減する必要がある。
 引張強さが1.5GPaを超える高強度鋼材に関して、例えば特許文献2には、靱性に優れ、かつ引張強さが1.8GPa以上の、熱間プレス成形されたプレス成形品が開示されている。特許文献3には、2.0GPa以上という極めて高い引張強さを有し、さらに、良好な靱性と延性とを有する鋼材が開示されている。特許文献4には、1.8GPa以上という高い引張強さを有し、さらに、良好な靱性を有する鋼材が開示されている。特許文献5には、2.0GPa以上という極めて高い引張強さを有し、さらに、良好な靱性を有する鋼材が開示されている。
 しかしながら、これらの鋼材については、腐食環境における耐水素脆性の観点では十分に検討されておらず、耐水素脆性の更なる向上が望まれている。
 例えば、特許文献6には、焼戻しマルテンサイトが面積率で50%以上(100%を含む)を含み、残部がフェライトからなる組織を有し、前記焼戻しマルテンサイト中における析出物の分布状態が、円相当直径1~10nmの析出物は、前記焼戻しマルテンサイト1μm当たり20個以上で、円相当直径20nm以上のVを含む析出物は、前記焼戻しマルテンサイト1μm当たり10個以下である、耐水素脆化特性および加工性に優れた高強度冷延鋼板が開示されている。特許文献6では、焼戻しマルテンサイト単相またはフェライトと焼戻しマルテンサイトからなる二相組織を有する高強度鋼板に着目し、これに、合金元素としてVを添加することにより、水素のトラップサイトとして強く働くVの炭化物および炭窒化物をそのサイズを適正にしてマルテンサイト中に導入することで耐水素脆化特性を確保しつつ、伸びフランジ性を改善しうる、と開示されている。
 しかしながら、特許文献6は、ホットスタンプ前の鋼板の状態で980MPa以上の高強度冷延鋼板に関する。この高強度冷延鋼板は、ホットスタンプ用の鋼板でなく、特許文献6では、ホットスタンプした場合のホットスタンプ後の強度などの機械的特性に加え、耐水素脆化特性などが検討されていない。
日本国特開2002-102980号公報 日本国特開2012-180594号公報 日本国特開2012-1802号公報 国際公開第2015/182596号 国際公開第2015/182591号 日本国特許第4712838号公報
 本発明は、上記の問題点を解決するためになされたものであり、高い引張強さを有し、かつ腐食環境における耐水素脆性に優れた鋼材を提供することを目的とする。
 本発明は、下記の鋼材を要旨とする。
(1)本発明の一態様に係る鋼材は、鋼板基材と、前記鋼板基材の表面の少なくとも一部に形成された保護膜と、を有し、前記鋼板基材の化学組成が、質量%で、C:0.25~0.65%、Si:0.05~2.00%、Mn:0.30~3.00%、P:0.050%以下、S:0.0100%以下、N:0.010%以下、O:0.010%以下、Cr:0.05~1.00%、Cu:0.10~1.00%、Ti:0~0.10%、B:0~0.0100%、Mo:0~1.00%、Ni:0~1.00%、Nb:0~0.10%、V:0~1.00%、Ca:0~0.010%、Mg:0~0.010%、Al:0~1.00%、Sn:0~1.00%、W:0~1.00%、Sb:0~1.00%、Zr:0~1.00%、Co:0~1.00%、REM:0~0.30%、及び残部:Fe及び不純物であり、前記保護膜がCuKα放射線を使用して測定するX線解析において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置に、ピーク強度が250%超となるピークを有し、引張強さが1500MPa超である。
[2]上記[1]に記載の鋼材では、前記鋼板基材の表面の全てに、前記保護膜が形成されていてもよい。
[3]上記[1]に記載の鋼材では、前記鋼板基材の前記表面の、前記保護膜が形成されていない部分に、耐食性被覆が形成されていてもよい。
[4]上記[3]に記載の鋼材では、前記鋼板基材の板厚方向に垂直な2つの表面に耐食性被覆が形成され、前記鋼板基材の前記板厚方向に平行な2つの表面に保護膜が形成されていてもよい。
[5]上記[3]または[4]に記載の鋼材では、前記耐食性被覆が、Al-Fe系被覆又はZn-Fe系被覆であってもよい。
[6]上記[1]~[5]のいずれか1項に記載の鋼材では、前記保護膜における最大Cu含有量と、前記鋼板基材のCu含有量との比が1.5以上であってもよい。
 本発明の上記態様によれば、高い引張強さを有し、かつ腐食環境における耐水素脆性に優れる鋼材を提供することができる。
本実施形態に係る鋼材の一例を示す模式図である。 本実施形態に係る鋼材の別の一例を示す模式図である。
 本発明者らは、高い引張強さを有し、かつ腐食環境における耐水素脆性に優れる鋼材を得るべく、これら特性に及ぼす、腐食組織や、素材となる鋼材の影響について調査した。その結果、以下の知見を得た。
 一般に使用されている、ホットスタンプのような焼入れを含む熱処理後に引張強さが1.5GPa(1500MPa)程度を示す鋼板の多くは、0.20質量%程度のCを含有し、このCによって熱処理後の強度を確保している。
 (a)本発明者らは、さらなる車体軽量化のため、C含有量を高めることで熱処理後に1.5GPa超の高強度を有する鋼材を得るための詳細検討を行った。その結果、C含有量を0.25質量%以上とすることで、ホットスタンプのような焼入れを含む熱処理後に引張強さで1.5GPa超の超高強度が得られることが分かった。一方で、引張強さ1.5GPa超への超高強度化に伴い、水素脆化感受性は増大し、自動車使用時の腐食環境において発生する水素によって水素脆化割れが発生するリスクが懸念された。
 (b)本発明者らは、引張強さが1.5GPa超の高強度鋼材において、鋼板基材の表面に耐食性に優れた保護膜を形成させることにより、腐食環境における水素脆化を抑制できることを見出した。
 本発明者らは、上記の知見に基づき、腐食環境における耐水素脆性が大きく改善され、かつ引張強さが1.5GPa超の、鋼材を開発した。このような鋼材は、高強度でありながら水素脆化リスクが低いので、より安全に車体へ適用できる。
 以下、本発明の一実施形態に係る鋼材(本実施形態に係る鋼材)の各要件について詳しく説明する。
 (A)鋼材
 図1に示すように、本実施形態に係る鋼材1は、所定の化学組成からなる鋼板基材11と、鋼板基材11の表面に形成され、耐食性に優れた保護膜12とを有する。
 また、本実施形態に係る鋼材1の、保護膜12は、Feを多く含み、CuKα放射線を使用して測定するX線解析(X線回折法)において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置に、ピーク強度が250%超となるピークを有する。ただし、図1では保護膜12は鋼板基材11の一の表面にのみ形成されているが、全面に形成されていてもよい。
 また、鋼板基材11の一部の面が耐食性被覆13で覆われ(一部の面に耐食性被覆13が形成され)、その他の面が保護膜12で覆われ(その他の面に保護膜12が形成され)ていてもよい。言い換えれば、鋼板基材11の一部の面が保護膜12で覆われ、保護膜12で覆われていない部分が、耐食性被覆13で覆われていてもよい。
 例えば、図2に示すように、鋼板基材11の板厚方向に垂直な2つの表面に耐食性被覆13が形成され、前記鋼板基材11の前記板厚方向に平行な2つの表面(例えば、前記鋼板基材11の切断端面)に保護膜12が形成されていてもよい。
 本実施形態に係る鋼材1は、多くの場合ホットスタンプにより成形されたものであり、鋼材1をホットスタンプ成形体又はホットスタンプ部材ということもできる。
 以下、それぞれについて説明する。
 (A1)鋼板基材
 本実施形態に係る鋼材1が備える鋼板基材11は所定の化学組成を有する。具体的には、鋼板基材11の化学組成は、質量%で、C:0.25~0.65%、Si:0.05~2.00%、Mn:0.30~3.00%、P:0.050%以下、S:0.0100%以下、N:0.010%以下、O:0.010%以下、Cr:0.05~1.00%、Cu:0.10~1.00%、Ti:0~0.10%、B:0~0.0100%、Mo:0~1.00%、Ni:0~1.00%、Nb:0~0.10%、V:0~1.00%、Ca:0~0.010%、Mg:0~0.010%、Al:0~1.00%、Sn:0~1.00%、W:0~1.00%、Sb:0~1.00%、Zr:0~1.00%、Co:0~1.00%、REM:0~0.30%、及び残部:Fe及び不純物、である。
 各元素の限定理由は下記の通りである。ここで鋼板基材11の化学組成とは、表面の保護膜12(または保護膜12がなく耐食性被覆13が形成されている場合には耐食性被覆13)を除いた部分(例えば鋼板基材11の表面から厚みの1/4の位置)の化学組成をいう。以下、含有量に関する%は、断りがない限り質量%である。
 C:0.25~0.65%
 Cは、鋼の焼入れ性を高め、ホットスタンプなどの焼入れ後に得られる鋼材の強度を向上させる元素である。C含有量が0.25%未満では、焼入れ後(ホットスタンプ後)の鋼材において十分な強度(1.5GPa超)を確保することが困難となる。したがって、C含有量は0.25%以上とする。C含有量は0.28%以上、0.31%以上、又は0.33%以上とすることが好ましい。
 一方、C含有量が0.65%を超えると、焼入れ後の鋼材の強度が過剰に高くなり、耐水素脆性の低下が著しくなる。したがって、C含有量は0.65%以下とする。C含有量は、0.60%以下、0.55%以下、0.50%以下、0.45%以下又は0.40%以下とすることが好ましい。
 Si:0.05~2.00%
 Siは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために有効な元素である。また、後述する熱処理時にスケールを密着性の良いタイトスケールとするために有効な元素である。このようなタイトスケールは、耐食性に優れた保護膜の素地とすることができる。この効果を得るためには、Si含有量を0.05%以上とする必要がある。Si含有量は、0.10%以上とすることが好ましく、0.15%以上、0.25%以上又は0.35%以上とすることがより好ましい。
 一方、鋼中のSi含有量が2.00%を超えると、熱処理(焼入れ)に際して、オーステナイト変態のために必要となる加熱温度が著しく高くなる。これにより、熱処理に要するコストが上昇したり、加熱時にフェライトが残留して鋼材の強度が低下したりする場合がある。したがって、Si含有量は2.00%以下とする。Si含有量は1.50%以下、1.20%以下、0.80%以下又は0.60%以下とすることが好ましい。
 Mn:0.30~3.00%
 Mnは、鋼の焼入れ性を高め、焼入れ後の強度を安定して確保するために、非常に効果のある元素である。Mnはさらに、Ac3点を下げ、焼入れ処理温度の低温化を促進する元素である。しかしながら、Mn含有量が0.30%未満ではその効果が十分ではない。そのため、Mn含有量を0.30%以上とする。Mn含有量は0.40%以上、0.50%以上、0.60%以上、0.70%以上又は0.80%以上とすることが好ましい。
 一方、Mn含有量が3.00%を超えると、焼入れ後の鋼材の耐水素脆性が劣化する。そのためMn含有量は3.00%以下とする。また、Mn含有量は2.50%以下とすることが好ましく、1.50%以下、1.20%以下、1.00%以下、0.90%以下又は0.80%以下とすることがより好ましい。
 P:0.050%以下
 Pは、焼入れ後の鋼材の耐水素脆性を低下させる元素である。特に、P含有量が0.050%を超えると、耐水素脆性の低下が著しくなる。したがって、P含有量は0.050%以下に制限する。P含有量は、0.020%以下、0.010%以下又は0.006%以下に制限してもよい。
 P含有量は少ない方が好ましいので、0%でもよいが、コストの観点から0.001%以上としてもよい。
 S:0.0100%以下
 Sは、焼入れ後の鋼材の耐水素脆性を低下させる元素である。特に、S含有量が0.0100%を超えると、耐水素脆性の低下が著しくなる。したがって、S含有量は0.0100%以下に制限する。S含有量は、0.0050%以下に制限することが好ましい。S含有量は、0.0020%以下、0.0010%以下又は0.0006%以下に制限してもよい。S含有量は少ない方が好ましいので、0%でもよいが、コストの観点から0.0001%以上としてもよい。
 N:0.010%以下
 Nは、焼入れ後の鋼材の耐水素脆性を低下させる元素である。特に、N含有量が0.010%を超えると、鋼中に粗大な窒化物が形成され、耐水素脆性が著しく低下する。したがって、N含有量は0.010%以下とする。N含有量は、0.008%以下、0.006%以下又は0.004%以下に制限してもよい。N含有量の下限は特に限定する必要はなく0%でもよいが、N含有量を0.0002%未満とすることは製鋼コストの増大を招き、経済的に好ましくない。そのため、N含有量は0.0002%以上としてもよく、0.0008%以上、または0.001%以上としてもよい。
 O:0.010%以下
 Oは、焼入れ後の鋼材の耐水素脆性を低下させる元素である。特に、O含有量が0.010%を超えると、鋼中に粗大な窒化物が形成され、耐水素脆性が著しく低下する。したがって、O含有量は0.010%以下とする。O含有量は、0.008%以下、0.006%以下又は0.004%以下に制限してもよい。O含有量の下限は特に限定する必要はなく0%でもよいが、O含有量を0.0002%未満とすることは製鋼コストの増大を招き、経済的に好ましくない。そのため、O含有量は0.0002%以上としてもよく、0.0008%以上、または0.001%以上としてもよい。
 Cr:0.05~1.00%
 Crは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために有効な元素である。また、後述する熱処理時にスケールを、耐食性に優れた保護膜の素地とすることができる密着性の良いタイトスケールとするために有効な元素である。この効果を得るためには、Cr含有量を0.05%以上とする必要がある。Cr含有量は0.10%以上とすることが好ましい。
 一方、Cr含有量が1.00%を超えると上記の効果は飽和する上、コストが増加する。またCrは鉄炭化物を安定化させる作用を有するので、Cr含有量が1.00%を超えると鋼板の熱処理時に粗大な鉄炭化物が溶け残り、鋼材の耐水素脆性が低下する場合がある。したがって、Cr含有量は1.00%以下とする。合金コストの削減のためには、Cr含有量は0.80%以下、0.60%以下、0.50%以下又は0.40%以下とすることが好ましい。
 Cu:0.10~1.00%
 Cuは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために有効な元素である。この効果を得るためには、Cuを0.10%以上含有させる必要がある。また、Cuは、後述する保護膜を安定化させることで、耐食性をさらに向上させる元素である。この効果を得る場合、Cu含有量は0.18%以上とすることが好ましく、0.20%以上とすることがより好ましい。Cuの含有によって保護膜が安定化する理由は明確ではないが、保護膜形成初期において、鋼板基材の表面にCuが濃縮し、保護膜を均一かつ緻密に成長させることで、Cuが部分的に濃化した安定な保護膜が形成されると考えられる。
 一方、Cu含有量が1.00%を超えると上記の効果は飽和する上、コストが増加する。したがって、Cu含有量は1.00%以下とする。合金コストの削減のためには、Cu含有量は0.80%以下、0.60%以下、0.50%以下又は0.30%以下とすることが好ましい。
 鋼材及びこの鋼材を含む部品の各種特性(焼入れ性、強度、耐水素脆性、脱酸性、耐食性等)を向上させるために、さらに、下記に示す範囲で、Ti、B、Mo、Ni、Nb、V、Ca、Mg、Al、Sn、W、Sb、Zr、CoおよびREMからなる群から選択される1種以上の元素を含有させてもよい。これらの元素は任意元素であり、必ずしも含有する必要がないので、下限は0%である。
 Ti:0~0.100%
 Tiは、鋼板をAc3点以上の温度に加熱して熱処理を施す際に、再結晶を抑制するとともに微細な炭化物を形成して粒成長を抑制することで、オーステナイト粒を細粒にする作用を有する元素である。このため、Tiを含有させることによって、鋼材の耐水素脆性が向上する効果が得られる。また、Tiは、鋼中のNと優先的に結合することによってBNの析出によるBの消費を抑制し、後述するBによる焼入れ性向上の効果を促進する元素である。そのため、Tiを含有させてもよい。上記の効果を得る場合、Ti含有量は0.010%以上とすることが好ましく、0.015%以上とすることがより好ましい。
 一方、Ti含有量が0.100%を超えると、TiCの析出量が増加してCが消費されるので、焼入れ後の鋼材の強度が低下する。したがって、Tiを含有させる場合、Ti含有量は0.100%以下とする。合金コストの削減のためには、Ti含有量は0.080%以下、0.060%以下又は0.030%以下とすることが好ましい。
 B:0~0.0100%
 Bは、微量でも鋼の焼入れ性を劇的に高める作用を有する元素である。また、Bは粒界に偏析することで、粒界を強化して耐水素脆性を向上させる元素であり、鋼板の加熱時にオーステナイトの粒成長を抑制する元素である。そのため、Bを含有させてもよい。上記の効果を得る場合、B含有量は0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。
 一方、B含有量が0.0100%を超えると、粗大な化合物が多く析出し、鋼材の耐水素脆性が低下する。したがって、Bを含有させる場合、B含有量は0.0100%以下とする。合金コストの削減のためには、B含有量は0.0080%以下、0.0050%以下又は0.0025%以下とすることが好ましい。
 Mo:0~1.00%
 Moは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために、非常に効果のある元素である。特に、上記Bと複合含有させることで焼入れ性向上の相乗効果が得られる。そのため、Moを含有させても良い。上記の効果を得る場合、Mo含有量は0.10%以上とすることが好ましく、0.20%以上とすることがより好ましい。
 一方、Moは、鉄炭化物を安定化させる作用を有する元素である。Mo含有量が1.00%を超えると鋼板の加熱時に粗大な鉄炭化物が溶け残り、焼入れ後の鋼材の耐水素脆性が低下する場合がある。また、コスト増加が著しい。したがって、Moを含有させる場合、Mo含有量は1.00%以下とする。合金コストの削減のためには、Mo含有量は0.80%以下、0.60%以下又は0.32%以下とすることが好ましい。
 Ni:0~1.00%
 Niは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために有効な元素である。そのため、Niを含有させてもよい。上記の効果を得る場合、Ni含有量は0.10%以上とすることが好ましく、0.20%以上とすることがより好ましい。
 一方、Ni含有量が1.00%を超えると、鋼材の限界水素量が低下する。また、コスト増加が著しい。したがって、Niを含有させる場合、Ni含有量は1.00%以下とする。合金コストの削減のためには、Ni含有量は0.50%以下とすることが好ましく、0.25%以下とすることがより好ましく、0.20%以下とすることがさらに好ましい。
 Nb:0~0.10%
 Nbは、鋼中で微細な炭化物を形成し、その炭化物による細粒化効果により、鋼の耐水素脆性を向上させる作用を有する元素である。そのため、Nbを含有させてもよい。上記の効果を得る場合、Nb含有量は0.02%以上とすることが好ましく、0.03%以上とすることがより好ましい。
