WO2016101841A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2016101841A1
WO2016101841A1 PCT/CN2015/097814 CN2015097814W WO2016101841A1 WO 2016101841 A1 WO2016101841 A1 WO 2016101841A1 CN 2015097814 W CN2015097814 W CN 2015097814W WO 2016101841 A1 WO2016101841 A1 WO 2016101841A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
water
dehydration
rinsing
dewatering
Prior art date
Application number
PCT/CN2015/097814
Other languages
English (en)
French (fr)
Inventor
间宫春夫
Original Assignee
海尔亚洲株式会社
青岛海尔洗衣机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔亚洲株式会社, 青岛海尔洗衣机有限公司 filed Critical 海尔亚洲株式会社
Priority to CN201580070919.0A priority Critical patent/CN107109751A/zh
Priority to EP15871909.6A priority patent/EP3239381A4/en
Priority to US15/539,106 priority patent/US10508376B2/en
Priority to KR1020177021070A priority patent/KR101974603B1/ko
Publication of WO2016101841A1 publication Critical patent/WO2016101841A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/006Methods for washing, rinsing or spin-drying for washing or rinsing only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F41/00Rinsing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a washing machine.
  • the washing process, the rinsing process, and the dehydration process are sequentially performed. Dehydration is carried out at the end of the washing process. Dehydration rinsing is performed during the rinsing process. Dehydration rinsing can also be called rinsing with water.
  • the laundry is subjected to centrifugal dewatering by injecting water into the washing and dewatering tub of the washing machine until the water soaks the entire laundry, and after the water injection is stopped, the washing and dewatering tub is rotated at a high speed. Thereby, the detergent water permeating into the laundry can be removed by flying together with the water.
  • Patent Document 1 Japanese Patent No. 3333732
  • Patent Document 1 when the rotational speed of the washing and dewatering tub in the final dehydration of the washing process is high, since the laundry adheres to the inner surface of the washing and dewatering tub due to the centrifugal force, the washing is performed, and then the washing is performed afterwards. The laundry is difficult to be saturated with water during the process. This is a difficulty in achieving an improvement in the rinsing performance of the laundry.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a washing machine capable of realizing water saving while improving rinsing performance of laundry.
  • a washing machine comprising: a washing and dewatering tub for storing laundry and rotating; a motor for rotating the washing and dewatering tub; and an execution unit, supplying water to the washing and dewatering tub, or performing the washing and dehydrating Draining the tub, or controlling the rotation of the motor to rotate the washing and dewatering tub, and performing a washing operation consisting of a washing process, a rinsing process after the washing process, and a dehydrating process including a final dehydration process And an intermediate dehydration process, wherein the final dehydration process is performed at the end of the washing operation, and the intermediate dehydration process is performed at least immediately after the washing process, as the rinsing process of the washing operation in the water saving mode,
  • the execution unit does not perform a water storage rinsing process of rinsing the laundry in a state where the washing and dewatering tank is stored to a predetermined water level, but continuously performs a dehydration rinsing process continuously, wherein
  • the present invention is characterized in that the execution unit rotates the washing and dewatering tub during the water supply process, and the rotation speed of the motor in the water supply process is lower than a minimum rotation speed at which the washing and dewatering tubing resonates.
  • the present invention is characterized in that the execution unit intermittently rotates the washing and dewatering tub during the water supply.
  • the present invention is characterized in that the execution unit intermittently supplies water to the washing and dewatering tub during the water supply process.
  • the present invention is characterized in that the execution unit shortens the low-speed dehydration time of the intermediate dehydration process of the initial dehydration rinsing process and the low-speed dehydration time of the intermediate dehydration process after the initial dehydration rinsing process It is shorter than the low-speed dehydration time of the intermediate dehydration process immediately before the start of the initial dehydration rinsing process.
  • the present invention is characterized in that it comprises a softener supply unit which supplies a softener into the washing and dewatering tub during the last washing operation of the dehydrating and rinsing process.
  • the washing machine of the present invention is characterized by comprising: a washing and dewatering tub, accommodating the laundry and rotatable; a motor for rotating the washing and dewatering tub; and an execution unit for supplying water to the washing and dewatering tub, or performing the Washing the drain of the dewatering tub, or controlling the rotation of the motor to rotate the washing and dewatering tub, and performing the washing process, the rinsing process after the washing process, and the dehydrating process a washing operation, the dehydration process comprising a final dehydration process, an intermediate dehydration process, wherein the final dehydration process is performed at the end of the washing operation, and the intermediate dehydration process is performed at least immediately after the washing process, as a water saving mode
  • the execution unit does not perform the water rinsing rinsing process of rinsing the laundry in a state where the washing dewatering tank is stored to a predetermined water level, but multiple times The dehydration
  • the present invention is characterized in that the softener supply unit supplies a softener into the wash dewatering tub during the dehydration rinse before the last dehydration rinse process is started.
  • the washing operation performed by the execution unit in the washing machine is constituted by a washing process, a rinsing process after the washing process, and a dehydrating process.
  • the dehydration process includes a final dehydration process that is performed at the end of the washing operation, and an intermediate dehydration process that is performed at least immediately after the washing process.
  • the rinsing process has a water storage rinsing process and a dehydration rinsing process, wherein the water storage rinsing is a rinsing process of rinsing the laundry in a state where the washing dewatering bucket is stored to a predetermined water level, and the dehydrating rinsing process comprises: washing the dewatering bucket The water supply process to the extent that the water is saturated with the laundry and the intermediate dehydration process or the final dehydration process performed immediately after the water supply process.
  • the execution unit does not perform the water storage rinsing process, but performs the dehydration rinsing process. Therefore, in the water saving mode, water saving can be achieved as compared with the case where the water storage rinsing process is performed.
  • the maximum speed of the motor that rotates the washing and dewatering tub during the intermediate dewatering process immediately before the start of the water supply process is lower than the maximum speed of the motor during the final dewatering process. Therefore, the laundry at the time when the intermediate dehydration process ends is not tightly adhered to the inner surface of the washing and dewatering tub due to the centrifugal force, and is loosened to a certain extent. Therefore, in the dehydration rinsing process performed immediately after the intermediate dehydration process, the laundry is easily saturated with water during the water supply process. Such a dehydration rinsing process is performed continuously several times. Thereby, the rinsing performance of the laundry can be improved.
  • the washing dewatering bucket can be effectively rotated in a state of extremely low speed rotation.
  • the laundry is filled with water, so that the water can be thoroughly impregnated into the entire laundry. Thereby, further improvement of the rinsing performance of the laundry can be achieved.
  • the present invention by intermittently rotating the washing and dewatering tub during the water supply process, it is possible to allow the water to permeate the entire laundry without fail. Therefore, it is possible to further improve the rinsing performance of the laundry.
  • the present invention in the water supply process, by intermittently supplying water to the washing and dewatering tub, it is possible to suppress exceeding the necessary water supply. Therefore, further water saving can be achieved.
  • the laundry in the dewatering bucket will be less biased. Therefore, for these intermediate dehydration processes, even if the low-speed dehydration time is set shorter than in the intermediate dehydration process immediately before the initial dehydration rinsing process, the laundry can be effectively dehydrated. Thereby, the time for the entire washing operation can be shortened.
  • the softener it is convenient for the washing operation of the dehydration rinsing process for the final rinsing process to automatically impart softness and fragrance to the laundry by automatically supplying the softener into the washing and dewatering tub. It should be noted that if a softener is provided during the water supply process of the dehydration rinsing process, the softener can be uniformly impregnated into the whole of the laundry by the subsequent intermediate dehydration process or the final dehydration process.
  • a softener is provided into the wash dewatering tub during the dewatering rinse prior to the start of the final dewatering rinse process. If the softener is provided during the penultimate dehydration rinsing process as described above, the softener can be uniformly and uniformly impregnated into the entire laundry as compared with the case where the softener is provided during the final dehydration rinsing.
  • Fig. 1 is a schematic longitudinal sectional right side view of a washing machine in accordance with an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the electrical configuration of the washing machine.
  • Fig. 3A is a flowchart showing a control operation in a washing operation in a standard mode.
  • FIG. 3B is a flowchart showing a control operation in the washing operation in the water saving mode.
  • 4 is a timing chart showing the number of revolutions of the motor, the operation/stop state of the motor, and the on/off state of the water supply valve.
  • Fig. 5 is a graph showing the relationship between the time during dehydration and the dehydration rate of the laundry.
  • Fig. 6 is a flowchart showing a control operation in a washing operation.
  • washing machine 1: washing machine; 4: washing dewatering bucket; 6: motor; 30: microcomputer; Q: washing.
  • FIG. 1 is a schematic longitudinal sectional right side view of a washing machine 1 according to an embodiment of the present invention.
  • the vertical direction in FIG. 1 is referred to as the vertical direction Z of the washing machine 1
  • the left-right direction in FIG. 1 is referred to as the front-rear direction Y of the washing machine 1.
  • the outline of the washing machine 1 will be described.
  • the upper side is referred to as the upper Z1
  • the lower side is referred to as the lower Z2.
  • the left side in FIG. 1 is referred to as front Y1
  • the right side in FIG. 1 is referred to as rear Y2.
  • the washing machine 1 further includes a washing and drying machine having a drying function
  • the washing machine 1 will be described below by taking a washing machine that performs only the washing operation with the drying function omitted.
  • the washing machine 1 includes a casing 2, an outer tub 3, a washing and dewatering tub 4, a rotary wing 5, an electric motor 6, and a transmission mechanism 7.
  • the casing 2 is made of, for example, metal, and is formed in a box shape.
  • the upper surface 2A of the casing 2 is formed to be inclined with respect to the horizontal direction H so as to extend toward the upper side Z1 toward the rear Y2.
  • An opening 8 that communicates with the inside and outside of the casing 2 is formed on the upper surface 2A.
  • a door 9 that opens and closes the opening 8 is provided on the upper surface 2A.
  • an operation portion 10A composed of a switch or the like and a display portion 10B composed of a liquid crystal panel or the like are provided in a region closer to the front Y1 than the opening 8.
  • the outer tub 3 is made of, for example, a resin, and is formed in a bottomed cylindrical shape.
  • the outer tub 3 has a circumferential wall 3A and is formed in a substantially cylindrical shape, and is disposed in an oblique direction K inclined to the front Y1 in the vertical direction Z; the bottom wall 3B blocks the hollow portion of the circumferential wall 3A from the lower side Z2;
  • the shape wall 3C has an annular shape, and the edge of the upper side Z1 side of the circumferential wall 3A is trimmed while protruding toward the center of the circumferential wall 3A.
  • the tilt direction K is not only inclined with respect to the vertical direction Z but also inclined with respect to the horizontal direction H.
  • the hollow portion of the circumferential wall 3A is exposed from the inner side of the annular wall 3C to the upper portion Z1.
  • the bottom wall 3B is formed orthogonal to the oblique direction K and is horizontal with respect to the horizontal
  • a circular plate shape in which the direction H extends obliquely is formed, and a through hole 3D penetrating the bottom wall 3B is formed at a center position of the bottom wall 3B.
  • Water can be stored in the outer tub 3.
  • a box-shaped detergent storage chamber 17 is disposed above the outer tub 3 of the casing 2 in the Z1.
