WO2016150174A1 - 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用 - Google Patents

一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用 Download PDF

Info

Publication number
WO2016150174A1
WO2016150174A1 PCT/CN2015/095109 CN2015095109W WO2016150174A1 WO 2016150174 A1 WO2016150174 A1 WO 2016150174A1 CN 2015095109 W CN2015095109 W CN 2015095109W WO 2016150174 A1 WO2016150174 A1 WO 2016150174A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
sulfate
phosphate
doped
phosphorus
Prior art date
Application number
PCT/CN2015/095109
Other languages
English (en)
French (fr)
Inventor
宁国庆
李永峰
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Publication of WO2016150174A1 publication Critical patent/WO2016150174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention provides a carbon nanotube-graphene composite conductive paste and a preparation method and application thereof, and belongs to the technical field of energy.
  • Carbon nanotubes have been widely discovered since 1991 when they were first discovered by Japanese electron microscopyologist Iijima. As a one-dimensional carbon nanomaterial, they have many abnormal mechanical, electrical and chemical properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects are constantly being revealed. The conductivity and high aspect ratio of CNTs determine that it may be an ideal conductive agent. Compared with traditional conductive agents such as conductive carbon black, carbon nanotubes have higher electronic conductivity and the required amount is relatively higher. Low, it is beneficial to increase battery capacity and improve battery cycle life.
  • graphene As a new type of carbon nanomaterial, graphene has attracted great interest from researchers at home and abroad.
  • Graphene is a "single-layer graphite sheet", which is the basic structural unit of graphite; it is used as one-dimensional (1D).
  • the carbon nanotubes are spread out to form graphene, and the graphene is curled to form carbon nanotubes; from the viewpoint of performance, graphene has properties comparable to or superior to those of carbon nanotubes, for example, it has ultra-high electrons. Mobility, thermal conductivity, high carrier mobility, free electron mobility, high elasticity, high strength, etc.; geometrically, carbon nanotubes and graphene can be abstractly viewed as lines, faces, and electrodes The conductive contact interface of the active material is different. As a new type of carbon fiber conductive agent, the carbon nanotube can form a complete three-dimensional conductive network structure. Like carbon nanotubes, the sheet-like structure of graphene determines that electrons can conduct in two dimensions and is also considered as an ideal conductive agent. However, its two-dimensional structure and high specific surface area limitations also lead to its activity. A perfect three-dimensional conductive network cannot be constructed between materials like carbon nanotubes.
  • an object of the present invention is to provide a carbon nanotube-graphene composite conductive paste.
  • Another object of the present invention is to provide a method for preparing the above carbon nanotube-graphene composite conductive paste.
  • the present invention provides a carbon nanotube-graphene composite conductive paste, which comprises 0.1% by weight based on 100% by weight of the total weight of the carbon nanotube-graphene composite conductive paste. -30% by weight of dispersing agent and 70% by weight to 99.9% by weight of dispersing agent;
  • the dispersoid comprises a mixture of carbon nanotubes and graphene.
  • the slurry according to the present invention preferably, is 100% by weight based on the total weight of the dispersoid, and the dispersoid comprises 0.1% by weight to 99.9% by weight of graphene and 0.1% by weight to 99.9% by weight of carbon nanotubes. .
  • the graphene is graphene prepared by a supercritical fluid method, preferably 100% by weight of the total weight of the graphene, and the graphene has an oxygen content of less than 10 wt. %.
  • the dispersing agent comprises nitromethylpyrrolidone or water.
  • the carbon nanotubes are sulfur-doped carbon nanotubes, phosphorus-doped carbon nanotubes or sulfur-doped, phosphorus-carbon nanotubes;
  • the carbon nanotubes are sulfur-doped, phosphorus-carbon nanotubes.
  • the sulfur in the sulfur-doped carbon nanotube is 100% based on the total weight of the sulfur-doped carbon nanotube The content is 0.01-30% by weight;
  • the carbon nanotubes are phosphorus-doped carbon nanotubes
  • the phosphorus-doped carbon nanotubes have a phosphorus content of 0.01-20% by weight based on 100% of the total weight of the phosphorus-doped carbon nanotubes;
  • the sulfur content in the sulfur-doped and phosphorus carbon nanotubes is 0.01-30wt based on 100% of the total weight of the sulfur-doped and phosphorus-carbon nanotubes. %, the content of phosphorus is 0.01-20% by weight.
  • the method for preparing the phosphorus-doped carbon nanotube or the sulfur-doped carbon nanotube comprises the following steps:
  • the mass ratio of the carbon nanotubes to the phosphate powder or the sulfate powder is 1:0.1-10;
  • the concentration of the phosphate solution or the sulfate solution is from 0.1 to 100 g of phosphate or sulfate per 100 g of water;
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the calcination temperature is 400-1000 ° C, and the calcination time is 10-600 min;
  • the phosphate comprises a combination of one or more of magnesium phosphate, ammonium phosphate, ammonium hydrogen phosphate, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium polyphosphate, cobalt phosphate;
  • the sulfate comprises one or a combination of ferrous sulfate, iron sulfate, cobalt sulfate, nickel sulfate, magnesium sulfate, zinc sulfate, copper sulfate, manganese sulfate;
  • the pickling is acid pickling with hydrochloric acid
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the acid-purified and dried product is calcined in an inert gas atmosphere to remove water to obtain the phosphorus-doped carbon nanotubes or sulfur-doped carbon nanotubes;
  • the calcination temperature is from 200 to 300 ° C, and the calcination time is from 10 to 600 min.
  • the method for preparing the sulfur-doped, phosphorus carbon nanotube comprises the following steps:
  • the mass ratio of the carbon nanotubes, phosphate, sulfate is 0.1-10:0.1-10:1;
  • the concentration of the phosphate solution is 0.1-5 mol/L, and the concentration of the sulfate solution is 0.1-5 mol/L;
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the calcination temperature is 400-1000 ° C, and the calcination time is 10-600 min;
  • the phosphate comprises a combination of one or more of magnesium phosphate, ammonium phosphate, ammonium hydrogen phosphate, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium polyphosphate, cobalt phosphate;
  • the sulfate comprises one or a combination of ferrous sulfate, iron sulfate, cobalt sulfate, nickel sulfate, magnesium sulfate, zinc sulfate, copper sulfate, manganese sulfate;
  • the pickling is acid pickling with hydrochloric acid
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the acid-purified and dried product is calcined in an inert gas atmosphere to remove water to obtain the sulfur-doped, phosphorus-carbon nanotube;
  • the calcination temperature is from 200 to 300 ° C, and the calcination time is from 10 to 600 min.
  • the invention also provides a preparation method of a carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the invention also provides the use of a carbon nanotube-graphene composite conductive paste as a conductive material for an electrode material.
  • the present invention provides a carbon nanotube-graphene composite conductive paste, which comprises 2% by weight based on 100% by weight of the total weight of the carbon nanotube-graphene composite conductive paste. 6 wt% of dispersoid and 94 wt% to 98 wt% of dispersant.
  • the dispersoid comprises a mixture of carbon nanotubes and graphene.
  • the slurry according to the present invention preferably, is 100% by weight based on the total weight of the dispersoid, and the dispersoid includes 5 wt% to 90 wt% of graphene and 10 wt% to 95 wt% of carbon nanotubes.
  • the preparation method of the carbon nanotubes is prior art, and the detailed preparation method thereof is referred to the literature Y. Wang, F. Wei, G. Luo, H. Yu, and G. .Gu, Chem. Phys. Lett., 2002, 364, 568.
  • the graphene is graphene prepared by a supercritical fluid method, and the detailed preparation method of the graphene described above may be referred to the disclosure of the Chinese patent CN102115078A;
  • the graphene has an oxygen content of less than 10% by weight based on 100% by weight of the total graphene.
  • the dispersing agent comprises nitromethylpyrrolidone or water.
  • the carbon nanotubes are sulfur-doped carbon nanotubes, phosphorus-doped carbon nanotubes or sulfur-doped, phosphorus-carbon nanotubes.
  • the sulfur in the sulfur-doped carbon nanotube is 100% based on the total weight of the sulfur-doped carbon nanotube The content is 0.01-5 wt%;
  • the carbon nanotubes are phosphorus-doped carbon nanotubes
  • the phosphorus-doped carbon nanotubes have a phosphorus content of 0.01-2 wt%, based on 100% of the total weight of the phosphorus-doped carbon nanotubes;
  • the sulfur content in the sulfur-doped and phosphorus-carbon nanotubes is 0.01-5wt based on 100% of the total weight of the sulfur-doped and phosphorus-carbon nanotubes. %, the phosphorus content is from 0.01 to 2% by weight.
  • the method for preparing the sulfur-doped carbon nanotube comprises the following steps:
  • the mass ratio of the carbon nanotubes to the sulfate powder is 1:0.1-5;
  • the concentration of the sulfate solution is from 0.1 to 100 g of sulfate per 100 g of water;
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the calcination temperature is 400-1000 ° C, and the calcination time is 10-600 min;
  • the sulfate salt comprises one or a combination of ferrous sulfate, iron sulfate, cobalt sulfate, nickel sulfate, magnesium sulfate, zinc sulfate, copper sulfate, manganese sulfate;
  • the pickling is acid pickling with hydrochloric acid
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the acid-purified and dried product is calcined in an inert gas atmosphere to remove water to obtain the sulfur-doped carbon nanotube;
  • the calcination temperature is from 200 to 300 ° C, and the calcination time is from 10 to 600 min.
  • the purpose of pickling purification is to remove salts or oxides, and the pickling purification process is a conventional technical means in the art, and in a preferred embodiment of the present invention, the mass percentage is used.
