WO2016150384A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2016150384A1
WO2016150384A1 PCT/CN2016/077121 CN2016077121W WO2016150384A1 WO 2016150384 A1 WO2016150384 A1 WO 2016150384A1 CN 2016077121 W CN2016077121 W CN 2016077121W WO 2016150384 A1 WO2016150384 A1 WO 2016150384A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
mode
motor
laundry
rotation
Prior art date
Application number
PCT/CN2016/077121
Other languages
English (en)
French (fr)
Inventor
间宫春夫
Original Assignee
青岛海尔洗衣机有限公司
海尔亚洲株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, 海尔亚洲株式会社 filed Critical 青岛海尔洗衣机有限公司
Priority to KR1020177029328A priority Critical patent/KR101957955B1/ko
Priority to EP16767761.6A priority patent/EP3276065A4/en
Priority to US15/561,169 priority patent/US20180080158A1/en
Priority to CN201680018302.9A priority patent/CN107429463B/zh
Publication of WO2016150384A1 publication Critical patent/WO2016150384A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F29/00Combinations of a washing machine with other separate apparatus in a common frame or the like, e.g. with rinsing apparatus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/12Rotary receptacles, e.g. drums adapted for rotation or oscillation about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/04Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/40Driving arrangements  for driving the receptacle and an agitator or impeller, e.g. alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a washing machine.
  • a rotating blade is provided at the bottom of the washing tub in which laundry such as laundry is stored, and the rotating blade is rotated by a drive motor coupled via a power transmission mechanism.
  • the driving motor is often rotated at a lower speed, and a speed change is imparted in the middle.
  • Patent Document 1 Japanese Patent Publication No. 4-3998
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a washing machine capable of suppressing the occurrence of damage and efficiently performing cleaning during a washing operation regardless of whether the laundry is fragile or not easily damaged.
  • a washing machine includes: a washing tub for storing laundry; a stirring member, Rotatable for agitating the laundry in the washing tub; and a motor for rotating the stirring member;
  • Executing unit supplying water to the washing tub, or controlling rotation of the motor to rotate or stop the stirring member, the executing unit performing including including the stirring member in a state where water is stored in the washing tub a washing operation of the washing process that periodically rotates intermittently; and an accepting unit that accepts selection of a plurality of modes set for the washing operation, the plurality of modes including a standard mode, a fragile mode, wherein the fragile mode
  • the maximum rotational speed of the motor in the washing process is set to be lower than the standard mode, and the washing is lower than the washing which is still fragile than washing in the standard mode
  • the receiving unit receives
  • the execution unit is in the washing process to make the amount of water in the washing tub ratio a plurality of standard modes, such that the maximum rotational speed of the motor is lower than the standard mode and higher than the fragile mode, and the motor is in each cycle of intermittent rotation of the agitating member Longer than the normal operating conditions during turn
  • the present invention is characterized in that, in the washing process of the predetermined mode, the execution unit performs a period in which the rotation of the motor has stopped in each cycle of the intermittent rotation of the stirring member.
  • the agitating member is intermittently rotated in a mode-long operating condition.
  • the present invention is characterized in that, in the washing process of the predetermined mode, the execution unit accelerates the motor to a maximum speed up to a maximum rotation speed of each cycle of the intermittent rotation of the stirring member
  • the agitating member is intermittently rotated in a low operating condition.
  • the present invention is characterized in that the washing tub is rotatable, the motor can rotate the washing tub, and the washing operation includes the execution unit controlling the rotation of the motor after the washing process Dehydration process of rotating the washing tub, the executing unit rotates the washing tub in the dehydrating process of the predetermined mode with a running condition that the maximum rotational speed of the motor is lower than the standard mode.
  • the executing unit controls the rotation of the motor in a state where the washing tub stores water, and the stirring member periodically intermittently rotates. Thereby, a water flow is generated in the washing tub.
  • the laundry is agitated by the mechanical force generated by the intermittently rotating stirring member and the water flow, thereby removing the dirt from the laundry, so that the laundry can be washed.
  • the washing operation is set with a plurality of modes including a general standard mode, and the maximum rotational speed of the motor is set to a lower fragile mode than the standard mode in the washing process for washing of the fragile laundry.
  • a vulnerable laundry it is possible to suppress the occurrence of damage during the washing operation and to perform the cleaning efficiently by the weak mode in which the mechanical force is weak.
  • the non-consumable laundry which cannot be effectively cleaned can be selected in a predetermined mode different from the standard mode and the vulnerable mode.
  • the execution unit intermittently rotates the stirring member under predetermined operating conditions during the washing process in the predetermined mode.
  • the amount of water in the wash tub is set to be more than the standard mode.
  • the maximum rotational speed of the motor is lower than the standard mode and higher than the fragile mode, the mechanical force applied to the laundry is weaker than the standard mode and stronger than the fragile mode. Therefore, it is possible to suppress the possibility that the laundry is damaged when the washing is performed in the standard mode, and the laundry can be washed more efficiently than the fragile mode.
  • the laundry in the operating condition in which the stirring member is intermittently rotated in the washing process in the predetermined mode, since the period in which the rotation of the motor has stopped in each cycle of the intermittent rotation of the stirring member is longer than the standard mode, the laundry is washed.
  • the applied mechanical force is weaker than the standard mode.
  • the detergent can be efficiently permeated to the laundry. Therefore, by the washing process of the prescribed mode, it is possible to suppress the damage of the laundry and to efficiently wash the laundry.
  • the acceleration of the motor is lower than the standard mode until the maximum number of revolutions of the respective cycles of the intermittent rotation of the stirring member, so that the motor is The mechanical force applied to the laundry during acceleration is weaker than the standard mode. Therefore, it is possible to suppress the damage of the laundry by the washing process of the predetermined mode.
  • the execution unit rotates the washing tub with the operating condition that the maximum rotational speed of the motor is lower than the standard mode.
  • the force applied to the laundry during the rotation of the motor during the dehydration process is weaker than the standard mode. Therefore, it is possible to suppress the damage of the laundry by the dehydration process of the predetermined mode.
  • Fig. 1 is a schematic longitudinal sectional right side view of a washing machine in accordance with an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the electrical configuration of the washing machine.
  • FIG. 3 is a flowchart showing a control operation of the washing operation.
  • Fig. 4 is a timing chart showing the rotational speed of the motor during the washing process.
  • Figure 5 is a table summarizing data regarding the washing process in the standard mode.
  • Fig. 6 is a table summarizing data relating to the washing process in the soft washing mode.
  • Fig. 7 is a table summarizing data relating to the washing process in the vulnerable mode.
  • Fig. 8 is a graph showing the relationship between the total cumulative area ratio and the maximum number of revolutions in the washing process and the amount of load.
  • Fig. 9 is a timing chart showing the number of revolutions of the motor after the washing process, the operation/stop state of the motor, and the operation/non-operation state of the water supply valve.
  • FIG. 1 is a schematic longitudinal sectional right side view of a washing machine 1 according to an embodiment of the present invention.
  • the vertical direction in FIG. 1 is referred to as the vertical direction Z of the washing machine 1
  • the left-right direction in FIG. 1 is referred to as the front-rear direction Y of the washing machine 1
  • the direction perpendicular to the paper surface of FIG. 1 is referred to as the left-right direction X.
  • the outline of the washing machine 1 will be described.
  • the upper side is referred to as the upper Z1
  • the lower side is referred to as the lower Z2.
  • the front-rear direction Y the left side in FIG.
  • FIG. 1 is referred to as front Y1, and the right side in FIG. 1 is referred to as rear Y2.
  • the back side of the paper surface of FIG. 1 is referred to as the left side X1
  • the front side of the paper surface of FIG. 1 is referred to as the right side X2.
  • the washing machine 1 further includes a washing and drying machine having a drying function, the washing machine 1 will be described below by taking a washing machine that performs only the washing operation with the drying function omitted.
  • the washing machine 1 includes a casing 2, an outer tub 3, a washing tub 4, a stirring member 5, an electric motor 6, and a transmission mechanism 7.
  • the casing 2 is made of, for example, metal, and is formed in a box shape.
  • the upper surface 2A of the casing 2 is formed to be inclined with respect to the horizontal direction H so as to extend toward the upper side Z1 toward the rear Y2, for example.
  • An opening 8 communicating with the inside and outside of the casing 2 is formed on the upper surface 2A.
  • a door 9 that opens and closes the opening 8 is provided on the upper surface 2A.
  • an operation unit 10A as a transmission/reception unit including a switch or the like and a display unit 10B composed of a liquid crystal panel or the like are provided in a region around the opening 8.
  • a display unit 10B composed of a liquid crystal panel or the like
  • the operation unit 10A and the display unit 10B are disposed closer to the front Y1 than the opening 8 , but may be disposed closer to the right side X2 than the opening 8 , for example.
  • the operation unit 10A the user can freely select the operating conditions of the washing operation or issue an instruction to the washing machine 1 to start or stop the washing operation. Display washing in a visual manner on the display portion 10B Operation related information.
  • the outer tub 3 is made of, for example, a resin, and is formed in a bottomed cylindrical shape.
  • the outer tub 3 includes a circumferential wall 3A that is substantially cylindrical and disposed along an oblique direction K that is inclined toward the front Y1 with respect to the vertical direction Z, and a bottom wall 3B that blocks the hollow portion of the circumferential wall 3A from the lower side Z2;
  • the annular wall 3C has an annular shape and protrudes toward the center side of the circumferential wall 3A while trimming the edge on the upper Z1 side of the circumferential wall 3A.
  • the tilt direction K is not only inclined with respect to the vertical direction Z but also inclined with respect to the horizontal direction H.
  • the hollow portion of the circumferential wall 3A is exposed from the inner side of the annular wall 3C to the upper portion Z1.
  • the bottom wall 3B has a disk shape that is orthogonal to the oblique direction K and extends obliquely with respect to the horizontal direction H, and a through hole 3D penetrating the bottom wall 3B is formed at a center position of the bottom wall 3B.
  • the front wall 2B of the casing 2 is formed to extend in the up-down direction Z in Fig. 1, but may be formed to extend in the oblique direction K along the front side portion of the circumferential wall 3A.
  • Water can be stored in the outer tub 3.
  • a box-shaped detergent storage chamber 17 is disposed above the outer tub 3 of the casing 2 in the Z1.
  • a water supply path 13 connected to a faucet (not shown) is connected from the upper side Z1 and from the rear side Y2, and water is supplied from the water supply path 13 into the outer tub 3 via the detergent storage chamber 17.
  • the water from the detergent storage chamber 17 can also be poured into the outer tub 3 as it flows down as indicated by a broken line arrow.
  • a water supply valve 14 that opens and closes for the purpose of starting or stopping the water supply is provided.
  • a branch path 15 is also connected to the detergent storage chamber 17, and the branch path 15 is branched from a portion of the water supply path 13 that is closer to the upstream side of the faucet than the water supply valve 14.
  • the water flows into the outer tub 3 from the branch passage 15 through the detergent storage chamber 17 by flowing into the branch passage 15 from the water supply passage 13 .
  • a softener supply valve 16 that opens and closes for the purpose of starting or stopping the water supply is provided.
  • the detergent storage chamber 17 is divided into a first region (not shown) that houses the softener and a second region (not shown) that does not contain the softener.
  • the softener supply valve 16 When the softener supply valve 16 is opened, the water that has flowed into the branch path 15 from the water supply path 13 is supplied into the outer tub 3 through the first region of the detergent storage chamber 17. Thereby, the softener in the detergent storage chamber 17 is mixed into water and supplied into the outer tub 3. On the other hand, when the water supply valve 14 is opened, the water directly flowing from the water supply path 13 is supplied into the outer tub 3 via the second region of the detergent storage chamber 17. In this case, water in a state where the softener is not mixed is supplied into the outer tub 3.
  • a drain passage 18 is connected from the lower side Z2, and water in the outer tub 3 is discharged from the drain passage 18 to the outside of the machine.