  • the detergent storage chamber 17 further includes a softener storage chamber that houses the softener.
  • a water supply path 13 connected to a faucet (not shown) is connected from the upper side Z1 and from the rear side Y2, and water is supplied from the water supply path 13 into the outer tub 3 via the detergent storage chamber 17.
  • the water from the detergent storage chamber 17 may also flow down into the outer tub 3 as indicated by a broken line arrow.
  • a water supply valve 14 that opens and closes for the purpose of starting or stopping the water supply is provided.
  • a branch path 15 is also connected to the detergent storage chamber 17, and the branch path 15 is branched from a portion of the water supply path 13 that is closer to the upstream side of the faucet than the water supply valve 14.
  • the water flows into the outer tub 3 from the branch passage 15 through the detergent storage chamber 17 by flowing into the branch passage 15 from the water supply passage 13 .
  • a softener supply valve 16 that opens and closes for the purpose of starting or stopping the water supply is provided.
  • the detergent storage chamber 17 is divided into a first region (not shown) that houses the softener and a second region (not shown) that does not contain the softener.
  • the softener supply valve 16 When the softener supply valve 16 is opened, the water that has flowed into the branch path 15 from the water supply path 13 is supplied into the outer tub 3 through the first region of the detergent storage chamber 17. Thereby, the softener in the detergent storage chamber 17 is mixed into water and supplied into the outer tub 3. On the other hand, when the water supply valve 14 is opened, the water directly flowing from the water supply path 13 is supplied into the outer tub 3 via the second region of the detergent storage chamber 17. In this case, water in a state where the softener is not mixed is supplied into the outer tub 3.
  • a drain passage 18 is connected from the lower side Z2, and water in the outer tub 3 is discharged from the drain passage 18 to the outside of the machine.
  • a drain valve 19 that opens and closes for the purpose of starting or stopping the drain is provided in the middle of the drain passage 18.
  • the washing and dewatering tub 4 is made of, for example, metal, has a central axis 20 extending in the oblique direction K, and is formed in a bottomed cylindrical shape that is smaller than the outer tub 3, and can store the laundry Q therein.
  • the washing and dewatering tub 4 has a substantially cylindrical circumferential wall 4A disposed in the oblique direction K and a bottom wall 4B that blocks the hollow portion of the circumferential wall 4A from the lower side Z2.
  • the inner circumferential surface of the circumferential wall 4A is the inner circumferential surface of the washing and dewatering tub 4.
  • the upper end portion of the inner circumferential surface of the circumferential wall 4A is an inlet and outlet 21 that exposes the hollow portion of the circumferential wall 4A upward.
  • the entrance and exit 21 faces the inner region of the annular wall 3C of the outer tub 3 from the lower side Z2, and is in a state of communicating with the opening 8 of the casing 2 from the lower side Z2.
  • the user of the washing machine 1 puts the laundry Q into the washing and dewatering tub 4 via the opened opening 8 and the inlet and outlet 21 .
  • the washing and dewatering tub 4 is housed in the outer tub 3 coaxially, and is disposed to be inclined with respect to the vertical direction Z and the horizontal direction H.
  • the washing and dewatering tub 4 in a state of being housed in the outer tub 3 is rotatable around the central axis 20.
  • a plurality of through holes are formed in the circumferential wall 4A and the bottom wall 4B of the washing and dewatering tub 4, and water in the outer tub 3 can pass between the outer tub 3 and the washing and dewatering tub 4 via the through holes. Therefore, the water level in the outer tub 3 coincides with the water level in the washing and dewatering tub 4. Further, the water flowing out of the detergent storage chamber 17 is directly supplied into the washing and dewatering tub 4 from the upper side Z1 via the inlet and outlet 21 of the washing and dewatering tub 4.
  • the bottom wall 4B of the washing and dewatering tub 4 is formed in a disk shape extending substantially parallel to the bottom wall 3B of the outer tub 3 at intervals of the upper Z1, and is formed at a center position of the bottom wall 4B that coincides with the central axis 20
  • the through hole 4C that penetrates the bottom wall 4B.
  • a tubular support shaft 22 that surrounds the through hole 4C and projects downward along the central axis 20 toward the lower Z2 is provided.
  • the support shaft 22 is inserted into the through hole 3D of the bottom wall 3B of the outer tub 3, and the lower end portion of the support shaft 22 is located below the bottom wall 3B of the bottom wall 3B.
  • the rotary wing 5 that is, the pulsator, is formed in a disk shape centered on the central axis 20, and is disposed concentrically with the washing and dewatering tub 4 along the bottom wall 4B in the washing and dewatering tub 4.
  • a plurality of blades 5A arranged radially are provided at the upper surface of the inlet/outlet 21 of the rotary vane 5 facing from the lower side Z2 toward the washing and dewatering tub 4, a plurality of blades 5A arranged radially are provided.
  • the rotary wing 5 is provided with a rotary shaft 23 extending from its center along the central axis 20 toward the lower Z2.
  • the rotating shaft 23 is inserted into the hollow portion of the support shaft 22, and the lower end portion of the rotating shaft 23 is located below the bottom wall 3B of the outer tub 3 by Z2.
  • the motor 6 is realized by a variable frequency motor.
  • the motor 6 is disposed in the casing 2 below the lower portion Z2 of the outer tub 3.
  • the motor 6 has an output shaft 24 that rotates about a central axis 20.
  • the transmission mechanism 7 is sandwiched between the lower end portion of each of the support shaft 22 and the rotary shaft 23 and the upper end portion of the output shaft 24.
  • the transmission mechanism 7 selectively transmits the driving force output from the output shaft 24 of the motor 6 to one or both of the support shaft 22 and the rotation shaft 23.
  • washing and dewatering tub 4 and the rotary wing 5 are rotated about the central axis 20.
  • the washing dewatering tub 4 and the rotating direction of the rotary wing 5 coincide with the circumferential direction X of the washing and dewatering tub 4.
  • FIG. 2 is a block diagram showing an electrical configuration of the washing machine 1.
  • the washing machine 1 includes a microcomputer 30 as an execution unit and a softener supply unit.
  • the microcomputer 30 is constituted by, for example, a CPU, a ROM, a RAM, and the like, and is disposed in the casing 2 (see FIG. 1).
  • the washing machine 1 further includes a water level sensor 31, a rotation sensor 32, and a buzzer 33.
  • the water level sensor 31, the rotation sensor 32, and the buzzer 33, and the above-described operation unit 10A and display unit 10B are electrically connected to the microcomputer 30, respectively.
  • the motor 6, the transmission mechanism 7, the water supply valve 14, the softener supply valve 16, and the drain valve 19 are electrically connected to the microcomputer 30 via the drive circuit 34, respectively.
  • the water level sensor 31 is a sensor that detects the water level of the outer tub 3 and the washing dewatering tub 4, and the detection result of the water level sensor 31 is input to the microcomputer 30 in real time.
  • the rotation sensor 32 is a device that reads the rotation speed of the motor 6, and is strictly a device that reads the rotation speed of the output shaft 24 of the motor 6, and is composed of, for example, a plurality of Hall ICs (not shown).
  • the rotational speed read by the rotation sensor 32 is input to the microcomputer 30 in real time.
  • the microcomputer 30 controls the duty ratio of the voltage applied to the motor 6 in accordance with the input rotational speed to control the rotation of the motor 6 in such a manner that the motor 6 rotates at a desired rotational speed.
  • the rotational speed of the motor 6 is the same as the rotational speed of the washing and dewatering tub 4.
  • the microcomputer 30 receives the selection.
  • the microcomputer 30 displays the required information to the user in a visual manner via the display unit 10B.
  • the microcomputer 30 notifies the user of the start, end, and the like of the washing operation by the predetermined sound emitted from the buzzer 33.
  • the microcomputer 30 controls the transmission mechanism 7 to switch the transmission of the driving force of the motor 6 to one or both of the support shaft 22 and the rotation shaft 23.
  • the microcomputer 30 controls opening and closing of the water supply valve 14, the softener supply valve 16, and the drain valve 19. Therefore, the microcomputer 30 can supply water to the washing and dewatering tub 4 by opening the water supply valve 14, and can supply the softener to the washing and dewatering tub 4 by opening the softener supply valve 16, and can perform the draining of the washing and dewatering tub 4 by opening the draining valve 19.
  • the washing operation has the standard mode shown in Fig. 3A and the water saving mode shown in Fig. 3B. Further, the washing operation is constituted by a washing process of washing the laundry Q, a rinsing process of rinsing the laundry Q after the washing process, and a dehydrating process of dehydrating the laundry Q.
  • the dehydration process includes a final dehydration process that is performed at the end of the washing operation, and an intermediate dehydration process that is performed at least immediately after the washing process. It should be noted that in the washing operation, only tap water may be used, or bath water may be used as needed.
  • the microcomputer 30 detects the amount of the laundry Q in the washing and dewatering tub 4 as the load amount as the washing operation starts (step S1). Specifically, the microcomputer 30 rotates the motor 6 when the washing and dewatering tub 4 is stably rotated at a low speed. Speed fluctuations to detect load. The microcomputer 30 displays the length of the washing operation, the required amount of the detergent, and the like corresponding to the detected amount of load on the display unit 10B.
  • the microcomputer 30 performs a washing process (step S2).
  • the microcomputer 30 opens the water supply valve 14 in a state where the drain valve 19 is closed, and supplies water to the washing and dewatering tub 4.
  • the microcomputer 30 closes the water supply valve 14, stops the water supply, drives the motor 6 for a predetermined time, and rotates the washing and dewatering tub 4 and the rotary wing 5.
  • the laundry Q in the washing and dewatering tub 4 is agitated by the rotating washing and dewatering tub 4 and the blades 5A of the rotary vane 5, and is decomposed and decontaminated by the detergent introduced into the washing and dewatering tub 4, thereby being washed.
  • the microcomputer 30 stops the driving of the motor 6, and opens the drain valve 19. Thereby, the water stored in the washing and dewatering tub 4 is discharged from the drain path 18 of the outer tub 3 to the outside of the machine. It should be noted that, at the stage where the washing process has ended, the water in which the detergent is dissolved is in a state of infiltrating the laundry Q as detergent water.
  • the microcomputer 30 performs an intermediate dehydration process immediately after the washing process (step S).
  • the microcomputer 30 maintains the state in which the drain valve 19 is opened, drives the motor 6 for a predetermined period of time, and integrally rotates the washing and dewatering tub 4 and the rotary vane 5.
  • the centrifugal force acts on the laundry Q in the washing and dewatering tub 4, so that the laundry Q is dehydrated.
  • the water oozing from the laundry Q by dehydration is discharged from the drain path 18 of the outer tub 3 to the outside of the machine.
  • the intermediate dehydration process will be described in detail, and the microcomputer 30 stably rotates the motor 6 at a low speed of 120 rpm after accelerating the so-called first rotation speed of the motor 6 from 0 rpm to 120 rpm.
  • the first rotational speed is higher than the rotational speed at which the washing and dewatering tub 4 is laterally resonated (for example, 50 rpm to 60 rpm), and is lower than the rotational speed at which the washing and dewatering tub 4 is longitudinally resonated (for example, 200 rpm to 220 rpm).