  • the calcined product is subjected to pickling purification with a hydrochloric acid solution having a ratio of 37% concentrated hydrochloric acid to water of 1:0-3 (volume ratio), and the hydrochloric acid solution is used in an amount of 2 mol HCl corresponding to the theoretical amount (1 mol of MgO). ) an excess of 5-20% (mass ratio).
  • the method for preparing the phosphorus-doped carbon nanotube comprises the following steps:
  • the mass ratio of the carbon nanotubes to the phosphate powder is 1:0.1-5;
  • the concentration of the phosphate solution is from 0.1 to 100 g of phosphate per 100 g of water;
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the calcination temperature is 400-1000 ° C, and the calcination time is 10-600 min;
  • the phosphate comprises a combination of one or more of magnesium phosphate, ammonium phosphate, ammonium hydrogen phosphate, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium polyphosphate, cobalt phosphate;
  • the pickling is acid pickling with hydrochloric acid
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the acid-purified and dried product is calcined under an inert gas atmosphere to remove water to obtain the phosphorus-doped carbon nanotube;
  • the calcination temperature is from 200 to 300 ° C, and the calcination time is from 10 to 600 min.
  • the purpose of pickling purification is to remove salts or oxides, and the pickling purification process is a conventional technical means in the art, and in a preferred embodiment of the present invention, the mass percentage is used.
  • the calcined product is subjected to pickling purification with a hydrochloric acid solution having a ratio of 37% concentrated hydrochloric acid to water of 1:0-3 (volume ratio), and the hydrochloric acid solution is used in an amount of 2 mol HCl corresponding to the theoretical amount (1 mol of MgO). ) an excess of 5-20% (mass ratio).
  • the method for preparing the sulfur-doped, phosphorus carbon nanotube comprises the following steps:
  • the mass ratio of the carbon nanotubes, phosphate, sulfate is 0.1-10:0.1-10:1;
  • the concentration of the phosphate solution is 0.1-5 mol / L
  • the concentration of the sulfate solution is 0.1-5 mol / L
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the calcination temperature is 400-1000 ° C, and the calcination time is 10-600 min;
  • the phosphate comprises a combination of one or more of magnesium phosphate, ammonium phosphate, ammonium hydrogen phosphate, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium polyphosphate, cobalt phosphate;
  • the sulfate salt comprises one or a combination of ferrous sulfate, iron sulfate, cobalt sulfate, nickel sulfate, magnesium sulfate, zinc sulfate, copper sulfate, manganese sulfate;
  • the pickling is acid pickling with hydrochloric acid
  • the drying temperature is 80-120 ° C, and the drying time is 1-12 h;
  • the acid-purified and dried product is calcined in an inert gas atmosphere to remove water to obtain the sulfur-doped, phosphorus-carbon nanotube;
  • the calcination temperature is from 200 to 300 ° C, and the calcination time is from 10 to 600 min.
  • the purpose of pickling purification is to remove salts or oxides, and the pickling purification process is a conventional technical means in the art, and in a preferred embodiment of the present invention,
  • the content of concentrated hydrochloric acid and water having a mass percentage of 37% is 1:0-3 (volume ratio) hydrochloric acid solution, and the calcined product is subjected to pickling purification, and the hydrochloric acid solution is used in an amount corresponding to the theoretical amount (1 mol of MgO). 2 mol HCl) excess 5-20% (mass ratio).
  • the invention also provides a preparation method of a carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the dispersing agent is nitromethylpyrrolidone, it comprises the following steps:
  • the graphene is a graphene prepared by a supercritical fluid method, and more preferably, the oxygen content of the graphene is 100% based on the total weight of the graphene. Less than 10% by weight.
  • mixing uniformity in the above steps a and b can be carried out by a conventional method in the art.
  • mixing uniformly means that the material is in a colloid mill. Grinding 1h to achieve.
  • the dispersing agent when it is water, it comprises the following steps:
  • the sulfur-doped carbon nanotubes, the phosphorus-doped carbon nanotubes or the sulfur-doped, phosphorus-carbon nanotubes are added to the water, and uniformly mixed to obtain a mixed slurry of carbon nanotubes and water;
  • the graphene is a graphene prepared by a supercritical fluid method, and more preferably, the oxygen content of the graphene is 100% based on the total weight of the graphene. Less than 10% by weight.
  • mixing uniformity in the above steps a and b can be carried out by a conventional method in the art.
  • mixing uniformly means that the material is in a colloid mill. Grinded for 1h to achieve.
  • carbon nanotubes prepared by vapor phase chemical deposition can be easily dispersed in an organic solvent, but have poor dispersion stability in water; therefore, when the dispersant is nitrogen methylpyrrolidone, it is prepared by vapor phase chemical deposition.
  • the obtained carbon nanotubes and the graphene prepared by the supercritical fluid method are used as a dispersoid; and the graphene prepared by the reduction oxidation method is easily agglomerated although it is easily dispersed in water, and is affected by a strong oxidation process.
  • the conductivity is significantly reduced; therefore, when the dispersant is water, a mixture of sulfur-doped carbon nanotubes, phosphorus-doped carbon nanotubes or sulfur-doped, phosphorus-carbon nanotubes and graphene prepared by a supercritical fluid method is used.
  • the graphene prepared by the critical fluid method has a higher electrical conductivity than the commonly used reduced graphene oxide.
  • carbon nanotubes are first added to a dispersant to obtain a carbon nanotube slurry, and then graphene is added. In this way, the aggregation of graphene can be effectively avoided, thereby obtaining a uniform carbon nanotube-graphene composite conductive paste.
  • the present invention further provides the use of the above carbon nanotube-graphene composite conductive paste as a conductive material for an electrode material.
  • the carbon nanotube-graphene composite conductive paste of the invention has simple preparation method and low process cost, and is suitable for large-scale industrial production and application.
  • the carbon nanotube-graphene composite conductive paste of the present invention can be used as a conductive agent for a positive electrode and a negative electrode material, and has excellent electrochemical properties.
  • Carbon nanotube-graphene composite slurry is an electrode active material additive with excellent performance and properties. Whether it is a conductive agent using carbon nanotubes or graphene alone as an active material, the composite slurry performance cannot be achieved. Excellent electrochemical performance.
  • the carbon nanotube-graphene composite slurry will be one-dimensional carbon nanotubes and The two-dimensional graphene perfectly combines to form a three-dimensional three-dimensional network structure, which can better construct a conductive network with active materials.
  • the carbon nanotube-graphene composite slurry provided by the invention can significantly improve the agglomeration of the carbon nanotubes between the active materials, and overcomes the two-dimensional structure of the graphene and its large specific surface area cannot be in the active material.
  • the present invention utilizes the complementary structure of carbon nanotubes and graphene, and fully utilizes the excellent electrical conductivity of carbon nanotubes and graphene to form a conductive network with uniform dispersion and perfect three-dimensional structure. Therefore, the carbon nanotube-graphene composite conductive paste is an important breakthrough in the development of lithium ion batteries, and is also a major breakthrough in the application of carbon nanomaterials.
  • Example 1 is a magnification curve of a lithium iron phosphate electrode as a conductive additive in an organic phase using the carbon nanotube-graphene composite slurry prepared in Example 1;
  • Example 2 is a magnification curve of a lithium iron phosphate electrode using a carbon nanotube-graphene composite slurry prepared in Example 4 as a conductive additive in an aqueous phase;
  • Example 3 is a magnification curve of a lithium iron phosphate electrode using the carbon nanotube-graphene composite slurry prepared in Example 6 as a conductive additive in an aqueous phase;
  • Example 4 is a magnification curve of a lithium iron phosphate electrode using the carbon nanotube-graphene composite slurry prepared in Example 8 as a conductive additive in an aqueous phase;
  • This embodiment provides a method for preparing an organic phase carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • This embodiment provides the application of the carbon nanotube-graphene composite conductive paste prepared by the first embodiment as a conductive material for an electrode material, which comprises the following steps:
  • the carbon nanotube-graphene composite conductive paste prepared in Example 1 was mixed with 0.89 g of lithium iron phosphate, and then 1 g of PVDF solution was added (the PVDF solution refers to a solution of polyvinylidene fluoride in nitromethylpyrrolidone).
  • the total weight of the solution is 100%, the concentration of polyvinylidene fluoride is 7 wt%) as a binder, and then an appropriate amount of nitromethylpyrrolidone is added and stirred uniformly to prepare a positive electrode material; wherein, lithium iron phosphate: binder:
  • the mass ratio of the conductive agent is 89:7:4; the purpose of the above "addition of an appropriate amount of nitromethylpyrrolidone" is to ensure that the composite conductive paste has an appropriate viscosity to facilitate the smear operation and control the density of the coating.
  • the above positive electrode material is uniformly coated on an aluminum foil with a knife coater and dried to obtain a positive electrode of a lithium ion battery; the positive electrode, the lithium sheet, the separator (American celgard 2400 separator) and an electrolyte are placed in a glove box filled with an argon atmosphere ( 1mol/L LiPF 6 solution, the solvent of the solution is a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 1:1:1) assembled into a lithium ion battery according to a battery assembly process; assembly After completion, the lithium ion battery was placed for 12 h, and the charge and discharge rate performance test was performed on a charge and discharge tester (model: BTS5V10mA, Shenzhen Xinweier Electronics Co., Ltd.).
  • the test results are shown in Fig. 1, which can be seen from Fig. 1.
  • the lithium iron phosphate cathode material prepared by using the carbon nanotube-graphene composite conductive paste prepared in Example 1 as a conductive material of the electrode material has a discharge specific capacity of 145 mAh/g at a current density of 1 C, indicating that the battery has good electricity. Chemical properties.
