WO2016157850A1 - 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法 - Google Patents

発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法 Download PDF

Info

Publication number
WO2016157850A1
WO2016157850A1 PCT/JP2016/001713 JP2016001713W WO2016157850A1 WO 2016157850 A1 WO2016157850 A1 WO 2016157850A1 JP 2016001713 W JP2016001713 W JP 2016001713W WO 2016157850 A1 WO2016157850 A1 WO 2016157850A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electrode
conductivity type
light
Prior art date
Application number
PCT/JP2016/001713
Other languages
English (en)
French (fr)
Inventor
琵琶 剛志
暁 大前
祐亮 片岡
達男 大橋
逸平 西中
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US15/559,874 priority Critical patent/US11158767B2/en
Priority to KR1020177026366A priority patent/KR20170133347A/ko
Priority to CN201680017721.0A priority patent/CN107408606B/zh
Publication of WO2016157850A1 publication Critical patent/WO2016157850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present technology relates to a light emitting element using a solid light source such as a semiconductor material, a light emitting unit, a light emitting panel device including the light emitting unit, and a driving method of the light emitting panel device.
  • LED displays using light emitting diodes (LEDs) as display pixels have attracted attention as lightweight and thin display devices.
  • the LED display has a feature that there is no viewing angle dependency in which the contrast and hue change depending on the viewing angle, and the reaction speed when changing the color is fast.
  • a suitable light-emitting element used for such an LED display is disclosed in Patent Document 1, for example.
  • the light emitting element provided in the light emitting unit described in Patent Document 1 includes an active layer, a first conductivity type layer connected to the first electrode, and a second conductivity type layer connected to the second electrode.
  • a semiconductor layer configured as described above.
  • the light emitting element is disposed outside the first insulating layer and the first insulating layer in contact with at least the side surface (end surface) of the active layer, and shields or reflects light emitted from the active layer.
  • a metal layer is electrically separated from the first electrode and the second electrode and insulated (see, for example, paragraph [0029] of FIG. 2 in the specification of Patent Document 1).
  • the metal layer is separated into the first electrode and the second electrode, respectively, and it is necessary to ensure insulation between them. Therefore, high precision is required for the formation position of the metal layer and the electrode. Is done.
  • an object of the present technology is to provide a light emitting element, a light emitting unit, and a light emitting panel device having a metal layer and an electrode that can be formed with relatively low positional accuracy, and a driving method for the light emitting panel device. It is to provide.
  • a light emitting device includes a semiconductor layer, a first electrode portion, a second electrode portion, a first insulating layer, and a metal layer.
  • the semiconductor layer has an active layer, a first conductivity type layer, and a second conductivity type layer, and each side surface of the active layer, the first conductivity type layer, and the second conductivity type layer has a semiconductor layer side surface.
  • the first electrode portion is connected to the first conductivity type layer.
  • the second electrode part is connected to the second conductivity type layer.
  • the first insulating layer is in contact with at least a part of the side surface of the active layer among the side surfaces of the semiconductor layer.
  • the metal layer is in contact with at least a surface of the first insulating layer facing the side surface of the active layer, is electrically connected to the first electrode portion, and is insulated from the second electrode portion. Since the metal layer is electrically connected to the first electrode portion, the metal layer and the first electrode portion can be positioned with lower positional accuracy than when the metal layer is insulated from both the first electrode portion and the second electrode portion. It becomes possible to form.
  • the first insulating layer and the metal layer may have a laminated structure and cover the entire side surface of the semiconductor layer. Thereby, light leakage can be suppressed reliably.
  • the second conductivity type layer has a first surface that is in contact with the active layer, and a second surface that is an opposite side of the first surface and that is a light extraction surface to which the second electrode portion is connected. May be.
  • the first electrode portion may include a first connection conductive portion that can be connected to a substrate on which the light emitting element is mounted, and the metal layer may be connected to the first connection conductive portion.
  • the second electrode portion may include a second connection conductive portion configured to pass through the first insulating layer, and the metal layer may be connected to the second connection conductive portion.
  • a one-side electrode type light emitting element can be realized.
  • the first conductivity type layer has a first surface that is in contact with the active layer, and a second surface that is an opposite side of the first surface and that is connected to the first electrode portion and that is a light extraction surface. May be.
  • the first electrode portion may be connected to the metal layer across an end surface of the first insulating layer provided on the light extraction surface side.
  • the first electrode portion may include a first connection conductive portion configured to pass through the first insulating layer, and the metal layer may be connected to the first connection conductive portion.
  • a one-side electrode type light emitting element can be realized.
  • the light emitting device may further include a second insulating layer, the second insulating layer provided so that the metal layer is disposed between the first insulating layer and the second insulating layer. Good.
  • the first conductivity type layer may be a p-type semiconductor layer, and the second conductivity type layer may be an n-type semiconductor layer. Or, conversely, the first conductivity type layer may be an n-type semiconductor layer and the second conductivity type layer may be a p-type semiconductor layer.
  • These semiconductor layers may be made of a gallium nitride compound semiconductor or a phosphorus compound semiconductor.
  • the light emitting element may further include a third electrode part for external connection connected to the metal layer.
  • a third electrode part for external connection connected to the metal layer.
  • the light emitting device may further include a second insulating layer, the second insulating layer provided so that the metal layer is disposed between the first insulating layer and the second insulating layer.
  • the metal layer may include an opening
  • the second insulating layer may include a first opening facing the opening of the metal layer and a second opening.
  • the second electrode portion may be provided on the second insulating layer so as to be in contact with the second conductivity type layer through the opening of the metal layer and the first opening.
  • the third electrode portion may be provided on the second insulating layer so as to be in contact with the metal layer through the second opening.
  • the second electrode portion and the third electrode portion may be configured such that a part of each of the second electrode portion and the third electrode portion is located on a common surface of the second insulating layer. Thereby, for example, a flip-chip type light emitting element can be realized.
  • the first electrode part may include a transparent electrode.
  • the second insulating layer may have an outer peripheral side surface that constitutes a side surface of the light emitting element.
  • the first electrode portion may have an exposed side surface, and an outline of the exposed side surface may coincide with a partial outline of an outer peripheral side surface of the second insulating layer.
  • the light emitting device may further include a protective layer covering the first conductivity type layer.
  • the second insulating layer has an outer peripheral side surface that constitutes a side surface of the light emitting element, and the outer peripheral portion of the first electrode portion is disposed inside the outer peripheral side surface of the second insulating layer, and is covered by the protective layer. It may be broken. Thereby, even if the first electrode portion is made of a material that is easily corroded, the corrosion can be suppressed.
  • a protective layer provided on the first conductivity type layer may be further provided, having a non-covering region that does not continuously cover each of the metal layer and the first conductivity type layer.
  • the first electrode portion may be provided in an uncovered region of the protective layer. Thereby, for example, the first electrode can be formed by plating growth from the metal layer.
  • the light-emitting unit includes a substrate having wiring, a light-emitting element, and a joint portion that joins the light-emitting element to the wiring of the substrate.
  • the light emitting element includes the semiconductor layer, the first electrode portion, the second electrode portion, the first insulating layer, and the metal layer described above.
  • the joint or the wiring is silver, copper, lead, tin, gold, nickel, palladium, or at least two alloys thereof. Thereby, even if it is the material which raise
  • the light emitting panel device includes a light emitting panel and a drive circuit.
  • the light-emitting panel has a plurality of light-emitting elements.
  • the drive circuit drives the plurality of light emitting elements.
  • At least one of the plurality of light emitting elements includes the semiconductor layer, the first electrode portion, the second electrode portion, the first insulating layer, and the metal layer described above. Since the metal layer is electrically connected to the first electrode portion, the metal layer and the first electrode portion are formed with relatively easy positional accuracy, and the manufacture of the light emitting panel is facilitated.
  • the light-emitting panel device may further include a substrate on which the plurality of light-emitting elements are arranged in a matrix.
  • the drive circuit may be configured to cause the light emitting element to emit light by applying a positive voltage to the first electrode portion.
  • the drive circuit alternately executes positive voltage application to the first electrode part and the second electrode part, and the time for applying positive voltage to the first electrode part is
  • the voltage application timing may be controlled so as to be longer than the time of positive voltage application to the unit. That is, the voltage application time to the electrode to which the positive voltage is applied (first electrode part) becomes longer, and the electrode (first electrode part) is conductive as compared with the case where it is shorter.
  • the generation time and frequency of ion migration to the metal layer can be suppressed. This improves the reliability of the product.
  • the first conductivity type layer may be an n-type semiconductor layer, and the second conductivity type layer may be a p-type semiconductor layer.
  • the drive circuit may be configured such that the first electrode applies a positive voltage when not emitting light, and the second electrode unit applies a positive voltage when emitting light. Thereby, the light emission panel apparatus by a passive matrix is realizable.
  • the driving method of the light emitting panel device includes the following steps executed by the driving circuit.
  • a positive voltage is applied to the first electrode part.
  • a positive voltage is applied to the second electrode part.
  • the voltage application to the first electrode unit and the second electrode unit are alternately performed, and the voltage application time to the first electrode unit is longer than the voltage application time to the second electrode unit. Thus, the timing of voltage application is controlled.
  • the light-emitting panel includes a substrate on which the plurality of light-emitting elements are arranged in a matrix, the first conductive type layer is an n-type semiconductor layer, and the second conductive type layer is a p-type semiconductor layer. May be. Then, the drive circuit may apply a positive voltage to the first electrode portion when light is not emitted, and apply a positive voltage to the second electrode portion when light is emitted.
  • a metal layer or an electrode can be formed with relatively easy positional accuracy. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1A perspectively illustrates an example of a schematic configuration of a light emitting unit of the present technology.
  • FIG. 1B shows an example of a cross-sectional configuration of the light emitting unit 1 of FIG. 1A in the direction of arrow AA.
  • FIG. 2 is a cross-sectional view showing the light emitting device according to the first embodiment of the present technology.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a light emitting unit including a light emitting element and a substrate on which the light emitting element is mounted.
  • 4A is a cross-sectional view showing a light emitting device according to Comparative Example 1.
  • FIG. 4B is a cross-sectional view showing a light emitting device according to Comparative Example 2.
  • FIG. 5 shows an example of a driving method of the light emitting element.
  • FIG. 6 is a cross-sectional view illustrating a light emitting device and a substrate on which the light emitting device according to the second embodiment of the present technology is mounted.
  • FIG. 7 is a cross-sectional view showing a light emitting element according to Comparative Example 3 and a substrate on which the light emitting element is mounted.
  • FIG. 8 is a cross-sectional view showing a light emitting element according to the third embodiment of the present technology.
  • FIG. 9A is a cross-sectional view showing a light emitting element and a substrate according to Comparative Example 4.
  • FIG. 9B is a cross-sectional view showing a light emitting element and a substrate according to Comparative Example 5.
  • FIG. 9A is a cross-sectional view showing a light emitting element and a substrate according to Comparative Example 4.
  • FIG. 10 is a cross-sectional view showing a light emitting device and a substrate according to the fourth embodiment of the present technology.
  • FIG. 11 is a schematic perspective view of a display device (light emitting panel device) according to an embodiment.
  • FIG. 12 shows an example of the layout of the area corresponding to the display area on the surface of the mounting board on the transparent substrate side.
  • FIG. 13 shows an example of a driving method for generating a reverse bias voltage in the passive matrix driving method.
  • 14A to 14C are cross-sectional views each showing a light emitting element according to the sixth embodiment of the present technology.
  • FIG. 15A is a plan view showing a light-emitting element according to Comparative Example 6.
  • FIG. 15A is a plan view showing a light-emitting element according to Comparative Example 6.
  • 15B and 15C are a cross-sectional view and a bottom view, respectively, showing a light-emitting element according to Comparative Example 6.
  • 16A is a plan view showing a light emitting element according to Comparative Example 7.
  • FIG. 16B and 16C are a sectional view and a bottom view, respectively, showing a light emitting element according to Comparative Example 6.
  • FIG. 17A is a plan view showing a light-emitting element according to Embodiment 7A of the present technology.
  • 17B and 17C are a cross-sectional view and a bottom view showing the light-emitting element, respectively.
  • FIG. 18A is a plan view showing a light-emitting element according to Embodiment 7B of the present technology.
  • FIG. 18B is a bottom view showing the light-emitting element.
  • FIG. 19A is a cross-sectional view showing a light-emitting element according to Embodiment 7C of the present technology.
  • FIG. 19B is a cross-sectional view showing a light-emitting element according to Embodiment 7D of the present technology.
  • FIG. 20A is a cross-sectional view showing a light-emitting element according to Embodiment 7E of the present technology.
  • FIG. 20B is a cross-sectional view showing a modification of the light emitting device according to Embodiment 7E ′.
  • FIG. 1A is a perspective view illustrating an example of a schematic configuration of the light-emitting unit 1.
  • FIG. 1B shows an example of a cross-sectional configuration of the light emitting unit 1 of FIG. 1A in the direction of arrow AA.
  • the light emitting unit 1 can be suitably applied as a display pixel of a display device called a so-called LED display, and is a micro package in which a plurality of light emitting elements are covered with a thin resin.
  • the light emitting unit 1 includes three light emitting elements 10 as shown in FIG. 1A.
  • Each light-emitting element 10 is a solid-state light-emitting element that emits light in a predetermined wavelength region from the upper surface, and is specifically an LED chip.
  • an LED chip refers to a chip cut from a wafer used for crystal growth, and is not a package type covered with a molded resin or the like.
  • the LED chip has a size of, for example, 5 ⁇ m or more and 100 mm or less.
  • the planar shape of the LED chip is, for example, substantially square.
  • the LED chip is in the shape of a flake, and the aspect ratio (height / width) of the LED chip is, for example, 0.1 or more and less than 1, but is not limited thereto, and is 0.001 or more. Forms of less than 10 are possible.
  • Each light emitting element 10 is disposed in the light emitting unit 1 and, for example, as illustrated in FIG. 1A, is disposed in a line with another light emitting element 10 through a predetermined gap.
  • the light emitting unit 1 has, for example, an elongated shape extending in the arrangement direction of the light emitting elements 10.
  • the gap between two light emitting elements 10 adjacent to each other is, for example, equal to or larger than the size of each light emitting element 10. Note that the gap may be narrower than the size of each light emitting element 10 in some cases.
  • Each light emitting element 10 emits light in a different wavelength range.
  • the three light emitting elements 10 include a light emitting element 10G that emits green band light, a light emitting element 10R that emits red band light, and a light emitting element 10B that emits blue band light. It is configured.
  • the positions of the light emitting elements 10R, 10G, and 10B are not limited to those illustrated in the drawing, but in the following, it is assumed that the light emitting elements 10R, 10G, and 10B are disposed at the locations illustrated above. In some cases, the positional relationship of the constituent elements is described.
  • Each light-emitting element 10 includes, for example, a semiconductor layer in which a first conductive type layer 11, an active layer 12, and a second conductive type layer 13 are sequentially stacked from the bottom as shown in FIG. have.
  • the semiconductor layer may include a layer different from these layers.
  • the first conductivity type layer 11, the active layer 12, and the second conductivity type layer 13 are made of, for example, a gallium nitride compound semiconductor.
  • a gallium nitride compound semiconductor for example, it is an InGaN-based semiconductor.
  • the first conductivity type layer 11, the active layer 12, and the second conductivity type layer 13 are made of, for example, a phosphorus compound semiconductor.
  • it is an AlGaInP semiconductor.
  • the second electrode 15 is provided on the upper surface of the second conductivity type layer 13 (that is, the light extraction surface S2).
  • the second electrode 15 is made of Ti / Pt / Au.
  • the second electrode 15 is made of AuGe (an alloy of gold and germanium) / Ni / Au.
  • the second electrode 15 is in contact with the second conductivity type layer 13 and is electrically connected to the second conductivity type layer 13. That is, the second electrode 15 is in ohmic contact with the second conductivity type layer 13.
  • the first electrode 14 is provided on the lower surface of the first conductivity type layer 11.
  • the first electrode 14 is a metal electrode.
  • the first electrode 14 is made of Ti / Pt / Au.
  • the first electrode 14 is made of AuGe / Ni / Au.
  • the first electrode 14 is in contact with the first conductivity type layer 11 and is electrically connected to the first conductivity type layer 11. That is, the first electrode 14 is in ohmic contact with the first conductivity type layer 11.
  • Both the first electrode 14 and the second electrode 15 may be composed of a single electrode or a plurality of electrodes.
  • the side surface (hereinafter referred to as a semiconductor layer side surface) S1 of the semiconductor layer is constituted by the respective side surfaces of the first conductivity type layer 11, the active layer 12, and the second conductivity type layer 13.
  • the semiconductor layer side surface S ⁇ b> 1 is an inclined surface that intersects with the stacking direction, and specifically, the light-emitting element 10 has a cross-section of an inverted trapezoid (reverse mesa shape). It becomes such an inclined surface.
  • the semiconductor layer side surface S1 may be, for example, a surface along the stacking direction, that is, a surface substantially parallel to the stacking direction.
  • Each light emitting element 10 has a laminated body including a first insulating layer 16, a metal layer 17, a second insulating layer 18, and a pad electrode 19, for example, as shown in FIG.
  • a metal layer 17 is disposed between the first insulating layer 16 and the second insulating layer 18.
  • This laminated body is a layer formed from the semiconductor layer side surface S1 of the semiconductor layer to the lower surface (the surface facing the substrate 100 side).
  • at least the first insulating layer 16, the metal layer 17, and the second insulating layer 18 are thin layers, respectively, and formed by a thin film forming process such as CVD (Chemical Vapor Deposition), vapor deposition, sputtering, or the like. It has been done. That is, at least the first insulating layer 16, the metal layer 17, and the second insulating layer 18 in the stacked body are not formed by a thick film forming process such as spin coating, resin molding, or potting.
  • the first insulating layer 16, the metal layer 17, and the second insulating layer 18 cover at least the entire semiconductor layer side surface S1. These layers 16, 17, and 18 are formed from the semiconductor layer side surface S ⁇ b> 1 to a part of the first electrode 14.
  • the first insulating layer 16 has a function of electrically insulating the semiconductor layer.
  • the first insulating layer 16 is formed from the end on the light extraction surface S2 side of the light emitting element 10 to the outer edge of the surface of the first electrode 14 in the semiconductor layer side surface S1. That is, the first insulating layer 16 is formed in contact with the entire semiconductor layer side surface S ⁇ b> 1 of the light emitting element 10, and is further formed in contact with the outer edge of the surface of the first electrode 14.
  • the first insulating layer 16 is made of a material transparent to light emitted from the active layer 12, for example, SiO 2, SiN, Al 2 O 3, TiO 2, TiN and the like.
  • the first insulating layer 16 has a thickness of about 0.1 ⁇ m to 1 ⁇ m, for example, and has a substantially uniform thickness. Note that the first insulating layer 16 may have non-uniform thickness due to manufacturing errors.
  • the metal layer 17 has a function of shielding or reflecting light emitted from the active layer 12.
  • the metal layer 17 is formed in contact with the surface of the first insulating layer 16.
  • the metal layer 17 is formed from the end on the light extraction surface S2 side to the lower part of the first electrode 14 on the surface of the first insulating layer 16. That is, the metal layer 17 is formed so as to cover the entire first insulating layer 16.
  • the end of the metal layer 17 on the light extraction surface S2 side is formed on the same surface as the end of the first insulating layer 16 on the light extraction surface S2 side (that is, the same surface as the light extraction surface S2).
  • the end of the metal layer 17 is electrically insulated from the second electrode 15.
  • the other end of the metal layer 17 is connected to the pad electrode 19.
  • the metal layer 17 is configured to be electrically connected to the first electrode.
  • the metal layer 17 is made of a material that shields or reflects light emitted from the active layer 12, for example, Ti, Al, Cu, Au, Ni, Pt, W, Rh, Ru, Pd, or at least two alloys thereof. Become.