  • the microcomputer 30 After the stable rotation at 120 rpm, the microcomputer 30 stably rotates the motor 6 at a low speed of 240 rpm after accelerating the so-called second rotation speed of the motor 6 from 120 rpm to 240 rpm.
  • the second rotational speed is higher than the rotational speed at which longitudinal resonance occurs.
  • the microcomputer 30 accelerates the number of revolutions of the motor 6 from 240 rpm to 800 rpm, the motor 6 is stably rotated at a high speed of 800 rpm.
  • the microcomputer 30 causes the motor 6 to perform the first acceleration phase from 0 rpm to 120 rpm, the second acceleration phase from 120 rpm to 240 rpm, and the third acceleration phase from 240 rpm to 800 rpm.
  • the rotation is accelerated.
  • the motor 6 is stepwise added so as not to exude a large amount of water from the laundry Q at a time.
  • the microcomputer 30 closes the drain valve 19 after applying a brake to the rotation of the motor 6 to stop the rotation of the motor 6.
  • the microcomputer 30 may control the duty ratio to cause the rotation of the motor 6 to be rapidly stopped, or a brake device (not shown) may be separately provided, and the brake device may be operated by the microcomputer 30. The rotation of the motor 6 is rapidly stopped.
  • the microcomputer 30 performs the water supply process immediately after the intermediate dehydration process (step S).
  • the microcomputer 30 intermittently rotates the washing and dewatering tub 4 at an extremely low speed by alternately repeatedly switching the motor 6 to "run” to drive it, and switching to "stop” to stop it.
  • the number of revolutions of the motor 6 was varied so as to alternately increase from 0 rpm to 30 rpm and from 30 rpm to 0 rpm.
  • the 30 rpm here is an example.
  • the rotation speed of the motor 6 in the water supply process may be lower than the minimum rotation speed at which the washing and dewatering tank 4 resonates.
  • the minimum rotational speed differs depending on the size of the washing and dewatering tub 4, in the case of the present embodiment, the rotational speed at which the washing and dewatering tub 4 is laterally resonated is 50 rpm to 60 rpm described above.
  • the microcomputer 30 intermittently supplies water to the washing and dewatering tub 4 by alternately repeatedly switching the water supply valve 14 to "ON" to open it, switching to "OFF” and closing it.
  • the timing of opening/closing of the water supply valve 14 coincides with the timing of stopping the operation of the motor 6. Therefore, the water supply valve 14 is also “on” during the "operation” of the motor 6, and the “water supply valve 14" is also “off” while the motor 6 is “stopped”.
  • the water is poured from the water supply path 13 to the laundry Q in the washing and dewatering tub 4 while the washing and dewatering tub 4 is rotating at a very low speed.
  • the water from the water supply path 13 is supplied to the laundry Q in the above-described water-like form.
  • the provision of such water-like water is referred to as "splashing water supply”.
  • a small amount is supplied to the washing and dewatering tub 4 to such an extent that the laundry Q is soaked by water, so that almost no water is stored in the washing and dewatering tub 4.
  • the microcomputer 30 performs the intermediate dehydration process of the same content as the above-described step S3 again after the water supply process (step S5).
  • the laundry Q in the washing and dewatering tank 4 is centrifugally dehydrated by the intermediate dehydration process here. Thereby, the detergent water permeated to the laundry Q can be removed by flying together with the water supplied during the water supply.
  • the water supply process of step S4 and the intermediate dehydration process of step S5 immediately after the water supply process constitute a dehydration rinsing process.
  • the dehydration rinse process is one of the rinse processes. It should be noted that, during the dehydration and rinsing process, although the washing and dewatering tub 4 is rotated, the rotary vane 5 is in a stationary state.
  • the microcomputer 30 performs the water storage rinsing process immediately after the dehydration rinsing process (step S6).
  • the water storage rinsing process is one of the rinsing processes.
  • the microcomputer 30 opens the water supply valve 14 in a state where the drain valve 19 is closed, and supplies water to the washing and dewatering tub 4.
  • the microcomputer 30 closes the water supply valve 14 and stops the water supply.
  • the microcomputer 30 drives the motor 6 for a predetermined time in a state where the water is stored in the washing and dewatering tub 4 to the predetermined water level, and the rotary blade 5 is rotated.
  • the laundry Q in the washing and dewatering tub 4 is immersed in the water immersed state by the blade 5A of the rotating rotary blade 5, thereby being rinsed.
  • the microcomputer 30 stops the driving of the motor 6, and opens the drain valve 19. Thereby, the water stored in the washing and dewatering tub 4 is discharged from the drain path 18 of the outer tub 3 to the outside of the machine.
  • the laundry Q is in a state of being completely rinsed, and there is almost no detergent component in the laundry Q.
  • the microcomputer 30 performs the final dehydration process immediately after the water storage rinsing process (step S7).
  • the microcomputer 30 maintains the state in which the drain valve 19 is opened, drives the motor 6 for a predetermined time, and integrally rotates the washing and dewatering tub 4 and the rotary vane 5.
  • the final dehydration process is substantially the same as the intermediate dehydration process of steps S3 and S5
  • the motor 6 is stably rotated at 800 rpm after the third acceleration phase longer than the intermediate dehydration process.
  • the microcomputer 30 accelerates the rotation of the motor 6 in three stages of the first acceleration phase, the second acceleration phase, and the third acceleration phase.
  • the microcomputer 30 performs the washing operation by supplying water to the washing and dewatering tub 4, or performing drainage of the washing and dewatering tub 4, or controlling the rotation of the motor 6, to rotate the washing and dewatering tub 4.
  • FIG. 4 the timing chart of FIG. 4 is also referred to.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the rotational speed (unit: rpm) of the motor 6, the operation/stop state of the motor 6, and the on/off state of the water supply valve 14 in order from top to bottom. .
  • the microcomputer 30 detects the load amount of the laundry Q with the start of the washing operation in the water saving mode (step S1), and then, sequentially performs the washing process (step S2) and the intermediate dehydration process (step S3A).
  • the microcomputer 30 accelerates the rotation of the motor 6 in three stages in the same manner as the standard mode intermediate dehydration process (step S3), unlike the standard mode, in the third acceleration stage, only The rotation of the motor 6 was accelerated from 240 rpm to 600 rpm. Therefore, after the third acceleration phase, the microcomputer 30 stably rotates the motor 6 at a medium speed of 600 rpm.
  • the content of the intermediate dehydration process of the water saving mode is the same as that of the standard mode intermediate dehydration process except that the rotation of the motor 6 is accelerated from 240 rpm to 600 rpm in the third acceleration phase.
  • the microcomputer 30 performs the water supply process (step S4) and the intermediate dehydration process substantially the same as the step S3A in sequence (step S5A) after the intermediate dehydration process of step S3A.
  • the microcomputer 30 executes the water supply process (step S4A) of the same content as that of step S4 and the intermediate dehydration process of the same content as step S5A in order (step S5B).
  • the microcomputer 30 takes the low-speed dehydration time of the intermediate dehydration process of the initial dehydration rinsing process (step S5A) and the low-speed dehydration time of the intermediate dehydration process (step S5B) after the initial dehydration rinsing process.
  • the shortening is shorter than the low-speed dehydration time of the intermediate dehydration process (step S3A) immediately before the start of the initial dehydration rinsing process.
  • step S5A the rotation time of the motor 6 from 0 rpm to 600 rpm of the second intermediate dehydration process (step S5A), the third intermediate dehydration process (step S5B), that is, the low-speed dehydration time is longer than the first intermediate dehydration process (
  • the low-speed dehydration time of step S3A) is also short (refer to FIG. 4).
  • the laundry Q in the washing and dewatering tub 4 has less bias than the low-speed dewatering time of the first intermediate dewatering process. Therefore, for the second and third intermediate dehydration processes, even if the low-speed dehydration time at the start of dehydration is shortened as compared with the first intermediate dehydration process, since the rotation speed of the motor 6 rises smoothly, it can be effectively The laundry Q is dehydrated. Thereby, the time for the entire washing operation can be shortened.
  • step S4B the microcomputer 30 sequentially performs the water supply process of the same content as that of step S4 (step S4B), and the water supply process The final final dehydration process (step S7).
  • the final dehydration process constituting the third dehydration rinsing process ends, whereby the washing operation of the water saving mode ends.
  • the microcomputer 30 does not perform the water storage rinsing process, but performs the dehydration rinsing process continuously multiple times (steps S4 to S7). Therefore, for the water saving mode, water saving can be achieved as compared with the standard mode in which the water storage rinsing process (step S6) is performed. Further, even in the case where the dehydration rinsing process is performed a plurality of times, the total amount of water used for rinsing in one washing operation is significantly reduced as compared with the case where the water rinsing process is performed.
  • the maximum rotational speed of the motor 6 (here, 600 rpm) in the intermediate dehydration process (steps S3A, S5A, and S5B) before the start of the water supply process of each dehydration rinsing process is as shown in FIG. 4, compared to the final dehydration process (step S7).
  • the maximum speed of the motor 6 (here 800 rpm) is low, which is about 75% of the maximum speed of the final dewatering process.
  • Fig. 5 is a graph showing the relationship between the time during dehydration and the dehydration rate of the laundry Q.
  • the horizontal axis represents the elapsed time (unit: minute), and the vertical axis represents the dehydration rate with the passage of time during dehydration.
  • the dehydration rate is an index value indicating how much water seeps out compared to the initial stage of the dehydration process. The higher the dehydration rate, the less water is contained in the laundry Q, but the laundry Q is also in close contact with the inner surface of the washing and dewatering tank 4 due to the centrifugal force generated by the rotation of the washing and dewatering tub 4 during the dehydration process. Get a tight state.
  • the dehydration rate at the time of completion of the intermediate dehydration process is 55% or less.
  • the laundry Q at this time does not become tight against the inner surface of the washing and dewatering tub 4 due to the centrifugal force, or spreads to the side of the inlet and outlet 21, but is in a soft state which is loosened to some extent. Therefore, in the dehydration rinsing process performed immediately after the intermediate dehydration process, water is easily sprinkled onto the laundry Q to be saturated therein during the water supply process.
  • the rotation speed of the motor 6 is preferably about 300 rpm to 700 rpm, preferably about 400 rpm to 600 rpm.
  • step S4A, and S4B by rotating the motor 6 at a rotation speed lower than the minimum rotation speed of 30 rpm, it is possible to wash the washing dewatering tank 4 at a very low speed.
  • the substance Q is effectively immersed in water.
  • step S4A, and S4B by rotating the motor 6 at a rotation speed lower than the minimum rotation speed of 30 rpm, it is possible to wash the washing dewatering tank 4 at a very low speed.
  • the substance Q is effectively immersed in water.
  • by intermittently rotating the washing and dewatering tub 4 it is possible to allow water to permeate into the entire laundry Q without fail. Thereby, further improvement of the rinsing performance of the laundry Q can be achieved.
  • the water supply since the water supply is intermittently supplied to the washing and dewatering tub 4, it is possible to suppress the water supply beyond the necessity, and thus it is possible to achieve further water saving.
  • Fig. 6 is a flowchart showing a control operation during a washing operation, and additionally shows a process related to a softener.
  • the standard mode of washing operation is set by default to always apply a softener during the last water rinsing rinse.