  • This embodiment provides a method for preparing an organic phase carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the embodiment provides a method for preparing an aqueous carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • 40g of the above sulfur-doped carbon nanotubes are added to 1000g of water, stirred and mixed, and ground in a colloid mill for 1h to be uniformly mixed to obtain a mixed slurry of sulfur-doped carbon nanotubes and water;
  • This embodiment provides the application of the carbon nanotube-graphene composite conductive paste prepared by the embodiment 4 as an electrode material conductive agent, which comprises the following steps:
  • LA132 is an aqueous binder produced by Chengdu Yindile Power Technology Co., Ltd.
  • the total weight of the solution is 100%, the concentration of the LA132 aqueous binder is 7 wt%) as a binder, and then added Appropriate amount of distilled water, stir evenly, to make a positive electrode material; wherein, lithium iron phosphate: binder: conductive agent mass ratio of 89:7:4; the above "addition of appropriate amount of distilled water” is to ensure that the composite conductive paste has appropriate
  • the viscosity is convenient for smear handling and control of the density of the coating.
  • the above positive electrode material is uniformly coated on an aluminum foil with a knife coater and dried to obtain a positive electrode of a lithium ion battery; the positive electrode, the lithium sheet, the separator (American celgard 2400 separator) and an electrolyte are placed in a glove box filled with an argon atmosphere ( 1mol/L LiPF 6 solution, the solvent of the solution is a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 1:1:1) assembled into a lithium ion battery according to a battery assembly process; assembly After completion, the lithium-ion battery was placed for 12 hours, and the charge and discharge rate performance test was performed on a charge and discharge tester (model: BTS5V10mA, Shenzhen Xinweier Electronics Co., Ltd.).
  • the test results are shown in Fig. 2, which can be seen from Fig. 2.
  • the lithium iron phosphate cathode material prepared by using the sulfur-doped carbon nanotube-graphene composite conductive paste prepared in Example 4 as the electrode material conductive agent has a specific discharge capacity of 140 mAh/g at a current density of 1 C, indicating that the battery has good conductivity. Electrochemical performance.
  • the embodiment provides a method for preparing an aqueous carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the carbon nanotubes and the magnesium phosphate powder are mixed at a mass ratio of 2:1, dissolved in an equal volume of water with carbon nanotubes and magnesium phosphate powder, and dried at 100 ° C for 60 min to obtain carbon nanotubes and phosphoric acid. a mixture of magnesium;
  • 40g of the above phosphorus-doped carbon nanotubes are added to 1000g of water, stirred and mixed, and ground in a colloid mill for 1h to be uniformly mixed to obtain a mixed slurry of phosphorus-doped carbon nanotubes and water;
  • This embodiment provides the application of the aqueous carbon nanotube-graphene composite conductive paste prepared by the embodiment 6 as an electrode material conductive agent, which comprises the following steps:
  • LA132 is an aqueous binder produced by Chengdu Yindile Power Technology Co., Ltd.
  • the concentration of the LA132 aqueous binder is 7% by weight based on the total weight of the solution, and then adding an appropriate amount of distilled water and stirring uniformly to prepare a positive electrode material; wherein, lithium iron phosphate: binder:
  • the mass ratio of the conductive agent is 89:7:4; the above purpose of "adding an appropriate amount of distilled water” is to ensure that the composite conductive paste has a proper viscosity to facilitate the smear operation and control the density of the coating.
  • the above positive electrode material is uniformly coated on an aluminum foil with a knife coater and dried to obtain a positive electrode of a lithium ion battery; the positive electrode, the lithium sheet, the separator (American celgard 2400 separator) and an electrolyte are placed in a glove box filled with an argon atmosphere ( 1mol/L LiPF 6 solution, the solvent of the solution is a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 1:1:1) assembled into a lithium ion battery according to a battery assembly process; assembly After completion, the lithium ion battery was placed for 12 h, and the charge and discharge rate performance test was performed on a charge and discharge tester (model: BTS5V10mA, Shenzhen Xinweier Electronics Co., Ltd.).
  • the test results are shown in Fig. 3, which can be seen from Fig. 3.
  • the lithium iron phosphate cathode material prepared by using the phosphorus-doped carbon nanotube-graphene composite conductive paste prepared in Example 6 as a conductive material of the electrode material has a discharge specific capacity of 140 mAh/g at a current density of 1 C, indicating that the battery has good conductivity. Electrochemical performance.
  • the embodiment provides a method for preparing an aqueous carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the carbon nanotubes are mixed with magnesium sulfate and magnesium phosphate powder at a mass ratio of 2:1:1, and dissolved in a volume of water of carbon nanotubes, magnesium sulfate, and magnesium phosphate powder, and then dried at 100 ° C. 2h, a mixture of carbon nanotubes and magnesium sulfate, magnesium phosphate is obtained;
  • 40g of the above sulfur-doped, phosphorus carbon nanotubes are added to 1000g of water, stirred and mixed, and ground in a colloid mill for 1h to be uniformly mixed to obtain a mixed slurry of sulfur-doped, phosphorus carbon nanotubes and water;
  • This embodiment provides the application of the carbon nanotube-graphene composite conductive paste prepared by the embodiment 8 as an electrode material conductive agent, which comprises the following steps:
  • LA132 is an aqueous binder produced by Chengdu Yindile Power Technology Co., Ltd.
  • the total weight of the solution is 100%, the concentration of the LA132 aqueous binder is 7 wt%) as a binder, and then an appropriate amount of distilled water is added and stirred uniformly to prepare a positive electrode material; wherein, lithium iron phosphate: binder: conductive agent
  • the mass ratio is 89:7:4; the purpose of the above "addition of distilled water” is to ensure that the composite conductive paste has a suitable viscosity to facilitate the smear operation and control the density of the coating.
  • the above positive electrode material is uniformly coated on an aluminum foil with a knife coater and dried to obtain a positive electrode of a lithium ion battery; the positive electrode, the lithium sheet, the separator (American celgard 2400 separator) and an electrolyte are placed in a glove box filled with an argon atmosphere ( 1mol/L LiPF 6 solution, the solvent of the solution is a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 1:1:1) assembled into a lithium ion battery according to a battery assembly process; assembly After completion, the lithium ion battery was placed for 12 hours, and the charge and discharge rate performance test was performed on the charge and discharge tester (model: BTS5V10mA, Shenzhen Xinweier Electronics Co., Ltd.).
  • the test results are shown in Fig. 4, which can be seen from Fig. 4.
  • the lithium iron phosphate cathode material prepared by using the sulfur-doped, phosphorus-carbon nanotube-graphene composite conductive paste as the electrode material conductive agent prepared in Example 8 has a discharge specific capacity of 145 mAh/g at a current density of 1 C, indicating that the battery has Good electrochemical performance.
  • the present comparative example provides a method for preparing an organic phase carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the conductive paste prepared by the present comparative example was used as a conductive agent to prepare a positive electrode material, and the preparation method was the same as that in the second embodiment.
  • the scanning electron microscopy analysis of the lithium iron phosphate electrode material of the carbon nanotube-graphene composite slurry of the present comparative example as a conductive additive is shown in Fig. 5, and it can be seen from Fig. 5 that the method of the present comparative example is used.
  • the obtained conductive paste is used as a conductive agent in the positive electrode material, and the carbon nanotubes are mostly in the form of agglomerates, and the distribution is not uniform.
  • the above positive electrode material is assembled into a battery, and the assembled battery is subjected to charge and discharge performance test.
  • the battery assembly process and the electrochemical performance test method are the same as those in the second embodiment, and the test results are shown in FIG. 6, which can be seen from FIG.
  • the lithium iron phosphate cathode material prepared by using the method of the present comparative example as the electrode material conductive agent has a specific discharge capacity of only 125 mAh/g at a current density of 1 C, which is lower than that in the second embodiment.
  • the specific discharge capacity of the positive electrode material show that the dispersion and mixing process of graphene and carbon nanotubes have a significant effect on the use effect of the conductive paste prepared in the final preparation. In contrast, the performance of the conductive paste prepared in Example 1 is more excellent.
  • the present comparative example provides a method for preparing an organic phase carbon nanotube-graphene composite conductive paste, which comprises the following steps:
  • the conductive paste prepared in the present comparative example was used as a conductive agent to prepare a positive electrode material, and the preparation method was the same as in Example 2.
  • the battery was assembled by using the above positive electrode material, and the assembled battery was subjected to charge and discharge performance test.
  • the battery assembly process and the electrochemical performance test method were the same as those in the second embodiment, and the test results are shown in FIG. 7, which can be seen from FIG.
  • the specific specific capacity of the lithium iron phosphate cathode material prepared by using the method of the present comparative example as the electrode material conductive agent is only 125 mAh/g at a current density of 1 C, which is lower than the implementation.
  • the comparison results show that the order of dispersion of graphene and carbon nanotubes has a significant effect on the use effect of the conductive paste prepared in the final preparation. In contrast, the performance of the conductive paste prepared in Example 1 is more excellent.
  • the present comparative example provides a method for preparing an organic phase carbon nanotube conductive paste, which comprises the following steps:
  • the conductive paste prepared in the present comparative example was used as a conductive agent to prepare a positive electrode material, and the preparation method was the same as in Example 2.
  • the battery is assembled by using the above positive electrode material, and the assembled battery is subjected to charge and discharge performance test.
  • the battery assembly process and the electrochemical performance test method are the same as those in the second embodiment, and the test results are shown in FIG. 8, which can be seen from FIG.
  • the lithium iron phosphate cathode material prepared by using the method of the present comparative example as the electrode material conductive agent has a specific discharge capacity of only 120 mAh/g at a current density of 1 C, which is lower than that of the positive electrode material of Example 2. Specific capacity.