  • the metal layer 17 has a thickness of about 0.1 ⁇ m to 1 ⁇ m, for example, and a substantially uniform thickness. Note that the metal layer 17 may have non-uniform thickness due to manufacturing errors.
  • the second insulating layer 18 is provided so as to cover the entire metal layer 17 and has a function of protecting the metal layer 17.
  • the second insulating layer 18 may not be provided, and the metal layer 17 may be the outermost peripheral layer of the light emitting element 10.
  • the same material as the first insulating layer 16 can be used.
  • the second insulating layer 18 has a thickness of, for example, about 0.1 ⁇ m to 1 ⁇ m, and a substantially uniform thickness. Note that the second insulating layer 18 may have non-uniform thickness due to manufacturing errors.
  • the pad electrode 19 is an electrode that is connected to the first electrode 14 and is drawn from the first electrode 14, and functions as a “connection conductive portion (first connection conductive portion)” here.
  • the pad electrode 19 is formed from the connection lower surface 14 ⁇ / b> A of the first electrode 14 to the lower surface of the second insulating layer 18.
  • the pad electrode 19 is made of a material that reflects light emitted from the active layer 12, for example, Ti, Al, Cu, Au, Ni, or at least two alloys thereof.
  • the conductive part including at least the first electrode 14 may be referred to as a “first electrode part” below.
  • the first electrode portion may include a connection conductive portion such as the pad electrode 19.
  • FIG. 4A is a cross-sectional view showing a light emitting device according to Comparative Example 1.
  • the metal layer 117 is not electrically connected to the first electrode 14 (not connected to the pad electrode 19), and is not electrically connected to the second electrode 15. That is, it is configured to be insulated from both electrodes 14 and 15. In such a configuration, in order to ensure insulation between the metal layer 117 and the first electrode 14, high accuracy is required for the formation positions thereof.
  • the accuracy of overlapping between the metal layer 117 and the first electrode 14 is required. This is for suppressing light leakage.
  • Light leakage is a phenomenon in which light generated from the active layer leaks to the substrate 100 side without being reflected by the metal layer 117.
  • a high-precision exposure apparatus and inspection apparatus are required, and light that propagates through the insulating layer cannot be completely eliminated even if the overlapping is maintained with high accuracy.
  • the light emitting element 10 since the light emitting element 10 according to the present embodiment has a configuration in which the metal layer 17 and the first electrode 14 are electrically connected, the accuracy of the formation positions of the metal layer 17 and the first electrode 14, particularly the accuracy of the overlap. There is no need to keep it high. That is, the light emitting element 10 can form the metal layer 17 and the first electrode 14 with lower positional accuracy than the light emitting element of Comparative Example 1.
  • the light emitting element 10 is mounted on a substrate 100 having a wiring 101 (or a terminal electrode 31 described later) as shown in FIG. Also in FIG. 1, the substrate 100 is represented by a one-dot chain line.
  • a connection part 34 (see FIG. 1) described later is connected to the second electrode 15.
  • a metal material that connects the first electrode and the wiring of the substrate hereinafter referred to as a joint for convenience of description).
  • ion migration may occur from the joint to the metal layer when silver or copper is used.
  • ⁇ ⁇ ⁇ Ion migration is a phenomenon in which positively ionized metal atoms move from the anode side to the cathode side.
  • the first conductivity type layer 11 is a p-type semiconductor layer and the second conductivity type layer 13 is an n-type semiconductor. If a positive voltage is applied to the first electrode 14 connected to the p-type semiconductor layer, ion migration may occur from the junction 102 with the substrate 100 to the metal layer 117 in a floating potential state. is there. When there are a few pinholes or poor film quality in the insulating layer, or when the diffusion coefficient of metal ions in the insulating layer itself is large, the insulation may be broken and a short circuit may occur.
  • the metal material that can be used for the joint 102 and easily causes ion migration is silver, copper, lead, tin, gold, nickel, palladium, or at least two of these alloys (for example, solder). is there. Ion migration may occur not only from the joint 102 but also from the wiring 101 of the substrate 100. Note that the joining portion 102 is typically formed by electrolytic plating.
  • FIG. 5 shows an example of a driving method of the light emitting element 10.
  • the upper part of FIG. 5 shows the potential difference between the first electrode 14 and the second electrode 15, and the lower part of FIG. 5 shows the presence or absence of light emission (light emission or non-light emission).
  • the horizontal axis is time.
  • the potential difference is substantially 0 V
  • the light emitting element does not emit light.
  • a potential difference occurs, that is, here, when the first conductivity type layer 11 is a p-type semiconductor layer and a positive voltage Vf is applied to the first electrode 14, the light emitting element emits light.
  • the metal layer 17 is configured to be electrically connected to the first electrode 14 connected to the p-type semiconductor layer, and thus the bonding portion 102 or the wiring 101 of the substrate 100 as described above. Ion migration from the metal layer 17 to the metal layer 17 can be prevented. Thereby, a short circuit and a leakage current can be prevented.
  • a negative voltage is applied to the second electrode 15 during light emission. Therefore, even when a material that easily causes ion migration is used for the second electrode 15, the potential of the metal layer 17 is higher than the potential of the second electrode 15. Thereby, ion migration from the second electrode 15 (such as the connecting portion 34 connected to the metal layer 17) does not occur. Therefore, even if the area of the second electrode 15 is larger than shown, or even if the second electrode 15 is disposed close to the metal layer 17, ion migration does not occur.
  • the first electrode portion and the metal layer 17 are connected, since the first electrode portion and the metal layer 17 are connected, light leakage to the substrate 100 side does not occur. Thereby, since light is not irradiated to the resin material provided in the board
  • a resin temporary fixing portion
  • JP 2011-233733 A a shield metal wiring layer and a light emitting element on a substrate 100 are connected by an electrolytic plating layer.
  • FIG. 4B shows a light emitting device according to Comparative Example 2.
  • the metal layer 117 is insulated from the first electrode 14 and is connected to the second electrode 15 to be conductive.
  • the second electrode 15 is not provided at the center of the light extraction surface S2, but is connected to the end of the metal layer 117 provided on the light extraction surface S2 side.
  • the metal layer 117 is electrically connected to the second electrode 15, but is not electrically connected to the first electrode 14. Therefore, high accuracy is required for the positions where the first electrode 14 and the metal layer 117 are formed.
  • the metal when a positive voltage is applied to the first electrode 14 for light emission when the first conductivity type layer 11 is p-type, the metal is removed from the junction 102 with the substrate 100. There is a risk of ion migration to the layer 117.
  • the light emitting unit 1 further includes a chip-like insulator 20 covering each light emitting element 10 and a terminal electrode 31 electrically connected to each light emitting element 10. , 32.
  • the terminal electrodes 31 and 32 are disposed on the bottom surface side of the insulator 20.
  • the insulator 20 surrounds and holds each light emitting element 10 from at least the side surface side of each light emitting element 10.
  • the insulator 20 is made of, for example, a resin material such as silicone, acrylic, or epoxy.
  • the insulator 20 is formed in contact with a side surface of each light emitting element 10 and a partial region of the upper surface of each light emitting element 10.
  • the insulator 20 has an elongated shape (for example, a rectangular parallelepiped shape) extending in the arrangement direction of the light emitting elements 10.
  • the height of the insulator 20 is higher than the height of each light emitting element 10, and the lateral width (width in the short side direction) of the insulator 20 is wider than the width of each light emitting element 10.
  • the size of the insulator 20 itself is, for example, 1 mm or less.
  • the insulator 20 has, for example, an opening 20A at a position corresponding to a position immediately above each light emitting element 10 as shown in FIGS. 1A and 1B. At least the second electrode 15 (not shown in FIGS. 1A and 1B) is exposed on the bottom surface of each opening 20A.
  • the insulator 20 also has an opening 20 ⁇ / b> B at a location corresponding to, for example, immediately below each light emitting element 10. At least the pad electrode 19 (in some cases, the first electrode 14) (not shown in FIGS. 1A and 1B) is exposed on the bottom surface of each opening 20B.
  • the pad electrode 19 (or the first electrode 14) is connected to the terminal electrode 31 via a predetermined conductive member (for example, solder or plated metal).
  • the terminal electrode 31 may be the wiring 101 as described above.
  • the second electrode 15 is connected to the terminal electrode 32 via the bump 33 and the connecting portion 34 shown in FIG. 1A.
  • the bumps 33 are columnar conductive members embedded in the insulator 20, and the connection portions 34 are band-shaped conductive members formed on the upper surface of the insulator 20.
  • the metal layer 17 may be formed so as to be in contact with at least the surface facing the side surface of the active layer 12 in the surface of the first insulating layer 16, and may not cover a portion other than the side surface of the active layer 12. Good.
  • the 1st insulating layer 16 should just be formed in contact with the side surface of the active layer 12 at least among the surfaces of a semiconductor layer, and does not need to cover the semiconductor layer side surface S1 whole.
  • the metal layer 17 only needs to cover at least the surface on the adjacent light emitting element 10 side of the semiconductor layer side surface S1, and may not cover the entire semiconductor layer side surface S1.
  • the 1st insulating layer 16 should just cover at least the surface by the side of the adjacent light emitting element 10 among semiconductor layer side surface S1, and does not need to cover the semiconductor layer side surface S1 whole.
  • the metal layer 17 is separated from the surface of the first insulating layer 16. It is preferable not to protrude.
  • the three light emitting elements 10 included in the light emitting unit 1 are composed of the light emitting elements 10R, 10G, and 10B, it is preferable that all the light emitting elements 10 have the above-described stacked body. It is not necessary to have the above-mentioned laminated body.
  • the above-described stacked body may be provided only in the light emitting element 10B that emits the light having the shortest wavelength among the three light emitting elements 10.
  • only the light emitting element 10 specifically, the light emitting elements 10G and 10B
  • the light emitting elements 10R that emits the light having the longest wavelength is provided with the above-described stacked body. May be.
  • FIG. 6 is a cross-sectional view showing a light-emitting element 60 and a substrate 100 on which the light-emitting element 60 is mounted according to the second embodiment of the present technology.
  • elements that are substantially the same with respect to configurations, functions, and the like included in the light emitting device according to the embodiment shown in FIG. The explanation will focus on the points.
  • the second conductivity type layer 13 has a surface (first surface) in contact with the active layer 12 and a light extraction surface to which the second electrode 15 on the opposite side is connected. S2 (second surface).
  • the first conductivity type layer 11 that is a p-type semiconductor layer has a surface (first surface) in contact with the active layer 12 and a first side opposite thereto. And a light extraction surface (second surface) S2 to which the electrode 14 is connected.
  • the apparent structure of the light emitting element 60 is the same as the structure of the light emitting element according to Comparative Example 2 shown in FIG. 4B, but the first conductive type layer 11 and the second conductive type layer 13 that is an n-type semiconductor layer are provided. The difference is that it is upside down.
  • the first electrode 14 connected to the first conductivity type layer 11 is not provided in the center of the light extraction surface S2, but is formed across the end surface of the first insulating layer 16 provided on the light extraction surface S2 side.
  • the metal layer 117 is insulated from the second electrode 15 (pad electrode 19) connected to the second conductivity type layer 13.
  • a positive voltage is applied to the first electrode 14 connected to the first conductivity type layer 11 which is a p-type semiconductor layer, whereby the metal layer 117 is formed from the junction 102. Occurrence of ion migration to can be prevented.
  • FIG. 7 is a cross-sectional view showing a light emitting element according to Comparative Example 3 and a substrate 100 on which the light emitting element is mounted.
  • the upper surface of the first conductivity type layer 11 that is a p-type semiconductor layer is the light extraction surface S2, and the first electrode 14 is connected to this. ing.
  • the apparent structure of the light emitting device according to Comparative Example 3 is the same as the structure of the light emitting device according to Comparative Example 1 shown in FIG. 4A.
  • a material that easily undergoes ion migration is used for the connection portion 34 connected to the first electrode 14, and a positive voltage is applied to the first electrode 14 for light emission. Let's say. Then, ion migration may occur at the upper end portion of the metal layer 17 via the first electrode 14, the surface of the first conductivity type layer 11, and the first insulating layer 16. Note that the risk is reduced when the distance between the first electrode 14 and the upper end of the metal layer 17 is sufficiently large.
  • FIG. 8 is a cross-sectional view showing a light-emitting element according to the third embodiment of the present technology.
  • the light emitting elements 10 and 60 according to the first and second embodiments are both-side electrode type light emitting elements in which the first electrode 14 and the second electrode 15 are provided on the upper and lower sides, respectively.
  • the light emitting device 110 according to the third embodiment is a one-side electrode type light emitting device in which a first electrode 44 and a second electrode 45 are provided on the substrate 200 side. That is, the light emitting element 110 is a flip chip type light emitting element.
  • the light emitting element 110 includes a semiconductor layer including a first conductivity type layer 41, an active layer 42, and a second conductivity type layer 43, and also includes a first electrode 44, a second electrode 45, and pad electrodes 52 and 53.
  • the light emitting element 110 includes a stacked body including the first insulating layer 46, the metal layer 47, and the second insulating layer 48.
  • a portion including the part of the second conductivity type layer 43, the active layer 42, and the first conductivity type layer 41 is an upside down mesa portion 40a, that is, an inverted trapezoidal shape. Yes.
  • an overhang portion 43a configured so that a part of the second conductivity type layer 43 overhangs from the mesa portion 40a is provided.
  • the second electrode 45 is connected to the lower surface of the overhang portion 43 a of the second conductivity type layer 43.
  • the light emitting element 110 includes an embedded layer 49 that covers the mesa unit 40a.
  • a pad electrode (first connection conductive portion) 52 is connected to the wiring 201 provided on the substrate 200 via a bonding portion 203.
  • a columnar bump 51 (second connection conductive portion) provided in the buried layer 49 is connected to the joint portion 204 on the wiring 202 provided on the substrate 200, and the bump 51 is connected via a pad electrode 53.
  • the second electrode 45 is connected.
  • the columnar bump 51 is connected to the pad electrode 53 so as to pass through the first insulating layer 46 and the second insulating layer 48.
  • the metal layer 47 in the laminate is electrically connected to the first electrode 44 by being connected to the pad electrode 52.
  • the metal layer 47 is insulated from the second electrode 45 (pad electrode 53).
  • FIG. 9A is a cross-sectional view showing a light emitting device and a substrate 200 according to Comparative Example 4.
  • the metal layer 147 is insulated from both the first electrode 44 and the second electrode 45.
  • the light emitting element 110 according to the present embodiment has a configuration in which the metal layer 47 and the first electrode 44 are electrically connected. Can be relaxed. That is, the light emitting element 110 can form the metal layer 47 and the first electrode 44 with lower positional accuracy than the light emitting element of Comparative Example 4.
  • the substrate 200 Ion migration from the junction 203 or the wiring 201 to the metal layer 47 does not occur.
  • a negative voltage having a lower potential than the first electrode 44 side is applied to the second electrode 45 connected to the second conductivity type layer 43 that is an n-type semiconductor layer for light emission. Therefore, the occurrence of ion migration from the wiring 202, the joint portion 204, or the bump 51 to the metal layer 47 can be prevented.
  • the metal layer 47 and the pad electrode 52 are connected to the light emitting device 110 according to the present embodiment, the occurrence of light leakage can be prevented as described in the first embodiment.
  • FIG. 9B is a cross-sectional view showing the light emitting element and the substrate 200 according to Comparative Example 5.
  • the metal layer 247 is electrically connected to the second electrode 45 connected to the second conductivity type layer 43 which is an n-type semiconductor layer, and is connected to the first conductivity type layer 41 which is a p-type semiconductor layer. It is insulated from the first electrode 44.
  • a positive voltage is applied to the first electrode 44 for light emission, ion migration may occur from the joint 203 or the wiring 201 of the substrate 200 to the metal layer 247 that is conducted to the negative side.
  • FIG. 10 is a cross-sectional view showing a light emitting device 160 and a substrate 200 according to the fourth embodiment of the present technology.
  • the apparent structure of the light emitting element 160 is the same as the structure of the light emitting element according to Comparative Example 5 shown in FIG. 9B.
  • the second electrode 45, the second conductivity type layer 43 that is an n-type semiconductor layer, the active layer 42, and the first conductivity type layer 41 that is a p-type semiconductor layer are sequentially stacked from the substrate 200 side.
  • the first electrode 44 is connected to the first conductivity type layer 41.
  • the columnar bump 51 is connected to the pad electrode 53 so as to pass through the first insulating layer 46 and the second insulating layer 48.
  • the metal layer 247 is electrically connected to the first electrode 44, so that the potential from the joint portion 204 and the wiring 202 of the substrate 200 can be reduced. Migration to the metal layer 247 conducted to the plus side, which is the higher side, can be prevented.
  • the metal layer is electrically connected to the second electrode (for example, the second electrode 45 shown in FIG. 10) and insulated from the first electrode (the first electrode 44 shown in FIG. 10). If a positive voltage is applied to the first electrode, ion migration from the first electrode side to the metal layer may occur.
  • the light-emitting element 160 and the light-emitting element of Comparative Example 6 alleviate the accuracy of the formation positions of the metal layer and the electrode as compared with the case where the metal layer is insulated from both the first and second electrodes. Can do.
  • the “light emitting panel” is realized by mounting the light emitting elements on the substrate so as to be arranged in a matrix of n ⁇ m (n and m are integers of 2 or more).
  • the light emitting panel is, for example, an illumination panel or an image display panel.
  • the light emitting units 1 shown in FIGS. 1A and 1B are mounted on a substrate so as to be arranged in a matrix of n ⁇ m (n and m are integers of 2 or more), thereby displaying a full color image.
  • a panel is realized.
  • the “light emitting panel device” having the illumination panel and the display panel includes a drive circuit for driving these light emitting elements.
  • a light-emitting panel device having an illumination panel is an “illumination device”.
  • a light-emitting panel device having a display panel is a “display device”.
  • a display device including a display panel will be described as an example of the light-emitting panel device.
  • FIG. 11 is a schematic perspective view of the display device 3.
  • the display device 3 includes the light emitting unit 1 and the like according to the above embodiment as display pixels.
  • the display device 3 includes, for example, a display panel 310 and the above-described drive circuit (not shown) that drives the display panel 310.
  • the display panel 310 is configured by stacking a mounting substrate 320 (the above-described substrates 100, 200, etc.) and a transparent substrate 330 on each other.
  • the surface of the transparent substrate 330 is an image display surface, and has a display area 3A at the center and a frame area 3B that is a non-display area around it.
  • FIG. 12 shows an example of the layout of the area corresponding to the display area 3A on the surface of the mounting board 320 on the transparent substrate 330 side.
  • a plurality of data wirings 321 are formed extending in a predetermined direction and arranged in parallel at a predetermined pitch.
  • a plurality of scan wirings 322 are formed extending in a direction intersecting (for example, orthogonal to) the data wirings 321, and predetermined. Are arranged in parallel at the pitch.
  • the scan wiring 322 is formed on, for example, the outermost layer, and is formed on, for example, an insulating layer (not shown) formed on the substrate surface.
  • the substrate of the mounting substrate 320 is made of, for example, a glass substrate or a resin substrate, and the insulating layer on the substrate is made of, for example, SiN, SiO 2 , or Al 2 O 3 .
  • the data wiring 321 is formed in a layer different from the outermost layer including the scan wiring 322 (for example, a layer below the outermost layer), for example, is formed in an insulating layer on the base material. .
  • black is provided as necessary.
  • the vicinity of the intersection of the data line 321 and the scan line 322 is a display pixel 323, and a plurality of display pixels 323 are arranged in a matrix in the display area 3A.
  • the light emitting unit 1 including a plurality of light emitting elements 10 (which may be the light emitting elements 60, 110, and 160) is mounted.
  • the light emitting unit 1 is provided with the pair of terminal electrodes 31 and 32 described above in each of the light emitting elements 10R, 10G, and 10B.
  • One terminal electrode 31 is electrically connected to the data wiring 321, and the other terminal electrode 32 is electrically connected to the scan wiring 322.
  • the terminal electrode 31 is electrically connected to the pad electrode 321B at the tip of the branch 321A provided in the data wiring 321.
  • the terminal electrode 32 is electrically connected to the pad electrode 322B at the tip of the branch 322A provided in the scan wiring 322.
  • the pad electrodes 321B and 322B are formed, for example, on the outermost layer, and are provided, for example, at sites where the light emitting units 1 and the like are mounted as shown in FIG.
  • the pad electrodes 321 ⁇ / b> B and 322 ⁇ / b> B here correspond to the bonding portions 102 and the wirings 101 of the substrates (mounting substrates) 100 and 200 of the above embodiments.
  • the mounting substrate 320 is further provided with, for example, a plurality of columns (not shown) that regulate the interval between the mounting substrate 320 and the transparent substrate 330.
  • the support column may be provided in a region facing the display region 3A, or may be provided in a region facing the frame region 3B.
