WO2016147943A1 - 扁平状軟磁性粉末及びその製造方法 - Google Patents

扁平状軟磁性粉末及びその製造方法 Download PDF

Info

Publication number
WO2016147943A1
WO2016147943A1 PCT/JP2016/057093 JP2016057093W WO2016147943A1 WO 2016147943 A1 WO2016147943 A1 WO 2016147943A1 JP 2016057093 W JP2016057093 W JP 2016057093W WO 2016147943 A1 WO2016147943 A1 WO 2016147943A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
powder
soft magnetic
less
flat
Prior art date
Application number
PCT/JP2016/057093
Other languages
English (en)
French (fr)
Inventor
文宏 前澤
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to CN201680004158.3A priority Critical patent/CN107004481B/zh
Priority to US15/558,250 priority patent/US10576539B2/en
Priority to KR1020177015544A priority patent/KR102340122B1/ko
Publication of WO2016147943A1 publication Critical patent/WO2016147943A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a soft magnetic flat powder used for a magnetic sheet for noise suppression used in various electronic devices and a method for producing the same.
  • a magnetic sheet containing a soft magnetic flat powder has been used as an electromagnetic wave absorber and an RFID (Radio Frequency Identification) antenna.
  • RFID Radio Frequency Identification
  • This digitizer includes an electromagnetic induction type as disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-22661 (Patent Document 1), and a high-frequency signal transmitted from a coil built in the tip of a pen-shaped position indicator is The indicated position is detected by reading with a loop coil built in the panel-shaped position detector.
  • a sheet serving as a magnetic path of the high-frequency signal is disposed on the back surface of the loop coil.
  • a magnetic sheet in which a soft magnetic flat powder is oriented in a resin or rubber, a sheet in which a soft magnetic amorphous alloy foil is bonded, or the like is applied.
  • the entire detection panel can be made into one sheet, so that excellent uniformity can be obtained without any detection failure at the bonded portion such as an amorphous foil.
  • Patent Document 2 As a method of increasing the major axis of a soft magnetic flat powder and producing a flat powder having a high aspect ratio, the organic solvent has 2 carbon atoms. A method of performing flattening using 1 to 4 monohydric alcohols has been proposed.
  • JP 2011-22661 A Japanese Patent No. 4636113
  • Patent Document 2 discloses the coercive force as an index of magnetic characteristics, and the index of the aspect ratio as 50% particle diameter D 50 ( ⁇ m) and coercive force Hc (A / m) of the flat soft magnetic alloy powder.
  • BD bulk density
  • Hc coercive force
  • the coercive force is the smallest in the state of spherical powder and tends to increase as the processing proceeds.
  • the cause of the transition of the coercive force is considered to be the distortion of the crystal grain size accompanying the processing and the increase in the oxygen content due to oxidation from the surrounding water.
  • the former can be improved by heat treatment, but the latter reacts with the surface texture of the powder even with a very small amount of water, and therefore it is very difficult to prevent an increase in the oxygen content during processing. For the above reasons, there is a limit to the magnetic permeability obtained with the conventional flat powder.
  • an object of the present invention is to provide a soft magnetic flat powder capable of realizing a particularly high magnetic permeability when used as a magnetic sheet and a method for producing the same.
  • a flat powder made of an Fe—Si—Al-based alloy having an average particle size of 43 to 60 ⁇ m and a coercive force Hc measured by applying a magnetic field in the longitudinal direction of the flat powder is 106 A. / M or less, ratio of tap density to true density is 0.17 or less, oxygen content is 0.6 mass% or less, manganese content is in the range of 0.1 mass% or more and 1.0 mass% or less, and the balance Is provided with a soft magnetic flat powder, which consists entirely of inevitable impurities.
  • Raw material powder production process by gas atomization method or disk atomization method A flattening process for flattening the raw material powder; Heat treating the flattened powder in a vacuum or argon atmosphere at 700 to 900 ° C .; A method for producing the soft magnetic flat powder is provided.
  • Soft flat powder of the soft magnetic flat powder present invention consists Fe-Si-Al alloy powder, the average particle diameter D 50 is 43 ⁇ 60 [mu] m. If the average particle size is less than 43 ⁇ m, it is difficult to obtain a flat powder having a high aspect ratio, and the real part permeability ⁇ ′ tends to be low. Moreover, since it will become difficult to form a sheet if the average particle size becomes too large, it is not preferable.
  • the average particle diameter D 50 is preferably 50 to 60 ⁇ m, particularly preferably 51 to 58 ⁇ m.
  • the soft magnetic flat powder of the present invention has a coercive force Hc measured by applying a magnetic field in the longitudinal direction of 106 A / m or less.
  • the coercive force Hc is preferably 90 A / m or less, more preferably 80 A / m or less.
  • the lower limit of the coercive force is not particularly limited, but typically it is preferably higher than 40 A / m in terms of production conditions.
  • the ratio of the tap density to the true density of the soft magnetic flat powder of the present invention is 0.17 or less.
  • the ratio of tap density to true density is preferably 0.14 or less, more preferably 0.11 or less.
  • the lower limit of the tap density is not particularly limited, but is typically 0.07 or more. The tap density tends to monotonously decrease as the processing progresses, and long time processing may lead to a decrease in average particle size and an increase in coercive force.
  • the soft magnetic flat powder of the present invention has an oxygen concentration of 0.6% by mass or less.
  • the existence form of oxygen in the soft magnetic flat powder is considered to have two forms, a grain boundary precipitated oxide and a powder surface oxide, both of which are considered to be causes of an increase in coercive force. It is not preferable that the concentration is too high.
  • the oxygen concentration is preferably 0.4% by mass or less, more preferably 0.3% by mass or less.