  • the above results show that the performance of the carbon nanotube-graphene composite conductive paste prepared in Example 1 is superior to that of the carbon nanotube conductive paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用。以该碳纳米管-石墨烯复合导电浆料的总重量为100%计,该浆料包括0.1wt%-30wt%的分散质和70wt%-99.9wt%的分散剂;该分散质包括碳纳米管和石墨烯的混合物。该碳纳米管-石墨烯复合导电浆料的制备方法简单,工艺成本低,适合大规模工业化生产与应用。该碳纳米管-石墨烯复合导电浆料可以用作正极、负极材料的导电剂,具有优异的电化学性能。

Description

一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用 技术领域
本发明提供了一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用,属于能源技术领域。
背景技术
碳纳米管(Carbon Nanotubes,CNTs)自1991年由日本电镜学家Iijima首次发现以来,其作为一种一维碳纳米材料,具有许多异常的力学、电学和化学性能,引起了人们广泛的关注。近些年,随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。CNTs的导电性和高长径比决定了其可能是一种理想的导电剂,与传统导电剂如导电碳黑等相比,碳纳米管具有更高的电子导电率,所需用量也相对较低,有利于提升电池容量、提高电池循环寿。然而,由于通常CNTs的比表面积比较小,与活性物质的接触面积有限,限制了电子在活性物质与碳纳米管之间的转移,因此其作为导电剂在锂离子电池方面的应用受到了一定的限制。
石墨烯作为一种新型碳纳米材料,自发现以来即引起了国内外研究者的极大兴趣,石墨烯即为“单层石墨片”,是构成石墨的基本结构单元;其作为一维(1D)和二维(2D)碳纳米材料的代表者,其与碳纳米管既有区别也有联系,二者在结构和性能上具有互补性。从结构上来看,碳纳米管是碳材料的一维晶体结构;石墨烯由单层碳原子层构成,是真正意义上的二维晶体结构。碳纳米管铺展开来就形成石墨烯,而石墨烯卷曲起来就形成碳纳米管;从性能上来看,石墨烯具有可与碳纳米管相媲美甚至更优异的性能,例如它具有超高的电子迁移率、热导率、高载流子迁移率、自由的电子移动空间、高弹性、高强度等;在几何形状上,碳纳米管和石墨烯可以抽象地看作线、面,它们与电极活性物质的导电接触界面不同,碳纳米管作为一种新型的碳纤维状导电剂,可以形成完整的三维导电网络结构。与碳纳米管一样,石墨烯的片状结构决定了电子能够在二维空间内传导,也被看作理想的导电剂,然而其二维结构及高比表面积的局限性也导致了它在活性材料之间不能像碳纳米管一样构建完美三维导电网络。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种碳纳米管-石墨烯复合导电浆料。
本发明的目的还在于提供上述碳纳米管-石墨烯复合导电浆料的制备方法。
本发明的目的还在于提供上述碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用。
为达到上述目的,本发明提供了一种碳纳米管-石墨烯复合导电浆料,以所述碳纳米管-石墨烯复合导电浆料的总重量为100%计,该浆料包括0.1wt%-30wt%的分散质和70wt%-99.9wt%的分散剂;
优选所述分散质包括碳纳米管和石墨烯的混合物。
根据本发明所述的浆料,优选地,以分散质的总重量为100%计,所述分散质包括0.1wt%-99.9wt%的石墨烯和0.1wt%-99.9wt%的碳纳米管。
根据本发明所述的浆料,优选地,所述石墨烯为采用超临界流体法制备得到的石墨烯,优选以所述石墨烯的总重量为100%计,该石墨烯的氧含量小于10wt%。
根据本发明所述的浆料,优选地,所述分散剂包括氮甲基吡咯烷酮或水。
根据本发明所述的浆料,优选地,当所述分散剂为水时,所述碳纳米管为掺硫碳纳米管、掺磷碳纳米管或掺硫、磷碳纳米管;
更优选所述碳纳米管为掺硫、磷碳纳米管。
根据本发明所述的浆料,优选地,当所述碳纳米管为掺硫碳纳米管时,以所述掺硫碳纳米管的总重量为100%计,该掺硫碳纳米管中硫的含量为0.01-30wt%;
当所述碳纳米管为掺磷碳纳米管时,以所述掺磷碳纳米管的总重量为100%计,该掺磷碳纳米管中磷的含量为0.01-20wt%;
当所述碳纳米管为掺硫、磷碳纳米管时,以所述掺硫、磷碳纳米管的总重量为100%计,该掺硫、磷碳纳米管中硫的含量为0.01-30wt%,磷的含量为0.01-20wt%。
根据本发明所述的浆料,优选地,所述掺磷碳纳米管或掺硫碳纳米管的制备方法包括以下步骤:
1)将碳纳米管与磷酸盐粉末或硫酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐溶液或硫酸盐溶液后烘干,得到碳纳米管和磷酸盐或硫酸盐的混合物;
更优选所述碳纳米管与磷酸盐粉末或硫酸盐粉末的质量比为1:0.1-10;
还更优选磷酸盐溶液或硫酸盐溶液的浓度为0.1-100g磷酸盐或硫酸盐/100g水;
还更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
2)将所述碳纳米管和磷酸盐或硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
更优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
还更优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
还更优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
3)将经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
更优选所述酸洗为用盐酸酸洗;
还更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺磷碳纳米管或掺硫碳纳米管;
更优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
根据本发明所述的浆料,优选地,所述掺硫、磷碳纳米管的制备方法包括以下步骤:
1)将碳纳米管与磷酸盐和硫酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐和硫酸盐溶液后烘干,得到碳纳米管、磷酸盐和硫酸盐的混合物;
更优选所述碳纳米管、磷酸盐、硫酸盐的质量比为0.1-10:0.1-10:1;
还更优选所述磷酸盐溶液的浓度为0.1-5mol/L,硫酸盐溶液的浓度为0.1-5mol/L;
还更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
2)将所述碳纳米管、磷酸盐和硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
更优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
还更优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
还更优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
3)将经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
更优选所述酸洗为用盐酸酸洗;
还更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺硫、磷碳纳米管;
更优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
本发明还提供了碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
a、将碳纳米管加入分散剂中,混合均匀,得到碳纳米管和分散剂的混合浆体;
b、向所述碳纳米管和分散剂的混合浆体中加入石墨烯,混合均匀,得到所述碳纳米管-石墨烯复合导电浆料。
本发明还提供了碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用。
为达到上述目的,本发明提供了一种碳纳米管-石墨烯复合导电浆料,以所述碳纳米管-石墨烯复合导电浆料的总重量为100%计,该浆料包括2wt%-6wt%的分散质和94wt%-98wt%的分散剂。
根据本发明所述的浆料,优选地,所述分散质包括碳纳米管和石墨烯的混合物。
根据本发明所述的浆料,优选地,以分散质的总重量为100%计,所述分散质包括5wt%-90wt%的石墨烯和10wt%-95wt%的碳纳米管。
根据本发明所述的浆料,优选地,所述碳纳米管的制备方法为现有技术,其详细的制备方法请参考文献Y.Wang,F.Wei,G.Luo,H.Yu,andG.Gu,Chem.Phys.Lett.,2002,364,568。
根据本发明所述的浆料,优选地,所述石墨烯为采用超临界流体法制备得到的石墨烯,上述石墨烯的详细制备方法请参考中国专利CN102115078A所公开的内容;
更优选地,以所述石墨烯的总重量为100%计,该石墨烯中的氧含量小于10wt%。
根据本发明所述的浆料,优选地,所述分散剂包括氮甲基吡咯烷酮或水。
根据本发明所述的浆料,优选地,当所述分散剂为水时,所述碳纳米管为掺硫碳纳米管、掺磷碳纳米管或掺硫、磷碳纳米管。
根据本发明所述的浆料,优选地,当所述碳纳米管为掺硫碳纳米管时,以所述掺硫碳纳米管的总重量为100%计,该掺硫碳纳米管中硫的含量为0.01-5wt%;
当所述碳纳米管为掺磷碳纳米管时,以所述掺磷碳纳米管的总重量为100%计,该掺磷碳纳米管中磷的含量为0.01-2wt%;
当所述碳纳米管为掺硫、磷碳纳米管时,以所述掺硫、磷碳纳米管的总重量为100%计,该掺硫、磷碳纳米管中硫的含量为0.01-5wt%,磷的含量为0.01-2wt%。
根据本发明所述的浆料,优选地,所述掺硫碳纳米管的制备方法包括以下步骤:
1)将碳纳米管与硫酸盐粉末固相混合,或将碳纳米管浸渍于硫酸盐溶液后烘干,得到碳纳米管和硫酸盐的混合物;
更优选所述碳纳米管与硫酸盐粉末的质量比为1:0.1-5;
更优选所述硫酸盐溶液的浓度为0.1-100g硫酸盐/100g水;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
2)将所述碳纳米管和硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
更优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
更优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
3)将经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
更优选所述酸洗为用盐酸酸洗;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺硫碳纳米管;
更优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
在上述掺硫碳纳米管的制备步骤3)中,酸洗纯化的目的是除去盐或氧化物,酸洗纯化过程为本领域的常规技术手段,在本发明的优选实施例中,使用质量百分比为37%的浓盐酸与水的比例为1:0-3(体积比)的盐酸溶液对经煅烧后的产物进行酸洗纯化,所述盐酸溶液的用量要比理论用量(1mol MgO对应2mol HCl)过量5-20%(质量比)。
根据本发明所述的浆料,优选地,所述掺磷碳纳米管的制备方法包括以下步骤:
1)将碳纳米管与磷酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐溶液后烘干,得到碳纳米管和磷酸盐的混合物;
更优选所述碳纳米管与磷酸盐粉末的质量比为1:0.1-5;
更优选所述磷酸盐溶液的浓度为0.1-100g磷酸盐/100g水;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
2)将所述碳纳米管和磷酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
更优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
更优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
3)将经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
更优选所述酸洗为用盐酸酸洗;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺磷碳纳米管;
更优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
在上述掺磷碳纳米管的制备步骤3)中,酸洗纯化的目的是除去盐或氧化物,酸洗纯化过程为本领域的常规技术手段,在本发明的优选实施例中,使用质量百分比为37%的浓盐酸与水的比例为1:0-3(体积比)的盐酸溶液对经煅烧后的产物进行酸洗纯化,所述盐酸溶液的用量要比理论用量(1mol MgO对应2mol HCl)过量5-20%(质量比)。
根据本发明所述的浆料,优选地,所述掺硫、磷碳纳米管的制备方法包括以下步骤:
1)将碳纳米管与磷酸盐和硫酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐和硫酸盐溶液后烘干,得到碳纳米管、磷酸盐和硫酸盐的混合物;
更优选所述碳纳米管、磷酸盐、硫酸盐的质量比为0.1-10:0.1-10:1;
更优选所述磷酸盐溶液的浓度为0.1-5mol/L,硫酸盐溶液的浓度为0.1-5mol/L;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
2)将所述碳纳米管、磷酸盐和硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
更优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
更优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
更优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
3)将经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
更优选所述酸洗为用盐酸酸洗;
更优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺硫、磷碳纳米管;
更优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
在上述掺硫、磷碳纳米管的制备步骤3)中,酸洗纯化的目的是除去盐或氧化物,酸洗纯化过程为本领域的常规技术手段,在本发明的优选实施例中,使用质量百分比为37%的浓盐酸与水的比例为1:0-3(体积比)的盐酸溶液对经煅烧后的产物进行酸洗纯化,所述盐酸溶液的用量要比理论用量(1mol MgO对应2mol HCl)过量5-20%(质量比)。
本发明还提供了碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
a、将碳纳米管加入分散剂中,混合均匀,得到碳纳米管和分散剂的混合浆体;
b、向所述碳纳米管和分散剂的混合浆体中加入石墨烯,混合均匀,得到所述碳纳米管-石墨烯复合导电浆料。
根据本发明所述的制备方法,优选地,当分散剂为氮甲基吡咯烷酮时,其包括以下步骤:
a、将碳纳米管加入氮甲基吡咯烷酮中,混合均匀,得到碳纳米管和氮甲基吡咯烷酮的混合浆体;
b、向所述碳纳米管和氮甲基吡咯烷酮的混合浆体中加入石墨烯,混合均匀,得到所述分散剂为氮甲基吡咯烷酮的碳纳米管-石墨烯复合导电浆料。
根据本发明所述的方法,优选地,上述石墨烯为采用超临界流体法制备得到的石墨烯,更优选地,以所述石墨烯的总重量为100%计,该石墨烯中的氧含量小于10wt%。
根据本发明所述的方法,在上述步骤a、步骤b中的“混合均匀”可采用本领域的常规方法实现,在本发明的优选实施例中,“混合均匀”是将物料在胶体磨中研磨 1h来实现的。
根据本发明所述的制备方法,优选地,当分散剂为水时,其包括以下步骤:
a、将掺硫碳纳米管、掺磷碳纳米管或掺硫、磷碳纳米管加入水中,混合均匀,得到碳纳米管和水的混合浆体;
b、向所述碳纳米管和水的混合浆体中加入石墨烯,混合均匀,得到所述分散剂为水的碳纳米管-石墨烯复合导电浆料。
根据本发明所述的方法,优选地,上述石墨烯为采用超临界流体法制备得到的石墨烯,更优选地,以所述石墨烯的总重量为100%计,该石墨烯中的氧含量小于10wt%。
根据本发明所述的方法,在上述步骤a、步骤b中的“混合均匀”可采用本领域的常规方法实现,在本发明的优选实施例中,“混合均匀”是将物料在胶体磨中研磨1h来实现的。
通常,由气相化学沉积法制备得到的碳纳米管在有机溶剂中可以较容易地分散,但是在水中分散稳定性不佳;因此,当分散剂为氮甲基吡咯烷酮时,采用由气相化学沉积法制备得到的碳纳米管和由超临界流体法制备得到的石墨烯作为分散质;而通过还原氧化法制备得到的石墨烯尽管容易在水中分散,但是其容易团聚,并且在受到强氧化过程的影响时其导电性显著下降;因此,当分散剂为水时,采用掺硫碳纳米管、掺磷碳纳米管或掺硫、磷碳纳米管和由超临界流体法制备得到的石墨烯的混合物,由超临界流体法制备得到的石墨烯比通常使用的还原氧化石墨烯具有更高的电导率。另外,由于石墨烯容易聚并,因此在本发明的碳纳米管-石墨烯复合导电浆料的制备方法中,先将碳纳米管加入到分散剂中获得碳纳米管浆体,再添加石墨烯,这样能够有效避免石墨烯的聚并,从而获得均一的碳纳米管-石墨烯复合导电浆料。
本发明再提供上述碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用。
本发明的碳纳米管-石墨烯复合导电浆料的制备方法简单,工艺成本低,适合大规模工业化生产与应用。
本发明的碳纳米管-石墨烯复合导电浆料可以用作正极、负极材料的导电剂,具有优异的电化学性能。
碳纳米管-石墨烯复合浆料从结构和性质上,都是性能优良的电极活性物质添加剂,无论是利用碳纳米管还是石墨烯单独作为活性物质的导电剂,都无法达到该复合浆料表现出的优良电化学性能。另外,碳纳米管-石墨烯复合浆料将一维碳纳米管和 二维石墨烯完美结合形成立体三维网状结构,能更好地与活性物质构造导电网络。
本发明提供的碳纳米管-石墨烯复合浆料可明显改善碳纳米管在活性物质之间的聚团现象,同时克服了由于石墨烯的二维结构及其较大的比表面积无法在活性材料中形成有效导电网络的问题,本发明利用碳纳米管和石墨烯结构上的互补性,同时充分利用碳纳米管及石墨烯的优良导电性能,形成了分散均匀,立体三维结构完美的导电网络。因此,碳纳米管-石墨烯复合导电浆料是锂离子电池发展的重要突破,也是碳纳米材料应用的重大突破。
附图说明
图1为使用实施例1制备得到的碳纳米管-石墨烯复合浆料在有机相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图2为使用实施例4制备得到的碳纳米管-石墨烯复合浆料在水相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图3为使用实施例6制备得到的碳纳米管-石墨烯复合浆料在水相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图4为使用实施例8制备得到的碳纳米管-石墨烯复合浆料在水相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图5为使用对比例1制备得到的碳纳米管-石墨烯复合浆料作为导电添加剂的磷酸铁锂电极的扫描电镜图;
图6为使用对比例1制备得到的碳纳米管-石墨烯复合浆料在有机相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图7为使用对比例2制备得到的碳纳米管-石墨烯复合浆料在有机相中作为导电添加剂的磷酸铁锂电极的倍率曲线;
图8为使用对比例3制备得到的碳纳米管浆料作为导电添加剂的磷酸铁锂电极的倍率曲线。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合以下实施例及附图对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种有机相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
将40g碳纳米管加入1000g氮甲基吡咯烷酮搅拌混合,在胶体磨中研磨1h混合均匀,得到碳纳米管和氮甲基吡咯烷酮的混合浆体;
向碳纳米管和氮甲基吡咯烷酮的混合浆体中加入10g石墨烯,在胶体磨中再研磨1h混合均匀,得到有机相为氮甲基吡咯烷酮的碳纳米管-石墨烯复合导电浆料;在该浆料中,碳纳米管和石墨烯的质量比为4:1,分散质的含量为4.76wt%。
实施例2
本实施例提供了由实施例1制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用,其包括以下步骤:
将0.8g实施例1制备得到的碳纳米管-石墨烯复合导电浆料与0.89g磷酸铁锂混合后,加入1g PVDF溶液(PVDF溶液是指聚偏氟乙烯的氮甲基吡咯烷酮溶液,以该溶液的总重量为100%计,聚偏氟乙烯的浓度为7wt%)作为粘合剂,再加入适量氮甲基吡咯烷酮,搅拌均匀,制成正极材料;其中,磷酸铁锂:粘合剂:导电剂的质量比为89:7:4;上述“再加入适量氮甲基吡咯烷酮”的目的是保证复合导电浆料具有适当的粘度,以便于涂片操作及控制涂层的密度。
将上述正极材料用刮涂器在铝箔上均匀涂布,烘干,制得锂离子电池正极;在充满氩气气氛的手套箱中将正极、锂片、隔膜(美国celgard2400隔膜)和电解液(1mol/L LiPF6溶液,该溶液的溶剂为碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯按照体积比为1:1:1组成的混合液)按照电池组装工艺组装成锂离子电池;组装完成后,将锂离子电池放置12h,在充放电测试仪(型号为BTS5V10mA,深圳新威尔电子有限公司)上进行充放电倍率性能测试,测试结果如图1所示,从图1中可以看出使用实施例1制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量达到了145mAh/g,说明该电池具有良好的电化学性能。
实施例3
本实施例提供了一种有机相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
将3g碳纳米管加入700g氮甲基吡咯烷酮搅拌混合,在胶体磨中研磨1h混合均匀,得到碳纳米管和氮甲基吡咯烷酮的悬浊液;
向碳纳米管和氮甲基吡咯烷酮的悬浊液中加入297g石墨烯,搅拌1h混合均匀,得到有机相为氮甲基吡咯烷酮的碳纳米管-石墨烯复合导电浆料;在该浆料中,碳纳米管和石墨烯的质量比为3:297,分散质的含量为30wt%。
实施例4
本实施例提供了一种水相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
1、掺硫碳纳米管的制备
1)将碳纳米管与硫酸镁粉末按质量比为2:1的比例混合,加入与硫酸镁质量比为10:3的水进行溶解,溶解后,在100℃烘干2h,得到碳纳米管和硫酸镁的混合物;
2)将上述碳纳米管和硫酸镁的混合物在氩气气流中经700℃煅烧60min,得到经煅烧后的产物;
3)将上述经煅烧后的产物进行盐酸酸洗纯化后,过滤、烘干;得到经盐酸酸洗纯化并烘干的产物;
4)将上述经盐酸酸洗纯化并烘干的产物在氩气气氛下经200℃煅烧60min除去水分,得到碳纳米管,该碳纳米管为掺硫碳纳米管。
2、水相碳纳米管-石墨烯复合导电浆料的制备
将40g上述掺硫碳纳米管加入1000g水中搅拌混合,在胶体磨中研磨1h混合均匀,得到掺硫碳纳米管和水的混合浆体;
向上述掺硫碳纳米管和水的混合浆体中加入10g石墨烯,在胶体磨中再研磨1h混合均匀,得到分散剂为水的碳纳米管-石墨烯复合导电浆料;在该浆料中,掺硫碳纳米管和石墨烯的质量比为4:1,分散质含量为4.76wt%。
实施例5
本实施例提供了由实施例4制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用,其包括以下步骤:
将0.8g实施例4制备得到的碳纳米管-石墨烯复合导电浆料与0.89g磷酸铁锂混合后,加入1g LA132(LA132为成都茵地乐电源科技有限公司生产的水性粘合剂,以该溶液的总重量为100%计,LA132水性粘合剂的浓度为7wt%)作为粘合剂,再加入 适量蒸馏水,搅拌均匀,制成正极材料;其中,磷酸铁锂:粘合剂:导电剂的质量比为89:7:4;上述“再加入适量蒸馏水”的目的是保证复合导电浆料具有适当的粘度,以便于涂片操作及控制涂层的密度。
将上述正极材料用刮涂器在铝箔上均匀涂布,烘干,制得锂离子电池正极;在充满氩气气氛的手套箱中将正极、锂片、隔膜(美国celgard2400隔膜)和电解液(1mol/L LiPF6溶液,该溶液的溶剂为碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯按照体积比为1:1:1组成的混合液)按照电池组装工艺组装成锂离子电池;组装完成后,将锂离子电池放置12h,在充放电测试仪(型号为BTS5V10mA,深圳新威尔电子有限公司)上进行充放电倍率性能测试,测试结果如图2所示,从图2中可以看出使用实施例4制备得到的掺硫碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量达到了140mAh/g,说明该电池具有良好的电化学性能。
实施例6
本实施例提供了一种水相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
1、掺磷碳纳米管的制备
1)将碳纳米管与磷酸镁粉末按质量比为2:1的比例混合,加入与碳纳米管与磷酸镁粉末等体积的水溶解后,在100℃烘干60min,得到碳纳米管和磷酸镁的混合物;
2)将上述碳纳米管和磷酸镁的混合物在氩气气流中经700℃煅烧120min,得到经煅烧后的产物;
3)将上述经煅烧后的产物进行盐酸酸洗纯化后,过滤、烘干;得到经盐酸酸洗纯化并烘干的产物;
4)将上述经盐酸酸洗纯化并烘干的产物在氩气气氛下经200℃煅烧60min除去水分,得到碳纳米管,该碳纳米管为掺磷碳纳米管。
2、水相碳纳米管-石墨烯复合导电浆料的制备
将40g上述掺磷碳纳米管加入1000g水中搅拌混合,在胶体磨中研磨1h混合均匀,得到掺磷碳纳米管和水的混合浆体;
向上述掺磷碳纳米管和水的混合浆体中加入10g石墨烯,在胶体磨中再研磨1h混合均匀,得到分散剂为水的碳纳米管-石墨烯复合导电浆料;在该浆料中,掺磷碳纳米管和石墨烯的质量比为4:1,分散质的含量为4.76wt%。
实施例7
本实施例提供了由实施例6制备得到的水相碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用,其包括以下步骤:
将0.8g实施例6制备得到的掺磷碳纳米管-石墨烯复合导电浆料与0.89g磷酸铁锂混合后,加入1g LA132(LA132为成都茵地乐电源科技有限公司生产的水性粘合剂,以溶液的总重量为100%计,LA132水性粘合剂的浓度为7wt%)作为粘合剂,再加入适量蒸馏水,搅拌均匀,制成正极材料;其中,磷酸铁锂:粘合剂:导电剂的质量比为89:7:4;上述“再加入适量蒸馏水”的目的是保证复合导电浆料具有适当的粘度,以便于涂片操作及控制涂层的密度。
将上述正极材料用刮涂器在铝箔上均匀涂布,烘干,制得锂离子电池正极;在充满氩气气氛的手套箱中将正极、锂片、隔膜(美国celgard2400隔膜)和电解液(1mol/L LiPF6溶液,该溶液的溶剂为碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯按照体积比为1:1:1组成的混合液)按照电池组装工艺组装成锂离子电池;组装完成后,将锂离子电池放置12h,在充放电测试仪(型号为BTS5V10mA,深圳新威尔电子有限公司)上进行充放电倍率性能测试,测试结果如图3所示,从图3中可以看出使用实施例6制备得到的掺磷碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量达到了140mAh/g,说明该电池具有良好的电化学性能。
实施例8
本实施例提供了一种水相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
1、掺硫、磷碳纳米管的制备
1)将碳纳米管与硫酸镁、磷酸镁粉末按质量比为2:1:1的比例混合,加入与碳纳米管与硫酸镁、磷酸镁粉末等体积的水溶解后,在100℃烘干2h,得到碳纳米管和硫酸镁、磷酸镁的混合物;
2)将上述碳纳米管和硫酸镁、磷酸镁的混合物在氩气气流中经700℃煅烧2h,得到经煅烧后的产物;
3)将上述经煅烧后的产物进行盐酸酸洗纯化后,过滤、烘干;得到经盐酸酸洗纯化并烘干的产物;
4)将上述经盐酸酸洗纯化并烘干的产物在氩气气氛下经200℃煅烧2h除去水分, 得到掺硫、磷碳纳米管。
2、水相碳纳米管-石墨烯复合导电浆料的制备
将40g上述掺硫、磷碳纳米管加入1000g水中搅拌混合,在胶体磨中研磨1h混合均匀,得到掺硫、磷碳纳米管和水的混合浆体;
向上述掺硫、磷碳纳米管和水的混合浆体中加入10g石墨烯,在胶体磨中再研磨1h混合均匀,得到分散剂为水的碳纳米管-石墨烯复合导电浆料;在该浆料中,掺硫、磷碳纳米管和石墨烯的质量比为4:1,分散质的含量为4.76wt%。
实施例9
本实施例提供了由实施例8制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用,其包括以下步骤:
将0.8g实施例8制备得到的碳纳米管-石墨烯复合导电浆料与0.89g磷酸铁锂混合后,加入1g LA132(LA132为成都茵地乐电源科技有限公司生产的水性粘合剂,以溶液的总重量为100%计,LA132水性粘合剂的浓度为7wt%)作为粘合剂,再加入适量蒸馏水,搅拌均匀,制成正极材料;其中,磷酸铁锂:粘合剂:导电剂的质量比为89:7:4;上述“再加入适量蒸馏水”的目的是保证复合导电浆料具有适当的粘度,以便于涂片操作及控制涂层的密度。
将上述正极材料用刮涂器在铝箔上均匀涂布,烘干,制得锂离子电池正极;在充满氩气气氛的手套箱中将正极、锂片、隔膜(美国celgard2400隔膜)和电解液(1mol/L LiPF6溶液,该溶液的溶剂为碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯按照体积比为1:1:1组成的混合液)按照电池组装工艺组装成锂离子电池;组装完成后,将锂离子电池放置12h,在充放电测试仪(型号为BTS5V10mA,深圳新威尔电子有限公司)上进行充放电倍率性能测试,测试结果如图4所示,从图4中可以看出使用实施例8制备得到掺硫、磷碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量达到了145mAh/g,说明该电池具有良好的电化学性能。
对比例1
本对比例提供了一种有机相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
取40g碳纳米管和10g石墨烯固相混合均匀,加入1000g氮甲基吡咯烷酮搅拌混合,在胶体磨中研磨1h混合均匀,得到碳纳米管和氮甲基吡咯烷酮的混合浆体;在该浆料中,碳纳米管和石墨烯的质量比为4:1,分散质的含量为4.76wt%。
将由本对比例制备得到的导电浆料作为导电剂制成正极材料,其制备方法与实施例2中的制备方法相同。对本对比例的碳纳米管-石墨烯复合浆料作为导电添加剂的磷酸铁锂电极材料进行扫描电镜分析,其扫描电镜图如图5所示,从图5可以看出使用本对比例的方法制得的导电浆料作为导电剂应用于正极材料中,碳纳米管多以聚团形式存在,分布并不均匀。
用上述正极材料组装成电池,并对其组装的电池进行充放电性能测试,电池组装工艺和电化学性能测试方法与实施例2相同,其测试结果如图6所示,从图6中可以看出使用本对比例的方法制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量只有125mAh/g,低于实施例2中正极材料的放电比容量。对比结果表明:石墨烯和碳纳米管的分散、混合过程对最终制备得到的导电浆料的使用效果会产生明显影响,相比之下,实施例1制备得到的导电浆料的性能更加优异。
对比例2
本对比例提供了一种有机相碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
将10g石墨烯加入1000g氮甲基吡咯烷酮搅拌混合,在胶体磨中研磨1h混合均匀,得到石墨烯和氮甲基吡咯烷酮的混合浆体,形成的浆体不稳定,长时间放置容易沉降。
向石墨烯和氮甲基吡咯烷酮的混合浆体中加入40g碳纳米管,在胶体磨中再研磨1h混合均匀,得到有机相为氮甲基吡咯烷酮的碳纳米管-石墨烯复合导电浆料;在该浆料中,碳纳米管和石墨烯的质量比为4:1,分散质的含量为4.76wt%。
将本对比例制备得到的导电浆料作为导电剂制备正极材料,其制备方法与实施例2相同。用上述正极材料组装电池,并对其组装的电池进行充放电性能测试,电池组装工艺和电化学性能测试方法与实施例2相同,其测试结果如图7所示,从图7中可以看出使用本对比例的方法制备得到的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量只有125mAh/g,低于实施 例2中正极材料的放电比容量。对比结果表明:石墨烯和碳纳米管的分散次序对最终制备得到的导电浆料的使用效果会产生明显影响,相比之下,实施例1制备得到的导电浆料的性能更加优异。
对比例3
本对比例提供了一种有机相碳纳米管导电浆料的制备方法,其包括以下步骤:
将50g碳纳米管与1000g氮甲基吡咯烷酮混合,在胶体磨中研磨1h混合均匀,得到有机相为氮甲基吡咯烷酮的碳纳米管导电浆料;在该浆料中,分散质的含量为4.76wt%。
将本对比例制备得到的导电浆料作为导电剂制备正极材料,其制备方法与实施例2相同。用上述正极材料组装电池,并对其组装成的电池进行充放电性能测试,电池组装工艺和电化学性能测试方法与实施例2相同,其测试结果如图8所示,从图8中可以看出使用本对比例的方法制备得到的碳纳米管导电浆料作为电极材料导电剂的磷酸铁锂正极材料在1C电流密度下放电比容量只有120mAh/g,低于实施例2中正极材料的放电比容量。上述结果表明:实施例1制备得到的碳纳米管-石墨烯复合导电浆料的性能优于碳纳米管导电浆料。

Claims (10)

  1. 一种碳纳米管-石墨烯复合导电浆料,其中,以所述碳纳米管-石墨烯复合导电浆料的总重量为100%计,该浆料包括0.1wt%-30wt%的分散质和70wt%-99.9wt%的分散剂;
    优选所述分散质包括碳纳米管和石墨烯的混合物。
  2. 根据权利要求1所述的浆料,其中,以分散质的总重量为100%计,所述分散质包括0.1wt%-99.9wt%的石墨烯和0.1wt%-99.9wt%的碳纳米管。
  3. 根据权利要求1或2所述的浆料,其中,所述石墨烯为采用超临界流体法制备得到的石墨烯,优选以所述石墨烯的总重量为100%计,该石墨烯的氧含量小于10wt%。
  4. 根据权利要求1所述的浆料,其中,所述分散剂包括氮甲基吡咯烷酮或水。
  5. 根据权利要求4所述的浆料,其中,当所述分散剂为水时,所述碳纳米管为掺硫碳纳米管、掺磷碳纳米管或掺硫、磷碳纳米管;
    优选所述碳纳米管为掺硫、磷碳纳米管。
  6. 根据权利要求5所述的浆料,其中,当所述碳纳米管为掺硫碳纳米管时,以所述掺硫碳纳米管的总重量为100%计,该掺硫碳纳米管中硫的含量为0.01-30wt%;
    当所述碳纳米管为掺磷碳纳米管时,以所述掺磷碳纳米管的总重量为100%计,该掺磷碳纳米管中磷的含量为0.01-20wt%;
    当所述碳纳米管为掺硫、磷碳纳米管时,以所述掺硫、磷碳纳米管的总重量为100%计,该掺硫、磷碳纳米管中硫的含量为0.01-30wt%,磷的含量为0.01-20wt%。
  7. 根据权利要求5或6所述的浆料,其中,所述掺磷碳纳米管或掺硫碳纳米管的制备方法包括以下步骤:
    1)将碳纳米管与磷酸盐粉末或硫酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐溶液或硫酸盐溶液后烘干,得到碳纳米管和磷酸盐或硫酸盐的混合物;
    优选所述碳纳米管与磷酸盐粉末或硫酸盐粉末的质量比为1:0.1-10;
    优选所述磷酸盐溶液或硫酸盐溶液的浓度为0.1-100g磷酸盐或硫酸盐/100g水;
    还优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
    2)将所述碳纳米管和磷酸盐或硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
    优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
    还优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
    还优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
    3)将所述经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
    优选所述酸洗为用盐酸酸洗;
    还优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
    4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺磷碳纳米管或掺硫碳纳米管;
    优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
  8. 根据权利要求5或6所述的浆料,其中,所述掺硫、磷碳纳米管的制备方法包括以下步骤:
    1)将碳纳米管与磷酸盐和硫酸盐粉末固相混合,或将碳纳米管浸渍于磷酸盐和硫酸盐溶液后烘干,得到碳纳米管、磷酸盐和硫酸盐的混合物;
    优选所述碳纳米管、磷酸盐、硫酸盐的质量比为0.1-10:0.1-10:1;
    优选所述磷酸盐溶液的浓度为0.1-5mol/L,硫酸盐溶液的浓度为0.1-5mol/L;
    还优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
    2)将所述碳纳米管、磷酸盐和硫酸盐的混合物在氮气或氩气气流中煅烧,得到经煅烧后的产物;
    优选所述煅烧的温度为400-1000℃,煅烧的时间为10-600min;
    还优选所述磷酸盐包括磷酸镁、磷酸铵、磷酸氢铵、磷酸一氢铵、磷酸二氢铵、聚磷酸铵、磷酸钴中的一种或几种的组合;
    还优选所述硫酸盐包括硫酸亚铁、硫酸铁、硫酸钴、硫酸镍、硫酸镁、硫酸锌、硫酸铜、硫酸锰中的一种或几种的组合;
    3)将所述经煅烧后的产物进行酸洗纯化后,烘干;得到经酸洗纯化并烘干的产物;
    优选所述酸洗为用盐酸酸洗;
    还优选所述烘干的温度为80-120℃,烘干的时间为1-12h;
    4)将所述经酸洗纯化并烘干的产物在惰性气体气氛下煅烧除去水分,得到所述掺硫、磷碳纳米管;
    优选所述煅烧的温度为200-300℃,煅烧的时间为10-600min。
  9. 权利要求1-8任一项所述的碳纳米管-石墨烯复合导电浆料的制备方法,其包括以下步骤:
    a、将碳纳米管加入分散剂中,混合均匀,得到碳纳米管和分散剂的混合浆体;
    b、向所述碳纳米管和分散剂的混合浆体中加入石墨烯,混合均匀,得到所述碳纳米管-石墨烯复合导电浆料。
  10. 权利要求1-8任一项所述的碳纳米管-石墨烯复合导电浆料作为电极材料导电剂的应用。
PCT/CN2015/095109 2015-03-24 2015-11-20 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用 WO2016150174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510128875.4A CN104766645B (zh) 2015-03-24 2015-03-24 一种碳纳米管‑石墨烯复合导电浆料及其制备方法与应用
CN2015101288754 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016150174A1 true WO2016150174A1 (zh) 2016-09-29

Family

ID=53648422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095109 WO2016150174A1 (zh) 2015-03-24 2015-11-20 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN104766645B (zh)
WO (1) WO2016150174A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448926A (zh) * 2016-10-26 2017-02-22 成都新柯力化工科技有限公司 一种锂电池专用石墨烯导电浆料的制备方法
CN111129500A (zh) * 2019-12-31 2020-05-08 哈尔滨万鑫石墨谷科技有限公司 一种水系复合碳纳米管导电浆料的制备方法
CN113371693A (zh) * 2021-06-09 2021-09-10 中钢集团南京新材料研究院有限公司 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
CN113745517A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种导电浆料的制备方法
CN113948706A (zh) * 2021-10-16 2022-01-18 西北工业大学 一种高度分散的石墨烯基导电浆料的制备方法
CN114078609A (zh) * 2020-08-19 2022-02-22 山东欧铂新材料有限公司 一种用于锂离子电池的石墨烯水性导电浆料及制备方法、应用
CN114106385A (zh) * 2021-11-12 2022-03-01 江苏天奈科技股份有限公司 一种柔性发热薄膜及其制备方法
CN114496580A (zh) * 2020-10-27 2022-05-13 中国科学院大连化学物理研究所 一种石墨烯@层次孔炭复合材料及其制备方法与应用
CN114976017A (zh) * 2019-09-11 2022-08-30 北京航空航天大学 铅酸电池负极铅膏、负极的制备方法和铅酸电池
CN116022775A (zh) * 2022-12-29 2023-04-28 蜂巢能源科技(上饶)有限公司 一种碳纳米管提纯方法及应用
CN113871210B (zh) * 2021-08-30 2023-07-18 兰州大学 一种石墨烯纳米卷基电极材料及其制备方法与应用
CN116759136A (zh) * 2023-06-16 2023-09-15 安徽信敏惠新材料科技有限公司 一种高分散碳纳米管导电浆料及其制备方法
CN117229703A (zh) * 2023-09-27 2023-12-15 国网浙江省电力有限公司电力科学研究院 一种导电涂料及其制备方法和应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766645B (zh) * 2015-03-24 2017-02-01 潍坊昊晟碳材料有限公司 一种碳纳米管‑石墨烯复合导电浆料及其制备方法与应用
CN106299243A (zh) * 2016-08-25 2017-01-04 合肥国轩高科动力能源有限公司 一种含复合导电剂的锂离子电池正极极片
CN106159236A (zh) * 2016-08-26 2016-11-23 深圳博磊达新能源科技有限公司 一种快速充电钛酸锂复合负极极片及锂离子电池
CN106448809B (zh) * 2016-09-07 2018-09-25 芜湖桑乐金电子科技有限公司 氮掺石墨烯改性石墨原浆及其制备方法
CN106784827A (zh) * 2016-12-19 2017-05-31 中国科学院电工研究所 介孔石墨烯导电浆料和制备方法及用途
CN106711453A (zh) * 2016-12-28 2017-05-24 深圳市德方纳米科技股份有限公司 一种导电碳浆料、正极材料极片、锂离子电池
CN106532059A (zh) * 2016-12-28 2017-03-22 深圳市德方纳米科技股份有限公司 一种导电碳浆料、正极材料极片的制备方法
CN108269973B (zh) * 2017-01-02 2020-11-06 深圳格林德能源集团有限公司 一种基于碳基纳米材料快速充电聚合物锂离子电池
CN106848313A (zh) * 2017-01-19 2017-06-13 深圳市金百纳纳米科技有限公司 一种一维碳材料‑石墨烯的复合材料
CN107331439B (zh) * 2017-06-16 2019-04-16 清华大学 碳纳米管/掺氮碳纳米管-纳米石墨片导电浆料及制备方法
CN107706422A (zh) * 2017-07-14 2018-02-16 常州第六元素材料科技股份有限公司 石墨烯和碳纳米管的复合浆料及其制备方法、正极浆料及其方法
CN107628610A (zh) * 2017-10-30 2018-01-26 北京万源工业有限公司 一种机械剥离法制备石墨烯以及石墨烯导电液的方法
CN109540993B (zh) * 2018-12-11 2020-09-08 四川理工学院 一种磷酸钴/还原氧化石墨烯交联复合材料及其制备方法和应用
CN110895234B (zh) * 2018-12-29 2020-11-06 江苏天奈科技股份有限公司 一种石墨烯复合浆料的检测方法
CN111534711A (zh) * 2019-12-25 2020-08-14 江西悦安新材料股份有限公司 一种碳纳米管复合材料的制备方法
CN111836466B (zh) * 2020-08-04 2023-10-27 深圳市大正瑞地科技有限公司 一种线路板用纳米碳与石墨烯混合导电液的制造方法
CN114220954A (zh) * 2021-12-02 2022-03-22 中国石油大学(北京) 电极极片及其制备方法和电池
CN114665096B (zh) * 2022-04-07 2022-11-22 湖南金阳烯碳新材料股份有限公司 一种用于电池的石墨烯复合导电浆料及其制备方法与应用
CN114695895A (zh) * 2022-05-20 2022-07-01 深圳鲸孚科技有限公司 掺有石墨烯的锂锰扣式电池正极材料、制备方法和应用
CN115938755A (zh) * 2022-12-16 2023-04-07 瑞声光电科技(常州)有限公司 一种线圈、能量转换器件
CN116534846B (zh) * 2023-04-10 2023-12-19 重庆中润新材料股份有限公司 一种碳纳米管浆料的制备装置及其制备方法
CN116706066A (zh) * 2023-05-31 2023-09-05 深圳市金百纳纳米科技有限公司 一种水性高固含导电剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005581A (zh) * 2010-10-15 2011-04-06 华南理工大学 一种燃料电池阴极催化剂P-MCNTs及其制备方法
JP2011108763A (ja) * 2009-11-16 2011-06-02 Hitachi Zosen Corp 太陽電池およびその製造方法並びに太陽電池装置
CN102254584A (zh) * 2011-05-12 2011-11-23 中国科学院宁波材料技术与工程研究所 基于石墨烯填料的通用电子浆料
CN103886932A (zh) * 2014-03-25 2014-06-25 深圳市纳米港有限公司 碳纳米管导电浆料及其制备方法和用途
CN104269556A (zh) * 2014-09-15 2015-01-07 天奈(镇江)材料科技有限公司 一种锂离子二次电池用碳纳米管和石墨烯复配导电浆料
CN104766645A (zh) * 2015-03-24 2015-07-08 中国石油大学(北京) 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208608B (zh) * 2011-05-18 2013-05-29 刘剑洪 一种锂离子电池碳负极材料用碳硫复合材料的制备方法
CN102664257A (zh) * 2012-04-05 2012-09-12 扬州奇峰纳米材料有限公司 纳米LiFePO4的低温固相合成方法
CN103395767B (zh) * 2013-07-25 2015-12-23 中国石油大学(北京) 一种含硫碳材料的制备方法及其制备的含硫碳材料
CN103887514B (zh) * 2014-04-15 2016-03-02 中国科学院宁波材料技术与工程研究所 一种锂离子电池正极浆料的制备方法
CN104064738B (zh) * 2014-06-27 2016-10-05 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108763A (ja) * 2009-11-16 2011-06-02 Hitachi Zosen Corp 太陽電池およびその製造方法並びに太陽電池装置
CN102005581A (zh) * 2010-10-15 2011-04-06 华南理工大学 一种燃料电池阴极催化剂P-MCNTs及其制备方法
CN102254584A (zh) * 2011-05-12 2011-11-23 中国科学院宁波材料技术与工程研究所 基于石墨烯填料的通用电子浆料
CN103886932A (zh) * 2014-03-25 2014-06-25 深圳市纳米港有限公司 碳纳米管导电浆料及其制备方法和用途
CN104269556A (zh) * 2014-09-15 2015-01-07 天奈(镇江)材料科技有限公司 一种锂离子二次电池用碳纳米管和石墨烯复配导电浆料
CN104766645A (zh) * 2015-03-24 2015-07-08 中国石油大学(北京) 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448926B (zh) * 2016-10-26 2018-01-23 广州天镒研磨材料有限公司 一种锂电池专用石墨烯导电浆料的制备方法
CN106448926A (zh) * 2016-10-26 2017-02-22 成都新柯力化工科技有限公司 一种锂电池专用石墨烯导电浆料的制备方法
CN114976017B (zh) * 2019-09-11 2023-06-27 北京航空航天大学 铅酸电池负极铅膏、负极的制备方法和铅酸电池
CN114976017A (zh) * 2019-09-11 2022-08-30 北京航空航天大学 铅酸电池负极铅膏、负极的制备方法和铅酸电池
CN111129500A (zh) * 2019-12-31 2020-05-08 哈尔滨万鑫石墨谷科技有限公司 一种水系复合碳纳米管导电浆料的制备方法
CN114078609A (zh) * 2020-08-19 2022-02-22 山东欧铂新材料有限公司 一种用于锂离子电池的石墨烯水性导电浆料及制备方法、应用
CN114496580A (zh) * 2020-10-27 2022-05-13 中国科学院大连化学物理研究所 一种石墨烯@层次孔炭复合材料及其制备方法与应用
CN113371693B (zh) * 2021-06-09 2023-05-16 中钢集团南京新材料研究院有限公司 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
CN113371693A (zh) * 2021-06-09 2021-09-10 中钢集团南京新材料研究院有限公司 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
CN113745517A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种导电浆料的制备方法
CN113871210B (zh) * 2021-08-30 2023-07-18 兰州大学 一种石墨烯纳米卷基电极材料及其制备方法与应用
CN113948706A (zh) * 2021-10-16 2022-01-18 西北工业大学 一种高度分散的石墨烯基导电浆料的制备方法
CN114106385A (zh) * 2021-11-12 2022-03-01 江苏天奈科技股份有限公司 一种柔性发热薄膜及其制备方法
CN116022775A (zh) * 2022-12-29 2023-04-28 蜂巢能源科技(上饶)有限公司 一种碳纳米管提纯方法及应用
CN116022775B (zh) * 2022-12-29 2024-02-09 蜂巢能源科技(上饶)有限公司 一种碳纳米管提纯方法及应用
CN116759136A (zh) * 2023-06-16 2023-09-15 安徽信敏惠新材料科技有限公司 一种高分散碳纳米管导电浆料及其制备方法
CN117229703A (zh) * 2023-09-27 2023-12-15 国网浙江省电力有限公司电力科学研究院 一种导电涂料及其制备方法和应用

Also Published As

Publication number Publication date
CN104766645B (zh) 2017-02-01
CN104766645A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2016150174A1 (zh) 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用
Li et al. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries
Wu et al. Selective S/Li2S Conversion via in-Built Crystal Facet Self-Mediation: Toward High Volumetric Energy Density Lithium–Sulfur Batteries
Zhu et al. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries
Xia et al. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries
JP6241480B2 (ja) 高分散性グラフェン組成物およびその製造方法、ならびに高分散性グラフェン組成物を含むリチウムイオン二次電池用電極
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
Feng et al. A novel acetylene black/sulfur@ graphene composite cathode with unique three-dimensional sandwich structure for lithium-sulfur batteries
Zhu et al. Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries
Chen et al. Bamboo-like Co3O4 nanofiber as host materials for enhanced lithium-sulfur battery performance
Fang et al. Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery
Huang et al. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells
CN110880589B (zh) 一种纳米碳管@二氧化钛纳米晶@碳的复合材料及其制备方法和应用
Zhong et al. Micro/nano-structured SnS 2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries
WO2023142666A1 (zh) 锂离子电池预锂化剂及其制备方法和应用
Feng et al. One-dimensional architecture with reduced graphene oxide supporting ultrathin MoO2 nanosheets as high performance anodes for lithium-ion batteries
Zhang et al. Facile synthesis of Mn2. 1V0. 9O4/rGO: a novel high-rate anode material for lithium-ion batteries
Guo et al. Porous V2O5-SnO2/CNTs composites as high performance cathode materials for lithium-ion batteries
Dashairya et al. Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: A stable anode for lithium-ion batteries
Dong et al. High performance of mesoporous γ-Fe2O3 nanoparticle/Ketjen black composite as anode material for lithium ion batteries
WO2013117080A1 (zh) 异质结纳米材料、锂离子电池负极极片及锂离子电池
Kim et al. Buckypaper electrode containing carbon nanofiber/Co3O4 composite for enhanced lithium air batteries
Zheng et al. TiO 2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries
WO2017197675A1 (zh) 一种钛酸锂改性材料及其制备方法
Fan et al. Li 4 Ti 5 O 12/hollow graphitized nano-carbon composites as anode materials for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886096

Country of ref document: EP

Kind code of ref document: A1