  • Driving method by driving circuit of light-emitting panel device there are a passive matrix and an active matrix as driving methods by the driving circuit of the display device.
  • the wiring structure shown in FIG. 12 is a passive matrix wiring structure.
  • a reverse bias voltage may be applied to the light-emitting element of the non-selected line.
  • the non-selection time is sufficiently longer than the selection time (light emission time).
  • FIG. 13 shows the drive voltage in that case. 13 shows a potential difference between an electrode connected to the p-type conductive layer (hereinafter referred to as a p-type electrode) and an electrode connected to the n-type conductive layer side (hereinafter referred to as an n-type electrode).
  • the lower part of FIG. 13 shows the presence or absence of light emission (light emission or non-light emission).
  • the vertical axis indicates the potential of the p-type electrode.
  • a reverse bias voltage is applied during the non-selection time. That is, at the time of non-light emission that is a non-selection time, a negative voltage is applied to the p-type electrode, and a positive voltage is applied to the n-type electrode. On the other hand, during light emission having a selection time shorter than the non-selection time, a positive voltage is applied to the p-type electrode and a negative voltage is applied to the n-type electrode. In this way, the drive circuit is configured to alternately perform positive voltage application to each electrode.
  • the reverse bias state when 10 lines are simply driven in a passive matrix, the reverse bias state lasts 10 times the time for applying the voltage in the forward direction of light emission.
  • a display with a display resolution of 640 ⁇ 480,..., 1920 ⁇ 1080, or even higher resolution. In such a form, it is important to ensure reliability under reverse bias.
  • the metal layer is electrically connected to the n-type electrode to which a positive voltage is applied.
  • the drive circuit is preferably configured as follows. That is, the drive circuit is configured to control the timing of applying the voltage so that the time of applying the positive voltage to the n-type electrode is longer than the time of applying the positive voltage to the p-type electrode. It is preferable.
  • the voltage application time to the electrode to which the positive voltage is applied becomes longer, so that the electrode (n-type electrode) becomes conductive as compared with the case where it is shorter.
  • the generation time and frequency of ion migration to the metal layer can be suppressed. Thereby, the reliability of a product improves and the lifetime of a product can be extended.
  • the above driving method is not only applied to the display device but also applicable to the lighting device.
  • the driving method is a passive matrix, and a light emitting element driven by a driving circuit that generates a reverse bias voltage when no light is emitted in order to suppress crosstalk is a light emitting element as follows. That is, the light emitting element is an n-type first conductivity type connected to the first electrode conducting to the metal layer in each of the light emitting elements 10, 60, 110, and 160 shown in FIGS. A light-emitting element including a layer.
  • FIG. 12 shows an example of a substrate having wirings and circuits used in the passive matrix method, but a substrate having wirings and circuits used in the active matrix method is also within the scope of the present technology.
  • active matrix driving since there is no problem of crosstalk, reverse bias driving is not used.
  • the first conductivity type layer connected to the first electrode conducting to the metal layer is p-type, and a positive voltage is applied to the first electrode during light emission.
  • the light emitting element shown in FIG. 14A includes a first electrode 24 connected to the first conductivity type layer 11.
  • the first electrode 24 may be composed of different types of multilayer metals.
  • the first electrode 24 is connected to the substrate 100 through, for example, the joint 102 as described above.
  • the laminate composed of the first insulating layer 26, the metal layer 27, and the second insulating layer 28 substantially covers the entire semiconductor layer side surface S1.
  • the edge of the first electrode 24 is connected to the metal layer 27 by extending to the vicinity of the lower end of the metal layer 27, and the first electrode 24 and the metal layer 27 are conducted.
  • the light emitting element shown in FIG. 14B is a light emitting element that does not have the second insulating layer 28 of the light emitting element shown in FIG. 14A.
  • the light emitting element shown in FIG. 14C includes a conductive film 29.
  • the conductive film 29 is a film in which the metal layer and the first electrode are integrated, and is a film formed by the same film formation process. Examples of the film forming method include vapor deposition and sputtering.
  • the conductive film 29 covers the semiconductor layer side surface S1 via the first insulating layer 26, and the lower portion of the conductive film 29 is connected to the lower surface of the semiconductor layer.
  • the conductive film 29 may be composed of different types of multilayer metals.
  • the first conductivity type layer 11 of each light emitting element shown in FIGS. 14A to 14C is typically p-type, and in this case, a positive voltage is applied to the first electrode 24 and the conductive film 29 during light emission.
  • the passive matrix driving method is applied to the light-emitting elements shown in FIGS. 14A to 14C, and the driving method using the reverse bias shown in FIG. 13 is used.
  • the light-emitting elements have the following configuration. That is, the first conductivity type layer 11 is n-type, the second conductivity type layer 13 is p-type, and the time during which a positive voltage is applied to the first electrode 24 and the conductive film 29 is positive for the second electrode 15. It is set longer than the time during which the voltage is applied.
  • the structure of the first electrode portion shown in FIGS. 14A to 14C as described above may be applied to the one-side electrode type light emitting element shown in FIGS. 8 and 10, for example.
  • FIG. 15A is a plan view showing a light emitting element according to Comparative Example 6.
  • FIG. 15B and 15C are a cross-sectional view and a bottom view, respectively, showing a light emitting element 70 according to Comparative Example 6.
  • the light emitting element 70 according to the comparative example 6 has a structure corresponding to the light emitting element described in FIG.
  • the light-emitting element 70 includes a lower electrode 114 (or a pad electrode 119 electrically connected thereto) and an upper electrode 115 at the lower (bottom) and upper centers of the light-emitting element 70, respectively. Since the upper electrode 115 has a light shielding function, there is a demerit that the light extraction efficiency from the light extraction surface S2 is reduced. In order to increase the light extraction efficiency, it is conceivable to reduce the area of the upper electrode 115. However, if the area is too small, the upper electrode 115 is not connected to an external connection terminal (not shown). There is a fear. Therefore, it is necessary to take a new measure to increase the light extraction efficiency.
  • FIG. 16A is a plan view showing a light emitting device according to Comparative Example 7.
  • FIG. 16B and 16C are a cross-sectional view and a bottom view, respectively, showing a light-emitting element 80 according to Comparative Example 6.
  • the light emitting element 80 according to the comparative example 7 has a flip chip type structure corresponding to the light emitting element described in FIG.
  • the accuracy of overlap between the opening 17a (17b) of the metal layer 17 and the pad electrode 152 (153) is required.
  • the overlapping accuracy can be represented by an arrow t in FIG. 16C. If the width of the arrow t is too small, the amount of light leaking from the active layer 12 from the bottom increases, and the light extraction efficiency decreases. On the other hand, if the width of the arrow is too large, a sufficient gap g between the two pad electrodes 152 and 153 cannot be secured on one side (bottom surface) of such a small chip. In other words, the degree of freedom in electrode layout is low.
  • FIG. 17A is a plan view showing a light emitting element according to Embodiment 7A of the present technology.
  • 17B and 17C are a cross-sectional view and a bottom view showing the light-emitting element 170, respectively.
  • random or regular irregularities are provided on the light extraction surface S2 of the semiconductor layer of the light emitting element 170.
  • the light extraction efficiency is improved.
  • the light extraction surface S2 may be a flat surface as in the above embodiments.
  • the light extraction surface of the light emitting element according to the embodiments described below may be a flat surface.
  • the light emitting element 170 includes the first conductivity type layer 11 on the light extraction surface S2 side.
  • a first electrode 14 is connected to the first conductivity type layer 11 so as to be in contact with the metal layer 17.
  • the first electrode 14 is provided, for example, at two corners on a diagonal line among the four corners of the light emitting element 170 having a substantially rectangular shape when seen in a plan view.
  • the number of the first electrodes 14 may be one, and even if there are a plurality of cases, the configuration is not limited to that shown in FIG. 17A. Alternatively, as long as a desired light extraction amount can be ensured, the first electrode 14 may be provided over substantially the entire outer periphery of the first conductivity type layer 11.
  • the first electrode 14 is connected to the third electrode (third electrode portion) 55 provided on the bottom of the light emitting element 170 through the metal layer 17. That is, the third electrode 55 is connected to the metal layer 17 and functions as a pad electrode for external connection.
  • the second insulating layer 148 has a first opening 148a facing the opening 17a of the metal layer 17 and a second opening 148b.
  • a third electrode 55 is provided in the second opening 148b.
  • the second electrode portion (the pad electrode 53 which is a part of the second electrode portion) is provided on the second insulating layer 148 so as to be in contact with the second conductivity type layer 13 through the opening 17a and the first opening 148a of the metal layer 17. And insulated from the metal layer 17.
  • the second electrode unit is configured by, for example, the second electrode 45 and the pad electrode 53.
  • the pad electrode 53 and the third electrode 55 are configured such that a part of each of the pad electrode 53 and the third electrode 55 is located on the common surface of the second insulating layer 148, here the bottom surface 148c.
  • the light emitting element 170 includes the first electrode 14 connected to the first conductivity type layer 11 and the metal layer 17, and the third electrode 55 provided on the bottom so as to be connected to the metal layer 17. .
  • the light emitting element 170 can be mounted on the substrate by a flip chip method. Therefore, the area of the first electrode 14 can be reduced to the minimum necessary level so as not to cause an open state, and the light extraction efficiency from the light extraction surface S2 can be increased.
  • the light emitting element 170 unlike the light emitting element 80 according to the comparative example 7 shown in FIG. 16B, it is not necessary to reduce the area of the active layer. That is, in the present embodiment, a desired area of the active layer 14 and a light extraction amount corresponding to the area can be ensured even with a small footprint.
  • the overlapping accuracy between the pad electrode 152 (153) and the opening 17a (17b) of the metal layer 17 was required.
  • the area of the third electrode 55 can be designed as small as necessary, and the area of the pad electrode 53 can be designed large accordingly.
  • the overlapping accuracy between the pad electrode 53 and the opening 17a is also eased while ensuring a sufficient interval between the pad electrode 53 and the third electrode 55.
  • the degree of freedom in layout of the two electrodes 53 and 55 at the bottom of the light emitting element 170 is increased.
  • a transparent protective layer 35 is provided on the first conductivity type layer 11.
  • the first electrode 14 is covered with the protective layer 35 and has an exposed side surface 14s.
  • the contour of the exposed side surface 14s of the first electrode 14 matches the contour of a part (corner portion) of the outer peripheral side surface 148s of the second insulating layer 148 (which constitutes the side surface of the light emitting element 170). Accordingly, when the light emitting element 170 is manufactured, the light emitting elements can be individually separated by one etching using the same mask as the mask for individually separating the light emitting elements. Thereby, a manufacturing process is simplified.
  • FIG. 18A is a plan view showing a light-emitting element according to Embodiment 7B of the present technology.
  • FIG. 18B is a bottom view showing the light emitting element 180.
  • elements that are substantially the same in configuration, function, and the like included in the light-emitting element 170 according to the embodiment 7A are denoted by the same reference numerals, the description thereof is simplified or omitted, and different points are mainly described. Explained.
  • the light emitting element 180 includes a transparent electrode 164 provided on the light extraction surface S2 as a first electrode.
  • the transparent electrode 164 is connected to the third electrode 55 at the bottom via the metal layer 17.
  • the transparent electrode 164 is covered with the protective layer 35 so as to have an exposed side surface 164a.
  • the exposed side surface 164a matches the outline of a part of the outer peripheral side surface 148s of the second insulating layer 148. Thereby, the manufacturing process of a light emitting element is simplified similarly to the said Embodiment 7A.
  • FIG. 19A is a cross-sectional view showing a light-emitting element according to Embodiment 7C of the present technology.
  • the outer peripheral portion 14p of the first electrode 14 of the light emitting element 190 is disposed inside the outer peripheral side surface 148s of the second insulating layer 148, is covered with the protective layer 35, and is not exposed to the outside.
  • the corrosion can be suppressed.
  • a method of connecting the pad electrode 53 and the third electrode 55 to the substrate when a method by plating growth (plating bonding) is used, excessive plating from the first electrode 14 and the metal layer 17 causes the upper surface of the light emitting element 190 to be connected. And can prevent growth on the side.
  • FIG. 19B is a cross-sectional view showing a light-emitting element according to Embodiment 7D of the present technology.
  • a transparent electrode 164 is provided in the same manner as in the embodiment 7B (see FIGS. 18A and 18B).
  • the outer peripheral portion 164p of the transparent electrode 164 is disposed on the inner side of the outer peripheral side surface 148s of the second insulating layer 148 and is covered with the protective layer 35, as in the embodiment 7A.
  • FIG. 20A is a cross-sectional view showing a light-emitting element according to Embodiment 7E of the present technology.
  • the protective layer 35 is formed on the first conductivity type layer 11 so as to form an uncovered region R that does not continuously cover each of the metal layer 17 and the first conductivity type layer 11. Is provided.
  • a first electrode portion 214 is provided in the uncovered region R of the protective layer 35.
  • the first electrode 214 is formed by plating growth from the metal layer 17 simultaneously with the plating bonding. Can be formed. Thereby, the manufacturing process of a light emitting element can be simplified and manufacturing cost can be reduced.
  • plating bonding may be performed after the protective layer 35 having the uncovered region R is formed by photolithography and etching.
  • the first electrode 214 may be formed by performing plating bonding first, and then the protective layer 35 may be formed.
  • the first electrode 214 may be formed over substantially the entire circumference of the outer peripheral portion of the first conductivity type layer 11, but need not be formed over the entire circumference.
  • the first electrode 214 of the light emitting device according to Embodiments 7E and 7E ′ has the exposed side surface 214s, and the contour of the side surface 214s is the outer periphery of the second insulating layer 148. There may be a case where the shape coincides with a part of the outline of the side surface 148s.
  • the light extraction surface S2 of the previous embodiments 1 to 6 may have random or regular unevenness.
  • the light emitting unit has three light emitting elements having different light emission wavelength ranges, the number of light emitting elements may be one or more.
  • this technique can also take the following structures.
  • a semiconductor layer having an active layer, a first conductivity type layer, and a second conductivity type layer, and each side surface of the active layer, the first conductivity type layer, and the second conductivity type layer as a semiconductor layer side surface;
  • a first electrode connected to the first conductivity type layer;
  • a second electrode portion connected to the second conductivity type layer;
  • a first insulating layer in contact with at least a part of the side surface of the active layer among the side surfaces of the semiconductor layer;
  • a light emitting device comprising: a metal layer that is in contact with at least a surface of the first insulating layer facing a side surface of the active layer, is electrically connected to the first electrode portion, and is insulated from the second electrode portion.
  • the light-emitting element according to (1), The first insulating layer and the metal layer have a laminated structure and cover the entire side surface of the semiconductor layer.
  • the light emitting device according to (1) or (2), The second conductivity type layer is A first surface in contact with the active layer; A light emitting device comprising: a second surface which is a light extraction surface opposite to the first surface and to which the second electrode portion is connected.
  • the first electrode portion has a first connection conductive portion that can be connected to a substrate on which the light emitting element is mounted, The metal layer is connected to the first connection conductive portion.
  • the second electrode portion has a second connection conductive portion configured to pass through the first insulating layer, The metal layer is connected to the second connection conductive portion.
  • the first conductivity type layer is: A first surface in contact with the active layer; A light emitting device comprising: a second surface which is a light extraction surface, which is opposite to the first surface and to which the first electrode portion is connected.
  • the first electrode unit is connected to the metal layer across an end surface of the first insulating layer provided on the light extraction surface side.
  • the light-emitting device has a connection conductive portion configured to pass through the first insulating layer, The metal layer is connected to the connection conductive portion.
  • the light emitting device according to any one of (1) to (8), A light emitting device, further comprising a second insulating layer, the second insulating layer being provided so that the metal layer is disposed between the first insulating layer and the second insulating layer.
  • the light-emitting element according to (1), The first conductivity type layer is a p-type semiconductor layer; The light emitting device, wherein the second conductivity type layer is an n-type semiconductor layer.
  • the light-emitting element according to (1) The first conductivity type layer is an n-type semiconductor layer; The light emitting device, wherein the second conductivity type layer is a p-type semiconductor layer. (12) The light-emitting device according to (6), The light emitting element which further comprises the 3rd electrode part for external connection connected to the said metal layer.
  • a second insulating layer further comprising a second insulating layer provided so that the metal layer is disposed between the first insulating layer and the second insulating layer;
  • the metal layer has an opening;
  • the second insulating layer has a first opening facing the opening of the metal layer, and a second opening,
  • the second electrode portion is provided on the second insulating layer so as to be in contact with the second conductivity type layer through the opening of the metal layer and the first opening,
  • the third electrode portion is provided on the second insulating layer so as to be in contact with the metal layer through the second opening.
  • the light-emitting element according to (13), The second electrode portion and the third electrode portion are configured such that a part of each of the second electrode portion and the third electrode portion is located on a common surface of the second insulating layer.
  • the first electrode part includes a transparent electrode.
  • the second insulating layer has an outer peripheral side surface constituting a side surface of the light emitting element,
  • the first electrode unit has an exposed side surface, and an outline of the exposed side surface coincides with a partial outline of an outer peripheral side surface of the second insulating layer.
  • the light-emitting device according to any one of (12) to (15), A protective layer covering the first conductivity type layer;
  • the second insulating layer has an outer peripheral side surface constituting a side surface of the light emitting element,
  • the outer peripheral part of the said 1st electrode part is arrange
  • the first electrode portion is provided in a non-covering region of the protective layer.
  • the light emitting element is A semiconductor layer having an active layer, a first conductivity type layer, and a second conductivity type layer, and each side surface of the active layer, the first conductivity type layer, and the second conductivity type layer as a semiconductor layer side surface;
  • a light emitting unit comprising: a metal layer that is in contact with a surface of the first insulating layer facing a side surface of the active layer, is electrically connected to the first electrode portion, and is insulated from the second electrode portion.
  • the light emitting unit according to (19), The junction part or the wiring is silver, copper, lead, tin, gold, nickel, palladium, or at least two alloys thereof.
  • the first conductivity type layer is a p-type semiconductor layer;
  • the driving circuit is configured to cause the light emitting element to emit light by applying a positive voltage to the first electrode portion.
  • the drive circuit alternately executes positive voltage application to the first electrode part and the second electrode part, and the time for applying positive voltage to the first electrode part is A light emitting panel device configured to control the timing of voltage application so as to be longer than the time of positive voltage application to the unit.
  • the light-emitting panel device is an n-type semiconductor layer;
  • the second conductivity type layer is a p-type semiconductor layer;
  • the drive circuit is configured such that the first electrode applies a positive voltage when light is not emitted, and the second electrode applies a positive voltage when light is emitted.
  • a driving method of a light emitting panel device comprising a driving circuit for driving the plurality of light emitting elements, At least one of the plurality of light emitting elements is A semiconductor layer having an active layer, a first conductivity type layer, and a second conductivity type layer, and each side surface of the active layer, the first conductivity type layer, and the second conductivity type layer as a semiconductor layer side surface;
  • a metal layer that is in contact with a surface of the first insulating layer facing a side surface of the active layer, is electrically connected to the first electrode portion, and is insulated from the second electrode portion;
  • a method for driving a light emitting panel device that controls the timing of voltage application (27) The driving method of the light emitting panel device according to (26),
  • the light-emitting panel includes a substrate on which the plurality of light-emitting elements are arranged in a matrix.
  • the first conductivity type layer is an n-type semiconductor layer;
  • the second conductivity type layer is a p-type semiconductor layer;
  • the drive circuit applies a positive voltage to the first electrode when no light is emitted,