  • the operation of the operation unit 10A is performed by the user, and the presence or absence of the softener can be selected in advance.
  • the washing operation of the water-saving mode may be set to "softener setting" by default, and by the operation of the operation unit 10A by the user, the setting of "softener setting” can be changed to "Softener setting is not available”.
  • the microcomputer 30 detects the load amount of the laundry Q as the washing operation starts (step S1), and then, sequentially performs the washing process (step S2) and the intermediate dehydration process (step S3). ). Next, after executing the water supply process (step S4) constituting the dehydration rinsing process, the microcomputer 30 confirms whether or not the current rinsing process is followed by the final rinsing process (step S11).
  • the first dehydration rinsing process is followed by the water rinsing process of the last rinsing process (step S11: YES) instead of the dehydration rinsing process (step S12: NO). Therefore, after executing the intermediate dehydration process (step S5) constituting the remaining work of the previous dehydration rinsing process, the microcomputer 30 opens the softener supply valve 16 and puts the softener into the washing and dewatering tub 4 (step S14). Then, the microcomputer 30 performs a final rinsing process, that is, a water storage rinsing process (step S6). During the water rinsing rinse, the softener penetrates the laundry Q, imparting softness and aroma to the laundry Q. The microcomputer 30 performs a final dehydration process after the water storage rinsing process (step S7).
  • the microcomputer 30 detects the load amount of the laundry Q as the washing operation starts (step S1), and then, sequentially performs the washing process (step S2) and the intermediate dehydration process (step S3A). Next, the microcomputer 30 executes a water supply process constituting the first dehydration rinsing process (step S4).
  • step S11: NO the second dehydration rinsing process is followed by the final rinsing process (step S11: NO), so the microcomputer 30 is performing the first time of the composition.
  • step S5A the water supply process constituting the second dehydration rinsing process is performed (step S4A).
  • step S11: YES the final rinsing process
  • step S12 the third dehydration rinsing process
  • step S13 If the state of "softener setting is absent" is selected in advance (step S13: YES), the microcomputer 30 performs the intermediate dehydration process of the second dehydration rinsing process without putting a softener into the washing and dewatering tub 4 (step S5B). ). At this time, the water supply for putting in the softener can be omitted, so that water saving can be achieved.
  • step S13 the microcomputer 30 opens the softener supply valve 16, and inputs the softener into the washing and dewatering tank 4 (step S15), and executes The intermediate dehydration process constituting the remaining work of the second dehydration rinsing process just now (step S5B).
  • the microcomputer 30 not only in the washing operation of the standard mode in which the last rinsing process is the water rinsing process, but also in the washing operation of the water saving mode of the dehydrating rinsing process in the last rinsing process, the microcomputer 30 also supplies the washing dewatering tank 4 A softener is provided inside.
  • the microcomputer 30 provides compliance in the second dehydration rinsing process immediately before the final dehydration rinsing process is started, as compared with the provision of the softener immediately before the start of the water storage rinsing process in the standard mode.
  • the agent is supplied to the washing and dewatering tank 4.
  • the softener is supplied simultaneously with the water-spraying water supply during the water supply process of the second dewatering and rinsing process (step S15), so that the softener can be effectively applied by the extremely low-speed rotation of the washing and dewatering tank 4.
  • the dissolution of the softener can be suppressed.
  • the microcomputer 30 performs a water supply process (step S4B) and a final dehydration process (step S7).
  • the softener can be evenly and uniformly infiltrated into the washing process by the water supply process of the second dehydration rinsing process, that is, the water supply process of the penultimate dehydration rinsing process, compared with the case where the softener is provided during the final dehydration rinsing process.
  • Material Q as a whole.
  • the intermediate dehydration process after the water supply process by the second dehydration rinsing process (step S5B)
  • the water supply process after the intermediate dehydration process (step S4B) and the final dehydration process (step S7) can uniformly permeate the softener to the entire laundry Q.
  • step S5B in order to more uniformly permeate the softener to the entire laundry Q, it is preferable to have a lower maximum rotation speed than the intermediate dehydration process in the case of "softener setting is not" ( For example, 400 rpm) rotates the motor 6.