  • the lower limit of the oxygen concentration is not particularly limited, but is typically 0.1% by mass or more.
  • the amount of grain boundary precipitated oxide can be lowered by suppressing the oxidation in the preparation process of the raw soft magnetic spherical powder during the production of the soft magnetic flat powder and the flat working process. Moreover, the amount of powder surface oxides can be lowered by suppressing oxidation in the flattening process and the heat treatment process.
  • Zener in the steady grain growth model, when the grain size of the structure does not grow any more, the driving force for grain growth and the pinning force by fine secondary particles are equal, and the grain radius is It is proportional to the ratio of (radius of dispersed particles / phase volume fraction of dispersed particles). Details are unknown, but the low oxygen content means that the coercive force is low because the oxide pinning effect is difficult to inhibit the grain growth during heat treatment, which is advantageous in terms of magnetic properties. It is thought that it becomes.
  • the soft magnetic flat powder of the present invention has a manganese concentration of 0.1% by mass or more and 1.0% by mass or less. As described above, it is considered that there are two forms of oxygen in the soft magnetic flat powder, that is, grain boundary precipitated oxide and powder surface oxide. Although details are unknown, we think about the action of manganese as follows. That is, in the conventional Sendust flat powder having a low manganese concentration, there are innumerable fine oxides of Fe, Si, and Al. On the other hand, flat powder containing an appropriate concentration of manganese preferentially adsorbs oxygen originally contained in sendust, and manganese exists as manganese oxide. Since the pinning effect hardly occurs, the coercive force is lowered, which is considered advantageous in terms of magnetic characteristics.
  • the manganese concentration is preferably 0.3 mass% or more and 0.7 mass% or less, more preferably 0.4 mass% or more and 0.6 mass% or less.
  • the soft magnetic flat powder of the present invention can be produced by flattening a soft magnetic alloy powder (raw material powder).
  • the soft magnetic alloy powder is preferably a powder having a low coercive force value, and more preferably a powder having a high saturation magnetization value. In general, it is an Fe—Si—Al alloy that has excellent coercive force and saturation magnetization.
  • Soft magnetic alloy powder is produced by various atomizing methods such as a gas atomizing method and a water atomizing method. Since it is more preferable that the amount of oxygen contained in the soft magnetic alloy powder is small, production by a gas atomization method is preferred, and production using an inert gas is more preferred. Although the disk atomizing method can be used for manufacturing without problems, the gas atomizing method is superior from the viewpoint of mass productivity.
  • the particle size of the soft magnetic alloy powder used in the present invention is not particularly limited, depending on the purpose of adjusting the average particle size after flattening, the purpose of removing powder with a large amount of oxygen content, and other manufacturing purposes, It may be classified.
  • the soft magnetic alloy powder (raw material powder) is flattened.
  • the flat processing method For example, it can carry out using an attritor, a ball mill, a vibration mill, etc. Among these, it is preferable to use an attritor that is relatively excellent in flat processing ability.
  • an inert gas when performing a dry process, it is preferable to use an organic solvent.
  • the type of organic solvent is not particularly limited.
  • the amount of the organic solvent added is preferably 100 parts by mass or more and more preferably 200 parts by mass or more with respect to 100 parts by mass of the soft magnetic alloy powder.
  • the upper limit of the organic solvent is not particularly limited, and can be appropriately adjusted according to the desired flat powder size / shape and the balance of productivity, but is typically 500 parts by mass or less.
  • the water concentration in the organic solvent is preferably 0.002 parts by mass or less with respect to 100 parts by mass of the organic solvent.
  • a flattening aid may be used together with the organic solvent, it is preferably 5 parts by mass or less with respect to 100 parts by mass of the soft magnetic alloy powder in order to suppress oxidation.
  • the lower limit is not particularly limited, but is typically 0.1 parts by mass or more.
  • the soft magnetic flat powder is heat-treated.
  • the heat treatment apparatus is not particularly limited, but the heat treatment temperature is preferably 700 ° C. to 900 ° C. By performing the heat treatment at the corresponding temperature, the coercive force is lowered and a soft magnetic flat powder with high permeability is obtained.
  • limiting in particular about heat processing time It is good to select suitably according to a processing amount and productivity. In the case of long-time heat treatment, the productivity is lowered, and therefore within 5 hours is preferable.
  • the soft magnetic flat powder used in the present invention is preferably heat-treated in vacuum or in an inert gas in order to suppress oxidation.
  • heat treatment may be performed in a gas in nitrogen. In this case, the coercive force value increases, and the magnetic permeability tends to decrease as compared with the case of heat treatment in vacuum.
  • surface-treated powder may be suitable, and the powder produced by the flat processing method of the present invention may be used during the heat treatment process or before and after the heat treatment process.
  • a surface treatment step may be added as necessary.
  • heat treatment may be performed in an atmosphere containing a small amount of active gas.
  • Magnetic Sheet Manufacturing Method can also be performed by a conventionally proposed method. For example, it can be produced by mixing a flat powder with a solution obtained by dissolving chlorinated polyethylene or the like in toluene, and applying and drying the mixture with various presses or rolls.