Abstract

【解決手段】発光素子は、半導体層と、第1電極部と、第2電極部と、第1絶縁層と、金属層とを具備する。前記半導体層は、活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する。前記第1電極部は、前記第1導電型層に接続される。前記第2電極部は、前記第2導電型層に接続される。前記第1絶縁層は、前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する。前記金属層は、前記第1絶縁層の、少なくとも前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁される。

Description

発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法
 本技術は、半導体材料等の固体発光源を用いた発光素子、発光ユニット、この発光ユニットを備える発光パネル装置、および発光パネル装置の駆動方法に関する。
 近年、軽量で薄型の表示装置として、発光ダイオード(LED)を表示画素に用いたLEDディスプレイが注目を集めている。LEDディスプレイは、見る角度によってコントラストや色合いが変化する視野角依存性がなく、色を変化させる場合の反応速度が速いとった特徴がある。このようなLEDディスプレイに用いられる好適な発光素子が、例えば特許文献1に開示されている。
 特許文献1に記載の、発光ユニットに設けられた発光素子は、例えば、活性層、第1電極に接続された第1導電型層、および第2電極に接続された第2導電型層が積層されて構成される半導体層を含む。また、発光素子は、この半導体層の表面のうち少なくとも活性層の側面(端面)に接する第1絶縁層と、第1絶縁層の外側に配置され、活性層で発光する光を遮蔽もしくは反射する金属層とを備える。この金属層は、第1電極および第2電極とは電気的に分離し、絶縁されている(例えば、特許文献1の明細書段落[0029]、図2等参照。)。
特開2012-182276号公報
 しかしながら、上記発光素子では、金属層が第1電極および第2電極にそれぞれ分離しており、それらの間の絶縁が確保される必要があるので、金属層および電極の形成位置に高い精度が要求される。
 したがって、本技術の目的は、比較的低い位置精度で形成可能な金属層および電極を備えた発光素子、発光ユニット、発光パネル装置を提供することにあり、また、その発光パネル装置の駆動方法を提供することにある。
 上記目的を達成するため、本技術に係る発光素子は、半導体層と、第1電極部と、第2電極部と、第1絶縁層と、金属層とを具備する。
 前記半導体層は、活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する。
 前記第1電極部は、前記第1導電型層に接続される。
 前記第2電極部は、前記第2導電型層に接続される。
 前記第1絶縁層は、前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する。
 前記金属層は、前記第1絶縁層の、少なくとも前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁される。
 金属層が第1電極部と導通しているので、金属層が、第1電極部および第2電極部の両方と絶縁している場合に比べ、低い位置精度で金属層および第1電極部を形成することが可能となる。
 前記第1絶縁層および前記金属層は、積層構造を有し、前記半導体層側面の全体を覆っていてもよい。
 これにより、光漏れを確実に抑制できる。
 前記第2導電型層は、前記活性層に接する第1表面と、前記第1表面の反対側であって、前記第2電極部が接続された、光取り出し面である第2表面とを有してもよい。
 前記第1電極部は、前記発光素子が実装される基板に接続され得る第1接続導電部を有し、前記金属層は、前記第1接続導電部に接続されていてもよい。
 これにより、基板側への光漏れを確実に防止できるので、樹脂材料等の劣化を抑えることができる。また、光取り出し面からの光取り出し効率を高めることができる。
 前記第2電極部は、前記第1絶縁層内を通るように構成された第2接続導電部を有し、前記金属層は、前記第2接続導電部に接続されていてもよい。
 これにより片側電極型の発光素子を実現できる。
 前記第1導電型層は、前記活性層に接する第1表面と、前記第1表面の反対側であって前記第1電極部が接続された、光取り出し面である第2表面とを有してもよい。
 前記第1電極部は、前記光取り出し面側に設けられた、前記第1絶縁層の端面をわたって前記金属層に接続されていてもよい。
 前記第1電極部は、前記第1絶縁層内を通るように構成された第1接続導電部を有し、前記金属層は、前記第1接続導電部に接続されていてもよい。
 これにより片側電極型の発光素子を実現できる。
 前記発光素子は、第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備してもよい。
 前記第1導電型層がp型半導体層であり、前記第2導電型層がn型半導体層であってもよい。あるいは、その逆で、前記第1導電型層がn型半導体層であり、前記第2導電型層がp型半導体層である場合もある。
 これら半導体層は、窒化ガリウム系化合物半導体、あるいは、リン系化合物半導体により構成されてもよい。
 前記発光素子は、前記金属層に接続された、外部接続用の第3電極部をさらに具備してもよい。
 これにより、第1電極部の面積を極力小さくすることができる。そして、第3電極部が、例えば第2表面以外の部位に設けられることにより、光取り出し効率を高めることができる。
 前記発光素子は、第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備してもよい。
 前記金属層は、開口を有し、前記第2絶縁層は、前記金属層の開口に対面する第1開口と、第2開口とを有してもよい。
 前記第2電極部は、前記金属層の開口および前記第1開口を介して前記第2導電型層に接するように、前記第2絶縁層上に設けられていてもよい。
 前記第3電極部は、前記第2開口を介して前記金属層に接するように、前記第2絶縁層上に設けられていてもよい。
 前記第2電極部および前記第3電極部は、それらのそれぞれの一部が前記第2絶縁層の共通の面に位置するように構成されていてもよい。
 これにより、例えばフリップチップ型の発光素子を実現できる。
 前記第1電極部は、透明電極を含んでいてもよい。
 前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有していてもよい。前記第1電極部は、露出する側面を有し、その露出する側面の輪郭は、前記第2絶縁層の外周側面の一部の輪郭に一致していてもよい。
 これにより、製造工程が簡略化される。
 前記発光素子は、前記第1導電型層を覆う保護層をさらに具備してもよい。
 前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有し、前記第1電極部の外周部は、前記第2絶縁層の外周側面より内側に配置され、前記保護層により覆われていてもよい。
 これにより、第1電極部が腐食されやすい材料でなっていても、その腐食を抑制することができる。
 前記金属層および前記第1導電型層のそれぞれの一部を連続的に覆わない非被覆領域を有し、前記第1導電型層上に設けられた保護層をさらに具備してもよい。前記第1電極部は、前記保護層の非被覆領域に設けられていてもよい。
 これにより、例えば第1電極を金属層からのめっき成長により形成することができる。
 本技術に係る発光ユニットは、配線を有する基板と、発光素子と、前記発光素子を前記基板の配線に接合する接合部とを具備する。
 前記発光素子は、上述した、半導体層、第1電極部、第2電極部、第1絶縁層、および金属層を有する。
 ところで、例えば発光素子が実装される基板に使用される金属材料によっては、その金属材料から金属層へのイオンマイグレーションが起こることも考えられなくはない。イオンマイグレーションが起こると、ショートやリーク電流が発生するおそれがある。例えば、前記接合部または前記配線は、銀、銅、鉛、錫、金、ニッケル、パラジウム、または、これらのうち少なくとも2つの合金である。これにより、これらのイオンマイグレーションを起こしやすい材料であっても、それを防止できる。その結果、接合部または配線と金属層との間のショートやリーク電流を防ぐことができる。
 本技術に係る発光パネル装置は、発光パネルと、駆動回路とを具備する。
 前記発光パネルは、複数の発光素子を有する。
 前記駆動回路は、前記複数の発光素子を駆動する。
 前記複数の発光素子のうち少なくとも1つは、上述した、半導体層、第1電極部、第2電極部、第1絶縁層、および金属層を有する。
 金属層が第1電極部と導通しているので、比較的容易な位置精度で金属層と第1電極部とが形成され、発光パネルの製造が容易となる。
 前記発光パネル装置は、前記複数の発光素子をマトリクス状に配置させる基板をさらに具備してもよい。
 前記駆動回路は、前記第1電極部にプラスの電圧を印加することで前記発光素子を発光させるように構成されてもよい。
 前記駆動回路は、前記第1電極部および前記第2電極部へのプラスの電圧印加を交互に実行するように、かつ、前記第1電極部へのプラスの電圧印加の時間が、第2電極部へのプラスの電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御するように構成されてもよい。
 すなわち、プラスの電圧印加される方の電極(第1電極部)への当該電圧印加時間が長くなることにより、それが短い場合に比べて、その電極(第1電極部)に導通している金属層へのイオンマイグレーションの発生時間や発生頻度を抑えることができる。これにより、製品の信頼性が向上する。
 前記第1導電型層がn型半導体層であり、前記第2導電型層がp型半導体層であってもよい。そして、前記駆動回路は、非発光時に第1電極がプラスの電圧を印加し、発光時に第2電極部がプラスの電圧を印加するように構成されてもよい。
 これにより、パッシブマトリクスによる発光パネル装置を実現することができる。
 本技術に係る、上記の発光パネル装置の駆動方法は、駆動回路により実行される以下の各ステップを備える。
 前記第1電極部にプラスの電圧が印加される。
 前記第2電極部にプラスの電圧が印加される。
 前記第1電極部および前記第2電極部への電圧印加を交互に実行するように、かつ、前記第1電極部への電圧印加の時間が、第2電極部への電圧印加の時間より長くなるように、それらの電圧印加のタイミングが制御される。
 前記発光パネルは、前記複数の発光素子をマトリクス状に配置させる基板を有し、前記第1導電型層は、n型半導体層であり、前記第2導電型層は、p型半導体層であってもよい。そして、前記駆動回路により、非発光時に第1電極部がプラスの電圧が印加され、発光時に第2電極部がプラスの電圧が印加されてもよい。
 以上、本技術によれば、比較的容易な位置精度で金属層または電極を形成することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1Aは、本技術の発光ユニットの概略構成の例を斜視的に示す。図1Bは、図1Aの発光ユニット1のA-A矢視方向の断面構成の例を示す。 図2は、本技術の第1の実施形態に係る発光素子を示す断面図である。 図3は、発光素子およびこれが実装された基板を含む発光ユニットの概略構成を示す断面図である。 図4Aは、比較例1に係る発光素子を示す断面図である。図4Bは、比較例2に係る発光素子を示す断面図である。 図5は、発光素子の駆動方法の例を示す。 図6は、本技術の第2の実施形態に係る発光素子およびこれを実装する基板を示す断面図である。 図7は、比較例3に係る発光素子およびこれを実装する基板を示す断面図である。 図8は、本技術の第3の実施形態に係る発光素子を示す断面図である。 図9Aは、比較例4に係る発光素子および基板を示す断面図である。図9Bは、比較例5に係る発光素子および基板を示す断面図である。 図10は、本技術の第4の実施形態に係る発光素子および基板を示す断面図である。 図11は、一実施形態に係る表示装置(発光パネル装置)の概略的な斜視図である。 図12は、実装基板の透明基板側の表面のうち表示領域に対応する領域のレイアウトの例を表す。 図13は、パッシブマトリクス駆動方式において逆バイアス電圧を発生する駆動方法の例を示す。 図14A~Cは、本技術の第6の実施形態に係る発光素子をそれぞれ示す断面図である。 図15Aは、比較例6に係る発光素子を示す平面図である。図15B、Cは、その比較例6に係る発光素子をそれぞれ示す断面図、底面図である。 図16Aは、比較例7に係る発光素子を示す平面図である。図16B、Cは、その比較例6に係る発光素子をそれぞれ示す断面図、底面図である。 図17Aは、本技術の実施形態7Aに係る発光素子を示す平面図である。図17B、Cは、その発光素子をそれぞれ示す断面図、底面図である。 図18Aは、本技術の実施形態7Bに係る発光素子を示す平面図である。図18Bは、その発光素子を示す底面図である。 図19Aは、本技術の実施形態7Cに係る発光素子を示す断面図である。図19Bは、本技術の実施形態7Dに係る発光素子を示す断面図である。 図20Aは、本技術の実施形態7Eに係る発光素子を示す断面図である。図20Bは、実施形態7E'に係る発光素子の変形例を示す断面図である。
 以下、図面を参照しながら、本技術の実施形態を説明する。
 以下の説明では、図面を参照する場合において、素子や装置の方向や位置を指し示すために「上、下、左、右、縦、横」などの文言を用いる場合があるが、これは説明の便宜上の文言に過ぎない。すなわち、これらの文言は、説明を理解しやすくするために使用される場合が多く、素子や装置が実際に製造されたり使用されたりする場面における方向や位置と一致しない場合がある。
 1.第1の実施形態
 1.1)発光ユニットの構成
 図1Aは、発光ユニット1の概略構成の一例を斜視的に示す。図1Bは、図1Aの発光ユニット1のA-A矢視方向の断面構成の一例を示す。発光ユニット1は、いわゆるLEDディスプレイと呼ばれる表示装置の表示画素として好適に適用可能なものであり、複数の発光素子を薄い肉厚の樹脂で被った微小パッケージである。
 発光ユニット1は、図1Aに示したように、3つの発光素子10を備えている。各発光素子10は、所定の波長域の光を上面から発する固体発光素子であり、具体的には、LEDチップである。本明細書では、LEDチップとは、結晶成長に用いたウェハから切り出した状態のものを指しており、成形した樹脂などで被われたパッケージタイプのものではない。
 LEDチップは、例えば、5μm以上、100mm以下のサイズとなっている。LEDチップの平面形状は、例えば、ほぼ正方形となっている。LEDチップは、薄片状となっており、LEDチップのアスペクト比(高さ/幅)は、例えば、0.1以上、1未満となっているが、これに限定されるものではなく、0.001以上10未満といった形態も可能である。
 各発光素子10は、発光ユニット1内に配置されており、例えば、図1Aに示したように、他の発光素子10と所定の間隙を介して一列に配置されている。このとき、発光ユニット1は、例えば、発光素子10の配列方向に延在する細長い形状となっている。互いに隣り合う2つの発光素子10の隙間は、例えば、各発光素子10のサイズと同等か、それよりも大きくなっている。なお、上記の隙間は、場合によっては、各発光素子10のサイズよりも狭くなっていてもよい。
 各発光素子10は、互いに異なる波長域の光をそれぞれ発するようになっている。例えば、図1Aに示したように、3つの発光素子10は、緑色帯の光を発する発光素子10Gと、赤色帯の光を発する発光素子10Rと、青色帯の光を発する発光素子10Bとにより構成されている。
 なお、発光素子10R,10G,10Bのそれぞれの位置は、図に示したものに限定されないが、以下では、発光素子10R,10G,10Bが上で例示した箇所に配置されているものとして、他の構成要素の位置関係を説明する場合がある。
 1.2)発光素子の構成
 各発光素子10は、例えば、図2に示すように、第1導電型層11、活性層12および第2導電型層13を下から順に積層してなる半導体層を有している。半導体層は、これらの層とは別の層を含んでいてもよい。
 発光素子10G,10Bにおいては、第1導電型層11、活性層12および第2導電型層13は、例えば窒化ガリウム系化合物半導体によって構成される。例えばそれはInGaN系の半導体である。一方、発光素子10Rにおいては、第1導電型層11、活性層12および第2導電型層13は、例えばリン系化合物半導体により構成される。例えばそれはAlGaInP系の半導体である。
 第2導電型層13の上面(つまり、光取り出し面S2)には第2電極15が設けられている。第2電極15は、例えば、発光素子10G,10Bにおいては、Ti/Pt/Auからなる。第2電極15は、例えば、発光素子10Rにおいては、AuGe(金とゲルマニウムの合金)/Ni/Auからなる。第2電極15は、第2導電型層13に接するとともに第2導電型層13に電気的に接続されている。つまり、第2電極15は、第2導電型層13とオーミック接触している。
 第1導電型層11の下面には第1電極14が設けられている。第1電極14は、金属電極である。第1電極14は、例えば、発光素子10G,10Bにおいては、Ti/Pt/Auからなる。第1電極14は、例えば、発光素子10Rにおいては、AuGe/Ni/Auからなる。第1電極14は、第1導電型層11に接するとともに第1導電型層11に電気的に接続されている。つまり、第1電極14は、第1導電型層11とオーミック接触している。