  • the dehydration rinsing process is performed three times in the water saving mode, the number of dehydration rinsing processes can be arbitrarily changed. As long as the rinsing performance during the dehydration and rinsing process is sufficient, the dehydration rinsing process may be performed only twice, and if the rinsing performance is improved, the dehydration rinsing process may be performed four times or more.
  • the washing operation in the time shortening mode can be set.
  • the water storage rinsing process is not performed, and only the dehydration rinsing process is performed.
  • the time of the water supply and water supply in the water supply process during the dehydration rinsing process is set to be longer than the other modes, and the motor in the dehydration process performed immediately after the water supply process The speed of 6 is set higher than the other modes.
  • center axis 20 of the outer tub 3 and the washing and dewatering tub 4 are arranged to extend in the oblique direction K, they may be arranged to extend in the up-down direction Z.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种洗衣机(1),其能够在实现节水的同时提高洗涤物的漂洗性能。洗衣机(1)包括:洗涤脱水桶(4),收纳洗涤物(Q);电机(6),使洗涤脱水桶(4)旋转;以及微型计算机(30)。作为节水模式下的洗涤运转的漂洗过程,微型计算机(30)并不执行在洗涤脱水桶(4)蓄水至规定水位的状态下使旋转翼(5)旋转的蓄水漂洗过程,而是多次连续地执行脱水漂洗过程,其中,脱水漂洗过程包括:对洗涤脱水桶(4)供水至使水浸透洗涤物(Q)的程度的供水过程、以及供水过程之后立即执行的中间脱水过程或最终脱水过程。供水过程即将开始之前的中间脱水过程中的电机(6)的最大转速比最终脱水过程中的电机(6)的最大转速低。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
在下述专利文献1记载的洗衣机的洗涤运转中,按照顺序执行洗涤过程、漂洗过程、脱水过程。在洗涤过程的最后进行脱水。在漂洗过程中执行脱水漂洗。脱水漂洗也可以称为泼水漂洗。在脱水漂洗中,通过向洗衣机的洗涤兼脱水桶内进行注水到水浸透洗涤物整体的程度,并在停止注水后使洗涤兼脱水桶高速旋转,从而对洗涤物进行离心脱水。由此,能够使渗透到洗涤物中的洗涤剂水与水一起甩飞去除掉。
在脱水漂洗中,由于只进行注水到浸透洗涤物整体的程度,因此与在洗涤兼脱水桶蓄水至规定水位的状态下对洗涤物进行漂洗的蓄水漂洗、一边注水到洗涤脱水桶一边搅拌洗涤物的注水漂洗相比,能够将一次洗涤运转中的漂洗所需的供水量抑制得较少。因此,通过使用脱水漂洗能够实现大幅度地节水。
现有技术文献
专利文献
专利文献1:日本专利第3332732号公报
发明所要解决的问题
在专利文献1中,当洗涤过程的最后的脱水中的洗涤兼脱水桶的旋转速度高时,由于洗涤物因离心力而紧贴到洗涤兼脱水桶的内面变得紧实,因此在之后的漂洗过程中洗涤物难以被水浸透。这是实现洗涤物的漂洗性能的提高的困难所在。
发明内容
本发明是鉴于该背景而完成的技术方案,其目的在于,提供一种洗衣机,能够实现节水的同时实现洗涤物的漂洗性能的提高。
用于解决问题的方案
本发明的洗衣机,其特征在于,包括:洗涤脱水桶,收纳洗涤物并可旋转;电机,使所述洗涤脱水桶旋转;以及执行单元、供水至所述洗涤脱水桶、或进行所述洗涤脱水桶的排水、或控制所述电机的旋转从而使所述洗涤脱水桶旋转,并执行由洗涤过程、所述洗涤过程后的漂洗过程以及脱水过程构成的洗涤运转,所述脱水过程包括最终脱水过程、中间脱水过程,其中,最终脱水过程在所述洗涤运转的最后被执行,中间脱水过程至少在所述洗涤过程之后立即被执行,作为节水模式下的所述洗涤运转的所述漂洗过程,所述执行单元并不执行在所述洗涤脱水桶蓄水至规定水位的状态下对所述洗涤物进行漂洗的蓄水漂洗过程,而是多次连续地执行脱水漂洗过程,其中,所述脱水漂洗过程包括:对所述洗涤脱水桶供水至使水浸透洗涤物的程度的供水过程、以及所述供水过程之后立即执行的所述中间脱水过程或所述最终脱水过程,在所述供水过程即将开始之前的所述中间脱水过程中的所述电机的最大转速比所述最终脱水过程中的所述电机的最大转速低。
此外,本发明的特征在于,所述执行单元在所述供水过程中使所述洗涤脱水桶旋转,所述供水过程中的所述电机的转速比所述洗涤脱水桶发生共振的最低转速低。
此外,本发明的特征在于,所述执行单元在所述供水过程中使所述洗涤脱水桶间歇地旋转。
此外,本发明的特征在于,所述执行单元在所述供水过程中间歇地供水至所述洗涤脱水桶。
此外,本发明的特征在于,所述执行单元将最初的所述脱水漂洗过程的所述中间脱水过程的低速脱水时间和最初的所述脱水漂洗过程以后的所述中间脱水过程的低速脱水时间缩短至比最初的所述脱水漂洗过程即将开始之前的所述中间脱水过程的低速脱水时间短。
此外,本发明的特征在于,包括柔顺剂提供单元,在最后的所述漂洗过程为所述脱水漂洗过程的洗涤运转中,提供柔顺剂到所述洗涤脱水桶内。
此外,本发明的洗衣机,其特征在于,包括:洗涤脱水桶,收纳洗涤物并可旋转;电机,使所述洗涤脱水桶旋转;以及执行单元,供水至所述洗涤脱水桶、或进行所述洗涤脱水桶的排水、或控制所述电机的旋转从而使所述洗涤脱水桶旋转,并执行由洗涤过程、所述洗涤过程后的漂洗过程以及脱水过程构成 的洗涤运转,所述脱水过程包括最终脱水过程、中间脱水过程,其中,最终脱水过程在所述洗涤运转的最后被执行,中间脱水过程至少在所述洗涤过程之后立即被执行,作为节水模式下的所述洗涤运转的所述漂洗过程,所述执行单元并不执行在所述洗涤脱水桶蓄水至规定水位的状态下对所述洗涤物进行漂洗的蓄水漂洗过程,而是多次连续地执行脱水漂洗过程,其中,所述脱水漂洗过程包括:对所述洗涤脱水桶供水至使水浸透洗涤物的程度的供水过程、以及所述供水过程之后立即执行的所述中间脱水过程或所述最终脱水过程,所述洗衣机包括柔顺剂提供单元,在最后的所述漂洗过程为所述脱水漂洗过程的洗涤运转中,提供柔顺剂到所述洗涤脱水桶内。
此外,本发明的特征在于,所述柔顺剂提供单元在最后的所述脱水漂洗过程即将开始之前的所述脱水漂洗过程中提供柔顺剂至所述洗涤脱水桶内。
发明效果
根据本发明,在洗衣机中执行单元所执行的洗涤运转由洗涤过程、洗涤过程后的漂洗过程、脱水过程构成。脱水过程包括在洗涤运转的最后被执行的最终脱水过程、至少在洗涤过程后之后立即执行的中间脱水过程。
在漂洗过程中具有蓄水漂洗过程、脱水漂洗过程,其中,蓄水漂洗是在洗涤脱水桶蓄水至规定水位的状态下对洗涤物进行漂洗的漂洗过程,脱水漂洗过程包括:对洗涤脱水桶供水至使水浸透洗涤物的程度的供水过程和供水过程之后立即执行的中间脱水过程或最终脱水过程。
作为节水模式下的洗涤运转的漂洗过程,执行单元并不执行蓄水漂洗过程,而是执行脱水漂洗过程。因此,在节水模式下,与执行蓄水漂洗过程的情况相比,能够实现节水。
在供水过程即将开始之前的中间脱水过程中使洗涤脱水桶旋转的电机的最大转速比最终脱水过程中的电机的最大转速低。因此,该中间脱水过程结束的时刻的洗涤物不会由于离心力而紧贴到洗涤脱水桶的内面变得紧实,处于一定程度上松开了的状态。因此,在该中间脱水过程之后立即执行的脱水漂洗过程中,在供水过程中洗涤物容易被水浸透。多次连续地执行这样的脱水漂洗过程。由此,能够实现洗涤物的漂洗性能的提高。
根据本发明,由于在供水过程中,通过以比洗涤脱水桶发生共振的最低转速低的转速使电机旋转,从而在洗涤脱水桶极低速旋转的状态下能够有效地对 洗涤物注水,因此能够使水无遗漏地浸透洗涤物整体。由此,能够实现洗涤物的漂洗性能的进一步提高。
根据本发明,在供水过程中,通过使洗涤脱水桶间歇地旋转,从而能够使水无遗漏地浸透洗涤物整体。因此,能够实现洗涤物的漂洗性能的进一步提高。
根据本发明,在供水过程中,通过间歇地供水至洗涤脱水桶,从而能够抑制超出必要的供水。因此,能够实现进一步的节水。
根据本发明,对于最初的脱水漂洗过程的中间脱水过程的低速脱水时间、最初的脱水漂洗过程以后的中间脱水过程的低速脱水时间而言,在洗涤之后立即执行的中间脱水过程中正常启动了脱水的情况下,一般而言,洗涤脱水桶内的洗涤物的偏倚会较少。因此,对于这些中间脱水过程,即使将低速脱水时间设定得比最初的脱水漂洗过程即将开始之前的中间脱水过程中的短,也能够有效地对洗涤物进行脱水。由此,能够实现整个洗涤运转的时间缩短。
根据本发明,对于最后的漂洗过程为脱水漂洗过程的洗涤运转而言,通过自动地提供柔顺剂至洗涤脱水桶内,从而能够赋予洗涤物柔软性以及香味,因此很方便。需要说明的是,如果在脱水漂洗过程的供水过程中提供柔顺剂,能够通过其后的中间脱水过程或最终脱水过程均衡地将柔顺剂浸透至洗涤物整体。
根据本发明,在最后的脱水漂洗过程即将开始之前的脱水漂洗过程中提供柔顺剂至洗涤脱水桶内。如果像这样在倒数第二个脱水漂洗过程中提供柔顺剂,与在最后的脱水漂洗过程中提供柔顺剂的情况相比,能够使柔顺剂匀称、均匀地浸透至洗涤物整体。
附图说明
图1是本发明的一实施方式的洗衣机的示意性的纵剖右视图。
图2是表示洗衣机的电结构的框图。
图3A是表示标准模式的洗涤运转中的控制动作的流程图。
图3B是表示节水模式的洗涤运转中的控制动作的流程图。
图4是表示电机的转速、电机的运转/停止状态以及供水阀的开/关状态的时序图。
图5是表示脱水过程中的时间和洗涤物的脱水率的关系的图。
图6是表示洗涤运转中的控制动作的流程图。
附图标记说明
1:洗衣机;4:洗涤脱水桶;6:电机;30:微型计算机;Q:洗涤物。
具体实施方式
以下,参照附图,对本发明的实施方式进行具体说明。图1是本发明的一实施方式的洗衣机1的示意性的纵剖右视图。将图1中的上下方向称为洗衣机1的上下方向Z,将图1中的左右方向称为洗衣机1的前后方向Y,首先,关于洗衣机1的概要进行说明。上下方向Z中,将上方称为上方Z1,将下方称为下方Z2。前后方向Y中,将图1中的左方称为前方Y1,将图1中的右方称为后方Y2。
虽然洗衣机1还包括具有干衣功能的洗衣干衣机,但接下来以省略干衣功能只执行洗涤运转的洗衣机为例对洗衣机1进行说明。
洗衣机1包括:机壳2、外桶3、洗涤脱水桶4、旋转翼5、电动电机6以及传递机构7。
机壳2为例如金属制,形成为箱状。机壳2的上表面2A以例如越往后方Y2越向上方Z1延伸的方式,相对水平方向H倾斜而形成。在上表面2A形成有连通机壳2的内外的开口8。在上表面2A设置有开闭开口8的门9。在上表面2A,在比开口8更靠近前方Y1的区域,设置有由开关等构成的操作部10A和由液晶面板等构成的显示部10B。使用者通过操作操作部10A,既能够自由地选择洗涤条件,又能够对洗衣机1发出运转开始、运转停止等指示。在显示部10B以能够目视的方式显示洗涤运转相关的信息。
外桶3为例如树脂制,形成为有底圆筒状。外桶3具有:圆周壁3A,呈大致圆筒状,沿着相对上下方向Z往前方Y1倾斜的倾斜方向K配置;底壁3B,从下方Z2堵住圆周壁3A的中空部分;以及环状壁3C,呈环状,对圆周壁3A的上方Z1侧的端缘进行修边的同时向圆周壁3A的圆心侧突出。倾斜方向K不仅相对上下方向Z倾斜,还相对水平方向H倾斜。圆周壁3A的中空部分从环状壁3C的内侧向上方Z1露出。底壁3B形成与倾斜方向K正交并相对于水平 方向H倾斜延伸的圆板状,在底壁3B的圆心位置,形成有贯通底壁3B的贯通孔3D。
外桶3内能够存储水。例如,在机壳2内的外桶3的上方Z1配置有盒状的洗涤剂收纳室17。洗涤剂收纳室17还包括收纳柔顺剂的柔顺剂收纳室。在洗涤剂收纳室17,从上方Z1并且从后方Y2连接有与水龙头(未作图示)连接的供水路13,水从供水路13经由洗涤剂收纳室17内供给到外桶3内。来自洗涤剂收纳室17的水也可以如虚线箭头所示以水花状流下,供给到外桶3内。在供水路13的中途设置有以开始或停止供水为目的进行开闭的供水阀14。
在洗涤剂收纳室17,还连接有分支路15,该分支路15从供水路13的比供水阀14更靠近水龙头的上游侧的部分分支出来。水通过从供水路13流入分支路15,从而从分支路15经由洗涤剂收纳室17内提供至外桶3内。在分支路15的中途设置有以开始或停止供水为目的进行开闭的柔顺剂供给阀16。洗涤剂收纳室17内被划分为收纳柔顺剂的第一区域(未作图示)和不收纳柔顺剂的第二区域(未作图示)。当柔顺剂供给阀16打开时,从供水路13流入分支路15的水经由洗涤剂收纳室17的第一区域后供给到外桶3内。由此,洗涤剂收纳室17内的柔顺剂混入水中,供给至外桶3内。另一方面,当供水阀14打开时,从供水路13直接流入的水经由洗涤剂收纳室17的第二区域后供给至外桶3内。在这种情况下,未混合柔顺剂的状态的水供给至外桶3内。
在外桶3,从下方Z2连接有排水路18,外桶3内的水从排水路18排出到机外。在排水路18的中途设置有以开始或停止排水为目的进行开闭的排水阀19。
洗涤脱水桶4为例如金属制,具有往倾斜方向K延伸的中心轴线20,形成为比外桶3小一圈的有底圆筒状,能够在内部收纳洗涤物Q。洗涤脱水桶4具有沿倾斜方向K配置的大致圆筒状的圆周壁4A和从下方Z2堵住圆周壁4A的中空部分的底壁4B。
圆周壁4A的内圆周面为洗涤脱水桶4的内圆周面。圆周壁4A的内圆周面的上端部为使圆周壁4A的中空部分向上方Z1露出的出入口21。出入口21从下方Z2与外桶3的环状壁3C的内侧区域对置,处于从下方Z2与机壳2的开口8连通的状态。洗衣机1的使用者经由打开的开口8以及出入口21将洗涤物Q投入取出洗涤脱水桶4。
洗涤脱水桶4以同轴状收纳在外桶3内,相对于上下方向Z以及水平方向H倾斜地配置。被收纳在外桶3内的状态的洗涤脱水桶4能够围绕中心轴线20进行旋转。在洗涤脱水桶4的圆周壁4A以及底壁4B形成有多个未图示的贯通孔,外桶3内的水经由该贯通孔,能够在外桶3和洗涤脱水桶4之间往来。因此,外桶3内的水位和洗涤脱水桶4内的水位一致。此外,从洗涤剂收纳室17流出的水经由洗涤脱水桶4的出入口21,从上方Z1直接供给至洗涤脱水桶4内。
洗涤脱水桶4的底壁4B形成为在上方Z1隔着间隔与外桶3的底壁3B大致平行地延伸的圆板状,在底壁4B的与中心轴线20一致的圆心位置处,形成有贯通底壁4B的贯通孔4C。在底壁4B,设置有环抱贯通孔4C并且沿着中心轴线20向下方Z2伸出的管状的支承轴22。支承轴22插通外桶3的底壁3B的贯通孔3D,支承轴22的下端部位于底壁3B的下方Z2。
旋转翼5也就是波轮,形成为以中心轴线20为圆心的圆盘状,在洗涤脱水桶4内沿着底壁4B与洗涤脱水桶4同心状地配置。在旋转翼5的从下方Z2面向洗涤脱水桶4的出入口21的上表面处,设置有呈放射状配置的多个叶片5A。在旋转翼5,设置有从其圆心沿着中心轴线20向下方Z2延伸的旋转轴23。旋转轴23插通支承轴22的中空部分,旋转轴23的下端部位于外桶3的底壁3B的下方Z2。
在本实施方式中,电机6通过变频电机来实现。电机6在机壳2内配置于外桶3的下方Z2。电机6具有以中心轴线20为中心进行旋转的输出轴24。传递机构7夹在支承轴22和旋转轴23各自的下端部与输出轴24的上端部之间。传递机构7将电机6从输出轴24输出的驱动力选择性地传递到支承轴22以及旋转轴23的一方或双方。作为传递机构7可以使用公知的传递机构。
当来自电机6的驱动力传递至支承轴22以及旋转轴23时,洗涤脱水桶4以及旋转翼5围绕中心轴线20进行旋转。洗涤脱水桶4以及旋转翼5的旋转方向与洗涤脱水桶4的圆周方向X一致。
图2是表示洗衣机1的电结构的框图。参照图2,洗衣机1包括作为执行单元以及柔顺剂提供单元的微型计算机30。微型计算机30由例如CPU、ROM和RAM等构成,配置在机壳2内(参照图1)。
洗衣机1还包括水位传感器31、旋转传感器32以及蜂鸣器33。水位传感器31、旋转传感器32和蜂鸣器33以及上述的操作部10A以及显示部10B分别与微型计算机30电连接。电机6、传递机构7、供水阀14、柔顺剂供给阀16以及排水阀19分别经由驱动电路34与微型计算机30电连接。
水位传感器31为检测外桶3以及洗涤脱水桶4的水位的传感器,水位传感器31的检测结果实时输入微型计算机30。
旋转传感器32为读取电机6的转速,严格来说为读取电机6的输出轴24的转速的装置,例如由多个霍尔IC(未作图示)构成。旋转传感器32所读取到的转速实时输入微型计算机30。微型计算机30根据输入的转速,控制施加给电机6的电压的占空比,以使电机6按所希望的转速进行旋转的方式控制电机6的旋转。在本实施方式中,电机6的转速与洗涤脱水桶4的转速相同。
如上所述,当使用者操作操作部10A,对洗涤物Q的洗涤条件等进行选择时,微型计算机30接收该选择。微型计算机30将需要的信息通过显示部10B以能够目视的方式显示给使用者。微型计算机30通过由蜂鸣器33发出的规定的声音,从而通知使用者洗涤运转的开始、结束等。
微型计算机30通过控制传递机构7,将电机6的驱动力的传递目标地切换为支承轴22以及旋转轴23的一方或双方。微型计算机30控制供水阀14、柔顺剂供给阀16以及排水阀19的开闭。因此,微型计算机30能够通过打开供水阀14供水到洗涤脱水桶4,能够通过打开柔顺剂供给阀16提供柔顺剂到洗涤脱水桶4,能够通过打开排水阀19执行洗涤脱水桶4的排水。
接下来,参照图3A以及图3B的流程图,关于在洗衣机1中微型计算机30执行的洗涤运转进行说明。洗涤运转具有图3A所示的标准模式和图3B所示的节水模式。此外,洗涤运转由对洗涤物Q进行洗涤的洗涤过程、洗涤过程后对洗涤物Q进行漂洗的漂洗过程、以及对洗涤物Q进行脱水的脱水过程构成。脱水过程包括在洗涤运转的最后被执行的最终脱水过程、至少在洗涤过程之后之后立即被执行的中间脱水过程。需要说明的是,在洗涤运转中,可以只使用自来水,也可以根据需要使用洗澡水。
首先,对图3A的标准模式下的洗涤运转进行说明。微型计算机30随着洗涤运转的开始,检测作为负荷量的洗涤脱水桶4内的洗涤物Q的量(步骤S1)。具体而言,微型计算机30根据以低速使洗涤脱水桶4稳定旋转时的电机6的转 速的波动来检测负荷量。微型计算机30将与检测到的负荷量对应的洗涤运转的时长、洗涤剂的需要量等显示在显示部10B。
接下来,微型计算机30执行洗涤过程(步骤S2)。在洗涤过程中,微型计算机30在排水阀19关闭的状态下打开供水阀14,供水到洗涤脱水桶4。当洗涤脱水桶4内蓄水至规定水位时,微型计算机30关闭供水阀14,停止供水,以规定时间驱动电机6,使洗涤脱水桶4以及旋转翼5旋转。洗涤脱水桶4内的洗涤物Q被旋转的洗涤脱水桶4以及旋转翼5的叶片5A搅拌,通过投入到洗涤脱水桶4内的洗涤剂分解脏污,从而被洗涤。然后,微型计算机30停止电机6的驱动,打开排水阀19。由此,存储在洗涤脱水桶4的水从外桶3的排水路18排出到机外。需要说明的是,在洗涤过程已结束的阶段,溶解有洗涤剂的水处于作为洗涤剂水渗入洗涤物Q的状态。
微型计算机30在洗涤过程之后立即执行中间脱水过程(步骤S)。在中间脱水过程中,微型计算机30保持打开排水阀19的状态,以规定时间驱动电机6,使洗涤脱水桶4以及旋转翼5一体旋转。通过洗涤脱水桶4以及旋转翼5的旋转,离心力作用于洗涤脱水桶4内的洗涤物Q,因此洗涤物Q被脱水。通过脱水从洗涤物Q渗出的水从外桶3的排水路18排出到机外。
对中间脱水过程进行详细说明,微型计算机30在使电机6的转速从0rpm加速至120rpm的所谓第一转速之后,以低速120rpm使电机6稳定旋转。第一转速比洗涤脱水桶4发生横向共振的转速(例如50rpm~60rpm)高,并且,比洗涤脱水桶4发生纵向共振的转速(例如200rpm~220rpm)低。在120rpm下的稳定旋转之后,微型计算机30在使电机6的转速从120rpm加速至240rpm的所谓第二转速后,以低速240rpm使电机6稳定旋转。第二转速比发生纵向共振的转速高一些。然后,微型计算机30在使电机6的转速从240rpm加速至800rpm后,以高速800rpm使电机6稳定旋转。
换句话说,在中间脱水过程中,微型计算机30以从0rpm到120rpm的第一加速阶段、从120rpm到240rpm的第二加速阶段、从240rpm到800rpm的第三加速阶段这三个阶段使电机6的旋转加速。在与这样的情况不同,当使电机6从0rpm一口气加速至800rpm时,由于从洗涤物Q一次渗出大量的水,因此会有排水路18的排水状态变差、或者排水路18中充满气泡的隐患。但是,在本实施方式中,以不会从洗涤物Q一次渗出大量的水的方式使电机6分阶段地加 速,因此能够防止这样的不良状况。微型计算机30在中间脱水过程的最后,在对电机6的旋转施加制动从而使电机6的旋转停止后,关闭排水阀19。作为此处的制动,可以是微型计算机30控制占空比使电机6的旋转急速停止,也可以是另外设置制动装置(未作图示),并通过微型计算机30使制动装置工作从而使电机6的旋转急速停止。
微型计算机30在中间脱水过程之后立即执行供水过程(步骤S)。在供水过程中,微型计算机30通过对电机6交替反复进行切换至“运转”使之驱动、切换至“停止”使之停止的操作,从而以极低速使洗涤脱水桶4间歇旋转。详细而言,电机6的转速以交替着反复从0rpm上升至30rpm、从30rpm下降至0rpm的方式进行变动。
此处的30rpm是一个例子,总而言之,供水过程中的电机6的转速只要比洗涤脱水桶4发生共振的最低转速低就可以。虽然该最低转速根据洗涤脱水桶4的尺寸而不同,但在本实施方式的情况下,为洗涤脱水桶4发生横向共振的转速,为上述的50rpm~60rpm。
此外,在供水过程中,微型计算机30通过交替着反复对供水阀14进行切换至“开”将其打开、切换至“关”将其关闭的操作,从而间歇供水至洗涤脱水桶4。供水阀14的开/关的时刻和电机6的运转停止的时刻一致。因此,在电机6为“运转”的期间供水阀14也为“开”,在电机6为“停止”的期间供水阀14也为“关”。在供水过程中,由于在同一时刻执行洗涤脱水桶4的间歇旋转和间歇供水,因此在洗涤脱水桶4极低速旋转的期间,水从供水路13泼至洗涤脱水桶4内的洗涤物Q。此时,来自供水路13的水以上述的水花状提供给洗涤物Q。这样的水花状的水的提供称作“泼水供水”。在供水过程中,以使洗涤物Q被水浸透的程度少量供水至洗涤脱水桶4,因此洗涤脱水桶4内几乎不存储水。
微型计算机30在供水过程之后,紧接着再次执行与上述的步骤S3相同内容的中间脱水过程(步骤S5)。通过此处的中间脱水过程,洗涤脱水桶4内的洗涤物Q被离心脱水。由此,能够将渗透至洗涤物Q的洗涤剂水与供水过程中供给的水一起甩飞去除掉。
步骤S4的供水过程和供水过程之后紧接着的步骤S5的中间脱水过程构成一次脱水漂洗过程。脱水漂洗过程是漂洗过程的一种。需要说明的是,在脱水漂洗过程中,虽然洗涤脱水桶4被旋转,但是旋转翼5处于静止的状态。
微型计算机30在脱水漂洗过程之后,立即执行蓄水漂洗过程(步骤S6)。蓄水漂洗过程是漂洗过程的一种。在蓄水漂洗过程中,微型计算机30在排水阀19关闭的状态下打开供水阀14,供水至洗涤脱水桶4。当在洗涤脱水桶4内存储水至例如洗涤物Q位于比水面靠近下方Z2的位置的规定水位时,微型计算机30关闭供水阀14,停止供水。
然后,微型计算机30在洗涤脱水桶4内存储水至该规定水位的状态下,以规定时间驱动电机6,使旋转翼5旋转。在这样的蓄水漂洗过程中,洗涤脱水桶4内的洗涤物Q在被水浸泡的状态下,通过旋转的旋转翼5的叶片5A被搅拌,从而被漂洗。然后,微型计算机30停止电机6的驱动,打开排水阀19。由此,存储在洗涤脱水桶4的水从外桶3的排水路18排出到机外。在蓄水漂洗过程已结束的阶段,洗涤物Q处于完全被漂洗的状态,洗涤物Q中几乎不存在洗涤剂成分。
微型计算机30在蓄水漂洗过程之后立即执行最终脱水过程(步骤S7)。在最终脱水过程中,微型计算机30保持打开排水阀19的状态,以规定时间驱动电机6,使洗涤脱水桶4以及旋转翼5一体地旋转。虽然最终脱水过程与步骤S3以及S5的中间脱水过程内容大致相同,但在最终脱水过程中,第三加速阶段后以800rpm使电机6稳定旋转的时间比中间脱水过程的长。在最终脱水过程中,微型计算机30分第一加速阶段、第二加速阶段以及第三加速阶段这三个阶段使电机6的旋转加速。由此,由于对洗涤脱水桶4内的洗涤物Q施加了离心力,因此洗涤物Q被正式脱水。通过脱水从洗涤物Q渗出的水从外桶3的排水路18排出到机外。最终脱水过程结束,由此,标准模式的洗涤运转结束。