 一方、Nb含有量が0.10%を超えると、炭化物が粗大化し、鋼材の耐水素脆性が低下する。したがって、Nbを含有させる場合、Nb含有量は0.10%以下とする。合金コストの削減のためには、Nb含有量は0.08%以下、0.06%以下又は0.04%以下とすることが好ましい。
 V:0~1.00%
 Vは、鋼中で微細な炭化物を形成し、その炭化物による細粒化効果や水素トラップ効果により、鋼材の耐水素脆性を向上させる元素である。そのため、Vを含有させてもよい。上記の効果を得るためには、V含有量を0.01%以上とすることが好ましく、0.10%以上とすることがより好ましい。
 しかしながら、V含有量が1.00%を超えると、上記の効果が飽和して経済性が低下する。したがって、Vを含有させる場合、V含有量は1.00%以下とする。合金コストの削減のためには、V含有量は0.50%以下、0.30%以下又は0.20%以下とすることが好ましい。
 Ca:0~0.010%
 Caは、鋼中の介在物を微細化し、焼入れ後の鋼材の耐水素脆性を高める効果を有する元素である。そのため、Caを含有させてもよい。上記の効果を得る場合、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
 一方、Ca含有量が0.010%を超えるとその効果は飽和する上、コストが増加する。したがって、Caを含有させる場合、Ca含有量は0.010%以下とする。Ca含有量は、0.005%以下とすることが好ましく、0.004%以下又は0.003%以下とすることがより好ましい。
 Mg:0~0.010%
 Mgは、鋼中の介在物を微細化し、熱処理後の靱性を向上させる効果を有する元素である。そのため、Mgを含有させてもよい。上記の効果を得る場合、Mg含有量を0.001%以上とすることが好まし。Mg含有量は、より好ましくは0.002%以上である。
 一方、Mg含有量が0.010%を超えるとその効果は飽和する上、コストが増加する。したがって、Mgを含有させる場合、Mg含有量は0.010%以下とする。Mg含有量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。
 Al:0~1.00%
 Alは、鋼の脱酸剤として一般的に用いられる元素である。そのため、Alを含有させてもよい。上記の効果を得るためには、Al含有量を0.01%以上とすることが好ましい。
 一方、Al含有量が1.00%を超えると、上記の効果が飽和して経済性が低下する。したがって、Alを含有させる場合、Al含有量は1.00%以下とする。合金コストの削減のためには、Al含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 Sn:0~1.00%
 Snは、腐食環境において保護膜を安定化し、耐食性を向上させる元素である。そのため、Snを含有させることが好ましい。Sn含有量が0.01%未満ではこれらの効果が十分ではないので、Snを含有させる場合、Sn含有量を0.01%以上とすることが好ましい。Sn含有量は0.03%以上とすることがより好ましく、0.05%以上とすることがさらに好ましい。
 しかしながら、Sn含有量が1.00%を超えると粒界強度が低下し、焼入れ後の鋼材の耐水素脆性が低下する。したがって、Snを含有させる場合、Sn含有量は1.00%以下とする。合金コストの削減のためには、Al含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 W:0~1.00%
 Wは、鋼の焼入れ性を高め、焼入れ後の鋼材の強度を安定して確保するために有効な元素である。そのため、Wを含有させてもよい。また、Wは、腐食環境において耐食性を向上させる元素である。上記の効果を得るためには、W含有量を0.01%以上とすることが好ましい。
 一方、W含有量が1.00%を超えると、上記の効果が飽和して経済性が低下する。したがって、Wを含有させる場合、W含有量は1.00%以下とする。合金コストの削減のためには、W含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 Sb:0~1.00%
 Sbは、腐食環境において耐食性を向上させる元素である。そのため、Sbを含有させてもよい。上記の効果を得るためには、Sb含有量を0.01%以上とすることが好ましい。
 一方、Sb含有量が1.00%を超えると粒界強度が低下し、焼入れ後の鋼材の耐水素脆性が低下する。したがって、Sbを含有させる場合、Sb含有量は1.00%以下とする。合金コストの削減のためには、Sb含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 Zr:0~1.00%
 Zrは、腐食環境において耐食性を向上させる元素である。そのため、Zrを含有させてもよい。上記の効果を得るためには、Zr含有量を0.01%以上とすることが好ましい。
 一方、Zr含有量が1.00%を超えると粒界強度が低下し、焼入れ後の鋼材の耐水素脆性が低下する。したがって、Zrを含有させる場合、Zr含有量は1.00%以下とする。合金コストの削減のためには、Zr含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 Co:0~1.00%
 Coは腐食環境において耐食性を向上させる元素である。そのため、Coを含有させてもよい。上記の効果を得るためには、Co含有量を0.01%以上とすることが好ましい。
 一方、Co含有量が1.00%を超えると、上記の効果が飽和して経済性が低下する。したがって、Coを含有させる場合、Co含有量は1.00%以下とする。合金コストの削減のためには、Co含有量は0.50%以下、0.30%以下、0.10%以下、0.06%以下又は0.04%以下とすることが好ましい。
 REM:0~0.30%
 REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の鋼材の耐水素脆性を向上させる効果を有する元素である。そのため、REMを含有させてもよい。上記の効果を得るためには、REM含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。
 一方、REM含有量が0.30%を超えると、その効果は飽和する上、コストが増加する。したがって、REMを含有させる場合、REM含有量は0.30%以下とする。REM含有量は0.20%以下、0.10%以下又は0.04%以下とすることが好ましい。
 ここで、REMは、Sc、Y及びLa、Nd等のランタノイドの合計17元素を指し、REMの含有量はこれらの元素の合計含有量を意味する。REMは、例えばFe-Si-REM合金を使用して溶鋼に添加され、この合金には、例えば、La、Nd、Ce、Prが含まれる。
 本実施形態に係る鋼材1が備える鋼板基材11の化学組成において、上述してきた元素以外、すなわち残部はFeおよび不純物である。
 ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼材の特性に悪影響を与えない範囲で許容されるものを意味する。
 鋼板基材11の化学組成は、以下の方法で求めることができる。
 鋼板基材11の板厚方向に表面から板厚の1/4の位置((1/4)厚の位置)から、ICP-AESなどの一般的な方法で元素分析を行うことによって得られる。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 鋼板基材の内部組織
 本実施形態に係る鋼材1が備える鋼板基材11の内部組織(金属組織)は、限定されないが、1.5GPa超の引張強さを得る場合、高強度なマルテンサイトが主体となる組織である。好ましくは、面積分率で70%以上がマルテンサイトである。より好ましくは80%以上又は90%以上である。マルテンサイトが100%でもよい。マルテンサイトの面積分率が小さいと、1.5GPa超の引張強さを得ることが難しくなる。
 鋼板基材11の内部組織は、マルテンサイト以外の残部として、残留オーステナイト、ベイナイト、フェライト、および/またはパーライトが含有されてもよい。
 例えば、マルテンサイトとベイナイトとの合計が面積分率で90%以上であってもよい。マルテンサイトとベイナイトとの合計面積分率は、92%以上、95以上又は98%以上であることが、好ましい。マルテンサイトとベイナイトとの合計面積分率を100%としてもよい。マルテンサイトには、いわゆるフレッシュマルテンサイトの他に、焼戻しマルテンサイトや自動焼戻しマルテンサイトも含む。自動焼戻しマルテンサイトとは、焼戻しのための熱処理を行うことなく、焼入れ時の冷却中に生成した焼戻しマルテンサイトのことであり、マルテンサイト変態に伴う自己発熱によって、発生したマルテンサイトがその場で焼き戻されて生成するものである。
 鋼板基材11の内部組織における組織分率は、以下の方法で測定することができる。
 マルテンサイト(焼戻しマルテンサイト、自動焼戻しマルテンサイトも含む)の面積分率は、透過型電子顕微鏡(TEM)及びTEMに付属する電子線回折装置によって測定する。
 鋼板基材の端部から10mm以上離れた位置(鋼板基材の幅、長さが20mm未満の場合には、その中央部)、かつ鋼板基材の(1/4)厚の位置から測定試料を切り出し、TEM観察用の薄膜試料とする。この薄膜試料において400μmの範囲をTEM観察する。
 薄膜試料の電子線の回折パターンにより、体心立方格子であるマルテンサイトやベイナイトと、面心立方格子の残留オーステナイトとを区別する。そして、マルテンサイトおよびベイナイト中の鉄炭化物(FeC)を回折パターンにより見出し、その析出形態を観察することで、マルテンサイトとベイナイトの組織分率をそれぞれ測定する。具体的には、析出形態が3方向析出ならマルテンサイトと判断し、1方向の限定析出ならベイナイトと判断する。