 第1電極14および第2電極15はともに、単一の電極によって構成されていてもよいし、複数の電極によって構成されていてもよい。
 半導体層の側面(以下、半導体層側面という)S1は、第1導電型層11、活性層12、第2導電型層13の各側面により構成される。半導体層側面S1は、例えば、図2に示したように、積層方向と交差する傾斜面となっており、具体的には、当該発光素子10の断面が逆台形状(逆メサ形状)となるような傾斜面となっている。このように、半導体層側面S1がテーパー状となっていることにより、正面方向の光取り出し効率を高くすることができる。なお、半導体層側面S1は、例えば、積層方向に沿う面、つまり積層方向に実質的に平行な面となっていてもよい。
 各発光素子10は、例えば、図2に示したように、第1絶縁層16、金属層17、第2絶縁層18およびパッド電極19を含む積層体を有している。第1絶縁層16と第2絶縁層18との間に金属層17が配置されている。
 この積層体は、半導体層の半導体層側面S1から下面(基板100側に向く面)にわたって形成された層である。この積層体のうち、少なくとも第1絶縁層16、金属層17および第2絶縁層18は、それぞれ、薄い層であり、例えば、CVD(Chemical Vapor Deposition)、蒸着、スパッタなどの薄膜形成プロセスによって形成されたものである。つまり、この積層体のうち、少なくとも第1絶縁層16、金属層17および第2絶縁層18は、スピンコートなどの厚膜形成プロセスや樹脂モールド、ポッティングなどによって形成されたものではない。
 第1絶縁層16、金属層17および第2絶縁層18は、少なくとも半導体層側面S1全体を覆っている。これらの層16、17、18は、半導体層側面S1から、第1電極14の一部にわたって形成されている。第1絶縁層16は、半導体層との電気的な絶縁をとる機能を有する。
 第1絶縁層16は、半導体層側面S1のうち、発光素子10の光取り出し面S2側の端部から、第1電極14の表面の外縁にわたって形成されている。つまり、第1絶縁層16は、発光素子10の半導体層側面S1全体に接して形成されており、さらに、第1電極14の表面の外縁に接して形成されている。
 第1絶縁層16は、活性層12から発せられる光に対して透明な材料、例えば、SiO2,SiN,Al2O3,TiO2,TiNなどからなる。第1絶縁層16は、例えば、0.1μm~1μm程度の厚さであり、ほぼ均一な厚さとなっている。なお、第1絶縁層16は、製造誤差に起因する厚さの不均一性を有していてもよい。
 金属層17は、活性層12から発せられた光を遮蔽もしくは反射する機能を有する。金属層17は、第1絶縁層16の表面に接して形成されている。金属層17は、第1絶縁層16の表面において、光取り出し面S2側の端部から、第1電極14の下部あたりまでにわたって形成されている。すなわち、金属層17は、第1絶縁層16の全体を覆うように形成されている。
 例えば、金属層17の光取り出し面S2側の端部は、第1絶縁層16の光取り出し面S2側の端部と同一面(つまり、光取り出し面S2と同一面)に形成されている。これにより、当該金属層17の端部は、第2電極15と電気的に絶縁される構成となる。金属層17の、他方の端部は、パッド電極19に接続されている。これにより、金属層17は第1電極と電気的に導通する構成となる。
 金属層17は、活性層12から発せられる光を遮蔽もしくは反射する材料、例えば、Ti,Al,Cu,Au,Ni,Pt,W,Rh,Ru,Pd,またはそれらのうち少なくとも2つの合金からなる。金属層17は、例えば、0.1μm~1μm程度の厚さであり、ほぼ均一な厚さとなっている。なお、金属層17は、製造誤差に起因する厚さの不均一性を有していてもよい。
 第2絶縁層18は、金属層17の全体を覆うように設けられており、金属層17を保護する機能を有する。しかし、本実施形態では第2絶縁層18はなくてもよく、金属層17が、発光素子10の最外周の層であってもよい。
 第2絶縁層18の材料としては、第1絶縁層16と同様の材料が用いられ得る。第2絶縁層18は、例えば、0.1μm~1μm程度の厚さであり、ほぼ均一な厚さとなっている。なお、第2絶縁層18は、製造誤差に起因する厚さの不均一性を有していてもよい。
 パッド電極19は、パッド電極19は、第1電極14と接続されており、第1電極14から引き出された電極であり、ここでは「接続導電部(第1接続導電部)」として機能する。パッド電極19は、第1電極14の接続下面14Aから第2絶縁層18の下面にわたって形成されている。パッド電極19は、活性層12から発せられる光を反射する材料、例えば、Ti,Al,Cu,Au,Ni,またはそれらのうち少なくとも2つの合金からなる。
 少なくとも第1電極14を含む導電部を、以下では、「第1電極部」という場合もある。この第1電極部は、パッド電極19等の接続導電部を含んでいてもよい。
 1.3)比較例との比較
 1.3.1)比較例1
 ここで、図4Aは、比較例1に係る発光素子を示す断面図である。この比較例1に係る発光素子では、金属層117は、第1電極14と導通しておらず(パッド電極19に接続されておらず)、また、第2電極15とも導通しておらず、すなわち両方の電極14、15と絶縁されるように構成されている。このような構成では、金属層117と第1電極14との絶縁を確保するために、それらの形成位置に高い精度が要求される。
 特に、比較例1に係る発光素子では、発光素子を光取り出し面S2側から平面で見て、金属層117と第1電極14との重なりの精度が要求される。これは、光漏れの抑制のためである。光漏れとは、活性層から発生した光が金属層117で反射せずに基板100側へ漏れる現象である。重なり精度の管理のため、高精度の露光装置や検査装置が必要になるという問題点があり、また、重なりを高精度に維持しても絶縁層を伝搬する光を完全になくすことはできない。
 これに対し、本実施形態に係る発光素子10は、金属層17と第1電極14とが導通する構成を備えるので、金属層17および第1電極14の形成位置の精度、特に重なりの精度を高く維持する必要がない。すなわち、発光素子10は、比較例1の発光素子に比べ、低い位置精度で金属層17および第1電極14を形成することができる。
 ところで、本実施形態に係る発光素子10は、図3に示すように、配線101(または後述する端子電極31でもよい)を有する基板100に実装される。図1でもこの基板100を一点鎖線で表している。第2電極15には、後述する接続部34(図1参照)が接続されている。ここで、例えば、第1電極および第2電極への印加電圧の極性が適切でない場合であって、第1電極と基板の配線とを接続する金属材料(以下、説明の便宜上、接合部という。)として銀や銅を用いた場合、接合部から金属層へイオンマイグレーションが発生し得る、という懸念がある。
 イオンマイグレーションは、陽イオン化された金属原子が陽極側から陰極側へ移動する現象である。例えば、図4Aにおいて第1導電型層11がp型半導体層であり、第2導電型層13がn型半導体である場合を想定する。そのp型半導体層に接続された第1電極14にプラスの電圧が印加された場合には、基板100との接合部102から、浮遊電位状態にある金属層117へイオンマイグレーションが発生するおそれがある。そして、絶縁層内にわずかなピンホールや膜質の悪い部分がある場合や、絶縁層自体の金属イオンの拡散係数が大きな場合には、絶縁が破壊されショートに至る可能性がある。
 接合部102に用いられ得る材料であって、イオンマイグレーションを起こしやすい金属材料は、銀、銅、鉛、錫、金、ニッケル、パラジウム、または、これらのうち少なくとも2つの合金(例えばはんだ等)である。イオンマイグレーションは、接合部102からだけでなく、基板100の配線101からも起こる可能性がある。なお、接合部102は、典型的には電解めっきにより形成される。
 図5は、発光素子10の駆動方法の一例を示す。図5上は、第1電極14および第2電極15への電位差を示し、図5下は、発光の有無(発光か非発光か)を示す。横軸は時間である。図5に示すように、電位差が実質的に0Vの場合、発光素子は発光しない。電位差が発生する場合、すなわちここでは、第1導電型層11がp型半導体層である場合であって、第1電極14にプラスの電圧Vfが印加された場合に、発光素子が発光する。
 図1に示した本実施形態に係る発光素子10では、このようにp型半導体層に接続された第1電極14にプラスの電圧が印加された場合であっても、イオンマイグレーションは起こらない。本実施形態に係る発光素子10では、そのp型半導体層に接続された第1電極14に金属層17が導通するように構成されるので、上記のように接合部102または基板100の配線101から金属層17へのイオンマイグレーションを防止できる。これにより、ショートやリーク電流を防止できる。
 また、発光時に、第2電極15にマイナスの電圧が印加される。したがって、第2電極15にイオンマイグレーションを起こしやすい材料が用いられる場合であっても、金属層17の電位が、第2電極15の電位に比べて高い。これにより、第2電極15(に接続された接続部34など)から金属層17へのイオンマイグレーションは起こらない。したがって、たとえ第2電極15の面積が図示するよりも大きく、あるいは、第2電極15が、金属層17に接近して配置されていたとしても、イオンマイグレーションは起こらない。
 また、図1に示すように、接合部102と第2電極15との距離は大きく離れているため、接合部102から第2電極15へのイオンマイグレーションは起こりにくい。
 本実施形態では、第1電極部と金属層17とが接続されているので、基板100側への光漏れは起こらない。これにより、基板100側に設けられる樹脂材料、特に感光性樹脂に光が照射されないので、当該樹脂材料の劣化を防ぐことができる。
 樹脂が劣化することにより、収縮したり揮発したりすることで、樹脂内部に応力が生じひび割れ等が発生する可能性がある。また、樹脂のひび割れ等により形成された空間が、湿度やガスの侵入経路になることが、腐食の引き金になる。基板100側に設けられる樹脂材料の典型例としては、特開2011-233733号公報の図1に示された製造工程において、発光素子と基板との間に設けられた樹脂(仮固定部)が挙げられる。この特開2011-233733号公報では、基板100上のシールドメタル配線層と発光素子とが、電解めっき層により接続される。
 1.3.2)比較例2
 図4Bは、比較例2に係る発光素子を示す。この発光素子では、金属層117が第1電極14と絶縁され、第2電極15に接続して導通している。第2電極15は、光取り出し面S2の中央に設けられるのではなく、光取り出し面S2側に設けられた、金属層117の端部に接続されている。
 この比較例2では、金属層117は第2電極15に導通しているものの、第1電極14には導通していないため、第1電極14および金属層117の形成位置に高い精度が要求される。また、この比較例2では、第1導電型層11がp型である場合に、発光のために第1電極14にプラスの電圧が印加されると、基板100との接合部102から、金属層117へのイオンマイグレーションの発生のおそれがある。
 4)絶縁体、端子電極
 発光ユニット1は、さらに、図1Aに示したように、各発光素子10を覆うチップ状の絶縁体20と、各発光素子10に電気的に接続された端子電極31,32とを備えている。端子電極31,32は、絶縁体20の底面側に配置されている。
 絶縁体20は、各発光素子10を、少なくとも各発光素子10の側面側から囲むとともに保持する。絶縁体20は、例えば、シリコーン,アクリル,エポキシなどの樹脂材料によって構成されている。
 絶縁体20は、各発光素子10の側面と、各発光素子10の上面の一部の領域に接して形成されている。絶縁体20は、各発光素子10の配列方向に延在する細長い形状(例えば直方体形状)となっている。絶縁体20の高さは、各発光素子10の高さよりも高くなっており、絶縁体20の横幅(短辺方向の幅)は、各発光素子10の幅よりも広くなっている。絶縁体20自体のサイズは、例えば1mm以下となっている。
 絶縁体20は、例えば、図1A,Bに示したように、各発光素子10の直上に対応する箇所に開口20Aを有している。各開口20Aの底面には、少なくとも第2電極15(図1A,Bでは図示せず)が露出している。また、絶縁体20は、例えば各発光素子10の直下に対応する箇所にも開口20Bを有している。各開口20Bの底面には、少なくともパッド電極19(場合によっては第1電極14)(図1A,Bでは図示せず)が露出している。
 パッド電極19(または第1電極14)は、所定の導電性部材(例えば、半田、めっき金属)を介して端子電極31に接続されている。端子電極31は、上述したように配線101であってもよい。一方、第2電極15は、図1Aに示したバンプ33および接続部34を介して端子電極32に接続されている。バンプ33は絶縁体20に埋め込まれた柱状の導電性部材であり、接続部34は絶縁体20の上面に形成された帯状の導電性部材である。
 なお、活性層12から発せられた光が直接に他の発光素子10に入射するのを妨げるという観点からすれば、次のことが言える。すなわち、金属層17は、第1絶縁層16の表面のうち少なくとも活性層12の側面との対向面に接して形成されていればよく、活性層12の側面以外の部分まで覆っていなくてもよい。この場合、第1絶縁層16は、半導体層の表面のうち少なくとも活性層12の側面に接して形成されていればよく、半導体層側面S1全体を覆っていなくてもよい。
 また、金属層17は、半導体層側面S1のうち、隣接する発光素子10側の面を少なくとも覆っていればよく、半導体層側面S1全体を覆っていなくてもよい。この場合、第1絶縁層16は、半導体層側面S1のうち、隣接する発光素子10側の面を少なくとも覆っていればよく、半導体層側面S1全体を覆っていなくてもよい。
 なお、金属層17を介して第1導電型層11および第2導電型層13が互いにショートするのを防止する観点から、いずれの場合においても、金属層17が第1絶縁層16の表面からはみ出さないことが好ましい。
 発光ユニット1に含まれる3つの発光素子10が発光素子10R,10G,10Bからなる場合に、全ての発光素子10が上述の積層体を有していることが好ましいが、全ての発光素子10が上述の積層体を有していなくてもよい。例えば、3つの発光素子10のうち最も短波長の光を発する発光素子10Bだけに、上述の積層体が設けられていてもよい。あるいは、例えば、3つの発光素子10のうち、最も長波長の光を発する発光素子10R以外の発光素子10(具体的には、発光素子10G,10B)だけに、上述の積層体が設けられていてもよい。
 2.第2の実施形態
 2.1)発光素子の構成
 図6は、本技術の第2の実施形態に係る発光素子60およびこれを実装する基板100を示す断面図である。これ以降の説明では、図2等に示した実施形態に係る発光素子が含む構成や機能等について実質的に同様の要素については同一の符号を付し、その説明を簡略化または省略し、異なる点を中心に説明する。
 上記第1の実施形態に係る発光素子10では、第2導電型層13は、活性層12に接する面(第1表面)と、その反対側の、第2電極15が接続された光取り出し面S2(第2表面)と有していた。これに対し、第2の実施形態に係る発光素子60では、p型半導体層である第1導電型層11が、活性層12に接する面(第1表面)と、その反対側の、第1電極14が接続された、光取り出し面(第2表面)S2とを有する。
 発光素子60の見かけの構造は、図4Bに示した比較例2に係る発光素子の構造と同様であるが、第1導電型層11と、n型半導体層である第2導電型層13が上下逆になっている点が異なる。第1導電型層11に接続された第1電極14は、光取り出し面S2の中央に設けられるのではなく、光取り出し面S2側に設けられた、第1絶縁層16の端面をわたって金属層117に接続されている。すなわち、金属層117は、第1電極14に導通している。そして、金属層117は、第2導電型層13に接続された第2電極15(パッド電極19)と絶縁されている。
 このような構成の発光素子60によれば、p型半導体層である第1導電型層11に接続された第1電極14にプラスの電圧が印加されることにより、接合部102から金属層117へのイオンマイグレーションの発生を防止することができる。
 2)比較例との比較
 図7は、比較例3に係る発光素子およびこれを実装する基板100を示す断面図である。比較例3に係る発光素子では、上記発光素子60と同様に、p型半導体層である第1導電型層11の上面が光取り出し面S2となっており、これに第1電極14が接続されている。比較例3に係る発光素子の見かけの構造は、図4Aに示した比較例1に係る発光素子の構造と同様である。
 比較例3に係る発光素子では、第1電極14に接続された接続部34に、イオンマイグレーションしやすい材料が用いられる場合であって、発光のために第1電極14にプラスの電圧が印加されるとする。そうすると、第1電極14、第1導電型層11の表面、および第1絶縁層16を介して金属層17の上端部にイオンマイグレーションが発生するおそれがある。なお、第1電極14と金属層17の上端部との距離が十分に離れている場合には、そのリスクは低減される。
 3.第3の実施形態
 3.1)発光素子の構成
 図8は、本技術の第3の実施形態に係る発光素子を示す断面図である。上記第1、2の実施形態に係る発光素子10、60は、上下にそれぞれ第1電極14、第2電極15が設けられた両側電極型の発光素子であった。第3の実施形態に係る発光素子110は、基板200側に第1電極44、第2電極45が設けられた片側電極型の発光素子である。すなわち、発光素子110は、フリップチップタイプの発光素子である。