  • a powder having a predetermined component was prepared by a gas atomizing method or a disk atomizing method, and classified to 150 ⁇ m or less.
  • Gas atomization was performed by using an alumina crucible for melting, discharging molten alloy from a nozzle having a diameter of 5 mm under the crucible, and spraying high pressure argon on the molten alloy.
  • the obtained raw material powder was flattened by an attritor.
  • the attritor used a ball of 4.8 mm in diameter made by SUJ2, was put into a stirring vessel together with the raw material powder and industrial ethanol, and the flattening process was carried out at a blade rotation speed of 300 rpm.
  • the amount of industrial ethanol added was 200 to 500 parts by mass with respect to 100 parts by mass of the raw material powder.
  • the flattening aid was not added, or 1 to 5 parts by mass with respect to 100 parts by mass of the raw material powder.
  • the flat powder and industrial ethanol taken out from the stirring vessel after flattening were transferred to a stainless steel dish and dried at 80 ° C. for 24 hours.
  • the flat powder thus obtained was heat-treated at 700 to 900 ° C. for 2 hours in vacuum or argon and used for various evaluations. Table 1 shows the detailed conditions when producing the flat powder.
  • ⁇ Evaluation of flat powder> The average particle diameter, true density, tap density, oxygen content, nitrogen content, and coercive force of the obtained flat powder were evaluated.
  • the average particle size was evaluated by a laser diffraction method, and the true density was evaluated by a gas displacement method.
  • the tap density was evaluated based on the packing density when about 20 g of flat powder was filled in a cylinder having a volume of 100 cm 3 and the drop height was 10 mm and the number of taps was 200 times.
  • the coercive force was measured by filling a flat container with a resin container having a diameter of 6 mm and a height of 8 mm, and magnetizing in the height direction and magnetizing in the diameter direction.
  • the flat powder is flattened when magnetized in the height direction of the container and flattened when magnetized in the thickness direction of the flat powder and in the diameter direction of the container. It becomes the coercive force in the longitudinal direction of the powder.
  • the applied magnetic field was 144 kA / m.
  • permeability real part of complex permeability: ⁇ ′ .
  • the cross section of the obtained magnetic sheet was resin-filled and polished, and from the optical microscope image, 50 powders were measured at random in the longitudinal direction length and thickness, and the ratio of the longitudinal length and thickness was averaged. The aspect ratio was used.
  • No. 22 to 40 comparative example Except that the conditions during the production of the flat powder were as shown in Table 2, the production and evaluation of the flat powder and the production and evaluation of the magnetic sheet were conducted as No. 1 The same procedure as in 1 to 21 was performed.
  • Comparative Example No. shown in Table 2 22 is producing the raw material powder by water atomization. For this reason, the oxygen content of the flat powder becomes high, so the magnetic permeability does not improve. Comparative Example No. In No. 23, the processing time is extended due to the influence of the excessive addition of the flattening aid, and as a result, the amount of oxygen contained increases, so the magnetic permeability does not improve. Comparative Example No. No. 24 is heat-treated in an air atmosphere, and the oxygen content is high, so the magnetic permeability does not improve. Comparative Example No. No. 25 has a high oxygen content and does not improve the permeability value.
  • Comparative Example No. Nos. 26 to 28 have a higher raw material powder amount / solvent amount ratio than the examples. Therefore, the average particle diameter does not improve and the magnetic permeability does not improve. Comparative Example No. In No. 29, the average particle size is lowered by long-time processing, and the oxygen content is increased, so the magnetic permeability is not improved. Comparative Example No. No. 30 does not improve the average particle size and does not increase the magnetic permeability. Comparative Example No. Since 31 is not heat-treated and the coercive force does not decrease, the magnetic permeability is not improved.
  • Comparative Example No. In Nos. 32 to 33, the heat treatment temperature is lower and the coercive force is not lowered compared to the example, so that the magnetic permeability is not improved. Comparative Example No. No. 34 has a higher heat treatment temperature than that of the example, and the permeability is not improved due to an increase in tap density ratio and coercive force due to powder aggregation. Comparative Example No. Compared with the example 35, 35 has a short processing time and is not sufficiently flattened, so the magnetic permeability is not improved. Comparative Example No. Since 36 is heat-treated in a nitrogen atmosphere and has a high coercive force, the magnetic permeability is not improved.
  • Comparative Example No. No. 37 contains less manganese than in the examples, the coercive force is not lowered, and the magnetic permeability is not improved. Comparative Example No. No. 38 has an excessive amount of manganese compared to the examples, the coercive force is not lowered, and the magnetic permeability is not improved. Comparative Example No. No. 39 has a higher coercive force than the embodiment and does not improve the magnetic permeability.
  • Comparative Example No. No. 40 has a larger average particle size D 50 than the examples. Therefore, sheet formation becomes difficult, the orientation of the flat powder is lowered, and the magnetic permeability is lowered.
  • Example No. 1 to 21 are soft magnetic flat powders that satisfy the conditions according to the present invention. By using this soft magnetic flat powder, a magnetic sheet for an electromagnetic wave absorber having a sufficiently high magnetic permeability can be produced. It turns out that there is an effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 Fe-Si-Al系合金からなる扁平粉末であって、平均粒径が43~60μm、扁平粉末の長手方向に磁場を印加して測定した保磁力Hcが106A/m以下、真密度に対するタップ密度の比が0.17以下、酸素含有量が0.6質量%以下、マンガン含有量が0.1質量%以上1.0質量%以下の範囲であり、残部はすべて不可避不純物からなることを特徴とする軟磁性扁平粉末及びその製造方法が提供される。この軟磁性扁平粉末は、磁性シートとして用いる場合に、特に高い透磁率を実現できる。

Description

扁平状軟磁性粉末及びその製造方法
 本発明は、各種の電子デバイスに用いられる、ノイズ抑制用磁性シートに用いられる軟磁性扁平粉末及びその製造方法に関する。
 従来、軟磁性扁平粉末を含有する磁性シートは、電磁波吸収体、RFID(Radio Frequency Identification)用アンテナとして用いられてきた。また、近年では、デジタイザと呼ばれる位置検出装置にも用いられるようになってきている。このデジタイザには、例えば特開2011-22661号公報(特許文献1)のような電磁誘導型のものがあり、ペン形状の位置指示器の先に内蔵されるコイルより発信された高周波信号を、パネル状の位置検出器に内蔵されたループコイルにより読み取ることで指示位置を検出する。
 ここで、検出感度を高める目的で、ループコイルの背面には高周波信号の磁路となるシートが配置される。この磁路となるシートとしては、軟磁性扁平粉末を樹脂やゴム中に配向させた磁性シートや、軟磁性アモルファス合金箔を貼り合わせたものなどが適用される。磁性シートを用いる場合は、検出パネル全体を1枚のシートに出来るため、アモルファス箔のような貼り合せ部での検出不良などがなく優れた均一性が得られる。
 従来より、磁性シートには、Fe-Si-Al合金、Fe-Si合金、Fe-Ni合金、Fe-Al合金、Fe-Cr合金などからなる粉末を、アトライタ(アトリッションミル)などにより扁平化したものが添加されてきた。これは、高い透磁率の磁性シートを得るために、いわゆる「Ollendorffの式」からわかるように、透磁率の高い軟磁性粉末を用いること、反磁界を下げるため磁化方向に高いアスペクト比を持つ扁平粉末を用いること、磁性シート中に軟磁性粉末を高充填することが重要であるためである。特に高いアスペクト比は重要な因子と考えられており、多くの場合、最大のアスペクト比が得られるアトライタ加工条件が採用されている。
 例えば、特許第4636113号公報(特許文献2)に開示されているように、軟磁性扁平粉末の長径を大きくし、アスペクト比の高い扁平状の粉末を作製する方法として、有機溶媒が炭素数2~4の1価アルコールを用いて扁平加工を実施する方法が提案されている。
特開2011-22661号公報 特許第4636113号公報
 上述したように、特許文献2は、磁気特性の指標として保磁力を、アスペクト比の指標として、扁平状軟磁性合金粉末の50%粒子径D50(μm)、保磁力Hc(A/m)およびかさ密度BD(Mg/m)を用いて、式D50/(Hc+BD)≧1.5なる一定以上の粉末が、高い透磁率が得られるとしている。しかしながら、これらの数値は、いずれも加工状態によって大きく変動する数値である。センダストはSi、Al成分を多く含有するため、純Feと比べて非常に脆い粉末である。そのため加工が進みすぎるとD50は低下する傾向にある。逆に扁平粉のD50が大きくなるほど、薄片化するためには時間を要するため、加工が進まないとかさ密度は低下しない。
 また、保磁力は球状粉の状態が最も小さく、加工が進むにつれ増加する傾向にある。保磁力がこのような推移をする原因としては、加工に伴う結晶粒径の歪と、周辺の水分からの酸化による含有酸素量の増加と考えられる。前者は熱処理で改善することが可能であるが、後者は極微量の水分でも粉末の表面組織と反応するため、加工中の含有酸素量の増大を防ぐことは非常に困難である。以上の理由により、従来の扁平粉では得られる透磁率に限界があった。
 そこで発明者らは、原料となる球状粉末の成分に着目し、マンガン含有量に応じて、保磁力、ひいては透磁率が変化することを見出した。したがって、本発明の目的は、磁性シートとして用いる場合に、特に高い透磁率を実現できる軟磁性扁平粉末及びその製造方法を提供することにある。
 本発明の一態様によれば、Fe-Si-Al系合金からなる扁平粉末であって、平均粒径が43~60μm、扁平粉末の長手方向に磁場を印加して測定した保磁力Hcが106A/m以下、真密度に対するタップ密度の比が0.17以下、酸素含有量が0.6質量%以下、マンガン含有量が0.1質量%以上1.0質量%以下の範囲であり、残部はすべて不可避不純物からなる、軟磁性扁平粉末が提供される。
 上述した条件を満足する軟磁性扁平粉末を用いることによって、透磁率が十分に高い電磁波吸収体用磁性シートを作製することが出来る。ここで、高周波における透磁率μは実数部μ’と虚数部μ’’によって複素透磁率(μ=μ’―jμ’’)で表すことができるが、μの最大値が大きいほどμ’’の値も大きくなる傾向にある。
 本発明の他の一態様によれば、
 ガスアトマイズ法またはディスクアトマイズ法による原料粉末作製工程と、
 前記原料粉末を扁平化する扁平加工工程と、
 前記扁平加工された粉末を真空またはアルゴン雰囲気で、700~900℃で熱処理する工程と、
を備えた、前記軟磁性扁平粉末の製造方法が提供される。
 軟磁性扁平粉末
 本発明の軟磁性扁平粉末は、Fe-Si-Al系合金粉末からなり、その平均粒径D50が43~60μmである。平均粒径が43μm未満では、アスペクト比の高い扁平粉が得られ難く、実部透磁率μ’が低くなる傾向がある。また、平均粒径が大きくなりすぎると、シート成型が困難になるため好ましくない。平均粒径D50は、好ましくは50~60μm、特に好ましくは51~58μmである。
 また、本発明の軟磁性扁平粉末は、その長手方向に磁場を印可して測定した保磁力Hcが106A/m以下である。この範囲において、保磁力の値が低いほど、透磁率はより高くなる傾向にある。保磁力Hcは、好ましくは90A/m以下、より好ましくは80A/m以下である。保磁力の下限は特に限定されないが、典型的には、製造条件上40A/mより高いのが好ましい。
 さらに、本発明の軟磁性扁平粉末は、その真密度に対するタップ密度の比が0.17以下である。真密度に対するタップ密度の比は、好ましくは0.14以下、より好ましくは0.11以下である。タップ密度の下限は特に限定されないが、典型的には0.07以上である。タップ密度は加工が進むほど単調低下する傾向にあり、長時間の加工は、平均粒径の低下と保磁力の上昇をもたらすことがある。
 本発明の軟磁性扁平粉末は、その含有酸素濃度が0.6質量%以下である。軟磁性扁平粉末中の酸素の存在形態は、粒界析出酸化物と粉末表面酸化物の2通りの形態があると考えられるが、どちらも保磁力の上昇をもたらす原因と考えられるため、含有酸素濃度が高すぎるのは好ましくない。含有酸素濃度は、好ましくは0.4質量%以下、より好ましくは0.3質量%以下である。含有酸素濃度の下限は特に限定されないが、典型的には0.1質量%以上である。
 粒界析出酸化物量は、軟磁性扁平粉末製造時の原料軟磁性球状粉の準備工程と、扁平加工工程における酸化を抑えることで低くすることができる。また、粉末表面酸化物量は扁平加工工程と熱処理工程における酸化を抑えることで低くすることができる。Zenerによれば、定常粒成長のモデルにおいて、組織の結晶粒のサイズがそれ以上成長しないとき、粒成長の駆動力と微細な二次粒子によるピン止め力が等しくなっていて、結晶粒半径は(分散粒子の半径/分散粒子の相体積分率)の比に比例する。詳細は不明であるが、含有酸素量が少ないということは、熱処理時の粒成長を阻害する、酸化物のピン止め効果が発生しにくいために、保磁力が低くなり、磁気特性の面で有利になると考えられる。
 本発明の軟磁性扁平粉末は、その含有マンガン濃度が0.1質量%以上1.0質量%以下である。上述のように、軟磁性扁平粉末中の酸素の存在形態は、粒界析出酸化物と粉末表面酸化物の2通りの形態があると考えられる。詳細は不明であるが、マンガンの作用について、我々は次のように考えている。すなわち、含有マンガン濃度の小さい従来のセンダスト扁平粉では、Fe,Si,Al系の微細な酸化物が無数に存在する。対して、適切な濃度のマンガンを含有する扁平粉は、本来センダストに含有される酸素を優先的に吸着し、マンガンがマンガン酸化物として存在する。ピン止め効果が発生しにくいために、保磁力が低くなり、磁気特性の面で有利になると考えられる。含有マンガン濃度は、好ましくは0.3質量%以上0.7質量%以下、より好ましくは0.4質量%以上0.6質量%以下である。
 軟磁性扁平粉末の製造方法
 次に、本発明の軟磁性扁平粉末の製造方法について説明する。
<軟磁性合金粉末(原料粉末)準備工程>
 本発明の軟磁性扁平粉末は、軟磁性合金粉末(原料粉末)を扁平化処理することで作製することができる。軟磁性合金粉末は、保磁力の値が低い粉末であることが好ましく、飽和磁化の値が高い粉末であることがより好ましい。一般的に、保磁力と飽和磁化の値が優れているのは、Fe-Si-Al系合金である。
 軟磁性合金粉末は、ガスアトマイズ法、水アトマイズ法といった各種アトマイズ法によって作製される。軟磁性合金粉末の含有酸素量は、少ないほうがより好ましいため、ガスアトマイズ法による製造が好ましく、さらに不活性ガスを用いての製造がより好ましい。ディスクアトマイズ法による方法でも問題なく製造出来るが、量産性の観点からは、ガスアトマイズ法が優れている。本発明に用いられる軟磁性合金粉末の粒度は特に限定されないが、扁平後の平均粒径を調整する目的もしくは、含有酸素量の多い粉を除去する目的、その他、製造上の目的に応じて、分級されてもよい。
<扁平加工処理工程>
 次に、上記軟磁性合金粉末(原料粉末)を扁平化する。扁平加工方法は、特に制限は無く、例えば、アトライタ、ボールミル、振動ミル等を用いて行うことができる。中でも、比較的扁平加工能力に優れるアトライタを用いることが好ましい。また、乾式で加工を行う場合は、不活性ガスを用いることが好ましい。湿式で加工する場合は、有機溶媒を用いることが好ましい。有機溶媒の種類については特に限定されない。
 有機溶媒の添加量は、軟磁性合金粉末100質量部に対して、100質量部以上であることが好ましく、200質量部以上であることがより好ましい。有機溶媒の上限は特に限定されず、求める扁平粉の大きさ・形状と、生産性のバランスに応じて適宜調整が可能であるが、典型的には500質量部以下である。酸素を低くするために、有機溶媒中の水分濃度は、有機溶媒100質量部に対して、0.002質量部以下での加工が好ましい。有機溶媒とともに扁平化助剤を用いてもよいが、酸化を抑えるために、軟磁性合金粉末100質量部に対して、5質量部以下であることが好ましい。下限は特に限定はされないが、典型的には0.1質量部以上である。
<熱処理工程>
 次に、上記軟磁性扁平粉末を熱処理する。熱処理装置について特に制限は無いが、熱処理温度は700℃~900℃の条件で熱処理されることが好ましい。該当温度で熱処理を行うことによって、保磁力が低下し、高透磁率の軟磁性扁平粉末となる。また、熱処理時間について特に制限は無く、処理量や生産性に応じて適宜選択されるとよい。長時間の熱処理の場合、生産性が低下するため、5時間以内が好適である。
 本発明に用いられる軟磁性扁平粉末においては、酸化を抑えるために、真空中あるいは不活性ガス中で熱処理されることが好ましい。表面処理の観点から、窒素中ガス中で熱処理されてもよいが、その場合は保磁力の値が上昇し、透磁率は真空で熱処理された場合に比べて低下する傾向にある。
 また、シート成型後の絶縁性を高めるなどの観点においては、表面処理された粉末が好適となる場合があり、本発明の扁平加工方法で製造された粉末について、熱処理工程中あるいは熱処理工程の前後において、表面処理工程を必要に応じて加えても良い。たとえば表面処理のために、活性ガスを微量に含む雰囲気下で熱処理されてもよい。
 また、従来から提案されているシアン系カップリング剤に代表される表面処理により、耐食性やゴムへの分散性を改善することも可能である。
 磁性シートの製造方法
 磁性シートの製造方法も従来提案されている方法で可能である。例えば、トルエンに塩素化ポリエチレンなどを溶解したものに扁平粉末を混合し、これを塗布、乾燥させたものを各種のプレスやロールで圧縮することで製造可能である。
 本発明を以下の例によってさらに具体的に説明する。
 No.1~21(実施例)
<扁平粉末の作製>
 ガスアトマイズ法あるいはディスクアトマイズ法により所定の成分の粉末を作製し150μm以下に分級した。ガスアトマイズは、アルミナ製坩堝を溶解に用い、坩堝下の直径5mmのノズルから合金溶湯を出湯し、これに高圧アルゴンを噴霧することで実施した。得られた原料粉末をアトライタにより扁平加工した。アトライタは、SUJ2製の直径4.8mmのボールを使用し、原料粉末と工業エタノールとともに攪拌容器に投入し、羽根の回転数を300rpmとして扁平加工を実施した。工業エタノールの添加量は、原料粉末100質量部に対し、200~500質量部とした。扁平化助剤は、添加しないか、もしくは、原料粉末100質量部に対し、1~5質量部とした。扁平加工後に攪拌容器から取り出した扁平粉末と工業エタノールをステンレス製の皿に移し、80℃で24時間乾燥させた。このようにして得た扁平粉末を真空中あるいはアルゴン中で、700~900℃で2時間熱処理し、各種の評価に用いた。なお、表1に扁平粉作製時の詳細な条件を示す。
<扁平粉末の評価>
 得られた扁平粉末の平均粒径、真密度、タップ密度、酸素含有量、窒素含有量、保磁力を評価した。平均粒径はレーザー回折法、真密度はガス置換法で評価した。タップ密度は、約20gの扁平粉末を、容積100cmのシリンダーに充填し、落下高さ10mmタップ回数200回とした時の充填密度で評価した。保磁力は直径6mm、高さ8mmの樹脂製容器に扁平粉末を充填し、この容器の高さ方向に磁化した場合と、直径方向に磁化した場合の値を測定した。なお、扁平粉末は充填された円柱の高さ方向が厚さ方向となっているため、容器の高さ方向に磁化した場合が扁平粉末の厚さ方向、容器の直径方向に磁化した場合が扁平粉末の長手方向の保磁力となる。印加磁場は144kA/mで実施した。
<磁性シートの作製及び評価>
 トルエンに塩素化ポリエチレンを溶解し、これに得られた扁平粉末を混合分散した。この分散液をポリエステル樹脂に厚さ100μm程度に塗布し常温常湿で乾燥させた。その後、130℃、15MPaの圧力でプレス加工し磁性シートを得た。磁性シートのサイズは150mm角で厚さは50μmである。なお、磁性シート中の扁平粉末の体積充填率はいずれも約50%であった。次に、この磁性シートを、外径7mm、内径3mmのドーナツ状に切り出し、インピーダンス測定器により、室温で1MHzにおけるインピーダンス特性を測定し、その結果から透磁率(複素透磁率の実数部:μ’)を算出した。さらに、得られた磁性シートの断面を樹脂埋め研磨し、その光学顕微鏡像から、長手方向の長さと厚さとをランダムに50粉末測定し、この長手方向の長さと厚さの比を平均してアスペクト比とした。
 No.22~40(比較例)
 扁平粉作製時の条件を表2に示すとおりとした以外は、扁平粉の作製及び評価、並びに磁性シートの作製及び評価を、No.1~21と同様にして行なった。
 以上、本発明を実施例に基づいて説明したが、本発明はこの実施例に特に限定されない。表1及び2に評価結果を示す。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す比較例No.22は水アトマイズで原料粉を作製している。そのため扁平粉の含有酸素量が高くなるために透磁率の値が向上しない。比較例No.23は扁平化助剤が過剰に添加されている影響で加工時間が延び、結果的に含有酸素量が高くなるため、透磁率の値が向上しない。比較例No.24は大気雰囲気下で熱処理されていて、含有酸素量が高くなるため、透磁率の値が向上しない。比較例No.25は含有酸素量が高く、透磁率の値が向上しない。
 比較例No.26~28は実施例と比較して、原料粉量/溶媒量比が高い。そのために平均粒径が向上せず、透磁率が向上しない。比較例No.29は長時間の加工により平均粒径が低下している上に、含有酸素量が増大しているために透磁率が向上しない。比較例No.30は平均粒径が向上せず、透磁率が増大しない。比較例No.31は熱処理されておらず、保磁力が低下しないため透磁率が向上しない。
 比較例No.32~33は実施例と比較して、熱処理温度が低く、保磁力が低下しないため、透磁率が向上しない。比較例No.34は実施例と比較して、熱処理温度が高く、粉末の凝集によるタップ密度比及び保磁力の増大により、透磁率が向上しない。比較例No.35は実施例と比較して、加工時間が短く十分に扁平化していないため、透磁率が向上しない。比較例No.36は窒素雰囲気下で熱処理されており、保磁力が高いため、透磁率が向上しない。
 比較例No.37は実施例と比較して含有マンガン量が少なく、保磁力が低下せず、透磁率が向上しない。また、比較例No.38は実施例と比較して含有マンガン量が過剰であり、保磁力が低下せず、透磁率が向上しない。比較例No.39は実施例と比較して保磁力が高く、透磁率が向上しない。
 比較例No.40は実施例と比較して平均粒径D50が大きい。そのためシート形成が困難となり、扁平粉末の配向性が低下し透磁率が低くなる。これに対して、実施例No.1~21は、本発明に係る条件を満足する軟磁性扁平粉末であり、この軟磁性扁平粉末を用いることによって、透磁率が十分に高い電磁波吸収体用磁性シートを製造することが出来る極めて優れた効果を奏することが分かる。

Claims (9)

  1.  Fe-Si-Al系合金からなる扁平粉末であって、平均粒径が43~60μm、扁平粉末の長手方向に磁場を印加して測定した保磁力Hcが106A/m以下、真密度に対するタップ密度の比が0.17以下、酸素含有量が0.6質量%以下、マンガン含有量が0.1質量%以上1.0質量%以下の範囲であり、残部はすべて不可避不純物からなる、軟磁性扁平粉末。
  2.  前記平均粒径が50~60μmである、請求項1に記載の軟磁性扁平粉末。
  3.  前記保磁力Hcが90A/m以下である、請求項1又は2に記載の軟磁性扁平粉末。
  4.  前記真密度に対するタップ密度の比が0.11以下である、請求項1~3のいずれか一項に記載の軟磁性扁平粉末。
  5.  前記酸素含有量が0.3質量%以下である、請求項1~4のいずれか一項に記載の軟磁性粉末。
  6.  前記マンガン含有量が0.3質量%以上0.7質量%以下である、請求項1~5のいずれか一項に記載の軟磁性扁平粉末。
  7.  ガスアトマイズ法またはディスクアトマイズ法による原料粉末作製工程と、
     前記原料粉末を扁平化する扁平加工工程と、
     前記扁平加工された粉末を真空またはアルゴン雰囲気で、700~900℃で熱処理する工程と、
    を備えた、請求項1~6のいずれか一項に記載の軟磁性扁平粉末の製造方法。
  8.  前記扁平加工工程の際、有機溶媒を用いた湿式で加工し、該有機溶媒の添加量が、前記原料粉末100質量部に対して100質量部以上である、請求項7に記載の製造方法。
  9.  前記扁平加工工程の際、扁平化助剤を用い、その使用量が、前記原料粉末100質量部に対して、5質量部以下である、請求項7又は8に記載の製造方法。
     
PCT/JP2016/057093 2015-03-17 2016-03-08 扁平状軟磁性粉末及びその製造方法 WO2016147943A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004158.3A CN107004481B (zh) 2015-03-17 2016-03-08 扁平状软磁性粉末及其制造方法
US15/558,250 US10576539B2 (en) 2015-03-17 2016-03-08 Flat soft magnetic powder and production method therefor
KR1020177015544A KR102340122B1 (ko) 2015-03-17 2016-03-08 편평형상 연자성 분말 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-052940 2015-03-17
JP2015052940A JP6788328B2 (ja) 2015-03-17 2015-03-17 扁平状軟磁性粉末およびその製造方法

Publications (1)

Publication Number Publication Date
WO2016147943A1 true WO2016147943A1 (ja) 2016-09-22

Family

ID=56918897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057093 WO2016147943A1 (ja) 2015-03-17 2016-03-08 扁平状軟磁性粉末及びその製造方法

Country Status (5)

Country Link
US (1) US10576539B2 (ja)
JP (1) JP6788328B2 (ja)
KR (1) KR102340122B1 (ja)
CN (2) CN107004481B (ja)
WO (1) WO2016147943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234449A (zh) * 2017-02-06 2019-09-13 山阳特殊制钢株式会社 软磁性扁平粉末
WO2022172543A1 (ja) * 2021-02-10 2022-08-18 山陽特殊製鋼株式会社 軟磁性扁平粉末

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882905B2 (ja) * 2017-02-13 2021-06-02 山陽特殊製鋼株式会社 軟磁性扁平粉末
JP7128692B2 (ja) * 2018-09-05 2022-08-31 Tdk株式会社 軟磁性体組成物、コア、およびコイル型電子部品
JP7333179B2 (ja) * 2019-03-22 2023-08-24 山陽特殊製鋼株式会社 磁性部材用の合金粉末
CN110993238A (zh) * 2019-12-20 2020-04-10 武汉理工大学 具有内部晶粒取向的软磁纳米晶金属或合金片状粒子及微波吸收材料
JP2023079830A (ja) * 2021-11-29 2023-06-08 Tdk株式会社 軟磁性金属粉末、磁気コア、磁性部品および電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332113A (ja) * 2002-05-08 2003-11-21 Daido Steel Co Ltd 偏平状軟磁性粉末およびそれを用いた複合磁性シート
JP2005116819A (ja) * 2003-10-08 2005-04-28 Daido Steel Co Ltd 難燃性複合磁性シート
JP2005123531A (ja) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd 電磁波吸収体用粉末
JP2005243895A (ja) * 2004-02-26 2005-09-08 Sanyo Special Steel Co Ltd 圧粉コア用粉末およびそれを用いた圧粉コア
JP2008050644A (ja) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd 電磁波吸収体用扁平粉末および電磁波吸収体
JP2009266960A (ja) * 2008-04-23 2009-11-12 Tdk Corp 扁平状軟磁性材料及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216016A (ja) * 1999-01-27 2000-08-04 Tokin Corp 圧粉磁芯及びコイル
JP2002093612A (ja) * 2000-09-18 2002-03-29 Daido Steel Co Ltd 磁気素子およびその製造方法
US8123972B2 (en) 2006-10-31 2012-02-28 Sony Corporation Sheet-like soft-magnetic material and production method thereof
JP5841705B2 (ja) * 2007-04-02 2016-01-13 セイコーエプソン株式会社 アトマイズ軟磁性粉末、圧粉磁心および磁性素子
JP5270482B2 (ja) 2009-07-13 2013-08-21 株式会社ワコム 位置検出装置及びセンサユニット
JP6189633B2 (ja) * 2013-05-16 2017-08-30 山陽特殊製鋼株式会社 シート表面の平滑性に優れ高透磁率を有する磁性シート用軟磁性扁平粉末およびこれを用いた磁性シート並びに軟磁性扁平粉末の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332113A (ja) * 2002-05-08 2003-11-21 Daido Steel Co Ltd 偏平状軟磁性粉末およびそれを用いた複合磁性シート
JP2005116819A (ja) * 2003-10-08 2005-04-28 Daido Steel Co Ltd 難燃性複合磁性シート
JP2005123531A (ja) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd 電磁波吸収体用粉末
JP2005243895A (ja) * 2004-02-26 2005-09-08 Sanyo Special Steel Co Ltd 圧粉コア用粉末およびそれを用いた圧粉コア
JP2008050644A (ja) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd 電磁波吸収体用扁平粉末および電磁波吸収体
JP2009266960A (ja) * 2008-04-23 2009-11-12 Tdk Corp 扁平状軟磁性材料及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234449A (zh) * 2017-02-06 2019-09-13 山阳特殊制钢株式会社 软磁性扁平粉末
WO2022172543A1 (ja) * 2021-02-10 2022-08-18 山陽特殊製鋼株式会社 軟磁性扁平粉末
JP2022122349A (ja) * 2021-02-10 2022-08-23 山陽特殊製鋼株式会社 軟磁性扁平粉末
JP7133666B2 (ja) 2021-02-10 2022-09-08 山陽特殊製鋼株式会社 軟磁性扁平粉末

Also Published As

Publication number Publication date
CN107004481A (zh) 2017-08-01
US20180043430A1 (en) 2018-02-15
KR102340122B1 (ko) 2021-12-16
KR20170128208A (ko) 2017-11-22
JP2016174065A (ja) 2016-09-29
US10576539B2 (en) 2020-03-03
CN107004481B (zh) 2020-10-16
JP6788328B2 (ja) 2020-11-25
CN111816401A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2016147943A1 (ja) 扁平状軟磁性粉末及びその製造方法
WO2016052498A1 (ja) 軟磁性扁平粉末及びその製造方法
JP6442236B2 (ja) 軟磁性扁平粉末及びその製造方法
JP6738160B2 (ja) 軟磁性扁平粉末及びその製造方法
WO2014185443A1 (ja) 磁性シート用軟磁性扁平粉末及びこれを用いた磁性シート並びに軟磁性扁平粉末の製造方法
KR102362736B1 (ko) 연자성 편평 분말
JP2018142618A (ja) 高透磁率および高耐候性を有する軟磁性扁平粉末およびこれを含有する軟磁性樹脂組成物
JP2014204051A (ja) 軟磁性扁平粉末およびこれを用いた磁性シート
JP2018035385A (ja) 軟磁性扁平粉末、磁性シートおよびその製造方法
KR102393236B1 (ko) 연자성 편평 분말
JP6882905B2 (ja) 軟磁性扁平粉末
JP6592424B2 (ja) 軟磁性扁平粉末およびこれを用いた磁性シート
JP7165690B2 (ja) 軟磁性扁平粉末の製造方法
WO2018079498A1 (ja) 高周波で用いる扁平粉末および磁性シート
JP2003105403A (ja) 軟磁性扁平状粉末
JP7133666B2 (ja) 軟磁性扁平粉末
JP2019023346A (ja) 軟磁性扁平粉末及びその製造方法
JP6738502B2 (ja) 軟磁性扁平粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015544

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558250

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764773

Country of ref document: EP

Kind code of ref document: A1