 TEMによって測定されるマルテンサイトとベイナイトの組織分率は面積%として測定されるが、本実施形態に係る鋼材は、金属組織が等方性を有するので、面積分率の値をそのまま体積分率に置き換えることができる。マルテンサイトとベイナイトとの判別のため炭化物を観察するが、本実施形態では、炭化物は組織分率の測定対象外とする。
 残部組織としてフェライトまたはパーライトが存在している場合は、光学顕微鏡または走査型電子顕微鏡で容易に確認できる。具体的には、鋼板基材の端部から10mm以上離れた位置(鋼板基材の幅、長さが20mm未満の場合には、その中央部)、かつ鋼板基材の(1/4)厚の位置を含む測定試料を切り出し、観察用の試料とする。切り出した試料を機械研磨し、続いて鏡面仕上げする。次いで、試料にナイタール腐食液によりエッチングを行ってフェライト及びパーライトを現出させ、走査型電子顕微鏡を用いて、面積で40000μmの範囲について観察することで、フェライトまたはパーライトの存在を確認する。フェライトとセメンタイトとが交互に層状に並んだ組織をパーライトとし、セメンタイトが粒状に析出するベイナイトと判別する。
 鋼板基材の被覆
 本実施形態に係る鋼材1が備える鋼板基材11の表面の一部に被覆(耐食性被覆)13が備えられていても良い。被覆(耐食性被覆)13はAl-Feを主体とした被覆(Al-Fe系被覆)であっても良いし、Zn-Feを主体とした被覆(Zn-Fe系被覆)であっても良い。被覆は、皮膜、合金化めっき層、または金属間化合物層ともいわれる。ホットスタンプの熱処理にあたる後述の熱処理(C1)を受ける前の状態(例えば、ホットスタンプ前の鋼板の状態)では、主にAl系めっきまたはZn系めっきなどの「めっき層」などを有するめっき鋼板である。ホットスタンプ前の鋼板の状態でのめっき層は、必ずしも合金化めっき層である必要はなく、(合金化されていない)めっき層であってもよい。しかしながら、後述の熱処理(C1)を受けた後の鋼材1(例えば、ホットスタンプ成形体)では、鋼板の状態でもめっきが合金化めっきでなくても、その後の熱処理(C1)により合金化され、めっき層(つまり被覆)は合金化めっき層となる。合金化めっき層も単にめっき層ということもあり、鋼材1の被覆を単にめっき層とよんでもよい。
 鋼材1におけるAl-Feを主体とした被覆とは、被覆全体の平均の化学組成が、FeとAlとを合計で70質量%以上含む被覆である。Fe、Alの他に、更にSi、Mg、Ca、Sr、Ni、Cu、Mo、Mn、Cr、C、Nb、Ti、B、V、Sn、W、Sb、Zn、Co、In、Bi、Zr、Se、As、REMを含有してもよく、残部が不純物であってもよい。
 鋼材1におけるZn-Feを主体とした被覆とは、被覆全体の平均の化学組成が、FeとZnとを合計で70質量%以上含む被覆である。Fe、Znの他に、更にSi、Mg、Ca、Sr、Ni、Cu、Mo、Mn、Cr、C、Nb、Ti、B、V、Sn、W、Sb、Al、Co、In、Bi、Zr、Se、As、REMを含有してもよく、残部が不純物であってもよい。
 (A2)保護膜
 本実施形態に係る鋼材1は、上述した鋼板基材11の表面の少なくとも一部に、保護膜12を有する。保護膜12は、Feを多く含み、CuKα放射線を使用して測定するX線解析(X線回折法)において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置に、ピーク強度が250%超となるピークを有する。この保護膜12が鋼板基材11の表面に形成されていることで、鋼材1の耐食性が向上する。
 ここで、回折角(2θ)が35.5°付近に相当する物質はFe(マグネタイト)であり、回折角(2θ)が36.6°付近に相当する物質はFeOOH(オキシ水酸化鉄(III))であり、35.5°、36.6°はそれぞれの物質の主要なピーク位置である。すなわち、本実施形態に係る鋼材1が備える保護膜12は、FeOOHに対し、Feの体積分率が多いことを意味する。(±0.5°は測定誤差等を考慮した裕度である。)
 FeはFeOOHに対し、密度が高いことから、密度が高いFeの割合を増加させることで保護膜12が緻密になり、腐食環境における水素発生が抑制されて、耐水素脆性が向上するものと考えられる。
 上記のようにCuKα放射線を使用して測定する保護膜12のX線解析において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置のピーク強度が250%以下の場合は、保護膜12のFeの体積分率が小さく、保護膜12による十分な耐食性向上効果が得られない。
 本実施形態に係る鋼材1において、保護膜12は鉄酸化物やオキシ水酸化鉄を主体とした膜であり、Fe、O、Hを合計で70質量%以上含むことが望ましい。保護膜12は、Fe、O、Hの他に、更に上述した鋼板基材11の成分である、Si、Mg、Ca、Sr、Ni、Cu、Mo、Mn、Cr、C、Nb、Ti、B、V、Sn、W、Sb、Zr、REM、Znを含有してもよい。
 本実施形態に係る鋼材1が耐食性被覆13を備えている場合、上述した耐食性に優れた保護膜12は鋼板基材11の表面のうち耐食性被覆13が存在しない位置の表面に形成されるものを指す。すなわち、その場合、鋼板基材11には、表面に耐食性被覆13を備える部分と、表面に保護膜12を備える部分とが存在することになる。例えば、耐食性被覆13を有する鋼板が切断されて得られた鋼材1であれば、切断端面において、耐食性被覆13が存在しない。そのため、切断端面の表面において、保護膜12が形成され、その他の表面には耐食性被覆13が形成された鋼材1とすることができる(例えば、図2参照)。
 鋼材1が耐食性被覆13を備えていない場合には、保護膜12は鋼板基材11の全ての面に形成されてもよい。
 保護膜12の厚みは、特に限定しないが、十分な耐食性向上効果を得るため、5μm以上であることが好ましい。一方、保護膜12の厚みが300μmを超えると鋼材としての強度を十分に確保すること難しくなる。したがって、保護膜12の厚みは300μm以下であることが好ましい。
 本実施形態に係る鋼材では、保護膜にCuが濃化していることが好ましい。具体的には、保護膜における最大Cu含有量と、鋼板基材のCu含有量との比(保護膜の最大Cu含有量/鋼板基材のCu含有量:Cu濃化比)が1.5以上、1.7以上、1.9以上又は2.1以上であることが好ましい。
 Cuが濃化した保護膜は、均一かつ緻密であり、安定であることから、さらなる耐食性の向上に寄与する。保護膜における最大Cu含有量と、鋼板基材のCu含有量との比が1.5未満では十分な効果が得られない。
 保護膜における最大Cu含有量と、鋼板基材のCu含有量との比の上限を特に定める必要はないが、5.0としてもよい。必要に応じて、上記比の上限を4.5、4.0、3.5、3.0又は2.8としてもよい。
 保護膜12における回折角が35.5±0.5°の位置のピーク、および回折角が36.6±0.5°の位置のピークの強度は、X線回折(XRD)を用いて求める。測定に際しては、全自動多目的X線回折装置(Rigaku社製SmrtLab 3kW)を用い、CuKα放射線を使用して、時間間隔を2°/分として測定を行い、90°までの回折角(2θ)を求め、回折角が35.5±0.5°の位置のピーク、および回折角が36.6±0.5°の位置のピークの強度を求める。ピーク強度を求める際には、ソフトウェアとしてRigaku社製SmartLab Studio IIを用いて、擬Voigt関数を用いて回折プロファイルのフィッテイングを行い、ピークのカウント数をピーク強度とする。また、バックグラウンドとしてBスプライン補間を行い、その値を差し引いたピーク強度を用いる。
 この結果から、回折角(2θ)が36.6±0.5°の位置のピーク強度と、回折角(2θ)が35.5±0.5°の位置のピーク強度との比率を算出できる。
 保護膜12より得られるFeまたはFeOOHの存在に起因する他のピークとしては、回折角(2θ)が11°、14°、16°、21°、26°、27°、30°、31°、33°、34°、39°、41°、43°、50°、53°、55°、57°、58°、61°、62°、63°、71°、75°、83°付近があり得る。しかしながら、これらのピークのほとんどは、35.5°及び36.6°付近のピークに比べて強度が小さい。そのため、35.5°及び36.6°付近以外のピーク強度の測定を行う必要はない。
 保護膜における最大Cu含有量は、保護膜12に対しGDS(グロー放電発光分析)を行って求める。
 具体的には、保護膜の表面から厚み方向にGDS(グロー放電発光分析)を行い、保護膜の表面から、保護膜と鋼板基材との界面までの範囲における最大Cu含有量を求める。この測定を5回行い、各測定において得られた最大Cu含有量の平均値を、保護膜における最大Cu含有量とする。測定に際し、保護膜上に不純物が付着している場合があるため、Fe含有量とO含有量も測定し、FeとOの合計含有量が85%となる位置を保護膜の表面とする。またFeの含有量が95%となる位置を保護膜と鋼板基材との界面とする。
 (A3)鋼材の特性
 本実施形態に係る鋼材1は、保護膜12が上述のように制御されることで、腐食が低減され、腐食による水素侵入が抑制される。そのため、本実施形態に係る鋼材1は、腐食環境における耐水素脆性に優れる。また、本実施形態に係る鋼材1は、引張強さが1500MPa(1.5GPa)超の高強度である。本実施形態に係る鋼材1の引張強さは、好ましくは1800MPa以上である。
 引張強さの上限は限定されないが、引張強さが高くなると成形性や加工性が低下するので、引張強さを3200MPa以下、3000MPa以下、または2800MPa以下としてもよい。
 後述するような、鋼材が箇所によって強度が異なるテーラードプロパティ材である場合、鋼材の少なくとも一部が引張強さ1500MPa超であればよい。
 本実施形態において、腐食環境における耐水素脆性は、鋼材の実使用環境における曝露試験やCCT(複合サイクル試験)による腐食促進試験によって評価される。例えば鋼材を4点曲げすることで応力を付与したまま屋外へ曝露し、一定期間割れるか割れないかで評価される。
 本実施形態に係る鋼材1の形状については特に限定されない。すなわち、鋼材1素材となる鋼板に熱処理(熱処理冷却時に加工する場合を含む)によって得られる鋼板部材であるが、その形状は平板であってもよく、成形体(または、ホットスタンプ成形体)であってもよい。熱間成形された鋼材は、多くの場合は成形体である。しかし、本実施形態では、成形体および平板をともに含めて「鋼材」という。また、鋼材は、箇所によって強度が異なるテーラードプロパティ材であってもよい。この場合、鋼材の少なくとも一部が引張強さ1.5GPa以上であることが好ましい。強度が異なる領域を得ることで、衝突時において1500MPa超の引張強さを有する部位の変形を制御することができ、より安全に乗員を守ることができる。
 (B)素材となる鋼板
 次に、本実施形態に係る鋼材1が含む鋼板基材11の素材となる鋼板(以下本実施形態に係る鋼板という場合がある)について説明する。以下に説明する鋼板に、後述する熱処理を行うことで、鋼板基材11を得ることができる。
 鋼板の化学組成
 本実施形態に係る鋼板の化学組成の範囲は、上述した本実施形態に係る鋼材1の鋼板基材11の化学組成と同一であり、その限定理由も同様である。
 鋼板の化学組成は、例えば、鋼板の表面から板厚方向に板厚の1/4の位置を代表位置として、この位置で、ICPなどの一般的な方法で元素分析を行うことによって得られる。
 鋼板の内部組織
 本実施形態に係る鋼板の内部組織(金属組織)は限定されないが、フェライトやパーライトであることが多い。後述する製造方法の条件内において、ベイナイトやマルテンサイト、残留オーステナイトを含有することもある。上記マルテンサイトは、焼戻しマルテンサイトおよび自動焼戻しマルテンサイトを含む。自動焼戻しマルテンサイトとは、焼戻しのための熱処理を行うことなく、焼入れ時の冷却中に生成した焼戻しマルテンサイトのことであり、マルテンサイト変態に伴う発熱によって、発生したマルテンサイトがその場で焼き戻されて生成するものである。鋼板の内部組織とは、上述した境界部を除いた鋼板の組織のことである。
 鋼板の内部組織は、上述した鋼板基材11の内部組織と同様の方法で判断できる。
 次に、本実施形態に係る鋼材1の製造方法について説明する。
 (C)鋼材の製造方法
 本実施形態に係る鋼材1は、以下の工程を含む製造方法によって製造することができる。
(C1)所定の化学組成を有する鋼板に熱処理を行って鋼板基材11とする、熱処理工程、
(C2)前記鋼板基材11に保護膜12を形成し、保護膜12を安定化させる、保護膜安定化処理工程。
 以下、各工程について説明する。
(C1)<熱処理工程>
 熱処理工程では、所定の化学組成を有する鋼板に熱処理を行って鋼板基材11とする。熱処理は、例えば後述の方法で得られた鋼板を、1.0~1000℃/秒の平均昇温速度で、Ac3点~(Ac3点+300)℃まで加熱し、Ms点(℃)以下まで上部臨界冷却速度以上の平均冷却速度で冷却する条件で行う。
 昇温速度が1.0℃/秒未満であると熱処理の生産性が低下するので好ましくない。一方、昇温速度が1000℃/超であると混粒組織となり限界水素量が低下するので好ましくない。
 また、熱処理温度がAc3点(℃)未満であると、冷却後にフェライトが残存し、強度が不足するので好ましくない。一方、熱処理温度がAc3点+300℃超であると、組織が粗粒化し限界水素量が低下するので好ましくない。
 上部臨界冷却速度とは、組織にフェライトやパーライトを析出させず、オーステナイトを過冷してマルテンサイトを生成させる最小の冷却速度のことであり、上部臨界冷却速度未満で冷却するとフェライトやパーライトが生成し、強度が不足する。
 加熱時には、加熱温度の±10℃以内の範囲で、1~300秒の保持を行ってもよい。
 また、Ms点以下の温度まで冷却した後に、鋼材の強度を調整するために100~600℃程度の温度範囲での焼戻し処理を行ってもよい。
 Ac3点、Ms点および上部臨界冷却速度は、次の方法にて測定する。
 本実施形態に係る鋼板から、幅30mm、長さ200mmの短冊状試験片を切り出し、この試験片を窒素雰囲気中で1000℃まで10℃/秒の昇温速度で加熱し、その温度に5分間保持したのち、種々の冷却速度で室温まで冷却する。冷却速度の設定は、1℃/秒から100℃/秒まで、10℃/秒の間隔(ただし1℃/秒の次は10℃/秒とする)で設定する。そのときの加熱、冷却中の試験片の熱膨張変化を測定することにより、Ac3点およびMs点を測定する。
 また、上記の冷却速度で冷却したそれぞれの試験片のうち、フェライト相の析出が起きなかった最小の冷却速度を、上部臨界冷却速度とする。また上部臨界冷却速度以上で冷却した場合の熱膨張変化から得られたMs点を、鋼材のMs点とする。
 ここで、上記一連の熱処理に際して、Ac3点~(Ac3点+300)℃の温度域に加熱後、Ms点まで冷却する間に、つまり上部臨界冷却速度以上で冷却する工程を施すと同時に、ホットスタンプのような熱間成形を施してもよい。熱間成形としては、曲げ加工、絞り成形、張出し成形、穴広げ成形、およびフランジ成形等が挙げられる。また、成形と同時またはその直後に鋼板を冷却する手段を備えていれば、プレス成形以外の成形法、例えばロール成形に本発明を適用してもよい。上述の熱履歴に従うなら、繰返し熱間成形を施してもよい。
 前述のとおり、本実施形態に係る鋼材は、鋼板が熱間成形されて成形体となったもの、熱処理のみが施されて平板であるものをともに含む。
 また、本実施形態に係る鋼材として、熱間成形または熱処理を素材となる鋼板の一部に対して行い、強度の異なる領域を持つ鋼材を得てもよい。
 上記の一連の熱処理は任意の方法によって実施することができ、例えば、加熱を、高周波加熱や通電加熱、赤外線加熱、炉加熱によって実施してもよい。また、冷却を、水冷、金型冷却などによって実施してもよい。
(C2)<保護膜安定化処理工程>
 保護膜安定化処理工程では、腐食加速試験を用いて、耐食性被覆13が形成されていない鋼板基材11の表面に、保護膜12を形成し、また、形成された保護膜12を安定化させる。上述の熱処理工程で得られた鋼板基材11には保護膜12のべースとなる鉄酸化物が形成されており、塩水噴霧、湿潤、乾燥の複合サイクルにより、保護膜12を形成、安定化させることができる。具体的には、複合サイクルにおいて、塩濃度(塩水の濃度)を1~10%とし、Wet率((塩水噴霧時間+湿潤時間)/全時間)を30~70%とし、1サイクルを8時間として、サイクル数を30~100とすることで、Feを多く含む保護膜12を形成、安定化させることができる。
 以下、各条件について説明する。
 塩濃度:1~10%
 保護膜安定化処理において、鋼板基材11の表面と、噴霧する塩水の塩化物と、の反応により、保護膜12を形成する。保護膜12を安定化するためには、塩濃度は1~10%が好適である。塩濃度が1%未満であると保護膜が不均一に形成される場合があるため好ましくない。一方、塩濃度が10%超では、腐食速度が速く、保護膜12が安定的に形成されない場合があるため好ましくない。
 Wet率:30~70%
 保護膜安定化処理において、塩化物との表面反応により保護膜12を形成する。保護膜12を安定化するためには、Wet率は30~70%が好適である。Wet率が30%未満であると腐食速度が速く保護膜12が安定的に形成されない場合があるため好ましくない。一方、Wet率が70%超では、保護膜12が不均一に形成される場合があるため好ましくない。
 サイクル数:30以上100サイクル以下(1サイクル8時間)
 保護膜安定化処理において、塩水噴霧、湿潤、乾燥のサイクルを繰り返すことで保護膜12を形成する。このサイクル数が30サイクル未満の場合は、保護膜12が十分に形成されない場合があるため好ましくない。保護膜12の形成の点では、サイクルの上限を規定する必要はないが、サイクル数が過剰になると、保護膜が剥離し、所定の保護膜が形成されない場合があるため、好ましくない。また、鋼材1が減肉し、構造体としての強度が低下するおそれがある。そのため、サイクル数は100以下とする。
 また、保護膜形成前には、鋼板に応力を付与しないことが好ましい。応力が付与された状態では、応力付与部とそれ以外における保護膜形成挙動がばらつくため、上記の保護膜安定化処理を行っても、保護膜が安定化しない場合があるため、好ましくない。
 また、保護膜安定化処理は、100℃以下で行うことが好ましい。
 温度が高いと、鋼板の酸化が優先的となるため、保護膜における最大Cu含有量と、鋼板基材のCu含有量との比が、1.5未満となる。
 (D)鋼板の製造方法
 本実施形態に係る鋼材1が含む鋼板基材11の素材として好適な鋼板の製造方法は限定されないが、例えば以下に示す工程を含む製造方法を用いることにより製造することができる。
(i)上述の化学組成を有する鋼を溶製し、鋳造してスラブを製造する、スラブ準備工程、
(ii)得られたスラブに熱間圧延を施して熱延鋼板とする、熱間圧延工程、
(iii)熱延鋼板を巻き取る、巻き取り工程、
(iv)必要に応じて、巻き取り工程後の熱延鋼板に焼鈍を行う、熱延板焼鈍工程、
(v)必要に応じて、巻き取り工程後または熱延板焼鈍工程後の熱延鋼板にデスケーリングを行い、冷間圧延を行って冷延鋼板とする、冷間圧延工程、
(vi)必要に応じて、熱延鋼板又は冷延鋼板に対して焼鈍を行って焼鈍鋼板とする、焼鈍工程、
(vii)必要に応じて、熱延鋼板、冷延鋼板または焼鈍鋼板に耐食性被覆を施して被覆鋼板とする、被覆工程。
 以下、各工程について説明する。
<スラブ準備工程>
 スラブ準備工程では、上述の化学組成を有する鋼を溶製し、鋳造することで熱間圧延に供するスラブを製造する。例えば、転炉又は電気炉等を用いて上記化学組成の溶鋼を溶製し、連続鋳造法により製造したスラブを用いることができる。連続鋳造法に代えて、造塊法、薄スラブ鋳造法等を採用してもよい。
<熱間圧延工程>