如上所述,微型计算机30通过供水至洗涤脱水桶4、或进行洗涤脱水桶4的排水、或控制电机6的旋转使洗涤脱水桶4旋转,从而执行洗涤运转。
接下来,对图3B的节水模式下的洗涤运转进行说明。需要说明的是,在包括图3B的各图中,对于与其他图的处理步骤相同的处理步骤赋予相同的步骤编号,省略对该处理步骤的详细说明。此外,在说明节水模式下的洗涤运转时,也一并参照图4时序图。在图4的时序图中,横轴表示经过时间,纵轴按照从上到下的顺序表示电机6的转速(单位:rpm)、电机6的运转/停止状态以及供水阀14的开/关状态。
微型计算机30随着节水模式下的洗涤运转的开始,对洗涤物Q的负荷量进行检测(步骤S1),然后,按照顺序执行洗涤过程(步骤S2)和中间脱水过程(步骤S3A)。在节水模式的中间脱水过程中,虽然微型计算机30与标准模式的中间脱水过程(步骤S3)同样分三个阶段使电机6的旋转加速,但是与标准模式不同,在第三加速阶段,仅仅使电机6的旋转从240rpm加速至600rpm。因此,在第三加速阶段后,微型计算机30以中速600rpm使电机6稳定旋转。除了在第三加速阶段使电机6的旋转从240rpm加速至600rpm以外,节水模式的中间脱水过程的内容与标准模式的中间脱水过程的内容相同。
微型计算机30在步骤S3A的中间脱水过程之后,作为第一次脱水漂洗行程,接着按照顺序执行供水过程(步骤S4)、与步骤S3A大致相同内容的中间脱水过程(步骤S5A)。在第一次脱水漂洗行程后,作为第二次脱水漂洗行程,微型计算机30按照顺序执行与步骤S4相同内容的供水过程(步骤S4A)、与步骤S5A相同内容的中间脱水过程(步骤S5B)。
但是,在节水模式的情况下,微型计算机30将最初的脱水漂洗过程的中间脱水过程(步骤S5A)的低速脱水时间和最初的脱水漂洗过程以后的中间脱水过程(步骤S5B)的低速脱水时间缩短为比最初的脱水漂洗过程即将开始之前的中间脱水过程(步骤S3A)的低速脱水时间短。具体而言,第二次中间脱水过程(步骤S5A)、第三次中间脱水过程(步骤S5B)的各自的从0rpm至600rpm的电机6的旋转时长即低速脱水时间比第一次中间脱水过程(步骤S3A)的低速脱水时间还短(参照图4)。
一般而言,在洗涤过程之后立即执行的中间脱水过程中正常启动脱水的情况下,由于在最初的脱水漂洗过程的供水过程中洗涤物Q均匀地分散在洗涤脱水桶4内,因此对于之后的第二次以及第三次中间脱水过程的低速脱水时间而言,与第一次中间脱水过程的低速脱水时间相比,洗涤脱水桶4内的洗涤物Q的偏倚较少。因此,对于第二次以及第三次中间脱水过程而言,即使与第一次中间脱水过程相比缩短了脱水启动时的低速脱水时间,由于电机6的转速顺利地上升,因此也能够有效地对洗涤物Q进行脱水。由此,能够实现整个洗涤运转的时间缩短。
在第二次脱水漂洗过程后,紧接着,作为第三次脱水漂洗过程,微型计算机30按照顺序执行与步骤S4相同内容的供水过程(步骤S4B)、该供水过程之 后的最终脱水过程(步骤S7)。构成第三次脱水漂洗过程的最终脱水过程结束,由此,节水模式的洗涤运转结束。
如上所述,作为节水模式下的洗涤运转的漂洗过程,微型计算机30并不执行蓄水漂洗过程,而是多次连续地执行脱水漂洗过程(步骤S4~S7)。因此,对于节水模式而言,与执行蓄水漂洗过程(步骤S6)的标准模式相比,能够实现节水。并且,即使在多次执行脱水漂洗过程的情况下,一次洗涤运转中用于漂洗的全体水量与执行蓄水漂洗过程的情况相比也大幅度减少。
而且,各脱水漂洗过程的供水过程即将开始之前的中间脱水过程(步骤S3A、S5A以及S5B)中的电机6的最大转速(此处为600rpm)如图4所示,比最终脱水过程(步骤S7)中的电机6的最大转速(此处为800rpm)低,是最终脱水过程的最大转速的75%左右。
图5是表示脱水过程中的时间和洗涤物Q的脱水率的关系的图。在图5的图表中,横轴表示经过时间(单位:分钟),纵轴表示脱水过程中随着时间流逝的脱水率。脱水率是指表示与脱水过程的最初阶段相比有多少水渗出的指标值。脱水率越高,虽然洗涤物Q中所含的水越少,但是洗涤物Q也会由于脱水过程中的洗涤脱水桶4的旋转所产生的离心力,处于紧贴在洗涤脱水桶4的内面变得紧实的状态。
由图5可知,电机6的转速高到800rpm、850rpm的程度的话,虽然脱水率会高到60%以上,但是这种情况下的洗涤物Q除了紧实之外,还会在洗涤脱水桶4内上下摊开至出入口21侧。因此,在之后的脱水漂洗过程的供水过程中,水很难浸透洗涤物Q,水也很难洒到洗涤物Q所在的出入口21侧的部分。为了松开像这样变得紧实的洗涤物Q,使水浸透洗涤物Q,在漂洗过程中需要大量的水,因此很难实现节水。
另一方面,在供水过程即将开始之前的中间脱水过程中的电机6的最大转速为比最终脱水过程的800rpm低的600rpm的情况下,该中间脱水过程结束的时刻的脱水率为55%以下。此时的洗涤物Q不会由于离心力而紧贴在洗涤脱水桶4的内面变得紧实,或者摊开至出入口21侧,而是处于一定程度上松开了的柔软的状态。因此,在该中间脱水过程之后立即执行的脱水漂洗过程中,在供水过程中水容易洒到洗涤物Q上浸透其中。此外,多次连续地执行这样的脱水漂洗过程。因此,能够实现洗涤物Q的漂洗性能的提高,其结果是,能够发挥 与标准模式同等的漂洗性能。需要说明的是,当电机6的转速过低时,无望得到中间脱水过程中本该具有的脱水性能,因此电机6的转速最好为300rpm~700rpm左右,优选为400rpm~600rpm左右。
此外,在供水过程(步骤S4、S4A、S4B)中,如上所述,通过以比最低转速低的30rpm这一转速使电机6旋转,从而能够在洗涤脱水桶4极低速旋转的状态下将洗涤物Q有效地浸入水中。此外,通过使洗涤脱水桶4间歇旋转,从而能够使水无遗漏地浸透到洗涤物Q整体。由此,能够实现洗涤物Q的漂洗性能的进一步提高。另一方面,在供水过程中,由于向洗涤脱水桶4间歇供水,因此能够抑制超出必要的供水,因此能够实现进一步的节水。
图6是表示洗涤运转中的控制动作的流程图,追加表示与柔顺剂有关的处理。标准模式的洗涤运转默认设定为在最后的蓄水漂洗过程中总是投入柔顺剂。另一方面,在节水模式的洗涤运转中,通过使用者进行操作部10A的操作,从而能够预先选择有无投入柔顺剂。在这种情况下,如果选择了投入柔顺剂,就以“柔顺剂设定有”的形式存储于微型计算机30,如果选择了不投入柔顺剂,就以“柔顺剂设定无”的形式存储于微型计算机30。需要说明的是,节水模式的洗涤运转也可以默认设定为“柔顺剂设定有”,通过由使用者进行操作部10A的操作,从而能够从“柔顺剂设定有”变更设定为“柔顺剂设定无”。
在标准模式的洗涤运转的情况下,随着洗涤运转的开始,微型计算机30检测洗涤物Q的负荷量(步骤S1),然后,按顺序执行洗涤过程(步骤S2)和中间脱水过程(步骤S3)。接下来,微型计算机30在执行完构成脱水漂洗过程的供水过程(步骤S4)后,确认现在的漂洗过程后,接下去是否为最后的漂洗过程(步骤S11)。
在标准模式的情况下,第一次脱水漂洗过程之后紧接着的是最后的漂洗过程的蓄水漂洗过程(步骤S11:是),而不是脱水漂洗过程(步骤S12:否)。因此,微型计算机30在执行构成刚才的脱水漂洗过程的剩余工作的中间脱水过程(步骤S5)之后,打开柔顺剂供给阀16,投入柔顺剂到洗涤脱水桶4内(步骤S14)。然后,微型计算机30执行最后的漂洗过程即蓄水漂洗过程(步骤S6)。在蓄水漂洗过程中,柔顺剂渗透洗涤物Q,赋予洗涤物Q柔软性以及香味。微型计算机30在蓄水漂洗过程之后,执行最终脱水过程(步骤S7)。
在节水模式的洗涤运转的情况下,随着洗涤运转的开始,微型计算机30检测洗涤物Q的负荷量(步骤S1),然后,按顺序执行洗涤过程(步骤S2)和中间脱水过程(步骤S3A)。接下来,微型计算机30执行构成第一次脱水漂洗过程的供水过程(步骤S4)。
在节水模式的情况下,现在的漂洗过程之后,紧接着的是第二次脱水漂洗过程,而不是最后的漂洗过程(步骤S11:否),因此微型计算机30在执行构成刚才的第一次脱水漂洗过程的剩余工作的中间脱水过程(步骤S5A)后,执行构成第二次脱水漂洗过程的供水过程(步骤S4A)。第二次脱水漂洗过程之后,紧接着是最后的漂洗过程(步骤S11:是),再之后是第三次脱水漂洗过程(步骤S12:是)。
假若为预先选择了“柔顺剂设定无”的状态(步骤S13:是),则微型计算机30不向洗涤脱水桶4内投入柔顺剂地执行第二次脱水漂洗过程的中间脱水过程(步骤S5B)。此时,能够省略用于投入柔顺剂的供水,因此可以实现节水。
另一方面,如果为选择了“柔顺剂设定有”的状态(步骤S13:否),则微型计算机30打开柔顺剂供给阀16,向洗涤脱水桶4内投入柔顺剂(步骤S15),执行构成刚才的第二次脱水漂洗过程的剩余工作的中间脱水过程(步骤S5B)。换句话说,不仅在最后的漂洗过程为蓄水漂洗过程的标准模式的洗涤运转中,在最后的漂洗过程为脱水漂洗过程的节水模式的洗涤运转中,微型计算机30也向洗涤脱水桶4内提供柔顺剂。
这样,在节水模式下,通过自动地提供柔顺剂到洗涤脱水桶4内,从而也能够赋予洗涤物Q柔软性以及香味,因此很便利。但是,相对于在标准模式下在蓄水漂洗过程即将开始之前提供柔顺剂,在节水模式的情况下,微型计算机30在最后的脱水漂洗过程即将开始之前的第二次脱水漂洗过程中提供柔顺剂到洗涤脱水桶4内。此外,在节水模式的情况下,在第二次脱水漂洗过程的供水过程中与泼水供水同时提供柔顺剂(步骤S15),因此通过洗涤脱水桶4的极低速旋转,能够有效地将柔顺剂混入洗涤物Q,能够抑制柔顺剂的溶解残留。
然后,作为第三次脱水漂洗过程,微型计算机30执行供水过程(步骤S4B)和最终脱水过程(步骤S7)。与在最后的脱水漂洗过程中提供柔顺剂的情况相比,通过第二次脱水漂洗过程的供水过程即倒数第二个脱水漂洗过程的供水过程,能够将柔顺剂匀称地、均匀地渗透到洗涤物Q整体。
此外,在最后的脱水漂洗过程即将开始之前的第二次脱水漂洗过程中向洗涤脱水桶4内提供柔顺剂的情况下,通过第二次脱水漂洗过程的供水过程后的中间脱水过程(步骤S5B)、该中间脱水过程后的供水过程(步骤S4B)、最终脱水过程(步骤S7),能够将柔顺剂均匀地渗透至洗涤物Q整体。在这种情况下,在步骤S5B的中间脱水过程中,为了将柔顺剂更均匀地渗透至洗涤物Q整体,优选以比“柔顺剂设定无”的情况的中间脱水过程低的最高转速(例如400rpm)使电机6旋转。
本发明不受以上说明的实施方式的限制,可以在权利要求书所记载的范围内进行各自变更。
例如,在上述的实施方式中,虽然在节水模式中执行了三次脱水漂洗过程,但脱水漂洗过程的次数能任意地变更。只要脱水漂洗过程中的漂洗性能充足,也可以只执行两次脱水漂洗过程,若像提高漂洗性能,也可以执行四次以上脱水漂洗过程。
此外,除了上述的通常运转以及节水模式之外,还可以设置时间缩短模式下的洗涤运转。在时间缩短模式的漂洗过程中,不执行蓄水漂洗过程,仅执行一次脱水漂洗过程。由此,除了节水外,还能够实现缩短时间。在时间缩短模式中,为了将漂洗性能维持在与其他模式相同的程度,脱水漂洗过程中的供水过程的泼水供水的时间设定为比其他模式长,供水过程之后立即执行的脱水过程中的电机6的转速设定为比其他模式高。
此外,在洗衣机1中,虽然外桶3以及洗涤脱水桶4的中心轴线20以向倾斜方向K延伸的方式配置,但也可以配置为向上下方向Z延伸。

Claims (8)

  1. 一种洗衣机,其特征在于,包括:
    洗涤脱水桶,收纳洗涤物并可旋转;
    电机,使所述洗涤脱水桶旋转;以及
    执行单元,供水至所述洗涤脱水桶、或进行所述洗涤脱水桶的排水、或控制所述电机的旋转从而使所述洗涤脱水桶旋转,并执行由洗涤过程、所述洗涤过程后的漂洗过程以及脱水过程构成的洗涤运转,
    所述脱水过程包括最终脱水过程、中间脱水过程,其中,所述最终脱水过程在所述洗涤运转的最后被执行,所述中间脱水过程至少在所述洗涤过程之后立即被执行,
    作为节水模式下的所述洗涤运转的所述漂洗过程,所述执行单元并不执行在所述洗涤脱水桶蓄水至规定水位的状态下对所述洗涤物进行漂洗的蓄水漂洗过程,而是多次连续地执行脱水漂洗过程,其中,所述脱水漂洗过程包括:对所述洗涤脱水桶供水至使水浸透洗涤物的程度的供水过程、以及所述供水过程之后立即执行的所述中间脱水过程或所述最终脱水过程,
    在所述供水过程即将开始之前的所述中间脱水过程中的所述电机的最大转速比所述最终脱水过程中的所述电机的最大转速低。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    所述执行单元在所述供水过程中使所述洗涤脱水桶旋转,
    所述供水过程中的所述电机的转速比所述洗涤脱水桶发生共振的最低转速低。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,
    所述执行单元在所述供水过程中使所述洗涤脱水桶间歇地旋转。
  4. 根据权利要求1至3的任一项所述的洗衣机,其特征在于,
    所述执行单元在所述供水过程中间歇地供水至所述洗涤脱水桶。
  5. 根据权利要求1至4的任一项所述的洗衣机,其特征在于,
    所述执行单元将最初的所述脱水漂洗过程的所述中间脱水过程的低速脱水时间和最初的所述脱水漂洗过程以后的所述中间脱水过程的低速脱水时间缩短至比最初的所述脱水漂洗过程即将开始之前的所述中间脱水过程的低速脱水时 间短。
  6. 根据权利要求1至5的任一项所述的洗衣机,其特征在于,
    包括:柔顺剂提供单元,在最后的所述漂洗过程为所述脱水漂洗过程的洗涤运转中,提供柔顺剂至所述洗涤脱水桶内。
  7. 一种洗衣机,其特征在于,包括:
    洗涤脱水桶,收纳洗涤物并可旋转;
    电机,使所述洗涤脱水桶旋转;以及
    执行单元,供水至所述洗涤脱水桶、或进行所述洗涤脱水桶的排水、或控制所述电机的旋转从而使所述洗涤脱水桶旋转,并执行由洗涤过程、所述洗涤过程后的漂洗过程以及脱水过程构成的洗涤运转,
    所述脱水过程包括最终脱水过程、中间脱水过程,其中,所述最终脱水过程在所述洗涤运转的最后被执行,所述中间脱水过程至少在所述洗涤过程之后立即被执行,
    作为节水模式下的所述洗涤运转的所述漂洗过程,所述执行单元并不执行在所述洗涤脱水桶蓄水至规定水位的状态下对所述洗涤物进行漂洗的蓄水漂洗过程,而是多次连续地执行脱水漂洗过程,其中,所述脱水漂洗过程包括:对所述洗涤脱水桶供水至使水浸透洗涤物的程度的供水过程、以及所述供水过程之后立即执行的所述中间脱水过程或所述最终脱水过程,
    所述洗衣机包括:柔顺剂提供单元,在最后的所述漂洗过程为所述脱水漂洗过程的洗涤运转中,提供柔顺剂至所述洗涤脱水桶内。
  8. 根据权利要求6或7所述的洗衣机,其特征在于,
    所述柔顺剂提供单元在最后的所述脱水漂洗过程即将开始之前的所述脱水漂洗过程中提供柔顺剂至所述洗涤脱水桶内。
PCT/CN2015/097814 2014-12-26 2015-12-18 洗衣机 WO2016101841A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580070919.0A CN107109751A (zh) 2014-12-26 2015-12-18 洗衣机
EP15871909.6A EP3239381A4 (en) 2014-12-26 2015-12-18 Washing machine
US15/539,106 US10508376B2 (en) 2014-12-26 2015-12-18 Washing machine
KR1020177021070A KR101974603B1 (ko) 2014-12-26 2015-12-18 세탁기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265529 2014-12-26
JP2014265529A JP2016123538A (ja) 2014-12-26 2014-12-26 洗濯機

Publications (1)

Publication Number Publication Date
WO2016101841A1 true WO2016101841A1 (zh) 2016-06-30

Family

ID=56149257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097814 WO2016101841A1 (zh) 2014-12-26 2015-12-18 洗衣机

Country Status (6)

Country Link
US (1) US10508376B2 (zh)
EP (1) EP3239381A4 (zh)
JP (1) JP2016123538A (zh)
KR (1) KR101974603B1 (zh)
CN (1) CN107109751A (zh)
WO (1) WO2016101841A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102493158B1 (ko) * 2018-05-03 2023-01-27 엘지전자 주식회사 세탁기의 제어방법
JP7350252B2 (ja) * 2019-04-25 2023-09-26 青島海爾洗衣机有限公司 洗濯機
KR20200144820A (ko) * 2019-06-19 2020-12-30 삼성전자주식회사 세탁기의 제어 방법 및 세탁기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105484A (ja) * 1996-06-18 1998-01-13 Sanyo Electric Co Ltd 洗濯機
CN1244606A (zh) * 1998-08-11 2000-02-16 无锡小天鹅股份有限公司 一种洗衣漂洗控制方法及其洗衣机
KR20060007248A (ko) * 2004-07-19 2006-01-24 엘지전자 주식회사 드럼세탁기의 절수헹굼방법
CN1944770A (zh) * 2005-10-06 2007-04-11 三星电子株式会社 洗衣机和用于控制所述洗衣机的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014961A (ja) * 1998-07-07 2000-01-18 Matsushita Electric Ind Co Ltd 洗濯機
GB0003008D0 (en) * 2000-02-11 2000-03-29 Notetry Ltd A method of operating a domestic appliance
JP3625791B2 (ja) * 2001-09-13 2005-03-02 三洋電機株式会社 ドラム式洗濯機
KR100499488B1 (ko) * 2002-11-26 2005-07-05 엘지전자 주식회사 드럼세탁기의 제어방법
KR100498316B1 (ko) * 2003-02-14 2005-07-01 엘지전자 주식회사 드럼 세탁기의 세탁방법
KR20050040580A (ko) * 2003-10-29 2005-05-03 엘지전자 주식회사 세탁기의 탈수알피엠 지정방법 및 제어방법
JP4030523B2 (ja) * 2004-05-12 2008-01-09 三洋電機株式会社 洗濯機
KR100565251B1 (ko) * 2004-07-19 2006-03-30 엘지전자 주식회사 드럼세탁기의 절수세탁방법
KR20060023016A (ko) * 2004-09-08 2006-03-13 엘지전자 주식회사 세탁기
KR20060097210A (ko) * 2005-03-04 2006-09-14 삼성전자주식회사 세탁기 및 그 거품제거방법
KR101203552B1 (ko) * 2005-06-29 2012-11-21 엘지전자 주식회사 세정장치의 세제공급기구
JP2011015714A (ja) * 2009-07-07 2011-01-27 Hitachi Appliances Inc 洗濯機
KR20110067469A (ko) 2009-12-14 2011-06-22 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 헹굼방법
KR101617290B1 (ko) 2009-12-23 2016-05-18 엘지전자 주식회사 세탁 방법 및 세탁기
US9506178B2 (en) 2009-12-23 2016-11-29 Lg Electronics Inc. Washing method and washing machine
JP2012205625A (ja) 2011-03-29 2012-10-25 Panasonic Corp ドラム式洗濯機
JP2013244384A (ja) * 2012-05-30 2013-12-09 Hitachi Appliances Inc 洗濯機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105484A (ja) * 1996-06-18 1998-01-13 Sanyo Electric Co Ltd 洗濯機
CN1244606A (zh) * 1998-08-11 2000-02-16 无锡小天鹅股份有限公司 一种洗衣漂洗控制方法及其洗衣机
KR20060007248A (ko) * 2004-07-19 2006-01-24 엘지전자 주식회사 드럼세탁기의 절수헹굼방법
CN1944770A (zh) * 2005-10-06 2007-04-11 三星电子株式会社 洗衣机和用于控制所述洗衣机的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239381A4 *

Also Published As

Publication number Publication date
EP3239381A1 (en) 2017-11-01
KR101974603B1 (ko) 2019-05-02
US20170362759A1 (en) 2017-12-21
EP3239381A4 (en) 2018-08-22
KR20170100642A (ko) 2017-09-04
US10508376B2 (en) 2019-12-17
JP2016123538A (ja) 2016-07-11
CN107109751A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP3993156B2 (ja) ドラム式洗濯機
WO2016150384A1 (zh) 洗衣机
RU2585713C2 (ru) Стиральная машина и способ ее управления
JP2007105212A (ja) ドラム式洗濯機
WO2016170726A1 (ja) 洗濯機
JP2009178484A (ja) 洗濯機
WO2017054760A1 (zh) 洗衣机
WO2016101841A1 (zh) 洗衣机
JP2018000856A (ja) 洗濯機
JP2017064079A (ja) 洗濯機
JP2017205340A (ja) 洗濯機
JP2019024910A (ja) 洗濯機
WO2020216252A1 (zh) 洗衣机
JP6251349B1 (ja) 洗濯機
JP2005334412A (ja) 洗濯機
WO2020207141A1 (zh) 立式洗衣机
JPH0538393A (ja) 洗濯機
JP2019088720A (ja) 洗濯機
TWI816914B (zh) 洗衣機
JP7164107B2 (ja) 縦型洗濯機
JP2006075478A (ja) ドラム式洗濯機
JPH08103593A (ja) 洗濯機
JP6449419B2 (ja) 洗濯機
JP2008200070A (ja) 洗濯機
KR100820067B1 (ko) 울 손상 방지 세탁 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015871909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177021070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539106

Country of ref document: US