 発光素子110は、第1導電型層41、活性層42、および第2導電型層43を含む半導体層を備え、また、第1電極44、第2電極45、パッド電極52、53を備える。また、発光素子110は、第1絶縁層46、金属層47、第2絶縁層48を含む積層体を備える。
 半導体層において、第2導電型層43の一部と、活性層42と、第1導電型層41とを含む部分が、上下逆のメサ部40aとなっており、つまり逆台形状となっている。半導体層のうちメサ部40aの裾野には、第2導電型層43の一部がそのメサ部40aから張り出すように構成された張出部43aが設けられている。第2電極45は、第2導電型層43の張出部43aの下面に接続されている。
 発光素子110は、メサ部40aを覆う埋め込み層49を備える。基板200に設けられた配線201には、接合部203を介してパッド電極(第1接続導電部)52が接続されている。基板200に設けられた配線202上の接合部204には、埋め込み層49内に設けられた柱状のバンプ51(第2接続導電部)が接続されており、このバンプ51にパッド電極53を介して第2電極45が接続されている。柱状のバンプ51は、第1絶縁層46および第2絶縁層48内を通るようにして、パッド電極53に接続されている。
 積層体のうちの金属層47は、パッド電極52に接続されることにより、第1電極44に導通される。金属層47は、第2電極45(パッド電極53)と絶縁されている。
 3.2)比較例との比較
 3.2.1)比較例4
 図9Aは、比較例4に係る発光素子および基板200を示す断面図である。この発光素子では、金属層147が、第1電極44および第2電極45の両方と絶縁されている。これに対し、本実施形態に係る発光素子110は、金属層47と第1電極44とが導通する構成を備えるので、金属層47および第1電極44の形成位置の精度、特にその重なりの精度を緩和することができる。すなわち、発光素子110は、比較例4の発光素子に比べ、低い位置精度で金属層47および第1電極44を形成することができる。
 また、本実施形態に係る発光素子110では、第1導電型層41がp型半導体層である場合であって、発光のために第1電極44にプラスの電圧が印加される場合、基板200の接合部203または配線201から金属層47へのイオンマイグレーションは起こらない。
 また、発光のため、n型半導体層である第2導電型層43に接続された第2電極45に、第1電極44側より電位の低いマイナスの電圧が印加される。したがって、配線202、接合部204、またはバンプ51から金属層47へのイオンマイグレーションの発生を防止できる。
 さらに、本実施形態に係る発光素子110は、金属層47とパッド電極52が接続されているので、上記第1の実施形態で説明したように、光漏れの発生を防止することができる。
 3.2.2)比較例5
 図9Bは、比較例5に係る発光素子および基板200を示す断面図である。この発光素子では、金属層247が、n型半導体層である第2導電型層43に接続された第2電極45に導通し、p型半導体層である第1導電型層41に接続された第1電極44と絶縁されている。発光のために第1電極44にプラスの電圧が印加される場合、基板200の接合部203や配線201から、マイナス側に導通した金属層247へイオンマイグレーションが起こるおそれがある。
 4.第4の実施形態
 図10は、本技術の第4の実施形態に係る発光素子160および基板200を示す断面図である。この発光素子160の見かけの構造は、図9Bに示した比較例5に係る発光素子の構造と同様である。しかし、発光素子160では、第2電極45、n型半導体層である第2導電型層43、活性層42、p型半導体層である第1導電型層41が、基板200側から順に積層されており、第1導電型層41に第1電極44が接続されている。柱状のバンプ51は、第1絶縁層46および第2絶縁層48内を通るようにして、パッド電極53に接続されている。
 発光のために、第1電極44にプラスの電圧が印加された場合であっても、金属層247は第1電極44に導通されているので、基板200の接合部204や配線202から、電位の高い側であるプラス側に導通した金属層247へのイオンマイグレーションを防止できる。
 これに対して、比較例6として図示しないが、金属層が第2電極(例えば図10に示す第2電極45)に導通し、第1電極(図10に示す第1電極44)と絶縁されている場合であって、第1電極にプラスの電圧が印加される場合は、当該第1の電極側から金属層へのイオンマイグレーションが起こるおそれがある。
 しかしながら、発光素子160および上記比較例6の発光素子は、金属層が第1、第2電極の両方と絶縁されている場合に比べて、それら金属層および電極の形成位置の精度を緩和することができる。
 5.第5の実施形態
 5.1)発光パネル装置の構成
 発光素子がn×m(n、mは2以上の整数)個のマトリクス状に配置されるように基板に実装されることにより、「発光パネル」が実現される。発光パネルは、例えば照明パネルや、画像の表示パネルである。特に、図1A、Bに示した発光ユニット1が、n×m(n、mは2以上の整数)個のマトリクス状に配置されるように基板に実装されることにより、フルカラーの画像の表示パネルが実現される。
 上記のように照明パネルや表示パネルを有する「発光パネル装置」は、これら発光素子を駆動する駆動回路を備える。照明パネルを有する発光パネル装置は、「照明装置」である。表示パネルを有する発光パネル装置は、「表示装置」である。以下、発光パネル装置として、表示パネルを備えた表示装置を例に挙げて説明する。
 5.1.1)表示パネルの構成
 図11は、その表示装置3の概略的な斜視図である。表示装置3は、上記実施形態に係る発光ユニット1等を表示画素として備える。表示装置3は、例えば、表示パネル310と、表示パネル310を駆動する上述の駆動回路(図示せず)とを備えている。
 表示パネル310は、実装基板320(上述の基板100、200など)と、透明基板330とを互いに重ね合わせて構成される。透明基板330の表面が映像表示面となっており、中央部分に表示領域3Aを有し、その周囲に、非表示領域であるフレーム領域3Bを有している。
 5.1.2)実装基板
 図12は、実装基板320の透明基板330側の表面のうち表示領域3Aに対応する領域のレイアウトの一例を示す。実装基板320の表面のうち表示領域3Aに対応する領域には、例えば、複数のデータ配線321が所定の方向に延在して形成されており、かつ所定のピッチで並列配置されている。実装基板320の表面のうち表示領域3Aに対応する領域には、さらに、例えば、複数のスキャン配線322がデータ配線321と交差(例えば直交)する方向に延在して形成されており、かつ所定のピッチで並列配置されている。
 スキャン配線322は、例えば、最表層に形成されており、例えば、基材表面に形成された絶縁層(図示せず)上に形成されている。なお、実装基板320の基材は、例えば、ガラス基板、または樹脂基板などからなり、基材上の絶縁層は、例えば、SiN、SiO2、またはAl2O3からなる。一方、データ配線321は、スキャン配線322を含む最表層とは異なる層(例えば、最表層よりも下の層)内に形成されており、例えば、基材上の絶縁層内に形成されている。絶縁層の表面上には、スキャン配線322の他に、例えば、必要に応じてブラックが設けられている。
 データ配線321とスキャン配線322との交差部分の近傍が表示画素323となっており、複数の表示画素323が表示領域3A内においてマトリクス状に配置されている。各表示画素323には、複数の発光素子10(発光素子60、110、160でもよい)を含む発光ユニット1が実装されている。
 発光ユニット1には、発光素子10R,10G,10Bのそれぞれに、上述した一対の端子電極31,32が設けられている。そして、一方の端子電極31がデータ配線321に電気的に接続されており、他方の端子電極32がスキャン配線322に電気的に接続されている。例えば、端子電極31は、データ配線321に設けられた分枝321Aの先端のパッド電極321Bに電気的に接続されている。また、例えば、端子電極32は、スキャン配線322に設けられた分枝322Aの先端のパッド電極322Bに電気的に接続されている。
 各パッド電極321B,322Bは、例えば、最表層に形成されており、例えば、図12に示したように、各発光ユニット1等が実装される部位に設けられている。ここでいうパッド電極321B,322Bは、上記各実施形態の基板(実装基板)100、200の接合部102や配線101に相当する。
 実装基板320には、さらに、例えば、実装基板320と透明基板330との間の間隔を規制する複数の支柱(図示せず)が設けられている。支柱は、表示領域3Aとの対向領域内に設けられていてもよいし、フレーム領域3Bとの対向領域内に設けられていてもよい。
 5.2)発光パネル装置の駆動回路による駆動方法
 表示装置の駆動回路による駆動方式として、一般には、パッシブマトリクスと、アクティブマトリクスとがある。図12に示した配線構造は、パッシブマトリクス用の配線構造である。パッシブマトリクス方式では、非選択ラインの発光(クロストーク)を抑制するために、当該非選択ラインの発光素子に、発光時とは逆バイアスの電圧をかける場合がある。
 発光素子の数が多い場合、すなわちスキャン線の数が多い場合には、選択ラインよりも非選択ラインが多くなるため、ある1つの画素(または1ライン)に注目した場合、その画素の発光素子には、図13に示すような印加電圧で駆動される。その1つ画素の発光素子にとっては、非選択時間(非発光時間)の方が、選択時間(発光時間)より十分長くなる。
 図13は、その場合の駆動電圧を示す。図13上は、p型導電型層に接続された電極(以下、p型電極という。)と、n型導電層側に接続された電極(以下、n型電極という。)の電位差を示す。図13下は、発光の有無(発光か非発光か)を示す。図13上については、縦軸がp型電極の電位と見ると理解しやすい。
 図13に示すように、上述のクロストークを抑制するために、非選択時間では逆バイアスの電圧が印加される。つまり、非選択時間である非発光時には、p型電極にはマイナスの電圧が印加され、かつ、n型電極にはプラスの電圧が印加される。一方、非選択時間よりも短い選択時間である発光時には、p型電極にプラスの電圧が印加され、かつ、n型電極にマイナスの電圧が印加される。このように、駆動回路は、各電極へのプラスの電圧印加を交互に実行するように構成される。
 例えば10ラインを単純にパッシブマトリクス駆動するような場合、発光する順方向に電圧をかける時間の10倍、逆バイアス状態が続くことになる。一般的にはディスプレイの解像度は640×480、…、1920×1080、あるいはさらに高解像度のディスプレイもあり、このような形態においては逆バイアス下の信頼性を確保することが重要となる。
 逆バイアス時において、金属層へのイオンマイグレーションを抑制するためには、金属層が、プラスの電圧が印加されるn型電極と導通していることが好ましい。そして、順バイアス時および逆バイアス時の両方において、金属層へのイオンマイグレーションを抑制するためには、駆動回路は次のように構成されることが好ましい。すなわち、駆動回路は、n型電極へのプラスの電圧印加の時間が、p型電極へのプラスの電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御するように構成されることが好ましい。
 以上のように、プラスの電圧印加される方の電極(n型電極)への当該電圧印加時間が長くなることにより、それが短い場合に比べて、その電極(n型電極)に導通している金属層へのイオンマイグレーションの発生時間や発生頻度を抑えることができる。これにより、製品の信頼性が向上し、製品の寿命を延ばすことができる。
 以上の駆動方式は、表示装置にのみ適用されるものではなく、照明装置にも適用可能である。
 駆動方式がパッシブマトリクスであり、クロストーク抑制のために非発光時に逆バイアス電圧を発生する駆動回路により駆動される発光素子は、次のような発光素子である。すなわち、その発光素子は、図2、6、8、10に示した各発光素子10、60、110、160において、金属層に導通する第1電極に接続された、n型の第1導電型層を備える発光素子である。
 図12では、パッシブマトリクス方式に用いられる配線や回路を有する基板を例に挙げたが、アクティブマトリクス方式に用いられる配線や回路を有する基板も、本技術の範囲内である。アクティブマトリクス駆動の場合、クロストークの問題はないため、逆バイアス駆動は用いられない。その場合、金属層と導通する第1電極が接続された第1導電型層がp型とされ、発光時にはその第1電極にプラスの電圧が印加される。
 6.第6の実施形態
 図14A~Cは、本技術の第6の実施形態に係る発光素子をそれぞれ示す断面図である。
 図14Aに示す発光素子は、第1導電型層11に接続された第1電極24を備えている。第1電極24は、異なる種類の多層の金属により構成されていてもよい。第1電極24が、例えば上記のような接合部102を介して基板100に接続される。
 第1絶縁層26、金属層27、第2絶縁層28でなる積層体は、半導体層側面S1の実質的に全体を覆っている。第1電極24の縁部が、金属層27の下端部付近まで延びることにより金属層27と接続され、第1電極24および金属層27が導通する。
 図14Bに示す発光素子は、図14Aに示した発光素子の第2絶縁層28を持たない発光素子である。
 図14Cに示す発光素子は、導電膜29を備える。導電膜29は、金属層および第1電極を一体化した膜であり、同じ成膜処理により形成される膜である。成膜方法は、例えば蒸着やスパッタリング等である。導電膜29は、第1絶縁層26を介して半導体層側面S1を覆い、かつ、導電膜29の下部は、半導体層の下面に接続されている。導電膜29は、異なる種類の多層の金属により構成されていてもよい。
 これら図14A~Cに示した各発光素子の第1導電型層11は、典型的にはp型であり、その場合、発光時には、第1電極24や導電膜29にプラスの電圧が印加される。
 あるいは、上述の第5の実施形態のようにパッシブマトリクス方式の駆動方法が、これら図14A~Cに示した発光素子に適用される場合であって、図13に示した逆バイアスによる駆動方法が用いられる場合は、それら発光素子は次のような構成を有する。すなわち、第1導電型層11はn型、第2導電型層13はp型であり、第1電極24や導電膜29にプラスの電圧が印加される時間が、第2電極15にプラスの電圧が印加される時間より長く設定される。
 以上のような図14A~Cに示した第1電極部の構造を、例えば図8や10に示した片側電極型の発光素子にも適用してもよい。
 7.第7の実施形態
 7.1)高い光取り出し効率および小フットプリントのトレードオフ関係
 図15Aは、比較例6に係る発光素子を示す平面図である。図15B、Cは、その比較例6に係る発光素子70をそれぞれ示す断面図、底面図である。この比較例6に係る発光素子70は、上記特許文献1の図2に記載された発光素子に相当する構造を備える。
 この発光素子70は、発光素子70の下部(底部)および上部の中央それぞれに下部電極114(あるいはこれに導通するパッド電極119)および上部電極115を備える。上部電極115は遮光機能を有するため、光取り出し面S2からの光取り出し効率が低下するというデメリットがある。光取り出し効率を高めるためには、この上部電極115の面積を小さくすることが考えられるが、それが小さすぎると、上部電極115と、図示しない外部接続用の端子とが接続されないオープン状態となるおそれがある。したがって、光取り出し効率を高めるためには、新たな対策を取る必要がある。
 図16Aは、比較例7に係る発光素子を示す平面図である。図16B、Cは、その比較例6に係る発光素子80をそれぞれ示す断面図、底面図である。この比較例7に係る発光素子80は、上記特許文献1の図7に記載された発光素子に相当するフリップチップタイプの構造を備える。
 このようなフリップチップタイプの発光素子80では、電極が光取り出し面側に設けられていない。しかし、活性層12を含む半導体層をエッチングする必要があるため、活性層12の面積(平面で見た面積)が小さくなり、発光量は少なくなる。逆に、活性層12の面積を大きくすると、発光素子80のフットプリントが増えてしまう。
 また、図16B、Cに示すように、金属層17の開口17a(17b)と、パッド電極152(153)との重なり(オーバーラップ)の精度が要求される。重なり精度は、図16C中、矢印tで表すことができる。この矢印tの幅が小さすぎると、底部から活性層12の光が漏れる量が多くなり、光取り出し効率が低くなる。逆に、矢印の幅が大きすぎると、このような小さなチップの片面(底面)に、2つのパッド電極152、153の十分な間隔gを確保できない。言い換えれば、電極のレイアウトの自由度が低い。
 以上より、高い光取り出し効率および小フットプリント化の両方を実現するには、発光素子の設計のブレイクスルーが必要である。以下は、これを実現する発光素子の実施形態として、第7の実施形態に係る発光素子のいくつかの形態を説明する。
 7.2)実施形態7Aに係る発光素子
 図17Aは、本技術の実施形態7Aに係る発光素子を示す平面図である。図17B、Cは、その発光素子170をそれぞれ示す断面図、底面図である。なお、発光素子170の半導体層の光取り出し面S2に、ランダムまたは規則的な凹凸が設けられている。これにより、光取り出し効率の向上が図られている。もちろん、光取り出し面S2は、上記各実施形態のように平面であってもよい。以降に示す実施形態に係る発光素子の光取り出し面も同様に、平面であってもよい。
 発光素子170は、光取り出し面S2側に第1導電型層11を備える。第1導電型層11には、金属層17に接するように第1電極14が接続されている。図17Aに示すように、平面で見て概略矩形状の発光素子170の4つの角部のうち、例えば対角線上の2つの角部に第1電極14が設けられている。
 第1電極14は1つでもよいし、複数の場合であっても図17Aに示した形態に限られない。あるいは、所望の光取り出し量を確保できれば、第1電極14は、第1導電型層11の外周部の実質的に全周にわたって設けられていてもよい。
 そして、第1電極14は、金属層17を介して、発光素子170の底部に設けられた第3電極(第3電極部)55に接続されている。すなわち、第3電極55は金属層17に接続され、外部接続用のパッド電極として機能する。
 図17Bに示すように、第2絶縁層148は、金属層17の開口17aに対面する第1開口148aと、第2開口148bとを有する。第2開口148bには第3電極55が設けられている。第2電極部(の一部であるパッド電極53)は、金属層17の開口17aおよび第1開口148aを介して、第2導電型層13に接するように、第2絶縁層148上に設けられ、かつ、金属層17から絶縁されている。第2電極部は、例えば第2電極45およびパッド電極53により構成される。パッド電極53および第3電極55は、これらパッド電極53および第3電極55のそれぞれの一部が、第2絶縁層148の共通の面、ここでは底面148cに位置するように構成されている。
 このように、発光素子170は、第1導電型層11および金属層17に接続された第1電極14と、金属層17に接続されるように底部に設けられた第3電極55とを備える。このような構成によれば、発光素子170をフリップチップ方式で基板に実装可能である。したがって、第1電極14の面積を、オープン状態を発生させない程度に必要最低限度まで小さくすることができ、光取り出し面S2からの光取り出し効率を高めることができる。
 また、発光素子170では、図16Bに示した比較例7に係る発光素子80のように、活性層14の面積を小さくする必要がない。すなわち、本実施形態では、小さいフットプリントであっても、所望の活性層14の面積およびそれに応じた光取り出し量を確保することができる。
 比較例7として図16Cに示したように、パッド電極152(153)と、金属層17の開口17a(17b)との重なり精度が要求された。これに対し、本実施形態では、第2電極部のパッド電極53と開口17aとの重なり精度さえ満たせばよく、他方の第3電極55は金属層17に導通すればよい。したがって、第3電極55の面積を必要最低限度まで小さく設計でき、その分、パッド電極53の面積を大きく設計できる。これにより、図17Cに示すように、パッド電極53および第3電極55の間隔を十分に確保しつつ、パッド電極53と開口17aとの重なり精度も緩和される。総じて、発光素子170の底部の2つの電極53、55のレイアウトの自由度が高くなる。
 第1導電型層11の上部には透明な保護層35が設けられている。第1電極14は、この保護層35に覆われており、露出する側面14sを有する。この第1電極14の露出する側面14sの輪郭は、第2絶縁層148の外周側面148s(発光素子170の側面を構成)の一部(角部)の輪郭に一致する。これにより、発光素子170の製造時において、発光素子を個々に分離するためのマスクと同じマスクを用いて、1回のエッチングで発光素子を個々に分離することができる。これにより、製造工程が簡略化される。
 また、上記の各実施形態と同様に、イオンマイグレーションの問題も解決できる。
 7.3)実施形態7Bに係る発光素子
 図18Aは、本技術の実施形態7Bに係る発光素子を示す平面図である。図18Bは、その発光素子180を示す底面図である。これ以降の説明では、上記実施形態7Aに係る発光素子170が含む構成や機能等について実質的に同様の要素については同一の符号を付し、その説明を簡略化または省略し、異なる点を中心に説明する。
 発光素子180は、第1電極として、光取り出し面S2に設けられた透明電極164を備える。透明電極164は、金属層17を介して、底部の第3電極55に接続されている。透明電極164は、露出する側面164aを有するように、保護層35により覆われている。露出する側面164aは、第2絶縁層148の外周側面148sの一部の輪郭に一致する。これにより、上記実施形態7Aと同様に、発光素子の製造工程が簡略化される。
 このように構成された本実施形態7Bに係る発光素子180によっても、高い光取り出し効率および小フットプリント化を実現できる。
 7.4)実施形態7Cに係る発光素子
 図19Aは、本技術の実施形態7Cに係る発光素子を示す断面図である。この発光素子190の第1電極14の外周部14pは、第2絶縁層148の外周側面148sより内側に配置され、保護層35により覆われており、外部に露出していない。
 このような構成によれば、第1電極14が腐食されやすい材料でなっていても、その腐食を抑制することができる。また、パッド電極53および第3電極55の、基板への接続方法として、めっき成長(めっき接合)による方法を利用する場合、第1電極14や金属層17から余計なめっきが発光素子190の上面や側面に成長することを防止できる。
 7.5)実施形態7Dに係る発光素子
 図19Bは、本技術の実施形態7Dに係る発光素子を示す断面図である。この発光素子260の第1電極としては、実施形態7B(図18A,B参照)と同様に、透明電極164が設けられる。透明電極164の外周部164pは、上記実施形態7Aと同様に、第2絶縁層148の外周側面148sより内側に配置され、保護層35により覆われている。
 7.6)実施形態7E、7E'に係る発光素子
 図20Aは、本技術の実施形態7Eに係る発光素子を示す断面図である。この発光素子270では、保護層35は、金属層17および第1導電型層11のそれぞれの一部を連続的に覆わない非被覆領域Rを形成するように、第1導電型層11上に設けられている。この保護層35の非被覆領域Rに第1電極部214が設けられている。
 例えば、第2電極部(パッド電極53)、第3電極55が、めっき成長により基板の端子電極に接合される場合、それらめっき接合と同時に、第1電極214を金属層17からのめっき成長により形成することができる。これにより、発光素子の製造工程を簡単にし、製造コストを下げることができる。なお、本実施形態では、例えば、非被覆領域Rを持つ保護層35がフォトリソグラフィおよびエッチングにより形成された後、めっき接合が行われればよい。
 あるいは、図20Bに示す実施形態7E'に係る発光素子280のように、先にめっき接合が行われることにより、第1電極214が形成され、その後、保護層35が形成されてもよい。この場合、第1電極214は、第1導電型層11の外周部の実質的に全周にわたって形成される可能性があるが、もちろん全周に形成される必要もない。
 本実施形態7E、7E'に係る発光素子の第1電極214は、上記実施形態7Aにおいて説明したように、露出する側面214sを有し、当該側面214sの輪郭は、第2絶縁層148の外周側面148sの一部の輪郭に一致する形態も含む場合もある。
 なお、以上説明した実施形態7A~7E'の光取り出し面S2と同様に、それ以前の実施形態1~6の光取り出し面S2も、ランダムまたは規則的な凹凸を有していてもよい。
 7.その他の実施形態
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 例えば、上記発光ユニットは、互いに異なる発光波長域を有する3つの発光素子を有していたが、発光素子は1つ以上であればよい。
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
 なお、本技術は以下のような構成もとることができる。
(1)
 活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
 前記第1導電型層に接続された第1電極部と、
 前記第2導電型層に接続された第2電極部と、
 前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
 前記第1絶縁層の、少なくとも前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
 を具備する発光素子。
(2)
 前記(1)に記載の発光素子であって、
 前記第1絶縁層および前記金属層は、積層構造を有し、前記半導体層側面の全体を覆っている
 発光素子。
(3)
 前記(1)または(2)に記載の発光素子であって、
 前記第2導電型層は、
  前記活性層に接する第1表面と、
  前記第1表面の反対側であって、前記第2電極部が接続された、光取り出し面である第2表面と
 を有する
 発光素子。
(4)
 前記(3)に記載の発光素子であって、
 前記第1電極部は、前記発光素子が実装される基板に接続され得る第1接続導電部を有し、
 前記金属層は、前記第1接続導電部に接続されている
 発光素子。
(5)
 前記(4)に記載の発光素子であって、
 前記第2電極部は、前記第1絶縁層内を通るように構成された第2接続導電部を有し、
 前記金属層は、前記第2接続導電部に接続されている
 発光素子。
(6)
 前記(1)または(2)に記載の発光素子であって、
 前記第1導電型層は、
  前記活性層に接する第1表面と、
  前記第1表面の反対側であって前記第1電極部が接続された、光取り出し面である第2表面と
 を有する
 発光素子。
(7)
 前記(6)に記載の発光素子であって、
 前記第1電極部は、前記光取り出し面側に設けられた、前記第1絶縁層の端面をわたって前記金属層に接続されている
 発光素子。
(8)
 前記(6)に記載の発光素子であって、
 前記第1電極部は、前記第1絶縁層内を通るように構成された接続導電部を有し、
 前記金属層は、前記接続導電部に接続されている
 発光素子。
(9)
 前記(1)から(8)のうちいずれか1つに記載の発光素子であって、
 第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備する
 発光素子。
(10)
 前記(1)に記載の発光素子であって、
 前記第1導電型層がp型半導体層であり、
 前記第2導電型層がn型半導体層である
 発光素子。
(11)
 前記(1)に記載の発光素子であって、
 前記第1導電型層がn型半導体層であり、
 前記第2導電型層がp型半導体層である
 発光素子。
(12)
 前記(6)に記載の発光素子であって、
 前記金属層に接続された、外部接続用の第3電極部をさらに具備する
 発光素子。
(13)
 前記(12)に記載の発光素子であって、
 第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備し、
 前記金属層は、開口を有し、
 前記第2絶縁層は、前記金属層の開口に対面する第1開口と、第2開口とを有し、
 前記第2電極部は、前記金属層の開口および前記第1開口を介して前記第2導電型層に接するように、前記第2絶縁層上に設けられ、
 前記第3電極部は、前記第2開口を介して前記金属層に接するように、前記第2絶縁層上に設けられる
 発光素子。
(14)
 前記(13)に記載の発光素子であって、
 前記第2電極部および前記第3電極部は、それらのそれぞれの一部が前記第2絶縁層の共通の面に位置するように構成される
 発光素子。
(15)
 前記(12)から(14)のうちいずれか1項に記載の発光素子であって、
 前記第1電極部は、透明電極を含む
 発光素子。
(16)
 前記(12)から(15)のうちいずれか1項に記載の発光素子であって、
 前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有し、
 前記第1電極部は、露出する側面を有し、その露出する側面の輪郭は、前記第2絶縁層の外周側面の一部の輪郭に一致する
 発光素子。
(17)
 前記(12)から(15)のうちいずれか1項に記載の発光素子であって、
 前記第1導電型層を覆う保護層をさらに具備し、
 前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有し、
 前記第1電極部の外周部は、前記第2絶縁層の外周側面より内側に配置され、前記保護層により覆われている
 発光素子。
(18)
 前記(12)に記載の発光素子であって、
 前記金属層および前記第1導電型層のそれぞれの一部を連続的に覆わない非被覆領域を有し、前記第1導電型層上に設けられた保護層をさらに具備し、
 前記第1電極部は、前記保護層の非被覆領域に設けられている
 発光素子。
(19)
 配線を有する基板と、発光素子と、前記発光素子を前記基板の配線に接合する接合部とを具備し、
 前記発光素子は、
  活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
  前記第1導電型層に接続された第1電極部と、
  前記第2導電型層に接続された第2電極部と、
  前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
  前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
 を有する
 発光ユニット。
(20)
 前記(19)に記載の発光ユニットであって、
 前記接合部または前記配線は、銀、銅、鉛、錫、金、ニッケル、パラジウム、または、これらのうち少なくとも2つの合金である
 発光ユニット。
(21)
 複数の発光素子を有する発光パネルと、
 前記複数の発光素子を駆動する駆動回路とを具備し、
 前記複数の発光素子のうち少なくとも1つは、
  活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
  前記第1導電型層に接続された第1電極部と、
  前記第2導電型層に接続された第2電極部と、
  前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
  前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
  を有する
 発光パネル装置。
(22)
 前記(21)に記載の発光パネル装置であって、
 前記複数の発光素子をマトリクス状に配置させる基板をさらに具備する
 発光パネル装置。
(23)
 前記(21)または(22)に記載の発光パネル装置であって、
 前記第1導電型層がp型半導体層であり、
 前記駆動回路は、前記第1電極部にプラスの電圧を印加することで前記発光素子を発光させるように構成される
 発光パネル装置。
(24)
 前記(21)に記載の発光パネル装置であって、
 前記駆動回路は、前記第1電極部および前記第2電極部へのプラスの電圧印加を交互に実行するように、かつ、前記第1電極部へのプラスの電圧印加の時間が、第2電極部へのプラスの電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御するように構成される
 発光パネル装置。
(25)
 前記(24)に記載の発光パネル装置であって、
 前記第1導電型層がn型半導体層であり、
 前記第2導電型層がp型半導体層であり、
 前記駆動回路は、非発光時に第1電極がプラスの電圧を印加し、発光時に第2電極がプラスの電圧を印加するように構成される
 発光パネル装置。
(26)
 複数の発光素子を有する発光パネルと、
 前記複数の発光素子を駆動する駆動回路とを具備する発光パネル装置の駆動方法であって、
 前記複数の発光素子のうち少なくとも1つは、
  活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
  前記第1導電型層に接続された第1電極部と、
  前記第2導電型層に接続された第2電極部と、
  前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
  前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
  を有し、
 前記駆動回路により、
 前記第1電極部にプラスの電圧を印加し、
 前記第2電極部にプラスの電圧を印加し、
 前記第1電極部および前記第2電極への電圧印加を交互に実行するように、かつ、前記第1電極部への電圧印加の時間が、第2電極部への電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御する
 発光パネル装置の駆動方法。
(27)
 前記(26)に記載の発光パネル装置の駆動方法であって、
 前記発光パネルは、前記複数の発光素子をマトリクス状に配置させる基板を有し、
 前記第1導電型層は、n型半導体層であり、
 前記第2導電型層は、p型半導体層であり、
 前記駆動回路により
 非発光時に第1電極部がプラスの電圧を印加し、
 発光時に第2電極部がプラスの電圧を印加する
 発光パネル装置の駆動方法。
 1…発光ユニット
 3…表示装置(発光パネル装置)
 10(10R、10G、10B)、60、110、160、170、180、190、260、270、280…発光素子
 11、41…第1導電型層
 12、42…活性層
 13、43…第2導電型層
 14、24、44、164、214…第1電極
 15、45…第2電極
 16、26、46…第1絶縁層
 17、27、47、117、247…金属層
 18、28、48…第2絶縁層
 19、52、53…パッド電極
 29…導電膜
 34…接続部
 35…保護層
 51…バンプ
 55…第3電極
 100、200、320…基板
 101、201、202…配線
 102、203、204…接合部
 310…表示パネル(発光パネル)
 S1…半導体層側面
 S2…光取り出し面

Claims (27)

  1.  活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
     前記第1導電型層に接続された第1電極部と、
     前記第2導電型層に接続された第2電極部と、
     前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
     前記第1絶縁層の、少なくとも前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
     を具備する発光素子。
  2.  請求項1に記載の発光素子であって、
     前記第1絶縁層および前記金属層は、積層構造を有し、前記半導体層側面の全体を覆っている
     発光素子。
  3.  請求項1に記載の発光素子であって、
     前記第2導電型層は、
      前記活性層に接する第1表面と、
      前記第1表面の反対側であって、前記第2電極部が接続された、光取り出し面である第2表面と
     を有する
     発光素子。
  4.  請求項3に記載の発光素子であって、
     前記第1電極部は、前記発光素子が実装される基板に接続され得る第1接続導電部を有し、
     前記金属層は、前記第1接続導電部に接続されている
     発光素子。
  5.  請求項4に記載の発光素子であって、
     前記第2電極部は、前記第1絶縁層内を通るように構成された第2接続導電部を有し、
     前記金属層は、前記第2接続導電部に接続されている
     発光素子。
  6.  請求項1に記載の発光素子であって、
     前記第1導電型層は、
      前記活性層に接する第1表面と、
      前記第1表面の反対側であって前記第1電極部が接続された、光取り出し面である第2表面とを有する
     発光素子。
  7.  請求項6に記載の発光素子であって、
     前記第1電極部は、前記第2表面側に設けられた、前記第1絶縁層の端面をわたって前記金属層に接続されている
     発光素子。
  8.  請求項6に記載の発光素子であって、
     前記第1電極部は、前記第1絶縁層内を通るように構成された接続導電部を有し、
     前記金属層は、前記接続導電部に接続されている
     発光素子。
  9.  請求項1に記載の発光素子であって、
     第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備する
     発光素子。
  10.  請求項1に記載の発光素子であって、
     前記第1導電型層がp型半導体層であり、
     前記第2導電型層がn型半導体層である
     発光素子。
  11.  請求項1に記載の発光素子であって、
     前記第1導電型層がn型半導体層であり、
     前記第2導電型層がp型半導体層である
     発光素子。
  12.  請求項6に記載の発光素子であって、
     前記金属層に接続された、外部接続用の第3電極部をさらに具備する
     発光素子。
  13.  請求項12に記載の発光素子であって、
     第2絶縁層であって、前記第1絶縁層と前記第2絶縁層との間に前記金属層が配置されるように設けられた第2絶縁層をさらに具備し、
     前記金属層は、開口を有し、
     前記第2絶縁層は、前記金属層の開口に対面する第1開口と、第2開口とを有し、
     前記第2電極部は、前記金属層の開口および前記第1開口を介して前記第2導電型層に接するように、前記第2絶縁層上に設けられ、
     前記第3電極部は、前記第2開口を介して前記金属層に接するように、前記第2絶縁層上に設けられる
     発光素子。
  14.  請求項13に記載の発光素子であって、
     前記第2電極部および前記第3電極部は、それらのそれぞれの一部が前記第2絶縁層の共通の面に位置するように構成される
     発光素子。
  15.  請求項12に記載の発光素子であって、
     前記第1電極部は、透明電極を含む
     発光素子。
  16.  請求項12に記載の発光素子であって、
     前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有し、
     前記第1電極部は、露出する側面を有し、その露出する側面の輪郭は、前記第2絶縁層の外周側面の一部の輪郭に一致する
     発光素子。
  17.  請求項12に記載の発光素子であって、
     前記第1導電型層を覆う保護層をさらに具備し、
     前記第2絶縁層は、前記発光素子の側面を構成する外周側面を有し、
     前記第1電極部の外周部は、前記第2絶縁層の外周側面より内側に配置され、前記保護層により覆われている
     発光素子。
  18.  請求項12に記載の発光素子であって、
     前記金属層および前記第1導電型層のそれぞれの一部を連続的に覆わない非被覆領域を有し、前記第1導電型層上に設けられた保護層をさらに具備し、
     前記第1電極部は、前記保護層の非被覆領域に設けられている
     発光素子。
  19.  配線を有する基板と、発光素子と、前記発光素子を前記基板の配線に接合する接合部とを具備し、
     前記発光素子は、
      活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
      前記第1導電型層に接続された第1電極部と、
      前記第2導電型層に接続された第2電極部と、
      前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
      前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
     を有する
     発光ユニット。
  20.  請求項19に記載の発光ユニットであって、
     前記接合部または前記配線は、銀、銅、鉛、錫、金、ニッケル、パラジウム、または、これらのうち少なくとも2つの合金である
     発光ユニット。
  21.  複数の発光素子を有する発光パネルと、
     前記複数の発光素子を駆動する駆動回路とを具備し、
     前記複数の発光素子のうち少なくとも1つは、
      活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
      前記第1導電型層に接続された第1電極部と、
      前記第2導電型層に接続された第2電極部と、
      前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
      前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
      を有する
     発光パネル装置。
  22.  請求項21に記載の発光パネル装置であって、
     前記複数の発光素子をマトリクス状に配置させる基板をさらに具備する
     発光パネル装置。
  23.  請求項21に記載の発光パネル装置であって、
     前記第1導電型層がp型半導体層であり、
     前記駆動回路は、前記第1電極部にプラスの電圧を印加することで前記発光素子を発光させるように構成される
     発光パネル装置。
  24.  請求項22に記載の発光パネル装置であって、
     前記駆動回路は、前記第1電極部および前記第2電極部へのプラスの電圧印加を交互に実行するように、かつ、前記第1電極部へのプラスの電圧印加の時間が、第2電極部へのプラスの電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御するように構成される
     発光パネル装置。
  25.  請求項24に記載の発光パネル装置であって、
     前記第1導電型層がn型半導体層であり、
     前記第2導電型層がp型半導体層であり、
     前記駆動回路は、非発光時に第1電極がプラスの電圧を印加し、発光時に第2電極がプラスの電圧を印加するように構成される
     発光パネル装置。
  26.  複数の発光素子を有する発光パネルと、
     前記複数の発光素子を駆動する駆動回路とを具備する発光パネル装置の駆動方法であって、
     前記複数の発光素子のうち少なくとも1つは、
      活性層、第1導電型層および第2導電型層を有し、これら活性層、第1導電型層および第2導電型層の各側面を、半導体層側面として有する半導体層と、
      前記第1導電型層に接続された第1電極部と、
      前記第2導電型層に接続された第2電極部と、
      前記半導体層側面のうち少なくとも前記活性層の側面の一部に接する第1絶縁層と、
      前記第1絶縁層の、前記活性層の側面との対向面に接し、前記第1電極部に導通し、前記第2電極部と絶縁された金属層と
      を有し、
     前記駆動回路により、
     前記第1電極部にプラスの電圧を印加し、
     前記第2電極部にプラスの電圧を印加し、
     前記第1電極部および前記第2電極部への電圧印加を交互に実行するように、かつ、前記第1電極部への電圧印加の時間が、第2電極部への電圧印加の時間より長くなるように、それらの電圧印加のタイミングを制御する
     発光パネル装置の駆動方法。
  27.  請求項26に記載の発光パネル装置の駆動方法であって、
     前記発光パネルは、前記複数の発光素子をマトリクス状に配置させる基板を有し、
     前記第1導電型層は、n型半導体層であり、
     前記第2導電型層は、p型半導体層であり、
     前記駆動回路により
     非発光時に前記第1電極部がプラスの電圧を印加し、
     発光時に前記第2電極部がプラスの電圧を印加する
     発光パネル装置の駆動方法。
PCT/JP2016/001713 2015-03-30 2016-03-24 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法 WO2016157850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/559,874 US11158767B2 (en) 2015-03-30 2016-03-24 Light-emitting element, light-emitting unit, light-emitting panel device, and method for driving light-emitting panel device
KR1020177026366A KR20170133347A (ko) 2015-03-30 2016-03-24 발광 소자, 발광 유닛, 발광 패널 장치, 및 발광 패널 장치의 구동 방법
CN201680017721.0A CN107408606B (zh) 2015-03-30 2016-03-24 发光元件、发光单元、发光面板装置及驱动发光面板装置的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-068902 2015-03-30
JP2015068902 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157850A1 true WO2016157850A1 (ja) 2016-10-06

Family

ID=57004919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001713 WO2016157850A1 (ja) 2015-03-30 2016-03-24 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法

Country Status (4)

Country Link
US (1) US11158767B2 (ja)
KR (1) KR20170133347A (ja)
CN (1) CN107408606B (ja)
WO (1) WO2016157850A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305925A (zh) * 2017-01-12 2018-07-20 三星电子株式会社 包括浮置导电图案的半导体发光装置
JP2020017731A (ja) * 2018-07-27 2020-01-30 ソウル ナショナル ユニバーシティ アールアンドディービー ファウンデーション 表示装置
WO2020196411A1 (ja) * 2019-03-26 2020-10-01 Dowaエレクトロニクス株式会社 点光源型発光ダイオード及びその製造方法
JP2020167401A (ja) * 2019-03-26 2020-10-08 Dowaエレクトロニクス株式会社 点光源型発光ダイオード及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157850A1 (ja) * 2015-03-30 2016-10-06 ソニーセミコンダクタソリューションズ株式会社 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法
JP2017009725A (ja) * 2015-06-19 2017-01-12 ソニー株式会社 表示装置
CN107256871B (zh) * 2017-06-27 2019-09-27 上海天马微电子有限公司 微发光二极管显示面板和显示装置
KR102495758B1 (ko) * 2018-08-10 2023-02-03 삼성전자주식회사 플립칩 타입의 led 소자, 플립칩 타입의 led 소자의 제조 방법 및 플립칩 타입의 led 소자를 포함하는 디스플레이 장치
US20210351324A1 (en) * 2018-10-19 2021-11-11 Sony Semiconductor Solutions Corporation Light-emitting element and image displaying apparatus
KR102601950B1 (ko) * 2018-11-16 2023-11-14 삼성전자주식회사 Led 소자, led 소자의 제조 방법 및 led 소자를 포함하는 디스플레이 장치
JP6915029B2 (ja) * 2018-11-30 2021-08-04 シャープ株式会社 マイクロ発光素子及び画像表示素子
CN109545937A (zh) * 2018-12-29 2019-03-29 佛山市国星半导体技术有限公司 一种高亮度侧镀倒装led芯片及其制作方法
CN109856857B (zh) * 2019-02-28 2021-11-12 重庆京东方光电科技有限公司 一种发光组件、背光源和显示面板
DE102019107030A1 (de) * 2019-03-19 2020-09-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische halbleitervorrichtung mit einer vielzahl von bildelementen und trennelementen und verfahren zur herstellung der optoelektronischen halbleitervorrichtung
JP2021019015A (ja) * 2019-07-17 2021-02-15 シャープ福山セミコンダクター株式会社 マイクロ発光素子及び画像表示素子
KR20210063010A (ko) * 2019-11-22 2021-06-01 엘지디스플레이 주식회사 표시 장치
CN112289901A (zh) * 2020-10-28 2021-01-29 錼创显示科技股份有限公司 微型发光元件及微型发光元件显示装置
US20230086869A1 (en) * 2021-09-21 2023-03-23 Lumileds Llc Light emitting diodes comprising field plates
WO2023205105A1 (en) * 2022-04-22 2023-10-26 Applied Materials, Inc. High-density micro-led arrays with reflective sidewalls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102549A (ja) * 1994-09-30 1996-04-16 Rohm Co Ltd 半導体発光素子
JPH11340514A (ja) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd フリップチップ型光半導体素子
JP2012018226A (ja) * 2010-07-06 2012-01-26 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2015032809A (ja) * 2013-08-07 2015-02-16 ソニー株式会社 発光素子、発光素子ウェーハ及び電子機器

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769872B2 (ja) * 1997-05-06 2006-04-26 ソニー株式会社 半導体発光素子
JP3559453B2 (ja) * 1998-06-29 2004-09-02 株式会社東芝 発光素子
US7547921B2 (en) * 2000-08-08 2009-06-16 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics
US6630689B2 (en) * 2001-05-09 2003-10-07 Lumileds Lighting, U.S. Llc Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa
JP4330476B2 (ja) * 2004-03-29 2009-09-16 スタンレー電気株式会社 半導体発光素子
US20050274971A1 (en) * 2004-06-10 2005-12-15 Pai-Hsiang Wang Light emitting diode and method of making the same
US7166483B2 (en) * 2004-06-17 2007-01-23 Tekcore Co., Ltd. High brightness light-emitting device and manufacturing process of the light-emitting device
KR100862453B1 (ko) * 2004-11-23 2008-10-08 삼성전기주식회사 GaN 계 화합물 반도체 발광소자
US7622746B1 (en) * 2006-03-17 2009-11-24 Bridgelux, Inc. Highly reflective mounting arrangement for LEDs
JP5113478B2 (ja) * 2006-10-13 2013-01-09 三洋電機株式会社 半導体発光素子、照明装置および半導体発光素子の製造方法
JP5223102B2 (ja) * 2007-08-08 2013-06-26 豊田合成株式会社 フリップチップ型発光素子
CN101257076B (zh) * 2008-03-27 2011-03-23 鹤山丽得电子实业有限公司 发光二极管的制造方法
DE102008050573A1 (de) * 2008-10-06 2010-04-08 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements und optoelektronisches Halbleiterbauelement
KR100999733B1 (ko) * 2010-02-18 2010-12-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
EP2378576A2 (en) * 2010-04-15 2011-10-19 Samsung LED Co., Ltd. Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
WO2011145794A1 (ko) * 2010-05-18 2011-11-24 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
JP5333382B2 (ja) * 2010-08-27 2013-11-06 豊田合成株式会社 発光素子
JP5633477B2 (ja) * 2010-08-27 2014-12-03 豊田合成株式会社 発光素子
JP2012069545A (ja) * 2010-09-21 2012-04-05 Toyoda Gosei Co Ltd 発光素子の搭載方法
JP5002703B2 (ja) * 2010-12-08 2012-08-15 株式会社東芝 半導体発光素子
JP5754173B2 (ja) 2011-03-01 2015-07-29 ソニー株式会社 発光ユニットおよび表示装置
KR101669641B1 (ko) * 2012-06-28 2016-10-26 서울바이오시스 주식회사 표면 실장용 발광 다이오드, 그 형성방법 및 발광 다이오드 모듈의 제조방법
US9461212B2 (en) * 2012-07-02 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
KR101740531B1 (ko) * 2012-07-02 2017-06-08 서울바이오시스 주식회사 표면 실장용 발광 다이오드 모듈 및 이의 제조방법.
CN108461515A (zh) * 2012-08-07 2018-08-28 首尔伟傲世有限公司 晶圆级发光二极管阵列
KR20140076204A (ko) * 2012-12-12 2014-06-20 서울바이오시스 주식회사 발광다이오드 및 그 제조방법
WO2014178651A1 (ko) * 2013-04-30 2014-11-06 주식회사 세미콘라이트 반도체 발광소자
JP6110217B2 (ja) * 2013-06-10 2017-04-05 ソニーセミコンダクタソリューションズ株式会社 発光素子の製造方法
KR102197082B1 (ko) * 2014-06-16 2020-12-31 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광소자 패키지
JP6328497B2 (ja) * 2014-06-17 2018-05-23 ソニーセミコンダクタソリューションズ株式会社 半導体発光素子、パッケージ素子、および発光パネル装置
WO2016157850A1 (ja) * 2015-03-30 2016-10-06 ソニーセミコンダクタソリューションズ株式会社 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法
US9461222B1 (en) * 2015-06-30 2016-10-04 Epistar Corporation Light-emitting element and the light-emitting module thereof
JP6649726B2 (ja) * 2015-09-11 2020-02-19 三星電子株式会社Samsung Electronics Co.,Ltd. 半導体発光装置およびその製造方法
US10529696B2 (en) * 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
JP2019096660A (ja) * 2017-11-20 2019-06-20 ソニー株式会社 半導体発光素子および電子機器
US20210351324A1 (en) * 2018-10-19 2021-11-11 Sony Semiconductor Solutions Corporation Light-emitting element and image displaying apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102549A (ja) * 1994-09-30 1996-04-16 Rohm Co Ltd 半導体発光素子
JPH11340514A (ja) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd フリップチップ型光半導体素子
JP2012018226A (ja) * 2010-07-06 2012-01-26 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2015032809A (ja) * 2013-08-07 2015-02-16 ソニー株式会社 発光素子、発光素子ウェーハ及び電子機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305925A (zh) * 2017-01-12 2018-07-20 三星电子株式会社 包括浮置导电图案的半导体发光装置
CN108305925B (zh) * 2017-01-12 2023-01-03 三星电子株式会社 包括浮置导电图案的半导体发光装置
JP2020017731A (ja) * 2018-07-27 2020-01-30 ソウル ナショナル ユニバーシティ アールアンドディービー ファウンデーション 表示装置
JP7389985B2 (ja) 2018-07-27 2023-12-01 ソウル ナショナル ユニバーシティ アールアンドディービー ファウンデーション 表示装置
WO2020196411A1 (ja) * 2019-03-26 2020-10-01 Dowaエレクトロニクス株式会社 点光源型発光ダイオード及びその製造方法
JP2020167401A (ja) * 2019-03-26 2020-10-08 Dowaエレクトロニクス株式会社 点光源型発光ダイオード及びその製造方法

Also Published As

Publication number Publication date
KR20170133347A (ko) 2017-12-05
US20180062047A1 (en) 2018-03-01
CN107408606A (zh) 2017-11-28
CN107408606B (zh) 2019-12-13
US11158767B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2016157850A1 (ja) 発光素子、発光ユニット、発光パネル装置、および発光パネル装置の駆動方法
JP5754173B2 (ja) 発光ユニットおよび表示装置
US8928009B2 (en) Light emitting device, illuminating device, and display device
WO2016152321A1 (ja) 表示装置および照明装置ならびに発光素子および半導体デバイス
US10790267B2 (en) Light emitting element for pixel and LED display module
TW201926667A (zh) 畫素結構
JP2015092529A (ja) 発光装置、発光ユニット、表示装置、電子機器、および発光素子
US10937929B2 (en) Semiconductor unit, semiconductor device, light-emitting apparatus, display apparatus, and method of manufacturing semiconductor device
JP2015056335A (ja) 電気光学装置、電子機器及び電気光学装置の製造方法
JP2013110179A (ja) 半導体発光装置
US20210351324A1 (en) Light-emitting element and image displaying apparatus
TWI765617B (zh) 顯示裝置
JP6907032B2 (ja) 表示装置及びその製造方法
WO2021024722A1 (ja) 表示装置
CN112992963A (zh) 一种显示面板及制作方法
KR20130022837A (ko) 마스크, 유기발광 표시장치 및 그 제조 방법
CN214336717U (zh) 一种显示面板
KR102475409B1 (ko) 금속 벌크를 포함하는 발광 소자
KR102601420B1 (ko) 금속 벌크를 포함하는 발광 소자
CN116367611A (zh) 显示装置
KR102320797B1 (ko) 발광 소자
JP2022153169A (ja) 表示装置
JP6371532B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026366

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559874

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP