WO2016148123A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016148123A1
WO2016148123A1 PCT/JP2016/058073 JP2016058073W WO2016148123A1 WO 2016148123 A1 WO2016148123 A1 WO 2016148123A1 JP 2016058073 W JP2016058073 W JP 2016058073W WO 2016148123 A1 WO2016148123 A1 WO 2016148123A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
land portion
pitch
groove
profile line
Prior art date
Application number
PCT/JP2016/058073
Other languages
English (en)
French (fr)
Inventor
勇一 須賀
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201680006966.3A priority Critical patent/CN107206842B/zh
Priority to AU2016234380A priority patent/AU2016234380B2/en
Priority to US15/559,007 priority patent/US10759231B2/en
Priority to EP16764953.2A priority patent/EP3272551B1/en
Publication of WO2016148123A1 publication Critical patent/WO2016148123A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C2011/0313Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation directional type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth

Definitions

  • the present invention relates to a pneumatic tire having four main grooves extending in the tire circumferential direction in the tread portion and five rows of land portions defined by the main grooves, and more specifically, while avoiding deterioration of uniformity,
  • the present invention relates to a pneumatic tire that can improve handling stability and uneven wear resistance.
  • a plurality of main grooves extending in the tire circumferential direction are provided in a tread portion, and a plurality of rows of land portions having a rib tone are defined by these main grooves.
  • the contact pressure at the edge portion of each land portion tends to be relatively high, and when traveling in such a state, the tire circumferential direction in the central portion of each land portion The ground contact length is reduced, and this is a factor that lowers the steering stability.
  • Patent Documents 1 to 3 it is proposed to optimize the ground contact state of each land portion by causing the tread surface of the land portion partitioned by the main groove to bulge outward in the tire radial direction (for example, Patent Documents 1 to 3).
  • the shoulder land portion tends to wear preferentially compared to the center land portion, and it is strongly required to prevent such uneven wear.
  • the structure in which the tread surface of each land portion of the tread portion bulges outward in the tire radial direction does not exhibit the effect of improving uneven wear resistance.
  • Japanese Unexamined Patent Publication No. 2004-122904 Japanese Unexamined Patent Publication No. 2002-29216 Japanese Unexamined Patent Publication No. 2005-263180
  • An object of the present invention is to provide a pneumatic tire that can improve steering stability and uneven wear resistance while avoiding deterioration of uniformity.
  • a pneumatic tire according to the present invention has a pair of center main grooves extending in the tire circumferential direction on both sides of a tire equatorial plane in a tread portion, and each center main groove has an outer side in the tire width direction.
  • a shoulder main groove extending in the tire circumferential direction is provided, a center land portion is defined between the center main grooves, and a middle land portion is defined between the center main groove and the shoulder main grooves.
  • a shoulder land portion is defined on the outer side in the tire width direction of the shoulder main groove, and a plurality of lug grooves extending in the tire width direction are arranged in each shoulder land portion at intervals in the tire circumferential direction.
  • the profile line defining the tread of the center land portion is more tire than the reference profile line.
  • a profile line that protrudes radially outward and includes an outer end point in the tire width direction of the center main groove and both end points in the tire width direction of the shoulder main groove and that defines a tread of the middle land portion and the shoulder land portion is the reference profile It protrudes outward in the tire radial direction from the line, and the ratio of the groove volume of the lug groove to the size of the pitch of the lug groove in the shoulder land portion is smaller as the pitch is larger and larger as the pitch is smaller.
  • the profile line that defines the tread of the center land portion protrudes outward in the tire radial direction from the reference profile line, and the profile line that defines the tread of the middle land portion and the shoulder land portion is more tire than the reference profile line.
  • the ground contact lengths of the center land portion, the middle land portion, and the shoulder land portion can be secured, and the steering stability can be improved.
  • the profile line that defines the tread across the middle land area and the shoulder land area protrudes outward in the tire radial direction from the reference profile line, improving the ground contact state in the vicinity of the shoulder main groove, Stability can be effectively improved.
  • the grounding property between the middle land portion and the shoulder land portion is improved. Since the change is small, it is possible to prevent the shoulder land portion from being preferentially worn and to improve the uneven wear resistance of the entire tread portion.
  • the middle land portion and the shoulder land portion are straddled.
  • the profile line that defines the tread surface is projected outward in the tire radial direction from the reference profile line, the rubber volume of the shoulder land increases and the unevenness of mass due to pitch variation is amplified. The uniformity of the tires will deteriorate.
  • the ratio of the groove volume of the lug groove to the size of the lug groove pitch in the shoulder land portion is reduced as the pitch increases, and as the pitch decreases.
  • the maximum protrusion amount of the profile line of the center land portion with respect to the reference profile line to the outer side in the tire radial direction is 0.2 mm or more and 0.5 mm or less.
  • the maximum protrusion amount of the profile line of the middle land portion and the shoulder land portion with respect to the reference profile line to the outer side in the tire radial direction is 0.6 mm or more and 2.0 mm or less.
  • the maximum protrusion amount of the profile line of the middle land portion and the shoulder land portion to the outer side in the tire radial direction with respect to the reference profile line is relative to the vehicle outer side rather than the vehicle inner side. It is preferable to make it larger. Uneven wear resistance can be effectively improved by relatively increasing the maximum protrusion amount of the profile line of the middle land portion and the shoulder land portion on the outside of the vehicle that has a large amount of wear during turning.
  • the ratio of the groove volume of the lug groove to the size of the pitch of the lug groove in the shoulder land portion is required to be smaller as the pitch is larger and larger as the pitch is smaller.
  • the configuration can be adopted. That is, the ratio of the groove width of the lug groove to the size of the lug groove pitch in the shoulder land portion can be made smaller as the pitch is larger and larger as the pitch is smaller.
  • the groove wall angle of the lug groove in the shoulder land portion can be increased as the pitch increases, and can decrease as the pitch decreases.
  • the groove depth of the lug groove in the shoulder land portion can be reduced as the pitch increases, and the depth as the pitch decreases.
  • the reference profile line is specified in a state in which the tire is assembled on the normal rim and the normal internal pressure is filled.
  • the contact area of the tread part is specified based on the contact width in the tire axial direction measured when a normal load is applied by placing the tire on a regular rim and filling the regular internal pressure vertically on a plane. Is done.
  • the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set.
  • Normal internal pressure is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based.
  • the maximum air pressure is JATMA, and the table is “TIRE ROAD LIMITS AT VARIOUSIOLD” for TRA.
  • the maximum value described in “INFLATION PRESOURES” is “INFLATION PRESOURE” for ETRTO, but 180 kPa when the tire is a passenger car.
  • Regular load is a load determined by each standard for each tire in the standard system including the standard on which the tire is based.
  • the maximum load capacity is JATMA
  • the table “TIRE ROAD LIMITS AT VARIOUSIOLD” is for TRA.
  • the maximum value described in “INFLATION PRESOURES” is “LOAD CAPACITY”. However, when the tire is a passenger car, the load corresponds to 88% of the load.
  • FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a development view showing a tread pattern of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing an example of the footprint of the pneumatic tire of the present invention.
  • FIG. 4 is a plan view showing an example of a footprint of a pneumatic tire configured such that a profile line that defines a tread of each land portion matches a reference profile line.
  • FIG. 5 is a plan view showing an example of a footprint of a pneumatic tire configured such that profile lines that define the tread of each land portion protrude outward in the tire radial direction from the reference profile line.
  • FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a development view showing a tread pattern of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 6 is a cross-sectional view schematically showing a rubber volume of a shoulder land portion in the pneumatic tire of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a rubber volume of a shoulder land portion in a pneumatic tire configured such that the groove volume of the lug groove changes in proportion to the size of the lug groove pitch.
  • FIG. 8 is a plan view showing a lug groove in a shoulder land portion in which the groove width is adjusted in the pneumatic tire of the present invention.
  • FIG. 9 is a plan view showing the lug groove of the shoulder land portion in which the groove wall angle is adjusted in the pneumatic tire of the present invention.
  • FIG. 10 is a plan view showing a lug groove in a shoulder land portion in which the groove depth is adjusted in the pneumatic tire of the present invention.
  • FIG. 1 and 2 show a pneumatic tire according to an embodiment of the present invention.
  • This pneumatic tire is a tire in which the mounting direction of the tire front and back when the vehicle is mounted is designated. 1 and 2, IN is the inside of the vehicle when the vehicle is mounted, and OUT is the outside of the vehicle when the vehicle is mounted.
  • the mounting direction with respect to the vehicle is displayed at an arbitrary position on the tire surface.
  • CL is the tire equator plane.
  • the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions 2, 2 disposed on both sides of the tread portion 1. And a pair of bead portions 3 and 3 disposed inside the sidewall portion 2 in the tire radial direction.
  • the two carcass layers 4 are mounted between the pair of bead portions 3 and 3. These carcass layers 4 include a plurality of reinforcing cords extending in the tire radial direction, and are folded back from the tire inner side to the outer side around bead cores 5 arranged in each bead portion 3.
  • a bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
  • a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and are arranged so that the reinforcing cords cross each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as the reinforcing cord of the belt layer 7.
  • At least one belt cover layer 8 in which reinforcing cords are arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is disposed on the outer peripheral side of the belt layer 7.
  • an organic fiber cord such as nylon or aramid is preferably used.
  • main grooves 11, 12, 13, and 14 extending in the tire circumferential direction are sequentially formed in the tread portion 1 from the vehicle outer side toward the vehicle inner side.
  • These main grooves 11 to 14 define five rows of land portions 21, 22, 23, 24, and 25.
  • the tread portion 1 includes a pair of center main grooves 12 and 13 positioned on both sides of the tire equatorial plane CL, and a shoulder main groove 11 positioned outside the center main grooves 12 and 13 in the tire width direction. , 14 are arranged.
  • a shoulder land portion 25 is provided.
  • Ein and Eout respectively indicate the grounding ends on the vehicle inner side and the vehicle outer side, and the tread portion 1 forms a grounding region having a grounding width TCW.
  • lug grooves 31 extending in the tire width direction are arranged at intervals in the tire circumferential direction.
  • Each lug groove 31 is formed so that one end extends to the outer side in the tire width direction from the ground contact end Eout and the other end communicates with the shoulder main groove 11.
  • each closing groove 32 In the middle land portion 22 outside the vehicle, a plurality of closing grooves 32 extending in the tire width direction are arranged at intervals in the tire circumferential direction. One end of each closing groove 32 communicates with the center main groove 12 located inside the middle land portion 22 and the other end is closed in the middle land portion 22.
  • each closing groove 33 extending in the tire width direction are arranged at intervals in the tire circumferential direction. One end of each closing groove 33 communicates with the center main groove 13 located inside the center land portion 23 and the other end is closed in the center land portion 23.
  • each closing groove 34 In the middle land portion 24 inside the vehicle, a plurality of closing grooves 34 extending in the tire width direction are arranged at intervals in the tire circumferential direction. One end of each closing groove 34 communicates with the shoulder main groove 14 located on the vehicle inner side of the middle land portion 24, and the other end is closed in the middle land portion 24.
  • lug grooves 35 extending in the tire width direction are arranged at intervals in the tire circumferential direction.
  • Each lug groove 35 is formed so that one end extends to the outer side in the tire width direction from the ground contact end Ein and the other end is not communicated with the shoulder main groove 14.
  • the lug grooves 31, 35 and the closing grooves 32, 33, 34 are repeatedly formed along the tire circumferential direction.
  • the pitches of the lug grooves 31, 35 and the closing grooves 32, 33, 34 vary on the tire circumference, and so-called pitch variations are employed.
  • the shoulder land portion 21 at least three types of pitches P 1 to P 3 having different sizes are set in the lug groove 31.
  • the number of pitch sizes can be 3 to 6 types, for example.
  • FIG. 1 shows the outline shape exaggerated for easy understanding of the characteristics of the tread portion 1, and does not necessarily match the actual outline shape.
  • the region where the treads of the shoulder land portions 21 and 25 bulge from the reference profile line L0 is preferably extended to the outside of the ground contact end of the tread portion 1, and the outer end in the tire width direction of the profile line L2 is the tread. It is desirable to set the contact width in the range of 3% to 5% of the contact width TCW from the contact end of the portion 1 toward the outer side in the tire width direction.
  • the profile line L1 that defines the tread surface of the center land portion 23 protrudes outward in the tire radial direction from the reference profile line L0, and the tread surfaces of the middle land portions 22, 24 and the shoulder land portions 21, 25 are
  • the contact profile length of the center land portion 23, the middle land portions 22, 24, and the shoulder land portions 21, 25 is secured by projecting the prescribed profile line L2 (L2A, L2B) to the outside in the tire radial direction from the reference profile line L0.
  • the profile lines L2 (L2A, L2B) that define the treads straddling the middle land portions 22, 24 and the shoulder land portions 21, 25 are protruded outward in the tire radial direction from the reference profile line L0.
  • the ground contact state in the vicinity of the main grooves 11 and 14 can be improved, and the steering stability can be effectively improved.
  • FIG. 3 shows an example of the footprint of the pneumatic tire of the present invention
  • FIG. 4 shows an example of the footprint of the pneumatic tire configured so that the profile line defining the tread of each land portion matches the reference profile line
  • FIG. 5 shows an example of a footprint of a pneumatic tire configured such that profile lines that define the tread of each land portion protrude outward in the tire radial direction from the reference profile line.
  • the ground contact lengths of the center land portion and the middle land portion are shortened (refer to portion A).
  • the ground contact area of the shoulder land is insufficient (see part B).
  • the maximum protrusion amount T1 of the profile line L1 of the center land portion 23 to the outer side in the tire radial direction with respect to the reference profile line L0 is preferably 0.2 mm or more and 0.5 mm or less.
  • the contact length of the center land portion 23 can be optimized, and the steering stability on the dry road surface can be effectively improved.
  • the maximum protrusion amount T1 of the profile line L1 of the center land portion 23 is smaller than 0.2 mm, the contact length of the center land portion 23 is shortened, so that the effect of improving the steering stability is lowered. If larger than this, the ground contact length of the center land portion 23 becomes excessively long, so that the wear amount of the center land portion 23 increases.
  • the maximum protrusion amount T2 (T2A, T2B) of the profile line L2 of the middle land portions 22, 24 and the shoulder land portions 21, 25 with respect to the reference profile line L0 is 0.6 mm or more and 2.0 mm or less. Good to have.
  • the contact length of the shoulder land portions 21 and 25 tends to be shorter than the contact length of the center land portion 23 due to the tread radius, but the shoulder land portions 22 and 24 are set by setting the maximum protrusion amount T2 within the above range. It is possible to optimize the contact length of the vehicle and to effectively improve the handling stability (particularly the turning ability and the lane changeability) on the dry road surface.
  • the contact length of the shoulder land portions 22 and 24 is shortened, so that the effect of improving the steering stability is deteriorated. If it is larger than 2.0 mm, the contact length of the shoulder land portions 22 and 24 becomes excessively long, so that the wear amount of the shoulder land portions 22 and 24 increases.
  • the maximum protrusion amount T2A of the profile line L2A of the middle land portion 22 and the shoulder land portion 21 on the vehicle outer side in the tire radial direction is set to the middle land portion on the vehicle inner side. 24 and the profile line L2B of the shoulder land portion 25 may be larger than the maximum protruding amount T2B to the outer side in the tire radial direction.
  • the maximum protrusion amount T2A of the profile line L2A of the middle land portion 22 and the shoulder land portion 21 on the outer side of the vehicle that has a large amount of wear during turning uneven wear resistance can be effectively improved.
  • the middle When the profile line L2 that defines the tread across the land portions 22 and 24 and the shoulder land portions 21 and 25 is protruded outward in the tire radial direction from the reference profile line L0, the rubber volume of the shoulder land portions 21 and 25 is increased. Since the non-uniformity of the mass due to the pitch variation is increased, the uniformity of the pneumatic tire tends to deteriorate.
  • the ratio of the groove volume of the lug grooves 31 and 35 to the size of the pitch of the lug grooves 31 and 35 in the shoulder land portions 21 and 25 is set to a larger pitch. Smaller and larger for smaller pitches.
  • the lug grooves 31 of the shoulder land portion 21 have pitches P1 to P3 (mm), and the groove volumes of the lug grooves 31 corresponding to these pitches P1 to P3 are V1 to V3 (mm 2 ).
  • the groove volumes V1 to V3 of the lug groove 31 are adjusted so as to satisfy the relationship of V1 / P1 ⁇ V2 / P2 ⁇ V3 / P3.
  • FIG. 6 schematically shows the rubber volume of the shoulder land portion in the pneumatic tire of the present invention
  • FIG. 7 shows the pneumatic volume configured such that the groove volume of the lug groove changes in proportion to the pitch size of the lug groove.
  • the rubber volume of the shoulder land part in a tire is shown roughly. 6 and 7, M is a mold.
  • M is a mold.
  • the groove width W of the lug groove 31 changes in proportion to the size of the pitch P of the lug groove 31, and as a result,
  • the groove volume V changes in proportion to the size of the pitch P of the lug grooves 31.
  • the non-uniformity of the mass due to the pitch variation becomes large, and the non-uniformity of the mass becomes obvious due to the bulging structure of the tread as described above.
  • the ratio W / P of the groove width W of the lug groove 31 to the size of the pitch P of the lug groove 31 in the shoulder land portion 21 in other words, the lug groove in the shoulder land portion 21.
  • the ratio V / P of the groove volume of the lug grooves 31 and 35 to the size of the pitch P of the lug grooves 31 and 35 in the shoulder land portions 21 and 25 is 0.05 to 0.10 at the maximum pitch.
  • the minimum pitch is preferably in the range of 0.10 to 0.15.
  • FIG. 8 shows the lug groove of the shoulder land portion where the groove width is adjusted in the pneumatic tire of the present invention.
  • the lug grooves 31 and 35 with respect to the pitch size of the lug grooves 31 and 35 in the shoulder land portions 21 and 25.
  • the groove width ratio can be set smaller as the pitch is larger and larger as the pitch is smaller.
  • the lug grooves 31 of the shoulder land portion 21 have pitches P1 to P3 (mm), and the groove widths of the lug grooves 31 corresponding to these pitches P1 to P3 are W1 to W3 (mm).
  • the groove widths W1 to W3 of the lug groove 31 are adjusted so as to satisfy the relationship of W1 / P1 ⁇ W2 / P2 ⁇ W3 / P3.
  • the dimensional requirements other than the groove width may be constant, but other dimensional requirements can be changed at the same time.
  • FIG. 9 shows a shoulder land lug groove in which the groove wall angle is adjusted in the pneumatic tire of the present invention.
  • the groove wall angle of the lug grooves 31 and 35 in the shoulder land portions 21 and 25 is increased as the pitch increases. A smaller pitch can be set smaller.
  • the groove wall angle referred to here is the inclination angle of the groove walls of the lug grooves 31 and 35 with respect to the normal direction of the tread surface.
  • the lug grooves 31 of the shoulder land portion 21 have pitches P1 to P3 (mm), and the groove wall angles of the lug grooves 31 corresponding to these pitches P1 to P3 are ⁇ 1 to ⁇ 3 (°), and P1>
  • the groove wall angles ⁇ 1 to ⁇ 3 of the lug groove 31 are adjusted so as to satisfy the relationship ⁇ 1> ⁇ 2> ⁇ 3.
  • dimensional requirements other than the groove wall angle may be constant, but other dimensional requirements can be changed simultaneously.
  • FIG. 10 shows the lug groove of the shoulder land portion in which the groove depth is adjusted in the pneumatic tire of the present invention.
  • the groove depth of the lug grooves 31 and 35 in the shoulder land portions 21 and 25 is reduced as the pitch increases. A smaller pitch can be set larger.
  • the lug grooves 31 of the shoulder land portion 21 have pitches P1 to P3 (mm), and the depths of the lug grooves 31 corresponding to the pitches P1 to P3 are D1 to D3 (°), and P1>
  • the groove depths D1 to D3 of the lug grooves 31 are adjusted so as to satisfy the relationship of D1 ⁇ D2 ⁇ D3 in FIG.
  • the dimensional requirements other than the groove depth may be constant, but other dimensional requirements can be changed at the same time.
  • the pneumatic tire in which the mounting direction with respect to the vehicle is specified has been described, but the present invention can also be applied to a pneumatic tire in which the mounting direction with respect to the vehicle is not specified. Even in such a pneumatic tire, it is possible to obtain an effect of improving steering stability and uneven wear resistance while avoiding deterioration of uniformity.
  • the profile line that defines the tread of the center land is used as a reference
  • the profile line that protrudes outward in the tire radial direction from the profile line, the profile line that defines the tread of the middle land portion and the shoulder land portion protrudes outward in the tire radial direction from the reference profile line, and the pitch of the lug groove in the shoulder land portion The tires of Examples 1 to 5 were manufactured in which the ratio of the groove volume of the lug groove to the size was decreased as the pitch increased and increased as the pitch decreased.
  • the maximum protrusion amount T1 of the center land portion, the maximum protrusion amounts T2A and T2B of the middle land portion and the shoulder land portion, the lug groove with respect to the size of the lug groove pitch at the maximum pitch and the minimum pitch was set as shown in Table 1.
  • Steering stability Each test tire is mounted on a wheel with a rim size of 18 x 8.0 J and mounted on a sedan type test vehicle with a displacement of 2000 cc. Sensory evaluation of steering stability on a test course consisting of a dry road surface under the condition of air pressure 230 kPa went. The evaluation results are shown as an index with the conventional example being 100. The larger the index value, the better the steering stability.
  • Uneven wear resistance Each test tire is assembled to a wheel with a rim size of 18 ⁇ 8.0J and mounted on a sedan type test vehicle with a displacement of 2000 cc. After running a 10,000 km test under the condition of an air pressure of 230 kPa, The amount of wear on the shoulder land was measured, and the wear amount ratio between them was calculated. The evaluation results are shown as an index with the conventional example being 100. The larger the index value, the better the uneven wear resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 ユニフォミティーの悪化を回避しながら、操縦安定性と耐偏摩耗性を改善することを可能にした空気入りタイヤを提供する。トレッド部に一対のセンター主溝及び一対のショルダー主溝を配設し、トレッド部にセンター陸部、一対のミドル陸部及び一対のショルダー陸部を区画し、各ショルダー陸部に複数本のラグ溝を配設し、これらラグ溝のピッチをタイヤ周上で変動させた空気入りタイヤにおいて、センター陸部の踏面を規定するプロファイルラインL1が基準プロファイルラインL0よりもタイヤ径方向外側に突出し、ミドル陸部及びショルダー陸部の踏面を規定するプロファイルラインL2が基準プロファイルラインL0よりもタイヤ径方向外側に突出すると共に、ショルダー陸部におけるラグ溝のピッチの大きさに対するラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくする。

Description

空気入りタイヤ
 本発明は、トレッド部にタイヤ周方向に延びる4本の主溝と該主溝により区画された5列の陸部を有する空気入りタイヤに関し、更に詳しくは、ユニフォミティーの悪化を回避しながら、操縦安定性と耐偏摩耗性を改善することを可能にした空気入りタイヤに関する。
 空気入りタイヤにおいて、トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これら主溝によりリブ基調を有する複数列の陸部を区画したものがある。このような空気入りタイヤにおいて、操縦安定性を重視する場合、各陸部の幅を広く設定することが一般的である。しかしながら、陸部の幅を広く設定すると、各陸部のエッジ部における接地圧が相対的に高くなる傾向があり、そのような状態で走行すると、各陸部の中央部でのタイヤ周方向の接地長が減少し、これが操縦安定性を低下させる要因となる。
 これに対して、トレッド部において主溝により区画された陸部の踏面をタイヤ径方向外側に向かって膨出させることにより、各陸部の接地状態を適正化することが提案されている(例えば、特許文献1~3参照)。
 しかしながら、トレッド部の各陸部の踏面をタイヤ径方向外側に向かって膨出させたとしても、タイヤ幅方向の最外側に位置するショルダー主溝の近傍での接地状態を改善することは困難であり、操縦安定性の改善効果を必ずしも十分に得ることができないのが現状である。
 また、上述のような空気入りタイヤにおいては、優れた操縦安定性に加えて、優れた耐偏摩耗性能を同時に発揮することが求められている。特に、センター陸部に比べてショルダー陸部が優先的に摩耗する傾向があり、このような偏摩耗を防止することが強く求められている。しかしながら、トレッド部の各陸部の踏面をタイヤ径方向外側に向かって膨出させた構造は、耐偏摩耗性の改善効果を奏するものではない。
日本国特開2004-122904号公報 日本国特開2002-29216号公報 日本国特開2005-263180号公報
 本発明の目的は、ユニフォミティーの悪化を回避しながら、操縦安定性と耐偏摩耗性を改善することを可能にした空気入りタイヤを提供することにある。
 上記目的を達成するための本発明の空気入りタイヤは、トレッド部におけるタイヤ赤道面の両側にタイヤ周方向に延在する一対のセンター主溝を配設し、各センター主溝のタイヤ幅方向外側にタイヤ周方向に延在するショルダー主溝を配設し、前記センター主溝の相互間にセンター陸部を区画し、前記センター主溝と前記ショルダー主溝との間にミドル陸部と区画し、前記ショルダー主溝のタイヤ幅方向外側にショルダー陸部を区画し、各ショルダー陸部にタイヤ幅方向に延びる複数本のラグ溝をタイヤ周方向に間隔をおいて配設し、これらラグ溝のピッチをタイヤ周上で変動させた空気入りタイヤにおいて、
 タイヤ子午断面視で、前記一対のセンター主溝のタイヤ幅方向両端点を通る円弧からなる基準プロファイルラインを想定したとき、前記センター陸部の踏面を規定するプロファイルラインが前記基準プロファイルラインよりもタイヤ径方向外側に突出し、前記センター主溝のタイヤ幅方向外側端点と前記ショルダー主溝のタイヤ幅方向両端点とを含み前記ミドル陸部及び前記ショルダー陸部の踏面を規定するプロファイルラインが前記基準プロファイルラインよりもタイヤ径方向外側に突出すると共に、前記ショルダー陸部における前記ラグ溝のピッチの大きさに対する前記ラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくしたことを特徴とするものである。
 本発明では、センター陸部の踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させると共に、ミドル陸部及びショルダー陸部の踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させることにより、センター陸部、ミドル陸部及びショルダー陸部の接地長を確保して操縦安定性を改善することができる。特に、ミドル陸部及びショルダー陸部を跨いでその踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させているので、ショルダー主溝の近傍での接地状態を改善し、操縦安定性を効果的に改善することができる。また、ミドル陸部及びショルダー陸部を跨いでその踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させた構造では、ミドル陸部とショルダー陸部との間における接地性の変化が小さいため、ショルダー陸部が優先的に摩耗するのを防止し、トレッド部全体としての耐偏摩耗性を改善することができる。
 上述のように各ショルダー陸部にタイヤ幅方向に延びる複数本のラグ溝を設け、該ラグ溝のピッチをタイヤ周上で変動させた空気入りタイヤにおいて、ミドル陸部及びショルダー陸部を跨いでその踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させた場合、ショルダー陸部のゴムボリュームが大きくなり、ピッチバリエーションに起因する質量の不均一さが増幅されるため、空気入りタイヤのユニフォミティーが悪化することになる。
 このような不都合を回避するために、本発明では、ショルダー陸部におけるラグ溝のピッチの大きさに対するラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくする。これにより、ピッチバリエーションに起因する質量の不均一さを小さくし、空気入りタイヤのユニフォミティーを良好に維持することができる。
 本発明において、基準プロファイルラインに対するセンター陸部のプロファイルラインのタイヤ径方向外側への最大突出量は0.2mm以上0.5mm以下であることが好ましい。これにより、偏摩耗を助長することなく、センター陸部の接地長を適正化し、操縦安定性を効果的に改善することができる。
 一方、基準プロファイルラインに対するミドル陸部及びショルダー陸部のプロファイルラインのタイヤ径方向外側への最大突出量は0.6mm以上2.0mm以下であることが好ましい。これにより、偏摩耗を助長することなく、ショルダー陸部の接地長を適正化し、操縦安定性を効果的に改善することができる。
 また、車両に対する装着方向が指定された空気入りタイヤにおいては、基準プロファイルラインに対するミドル陸部及びショルダー陸部のプロファイルラインのタイヤ径方向外側への最大突出量を車両内側よりも車両外側で相対的に大きくすることが好ましい。旋回時における摩耗量が多い車両外側においてミドル陸部及びショルダー陸部のプロファイルラインの最大突出量を相対的に大きくすることにより、耐偏摩耗性を効果的に改善することができる。
 本発明では、ショルダー陸部におけるラグ溝のピッチの大きさに対するラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくすることが必要であるが、その具体的な手法として、以下の構成を採用することができる。即ち、ショルダー陸部におけるラグ溝のピッチの大きさに対するラグ溝の溝幅の比を、大ピッチほど小さく、小ピッチほど大きくすることができる。また、ショルダー陸部におけるラグ溝の溝壁角度を、大ピッチほど大きく、小ピッチほど小さくすることができる。更に、ショルダー陸部におけるラグ溝の溝深さを、大ピッチほど小さく、小ピッチほど大きくすることができる。これらは単独で又は組み合わせて適用することができる。
 本発明において、基準プロファイルラインは、タイヤを正規リムにリム組みして正規内圧を充填した状態にて特定される。トレッド部の接地領域は、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときに測定されるタイヤ軸方向の接地幅に基づいて特定される。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE ROAD LIMITS AT VARIOUSIOLD INFLATION PRESOURES”に記載の最大値、ETRTOであれば“INFLATION PRESOURE”であるが、タイヤが乗用車である場合には180kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE ROAD LIMITS AT VARIOUSIOLD INFLATION PRESOURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車である場合には前記荷重の88%に相当する荷重とする。
図1は本発明の実施形態からなる空気入りタイヤを示す子午線断面図である。 図2は本発明の実施形態からなる空気入りタイヤのトレッドパターンを示す展開図である。 図3は本発明の空気入りタイヤのフットプリントの一例を示す平面図である。 図4は各陸部の踏面を規定するプロファイルラインが基準プロファイルラインと一致するように構成した空気入りタイヤのフットプリントの一例を示す平面図である。 図5は各陸部の踏面を規定するプロファイルラインがそれぞれ基準プロファイルラインよりもタイヤ径方向外側に突出するように構成した空気入りタイヤのフットプリントの一例を示す平面図である。 図6は本発明の空気入りタイヤにおけるショルダー陸部のゴムボリュームを概略的に示す断面図である。 図7はラグ溝のピッチの大きさに比例してラグ溝の溝体積が変化するように構成した空気入りタイヤにおけるショルダー陸部のゴムボリュームを概略的に示す断面図である。 図8は本発明の空気入りタイヤにおいて溝幅が調整されたショルダー陸部のラグ溝を示す平面図である。 図9は本発明の空気入りタイヤにおいて溝壁角度が調整されたショルダー陸部のラグ溝を示す平面図である。 図10は本発明の空気入りタイヤにおいて溝深さが調整されたショルダー陸部のラグ溝を示す平面図である。
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1~図2は本発明の実施形態からなる空気入りタイヤを示すものである。この空気入りタイヤは、車両装着時におけるタイヤ表裏の装着方向が指定されたタイヤである。図1~図2において、INは車両装着時の車両内側であり、OUTは車両装着時の車両外側である。車両に対する装着方向はタイヤ表面の任意の位置に表示される。また、CLはタイヤ赤道面である。
 図1に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。
 一対のビード部3,3間には2層のカーカス層4が装架されている。これらカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。
 一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。
 なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。
  図2に示すように、トレッド部1には、タイヤ周方向に延びる4本の主溝11,12,13,14が車両外側から車両内側に向かって順次形成されている。これら主溝11~14により5列の陸部21,22,23,24,25が区画されている。より具体的には、トレッド部1には、タイヤ赤道面CLの両側に位置する一対のセンター主溝12,13と、各センター主溝12,13のタイヤ幅方向外側に位置するショルダー主溝11,14が配設されている。これにより、トレッド部1には、ショルダー主溝11のタイヤ幅方向外側に区画されたショルダー陸部21と、センター主溝12とショルダー主溝11との間に区画されたミドル陸部22と、センター主溝12,13の相互間に区画されたセンター陸部23と、センター主溝13とショルダー主溝14との間に区画されたミドル陸部24と、ショルダー主溝14のタイヤ幅方向外側に区画されたショルダー陸部25が配設されている。図2において、Ein及びEoutはそれぞれ車両内側及び車両外側の接地端を示し、トレッド部1は接地幅TCWを有する接地領域を形成する。
 車両外側のショルダー陸部21には、タイヤ幅方向に延長する複数本のラグ溝31がタイヤ周方向に間隔をおいて配置されている。各ラグ溝31は一端が接地端Eoutよりもタイヤ幅方向外側まで延在し、他端がショルダー主溝11に対して連通するように形成されている。
 車両外側のミドル陸部22には、タイヤ幅方向に延長する複数本の閉止溝32がタイヤ周方向に間隔をおいて配置されている。各閉止溝32は一端がミドル陸部22の車両内側に位置するセンター主溝12に連通し、他端がミドル陸部22内で閉止している。
 センター陸部23には、タイヤ幅方向に延長する複数本の閉止溝33がタイヤ周方向に間隔をおいて配置されている。各閉止溝33は一端がセンター陸部23の車両内側に位置するセンター主溝13に連通し、他端がセンター陸部23内で閉止している。
 車両内側のミドル陸部24には、タイヤ幅方向に延長する複数本の閉止溝34がタイヤ周方向に間隔をおいて配置されている。各閉止溝34は一端がミドル陸部24の車両内側に位置するショルダー主溝14に連通し、他端がミドル陸部24内で閉止している。
 車両内側のショルダー陸部25には、タイヤ幅方向に延長する複数本のラグ溝35がタイヤ周方向に間隔をおいて配置されている。各ラグ溝35は一端が接地端Einよりもタイヤ幅方向外側まで延在し、他端がショルダー主溝14に対して非連通となるように形成されている。
 センター陸部23、ミドル陸部22,24及びショルダー陸部21,25において、ラグ溝31,35や閉止溝32,33,34はタイヤ周方向に沿って反復的に形成されているが、これらラグ溝31,35や閉止溝32,33,34のピッチはタイヤ周上で変動しており、所謂ピッチバリエーションが採用されている。例えば、ショルダー陸部21において、ラグ溝31には大きさが異なる少なくとも3種類のピッチP1~P3が設定されている。ピッチの大きさの種類は例えば3~6種類にすることができる。
 上述した空気入りタイヤにおいて、図1に示すように、タイヤ子午断面視で、一対のセンター主溝12,13のタイヤ幅方向両端点E3,E4,E5,E6を通る円弧からなる基準プロファイルラインL0を想定したとき、センター陸部23の踏面を規定する円弧からなるプロファイルラインL1が基準プロファイルラインL0よりもタイヤ径方向外側に突出し、センター主溝12のタイヤ幅方向外側端点E3とショルダー主溝11のタイヤ幅方向両端点E1,E2とを含みミドル陸部22及びショルダー陸部21の踏面を規定する円弧からなるプロファイルラインL2(L2A)が基準プロファイルラインL0よりもタイヤ径方向外側に突出し、センター主溝13のタイヤ幅方向外側端点E6とショルダー主溝14のタイヤ幅方向両端点E7,E8とを含みミドル陸部24及びショルダー陸部25の踏面を規定する円弧からなるプロファイルラインL2(L2B)が基準プロファイルラインL0よりもタイヤ径方向外側に突出している。但し、図1はトレッド部1の特徴を理解し易くするために、その輪郭形状を誇張して描写したものであって、実際の輪郭形状とは必ずしも一致するものではない。
 なお、ショルダー陸部21,25の踏面を基準プロファイルラインL0よりも膨出させる領域はトレッド部1の接地端よりも外側まで延在することが望ましく、プロファイルラインL2のタイヤ幅方向外側端はトレッド部1の接地端からタイヤ幅方向外側に向かって接地幅TCWの3%~5%の範囲に設定することが望ましい。
 上記空気入りタイヤでは、センター陸部23の踏面を規定するプロファイルラインL1を基準プロファイルラインL0よりもタイヤ径方向外側に突出させると共に、ミドル陸部22,24及びショルダー陸部21,25の踏面を規定するプロファイルラインL2(L2A,L2B)を基準プロファイルラインL0よりもタイヤ径方向外側に突出させることにより、センター陸部23、ミドル陸部22,24及びショルダー陸部21,25の接地長を確保して操縦安定性を改善することができる。特に、ミドル陸部22,24及びショルダー陸部21,25を跨いでその踏面を規定するプロファイルラインL2(L2A,L2B)を基準プロファイルラインL0よりもタイヤ径方向外側に突出させているので、ショルダー主溝11,14の近傍での接地状態を改善し、操縦安定性を効果的に改善することができる。また、プロファイルラインL2(L2A,L2B)を基準プロファイルラインL0よりもタイヤ径方向外側に突出させた構造では、隣り合うミドル陸部22とショルダー陸部21との間及び隣り合うミドル陸部24とショルダー陸部25との間における接地性の変化が小さいため、ショルダー陸部21,25が優先的に摩耗するのを防止し、トレッド部1の全体としての耐偏摩耗性を改善することができる。
 図3は本発明の空気入りタイヤのフットプリントの一例を示し、図4は各陸部の踏面を規定するプロファイルラインが基準プロファイルラインと一致するように構成した空気入りタイヤのフットプリントの一例を示し、図5は各陸部の踏面を規定するプロファイルラインがそれぞれ基準プロファイルラインよりもタイヤ径方向外側に突出するように構成した空気入りタイヤのフットプリントの一例を示すものである。図4に示すように、各陸部の踏面を基準プロファイルラインから突出させていない空気入りタイヤのフットプリントX2では、センター陸部及びミドル陸部の接地長が短くなっており(A部参照)、ショルダー陸部の接地面積が不十分になっている(B部参照)。一方、図5に示すように、各陸部の踏面を個別に基準プロファイルラインから突出させた空気入りタイヤのフットプリントX3では、上記A部及びB部に対応する部分の接地状態が改善されている。しかしながら、図5において、ショルダー主溝の近傍での接地長が局部的に短くなっている(C部参照)。これに対して、本発明の空気入りタイヤのフットプリントX1では、上記A部及びB部に対応する部分の接地状態に加えて上記C部に対応する部分の接地状態が改善されていることが判る。
 上記空気入りタイヤにおいて、基準プロファイルラインL0に対するセンター陸部23のプロファイルラインL1のタイヤ径方向外側への最大突出量T1は0.2mm以上0.5mm以下であると良い。これにより、センター陸部23の接地長を適正化し、ドライ路面での操縦安定性を効果的に改善することができる。ここで、センター陸部23のプロファイルラインL1の最大突出量T1が0.2mmよりも小さいとセンター陸部23の接地長が短くなるため操縦安定性の改善効果が低下し、逆に0.5mmよりも大きいとセンター陸部23の接地長が過度に長くなるためセンター陸部23の摩耗量が大きくなる。
 一方、基準プロファイルラインL0に対するミドル陸部22,24及びショルダー陸部21,25のプロファイルラインL2のタイヤ径方向外側への最大突出量T2(T2A,T2B)は0.6mm以上2.0mm以下であると良い。トレッドラジアスの関係でショルダー陸部21,25の接地長はセンター陸部23の接地長よりも短くなる傾向があるが、最大突出量T2を上記範囲に設定することにより、ショルダー陸部22,24の接地長を適正化し、ドライ路面での操縦安定性(特に、旋回性及びレーンチェンジ性)を効果的に改善することができる。ここで、ショルダー陸部22,24のプロファイルラインL2の最大突出量T2が0.6mmよりも小さいとショルダー陸部22,24の接地長が短くなるため操縦安定性の改善効果が低下し、逆に2.0mmよりも大きいとショルダー陸部22,24の接地長が過度に長くなるためショルダー陸部22,24の摩耗量が大きくなる。
 特に、車両に対する装着方向が指定された空気入りタイヤにおいては、車両外側のミドル陸部22及びショルダー陸部21のプロファイルラインL2Aのタイヤ径方向外側への最大突出量T2Aを車両内側のミドル陸部24及びショルダー陸部25のプロファイルラインL2Bのタイヤ径方向外側への最大突出量T2Bよりも大きくすると良い。旋回時における摩耗量が多い車両外側のミドル陸部22及びショルダー陸部21のプロファイルラインL2Aの最大突出量T2Aを相対的に大きくすることにより、耐偏摩耗性を効果的に改善することができる。この場合、最大突出量T2Aを0.7mm以上2.0mm以下の範囲に設定し、最大突出量T2Bを0.6mm以上1.9mm以下の範囲に設定することが望ましい。
 上述のように各ショルダー陸部21,25にタイヤ幅方向に延びる複数本のラグ溝31,35を設け、これらラグ溝31,35のピッチをタイヤ周上で変動させた空気入りタイヤにおいて、ミドル陸部22,24及びショルダー陸部21,25を跨いでその踏面を規定するプロファイルラインL2を基準プロファイルラインL0よりもタイヤ径方向外側に突出させた場合、ショルダー陸部21,25のゴムボリュームが大きくなり、ピッチバリエーションに起因する質量の不均一さが増幅されるため、空気入りタイヤのユニフォミティーが悪化する傾向がある。
 このような不都合を回避するために、上記空気入りタイヤにおいては、ショルダー陸部21,25におけるラグ溝31,35のピッチの大きさに対するラグ溝31,35の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくする。例えば、図2において、ショルダー陸部21のラグ溝31がピッチP1~P3(mm)を有し、これらピッチP1~P3に対応する各ラグ溝31の溝体積がV1~V3(mm2)であり、P1>P2>P2の関係を満足するとき、V1/P1<V2/P2<V3/P3の関係を満足するようにラグ溝31の溝体積V1~V3が調整されている。これにより、ピッチバリエーションに起因する質量の不均一さを小さくし、空気入りタイヤのユニフォミティーを良好に維持することができる。
 図6は本発明の空気入りタイヤにおけるショルダー陸部のゴムボリュームを概略的に示し、図7はラグ溝のピッチの大きさに比例してラグ溝の溝体積が変化するように構成した空気入りタイヤにおけるショルダー陸部のゴムボリュームを概略的に示すものである。図6及び図7において、Mはモールドである。図7に示すように、ショルダー陸部21にピッチバリエーションを採用した空気入りタイヤでは、ラグ溝31のピッチPの大きさに比例してラグ溝31の溝幅Wが変化し、その結果として、ラグ溝31のピッチPの大きさに比例して溝体積Vが変化するようになっている。この場合、ピッチバリエーションに起因する質量の不均一さが大きくなり、上述のような踏面の膨出構造により質量の不均一さが顕在化する。これに対して、図6に示すように、ショルダー陸部21におけるラグ溝31のピッチPの大きさに対するラグ溝31の溝幅Wの比W/P、言い換えれば、ショルダー陸部21におけるラグ溝31のピッチPの大きさに対するラグ溝31の溝体積Vの比V/Pを、大ピッチほど小さく、小ピッチほど大きくすることにより、ユニフォミティーの悪化を回避することが可能になる。
 上記空気入りタイヤにおいて、ショルダー陸部21,25におけるラグ溝31,35のピッチPの大きさに対するラグ溝31,35の溝体積の比V/Pは、最大ピッチでは0.05~0.10の範囲に設定し、最小ピッチでは0.10~0.15の範囲に設定すると良い。これにより、ユニフォミティーと操縦安定性と耐偏摩耗性とをバランス良く改善することができる。
 ショルダー陸部21,25におけるラグ溝31,35のピッチPの大きさに対するラグ溝31,35の溝体積Vの比V/Pを、大ピッチほど小さく、小ピッチほど大きくするにあたって、その具体的な手法として、以下の構成を採用することができる。
 図8は本発明の空気入りタイヤにおいて溝幅が調整されたショルダー陸部のラグ溝を示すものである。上記空気入りタイヤでは、ラグ溝31,35のピッチの大きさと溝体積との関係を満足するために、ショルダー陸部21,25におけるラグ溝31,35のピッチの大きさに対するラグ溝31,35の溝幅の比を、大ピッチほど小さく、小ピッチほど大きく設定することができる。例えば、図8において、ショルダー陸部21のラグ溝31がピッチP1~P3(mm)を有し、これらピッチP1~P3に対応する各ラグ溝31の溝幅がW1~W3(mm)であり、P1>P2>P2の関係を満足するとき、W1/P1<W2/P2<W3/P3の関係を満足するようにラグ溝31の溝幅W1~W3が調整されている。この場合、溝幅以外の寸法要件は一定としても良いが、他の寸法要件を同時に変化させることも可能である。
 図9は本発明の空気入りタイヤにおいて溝壁角度が調整されたショルダー陸部のラグ溝を示すものである。上記空気入りタイヤでは、ラグ溝31,35のピッチの大きさと溝体積との関係を満足するために、ショルダー陸部21,25におけるラグ溝31,35の溝壁角度を、大ピッチほど大きく、小ピッチほど小さく設定することができる。ここで言う溝壁角度とは踏面の法線方向に対するラグ溝31,35の溝壁の傾斜角度である。例えば、ショルダー陸部21のラグ溝31がピッチP1~P3(mm)を有し、これらピッチP1~P3に対応する各ラグ溝31の溝壁角度がθ1~θ3(°)であり、P1>P2>P2の関係を満足するとき、図9において、θ1>θ2>θ3の関係を満足するようにラグ溝31の溝壁角度θ1~θ3が調整されている。この場合、溝壁角度以外の寸法要件は一定としても良いが、他の寸法要件を同時に変化させることも可能である。
 図10は本発明の空気入りタイヤにおいて溝深さが調整されたショルダー陸部のラグ溝を示すものである。上記空気入りタイヤでは、ラグ溝31,35のピッチの大きさと溝体積との関係を満足するために、ショルダー陸部21,25におけるラグ溝31,35の溝深さを、大ピッチほど小さく、小ピッチほど大きく設定することができる。例えば、ショルダー陸部21のラグ溝31がピッチP1~P3(mm)を有し、これらピッチP1~P3に対応する各ラグ溝31の溝深さがD1~D3(°)であり、P1>P2>P2の関係を満足するとき、図10において、D1<D2<D3の関係を満足するようにラグ溝31の溝深さD1~D3が調整されている。この場合、溝深さ以外の寸法要件は一定としても良いが、他の寸法要件を同時に変化させることも可能である。
 上述した実施形態では、車両に対する装着方向が指定された空気入りタイヤについて説明したが、本発明は車両に対する装着方向が指定されていない空気入りタイヤにも適用することができる。このような空気入りタイヤにおいても、ユニフォミティーの悪化を回避しながら、操縦安定性と耐偏摩耗性の改善効果を得ることができる。
 タイヤサイズ235/40ZR18 95Yで、図1に示すトレッドパターンを有し、大きさが異なる3種類のピッチからなるピッチバリエーションを採用した空気入りタイヤにおいて、センター陸部の踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させ、ミドル陸部及びショルダー陸部の踏面を規定するプロファイルラインを基準プロファイルラインよりもタイヤ径方向外側に突出させると共に、ショルダー陸部におけるラグ溝のピッチの大きさに対するラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくした実施例1~5のタイヤを製作した。これら実施例1~5のタイヤにおいて、センター陸部の最大突出量T1、ミドル陸部及びショルダー陸部の最大突出量T2A,T2B、最大ピッチ及び最小ピッチにおけるラグ溝のピッチの大きさに対するラグ溝の溝体積の比V/Pを表1のように設定した。
 比較のため、各陸部の踏面を規定するプロファイルラインを基準プロファイルラインと一致させ、かつラグ溝のピッチの大きさに対するラグ溝の溝体積の比V/Pを一定にしたこと以外は実施例1と同じ構成を有する従来例のタイヤを用意した。また、ラグ溝のピッチの大きさに対するラグ溝の溝体積の比V/Pを一定にしたこと以外は実施例1と同じ構成を有する比較例1のタイヤを用意した。
  これら試験タイヤについて、下記試験方法により、操縦安定性、耐偏摩耗性、ユニフォミティーを評価し、その結果を表1に併せて示した。
 操縦安定性:
 各試験タイヤをリムサイズ18×8.0Jのホイールに組み付けて排気量2000ccのセダンタイプの試験車両に装着し、空気圧230kPaの条件にて、ドライ路面からなるテストコースにおいて操縦安定性についての官能評価を行った。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど操縦安定性が優れていることを意味する。
 耐偏摩耗性:
 各試験タイヤをリムサイズ18×8.0Jのホイールに組み付けて排気量2000ccのセダンタイプの試験車両に装着し、空気圧230kPaの条件にて、10,000kmの走行試験を実施した後、センター陸部とショルダー陸部の摩耗量を測定し、両者の摩耗量比を算出した。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど耐偏摩耗性が優れていることを意味する。
 ユニフォミティー:
 各試験タイヤをユニフォミティー測定装置に装着し、ラジアルフォースバリエーション(RFV)を測定した。評価結果は、測定値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほどユニフォミティーが良好であることを意味する。
Figure JPOXMLDOC01-appb-T000001
 この表1から判るように、実施例1~5のタイヤは、従来例との対比において、ユニフォミティーの悪化を回避しながら、操縦安定性と耐偏摩耗性を改善することができた。一方、比較例1のタイヤは、操縦安定性と耐偏摩耗性の改善効果が認められるものの、ユニフォミティーの悪化が顕著であった。
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 11,14 ショルダー主溝
 12,13 センター主溝
 21,25 ショルダー陸部
 22,24 ミドル陸部
 23 センター陸部
 31,35 ラグ溝
 32,33,34 閉止溝
 L0 基準プロファイルライン
 L1 センター陸部のプロファイルライン
 L2 ミドル陸部及びショルダー陸部のプロファイルライン

Claims (7)

  1.  トレッド部におけるタイヤ赤道面の両側にタイヤ周方向に延在する一対のセンター主溝を配設し、各センター主溝のタイヤ幅方向外側にタイヤ周方向に延在するショルダー主溝を配設し、前記センター主溝の相互間にセンター陸部を区画し、前記センター主溝と前記ショルダー主溝との間にミドル陸部と区画し、前記ショルダー主溝のタイヤ幅方向外側にショルダー陸部を区画し、各ショルダー陸部にタイヤ幅方向に延びる複数本のラグ溝をタイヤ周方向に間隔をおいて配設し、これらラグ溝のピッチをタイヤ周上で変動させた空気入りタイヤにおいて、
     タイヤ子午断面視で、前記一対のセンター主溝のタイヤ幅方向両端点を通る円弧からなる基準プロファイルラインを想定したとき、前記センター陸部の踏面を規定するプロファイルラインが前記基準プロファイルラインよりもタイヤ径方向外側に突出し、前記センター主溝のタイヤ幅方向外側端点と前記ショルダー主溝のタイヤ幅方向両端点とを含み前記ミドル陸部及び前記ショルダー陸部の踏面を規定するプロファイルラインが前記基準プロファイルラインよりもタイヤ径方向外側に突出すると共に、前記ショルダー陸部における前記ラグ溝のピッチの大きさに対する前記ラグ溝の溝体積の比を、大ピッチほど小さく、小ピッチほど大きくしたことを特徴とする空気入りタイヤ。
  2.  前記基準プロファイルラインに対する前記センター陸部のプロファイルラインのタイヤ径方向外側への最大突出量が0.2mm以上0.5mm以下であることを特徴とする請求項1に記載の空気入りタイヤ。
  3.  前記基準プロファイルラインに対する前記ミドル陸部及び前記ショルダー陸部のプロファイルラインのタイヤ径方向外側への最大突出量が0.6mm以上2.0mm以下であることを特徴とする請求項1又は2に記載の空気入りタイヤ。
  4.  車両に対する装着方向が指定された空気入りタイヤにおいて、前記基準プロファイルラインに対する前記ミドル陸部及び前記ショルダー陸部のプロファイルラインのタイヤ径方向外側への最大突出量を車両内側よりも車両外側で相対的に大きくしたことを特徴とする請求項3に記載の空気入りタイヤ。
  5.  前記ショルダー陸部における前記ラグ溝のピッチの大きさに対する前記ラグ溝の溝幅の比を、大ピッチほど小さく、小ピッチほど大きくしたことを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。
  6.  前記ショルダー陸部における前記ラグ溝の溝壁角度を、大ピッチほど大きく、小ピッチほど小さくしたことを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。
  7.  前記ショルダー陸部における前記ラグ溝の溝深さを、大ピッチほど小さく、小ピッチほど大きくしたことを特徴とする請求項1~6のいずれかに記載の空気入りタイヤ。
PCT/JP2016/058073 2015-03-17 2016-03-15 空気入りタイヤ WO2016148123A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680006966.3A CN107206842B (zh) 2015-03-17 2016-03-15 充气轮胎
AU2016234380A AU2016234380B2 (en) 2015-03-17 2016-03-15 Pneumatic tire
US15/559,007 US10759231B2 (en) 2015-03-17 2016-03-15 Pneumatic tire
EP16764953.2A EP3272551B1 (en) 2015-03-17 2016-03-15 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053586A JP6302861B2 (ja) 2015-03-17 2015-03-17 空気入りタイヤ
JP2015-053586 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148123A1 true WO2016148123A1 (ja) 2016-09-22

Family

ID=56918985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058073 WO2016148123A1 (ja) 2015-03-17 2016-03-15 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10759231B2 (ja)
EP (1) EP3272551B1 (ja)
JP (1) JP6302861B2 (ja)
CN (1) CN107206842B (ja)
AU (1) AU2016234380B2 (ja)
WO (1) WO2016148123A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072206B2 (en) 2018-01-17 2021-07-27 Toyo Tire Corporation Pneumatic tire
US11951772B2 (en) 2017-11-20 2024-04-09 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551506B2 (ja) * 2017-12-28 2019-07-31 横浜ゴム株式会社 空気入りタイヤ
JP7013251B2 (ja) * 2018-01-17 2022-02-15 Toyo Tire株式会社 空気入りタイヤ
JP6610717B1 (ja) * 2018-07-02 2019-11-27 横浜ゴム株式会社 空気入りタイヤ
DE112019002523T5 (de) * 2018-07-02 2021-03-18 The Yokohama Rubber Co., Ltd. Luftreifen
EP3795387B1 (en) * 2018-08-09 2023-06-07 Bridgestone Corporation Motorcycle tire
JP6835110B2 (ja) * 2019-01-31 2021-02-24 横浜ゴム株式会社 空気入りタイヤ
JP7360020B2 (ja) * 2019-08-15 2023-10-12 横浜ゴム株式会社 空気入りタイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172107A (ja) * 1993-12-20 1995-07-11 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2003118317A (ja) * 2001-10-15 2003-04-23 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2004210133A (ja) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The 空気入りタイヤ、その製造方法および成形金型
JP2009113768A (ja) * 2007-11-09 2009-05-28 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011152845A (ja) * 2010-01-27 2011-08-11 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012025192A (ja) * 2010-07-20 2012-02-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2015145909A1 (ja) * 2014-03-27 2015-10-01 横浜ゴム株式会社 空気入りタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341204A (ja) * 1986-08-06 1988-02-22 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
US5238038A (en) * 1990-09-04 1993-08-24 The Goodyear Tire & Rubber Company Pneumatic tire
IT1284979B1 (it) * 1996-10-18 1998-05-28 Pirelli Coodinamento Pneumatic Pneumatico con migliorate prestazioni e relativi motodo e stampo di fabbricazione
JP2002029216A (ja) 2000-07-19 2002-01-29 Bridgestone Corp 空気入りタイヤおよびそれの装着方法
DE60327332D1 (de) * 2002-07-30 2009-06-04 Bridgestone Corp Pneumatischer reifen
JP4102151B2 (ja) 2002-10-01 2008-06-18 住友ゴム工業株式会社 空気入りタイヤ
JP4408236B2 (ja) 2004-03-22 2010-02-03 株式会社ブリヂストン 空気入りタイヤ
JP4857703B2 (ja) * 2005-10-14 2012-01-18 横浜ゴム株式会社 空気入りタイヤ
CN101454167B (zh) * 2006-11-24 2010-12-29 横滨橡胶株式会社 充气轮胎
JP5387707B2 (ja) * 2012-03-14 2014-01-15 横浜ゴム株式会社 空気入りタイヤ
JP5972618B2 (ja) * 2012-03-16 2016-08-17 東洋ゴム工業株式会社 空気入りタイヤ
JP5746681B2 (ja) 2012-12-19 2015-07-08 住友ゴム工業株式会社 空気入りタイヤ
EP2960079B1 (en) 2013-02-25 2018-01-10 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP6186147B2 (ja) * 2013-03-22 2017-08-23 東洋ゴム工業株式会社 空気入りタイヤ
JP6526402B2 (ja) * 2014-10-27 2019-06-05 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172107A (ja) * 1993-12-20 1995-07-11 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2003118317A (ja) * 2001-10-15 2003-04-23 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2004210133A (ja) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The 空気入りタイヤ、その製造方法および成形金型
JP2009113768A (ja) * 2007-11-09 2009-05-28 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011152845A (ja) * 2010-01-27 2011-08-11 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012025192A (ja) * 2010-07-20 2012-02-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2015145909A1 (ja) * 2014-03-27 2015-10-01 横浜ゴム株式会社 空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951772B2 (en) 2017-11-20 2024-04-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11072206B2 (en) 2018-01-17 2021-07-27 Toyo Tire Corporation Pneumatic tire

Also Published As

Publication number Publication date
CN107206842B (zh) 2019-05-14
EP3272551A4 (en) 2018-09-12
CN107206842A (zh) 2017-09-26
AU2016234380B2 (en) 2019-08-08
AU2016234380A1 (en) 2017-09-07
EP3272551B1 (en) 2019-11-06
US10759231B2 (en) 2020-09-01
US20180079258A1 (en) 2018-03-22
EP3272551A1 (en) 2018-01-24
JP2016172499A (ja) 2016-09-29
JP6302861B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6302861B2 (ja) 空気入りタイヤ
JP6375851B2 (ja) 空気入りタイヤ
JP6375850B2 (ja) 空気入りタイヤ
WO2020009049A1 (ja) 空気入りタイヤ
JP6798620B2 (ja) 空気入りタイヤ
JP2017065625A (ja) 空気入りタイヤ
JP2016055722A (ja) 空気入りタイヤ
JP6634710B2 (ja) 空気入りタイヤ
US20220055411A1 (en) Pneumatic tire
JP2016055723A (ja) 空気入りタイヤ
JP2016055727A (ja) 空気入りタイヤ
JP2018161998A (ja) 空気入りタイヤ
JP2017190078A (ja) 空気入りタイヤ
JP2016002983A (ja) 空気入りタイヤ
JP6350002B2 (ja) 空気入りタイヤ
JP6350001B2 (ja) 空気入りタイヤ
JP6634709B2 (ja) 空気入りタイヤ
JP2016055725A (ja) 空気入りタイヤ
JP2016055721A (ja) 空気入りタイヤ
JP7215400B2 (ja) 空気入りタイヤ
JP2016002984A (ja) 空気入りタイヤ
JP6340946B2 (ja) 空気入りタイヤ
JP2016055724A (ja) 空気入りタイヤ
JP2016055726A (ja) 空気入りタイヤ
JP2016002988A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016234380

Country of ref document: AU

Date of ref document: 20160315

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764953

Country of ref document: EP