  • a drain valve 19 that opens and closes for the purpose of starting or stopping the drain is provided in the middle of the drain passage 18.
  • the washing tub 4 is made of, for example, metal, has a central axis 20 extending in the oblique direction K, and is formed in a bottomed cylindrical shape that is smaller than the outer tub 3, and can store the laundry Q therein.
  • the washing tub 4 has a slope side
  • the substantially cylindrical circumferential wall 4A disposed to K and the bottom wall 4B of the hollow portion of the circumferential wall 4A are blocked from the lower side Z2.
  • the inner circumferential surface of the circumferential wall 4A is the inner circumferential surface of the washing tub 4.
  • the upper end portion of the inner circumferential surface of the circumferential wall 4A is an inlet and outlet 21 that exposes the hollow portion of the circumferential wall 4A upward.
  • the entrance and exit 21 faces the inner region of the annular wall 3C of the outer tub 3 from the lower side Z2, and is in a state of communicating with the opening 8 of the casing 2 from the lower side Z2.
  • the user of the washing machine 1 puts the laundry Q into the washing tub 4 via the opened opening 8 and the inlet and outlet 21 .
  • the washing tub 4 is housed in the outer tub 3 coaxially, and is disposed to be inclined with respect to the vertical direction Z and the horizontal direction H.
  • the washing tub 4 in a state of being housed in the outer tub 3 is rotatable around the central axis 20.
  • a plurality of through holes are formed in the circumferential wall 4A and the bottom wall 4B of the washing tub 4, and water in the outer tub 3 can pass between the outer tub 3 and the washing tub 4 via the through holes. Therefore, the water level in the outer tub 3 coincides with the water level in the washing tub 4. Further, the water that has flowed out of the detergent storage chamber 17 is directly supplied into the washing tub 4 from the upper side Z1 via the inlet and outlet 21 of the washing tub 4.
  • the bottom wall 4B of the washing tub 4 is formed in a disk shape extending substantially parallel to the bottom wall 3B of the outer tub 3 at intervals above the upper Z1, and is formed at a center position of the bottom wall 4B that coincides with the central axis 20, The through hole 4C that penetrates the bottom wall 4B.
  • a tubular support shaft 22 that surrounds the through hole 4C and projects downward along the central axis 20 toward the lower Z2 is provided.
  • the support shaft 22 is inserted into the through hole 3D of the bottom wall 3B of the outer tub 3, and the lower end portion of the support shaft 22 is located below the bottom wall 3B of the bottom wall 3B.
  • the agitating member 5, that is, the pulsator, is formed in a disk shape centered on the central axis 20, and is disposed concentrically with the washing tub 4 along the bottom wall 4B in the washing tub 4.
  • a plurality of blades 5A radially arranged are provided on the upper surface of the inlet/outlet 21 of the agitating member 5 facing the washing tub 4 from the lower side Z2.
  • the agitating member 5 is provided with a rotating shaft 23 extending from its center along the central axis 20 toward the lower side Z2. The rotating shaft 23 is inserted into the hollow portion of the support shaft 22, and the lower end portion of the rotating shaft 23 is located below the bottom wall 3B of the outer tub 3 by Z2.
  • the motor 6 is configured as a variable frequency motor.
  • the motor 6 is disposed in the casing 2 below the lower portion Z2 of the outer tub 3.
  • the motor 6 has an output shaft 24 that rotates about a central axis 20.
  • the transmission mechanism 7 is sandwiched between the lower end portion of each of the support shaft 22 and the rotary shaft 23 and the upper end portion of the output shaft 24.
  • the transmission mechanism 7 selectively transmits the driving force output from the output shaft 24 of the motor 6 to one or both of the support shaft 22 and the rotation shaft 23.
  • FIG. 2 is a block diagram showing an electrical configuration of the washing machine 1.
  • the washing machine 1 includes a microcomputer 30 as an execution unit and a transceiver unit.
  • the microcomputer 30 includes, for example, a CPU, a memory unit such as a ROM, a RAM, and the like, and is disposed in the casing 2 (refer to FIG. 1).
  • the washing machine 1 further includes a water level sensor 31, a rotation sensor 32, and a buzzer 33.
  • the water level sensor 31, the rotation sensor 32, and the buzzer 33, and the above-described operation unit 10A and display unit 10B are electrically connected to the microcomputer 30, respectively.
  • the motor 6, the transmission mechanism 7, the water supply valve 14, the softener supply valve 16, and the drain valve 19 are electrically connected to the microcomputer 30 via the drive circuit 34, respectively.
  • the water level sensor 31 detects the water level of the outer tub 3 and the washing tub 4, in other words, a sensor for detecting the amount of water in the washing tub 4, and the detection result of the water level sensor 31 is input to the microcomputer 30 in real time.
  • the rotation sensor 32 is a device that reads the rotation speed of the motor 6, and is strictly a device that reads the rotation speed of the output shaft 24 of the motor 6, and is composed of, for example, a plurality of Hall ICs (not shown).
  • the rotational speed read by the rotation sensor 32 is input to the microcomputer 30 in real time.
  • the microcomputer 30 controls the operation/stop of the motor 6 in accordance with the input rotational speed, and in detail controls the duty ratio of the voltage applied to the motor 6 to control the rotation of the motor 6 in such a manner that the motor 6 rotates at a desired rotational speed.
  • the number of revolutions of the motor 6 is the same as the number of revolutions of the washing tub 4 and the stirring member 5, respectively.
  • the microcomputer 30 can control the direction of rotation of the motor 6. Therefore, the motor 6 can be rotated forward or reversed.
  • the rotation direction of the output shaft 24 of the motor 6 coincides with the rotation direction of each of the washing tub 4 and the stirring member 5.
  • the washing tub 4 and the stirring member 5 are viewed from above Z1, and rotated in a clockwise direction as viewed from above, and when the motor 6 is reversed, the washing tub 4 and the stirring member 5 are counterclockwise in plan view. Rotate.
  • the microcomputer 30 accepts the selection.
  • the microcomputer 30 displays the required information to the user in a visual manner via the display unit 10B.
  • the microcomputer 30 notifies the user of the start, end, and the like of the washing operation by the predetermined sound emitted from the buzzer 33.
  • the microcomputer 30 controls the transmission mechanism 7 to switch the transmission target of the driving force of the motor 6 to one or both of the support shaft 22 and the rotation shaft 23.
  • the microcomputer 30 controls opening and closing of the water supply valve 14, the softener supply valve 16, and the drain valve 19. Therefore, the microcomputer 30 can supply water to the washing tub 4 by opening the water supply valve 14, and can supply the softener to the washing tub 4 by opening the softener supply valve 16, which can pass The drain of the washing tub 4 is performed by opening the drain valve 19.
  • the washing operation is constituted by a washing process of washing the laundry Q, a rinsing process of rinsing the laundry Q after the washing process, and a dehydrating process of dehydrating the laundry Q.
  • the dehydration process includes a final dehydration process that is performed at the end of the washing operation and an intermediate dehydration process that is performed at least immediately after the washing process. It should be noted that in the washing operation, only tap water may be used, or bath water may be used as needed.
  • the plurality of modes include: "standard mode” which is generally selected; “vulnerable mode”; and a prescribed mode different from the standard mode and the vulnerable mode, that is, “softwash mode”.
  • the fragile mode also referred to as the dry cleaning mode, is a mode set for washing the laundry Q which is more vulnerable than the laundry Q washed in the standard mode.
  • Specific examples of the vulnerable laundry Q which is a target of the vulnerability mode include beautiful clothes such as wool and silk which are marked with a so-called "hand wash” or "dry cleaning” mark.
  • the soft-washing mode is a mode that is set so as not to be as vulnerable as the object of the vulnerable mode, but is concerned that the laundry Q that is damaged by repeated washing in the standard mode is soft and is more effectively cleaned than the fragile mode.
  • Specific examples of the laundry Q which is the object of the soft-washing mode include clothes marked with a so-called "light wash” mark, clothes which are not easily damaged but which are less likely to be lightly washed, and which are intended to be lightly washed.
  • a table 40 that summarizes the operating conditions of the standard mode
  • a table 41 that summarizes the operating conditions of the soft-wash mode
  • a table 41 for the vulnerability mode are stored.
  • the table 42 in which the operating conditions are summarized (see FIGS. 5 to 7 to be described later).
  • the user of the washing machine 1 can select one of a plurality of modes by operating the operation unit 10A.
  • the microcomputer 30 corresponds to the operation unit 10A operated by the user, accepts the selection of the mode, and executes the washing operation in the accepted mode.
  • the microcomputer 30 detects the amount of the laundry Q in the washing tub 4 as the load amount based on the start of the washing operation (step S1). Specifically, the microcomputer 30 detects the amount of load by fluctuating the number of revolutions of the motor 6 when the washing tub 4 is stably rotated at a low speed. The unit of load is kg. The microcomputer 30 displays a period of the washing operation corresponding to the detected load amount, a necessary amount of the detergent, and the like on the display unit 10B. Further, the microcomputer 30 determines the operating conditions corresponding to the detected amount of load.
  • the microcomputer 30 performs a washing process (step S2).
  • the microcomputer 30 opens the water supply valve 14 in a state where the drain valve 19 is closed, and supplies water to the washing tub 4.
  • the microcomputer 30 closes the water supply valve 14 and stops the water supply.
  • the microcomputer 30 controls the rotation of the motor 6 in such a manner that the operation and the rotation stop are repeated in a state where the washing tub 4 has been stopped, and the stirring member 5 is alternately rotated or stopped.
  • the agitating member 5 periodically intermittently rotates in a state where water is stored in the washing tub 4 to a predetermined amount of water.
  • the laundry Q in the washing tub 4 is stirred by contact with the blade 5A of the intermittently rotating stirring member 5 or by the flow of water generated in the washing tub 4 by the intermittently rotating stirring member 5.
  • the laundry Q is agitated by the mechanical force generated by the stirring member 5 and the water flow which are intermittently rotated to remove the dirt from the laundry Q, so that the laundry Q can be washed. Further, the laundry Q in the washing tub 4 is decomposed and soiled by the detergent thrown into the washing tub 4. Thereby, the laundry Q in the washing tub 4 is also cleaned.
  • Fig. 4 is a timing chart showing the number of revolutions of the motor 6 during the washing process.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the rotational speed of the motor 6.
  • the unit of speed is rpm.
  • the waveform indicating the time-varying of the rotational speed of the motor 6 in the standard mode is indicated by a thick broken line
  • the time-varying of the rotational speed of the motor 6 in the soft-wash mode is indicated by a thick solid line. The waveform displayed.
  • the series of flows of the forward rotation of the motor 6, the stop of the forward rotation, the reverse rotation of the motor 6, and the stop of the reverse rotation constitute one cycle of the intermittent rotation of the agitation member 5 in each mode. It should be noted that, in the forward rotation and the reverse rotation, although the rotation direction of the motor 6 is reversed, the rotation speed of the motor 6 is a positive value regardless of the rotation direction.
  • T1on the time during which the motor 6 is operated and forwarded
  • T2on the time when the motor 6 is operated and reversed
  • T2off the time when the motor 6 is stopped and stopped
  • Max1on the maximum rotation speed of the motor 6 at the time of forward rotation
  • Max2on the maximum rotation speed of the motor 6 at the time of reverse rotation
  • the motor 6 After passing through T1on, the motor 6 starts to rotate stably with Max1 from the acceleration to Max1, and then temporarily stops after the speed is decelerated to zero after T1off. Then, after the motor 6 has passed T2on, after accelerating to Max2, it starts to rotate stably with Max2, and after T2off, the speed is decelerated to zero and then temporarily stopped.
  • T1on and T2on are the same value and are generally referred to as “running time”, and T1off and T2off are The same value is commonly referred to as “stop time”, and Max1 and Max2 are the same value and are commonly referred to as “maximum speed”.
  • the acceleration of the motor 6 from the stop state to the rise of the maximum speed is referred to as "motor acceleration”.
  • Running time And the respective units of the stop time are seconds (s), and the unit of motor acceleration is rpm/20ms.
  • the table 40 stores operating conditions including the amount of water stored in the washing tub 4 during the washing process, the running time, the stalling time, the maximum number of revolutions, and the motor acceleration, which are determined according to the amount of load.
  • the unit of water quantity is liter (L).
  • the operation time, the stall time, the motor speed, and the motor acceleration are parameters indicating the intensity of the water flow during the washing process, and the table 40 stores the amount of water and the intensity of the water flow determined according to the amount of load.
  • the microcomputer 30 executes the washing process of the standard mode in accordance with the operating conditions corresponding to the amount of load obtained in step S1. It should be noted that the table 40 also stores operating conditions (not shown) relating to the respective processes after the washing process in the standard mode washing operation.
  • T1on and T2on are the same value and are collectively referred to as "running time”
  • T1off and T2off is the same value and is commonly referred to as “stop time”.
  • Max1 and Max2 are the same value and are commonly referred to as "maximum speed”.
  • Table 41 stores, in the same manner as the table 40, the operating conditions including the amount of water stored in the washing tub 4 during the washing process, the running time, the stalling time, the maximum rotational speed, and the motor acceleration from the stopped state to the maximum rotational speed. .
  • the microcomputer 30 executes the washing process of the soft washing mode in accordance with the operating conditions corresponding to the amount of load obtained in step S1. It should be noted that the table 41 also stores operating conditions (not shown) relating to the respective processes after the washing process in the washing operation of the soft washing mode.
  • the table 42 stores the washing according to the load amount including the washing.
  • the microcomputer 30 executes the washing process in the fragile mode in accordance with the operating conditions corresponding to the amount of load obtained in step S1.
  • the table 42 also stores operating conditions (not shown) relating to the respective processes after the washing process in the washing operation of the vulnerable mode.
  • the washing period during which the stirring member 5 continues the intermittent rotation during the washing process is 7 minutes in either mode in the present embodiment (refer to Fig. 4).
  • the sum of the operation time and the stall time is the time required for one intermittent process consisting of the rotation of the motor 6 and the subsequent stop, which is equivalent to one half of one cycle, and one cycle is one interval from the forward rotation.
  • One batch processing at the time of processing and inversion (see Fig. 4).
  • the number of repetitions of the intermittent treatment in 7 minutes that is, the number of repetitions is obtained by dividing 7 minutes into units of seconds and dividing by the sum of the operation time and the stop time.
  • the time required for the motor 6 from the stop state to the maximum speed during each batch process, that is, the acceleration time is calculated by dividing the maximum speed by the motor acceleration, and the unit is seconds (s).
  • the rotational speed of the motor 6 is drawn in a trapezoidal waveform with the horizontal axis as the upper or lower bottom in the respective intermittent processing (refer to FIG. 4), but the cumulative area of the area as the trapezoidal portion.
  • Each trapezoidal portion can be obtained by the following formula (1).
  • the unit of accumulated area is rpm ⁇ s.
  • the acceleration time is the same as the deceleration time required for the motor 6 to decelerate from the maximum rotation speed to zero after the operation time elapses.
  • the value obtained by multiplying the cumulative area obtained by the formula (1) by the number of repetitions is the total cumulative area indicating the total of the cumulative areas of all the trapezoidal portions in the washing period of 7 minutes.
  • the total cumulative area is obtained by integrating the mathematical expression of the waveform indicating the rotational speed with the elapsed time as a variable.
  • the total cumulative area is an index of all the mechanical forces applied to the laundry Q in the washing tub 4 due to the intermittent rotation of the stirring member 5 during the washing period, and is also an index of the washing effect of the laundry Q as a whole in the washing process. The larger the total cumulative area, the higher the cleaning effect, but the mechanical force becomes larger, which may cause damage to the unsound laundry Q.
  • each mode the number of repetitions, the acceleration time, the cumulative area, and the total accumulated area are calculated according to the amount of load.
  • These data can be stored in tables 40 to 42 (see FIGS. 5 to 7).
  • the value obtained by dividing the total cumulative area by the maximum number of rotations is stored in accordance with the load amount.
  • the water amount of the soft-wash mode is 10% or more more than the water amount of the standard mode regardless of the load amount.
  • the data of one cycle of the intermittent rotation of the stirring member 5 and the operation time of the soft washing mode are longer than the operation time of the standard mode by one second or more regardless of the amount of load.
  • the stall time of the soft wash mode is longer than the stop time of the standard mode by more than one second regardless of the load amount.
  • the maximum speed of the soft wash mode is lower than the maximum speed of the standard mode regardless of the load amount, and is 50% or more and 90% or less of the maximum speed of the standard mode.
  • the motor acceleration in the soft-wash mode is 10% less than the motor acceleration in the standard mode regardless of the load. Therefore, regardless of the amount of load, the soft wash mode has fewer iterations than the standard mode.
  • the maximum load in the vulnerable mode is 1.5kg. Comparing the table 41 of the soft-wash mode of FIG. 6 with the table 42 of the vulnerability mode of FIG. 7 by the same load amount, it can be seen that in the case of a load of 1.5 kg, the water amount of the fragile mode is softer than the soft wash mode and the standard mode. many.
  • One of the intermittent rotation of the stirring member 5 The cycle data, when the operation time of the vulnerability mode is 1.5 kg or less, is longer than the operation time of the soft wash mode by 1 second or longer. Further, in the case where the stop time of the fragile mode is 1.5 kg or less, the stall time of the soft wash mode is longer than about 2 seconds.
  • the maximum speed of the fragile mode is 200 rpm regardless of the load, which is about 50% lower than the maximum speed of the soft wash mode. Also, the maximum rotational speed of 200 rpm of the vulnerable mode is a value determined in such a manner as to be such that the flow of water is just generated without damaging the laundry Q.
  • the motor acceleration in the fragile mode is below the motor acceleration in the soft-wash mode regardless of the load.
  • Fig. 8 is a graph showing the relationship between the total cumulative area ratio and the maximum number of revolutions in the washing process and the amount of load.
  • the horizontal axis represents the load amount
  • the vertical axis represents the total cumulative area ratio and the maximum rotational speed ratio.
  • the total cumulative area ratio is a ratio of the vulnerability mode and the soft-wash mode to the total cumulative area of the standard mode in the case where the total cumulative area in the standard mode is 100% in %.
  • the maximum speed ratio is expressed as a ratio of the maximum speed of each of the fragile mode and the soft wash mode with respect to the standard mode in the case where the maximum speed in the standard mode is 100%.
  • the total cumulative area which is an index indicating the burden on the laundry Q based on the cleaning effect and the mechanical force, is as shown by the broken line, and when the load is 1.5 kg or less, the maximum is only About 30% of the standard mode.
  • the maximum rotation speed the fragile mode is indicated by a chain double-dashed line, and in the case of a load of 1.5 kg or less, the maximum is only about 35% of the standard mode. In other words, the maximum rotational speed of the motor 6 during the washing process in the fragile mode is set to be lower than the standard mode in the case of comparison by the same load amount.
  • the vulnerable laundry Q it is possible to suppress the occurrence of damage during the washing operation and to perform the cleaning efficiently by the weak mode in which the mechanical force is weak.
  • the fragile mode the laundry Q is gently pushed by the stirring member 5 that is rotated at a low speed while being immersed in the water stored in the washing tub 4 to be cleaned.
  • the cleaning can be effectively performed without damage, even if the laundry Q as the object in the soft washing mode is washed in a fragile mode, It is also difficult to obtain a cleaning effect as high as the vulnerable laundry Q.
  • the goal of the soft wash mode is to be able to clean the subject laundry Q more effectively than the standard mode and more effectively than the fragile mode. Therefore, in a manner that the target can be achieved even if the washing period is 7 minutes as in the other modes, the total cumulative area is set to be within a range of 50% or more and 90% of the standard mode as indicated by the solid line.
  • the calculation is performed based on the total accumulated area to calculate the operating conditions such as the operating time, the stall time, the maximum speed, and the motor acceleration.
  • the maximum speed is set to be closed as indicated by the dotted line.
  • the soft wash mode as long as the maximum rotational speed ratio is 90% or less and the total cumulative area ratio is 50% or more, the above object can be reliably achieved.
  • the non-consumable laundry Q which is likely to be damaged by washing in the standard mode but is not washed efficiently in the vulnerable mode can be selected from the standard mode and the fragile mode.
  • Different soft wash modes When the microcomputer 30 receives the selection of the soft-wash mode, the agitating member 5 is intermittently rotated in the washing process of the soft-wash mode by the operating conditions (see FIG. 6) dedicated to the soft-wash mode.
  • the maximum rotation speed is also about 450 rpm (see FIG. 6).
  • the period in which the motor 6 rotates in each cycle of the intermittent rotation of the stirring member 5, that is, the operation time is longer than the standard mode when the operation time is compared by the same load amount.
  • the period in which the rotation of the motor 6 is stopped during each cycle of the intermittent rotation of the stirring member 5, that is, the stop time is compared by the same load amount, is compared with the standard mode. long.
  • the mechanical force applied to the laundry Q is weaker than the standard mode.
  • the stall time which is lengthened like this the detergent can be effectively permeated to the laundry Q. Therefore, by the washing process in the soft washing mode, it is possible to suppress the occurrence of damage of the laundry Q and to efficiently wash the laundry Q.
  • the acceleration of the motor 6 until the maximum number of revolutions of the intermittent rotation of the stirring member 5, that is, the motor acceleration is compared by the same load amount, is compared with the standard mode. low. Therefore, the mechanical force applied to the laundry Q during the acceleration of the motor is weaker than the standard mode. Therefore, it is possible to suppress the damage of the laundry Q by the washing process in the soft washing mode.
  • the microcomputer 30 stops the motor 6 to stop the rotation of the stirring member 5, and opens the drain valve 19. Thereby, the water stored in the washing tub 4 is discharged from the drain path 18 of the outer tub 3 to the outside of the machine, and the washing process of step S2 ends.
  • the stage in which the washing process has ended is in a state in which the water in which the detergent is dissolved penetrates into the washing material Q as the detergent water.
  • the timing chart of Fig. 9 will be collectively referred to.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the rotational speed of the motor 6, the operation/stop state of the motor 6, and the operation/non-operation state of the water supply valve 14 in order from the top.
  • the microcomputer 30 performs an intermediate dehydration process immediately after the washing process (step S3).
  • the microcomputer 30 controls the rotation of the motor 6 in such a manner that the drain valve 19 is kept open, and the washing tub 4 and the stirring member 5 are integrally rotated. Since the centrifugal force is applied to the laundry Q in the washing tub 4 by the rotation of the washing tub 4 and the stirring member 5, the laundry Q is dehydrated. The water oozing from the laundry Q by dehydration is discharged from the drain path 18 of the outer tub 3 to the outside of the machine.
  • the details of the intermediate dehydration process will be described.
  • the microcomputer 30 accelerates the rotational speed of the motor 6 from 0 rpm to the first rotational speed of 120 rpm, the motor 6 is stably rotated at a low speed of 120 rpm.
  • the first rotational speed is higher than the rotational speed at which the washing tub 4 generates lateral resonance (for example, 50 rpm to 60 rpm), and is lower than the rotational speed at which the washing tub 4 generates longitudinal resonance (for example, 200 rpm to 220 rpm).
  • the microcomputer 30 stabilizes the rotation of the motor 6 at a low speed of 240 rpm after accelerating the rotation speed of the motor 6 from 120 rpm to a second rotation speed of 240 rpm.
  • the second rotational speed is slightly higher than the rotational speed at which longitudinal resonance occurs.
  • the microcomputer 30 stably rotates the motor 6 at the maximum rotation speed after accelerating the rotation speed of the motor 6 from 240 rpm to a maximum rotation speed of 400 rpm or 800 rpm.
  • the microcomputer 30 causes the motor to be in the first acceleration phase from 0 rpm to 120 rpm, the second acceleration phase from 120 rpm to 240 rpm, and the third acceleration phase from 240 rpm to the maximum rotational speed.
  • the rotation of 6 is accelerated.
  • a large amount of water from the laundry Q is oozing out at one time, which may cause the drainage state of the drainage path 18 to deteriorate or be in the drainage path. 18 survives the bubble.
  • the microcomputer 30 closes the drain valve 19 after braking the rotation of the motor 6 to stop the rotation of the motor 6.
  • the microcomputer 30 can control the duty ratio to quickly stop the rotation of the motor 6, or can additionally provide a braking device (not shown) to operate the braking device through the microcomputer 30. The rotation of the motor 6 is quickly stopped.
  • the microcomputer 30 performs the water supply process immediately after the intermediate dehydration process (step S4).
  • the microcomputer 30 intermittently rotates the washing tub 4 at an extremely low speed by alternately repeatedly operating the motor 6 to drive, stopping the motor, and stopping. Specifically, the number of revolutions of the motor 6 was varied so as to alternately increase from 0 rpm to 30 rpm and from 30 rpm to 0 rpm.
  • the 30 rpm here is an example.
  • the rotation speed of the motor 6 in the water supply process is only lower than the minimum rotation speed at which the washing tub 4 resonates.
  • the minimum rotation speed differs depending on the size of the washing tub 4, in the case of the present embodiment, the rotation speed of the washing tub 4 is laterally resonated, which is 50 rpm to 60 rpm described above.
  • the microcomputer 30 is turned off by repeatedly opening and causing the water supply valve 14 to operate to be opened and not operated, thereby intermittently supplying water to the washing tub 4.
  • the timing of the operation/non-operation of the water supply valve 14 coincides with the timing of the operation/stop of the motor 6. Therefore, the water supply valve 14 also operates during the operation of the motor 6, and the water supply valve 14 does not operate during the stop of the motor 6.
  • the intermittent rotation of the washing tub 4 and the intermittent water supply are performed at the same timing, the laundry Q in the washing tub 4 is saturated with water from the water supply path 13 while the washing tub 4 is rotating at a very low speed.
  • the water from the water supply path 13 is supplied to the above-described laundry Q in a water-repellent state.
  • the supply of water-like water like this is called "water supply”.
  • the washing tub 4 is supplied with a small amount of water to the extent that the laundry Q is permeated by the water, almost no water remains in the washing tub 4.
  • the microcomputer 30 performs the intermediate dehydration process of the same content as the above-described step S3 again immediately after the water supply process (step S5).
  • the laundry Q in the washing tub 4 is centrifugally dehydrated by the intermediate dehydration process here. Thereby, the detergent water permeated to the laundry Q can be removed by flying together with the water supplied during the water supply.
  • the water supply process of step S4 and the intermediate dehydration process of step S5 performed immediately after the water supply process constitute a spin-drying process.
  • the dehydration rinse process is one of the rinse processes. It should be noted that in the dehydration rinsing process, although the washing tub 4 is rotated, the agitating member 5 is in a stationary state.
  • the microcomputer 30 performs a water storage rinsing process immediately after the dehydration rinsing process (step S6).
  • the water storage rinsing process is one of the rinsing processes.
  • the microcomputer 30 continuously opens the water supply valve 14 for a predetermined time in a state where the drain valve 19 is closed, and supplies water to the washing tub 4.
  • the microcomputer 30 closes the water supply valve 14 to stop the water supply.
  • the microcomputer 30 drives the motor 6 for a predetermined period of time as the rinsing process of the water storage rinsing process in a state where the water is stored in the washing tub 4 to the predetermined water level, and the stirring member 5 is intermittently rotated.
  • the microcomputer 30 stops the driving of the motor 6, and opens the drain valve 19.
  • the draining process at the final stage of the water storage rinsing process the water stored in the washing tub 4 is discharged from the drain path 18 of the outer tub 3 to the outside of the machine.
  • the laundry Q is in a state of being completely rinsed, and there is almost no detergent component in the laundry Q.
  • the microcomputer 30 performs the final dehydration process immediately after the water storage rinsing process (step S7).
  • the microcomputer 30 drives the motor 6 for a predetermined time so as to keep the drain valve 19 open, and the washing tub 4 and the stirring member 5 are integrally rotated.
  • the motor 6 is stably rotated at the maximum rotation speed after the third acceleration phase longer than the intermediate dehydration process.
  • the microcomputer 30 accelerates the rotation of the motor 6 in three stages of the first acceleration phase, the second acceleration phase, and the third acceleration phase.
  • the microcomputer 30 rotates the washing tub 4 and the stirring member 5 by supplying water to the washing tub 4 or performing drainage of the washing tub 4 or controlling the rotation of the motor 6, thereby performing the washing operation.
  • the maximum rotational speed in the respective dehydration processes of the intermediate dehydration process and the final dehydration process was 800 rpm in the standard mode (refer to the thick broken line of FIG. 9) and 400 rpm in the soft wash mode (refer to the thick solid line of FIG. 9). Therefore, the microcomputer 30 accelerates the rotation of the motor 6 in three stages in the intermediate dehydration process and the final dehydration process, but in the soft wash mode, unlike the standard mode, except that the motor 6 is rotated in the third acceleration phase. Accelerating from 240 rpm to 400 rpm does not accelerate the rotation of the motor 6.
  • the microcomputer 30 stably rotates the motor 6 at a medium speed of 400 rpm. In this manner, the microcomputer 30 rotates the washing tub 4 in the dehydrating process of the soft washing mode with the operating condition that the maximum rotational speed of the motor 6 is lower than the standard mode. In this case, the force applied to the laundry Q during the rotation of the motor 6 during the dehydration process is weaker than the standard mode. Therefore, it is possible to suppress the damage of the laundry Q by the dehydration process in the soft washing mode.
  • the rotation of the motor 6 is accelerated from 240 rpm to 400 rpm in the third acceleration phase, the respective contents of the intermediate dehydration process and the final dehydration process are the same as the soft wash mode and the standard mode.
  • the forward rotation and the reverse rotation of the motor 6 are alternately repeated in the washing process of each mode, and the series of flows of the forward rotation, the stop of the forward rotation, the reverse rotation, and the stop of the reverse rotation constitute the stirring member 5
  • One cycle of intermittent rotation (refer to Figure 4).
  • the definition of one cycle here is only an example, so it is also possible to treat an intermittent process consisting of the forward rotation and the stop of the forward rotation as one cycle, and will be followed by the reverse and the stop of the reverse. An intermittent process consisting of this process is considered as the next cycle. Further, it is also possible to repeat only one of forward rotation and reverse rotation without repeating forward rotation and reverse rotation alternately.
  • T1on and T2on have the same value
  • T1off and T2off have the same value
  • T1on and T2on may be different values or T1off and T2off may be different values.
  • Max1 and Max2 can also be different values.
  • the number of times of the dehydration rinsing process and the water storage rinsing process can be arbitrarily changed.
  • the center axis 20 of the outer tub 3 and the washing tub 4 is arranged so as to extend in the oblique direction K in the past (see FIG. 1), but it may be arranged such that the vertical direction Z extends.
  • washing machine 1: washing machine; 4: washing tub; 5: stirring member; 6: motor; 10A: operating portion; 30: microcomputer; Q: washing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种洗衣机,无论洗涤物易损还是不易损,其都能在洗涤运转时抑制损伤的产生并且高效地进行清洗。洗衣机(1)包括:洗涤桶(4);搅拌部件(5),可旋转,用以搅拌洗涤桶(4)内的洗涤物(Q);电机(6),使搅拌部件(5)旋转;微型计算机(30),供水至洗涤桶(4)或控制电机(6)的旋转。当接受到了为洗涤运转设定的多个模式中不同于标准模式、易损模式的柔洗模式的选择时,微型计算机(30)通过柔洗模式的洗涤过程以使洗涤桶(4)内的水量比标准模式多,使电机(6)的最大转速比标准模式低且比易损模式高,并使搅拌部件(5)的间歇旋转的各周期内电机(6)旋转的期间比标准模式长的运转条件,使搅拌部件(5)间歇旋转。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
在下述专利文献1所记载的洗衣机中,在收纳有衣物等洗涤物的洗涤桶的底部,设置有旋转翼,旋转翼通过经由动力传递机构连结的驱动电机进行旋转。在洗涤羊毛、丝绸等易损伤的易损洗涤物的情况下,驱动电机大部分情况下转速降低,在中途赋予速度变化。由此,由于洗涤桶内产生乱流,洗涤桶内的洗涤物相互位置被对换,因此能柔和并且均匀地清洗易损洗涤物。
现有技术文献
专利文献
专利文献1:日本特开平4-3998号公报
发明要解决的问题
近来,普遍不是在脏了的情况下才洗涤衣物,而是每次穿过后就洗涤。因此,同一件衣物被洗衣机洗涤的频度变高,但例如对心爱的衣物,期望在洗涤时尽量抑制损伤以尽可能穿得长久。需要说明的是,即使是仅穿着一次的衣物,由于附着汗水等,一定程度上处于脏了的状态。只要以专利文献1所公开的洗涤易损洗涤物的模式来洗涤该衣物,就能尽量抑制衣物的损伤。但是,在该衣物非易损而是比较结实的情况下,当以该模式进行洗涤则清洗效果较低,存在难以从该衣物有效地去除脏污之虞。虽如此,当洗衣机以作为通常的洗涤运转而被选择的标准模式进行洗涤时,存在即使被洗涤的洗涤物非易损洗涤物也难以抑制损伤之虞。
发明内容
本发明是在该背景下而完成的,其目的在于,提供一种洗衣机,无论洗涤物易损还是不易损,其都能在洗涤运转时抑制损伤的产生并且高效地进行清洗。
用于解决问题的方案
本发明的洗衣机,其特征在于,包括:洗涤桶,收纳洗涤物;搅拌部件, 可旋转,用以搅拌所述洗涤桶内的洗涤物;电机,使所述搅拌部件旋转;
执行单元,供水至所述洗涤桶,或控制所述电机的旋转,使所述搅拌部件旋转或停止,所述执行单元执行包含包括在所述洗涤桶蓄有水的状态下使所述搅拌部件周期性地间歇旋转的洗涤过程的洗涤运转;以及接受单元,接受为所述洗涤运转设定的多个模式的选择,所述多个模式包括标准模式、易损模式,其中,易损模式将所述洗涤过程中的所述电机的最大转速设定为比所述标准模式,以洗涤比在所述标准模式下进行洗涤的洗涤为还易损的洗涤物低,在所述接受单元接受到了所述多个模式中不同于所述标准模式、所述易损模式的规定模式的选择的情况下,所述执行单元在所述洗涤过程中,以使所述洗涤桶内的水量比所述标准模式多,使所述电机的最大转速比所述标准模式低并且比所述易损模式高,并使所述搅拌部件的间歇旋转的各周期内所述电机所旋转的期间比所述标准模式长的运转条件,使所述搅拌部件间歇旋转。
此外,本发明的特征在于,所述执行单元在所述规定模式的所述洗涤过程中,以使所述搅拌部件的间歇旋转的各周期内所述电机的旋转已停止的期间比所述标准模式长的运转条件,使所述搅拌部件间歇旋转。
此外,本发明的特征在于,所述执行单元在所述规定模式的所述洗涤过程中,以直到所述搅拌部件的间歇旋转的各周期的最大转速为止的所述电机的加速度比所述标准模式低的运转条件,使所述搅拌部件间歇旋转。
此外,本发明的特征在于,所述洗涤桶可旋转,所述电机能使所述洗涤桶旋转,所述洗涤运转包括在所述洗涤过程之后,所述执行单元控制所述电机的旋转使所述洗涤桶旋转的脱水过程,所述执行单元在所述规定模式的所述脱水过程中,以所述电机的最大转速比所述标准模式低的运转条件使所述洗涤桶旋转。
发明效果
通过本发明,在洗衣机的洗涤运转的洗涤过程中,执行单元在洗涤桶蓄有水的状态下控制电机的旋转,使搅拌部件周期性地间歇旋转。由此,在洗涤桶内产生水流。通过间歇旋转的搅拌部件、水流所产生的机械力搅拌洗涤物,由此从洗涤物中除去脏污,因此能洗干净洗涤物。
洗涤运转设定有多个模式,这些模式包括一般的标准模式、在用于易损洗涤物的洗涤的洗涤过程中电机的最大转速设定为比标准模式低的易损模式。在 易损洗涤物的情况下,通过机械力弱的易损模式,能抑制洗涤运转时发生损伤的情况并且高效地进行清洗。
另一方面,对于以标准模式进行洗涤则有可能产生损伤但以易损模式进行洗涤则不能有效地进行清洗的非易损洗涤物,能选择与标准模式、易损模式不同的规定模式。在选择了规定模式的情况下,执行单元在规定模式的洗涤过程中,以预定的运转条件使搅拌部件间歇旋转。
在该运转条件下,洗涤桶内的水量设定为比标准模式多。由此,在洗涤桶内,由于蓄积的水多,能抑制洗涤物彼此相互摩擦的情况,因此能抑制洗涤物发生损伤的情况。此外,在该运转条件下,由于电机的最大转速比标准模式低并且比易损模式高,因此对洗涤物施加的机械力比标准模式弱并且比易损模式强。因此,能抑制当以标准模式进行洗涤则洗涤物有可能产生损伤的情况,并且能比易损模式更有效地清洗洗涤物。此外,在该运转条件下,由于搅拌部件的间歇旋转的各周期内电机旋转的期间比标准模式还长,因此通过该期间的搅拌部件的旋转促进洗涤桶内的洗涤物的位置对换。由此,能高效地清洗洗涤物。
此外,通过本发明,在规定模式的洗涤过程中使搅拌部件间歇旋转的运转条件下,由于在搅拌部件的间歇旋转的各周期内电机的旋转已停止的期间比标准模式长,因此对洗涤物施加的机械力比标准模式弱。此外,通过如此变长的期间,能使洗涤剂高效地浸透至洗涤物。因此,通过规定模式的洗涤过程,能抑制洗涤物发生损伤的情况并且高效地清洗洗涤物。
此外,通过本发明,在规定模式的洗涤过程中使搅拌部件间歇旋转的运转条件下,由于直到搅拌部件的间歇旋转的各周期的最大转速为止的电机的加速度比标准模式低,因此在电机的加速过程中对洗涤物施加的机械力比标准模式弱。因此,通过规定模式的洗涤过程,能抑制洗涤物发生损伤的情况。
此外,通过本发明,在规定模式的脱水过程中,执行单元以电机的最大转速比标准模式低的运转条件,使洗涤桶旋转。在这种情况下,在脱水过程中的电机的旋转过程中对洗涤物施加的力比标准模式弱。因此,通过规定模式的脱水过程,能抑制洗涤物发生损伤的情况。
附图说明
图1是本发明的一实施方式的洗衣机的示意性的纵剖右视图。
图2是表示洗衣机的电结构的框图。
图3是表示洗涤运转的控制动作的流程图。
图4是表示洗涤过程中电机的转速的时序图。
图5是汇总关于标准模式下的洗涤过程的数据的表格。
图6是对与柔洗模式下的洗涤过程有关的数据进行汇总后的表格。
图7是对于易损模式下的洗涤过程有关的数据进行汇总后的表格。
图8是表示洗涤过程中的总累计面积比以及最大转速比各自与负荷量的关系的图表。
图9是表示洗涤过程后的电机的转速、电机的运转/停转状态以及供水阀的工作/不工作状态的时序图。
具体实施方式
以下,参照附图,对本发明的实施方式进行具体说明。图1是本发明的一实施方式的洗衣机1的示意性的纵剖右视图。将图1中的上下方向称为洗衣机1的上下方向Z,将图1中的左右方向称为洗衣机1的前后方向Y,将与图1的纸面垂直的方向称为左右方向X,首先,关于洗衣机1的概要进行说明。上下方向Z中,将上方称为上方Z1,将下方称为下方Z2。前后方向Y中,将图1中的左方称为前方Y1,图1中的右方称为后方Y2。左右方向X中,将图1的纸面的背侧称为左方X1,将图1的纸面的表侧称为右方X2。
虽然洗衣机1还包括具有干衣功能的洗衣干衣机,但接下来以省略干衣功能只执行洗涤运转的洗衣机为例对洗衣机1进行说明。洗衣机1包括:机壳2、外桶3、洗涤桶4、搅拌部件5、电动电机6以及传递机构7。
机壳2为例如金属制,形成为箱状。机壳2的上表面2A以例如越往后方Y2越向上方Z1延伸的方式,相对于水平方向H倾斜地形成。在上表面2A形成有连通机壳2内外的开口8。在上表面2A设置有开闭开口8的门9。在上表面2A,于开口8的周围的区域设置有由开关等构成的作为收发单元的操作部10A和由液晶面板等构成的显示部10B。在图1中虽然操作部10A以及显示部10B配置为比开口8更靠近前方Y1,但也可以配置为例如比开口8更靠近右方X2。使用者通过操作操作部10A,能自由地选择洗涤运转的运转条件或对洗衣机1发出洗涤运转开始、停止等指示。在显示部10B以可目视的方式显示洗涤 运转相关的信息。
外桶3为例如树脂制,形成为有底圆筒状。外桶3具备:圆周壁3A,呈大致圆筒状,沿着相对于上下方向Z往前方Y1倾斜的倾斜方向K配置;底壁3B,从下方Z2堵住圆周壁3A的中空部分;以及环状壁3C,呈环状,对圆周壁3A的上方Z1侧的端缘进行修边的同时向圆周壁3A的圆心侧突出。倾斜方向K不仅相对于上下方向Z倾斜,还相对于水平方向H倾斜。圆周壁3A的中空部分从环状壁3C的内侧向上方Z1露出。底壁3B形成与倾斜方向K正交并相对于水平方向H倾斜延伸的圆板状,在底壁3B的圆心位置,形成有贯通底壁3B的贯通孔3D。机壳2的前壁2B以在图1中向上下方向Z延伸的方式形成,但也可以以沿着圆周壁3A的前侧部分向倾斜方向K延伸的方式形成。
外桶3内可蓄水。例如,在机壳2内的外桶3的上方Z1配置有盒状的洗涤剂收纳室17。在洗涤剂收纳室17,从上方Z1并且从后方Y2连接有与水龙头(未作图示)连接的供水路13,水从供水路13经由洗涤剂收纳室17内供给到外桶3内。来自洗涤剂收纳室17的水也可以如虚线箭头所示以泼水状流下,供给到外桶3内。在供水路13的中途设置有以开始或停止供水为目的进行开闭的供水阀14。
在洗涤剂收纳室17,还连接有分支路15,该分支路15从供水路13的比供水阀14更靠近水龙头的上游侧的部分分支出来。水通过从供水路13流入分支路15,从而从分支路15经由洗涤剂收纳室17内提供至外桶3内。在分支路15的中途设置有以开始或停止供水为目的进行开闭的柔顺剂供给阀16。洗涤剂收纳室17内被划分为收纳柔顺剂的第一区域(未作图示)和不收纳柔顺剂的第二区域(未作图示)。当柔顺剂供给阀16打开时,从供水路13流入分支路15的水经由洗涤剂收纳室17的第一区域后供给到外桶3内。由此,洗涤剂收纳室17内的柔顺剂混入水中,供给至外桶3内。另一方面,当供水阀14打开时,从供水路13直接流入的水经由洗涤剂收纳室17的第二区域后供给至外桶3内。在这种情况下,未混合柔顺剂的状态的水供给至外桶3内。
在外桶3,从下方Z2连接有排水路18,外桶3内的水从排水路18排出到机外。在排水路18的中途设置有以开始或停止排水为目的进行开闭的排水阀19。
洗涤桶4为例如金属制,具有往倾斜方向K延伸的中心轴线20,形成为比外桶3小一圈的有底圆筒状,能在内部收纳洗涤物Q。洗涤桶4具有沿倾斜方 向K配置的大致圆筒状的圆周壁4A和从下方Z2堵住圆周壁4A的中空部分的底壁4B。
圆周壁4A的内圆周面是洗涤桶4的内圆周面。圆周壁4A的内圆周面的上端部为使圆周壁4A的中空部分向上方Z1露出的出入口21。出入口21从下方Z2与外桶3的环状壁3C的内侧区域对置,处于从下方Z2与机壳2的开口8连通的状态。洗衣机1的使用者经由打开的开口8以及出入口21将洗涤物Q投入取出洗涤桶4。
洗涤桶4以同轴状收纳在外桶3内,相对于上下方向Z以及水平方向H倾斜地配置。被收纳在外桶3内的状态的洗涤桶4能围绕中心轴线20进行旋转。在洗涤桶4的圆周壁4A以及底壁4B形成有多个未作图示的贯通孔,外桶3内的水能经由该贯通孔,在外桶3和洗涤桶4之间往来。因此,外桶3内的水位与洗涤桶4内的水位一致。此外,从洗涤剂收纳室17流出的水经由洗涤桶4的出入口21,从上方Z1直接供给至洗涤桶4内。
洗涤桶4的底壁4B形成为相对于外桶3的底壁3B在上方Z1隔着间隔大致平行地延伸的圆板状,在底壁4B的与中心轴线20一致的圆心位置处,形成有贯通底壁4B的贯通孔4C。在底壁4B,设置有环抱贯通孔4C并且沿着中心轴线20向下方Z2伸出的管状的支承轴22。支承轴22插通外桶3的底壁3B的贯通孔3D,支承轴22的下端部位于底壁3B的下方Z2。
搅拌部件5也就是波轮,形成为以中心轴线20为圆心的圆盘状,在洗涤桶4内沿着底壁4B与洗涤桶4同心状地配置。在搅拌部件5的从下方Z2面向洗涤桶4的出入口21的上表面处,设置有呈放射状配置的多个叶片5A。在搅拌部件5设置有从其圆心沿着中心轴线20向下方Z2延伸的旋转轴23。旋转轴23插通支承轴22的中空部分,旋转轴23的下端部位于外桶3的底壁3B的下方Z2。
在本实施方式中,电机6配置成变频电机。电机6在机壳2内配置于外桶3的下方Z2。电机6具有以中心轴线20为中心进行旋转的输出轴24。传递机构7夹在支承轴22和旋转轴23各自的下端部与输出轴24的上端部之间。传递机构7将电机6从输出轴24输出的驱动力选择性地传递到支承轴22以及旋转轴23的一方或双方。作为传递机构7可以使用公知的传递机构。
当来自电机6的驱动力传递至支承轴22以及旋转轴23时,洗涤桶4以及 搅拌部件5围绕中心轴线20进行旋转。洗涤桶4以及搅拌部件5的旋转方向与洗涤桶4的圆周方向S一致。
图2是表示洗衣机1的电结构的框图。参照图2,洗衣机1包括作为执行单元以及收发单元的微型计算机30。微型计算机30包括例如CPU和ROM、RAM等存储器部,配置在机壳2内(参照图1)。
洗衣机1还包括水位传感器31、旋转传感器32以及蜂鸣器33。水位传感器31、旋转传感器32以及蜂鸣器33以及上述的操作部10A以及显示部10B分别与微型计算机30电连接。电机6、传递机构7、供水阀14、柔顺剂供给阀16以及排水阀19分别经由驱动电路34与微型计算机30电连接。
水位传感器31为检测外桶3以及洗涤桶4的水位,换言之,为检测洗涤桶4内的水量的传感器,水位传感器31的检测结果实时输入微型计算机30。
旋转传感器32为读取电机6的转速,严格来说为读取电机6的输出轴24的转速的装置,例如由多个霍尔IC(未作图示)构成。旋转传感器32所读取到的转速实时输入微型计算机30。微型计算机30根据输入的转速,控制电机6的运转/停转,详细而言控制施加给电机6的电压的占空比,以使电机6按所希望的转速进行旋转的方式控制电机6的旋转。在本实施方式中,电机6的转速与洗涤桶4以及搅拌部件5各自的转速相同。此外,微型计算机30能控制电机6的旋转方向。因此,电机6能正转或反转。在本实施方式中,电机6的输出轴24的旋转方向与洗涤桶4以及搅拌部件5各自的旋转方向一致。例如,当电机6正转时,洗涤桶4以及搅拌部件5从上方Z1观察,俯视以顺时针方向进行旋转,当电机6反转时,洗涤桶4以及搅拌部件5在俯视时以逆时针方向进行旋转。
如上所述,当使用者操作操作部10A对洗涤运转的运转条件等进行选择时,微型计算机30接受该选择。微型计算机30将需要的信息通过显示部10B以可目视的方式显示给使用者。微型计算机30通过由蜂鸣器33发出的预定的声音,从而通知使用者洗涤运转的开始、结束等。
微型计算机30通过控制传递机构7,从而将电机6的驱动力的传递目标切换为支承轴22以及旋转轴23的一方或双方。微型计算机30控制供水阀14、柔顺剂供给阀16以及排水阀19的开闭。因此,微型计算机30能通过打开供水阀14供水到洗涤桶4,能通过打开柔顺剂供给阀16提供柔顺剂到洗涤桶4,能通 过打开排水阀19执行洗涤桶4的排水。
接下来,参照图3的流程图,关于在洗衣机1中微型计算机30所执行的洗涤运转进行说明。洗涤运转由对洗涤物Q进行洗涤的洗涤过程、洗涤过程后对洗涤物Q进行漂洗的漂洗过程、以及对洗涤物Q进行脱水的脱水过程构成。脱水过程包括在洗涤运转的最后被执行的最终脱水过程和至少在洗涤过程之后立即被执行的中间脱水过程。需要说明的是,在洗涤运转中,可以只使用自来水,也可以根据需要使用洗澡水。
洗涤运转设定有多个模式。多个模式包括:一般常被选择的“标准模式”;“易损模式”;与标准模式、易损模式不同的规定模式即“柔洗模式”等。易损模式也被称作干洗模式,是为了洗涤比在标准模式下被洗涤的洗涤物Q还易损的洗涤物Q而设定的模式。作为易损模式的对象的易损的洗涤物Q的具体例子,可以例举出标识有所谓“手洗”、“干洗”标记的羊毛、丝绸等漂亮衣服。
柔洗模式是为了将虽不像易损模式的对象那样易损但又担心以标准模式反复洗涤会受到损伤的洗涤物Q柔和且比易损模式更有效地进行清洗而设定的模式。作为柔洗模式的对象的洗涤物Q的具体例子,可以例举出标识有所谓“轻洗”的标记的衣物、非易损但心爱的衣物中受污较少且想轻洗的衣物等。
在设置于微型计算机30的存储器部(未作图示),存储有对标准模式的运转条件进行了汇总的表格40、对柔洗模式的运转条件进行了汇总的表格41、对易损模式的运转条件进行了汇总的表格42(参照后述的图5~图7)。
洗衣机1的使用者通过操作操作部10A,从而能选择多个模式中的任一个模式。微型计算机30对应使用者所操作的操作部10A,接受模式的选择,执行接受的模式下的洗涤运转。
微型计算机30根据洗涤运转的开始,检测作为负荷量的洗涤桶4内的洗涤物Q的量(步骤S1)。具体而言,微型计算机30通过使洗涤桶4以低速稳定旋转时的电机6的转速的波动来检测负荷量。负荷量的单位为kg。微型计算机30在显示部10B显示与检测到的负荷量对应的洗涤运转的期间、洗涤剂的必要量等。此外,微型计算机30确定与检测到的负荷量对应的运转条件。
接下来,微型计算机30执行洗涤过程(步骤S2)。在洗涤过程中,微型计算机30在排水阀19关闭的状态下打开供水阀14,供水至洗涤桶4。当水在洗涤桶4内蓄至规定的水量时,微型计算机30关闭供水阀14,停止供水。然后, 微型计算机30在规定的洗涤期间,在已使洗涤桶4静止的状态下,以使运转以及停转交互重复的方式控制电机6的旋转,使搅拌部件5交互旋转或停止。由此,在洗涤过程中,搅拌部件5以水在洗涤桶4蓄至规定的水量的状态周期性地间歇旋转。洗涤桶4内的洗涤物Q通过与间歇旋转的搅拌部件5的叶片5A接触或顺着间歇旋转的搅拌部件5在洗涤桶4内产生的水流从而被搅拌。通过由这样间歇旋转的搅拌部件5、水流所产生的机械力搅拌洗涤物Q从而从洗涤物Q中除去脏污,因此能洗干净洗涤物Q。此外,洗涤桶4内的洗涤物Q通过投入至洗涤桶4内的洗涤剂分解脏污。由此,洗涤桶4内的洗涤物Q也得到清洗。
图4是表示洗涤过程中的电机6的转速的时序图。在图4的时序图中,横轴表示经过时间,纵轴表示电机6的转速。转速的单位为rpm。在图4的时序图中,用粗虚线来表示对标准模式下的电机6的转速的时变进行显示的波形,用粗实线来表示对柔洗模式下的电机6的转速的时变进行显示的波形。电机6的正转、该正转的停止、电机6的反转以及该反转的停止这一连串流程构成各模式下搅拌部件5的间歇旋转的一个周期。需要说明的是,对于正转以及反转而言,虽然电机6的旋转方向为逆向,但电机6的转速无论旋转方向如何都为正值。
在普通模式、柔洗模式以及易损模式这各个模式下的搅拌部件5的间歇旋转的各周期,将电机6运转且进行正转的时间称为T1on,将接下来电机6停转而停止的时间称为T1off,将接下来电机6运转并反转的时间称为T2on,将接下来电机6停转而停止的时间称为T2off。此外,在各周期,将正转时的电机6的最大转速称为Max1,将反转时的电机6的最大转速称为Max2。T1on、T1off、T2on以及T2off的总和为各模式的一个周期。电机6在经过T1on,从加速至Max1后开始以Max1稳定旋转后,在经过T1off,转速减速至零后暂时停止。然后,电机6在经过T2on,加速至Max2后开始以Max2稳定旋转后,在经过T2off,转速减速至零后暂时停止。
参照表示对与标准模式下的洗涤过程有关的数据进行了汇总的表格40的图5,在本实施方式的标准模式下,T1on和T2on为同值且通称为“运转时间”,T1off和T2off为同值且通称为“停转时间”,Max1和Max2为同值且通称为“最大转速”。从停止状态至最大转速的上升时的电机6的加速度称为“电机加速度”。运转时间 以及停转时间各自的单位为秒(s),电机加速度的单位为rpm/20ms。表格40存储有按照负荷量决定的包括洗涤过程中蓄于洗涤桶4的水的水量、运转时间、停转时间、最大转速以及电机加速度的运转条件。水量的单位为升(L)。运转时间、停转时间、电机转速和电机加速度是表示洗涤过程中的水流强度的参数,表格40存储有按照负荷量决定的水量和水流的强度。微型计算机30以与步骤S1中得到的负荷量对应的运转条件,执行标准模式的洗涤过程。需要说明的是,表格40还存储有与标准模式的洗涤运转中的洗涤过程后的各过程有关的运转条件(未作图示)。
参照表示对与柔洗模式下的洗涤过程有关的数据进行了汇总的表格41的图6,在本实施方式的柔洗模式下,T1on和T2on为同值且通称为“运转时间”,T1off和T2off为同值且通称为“停转时间”,Max1和Max2为同值且通称为“最大转速”。表格41与表格40同样存储有按照负荷量决定的包括洗涤过程中蓄于洗涤桶4的水的水量、运转时间、停转时间、最大转速以及从停止状态到最大转速为止的电机加速度的运转条件。微型计算机30以与步骤S1中得到的负荷量对应的运转条件,执行柔洗模式的洗涤过程。需要说明的是,表格41还存储有与柔洗模式的洗涤运转中的洗涤过程后的各过程有关的运转条件(未作图示)。
参照表示对与易损模式下的洗涤过程有关的数据进行了汇总的表格42的图7,在易损模式下也与表格40、表格41同样,表格42存储有按照负荷量决定的包括在洗涤过程中蓄于洗涤桶4的水的水量、运转时间、停转时间、最大转速以及电机加速度的运转条件。微型计算机30以与步骤S1中得到的负荷量对应的运转条件,执行易损模式的洗涤过程。需要说明的是,表格42还存储有与易损模式的洗涤运转中的洗涤过程后的各过程有关的运转条件(未作图示)。
在洗涤过程中搅拌部件5继续进行间歇旋转的洗涤期间在本实施方式中于任一模式下都为7分钟(参照图4)。在各模式下,运转时间和停转时间的总和是由电机6的旋转和其后的停止构成的一次间歇处理所需要的时间,相当于一个周期的一半,一个周期由正转时的一次间歇处理和反转时的一次间歇处理构成(参照图4)。在7分钟内重复间歇处理的次数即反复次数通过将7分钟变换成秒的单位后除以运转时间和停转时间的总和而得。各间歇处理过程中电机6从停止状态到最大转速为止所需的时间即加速时间通过将最大转速除以电机加速度来算出,其单位为秒(s)。
在各模式下,电机6的转速在各自的间歇处理过程中,绘出了以横轴为上底或下底的梯形的波形(参照图4),但对于作为该梯形部分的面积的累计面积,每一个梯形部分可由下式(1)得出。累计面积的单位为rpm×s。并且,式(1)中,作为前提,加速时间与运转时间经过后电机6从最大转速减速到零为止所需的减速时间相同。
累计面积=((运转时间-加速时间)×最大转速)+(加速时间×最大转速)...式(1)
在各模式下,式(1)所得的累计面积乘以反复次数所得的值为表示7分钟的洗涤期间内的所有梯形部分的累计面积的总和的总累计面积。需要说明的是,总累计面积通过对以经过时间为变量表示转速的波形的数学式进行积分而得。总累计面积是因洗涤期间内的搅拌部件5的间歇旋转而对洗涤桶4内的洗涤物Q施加的所有机械力的指标,并且也是洗涤过程整体的洗涤物Q的清洗效果的指标。总累计面积越大,清洗效果越高,但由于机械力变大,因此有可能会对不结实的洗涤物Q产生损伤。
在各模式下,按照负荷量计算出反复次数、加速时间、累计面积、总累计面积。这些数据可以存储于表格40~42(参照图5~图7)。需要说明的是,在表格40~42的各自右端的栏,按照负荷量存储有将总累计面积除以最大转速而得的值。
按同一负荷量比较图5的标准模式的表格40和图6的柔洗模式的表格41可知,柔洗模式的水量无论负荷量如何,都比标准模式的水量多10%以上。此外,关于搅拌部件5的间歇旋转的一个周期的数据、柔洗模式的运转时间无论负荷量如何,都比标准模式的运转时间长1秒以上。此外,柔洗模式的停转时间无论负荷量如何,都比标准模式的停转时间长1秒以上。柔洗模式的最大转速无论负荷量如何,都比标准模式的最大转速低,是标准模式的最大转速的50%以上90%以下。柔洗模式的电机加速度无论负荷量如何,都比标准模式的电机加速度小10%以上。因此,无论负荷量如何,柔洗模式的反复次数都比标准模式少。
易损模式的最大负荷量为1.5kg。将图6的柔洗模式的表格41和图7的易损模式的表格42以同一负荷量进行比较可知,在1.5kg的负荷量的情况下,易损模式的水量比柔洗模式以及标准模式多。关于搅拌部件5的间歇旋转的一个 周期的数据,易损模式的运转时间在1.5kg以下的负荷量的情况下,比柔洗模式的运转时间长1秒以上。此外,易损模式的停转时间在1.5kg以下的负荷量的情况下,比柔洗模式的停转时间长2秒左右。易损模式的最大转速无论负荷量如何都为200rpm,比柔洗模式的最大转速低约50%以上。并且,易损模式的200rpm的最大转速是以低至在不损伤洗涤物Q的情况下刚好产生水流的程度的方式所确定的值。易损模式的电机加速度无论负荷量如何都为柔洗模式的电机加速度以下。
图8是表示洗涤过程中的总累计面积比以及最大转速比各自与负荷量的关系的图表。在图8的图表中,横轴表示负荷量,纵轴表示总累计面积比以及最大转速比。总累计面积比是以%表示以标准模式下的总累计面积为100%的情况下易损模式以及柔洗模式各自相对于标准模式的总累计面积的比率。最大转速比是以%表示以标准模式下的最大转速为100%的情况下易损模式以及柔洗模式各自相对于标准模式的最大转速的比率。
参照图8,关于表示基于清洗效果和机械力的对洗涤物Q的负担的指标即总累计面积,易损模式如虚线所示,在1.5kg以下的负荷量的情况下,最大时也仅为标准模式的30%左右。此外,有关最大转速,易损模式如双点划线所示,在1.5kg以下的负荷量的情况下,最大时也仅为标准模式的35%左右。换句话说,易损模式的洗涤过程中的电机6的最大转速在按同一负荷量进行比较的情况下,设定为比标准模式还低。在易损的洗涤物Q的情况下,通过机械力弱的易损模式,从而能抑制洗涤运转时发生损伤的情况并且高效地进行清洗。在易损模式下,洗涤物Q在被浸泡于蓄在洗涤桶4的水中的状态下,通过低速旋转的搅拌部件5被轻柔地推着进行清洗。当洗涤物为柔软的易损的洗涤物Q时,在易损模式下,虽然能无损伤地有效地进行清洗,但即使将柔洗模式下作为对象的洗涤物Q以易损模式进行清洗,也很难得到像易损的洗涤物Q那样高的清洗效果。
柔洗模式的目标在于,能比标准模式柔和且比易损模式有效地清洗对象洗涤物Q。因此,以使得即便洗涤期间与其他模式同样为7分钟也能实现该目标的方式,总累计面积如以实线所示,设定为收于标准模式的50%以上90%以内的范围,通过根据总累计面积进行逆算,从而算出运转时间、停转时间、最大转速、电机加速度这些运转条件。由此,最大转速如以虚线所示,设定为收于 标准模式的50%以上90%以内的范围。优选地,在柔洗模式下,只要最大转速比为90%以下并且总累计面积比为50%以上,就能可靠地达成上述目标。
根据以上,在洗衣机1中,对于以标准模式进行洗涤则有可能产生损伤但以易损模式进行洗涤则不能有效地进行清洗的非易损的洗涤物Q,能选择与标准模式、易损模式不同的柔洗模式。微型计算机30在接受到了柔洗模式的选择的情况下,在柔洗模式的洗涤过程中,以柔洗模式专用的运转条件(参照图6)使搅拌部件5间歇旋转。
具体而言,参照图5~图7,在柔洗模式的洗涤过程的运转条件下,洗涤桶4内的水量在按同一负荷量进行比较的情况下,设定为比标准模式多。由此,在洗涤桶4内,由于蓄积的水多,能抑制洗涤物Q彼此相互摩擦,因此能抑制对洗涤物Q产生损伤的情况。此外,在柔洗模式的洗涤过程的运转条件下,由于电机6的最大转速在按同一负荷量进行比较的情况下,比标准模式低并且比易损模式高,因此对洗涤物Q施加的机械力比标准模式弱并且比易损模式强。因此,能抑制洗涤物Q产生标准模式下有可能产生的损伤并且比易损模式更高效地清洗洗涤物Q。需要说明的是,在柔洗模式下,为了产生有效地使洗涤物Q搅拌的比较强的水流,优选最大转速最低也为450rpm左右(参照图6)。
此外,在柔洗模式的洗涤过程的运转条件下,搅拌部件5的间歇旋转的各周期内电机6旋转的期间即运转时间在按同一负荷量进行比较的情况下,比标准模式长。由此,通过较长的运转时间下的搅拌部件5的旋转,涤桶4内的洗涤物Q的位置的对换得到促进。因此,能高效地清洗洗涤物Q。
此外,在柔洗模式的洗涤过程的运转条件下,在搅拌部件5的间歇旋转的各周期内电机6的旋转停止的期间即停转时间在按同一负荷量进行比较的情况下,比标准模式长。由此,对洗涤物Q施加的机械力比标准模式弱。此外,通过像这样变长的停转时间,能使洗涤剂有效地浸透至洗涤物Q。因此,通过柔洗模式的洗涤过程,能抑制洗涤物Q发生损伤的情况并且高效清洗洗涤物Q。
此外,在柔洗模式的洗涤过程的运转条件下,搅拌部件5的间歇旋转的各周期的直到最大转速为止的电机6的加速度即电机加速度在按同一负荷量进行比较的情况下,比标准模式低。因此,在电机的加速过程中对洗涤物Q施加的机械力比标准模式弱。因此,通过柔洗模式的洗涤过程,能抑制洗涤物Q发生损伤的情况。
参照图3,无论在何种模式下,当经过洗涤期间时,微型计算机30就使电机6停转从而停止搅拌部件5的旋转,打开排水阀19。由此,蓄于洗涤桶4的水从外桶3的排水路18被排出到机外,步骤S2的洗涤过程结束。需要说明的是,洗涤过程已结束的阶段处于溶解有洗涤剂的水作为洗涤剂水渗透至洗涤物Q的状态。在进行以下的洗涤运转的说明时,一并参照图9的时序图。在图9的时序图中,横轴表示经过时间,纵轴从上开始按顺序表示电机6的转速、电机6的运转/停转状态以及供水阀14的工作/不工作状态。
微型计算机30在洗涤过程之后立即执行中间脱水过程(步骤S3)。在中间脱水过程,微型计算机30以保持排水阀19打开的方式控制电机6的旋转,使洗涤桶4以及搅拌部件5一体旋转。由于通过洗涤桶4以及搅拌部件5的旋转,对洗涤桶4内的洗涤物Q施加离心力,因此洗涤物Q被脱水。通过脱水从洗涤物Q渗出的水从外桶3的排水路18排出到机外。
就中间脱水过程的详细情况进行说明,微型计算机30在使电机6的转速从0rpm加速至120rpm的第一转速后,以低速120rpm使电机6稳定旋转。第一转速比洗涤桶4产生横向共振的转速(例如50rpm~60rpm)高,并且比洗涤桶4产生纵向共振的转速(例如200rpm~220rpm)低。120rpm的稳定旋转后,微型计算机30在使电机6的转速从120rpm加速至240rpm的第二转速后,以低速240rpm使电机6稳定旋转。第二转速比产生纵向共振的转速稍稍高些。然后,微型计算机30在使电机6的转速从240rpm加速至400rpm或800rpm的最大转速后,以最大转速使电机6稳定旋转。
换句话说,在中间脱水过程中,微型计算机30以从0rpm到120rpm的第一加速阶段、从120rpm到240rpm的第二加速阶段、从240rpm到最大转速的第三加速阶段这三个阶段使电机6的旋转加速。与这样的情况不同,当使电机6从0rpm一口气加速至最大转速时,由于来自洗涤物Q的大量的水一次性的渗出,有可能导致排水路18的排水状态变差或在排水路18存留泡沫。但是,在本实施方式中,由于以使来自洗涤物Q的大量的水不会一次性地渗出的方式使电机6阶段性地加速,因此能防止这样的不良状况。微型计算机30在中间脱水过程的最后,在对电机6的旋转施以制动使电机6的旋转停止后,关闭排水阀19。作为此处的制动,微型计算机30可以控制占空比从而使电机6的旋转快速停止,也可以另外设置制动装置(未作图示),通过微型计算机30使制动装置工作从 而使电机6的旋转快速停止。
微型计算机30在中间脱水过程之后立即执行供水过程(步骤S4)。在供水过程中,微型计算机30通过交替地反复使电机6运转从而驱动、使电机停转从而停止,使洗涤桶4以极低速间歇旋转。具体而言,电机6的转速以交替反复从0rpm上升至30rpm、从30rpm下降至0rpm的方式进行变动。
此处的30rpm是一个例子,总之,供水过程中的电机6的转速只要比洗涤桶4产生共振的最低转速低即可。虽然该最低转速根据洗涤桶4尺寸而有所不同,但本实施方式的情况下为洗涤桶4产生横向共振的转速,为上述的50rpm~60rpm。
此外,在供水过程中,微型计算机30通过反复交替使供水阀14工作而打开、不工作而关闭,从而间歇供水至洗涤桶4。供水阀14的工作/不工作的时机与电机6的运转/停转的时机一致。因此,在电机6运转的期间供水阀14也工作,在电机6停转的期间供水阀14也不工作。在供水过程中,由于在相同的时机执行洗涤桶4的间歇旋转和间歇供水,因此在洗涤桶4极低速旋转的期间,洗涤桶4内的洗涤物Q被来自供水路13的水浸透。此时,来自供水路13的水呈泼水状被供给至上述的洗涤物Q。像这样的泼水状的水的供给被称为“泼水供水”。在供水过程中,由于以洗涤物Q被水渗透的程度对洗涤桶4进行少量的供水,因此洗涤桶4内几乎不会存留水。
微型计算机30在供水过程之后,立即再次执行与上述步骤S3相同内容的中间脱水过程(步骤S5)。通过此处的中间脱水过程,洗涤桶4内的洗涤物Q被离心脱水。由此,能将浸透至洗涤物Q的洗涤剂水与供水过程中供给的水一起甩飞除去。
步骤S4的供水过程和供水过程之后立即执行的步骤S5的中间脱水过程构成一次脱水漂洗过程。脱水漂洗过程是漂洗过程的一种。需要说明的是,在脱水漂洗过程中,虽然洗涤桶4被旋转,但搅拌部件5处于静止的状态。
微型计算机30在脱水漂洗过程后,立即执行一次蓄水漂洗过程(步骤S6)。蓄水漂洗过程是漂洗过程的一种。作为蓄水漂洗过程的最初阶段的供水过程,微型计算机30在排水阀19关闭的状态下连续打开供水阀14规定时间,供水至洗涤桶4。当在洗涤桶4内蓄水至例如使洗涤物Q位于下方Z2的规定水位时,微型计算机30关闭供水阀14,停止供水。
然后,微型计算机30在洗涤桶4内蓄水至该规定水位的状态下,作为蓄水漂洗过程的漂洗过程,使电机6驱动规定时间,使搅拌部件5间歇旋转。在像这样的蓄水漂洗过程中,洗涤桶4内的洗涤物Q在浸入水的状态下,通过旋转的搅拌部件5的叶片5A被搅拌,从而被漂洗。然后,微型计算机30停止电机6的驱动,打开排水阀19。由此,作为蓄水漂洗过程的最后阶段的排水过程,蓄于洗涤桶4的水从外桶3的排水路18排出到机外。在蓄水漂洗过程已结束的阶段,洗涤物Q处于已被完全漂洗的状态,洗涤物Q中几乎不存在洗涤剂成分。
微型计算机30在蓄水漂洗过程之后,立即执行最终脱水过程(步骤S7)。在最终脱水过程中,微型计算机30以保持打开排水阀19的方式使电机6规定时间驱动,使洗涤桶4以及搅拌部件5一体旋转。虽然最终脱水过程与步骤S3以及S5的中间脱水过程为大致相同的内容,但在最终脱水过程中,在第三加速阶段后以最大转速使电机6稳定旋转的时间比中间脱水过程长。在最终脱水过程中,微型计算机30以第一加速阶段、第二加速阶段以及第三加速阶段这三个阶段使电机6的旋转加速。由此,由于对洗涤桶4内的洗涤物Q作用离心力,因此洗涤物Q被全面脱水。通过脱水从洗涤物Q渗出的水从外桶3的排水路18排出到机外。基于最终脱水过程结束,各模式的洗涤运转结束。
如上所述,微型计算机30通过供水至洗涤桶4或进行洗涤桶4的排水或控制电机6的旋转使洗涤桶4、搅拌部件5旋转,从而执行洗涤运转。
而且,中间脱水过程以及最终脱水过程各自的脱水过程中的最大转速在标准模式下为800rpm(参照图9的粗虚线),在柔洗模式下为400rpm(参照图9的粗实线)。因此,微型计算机30在中间脱水过程以及最终脱水过程中,各自分三个阶段使电机6的旋转加速,但在柔洗模式下,与标准模式不同,除了在第三加速阶段使电机6的旋转从240rpm加速至400rpm,不使电机6的旋转加速。因此,柔洗模式的情况下,在第三加速阶段后,微型计算机30以中速的400rpm使电机6稳定旋转。像这样,微型计算机30在柔洗模式的脱水过程中,以电机6的最大转速比标准模式低的运转条件使洗涤桶4旋转。在这种情况下,在脱水过程中的电机6的旋转过程中对洗涤物Q施加的力比标准模式弱。因此,通过柔洗模式的脱水过程,能抑制洗涤物Q发生损伤的情况。但是,除了在第三加速阶段使电机6的旋转从240rpm加速至400rpm以外,中间脱水过程以及最终脱水过程各自的内容与柔洗模式和标准模式相同。
本发明不受以上说明的实施方式的限制,可以在权利要求书所记载的范围内进行各种变更。
例如,在上述实施方式中,在各模式的洗涤过程中交替重复电机6的正转和反转,正转、该正转的停止、反转以及该反转的停止这一连串流程构成搅拌部件5的间歇旋转的一个周期(参照图4)。此处的一个周期的定义只不过是一个例子,因此也可以将由正转和该正转的停止这一流程构成的一次间歇处理视为一个周期,并将由之后的反转和该反转的停止这一流程构成的一次间歇处理视为接下来的一个周期。此外,也可以不交替重复正转和反转,而仅重复进行正转以及反转中的任一个。
此外,在上述的实施方式中,虽然T1on与T2on同值,T1off与T2off同值,但也可以使T1on与T2on为不同值或使T1off与T2off为不同值。同样,Max1与Max2也可以为不同值。
此外,在各模式的洗涤运转中,能任意变更脱水漂洗过程、蓄水漂洗过程的次数。
此外,在洗衣机1中,虽然外桶3以及洗涤桶4的中心轴线20以往倾斜方向K延伸的方式配置(参照图1),但也可以以往上下方向Z延伸的方式配置。
附图标记说明:
1:洗衣机;4:洗涤桶;5:搅拌部件;6:电机;10A:操作部;30:微型计算机;Q:洗涤物。

Claims (4)

  1. 一种洗衣机,其特征在于,包括:
    洗涤桶,收纳洗涤物;
    搅拌部件,可旋转,用以搅拌所述洗涤桶内的洗涤物;
    电机,使所述搅拌部件旋转;
    执行单元,供水至所述洗涤桶,或控制所述电机的旋转,使所述搅拌部件旋转或停止,所述执行单元执行包括在所述洗涤桶蓄有水的状态下使所述搅拌部件周期性地间歇旋转的洗涤过程的洗涤运转;以及
    接受单元,接受在所述洗涤运转中设定的多个模式的选择,
    所述多个模式包括标准模式、易损模式,其中,所述易损模式将所述洗涤过程中的所述电机的最大转速设定为比所述标准模式低,以洗涤比在所述标准模式下进行洗涤的洗涤物易损的洗涤物,
    在所述接受单元接受到了所述多个模式中不同于所述标准模式、所述易损模式的规定模式的选择的情况下,所述执行单元在所述规定模式的所述洗涤过程中,以使所述洗涤桶内的水量比所述标准模式多,使所述电机的最大转速比所述标准模式低并且比所述易损模式高,并使所述搅拌部件的间歇旋转的各周期内所述电机旋转的期间比所述标准模式长的运转条件,使所述搅拌部件间歇旋转。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    所述执行单元在所述规定模式的所述洗涤过程中,以使所述搅拌部件的间歇旋转的各周期内所述电机的旋转已停止的期间比所述标准模式长的运转条件,使所述搅拌部件间歇旋转。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,
    所述执行单元在所述规定模式的所述洗涤过程中,以直到所述搅拌部件的间歇旋转的各周期的最大转速为止所述电机的加速度比所述标准模式低的运转条件,使所述搅拌部件间歇旋转。
  4. 根据权利要求1至3的任一项所述的洗衣机,其特征在于,
    所述洗涤桶可旋转,所述电机能使所述洗涤桶旋转,
    所述洗涤运转包括在所述洗涤过程之后,所述执行单元控制所述电机的旋 转使所述洗涤桶旋转的脱水过程,
    所述执行单元在所述规定模式的所述脱水过程中,以所述电机的最大转速比所述标准模式低的运转条件使所述洗涤桶旋转。
PCT/CN2016/077121 2015-03-25 2016-03-23 洗衣机 WO2016150384A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177029328A KR101957955B1 (ko) 2015-03-25 2016-03-23 세탁기
EP16767761.6A EP3276065A4 (en) 2015-03-25 2016-03-23 Washing machine
US15/561,169 US20180080158A1 (en) 2015-03-25 2016-03-23 Washing Machine
CN201680018302.9A CN107429463B (zh) 2015-03-25 2016-03-23 洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-063081 2015-03-25
JP2015063081A JP6522385B2 (ja) 2015-03-25 2015-03-25 洗濯機

Publications (1)

Publication Number Publication Date
WO2016150384A1 true WO2016150384A1 (zh) 2016-09-29

Family

ID=56976961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077121 WO2016150384A1 (zh) 2015-03-25 2016-03-23 洗衣机

Country Status (6)

Country Link
US (1) US20180080158A1 (zh)
EP (1) EP3276065A4 (zh)
JP (1) JP6522385B2 (zh)
KR (1) KR101957955B1 (zh)
CN (1) CN107429463B (zh)
WO (1) WO2016150384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387670A (zh) * 2018-04-18 2019-10-29 无锡小天鹅电器有限公司 衣物处理装置的控制方法、控制装置和衣物处理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924057B1 (ko) * 2015-05-28 2018-11-30 엘지전자 주식회사 세탁물 처리기기
JP6620061B2 (ja) * 2016-04-18 2019-12-11 日立グローバルライフソリューションズ株式会社 洗濯機
JP7329723B2 (ja) * 2018-08-08 2023-08-21 パナソニックIpマネジメント株式会社 洗濯機
CN111139618A (zh) * 2018-11-05 2020-05-12 青岛海尔洗衣机有限公司 一种洗衣机
KR102338922B1 (ko) * 2020-12-18 2021-12-14 대상 주식회사 전통순두부 제조용 두유 응고 장치
KR20240043186A (ko) * 2022-09-26 2024-04-03 엘지전자 주식회사 의류처리장치와 의류처리장치의 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206280A (ja) * 1987-02-23 1988-08-25 株式会社東芝 洗濯機
CN101935933A (zh) * 2009-08-27 2011-01-05 南京乐金熊猫电器有限公司 洗衣装置的控制方法
CN101994227A (zh) * 2009-08-10 2011-03-30 海尔集团公司 洗衣机组合洗涤方式的控制方法
CN103290650A (zh) * 2012-02-24 2013-09-11 博西华电器(江苏)有限公司 洗衣机的控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955449A (en) * 1959-07-03 1960-10-11 Gen Electric Control arrangement for clothes washing machine
US3103803A (en) * 1962-06-27 1963-09-17 Gen Electric Structure for facilitating selection of one of a plurality of alternatively selectable control members
US3152463A (en) * 1963-06-17 1964-10-13 Gen Motors Corp Combination agitating means and spinning means with speed control means
US4481786A (en) * 1982-06-04 1984-11-13 Whirlpool Corporation Electronic control for a domestic appliance
US5237256A (en) * 1989-08-11 1993-08-17 Whirlpool Corporation Electronic control for an automatic washing machine with a reversing PSC motor
US5130624A (en) * 1989-08-11 1992-07-14 Whirlpool Corporation Electronic control for an automatic washing machine with a reversing PSC motor
JP3321519B2 (ja) * 1996-03-13 2002-09-03 株式会社東芝 全自動洗濯機
JP3951447B2 (ja) * 1998-05-19 2007-08-01 松下電器産業株式会社 洗濯機
JP2001046779A (ja) * 1999-08-09 2001-02-20 Toshiba Corp 洗濯機
US6415469B1 (en) * 1999-12-30 2002-07-09 Mabe Mexico S. De R.L. De C.V. Control system and process for automatically controlling agitator motion patterns in a washing machine
JP2002035468A (ja) * 2000-07-24 2002-02-05 Sharp Corp 洗濯機及び乾燥機
JP2005066000A (ja) * 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd 洗濯機
TWI548793B (zh) * 2013-06-21 2016-09-11 Toshiba Lifestyle Products & Services Corp washing machine
KR102137950B1 (ko) * 2013-08-02 2020-07-27 삼성전자주식회사 세제공급장치를 구비한 세탁기 및 그 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206280A (ja) * 1987-02-23 1988-08-25 株式会社東芝 洗濯機
CN101994227A (zh) * 2009-08-10 2011-03-30 海尔集团公司 洗衣机组合洗涤方式的控制方法
CN101935933A (zh) * 2009-08-27 2011-01-05 南京乐金熊猫电器有限公司 洗衣装置的控制方法
CN103290650A (zh) * 2012-02-24 2013-09-11 博西华电器(江苏)有限公司 洗衣机的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276065A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387670A (zh) * 2018-04-18 2019-10-29 无锡小天鹅电器有限公司 衣物处理装置的控制方法、控制装置和衣物处理装置
CN110387670B (zh) * 2018-04-18 2021-09-21 无锡小天鹅电器有限公司 衣物处理装置的控制方法、控制装置和衣物处理装置

Also Published As

Publication number Publication date
CN107429463A (zh) 2017-12-01
JP2016182178A (ja) 2016-10-20
US20180080158A1 (en) 2018-03-22
EP3276065A4 (en) 2018-12-05
CN107429463B (zh) 2019-04-26
EP3276065A1 (en) 2018-01-31
KR101957955B1 (ko) 2019-03-13
JP6522385B2 (ja) 2019-05-29
KR20170122832A (ko) 2017-11-06

Similar Documents

Publication Publication Date Title
WO2016150384A1 (zh) 洗衣机
WO2016170726A1 (ja) 洗濯機
US20180298538A1 (en) Washing machine
JP2017064079A (ja) 洗濯機
JP2008055016A (ja) ドラム式洗濯機
CN107614779B (zh) 洗衣机
WO2016002136A1 (ja) ドラム式洗濯機
WO2016101841A1 (zh) 洗衣机
JP2018157958A (ja) 洗濯機
WO2016056175A1 (ja) ドラム式洗濯機
WO2019128733A1 (zh) 洗衣机
JP3966268B2 (ja) 洗濯機
JPS6345834B2 (zh)
JP7350252B2 (ja) 洗濯機
JP6967363B2 (ja) 洗濯機
JP2008099847A (ja) ドラム式洗濯機
JP2019088720A (ja) 洗濯機
JP2008220798A (ja) 洗濯機
JPH10272285A (ja) 洗濯機
JP7128606B2 (ja) 洗濯機
JP2000334192A (ja) 洗濯機および洗濯機の運転方法
JP2020006023A (ja) 洗濯機
JP2010207309A (ja) ドラム式洗濯機
JPH09313772A (ja) 洗濯機
JP2002085884A (ja) 洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016767761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177029328

Country of ref document: KR

Kind code of ref document: A