 熱間圧延工程においては、スラブを加熱し、粗圧延を行った後に、必要に応じてデスケーリングを行い、最後に仕上げ圧延を行う。熱間圧延条件については限定されない。
<巻き取り工程>
 巻き取り工程では、例えば熱間圧延工程後の熱延鋼板を800℃以下の温度域で巻き取る。巻き取り温度が800℃を超えると、変態がほとんど進まない内に巻き取られ、コイル内で変態が進行することで、コイル形状不良となる場合があるので好ましくない。
<熱延板焼鈍工程>
 熱延鋼板の焼鈍工程では、必要に応じて、例えば窒素80体積%以上の雰囲気や大気雰囲気で450~800℃で5時間以上の焼鈍を施す。熱延板焼鈍によれば、熱延鋼板を軟質化し、次工程である冷延工程における荷重を低減できるので好ましい。
<冷間圧延工程>
 冷間圧延工程では、必要に応じて、熱延板焼鈍工程後の熱延鋼板(熱延板焼鈍工程を行わない場合には巻き取り工程後の熱延鋼板)にデスケーリングを行い、冷間圧延を行って冷延鋼板とする。デスケーリング及び冷間圧延は必ずしも行う必要がないが、冷間圧延を行う場合、良好な平坦性を確保する観点からは、冷間圧延における累積圧下率は30%以上とすることが好ましい。一方、圧延荷重が過大となることを避けるため、冷間圧延における累積圧下率は80%以下とすることが好ましい。
 デスケーリングの方法は、特に限定されないが、酸洗とすることが好ましい。また、酸洗を行う場合、塩酸または硫酸酸洗にて鉄スケールのみ除去することが好ましい。
<焼鈍工程>
 被覆前の焼鈍工程では、必要に応じて、熱延鋼板または冷延鋼板に対し、700~950℃の温度域で焼鈍を施し、焼鈍鋼板とする。焼鈍工程によれば、冷延鋼板が軟質化し、次工程であるめっき工程において通板が容易となるので好ましい。
<被覆工程>
 被覆工程では、必要に応じて、鋼板(巻取り工程後の熱延鋼板、熱延板焼鈍工程後の熱延鋼板、冷延工程後の冷延鋼板または焼鈍工程後の焼鈍鋼板)の表面に被覆(耐食性の向上に寄与する耐食性被覆)を形成し、被覆鋼板とする。耐食性被覆の方法については、特に限定するものではなく、溶融めっき法をはじめとして電気めっき法、真空蒸着法、クラッド法、溶射法等が可能である。工業的に最も普及しているのは溶融めっき法である。
 耐食性の向上に寄与する被覆については、Alを含むAl系被覆やZnを含むZn系被覆等が挙げられる。
 Al系被覆は、熱処理によって、Alの一部または全部が、鋼板のFeと合金化し、Al-Fe系被覆となる。また、Zn系被覆は、熱処理によって、Znの一部または全部が、鋼板のFeと合金化し、Zn-Fe系被覆となる。
 Al系被覆を溶融めっきで形成する場合、めっき浴にはAlの他に不純物としてFeが混入している場合が多い。また、Alを70質量%以上含有する限り、さらに上述した元素以外にめっき浴にSi、Mg、Ca、Sr、Ni、Cu、Mo、Mn、Cr、C、Nb、Ti、B、V、Sn、W、Sb、Zn、Co、In、Bi、Zr、Se、As、ミッシュメタル等を含有させてもよい。
 溶融めっきを行う場合、焼鈍工程後の焼鈍鋼板を、室温まで冷却した後に再度昇温しめっきを行ってもよく、焼鈍後にめっき浴温近傍の650~750℃に冷却し、一旦室温まで冷却することなく溶融めっきを行ってもよい。
 Zn系被覆を溶融めっきで形成する場合、めっき浴にはZnの他に不純物としてFeが混入している場合が多い。また、Znを70質量%以上含有する限り、さらに上述した元素以外にめっき浴にSi、Mg、Ca、Sr、Ni、Cu、Mo、Mn、Cr、C、Nb、Ti、B、V、Sn、W、Sb、Zn、Co、In、Bi、Zr、Se、As、ミッシュメタル等を含有させてもよい。
 溶融めっきを行う場合、焼鈍工程後の焼鈍鋼板を、室温まで冷却した後に再度昇温しめっきを行ってもよく、焼鈍後にめっき浴温近傍の400~600℃に冷却し、一旦室温まで冷却することなく溶融めっきを行ってもよい。
 耐食性被覆の前処理や後処理については特に限定するものではなく、プレコートや溶剤塗布、合金化処理、調質圧延等が可能である。合金化処理として、例えば450~800℃で焼鈍することが可能である。また後処理として調質圧延は形状調整等に有用で、例えば0.1~0.5%の圧下が可能である。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1-1、表1-2(表1-1の続き)に示す化学組成を有する鋼を溶製し、スラブを得た。
 得られたスラブに熱間圧延を施し、800℃以下の温度で巻き取り、厚さ3.2mmの熱延鋼板とした。
 B35~B37を除く熱延鋼板に対し、酸洗後、冷間圧延を施し、厚さ1.6mmの冷延鋼板とした。
 一部の鋼板(B38~40)については、酸洗前に熱延板焼鈍を実施した。熱延板焼鈍は700℃、12時間の条件で行った。
 また、一部の鋼板(B41~B43)については、冷間圧延後、鋼板を760℃に加熱して焼鈍し、さらに、680℃の、Siを10%、Feを2%含み、残部が不純物であるAlめっき浴に浸漬してAlめっき鋼板とした。
 また、一部の鋼板(B44~B469については、冷間圧延後、470℃のZnめっき浴に浸漬してZnめっき鋼板とした。
 これらの鋼板(熱延鋼板、冷延鋼板、被覆鋼板)の板厚方向に表面から板厚の1/4の位置の化学組成を測定した結果、スラブの化学組成と同様であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板から、200mm×50mm(×板厚)および68mm×8mm(×板厚)の鋼板を切り出し、これらの鋼板について、表2-1、表2-2に示す平均昇温速度で、表2-1、表2-2に示す加熱温度まで加熱し、この加熱温度の±10℃以内の範囲に60秒保持し、表2-1、表2-2に示す平均冷却速度でMs点以下の温度まで冷却する熱処理を施し、B1~B46、b1~b50の鋼材を得た。
 前記の熱処理が施された200mm×50mmの鋼材の鋼板基材の板厚方向に表面から板厚の1/4の位置の化学組成は、スラブの化学組成と同様であった。
 また、上述の要領で、前記の熱処理が施された200mm×50mmの鋼材の内部組織のマルテンサイト面積率を求めた。結果を表2-3、表2-4に示す。内部組織の残部は、残留オーステナイト、ベイナイト、フェライト、およびパーライトのうち1種以上であった。
 前記の熱処理が施された200mm×50mmの鋼材および68mm×8mmの鋼材に対し、室温において、表2-1、表2-2に示す塩濃度、Wet率、サイクル数(1サイクル8時間)の保護膜安定化処理を施し、保護膜を有する鋼材を得た。
 ただし、表面にAl-Fe系被覆、またはZn-Fe系被覆が形成されている例については、切断によって露出した(Al-Fe系被覆、またはZn-Fe系被覆が形成されていない)面に対し、保護膜安定化処理を行った。
 得られた鋼材において、X線回折、引張試験、曝露試験を以下の方法で行い、保護膜の回折角が36.6±0.5°の位置のピーク強度を100%とした場合の、回折角が35.5±0.5°の位置のピーク強度(表中ピーク強度の相対強度)、引張強さ、及び腐食環境における耐水素脆性を評価した。評価結果を表2-3、表2-4に示す。
<X線回折>
 鋼材の保護膜に対し、2°/分の条件で、CuKα放射線を使用して、回折角(2θ)が35.5±0.5°の位置のピーク強度、および回折角が36.6±0.5°の位置のピーク強度を求め、36.6±0.5°の位置のピーク強度を100%とした場合の35.5±0.5°の位置のピーク強度(相対強度)を求めた。ピーク強度算出には擬Voigt関数を用いて回折プロファイルのフィッテイングを行い、ピークのカウント数を求め、バックグラウンドとしてBスプライン補間を行い、その値を差し引いてピーク強度とした。X線回折測定にはRigaku社製SmartLab 3kWを用い、同Rigaku社製SmartLab Studio IIを用いてプロファイルフィッテイングを行った。
<引張強さ>
 引張試験はASTM規格E8の規定に準拠して実施した。前記の熱処理および保護膜安定化処理が施された200mm×50mmの鋼材を1.2mm厚まで研削した後、試験方向が圧延方向に平行になるように、ASTM規格E8のハーフサイズ板状試験片(平行部長さ:32mm、平行部板幅:6.25mm)を採取した。そして、試験片平行部の幅および長さ方向中心にひずみゲージ(ゲージ長:5mm)を貼付け、3mm/minのひずみ速度で室温引張試験を行い、引張強さ(最大強度)を測定した。本実施例においては、1500MPa超の引張強さを有する場合を、高い強度を有すると評価した。
<曝露試験>
 腐食環境における耐水素脆性は、応力付与した鋼材の曝露試験によって評価した。具体的には、前記の熱処理および保護膜安定化処理が施された68mm×8mmの鋼材に対し、後述の方法により予め求められた引張強さの1/2相当のひずみが付与された4点曲げ試験体を製作した。この試験体の製作に先立って、予め同一チャンスで製造した試験片を用意し、試験片の幅および長さ方向中心に引張試験と同様のひずみゲージ(ゲージ長:5mm)を貼り付け、ひずみと4点曲げ変位量の関係を取得し、引張強さの1/2相当のひずみとなる4点曲げ変位量を求めた。4点曲げした試験体を治具と一緒に屋外曝露試験(北九州市戸畑区飛幡町1-1)に供し、1年以上経過した後に、目視で割れが観察されなかった場合を腐食環境における耐水素脆性に優れるとした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2-1~表2-4に示すとおり、本発明範囲を満足する発明例B1~B46は、組織、特性ともに良好な結果であるが、本発明範囲を満足していない比較例b1~b49は、化学組成または、保護膜の形成が不十分であり、強度、耐水素脆性の少なくとも1つが劣っていた。また比較例b50は、保護膜安定化処理において保護膜が剥離したため、次工程の評価へ進めることができなかった。
  1  鋼材
  11  鋼板基材
  12  保護膜
  13  耐食性被覆(被覆)

Claims (6)

  1.  鋼板基材と、
     前記鋼板基材の表面の少なくとも一部に形成された保護膜と、
    を有し、
     前記鋼板基材の化学組成が、質量%で、
      C:0.25~0.65%、
      Si:0.05~2.00%、
      Mn:0.30~3.00%、
      P:0.050%以下、
      S:0.0100%以下、
      N:0.010%以下、
      O:0.010%以下、
      Cr:0.05~1.00%、
      Cu:0.10~1.00%、
      Ti:0~0.10%、
      B:0~0.0100%、
      Mo:0~1.00%、
      Ni:0~1.00%、
      Nb:0~0.10%、
      V:0~1.00%、
      Ca:0~0.010%、
      Mg:0~0.010%、
      Al:0~1.00%、
      Sn:0~1.00%、
      W:0~1.00%、
      Sb:0~1.00%、
      Zr:0~1.00%、
      Co:0~1.00%、
      REM:0~0.30%、及び
      残部:Fe及び不純物であり、
     前記保護膜がCuKα放射線を使用して測定するX線解析において、回折角(2θ)が36.6±0.5°の位置のピーク強度を100%とした場合に、回折角(2θ)が35.5±0.5°の位置に、ピーク強度が250%超となるピークを有し、
     引張強さが1500MPa超である、
    ことを特徴とする鋼材。
  2.  前記鋼板基材の表面の全てに、前記保護膜が形成されている、
    ことを特徴とする、請求項1に記載の鋼材。
  3.  前記鋼板基材の前記表面の、前記保護膜が形成されていない部分に、耐食性被覆が形成されている、
    ことを特徴とする、請求項1に記載の鋼材。
  4.  前記鋼板基材の板厚方向に垂直な2つの表面に耐食性被覆が形成され、前記鋼板基材の前記板厚方向に平行な2つの表面に保護膜が形成されている、
    ことを特徴とする、請求項3に記載の鋼材。
  5.  前記耐食性被覆が、Al-Fe系被覆又はZn-Fe系被覆である、
    ことを特徴とする、請求項3又は請求項4に記載の鋼材。
  6.  前記保護膜における最大Cu含有量と、前記鋼板基材のCu含有量との比が1.5以上である
    ことを特徴とする、請求項1~5のいずれか1項に記載の鋼材。
PCT/JP2022/001710 2021-01-19 2022-01-19 鋼材 WO2022158469A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22742591.5A EP4230766A4 (en) 2021-01-19 2022-01-19 STEEL MATERIAL
MX2023006378A MX2023006378A (es) 2021-01-19 2022-01-19 Acero.
CN202280007946.3A CN116568826A (zh) 2021-01-19 2022-01-19 钢材
KR1020237018592A KR20230104213A (ko) 2021-01-19 2022-01-19 강재
JP2022576704A JPWO2022158469A1 (ja) 2021-01-19 2022-01-19
US18/036,253 US20230407428A1 (en) 2021-01-19 2022-01-19 Steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006369 2021-01-19
JP2021-006369 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158469A1 true WO2022158469A1 (ja) 2022-07-28

Family

ID=82549428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001710 WO2022158469A1 (ja) 2021-01-19 2022-01-19 鋼材

Country Status (7)

Country Link
US (1) US20230407428A1 (ja)
EP (1) EP4230766A4 (ja)
JP (1) JPWO2022158469A1 (ja)
KR (1) KR20230104213A (ja)
CN (1) CN116568826A (ja)
MX (1) MX2023006378A (ja)
WO (1) WO2022158469A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238378A (ja) * 1986-04-08 1987-10-19 Kobe Steel Ltd 耐水素誘起割れ性の優れた表面処理鋼材
JP2002102980A (ja) 2000-07-28 2002-04-09 Aisin Takaoka Ltd 車輌用衝突補強材の製造方法および車輌用衝突補強材
JP4712838B2 (ja) 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
JP2012001802A (ja) 2010-06-21 2012-01-05 Sumitomo Metal Ind Ltd 鋼材およびその製造方法ならびに焼入処理用鋼板
JP2012180594A (ja) 2006-05-10 2012-09-20 Sumitomo Metal Ind Ltd 熱間プレス成形された鋼板部材および熱間プレス鋼板部材用鋼板ならびにそれらの製造方法
JP2013237101A (ja) * 2012-04-20 2013-11-28 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼材およびその製造方法
JP2013256701A (ja) * 2012-06-13 2013-12-26 Jfe Steel Corp 耐塗膜膨れ性に優れた船舶バラストタンク用鋼材
WO2015182591A1 (ja) 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法
WO2015182596A1 (ja) 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法
WO2016158961A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
WO2020162513A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 被覆鋼部材、被覆鋼板およびそれらの製造方法
JP2021006369A (ja) 2019-06-27 2021-01-21 コニカミノルタ株式会社 画像形成装置及び画像形成制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199778A (ja) * 2015-04-07 2016-12-01 株式会社神戸製鋼所 鋼材およびその鋼材の製造方法
KR20190088191A (ko) * 2018-01-18 2019-07-26 임재학 고주파열처리를 통한 pc 강봉을 제조하는 방법 및 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238378A (ja) * 1986-04-08 1987-10-19 Kobe Steel Ltd 耐水素誘起割れ性の優れた表面処理鋼材
JP2002102980A (ja) 2000-07-28 2002-04-09 Aisin Takaoka Ltd 車輌用衝突補強材の製造方法および車輌用衝突補強材
JP2012180594A (ja) 2006-05-10 2012-09-20 Sumitomo Metal Ind Ltd 熱間プレス成形された鋼板部材および熱間プレス鋼板部材用鋼板ならびにそれらの製造方法
JP4712838B2 (ja) 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
JP2012001802A (ja) 2010-06-21 2012-01-05 Sumitomo Metal Ind Ltd 鋼材およびその製造方法ならびに焼入処理用鋼板
JP2013237101A (ja) * 2012-04-20 2013-11-28 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼材およびその製造方法
JP2013256701A (ja) * 2012-06-13 2013-12-26 Jfe Steel Corp 耐塗膜膨れ性に優れた船舶バラストタンク用鋼材
WO2015182591A1 (ja) 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法
WO2015182596A1 (ja) 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法
WO2016158961A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体
WO2020162513A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 被覆鋼部材、被覆鋼板およびそれらの製造方法
JP2021006369A (ja) 2019-06-27 2021-01-21 コニカミノルタ株式会社 画像形成装置及び画像形成制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230766A4

Also Published As

Publication number Publication date
CN116568826A (zh) 2023-08-08
MX2023006378A (es) 2023-06-14
KR20230104213A (ko) 2023-07-07
JPWO2022158469A1 (ja) 2022-07-28
EP4230766A1 (en) 2023-08-23
US20230407428A1 (en) 2023-12-21
EP4230766A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
KR101624473B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
CN109023051A (zh) 热压用钢板、其制造方法以及热压钢板构件
JP7095818B2 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
JP6822616B2 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
JP7111252B2 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
WO2020162509A1 (ja) 鋼部材、鋼板、及びそれらの製造方法
JP2004018971A (ja) バーリング加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法
CN117026072A (zh) 热冲压用钢板及其制造方法以及热冲压构件及其制造方法
JP7553837B2 (ja) ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法
JP2004018970A (ja) バーリング加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法
WO2023095920A1 (ja) 鋼部材及び鋼板
WO2022158469A1 (ja) 鋼材
CN116034177A (zh) Zn系镀覆热冲压成型品
WO2024122117A1 (ja) ホットスタンプ成形体
JP7303460B2 (ja) 鋼板およびその製造方法
JP7541653B1 (ja) 鋼板および部材、ならびに、それらの製造方法
WO2024122124A1 (ja) ホットスタンプ成形体
WO2024122123A1 (ja) めっき鋼板
WO2023017844A1 (ja) 接合部品および接合鋼板
WO2024190769A1 (ja) 鋼部材及び鋼板
WO2023190867A1 (ja) 鋼部材及び鋼板
WO2024190491A1 (ja) 鋼部材及び鋼板
WO2024166891A1 (ja) ホットスタンプ成形体及び鋼板、並びにこれらの製造方法
WO2024166881A1 (ja) ホットスタンプ成形体及び鋼板、並びにこれらの製造方法
WO2024122119A1 (ja) ホットスタンプ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576704

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036253

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022742591

Country of ref document: EP

Effective date: 20230517

WWE Wipo information: entry into national phase

Ref document number: 202317036212

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237018592

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280007946.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE