WO2016147875A1 - 車両のオイルポンプ駆動制御装置 - Google Patents

車両のオイルポンプ駆動制御装置 Download PDF

Info

Publication number
WO2016147875A1
WO2016147875A1 PCT/JP2016/056529 JP2016056529W WO2016147875A1 WO 2016147875 A1 WO2016147875 A1 WO 2016147875A1 JP 2016056529 W JP2016056529 W JP 2016056529W WO 2016147875 A1 WO2016147875 A1 WO 2016147875A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
pump drive
vehicle
control
oil
Prior art date
Application number
PCT/JP2016/056529
Other languages
English (en)
French (fr)
Inventor
貴宣 毛利
小野山 泰一
青之 島村
金子 格三
章博 豊福
龍一 新井
隆三 野口
聡 春井
広宣 宮石
知幸 水落
堅一 渡邊
真澄 藤川
弘一 小辻
真悟 鈴木
明人 鈴木
徹也 泉
圭介 岩堂
和裕 宮地
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to EP16764705.6A priority Critical patent/EP3273100A4/en
Priority to KR1020177025889A priority patent/KR20170117543A/ko
Priority to CN201680016720.4A priority patent/CN107429826B/zh
Priority to US15/559,238 priority patent/US10502314B2/en
Publication of WO2016147875A1 publication Critical patent/WO2016147875A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0028Supply of control fluid; Pumps therefore using a single pump driven by different power sources

Definitions

  • the present invention relates to an oil pump drive control device for a vehicle that performs drive control of an oil pump that generates pump discharge oil to a hydraulic operation unit (transmission, clutch, etc.) in a drive force transmission path while the vehicle is stopped.
  • a hydraulic operation unit transmission, clutch, etc.
  • the electric oil pump is driven to transmit the transmission hydraulic oil to the ATF warmer.
  • a drive control device for an oil pump for a transmission to be supplied to is known from, for example, Japanese Patent Application Laid-Open No. H10-228707.
  • the electric oil pump is driven when the ATF oil temperature where the viscosity of the transmission hydraulic oil is high is low. For this reason, when the oil pump is driven and hydraulic oil is supplied to the ATF warmer while the ATF oil temperature is stopped at a low oil temperature, the pump drive output increases as the friction loss increases. Therefore, there is a problem that energy consumption used as pump driving energy is increased, and as a result, fuel consumption and power consumption are deteriorated.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle oil pump drive control device that achieves reduction of energy consumption while the vehicle is stopped.
  • an oil pump drive control device for a vehicle includes an oil pump that is driven by a vehicle-mounted power source and produces pump discharge oil to a hydraulic operation unit that is provided in a drive force transmission path.
  • a controller for controlling the pump drive of the oil pump is provided. The controller performs control to lower the pump driving energy for driving the oil pump as the hydraulic oil temperature is lower while the vehicle is stopped.
  • the lower the hydraulic oil temperature the lower the pump drive energy for driving the oil pump is controlled. That is, when the hydraulic fluid temperature is low, the hydraulic fluid viscosity increases, so that the amount of hydraulic fluid leakage from the hydraulic circuit of the hydraulic operation unit decreases, and the amount of oil pump discharge required for outputting a constant hydraulic pressure decreases. can do. Focusing on this point, when the hydraulic oil temperature is lower and the hydraulic oil temperature is lower and the pump drive energy is controlled to be lower, the hydraulic oil leakage from the hydraulic circuit of the hydraulic operation unit is covered by the oil pump discharge amount. . As described above, by performing oil pump drive control focusing on the amount of hydraulic oil leakage from the hydraulic circuit while the vehicle is stopped, energy consumption used as pump drive energy is reduced. As a result, energy consumption can be reduced while the vehicle is stopped.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied.
  • 3 is a flowchart illustrating a flow of an oil pump drive control process executed in the hybrid control module according to the first embodiment.
  • FIG. 6 is a relationship characteristic diagram showing a relationship between an ATF oil temperature used in an oil pump output reduction instruction and a necessary oil pump rotation speed in the oil pump drive control process of the first embodiment.
  • FIG. 3 is a block diagram for explaining that the required driving force of the oil pump can be estimated from the ATF oil temperature when performing control for reducing the pump driving energy based on the leak amount in the oil pump driving control of the first embodiment.
  • FIG. 3 is a schematic system diagram showing a case where the oil pump drive control target is a motor generator included in the drive source of the hybrid vehicle as in the first embodiment.
  • FIG. 3 is a schematic system diagram showing a case where an oil pump drive control target is an electric motor that independently drives a pump in an engine vehicle adopting idle stop control.
  • the oil pump drive control device in the first embodiment is applied to an FF hybrid vehicle (an example of a vehicle) in which left and right front wheels are drive wheels and a belt type continuously variable transmission is mounted as a transmission.
  • FF hybrid vehicle an example of a vehicle
  • left and right front wheels are drive wheels and a belt type continuously variable transmission is mounted as a transmission.
  • the configuration of the oil pump drive control device of the FF hybrid vehicle according to the first embodiment will be described by dividing it into “entire system configuration” and “oil pump drive control processing configuration”.
  • FIG. 1 shows an overall system of an FF hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the FF hybrid vehicle will be described with reference to FIG.
  • the drive system of the FF hybrid vehicle includes a horizontally placed engine 2, a first clutch 3 (abbreviated “CL1”), a motor generator 4 (abbreviated “MG”), and a second clutch 5 (abbreviated). "CL2”) and a belt type continuously variable transmission 6 (abbreviated as "CVT").
  • the output shaft of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10R and 10L via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9R and 9L.
  • the left and right rear wheels 11R, 11L are driven wheels.
  • the horizontal engine 2 is an engine disposed in a front room with a starter motor 1 and a crankshaft direction as a vehicle width direction, an electric water pump 12, and a crankshaft rotation sensor 13 for detecting reverse rotation of the horizontal engine 2.
  • the horizontal engine 2 has, as an engine start system, an “MG start mode” in which the motor generator 4 cranks while slidingly engaging the first clutch 3, and a starter motor 1 that uses a 12V battery 22 as a power source.
  • Starter start mode “.
  • the “starter start mode” is selected only when a limited condition such as a cryogenic temperature condition is satisfied.
  • the motor generator 4 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 2 via the first clutch 3.
  • the motor generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil via an AC harness 27.
  • the first clutch 3 interposed between the horizontal engine 2 and the motor generator 4 is a dry or wet multi-plate clutch operated by hydraulic operation, and the complete engagement / slip engagement / release is controlled by the first clutch hydraulic pressure. Is done.
  • the second clutch 5 is a hydraulically operated wet multi-plate friction clutch interposed between the motor generator 4 and the left and right front wheels 10R and 10L as drive wheels, and is fully engaged / slip engaged by the second clutch oil pressure. / Opening is controlled.
  • the second clutch 5 in the first embodiment uses a forward clutch 5a and a reverse brake 5b provided in a forward / reverse switching mechanism using a planetary gear. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
  • the belt-type continuously variable transmission 6 includes a primary pulley 6a, a secondary pulley 6b, and a belt 6c that spans the pulleys 6a and 6b. And it is a transmission which obtains a stepless gear ratio by changing the winding diameter of belt 6c with the primary pressure and secondary pressure supplied to a primary oil chamber and a secondary oil chamber.
  • the oil pump that is subject to oil pump drive control is the main oil pump 14 that is rotationally driven by a motor generator 4 (an example of an in-vehicle power source) mounted as a driving source for traveling.
  • the first clutch 3, the motor generator 4 and the second clutch 5 constitute a hybrid drive system called a 1-motor / 2-clutch.
  • the main drive modes are “EV mode”, “HEV mode”, “WSC mode”.
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor generator 4 is used as a drive source, and traveling in the “EV mode” is referred to as “EV traveling”.
  • the “HEV mode” is a hybrid vehicle mode in which both the clutches 3 and 5 are engaged and the transverse engine 2 and the motor generator 4 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
  • the “WSC mode” is a CL2 slip engagement mode in which, in the “HEV mode” or the “EV mode”, the motor generator 4 is controlled to rotate the motor, and the second clutch 5 is slip-engaged with an engagement torque capacity corresponding to the required driving force. is there. During stopping, the motor generator 4 can be rotated by setting the second clutch 5 in the “WSC mode” in which the second clutch 5 is slip-engaged.
  • the braking system of the FF hybrid vehicle includes a brake operation unit 16, a brake fluid pressure control unit 17, left and right front wheel brake units 18R and 18L, and left and right rear wheel brake units 19R and 19L. ing.
  • a brake operation unit 16 when regeneration is performed by the motor generator 4 during brake operation, regenerative cooperative control is performed in which the hydraulic braking force shares the amount obtained by subtracting the regenerative braking force from the requested braking force with respect to the requested braking force based on the pedal operation. Done.
  • the brake operation unit 16 includes a brake pedal 16a, a negative pressure booster 16b that uses the intake negative pressure of the horizontal engine 2, a master cylinder 16c, and the like.
  • the regenerative cooperative brake unit 16 generates a predetermined master cylinder pressure in accordance with the brake depression force applied from the driver to the brake pedal 16a, and is a unit having a simple configuration that does not use an electric booster.
  • the brake fluid pressure control unit 17 includes an electric oil pump, a pressure increasing solenoid valve, a pressure reducing solenoid valve, an oil path switching valve, and the like.
  • Control of the brake fluid pressure control unit 17 by the brake control unit 85 exhibits a function of generating wheel cylinder fluid pressure when the brake is not operated and a function of adjusting wheel cylinder fluid pressure when the brake is operated.
  • Control using the hydraulic pressure generation function when the brake is not operated includes traction control (TCS control), vehicle behavior control (VDC control), emergency brake control (automatic brake control), and the like.
  • Control using the hydraulic pressure adjustment function at the time of brake operation includes regenerative cooperative brake control, antilock brake control (ABS control), and the like.
  • the left and right front wheel brake units 18R and 18L are provided on the left and right front wheels 10R and 10L, respectively, and the left and right rear wheel brake units 19R and 19L are provided on the left and right rear wheels 11R and 11L, respectively.
  • These brake units 18R, 18L, 19R and 19L have wheel cylinders (not shown) to which the brake fluid pressure generated by the brake fluid pressure control unit 17 is supplied.
  • the power system of the FF hybrid vehicle includes a high-power battery 21 as a power source for the motor generator 4 and a 12V battery 22 as a power source for a 12V system load.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor generator 4, and for example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing strong power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC), and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts the direct current from the DC harness 25 into the three-phase alternating current to the AC harness 27 during power running that drives the motor generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V system load that is a starter motor 1 and auxiliary machines, and for example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 into 12V. By controlling the DC / DC converter 37 by the hybrid control module 81, the charge amount of the 12V battery 22 can be increased. The configuration is to be managed.
  • the electronic control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an electronic control unit having an integrated control function for appropriately managing the energy consumption of the entire vehicle.
  • HCM hybrid control module
  • Other electronic control units include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • ECM engine control module
  • MC motor controller
  • CVT control unit 84 abbreviation: “CVTCU”.
  • BCU brake control unit 85
  • LBC lithium battery controller
  • the hybrid control module 81 performs various integrated controls based on input information from other electronic control units 82, 83, 84, 85, 86, an ignition switch 91, and the like.
  • the engine control module 82 performs start control, fuel injection control, ignition control, fuel cut control, engine idle rotation control, etc. of the horizontally placed engine 2 based on input information from the hybrid control module 81, the engine speed sensor 92, and the like. Do.
  • the motor controller 83 performs power running control, regenerative control, motor creep control, motor idle control, and the like of the motor generator 4 by control commands to the inverter 26 based on input information from the hybrid control module 81, the motor rotation speed sensor 93, and the like. .
  • the CVT control unit 84 outputs a control command to the control valve unit 6d based on input information from the hybrid control module 81, the accelerator opening sensor 94, the vehicle speed sensor 95, the inhibitor switch 96, the ATF oil temperature sensor 97, and the like.
  • the CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control using the primary pressure and secondary pressure of the belt-type continuously variable transmission 6, and the like.
  • the brake control unit 85 outputs a control command to the brake fluid pressure control unit 17 based on input information from the hybrid control module 81, the brake switch 98, the brake stroke sensor 99, and the like.
  • the brake control unit 85 performs TCS control, VDC control, automatic brake control, regenerative cooperative brake control, ABS control, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21 based on input information from the battery voltage sensor 100, the battery temperature sensor 101, and the like.
  • FIG. 2 shows the flow of an oil pump drive control process executed by the hybrid control module 81 (controller) of the first embodiment.
  • the hybrid control module 81 controller
  • FIG. 2 shows the flow of an oil pump drive control process executed by the hybrid control module 81 (controller) of the first embodiment.
  • each step of FIG. 2 showing the oil pump drive control processing configuration performed during EV stop will be described.
  • step S1 it is determined whether a vehicle stop condition is satisfied. If YES (vehicle stop condition is satisfied), the process proceeds to step S2. If NO (vehicle stop condition is not satisfied), the determination in step S1 is repeated.
  • the conditions listed in the following (a) to (e) are given as the “vehicle stop conditions”.
  • E) Accelerator OFF “EV mode selection” includes a case where the EV mode is selected by mode transition control and a case where the EV mode is selected by automatic engine stop by idle stop control.
  • the “target value” is lower than the required oil pressure corresponding to the input torque, and is given as the oil pressure value of the lower limit pressure level during EV stop when the oil pressure and the oil amount do not change transiently.
  • step S3 it is determined whether the vehicle stop condition is satisfied following the hydraulic pressure lowering instruction in step S2. If YES (vehicle stop condition is satisfied), the process proceeds to step S4. If NO (vehicle stop condition is not satisfied), the process proceeds to step S10.
  • the vehicle stop condition the same condition as in step S1 is given.
  • step S4 following the determination that the vehicle stop condition is satisfied in step S3, it is determined whether or not the CVT hydraulic pressure has reached a target value. If YES (reach the target value), the process proceeds to step S5. If NO (reach the target value), the process returns to step S2.
  • step S5 following the determination that the target value has been reached in step S4, it is determined whether a permission condition for permitting oil pump drive control is satisfied. If YES (satisfying permission condition), the process proceeds to step S6. If NO (permitting condition is not satisfied), the process proceeds to step S10.
  • the “permission condition” the conditions (f) to (h) listed below are added to the conditions (a) to (e) given as the “vehicle stop condition”, and these conditions (a ) To (h) are satisfied, it is determined that the permission condition is satisfied.
  • Creep cut condition (g) CL2 standby learning completion and CL2 low torque learning completion (h) Sensor abnormality or the like has not been determined
  • creep torque refers to the motor idling state without stepping on the accelerator pedal This is the torque required to prevent the vehicle from sliding down when stopping on a slope.
  • the “creep cut condition” is a condition when the vehicle is stopped and the second clutch target torque (TTCL2) acquired by feedforward control (FF control) is equal to or less than a predetermined value and is equivalent to creep torque on a flat road. It is determined that it is established.
  • step S6 following the determination that the permission condition is satisfied in step S5, the rotational speed of the main oil pump 14 is set to the required O / P based on switching from the O / P output lowering prohibition flag to the O / P output lowering permission flag.
  • the motor speed control is performed by an instruction to reduce the output to the motor generator 4 to reduce the speed to a gentle gradient ⁇ , and the process proceeds to step S7.
  • the “required O / P rotational speed” is a target O / P rotational speed in the motor rotational speed control, and is determined by the ATF oil temperature (ATF Temp) from the ATF oil temperature sensor 97. FIG. As shown, the lower the ATF oil temperature, the lower the rotational speed.
  • the relationship characteristics of the required O / P rotation speed with respect to the ATF oil temperature shown in FIG. 3 are the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 (an example of a hydraulic operation unit) included in the driving force transmission path. ) Hydraulic oil leakage amount (hereinafter referred to as “leak amount”) in the hydraulic circuit. “O / P” represents an oil pump.
  • step S7 following the O / P output decrease instruction in step S6, it is determined whether or not a permission condition for permitting oil pump drive control is satisfied. If YES (satisfying permission condition), the process proceeds to step S8. If NO (permitting condition is not satisfied), the process proceeds to step S10.
  • the “permission condition” is the same as the condition given in step S5.
  • the O / P output decrease control when the rotation speed of the main oil pump 14 is decreased at a gentle gradient ⁇ from the rotation speed at the start of control, and the O / P rotation speed reaches the necessary O / P rotation speed. Then, it continues by keeping a required O / P rotation speed as it is.
  • step S9 following the continuation of the O / P output reduction control in step S8, it is determined whether a permission condition for permitting oil pump drive control is satisfied. If YES (permit condition is satisfied), the process returns to step S8. If NO (permit condition is not satisfied), the process proceeds to step S10.
  • the “permission condition” is the same as the condition given in step S5 and step S7.
  • step S10 following the determination that the vehicle stop condition is not satisfied in step S3, or the determination that the permission condition is not satisfied in step S5, step S7, or step S9, oil pump drive control disconnection control is started, and step S11 is performed. Proceed to
  • step S11 following the start of the removal control in step S10, an instruction to increase the lowered CVT hydraulic pressure and an instruction to increase the output of the motor generator 4 (torque increase instruction) are output simultaneously, and the process proceeds to step S12. .
  • the rotation speed of the main oil pump 14 reduced to the required O / P rotation speed is rapidly increased to the O / P normal rotation speed.
  • An output increase instruction to the motor generator 4 to be increased at a high gradient ⁇ (> gradient ⁇ ) is output.
  • the gradient ⁇ is, for example, the highest rotational speed gradient possible with the O / P potential by giving the target O / P rotational speed in the motor rotational speed control stepwise.
  • step S12 following the determination that the O / P output increase instruction & hydraulic pressure increase instruction in step S11 or the delay time in step S13 has not elapsed, the timer count of the hydraulic pressure return delay time is performed, and step S13 Proceed to Here, the oil pressure return delay time is set based on the oil pressure response delay time in response to an instruction to raise the CVT oil pressure lowered to the target value to the CVT normal oil pressure.
  • step S13 following the timer count of the hydraulic pressure return delay time in step S12, it is determined whether or not the hydraulic pressure return delay time has elapsed. If YES (delay time has elapsed), the process proceeds to step S14. If NO (delay time has not elapsed), the process returns to step S12.
  • step S14 following the determination that the delay time has elapsed in step S13, the control returns to the normal hydraulic control and proceeds to the end.
  • oil pump drive control device of the FF hybrid vehicle of the first embodiment will be described separately for “oil pump drive control processing operation”, “oil pump drive control operation”, and “characteristic operation of oil pump drive control”.
  • step S1 If the vehicle stop condition is satisfied, the process proceeds from step S1 to step S2 to step S3 to step S4 in the flowchart of FIG. Then, while it is determined in step S4 that the target value has not been reached, the flow from step S2 to step S3 to step S4 is repeated.
  • step S4 determines that the target value has been reached in step S4 and the permission condition is satisfied. If it is determined that the target value has been reached in step S4 and the permission condition is satisfied, the process proceeds from step S4 to step S5 ⁇ step S6 ⁇ step S7 ⁇ step S8 ⁇ step S9 in the flowchart of FIG. Then, while it is determined in step S9 that the permission condition is satisfied, the flow from step S8 to step S9 is repeated.
  • step S6 based on switching from the O / P output lowering prohibition flag to the O / P output lowering permission flag, the motor generator that reduces the rotational speed of the main oil pump 14 to the required O / P rotational speed with a gentle gradient ⁇ .
  • the motor rotation speed control is performed by an output reduction instruction to 4.
  • step S8 the rotational speed of the main oil pump 14 is decreased from the rotational speed at the start of control with a gentle gradient ⁇ , and when the O / P rotational speed reaches the required O / P rotational speed, then the necessary O / P rotational speed is reached.
  • the O / P reduction control that keeps the number is continued.
  • step S9 If it is determined in step S9 that the permission condition is not satisfied, the process proceeds from step S9 to step S10 ⁇ step S11 ⁇ step S12 ⁇ step S13 in the flowchart of FIG. Then, while it is determined in step S13 that the delay time has not elapsed, the flow from step S12 to step S13 is repeated.
  • step S11 the lowered CVT oil pressure increase instruction and the decreased motor generator 4 output increase instruction are simultaneously output.
  • step S13 If it is determined in step S13 that the delay time has elapsed, in the flowchart of FIG. 2, the process proceeds from step S13 to step S14 to end, and in step S14, the normal hydraulic pressure control is restored.
  • step S11 when it is determined in step S9 that the permission condition is not satisfied, in step S11, the CVT hydraulic pressure that has been reduced to the target value is changed to the target value based on switching from the CVT hydraulic pressure decrease permission flag to the CVT normal hydraulic pressure instruction flag.
  • An instruction to increase the hydraulic pressure is output to the solenoid valve.
  • the motor rotational speed control accompanied by an output increase instruction to the motor generator 4 reduces the O rotational speed to the required O / P rotational speed.
  • An instruction to increase the / P rotational speed with an abrupt gradient ⁇ (> gradient ⁇ ) to the O / P normal rotational speed is output.
  • step S3 If it is determined in step S3 that the vehicle stop condition is not satisfied, an instruction to increase the CVT hydraulic pressure at the time of determination to the CVT normal hydraulic pressure is made in step S11 based on switching from the CVT hydraulic pressure decrease permission flag to the CVT normal hydraulic pressure instruction flag. Output to solenoid valve.
  • step S5 If it is determined in step S5 that the permission condition is not satisfied, an instruction to increase the CVT hydraulic pressure that has been decreased to the target value to the CVT normal hydraulic pressure based on switching from the CVT hydraulic pressure decrease permission flag to the CVT normal hydraulic pressure instruction flag in step S11. Is output to the solenoid valve.
  • step S7 If it is determined in step S7 that the permission condition is not satisfied, an instruction to increase the CVT hydraulic pressure, which has been lowered to the target value, to the CVT normal hydraulic pressure based on switching from the CVT hydraulic pressure decrease permission flag to the CVT normal hydraulic pressure instruction flag in step S11. Is output to the solenoid valve. At the same time, based on switching from the O / P output decrease permission flag to the O / P output decrease prohibition flag, the O / P rotation speed at the time of determination is changed to a steep gradient ⁇ (> gradient ⁇ ) to the O / P normal rotation speed. The instruction to raise is output.
  • the oil pump drive control of the first embodiment is a control in which the oil pump discharge amount is optimized (FIG. 3) based on the leak amount of transmission hydraulic oil (ATF).
  • the conventional concept of the O / P required driving force when the vehicle is stopped is to set the O / P required driving force that secures the required line pressure according to the input torque.
  • the inventors examined whether further reduction of energy consumption was possible. If the vehicle is in an EV stop where there is no transient change in hydraulic pressure and oil amount. It has been found that the hydraulic pressure is constant and stable, and the O / P required driving force at this time may be proportional to the amount of leakage from the hydraulic circuit. However, it is difficult to measure the amount of leakage from the hydraulic circuit. However, the leak amount is sensitive to the hydraulic oil viscosity (ATF viscosity).
  • the leakage amount can be estimated with the required accuracy by further considering the variation of the leakage amount. Therefore, in order to further reduce energy consumption, a method for setting the O / P required driving force using the ATF oil temperature as a parameter is proposed, and this is put to practical use in the oil pump drive control of the first embodiment. .
  • the ATF viscosity (B3) is estimated from the ATF oil temperature (B1) acquired from the actual ATF sensor value and the ATF deterioration degree (B2) using the maximum deterioration value.
  • the leak amount (B5) is estimated from the ATF viscosity (B3) and the leak portion total area (B4) using the maximum leak portion total area value.
  • This leak amount (B5) and the oil pressure (B6) which is a target value for reduction, is constantly monitored for abnormal oil pressure by the oil pressure sensor in order to deal with unexpected leaks, etc., limited to a certain oil pressure scene.
  • the O / P required driving force (B7) is estimated. With the above method, the O / P required driving force is estimated with the required accuracy from the ATF oil temperature.
  • time t1 is a stop time.
  • Time t2 is the start time of the oil pump drive control.
  • Time t3 is the O / P rotation speed reduction end time.
  • a CVT oil pressure lowering instruction for reducing the CVT normal oil pressure to the target value is output to the solenoid valve based on switching from the CVT normal oil pressure instruction flag to the CVT oil pressure lowering permission flag. The As a result, the CVT oil pressure decreases to the target value between time t1 and time t2.
  • the drive energy amount due to the decrease in the O / P required drive force corresponding to the decrease in the rotation speed of the main oil pump 14 (hatched portion in FIG. 5) is the energy consumption during the stop.
  • time t4 is the permission condition not established time.
  • Time t5 is the oil pump rotation speed return time.
  • Time t6 is the return start time to the normal hydraulic control.
  • the CVT oil pressure remains lowered to the target value based on the CVT oil pressure decrease permission flag, and the rotation speed of the main oil pump 14 is required based on the O / P output decrease permission flag. It remains lowered to the O / P speed.
  • the lowered CVT hydraulic pressure increase instruction and the reduced motor generator 4 torque increase instruction are output simultaneously. That is, on the basis of switching from the CVT oil pressure decrease permission flag to the CVT normal oil pressure instruction flag, the CVT oil pressure starts to increase from the target value where the CVT oil pressure has decreased to the CVT normal oil pressure.
  • the drive energy amount due to the decrease in the O / P required drive force corresponding to the decrease in the rotation speed of the main oil pump 14 (hatched portion in FIG. 6) is the energy consumption during the stop.
  • the CVT oil pressure lowering control is started first, and then the O / P output lowering control is started.
  • CVT oil pressure increase control and O / P output increase control are started simultaneously.
  • the increase gradient ⁇ is set to be larger than the decrease gradient ⁇ in the O / P output decrease control.
  • the hybrid control module 81 is configured to perform control to lower the pump drive energy for driving the main oil pump 14 as the ATF oil temperature is lower while the vehicle is stopped. That is, when the ATF oil temperature is low, the ATF viscosity increases, so that the amount of leakage from the hydraulic circuit of the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 decreases, and a constant hydraulic pressure is output. In this case, the oil pump discharge amount required can be reduced.
  • the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 When paying attention to this point and performing control to lower the pump drive energy as the ATF oil temperature is lower while the vehicle is stopped without transient fluctuations in hydraulic pressure, the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 The amount of leakage from the hydraulic circuit is covered by the oil pump discharge amount. Therefore, the energy consumption used as pump drive energy is reduced by performing oil pump drive control focusing on the amount of leakage from the hydraulic circuit while the vehicle is stopped.
  • the necessary O / P rotational speed that compensates for the amount of hydraulic oil leakage in the hydraulic circuit of the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 is set according to the ATF oil temperature.
  • the motor rotational speed control is performed in which the set required O / P rotational speed is the target O / P rotational speed. That is, since the unit discharge oil amount per rotation is determined by the pump specifications, the oil pump rotation speed is proportional to the oil pump discharge oil amount. Therefore, when the leak amount in the hydraulic circuit is compensated with the oil pump discharge oil amount, management is performed with high accuracy by managing using the oil pump rotation speed.
  • the motor rotation speed control When the motor rotation speed control is performed, the motor torque is controlled to be decreased so as to decrease the actual O / P rotation speed in the direction coincident with the target O / P rotation speed. Therefore, energy consumption while the vehicle is stopped can be minimized (optimized) by the drive output reduction control of the motor generator 4 that is accurately managed with respect to the leak amount in the hydraulic circuit.
  • a creep cut condition As a permission condition for the pump drive energy reduction control, a creep cut condition, a non-learning control condition, and a no-abnormality determination condition are added to the vehicle stop condition. That is, by adding the creep cut condition and the non-learning control condition, reduction control of the pump drive energy is permitted for a stationary scene with a small external driving force change.
  • the no-abnormality determination condition it is possible to cope with unexpected hydraulic fluid leakage. Therefore, by adding a condition for a stop scene in which fluctuations in hydraulic pressure and oil amount are suppressed as permission conditions, the safety of the pump drive energy reduction control is ensured.
  • the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission are preceded by the control start. 6 is configured to perform control to reduce the hydraulic pressure 6 to the target value of the lower limit pressure level.
  • the pump discharge amount from the main oil pump 14 may suddenly decrease, and an undershoot may occur in the actual secondary pressure due to a decrease in the oil amount.
  • the hydraulic pressure reduction control is performed prior to the start of the pump drive energy reduction control, thereby preventing undershoot and oil vibration.
  • whether or not the permission condition is satisfied is determined while the pump drive energy reduction control is continued, and the pump drive energy decrease control is stopped when the permission condition is not satisfied. For example, there is a case where the mode is changed from the EV mode to the HEV mode via the engine start control in response to a system request caused by a decrease in battery capacity. If this mode transition request occurs while pump drive energy reduction control is continuing, if the pump drive energy reduction control is continued as it is, insufficient oil amount, hydraulic overshoot / undershoot, oil vibration and hydraulic operation unit There is an influence such as deterioration of durability. On the other hand, when the permission condition is not satisfied while the pump drive energy reduction control is continued, the control is immediately stopped, so that various influences caused by the continued control are eliminated.
  • a pump drive energy increase instruction and a hydraulic pressure increase instruction to the hydraulic operation unit are output at the same time, and when the delay time elapses, a transition is made to normal hydraulic control.
  • the oil amount becomes excessive as the oil amount balance.
  • the hydraulic pressure increase instruction is given to the hydraulic operation unit first and the pump drive energy increase instruction is issued later, the oil amount becomes insufficient as the oil amount balance.
  • the oil amount balance becomes excessive or insufficient.
  • the pump driving energy when an instruction to increase the pump driving energy is given, the pump driving energy is restored by giving the rising gradient ⁇ steeper than the decreasing gradient ⁇ of the pump driving energy.
  • the permission condition is not satisfied due to a brake foot release operation or the like that the driver intends to start, it is necessary to generate the oil pressure with good response and start the normal oil pressure control in preparation for the subsequent start.
  • the hydraulic force is generated with good response, so that the driving force transmission system is quickly prepared and the driver's start request can be met.
  • Pump discharge oil is generated to a hydraulic operation unit (first clutch 3, second clutch 5, belt-type continuously variable transmission 6) that is driven by a vehicle-mounted power source (motor generator 4) and has a driving force transmission path.
  • a vehicle FF hybrid vehicle
  • a controller for controlling the pump drive of the oil pump (main oil pump 14) is provided.
  • the controller performs control to lower the pump drive energy for driving the oil pump (main oil pump 14) as the hydraulic oil temperature (ATF oil temperature) is lower while the vehicle is stopped. For this reason, reduction of energy consumption can be achieved while the vehicle is stopped.
  • the controller performs control to lower the drive output of the on-vehicle power source (motor generator 4) that drives the oil pump (main oil pump 14) as control to lower the pump drive energy. For this reason, in addition to the effect of (1), the energy consumption used by the in-vehicle power source (motor generator 4) while the vehicle is stopped can be reduced by the reduction control of the drive output of the in-vehicle power source (motor generator 4).
  • the controller is a necessary oil pump that compensates for the amount of hydraulic oil leakage in the hydraulic circuit of the hydraulic operation unit (first clutch 3, second clutch 5, belt type continuously variable transmission 6).
  • Rotational speed control is performed with the target oil pump rotational speed (target O / P rotational speed) as the O / P rotational speed. For this reason, in addition to the effect of (2), the drive output reduction control of the on-vehicle power source (motor generator 4) that is accurately managed with respect to the leak amount in the hydraulic circuit minimizes the energy consumption during stopping (optimal) ).
  • the controller (hybrid control module 81) adds the creep cut condition, the non-learning control condition, and the no abnormality determination condition to the vehicle stop condition as permission conditions for the pump drive energy reduction control. For this reason, in addition to the effects of (1) to (3), a condition for stopping scenes in which fluctuations in the hydraulic pressure and oil amount are suppressed is added as a permission condition, so that the pump drive energy reduction control is safe. Sex can be secured.
  • the controller determines whether or not the permission condition is satisfied while the pump drive energy decrease control is continuing, and stops the pump drive energy decrease control when the permission condition is not satisfied. . For this reason, in addition to the effect of (5), when the permission condition is not satisfied while the pump drive energy lowering control is continued, the control is immediately stopped to eliminate various influences caused by the continued control. .
  • the controller (hybrid control module 81) instructs to increase the pump driving energy
  • the controller restores the pump driving energy with a rising gradient ⁇ that is steeper than the decreasing gradient ⁇ of the pump driving energy. For this reason, in addition to the effect of (7), when the permit condition is not satisfied because the driver intends to start, the hydraulic force is generated with good response, so that the driving force transmission system is quickly prepared and the driver's start request is met. be able to.
  • a belt-type continuously variable transmission 6 is used as a transmission.
  • an automatic transmission called step AT, an AMT that automatically shifts with a manual transmission structure, a DCT that has two clutches and that automatically shifts with a manual transmission structure, and the like may be used. good.
  • Example 1 the example which uses the 1st clutch 3 and the 2nd clutch 5 as a clutch was shown.
  • the clutch may be a start-up clutch or a lock-up clutch provided in a torque converter.
  • the motor generator 4 provided as a traveling drive source is used as an in-vehicle power source for driving the main oil pump 14 .
  • an electric motor dedicated to the oil pump electric oil pump
  • an engine provided as a driving source for traveling and capable of controlling the reduction of the engine speed in the idle speed range is used. It may be an example.
  • a main oil pump 14 driven by a motor generator 4 is provided, and the first clutch 3, the second clutch 5, and the belt-type continuously variable transmission 6 are connected to a hydraulic operation unit.
  • a hydraulic operation unit An example to do.
  • an electric oil pump driven by an electric motor dedicated to the oil pump may be provided, and the first clutch, the second clutch, and the belt type continuously variable transmission may be used as the hydraulic operation unit.
  • an electric oil pump may be provided and a transmission and a clutch may be used as a hydraulic operation unit.
  • motor torque is used as a pump drive output of the motor generator 4 that is a vehicle-mounted power source.
  • the pump drive output when the in-vehicle power source is an electric motor, in addition to the motor torque, a motor current or a motor voltage used for calculating the pump drive energy may be used.
  • a fuel injection amount or the like may be used.
  • Example 1 shows an example in which the oil pump drive control device of the present invention is applied to an FF hybrid vehicle with a drive type of 1 motor and 2 clutches.
  • the oil pump drive control device of the present invention can also be applied to an FR hybrid vehicle or a hybrid vehicle equipped with a power split mechanism other than the one motor / two clutch drive type.
  • any vehicle equipped with an oil pump that is driven by a vehicle-mounted power source and produces pump discharge oil to a hydraulic operation unit having a driving force transmission path, whether it is an engine vehicle or an electric vehicle, Even a battery car can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 モータジェネレータ(4)により駆動され、駆動力伝達経路に有する第1クラッチ(3)、第2クラッチ(5)及びベルト式無段変速機(6)へのポンプ吐出油を作り出すメインオイルポンプ(14)を備える。このFFハイブリッド車両において、メインオイルポンプ(14)のポンプ駆動を制御するハイブリッドコントロールモジュール(81)を設ける。ハイブリッドコントロールモジュール(81)は、停車中、ATF油温が低いほど、メインオイルポンプ(14)を駆動するポンプ駆動エネルギーを下げる制御を行う。これにより、停車中の消費エネルギーの削減を図ることができる。

Description

車両のオイルポンプ駆動制御装置
 本発明は、停車中、駆動力伝達経路に有する油圧作動ユニット(変速機やクラッチ等)へのポンプ吐出油を作り出すオイルポンプの駆動制御を行う車両のオイルポンプ駆動制御装置に関する。
 従来、低温始動後のATF油温(=変速機作動油温)を早期に昇温させるため、ATF油温が低油温のとき、電動式オイルポンプを駆動させて変速機作動油をATFウォーマへ供給する変速機用オイルポンプの駆動制御装置が例えば特許文献1にて知られている。
 しかしながら、従来装置は、変速機作動油の粘度が高いATF油温が低油温のときに電動式オイルポンプを駆動させている。このため、ATF油温が低油温での停車中、オイルポンプを駆動して作動油をATFウォーマへ供給すると、摩擦損失が大きい分、ポンプ駆動出力が高くなる。よって、ポンプ駆動エネルギーとして使われる消費エネルギーを増大させてしまい、その結果、燃費や電費の悪化を招いてしまうという問題があった。
特開2006-307950号公報
 本発明は、上記問題に着目してなされたもので、停車中、消費エネルギーの削減を達成する車両のオイルポンプ駆動制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の車両のオイルポンプ駆動制御装置は、車載動力源により駆動され、駆動力伝達経路に有する油圧作動ユニットへのポンプ吐出油を作り出すオイルポンプを備えている。この車両において、オイルポンプのポンプ駆動を制御するコントローラを設ける。コントローラは、停車中、作動油温度が低いほど、オイルポンプを駆動するポンプ駆動エネルギーを下げる制御を行う。
 よって、停車中、作動油温度が低いほど、オイルポンプを駆動するポンプ駆動エネルギーを下げる制御が行われる。即ち、作動油温度が低いときは作動油粘度が高くなることで、油圧作動ユニットの油圧回路からの作動油リーク量が少なくなり、一定の油圧を出力する場合に必要なオイルポンプ吐出量を少なくすることができる。この点に着目し、油圧変動が小さい停車中、作動油温度が低いほど、ポンプ駆動エネルギーを下げる制御を行うと、油圧作動ユニットの油圧回路からの作動油リーク量がオイルポンプ吐出量により賄われる。このように、停車中、油圧回路からの作動油リーク量に着目したオイルポンプ駆動制御を行うことにより、ポンプ駆動エネルギーとして使われる消費エネルギーが削減される。この結果、停車中、消費エネルギーの削減を達成することができる。
実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。 実施例1のハイブリッドコントロールモジュールにおいて実行されるオイルポンプ駆動制御処理の流れを示すフローチャートである。 実施例1のオイルポンプ駆動制御処理においてオイルポンプ出力低下指示で用いられるATF油温と必要オイルポンプ回転数の関係を示す関係特性図である。 実施例1のオイルポンプ駆動制御においてリーク量に基づいてポンプ駆動エネルギーを下げる制御を行うときにオイルポンプ必要駆動力がATF油温により推定できることを説明するブロック図である。 実施例1のオイルポンプ駆動制御処理においてオイルポンプ駆動制御開始域における車速、CVT油圧指示フラグ、指示圧又は実油圧、O/P出力下げフラグ、O/P指令回転数、制御モード遷移を示す制御入りタイムチャートである。 実施例1のオイルポンプ駆動制御処理においてオイルポンプ駆動制御開始域における車速、CVT油圧指示フラグ、指示圧又は実油圧、O/P出力下げフラグ、O/P指令回転数、制御モード遷移を示す制御抜けタイムチャートである。 オイルポンプの駆動制御対象が実施例1のようにハイブリッド車両の駆動源に有するモータジェネレータである場合を示す概略システム図である。 オイルポンプの駆動制御対象がハイブリッド車両においてポンプを独立に駆動する電動モータである場合を示す概略システム図である。 オイルポンプの駆動制御対象がアイドルストップ制御を採用したエンジン車両においてポンプを独立に駆動する電動モータである場合を示す概略システム図である。
 以下、本発明の車両のオイルポンプ駆動制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1におけるオイルポンプ駆動制御装置は、左右前輪を駆動輪とし、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両(車両の一例)に適用したものである。以下、実施例1のFFハイブリッド車両のオイルポンプ駆動制御装置の構成を、「全体システム構成」、「オイルポンプ駆動制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の制御装置が適用されたFFハイブリッド車両の全体システムを示す。以下、図1に基づいて、FFハイブリッド車両の全体システム構成を説明する。
 FFハイブリッド車両の駆動系は、図1に示すように、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータジェネレータ4(略称「MG」)と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9R,9Lを介し、左右の前輪10R,10Lに駆動連結される。なお、左右の後輪11R,11Lは従動輪としている。
 前記横置きエンジン2は、スタータモータ1と、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。この横置きエンジン2は、エンジン始動方式として、第1クラッチ3を滑り締結しながらモータジェネレータ4によりクランキングする「MG始動モード」と、12Vバッテリ22を電源とするスタータモータ1によりクランキングする「スタータ始動モード」と、を有する。なお、「スタータ始動モード」は、極低温時条件等の限られた条件の成立時にのみに選択される。
 前記モータジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータである。このモータジェネレータ4は、後述する強電バッテリ21を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ26が、ACハーネス27を介して接続される。なお、横置きエンジン2とモータジェネレータ4の間に介装された第1クラッチ3は、油圧作動による乾式又は湿式の多板クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/開放が制御される。
 前記第2クラッチ5は、モータジェネレータ4と駆動輪である左右の前輪10R,10Lとの間に介装された油圧作動による湿式多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1における第2クラッチ5は、遊星ギヤによる前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5とされる。
 前記ベルト式無段変速機6は、プライマリプーリ6aと、セカンダリプーリ6bと、両プーリ6a,6bに掛け渡されたベルト6cと、を有する。そして、プライマリ油室とセカンダリ油室へ供給されるプライマリ圧とセカンダリ圧により、ベルト6cの巻き付き径を変えることで無段階の変速比を得る変速機である。ベルト式無段変速機6には、油圧源として、モータジェネレータ4のモータ軸(=変速機入力軸)により回転駆動されるメインオイルポンプ14(メカニカル駆動)と、補助ポンプとして用いられるサブオイルポンプ15(モータ駆動)と、を有する。そして、油圧源からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧とし、第1クラッチ圧、第2クラッチ圧及びベルト式無段変速機6のプライマリ圧とセカンダリ圧を作り出すコントロールバルブユニット6dを備えている。なお、実施例1においてオイルポンプ駆動制御対象となるオイルポンプは、走行用駆動源として搭載されたモータジェネレータ4(車載動力源の一例)により回転駆動されるメインオイルポンプ14である。
 前記第1クラッチ3とモータジェネレータ4と第2クラッチ5により、1モータ・2クラッチと呼ばれるハイブリッド駆動システムが構成され、主な駆動態様として、「EVモード」、「HEVモード」、「WSCモード」を有する。「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータジェネレータ4のみを駆動源に有する電気自動車モードであり、「EVモード」による走行を「EV走行」という。「HEVモード」は、両クラッチ3,5を締結して横置きエンジン2とモータジェネレータ4を駆動源に有するハイブリッド車モードであり、「HEVモード」による走行を「HEV走行」という。「WSCモード」は、「HEVモード」又は「EVモード」において、モータジェネレータ4をモータ回転数制御とし、第2クラッチ5を要求駆動力相当の締結トルク容量にてスリップ締結するCL2スリップ締結モードである。なお、停車中においては、第2クラッチ5をスリップ締結する「WSCモード」とすることで、モータジェネレータ4を回転させることができる。
 FFハイブリッド車両の制動系は、図1に示すように、ブレーキ操作ユニット16と、ブレーキ液圧制御ユニット17と、左右前輪ブレーキユニット18R,18Lと、左右後輪ブレーキユニット19R,19Lと、を備えている。この制動系では、ブレーキ操作時にモータジェネレータ4により回生を行うとき、ペダル操作に基づく要求制動力に対し、要求制動力から回生制動力を差し引いた分を、液圧制動力で分担する回生協調制御が行われる。
 前記ブレーキ操作ユニット16は、ブレーキペダル16a、横置きエンジン2の吸気負圧を用いる負圧ブースタ16b、マスタシリンダ16c、等を有する。この回生協調ブレーキユニット16は、ブレーキペダル16aへ加えられるドライバからのブレーキ踏力に応じ、所定のマスタシリンダ圧を発生するもので、電動ブースタを用いない簡易構成によるユニットとされる。
 前記ブレーキ液圧制御ユニット17は、図示していないが、電動オイルポンプ、増圧ソレノイドバルブ、減圧ソレノイドバルブ、油路切り替えバルブ、等を有して構成される。ブレーキコントロールユニット85によるブレーキ液圧制御ユニット17の制御により、ブレーキ非操作時にホイールシリンダ液圧を発生する機能と、ブレーキ操作時にホイールシリンダ液圧を調圧する機能と、を発揮する。ブレーキ非操作時の液圧発生機能を用いる制御が、トラクション制御(TCS制御)や車両挙動制御(VDC制御)、エマージェンシーブレーキ制御(自動ブレーキ制御)等である。ブレーキ操作時の液圧調整機能を用いる制御が、回生協調ブレーキ制御、アンチロックブレーキ制御(ABS制御)等である。
 前記左右前輪ブレーキユニット18R,18Lは、左右前輪10R,10Lのそれぞれに設けられ、左右後輪ブレーキユニット19R,19Lは、左右後輪11R,11Lのそれぞれに設けられ、各輪に液圧制動力を付与する。これらのブレーキユニット18R,18L,19R,19Lには、ブレーキ液圧制御ユニット17で作り出されたブレーキ液圧が供給される図外のホイールシリンダを有する。
 FFハイブリッド車両の電源系は、図1に示すように、モータジェネレータ4の電源としての強電バッテリ21と、12V系負荷の電源としての12Vバッテリ22と、を備えている。
 前記強電バッテリ21は、モータジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。
 前記強電バッテリ21とモータジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。
 前記12Vバッテリ22は、スタータモータ1及び補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等に搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。
 FFハイブリッド車両の電子制御系は、図1に示すように、車両全体の消費エネルギーを適切に管理する統合制御機能を担う電子制御ユニットとして、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。他の電子制御ユニットとして、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、を有する。さらに、ブレーキコントロールユニット85(略称:「BCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。これらの電子制御ユニット81,82,83,84,85,86は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続され、互いに情報を共有する。
 前記ハイブリッドコントロールモジュール81は、他の電子制御ユニット82,83,84,85,86、イグニッションスイッチ91等からの入力情報に基づき、様々な統合制御を行う。
 前記エンジンコントロールモジュール82は、ハイブリッドコントロールモジュール81、エンジン回転数センサ92等からの入力情報に基づき、横置きエンジン2の始動制御や燃料噴射制御や点火制御や燃料カット制御、エンジンアイドル回転制御等を行う。
 前記モータコントローラ83は、ハイブリッドコントロールモジュール81、モータ回転数センサ93等からの入力情報に基づき、インバータ26に対する制御指令によりモータジェネレータ4の力行制御や回生制御、モータクリープ制御、モータアイドル制御等を行う。
 前記CVTコントロールユニット84は、ハイブリッドコントロールモジュール81、アクセル開度センサ94、車速センサ95、インヒビタースイッチ96、ATF油温センサ97等からの入力情報に基づき、コントロールバルブユニット6dへ制御指令を出力する。このCVTコントロールユニット84では、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6のプライマリ圧とセカンダリ圧による変速油圧制御等を行う。
 前記ブレーキコントロールユニット85は、ハイブリッドコントロールモジュール81、ブレーキスイッチ98、ブレーキストロークセンサ99等からの入力情報に基づき、ブレーキ液圧制御ユニット17へ制御指令を出力する。このブレーキコントロールユニット85では、TCS制御、VDC制御、自動ブレーキ制御、回生協調ブレーキ制御、ABS制御等を行う。
 前記リチウムバッテリコントローラ86は、バッテリ電圧センサ100、バッテリ温度センサ101等からの入力情報に基づき、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。
 [オイルポンプ駆動制御処理構成]
 図2は、実施例1のハイブリッドコントロールモジュール81(コントローラ)にて実行されるオイルポンプ駆動制御処理の流れを示す。以下、EV停車中に行われるオイルポンプ駆動制御処理構成をあらわす図2の各ステップについて説明する。
 ステップS1では、車両停止条件が成立しているか否かを判断する。YES(車両停止条件成立)の場合はステップS2へ進み、NO(車両停止条件不成立)の場合はステップS1の判断を繰り返す。ここで、「車両停止条件」としては、下記(a)~(e)に列挙する条件が与えられる。
 (a)車速<停車閾値
 (b)Dレンジの選択
 (c)EVモードの選択
 (d)ブレーキON
 (e)アクセルOFF
 なお、「EVモードの選択」には、モード遷移制御によりEVモードが選択されている場合と、アイドルストップ制御によるエンジン自動停止によりEVモードが選択されている場合とを含む。
 ステップS2では、ステップS1での車両停止条件成立との判断、或いは、ステップS4での目標値に未達との判断に続き、CVT通常油圧指示フラグからCVT油圧下げ許可フラグへの切り替えに基づき、CVT油圧(=セカンダリ圧Psec)を目標値まで低下させるCVT油圧低下指示をソレノイドバルブに出力し、ステップS3へ進む。
 ここで、「目標値」は、入力トルクに応じた必要油圧よりも低圧であり、油圧・油量に過渡的な変化が起こらないEV停車中における下限圧レベルの油圧値で与える。
 ステップS3では、ステップS2での油圧低下指示に続き、車両停止条件が成立しているか否かを判断する。YES(車両停止条件成立)の場合はステップS4へ進み、NO(車両停止条件不成立)の場合はステップS10へ進む。
 ここで、「車両停止条件」としては、ステップS1と同じ条件を与える。
 ステップS4では、ステップS3での車両停止条件成立との判断に続き、CVT油圧が目標値に到達したか否かを判断する。YES(目標値に到達)の場合はステップS5へ進み、NO(目標値に未達)の場合はステップS2へ戻る。
 ステップS5では、ステップS4での目標値に到達との判断に続き、オイルポンプ駆動制御を許可する許可条件が成立したか否かを判断する。YES(許可条件成立)の場合はステップS6へ進み、NO(許可条件不成立)の場合はステップS10へ進む。ここで、「許可条件」としては、上記「車両停止条件」として与えた(a)~(e)の条件に、下記に列挙する条件(f)~(h)を加え、これらの条件(a)~(h)の全てが成立したとき、許可条件が成立と判断される。
 (f)クリープカット条件成立
 (g)CL2スタンバイ学習完了及びCL2低トルク学習完了
 (h)センサ等の異常判定していない
 なお、「クリープトルク」とは、アクセルペダルを踏むことなく、モータアイドリング状態で車両が動き出すトルクをいい、勾配路停車時において、車両のずり下がりを防止するために必要なトルクである。「クリープカット条件」は、停車状態で、かつ、フィードフォワード制御(FF制御)により取得される第2クラッチ目標トルク(TTCL2)が、所定値以下であり、平坦路でのクリープトルク相当のとき条件成立と判定する。
 ステップS6では、ステップS5での許可条件成立との判断に続き、O/P出力下げ禁止フラグからO/P出力下げ許可フラグへの切り替えに基づき、メインオイルポンプ14の回転数を必要O/P回転数まで緩やかな勾配αにて低下させるモータジェネレータ4への出力低下指示によるモータ回転数制御を行い、ステップS7へ進む。
 ここで、「必要O/P回転数」は、モータ回転数制御での目標O/P回転数であり、ATF油温センサ97からのATF油温(ATF Temp)により決められるもので、図3に示すように、ATF油温が低いほど低回転数とされる。なお、図3に示すATF油温に対する必要O/P回転数の関係特性は、駆動力伝達経路に有する第1クラッチ3、第2クラッチ5及びベルト式無段変速機6(油圧作動ユニットの一例)の油圧回路での作動油リーク量(以下、「リーク量」という。)を補填するように設定される。なお、「O/P」は、オイルポンプをあらわす。
 ステップS7では、ステップS6でのO/P出力低下指示に続き、オイルポンプ駆動制御を許可する許可条件が成立したか否かを判断する。YES(許可条件成立)の場合はステップS8へ進み、NO(許可条件不成立)の場合はステップS10へ進む。
 ここで、「許可条件」としては、ステップS5で与えた条件と同じとする。
 ステップS8では、ステップS7での許可条件成立と判断、或いは、ステップS9での許可条件成立と判断に続き、モータジェネレータ4の出力(=O/P回転数)を低下させるO/P出力低下制御を継続し、ステップS9へ進む。
 ここで、O/P出力低下制御は、メインオイルポンプ14の回転数を制御開始時の回転数から緩やかな勾配αにて低下させ、O/P回転数が必要O/P回転数に到達すると、その後、必要O/P回転数をそのまま保つことで継続する。
 ステップS9では、ステップS8でのO/P出力低下制御継続に続き、オイルポンプ駆動制御を許可する許可条件が成立したか否かを判断する。YES(許可条件成立)の場合はステップS8へ戻り、NO(許可条件不成立)の場合はステップS10へ進む。
 ここで、「許可条件」としては、ステップS5及びステップS7で与えた条件と同じとする。
 ステップS10では、ステップS3での車両停止条件不成立との判断、或いは、ステップS5又はステップS7又はステップS9での許可条件不成立との判断に続き、オイルポンプ駆動制御の抜け制御を開始し、ステップS11へ進む。
 ステップS11では、ステップS10での抜け制御開始に続き、低下させたCVT油圧の上昇指示と、低下させたモータジェネレータ4の出力上昇指示(トルク上昇指示)と、を同時に出力し、ステップS12へ進む。
 例えば、ステップS9で許可条件不成立と判断された場合は、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、目標値まで低下させたCVT油圧をCVT通常油圧まで上昇させる指示をソレノイドバルブに出力する。同時に、O/P出力下げ許可フラグからO/P出力下げ禁止フラグへの切り替えに基づき、必要O/P回転数まで低下させたメインオイルポンプ14の回転数を、O/P通常回転数まで急激な勾配β(>勾配α)にて上昇させるモータジェネレータ4への出力上昇指示を出力する。なお、勾配βは、例えば、モータ回転数制御での目標O/P回転数をステップ的に与えることで、O/Pポテンシャルで可能な最速の回転上昇勾配とする。
 ステップS12では、ステップS11でのO/P出力上昇指示&油圧上昇指示、或いは、ステップS13でのディレー時間を経過していないとの判断に続き、油圧復帰ディレー時間のタイマーカウントを行い、ステップS13へ進む。
 ここで、油圧復帰ディレー時間は、目標値まで低下させたCVT油圧をCVT通常油圧まで上昇させる指示に対する油圧応答遅れ時間に基づき設定する。
 ステップS13では、ステップS12での油圧復帰ディレー時間のタイマーカウントに続き、油圧復帰ディレー時間を経過したか否かを判断する。YES(ディレー時間を経過)の場合はステップS14へ進み、NO(ディレー時間を経過していない)の場合はステップS12へ戻る。
 ステップS14では、ステップS13でのディレー時間を経過との判断に続き、通常油圧制御に復帰し、終了へ進む。
 次に、作用を説明する。
 実施例1のFFハイブリッド車両のオイルポンプ駆動制御装置における作用を、「オイルポンプ駆動制御処理作用」、「オイルポンプ駆動制御作用」、「オイルポンプ駆動制御の特徴作用」に分けて説明する。
 [オイルポンプ駆動制御処理作用]
 以下、図2のフローチャートに基づき、オイルポンプ駆動制御処理作用を説明する。
 車両停止条件が成立していると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む。そして、ステップS4で目標値に到達していないと判断されている間は、ステップS2→ステップS3→ステップS4へと進む流れが繰り返される。ステップS2では、CVT通常油圧指示フラグからCVT油圧下げ許可フラグへの切り替えに基づき、CVT油圧(=セカンダリ圧Psec)を目標値まで低下させるCVT油圧低下指示がソレノイドバルブに出力される。
 ステップS4で目標値に到達したと判断され、かつ、許可条件が成立していると、図2のフローチャートにおいて、ステップS4からステップS5→ステップS6→ステップS7→ステップS8→ステップS9へと進む。そして、ステップS9で許可条件が成立であると判断されている間は、ステップS8→ステップS9へと進む流れが繰り返される。ステップS6では、O/P出力下げ禁止フラグからO/P出力下げ許可フラグへの切り替えに基づき、メインオイルポンプ14の回転数を必要O/P回転数まで緩やかな勾配αにて低下させるモータジェネレータ4への出力低下指示によるモータ回転数制御が行われる。ステップS8では、メインオイルポンプ14の回転数を制御開始時回転数から緩やかな勾配αにて低下させ、O/P回転数が必要O/P回転数に到達すると、その後、必要O/P回転数をそのまま保つO/P低下制御が継続される。
 ステップS9で許可条件が不成立であると判断されると、図2のフローチャートにおいて、ステップS9からステップS10→ステップS11→ステップS12→ステップS13へと進む。そして、ステップS13でディレー時間が経過していないと判断されている間は、ステップS12→ステップS13へと進む流れが繰り返される。ステップS11では、低下させたCVT油圧の上昇指示と、低下させたモータジェネレータ4の出力上昇指示とが同時に出力される。
 ステップS13でディレー時間が経過したと判断されると、図2のフローチャートにおいて、ステップS13からステップS14→終了へ進み、ステップS14では、通常油圧制御に復帰される。
 上記のように、ステップS9で許可条件不成立と判断された場合は、ステップS11において、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、目標値まで低下させたCVT油圧をCVT通常油圧まで上昇させる指示がソレノイドバルブに出力される。同時に、O/P出力下げ許可フラグからO/P出力下げ禁止フラグへの切り替えに基づき、モータジェネレータ4への出力上昇指示を伴うモータ回転数制御により、必要O/P回転数まで低下させたO/P回転数を、O/P通常回転数まで急激な勾配β(>勾配α)にて上昇させる指示が出力される。
 ステップS3で車両停止条件不成立との判断された場合は、ステップS11において、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、判断時におけるCVT油圧をCVT通常油圧まで上昇させる指示がソレノイドバルブに出力される。
 ステップS5で許可条件不成立と判断された場合は、ステップS11において、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、目標値まで低下させたCVT油圧をCVT通常油圧まで上昇させる指示がソレノイドバルブに出力される。
 ステップS7で許可条件不成立と判断された場合は、ステップS11において、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、目標値まで低下させたCVT油圧をCVT通常油圧まで上昇させる指示がソレノイドバルブに出力される。同時に、O/P出力下げ許可フラグからO/P出力下げ禁止フラグへの切り替えに基づき、判断時におけるO/P回転数を、O/P通常回転数まで急激な勾配β(>勾配α)にて上昇させる指示が出力される。
 [オイルポンプ駆動制御作用]
 実施例1のオイルポンプ駆動制御は、変速機作動油(ATF)のリーク量に基づき、オイルポンプ吐出量を最適化(図3)した制御である。まず、実施例1のオイルポンプ駆動制御への道のりである背景技術を説明する。
 従来の停車中におけるO/P必要駆動力の考え方は、入力トルクに応じた必要ライン圧を確保するO/P必要駆動力を設定するというものである。
 この従来のO/P必要駆動力の考え方に対し、発明者等は、更なる消費エネルギーの削減ができないかと検討したところ、油圧・油量に過渡的な変化が起こらないEV停車中であれば、油圧が一定で安定していて、このときのO/P必要駆動力は、油圧回路からのリーク量に比例したもので良いことを知見した。但し、油圧回路からのリーク量を測定することは難しい。
 しかし、リーク量は、作動油粘度(ATF粘度)に対して感度を持っている。このため、従来の入力トルクに応じたO/P必要駆動力に設定するという考え方を、ATF粘度に応じたO/P必要駆動力に設定するという考え方に変更することで、更なる消費エネルギーの削減ができることが判明した。但し、ATF粘度も、量産車では、直接計測できないため、既に計測しているATF油温に対してATF粘度が予測可能であるかを調査した。
 その結果、非線形ではあるが、ATF油温に対してATF粘度の値には推定値として、ATF油温-粘度感度のバラツキとATF劣化を考慮して推定すれば、車両に搭載できる技術としての精度が保証できることが確認された。また、その結果より、さらにリーク量のバラツキを考慮することで、リーク量も必要精度で推定できることが確認された。
 そこで、更なる消費エネルギーの削減を図るため、ATF油温をパラメータにしたO/P必要駆動力を設定する手法を提案し、これを実用化したものが実施例1のオイルポンプ駆動制御である。
 ここで、図4に基づき、オイルポンプ駆動制御において、リーク量に基づいてポンプ駆動エネルギーを下げる制御を行うとき、O/P必要駆動力がATF油温により推定できることを説明する。
 実ATFセンサ値により取得したATF油温(B1)と、最大劣化値を使用したATF劣化度合い(B2)と、によりATF粘度(B3)を推定する。このATF粘度(B3)と、最大リーク箇所総面積値を使用したリーク箇所総面積(B4)と、によりリーク量(B5)を推定する。このリーク量(B5)と、一定油圧シーンに限定し、想定外のリークなどに対応するため、油圧センサで異常油圧となっていないかを常時監視している低下目標値である油圧(B6)と、によりO/P必要駆動力(B7)を推定する。以上の手法により、O/P必要駆動力が、ATF油温により必要精度で推定される。
 次に、図5に示すオイルポンプ駆動制御への制御入りタイムチャートに基づき、オイルポンプ駆動制御の制御入り作用を説明する。
 図5において、時刻t1は停車時刻である。時刻t2はオイルポンプ駆動制御の開始時刻である。時刻t3はO/P回転数下げ終了時刻である。
 減速走行から時刻t1にて停車する領域までは、CVT通常油圧指示フラグであるため、CVT油圧(=セカンダリ圧Psec)は、入力トルクに応じた必要ライン圧に基づくCVT通常油圧である。時刻t1にて停車し、車両停止条件が成立すると、CVT通常油圧指示フラグからCVT油圧下げ許可フラグへの切り替えに基づき、CVT通常油圧から目標値まで低下させるCVT油圧低下指示がソレノイドバルブに出力される。これによって、時刻t1から時刻t2までの間において、CVT油圧が目標値まで低下する。CVT油圧が目標値に到達する時刻t2になり、異常判定が無く、かつ、学習処理及び停車処理(クリープトルクを与える処理)が終了すると、許可条件が成立する。よって、時刻t2にてO/P出力下げ禁止フラグからO/P出力下げ許可フラグへの切り替えに基づき、メインオイルポンプ14の回転数を必要O/P回転数まで緩やかな勾配αにて低下させるモータジェネレータ4へのトルク低下指示が出力される。そして、時刻t2から時刻t3までの間に、メインオイルポンプ14の回転数が必要O/P回転数まで緩やかな勾配αにて低下する。メインオイルポンプ14の回転数が必要O/P回転数に到達する時刻t3になると、メインオイルポンプ14の回転数が必要O/P回転数のままで、許可条件が不成立となるまで維持される。
 したがって、オイルポンプ駆動制御の入り制御では、メインオイルポンプ14の回転数低下分(図5のハッチング部分)に相当するO/P必要駆動力の低下分による駆動エネルギー量が、停車中における消費エネルギーの削減分になる。
 次に、図6に示すオイルポンプ駆動制御からの制御抜けタイムチャートに基づき、オイルポンプ駆動制御の制御抜け作用を説明する。
 図6において、時刻t4は許可条件不成立時刻である。時刻t5はオイルポンプ回転数復帰時刻である。時刻t6は通常油圧制御への復帰開始時刻である。
 許可条件が不成立になる時刻t4までは、CVT油圧下げ許可フラグに基づき、CVT油圧が目標値まで低下させたままであり、O/P出力下げ許可フラグに基づき、メインオイルポンプ14の回転数が必要O/P回転数まで低下させたままである。時刻t4にて例えばブレーキ足離し操作をし、許可条件が不成立になると、低下させたCVT油圧の上昇指示と、低下させたモータジェネレータ4のトルク上昇指示と、が同時に出力される。即ち、CVT油圧下げ許可フラグからCVT通常油圧指示フラグへの切り替えに基づき、CVT油圧が低下させた目標値からCVT通常油圧までの上昇を開始する。同時に、O/P出力下げ許可フラグからO/P出力下げ禁止フラグへの切り替えに基づき、必要O/P回転数まで低下させていたメインオイルポンプ14の回転数が急な勾配βで上昇を開始する。そして、時刻t5になるとメインオイルポンプ14の回転数が元の回転数に復帰し、時刻t6になると、CVT油圧がクラッチ制御動作許可油圧まで立ち上がる。そして、時刻t6以降は通常CL制御が行えることで、アクセル踏み込み操作があると発進する。なお、時刻t4~時刻t6は、O/P出力復帰待ちのディレー時間である。
 したがって、オイルポンプ駆動制御の抜け制御では、メインオイルポンプ14の回転数低下分(図6のハッチング部分)に相当するO/P必要駆動力の低下分による駆動エネルギー量が、停車中における消費エネルギーの削減分になる。そして、入り制御では、先にCVT油圧下げ制御を開始し、その後、O/P出力下げ制御を開始する。これに対し、抜け制御では、CVT油圧上げ制御とO/P出力上げ制御を同時に開始する。また、O/P出力上げ制御の場合、上げ勾配βを、O/P出力下げ制御での下げ勾配αよりも大きくする。
 [オイルポンプ駆動制御の特徴作用]
 実施例1では、ハイブリッドコントロールモジュール81は、停車中、ATF油温が低いほど、メインオイルポンプ14を駆動するポンプ駆動エネルギーを下げる制御を行う構成とした。
 即ち、ATF油温が低いときはATF粘度が高くなることで、第1クラッチ3、第2クラッチ5及びベルト式無段変速機6の油圧回路からのリーク量が少なくなり、一定の油圧を出力する場合に必要なオイルポンプ吐出量を少なくすることができる。この点に着目し、油圧の過渡的な変動が無い停車中、ATF油温が低いほどポンプ駆動エネルギーを下げる制御を行うと、第1クラッチ3、第2クラッチ5及びベルト式無段変速機6の油圧回路からのリーク量がオイルポンプ吐出量により賄われる。
 従って、停車中、油圧回路からのリーク量に着目したオイルポンプ駆動制御を行うことにより、ポンプ駆動エネルギーとして使われる消費エネルギーが削減される。
 実施例1では、ポンプ駆動エネルギーを下げる制御として、メインオイルポンプ14を駆動するモータジェネレータ4の駆動出力を下げる制御を行う構成とした。
 即ち、モータジェネレータ4の駆動出力(=モータトルク)を下げる制御を行うことで、強電バッテリ21からモータジェネレータ4への放電量が小さく抑えられ、強電バッテリ21のバッテリ容量の低下が防止される。
 従って、モータジェネレータ4の駆動出力の下げ制御によって、停車中におけるモータジェネレータ4が使う消費エネルギーが削減される。
 実施例1では、第1クラッチ3、第2クラッチ5、ベルト式無段変速機6の油圧回路での作動油のリーク量を補填する必要O/P回転数をATF油温に応じて設定する(図3)。そして、モータジェネレータ4の駆動出力を下げる制御として、設定した必要O/P回転数を目標O/P回転数とするモータ回転数制御を行う構成とした。
 即ち、ポンプ仕様により1回転当たりの単位吐出油量が決まっているため、オイルポンプ回転数はオイルポンプ吐出油量に比例する。したがって、油圧回路でのリーク量をオイルポンプ吐出油量で補填する場合は、オイルポンプ回転数を用いて管理すると、精度良く管理される。そして、モータ回転数制御を行うと、目標O/P回転数への一致方向に実O/P回転数を低下させるように、モータトルクを下げる制御が行われる。
 従って、油圧回路でのリーク量に対して精度良く管理されたモータジェネレータ4の駆動出力下げ制御により、停車中の消費エネルギーの最小化(最適化)が図られる。
 実施例1では、ポンプ駆動エネルギー低下制御の許可条件として、車両停止条件に、クリープカット条件と非学習制御条件と異常無し判定条件を加える構成とした。
 即ち、クリープカット条件と非学習制御条件を加えることで、外部の駆動力変化が少ない停車シーンを対象としてポンプ駆動エネルギーの低下制御が許可される。また、異常無し判定条件を加えることで、想定外の作動油リークなどに対応できる。
 従って、許可条件として、油圧・油量の変動が抑えられた停車シーンを対象とする条件を加えたことで、ポンプ駆動エネルギーの低下制御の安全性が確保される。
 実施例1では、許可条件が成立であるとの判断に基づいてポンプ駆動エネルギーの低下制御を開始するとき、制御開始に先行して第1クラッチ3、第2クラッチ5及びベルト式無段変速機6の油圧を下限圧レベルの目標値まで低下させる制御を行う構成とした。
 例えば、ポンプ駆動エネルギーの低下制御と油圧低下制御とを同時に開始すると、メインオイルポンプ14からのポンプ吐出量が急減し、油量低下により実セカンダリ圧にアンダーシュートが生じるおそれがある。そして、大きくアンダーシュートが生じると、実セカンダリ圧が上昇と下降を繰り返すハンチングを生じ、油振の原因になる。
 これに対し、ポンプ駆動エネルギーの低下制御を開始する入り制御のとき、ポンプ駆動エネルギーの低下制御の開始に先行して油圧低下制御を行うことで、アンダーシュートや油振の防止が図られる。
 実施例1では、許可条件の成立/不成立の判断を、ポンプ駆動エネルギーの低下制御の継続中に行い、許可条件が不成立になったらポンプ駆動エネルギーの低下制御を停止する構成とした。
 例えば、バッテリ容量低下を原因とするシステム要求によりEVモードからエンジン始動制御を介してHEVモードへモード遷移する場合がある。このモード遷移要求がポンプ駆動エネルギーの低下制御の継続中に生じたとき、ポンプ駆動エネルギーの低下制御をそのまま継続していたら、油量不足や油圧のオーバーシュート・アンダーシュートや油振や油圧作動ユニットの耐久劣化、等の影響がある。
 これに対し、ポンプ駆動エネルギーの低下制御継続中に許可条件が不成立になったとき、直ちに制御を停止することで、制御継続により受ける様々な影響が排除される。
 実施例1では、許可条件が不成立と判断されると、ポンプ駆動エネルギーの上昇指示と油圧作動ユニットへの油圧上昇指示を同時に出力し、ディレー時間を経過すると、通常油圧制御に移行する構成とした。
 例えば、ポンプ駆動エネルギーの上昇指示を先に行い、油圧作動ユニットへの油圧上昇指示を後に行うと、油量収支として油量過剰となる。逆に、油圧作動ユニットへの油圧上昇指示を先に行い、ポンプ駆動エネルギーの上昇指示を後に行うと、油量収支として油量不足となる。また、油圧応答性の遅れを考慮することなく、通常油圧制御に移行すると、油量収支に過不足が生じる。これらの場合、油量不足や油圧のオーバーシュート・アンダーシュートや油振や油圧作動ユニットの耐久劣化、等の影響がある。
 これに対し、ポンプ駆動エネルギー低下制御からの抜け制御のとき、2つの低下制御を同時に行い、ディレー時間の経過を待って通常油圧制御に移行することで、様々な影響が排除される。
 実施例1では、ポンプ駆動エネルギーの上昇指示をするとき、ポンプ駆動エネルギーの低下勾配αよりも急な上昇勾配βを持たせてポンプ駆動エネルギーを復帰する構成とした。
 例えば、ドライバが発進を意図するブレーキ足離し操作等により許可条件が不成立になったときは、その後の発進に備えて、応答良く油圧を発生して通常油圧制御を開始する必要がある。
 これに対し、ドライバが発進を意図して許可条件が不成立になったとき、応答良く油圧を発生することで駆動力伝達体制が早期に整い、ドライバの発進要求に応えられる。
 次に、効果を説明する。
 実施例1のFFハイブリッド車両のオイルポンプ駆動制御装置にあっては、下記に列挙する効果が得られる。
 (1)車載動力源(モータジェネレータ4)により駆動され、駆動力伝達経路に有する油圧作動ユニット(第1クラッチ3、第2クラッチ5、ベルト式無段変速機6)へのポンプ吐出油を作り出すオイルポンプ(メインオイルポンプ14)を備えた車両(FFハイブリッド車両)において、
 オイルポンプ(メインオイルポンプ14)のポンプ駆動を制御するコントローラ(ハイブリッドコントロールモジュール81)を設け、
 コントローラ(ハイブリッドコントロールモジュール81)は、停車中、作動油温度(ATF油温)が低いほど、オイルポンプ(メインオイルポンプ14)を駆動するポンプ駆動エネルギーを下げる制御を行う。
 このため、停車中、消費エネルギーの削減を達成することができる。
 (2)コントローラ(ハイブリッドコントロールモジュール81)は、ポンプ駆動エネルギーを下げる制御として、オイルポンプ(メインオイルポンプ14)を駆動する車載動力源(モータジェネレータ4)の駆動出力を下げる制御を行う。
 このため、(1)の効果に加え、車載動力源(モータジェネレータ4)の駆動出力の下げ制御によって、停車中において車載動力源(モータジェネレータ4)が使う消費エネルギーを削減することができる。
 (3)コントローラ(ハイブリッドコントロールモジュール81)は、油圧作動ユニット(第1クラッチ3、第2クラッチ5、ベルト式無段変速機6)の油圧回路での作動油のリーク量を補填する必要オイルポンプ回転数(必要O/P回転数)を作動油温度(ATF油温)に応じて設定し、車載動力源(モータジェネレータ4)の駆動出力を下げる制御として、設定した必要オイルポンプ回転数(必要O/P回転数)を目標オイルポンプ回転数(目標O/P回転数)とする回転数制御を行う。
 このため、(2)の効果に加え、油圧回路でのリーク量に対して精度良く管理された車載動力源(モータジェネレータ4)の駆動出力下げ制御により、停車中の消費エネルギーの最小化(最適化)を図ることができる。
 (4)コントローラ(ハイブリッドコントロールモジュール81)は、ポンプ駆動エネルギー低下制御の許可条件として、車両停止条件に、クリープカット条件と非学習制御条件と異常無し判定条件を加える。
 このため、(1)~(3)の効果に加え、許可条件として、油圧・油量の変動が抑えられた停車シーンを対象とする条件を加えたことで、ポンプ駆動エネルギーの低下制御の安全性を確保することができる。
 (5)コントローラ(ハイブリッドコントロールモジュール81)は、許可条件が成立であるとの判断に基づいてポンプ駆動エネルギーの低下制御を開始するとき、制御開始に先行して油圧作動ユニット(第1クラッチ3、第2クラッチ5、ベルト式無段変速機6)の油圧を低下させる制御を行う。
 このため、(4)の効果に加え、ポンプ駆動エネルギーの低下制御を開始する入り制御のとき、ポンプ駆動エネルギーの低下制御の開始に先行して油圧低下制御を行うことで、アンダーシュートや油振の防止を図ることができる。
 (6)コントローラ(ハイブリッドコントロールモジュール81)は、許可条件の成立/不成立の判断を、ポンプ駆動エネルギーの低下制御の継続中に行い、許可条件が不成立になったらポンプ駆動エネルギーの低下制御を停止する。
 このため、(5)の効果に加え、ポンプ駆動エネルギーの低下制御継続中に許可条件が不成立になったとき、直ちに制御を停止することで、制御継続により受ける様々な影響を排除することができる。
 (7)コントローラ(ハイブリッドコントロールモジュール81)は、許可条件が不成立と判断されると、ポンプ駆動エネルギーの上昇指示と油圧作動ユニット(第1クラッチ3、第2クラッチ5、ベルト式無段変速機6)の油圧上昇指示を同時に出力し、油圧復帰遅れ時間を経過すると、通常油圧制御に移行する。
 このため、(5)又は(6)の効果に加え、ポンプ駆動エネルギー低下制御からの抜け制御のとき、2つの低下制御を同時に行い、油圧復帰遅れ時間(ディレー時間)の経過を待って通常油圧制御に移行することで、様々な影響を排除することができる。
 (8)コントローラ(ハイブリッドコントロールモジュール81)は、ポンプ駆動エネルギーの上昇指示をするとき、ポンプ駆動エネルギーの低下勾配αよりも急な上昇勾配βを持たせてポンプ駆動エネルギーを復帰する。
 このため、(7)の効果に加え、ドライバが発進を意図して許可条件が不成立になったとき、応答良く油圧を発生することで駆動力伝達体制が早期に整い、ドライバの発進要求に応えることができる。
 以上、本発明の車両のオイルポンプ駆動制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、変速機として、プライマリプーリ6aとセカンダリプーリ6bにベルト6cを掛け渡し、プライマリプーリ圧Ppriとセカンダリプーリ圧Psecを変速油圧とするベルト式無段変速機6を用いる例を示した。しかし、変速機としては、ステップATと呼ばれる自動変速機、手動変速機構造で変速を自動化したAMT、2つのクラッチを持ち手動変速機構造で変速を自動化したDCT、等を用いる例であっても良い。
 実施例1では、クラッチとして、第1クラッチ3と第2クラッチ5を用いる例を示した。しかし、クラッチとしては、発進クラッチやトルクコンバータに設けられたロックアップクラッチ等を用いる例としても良い。
 実施例1では、メインオイルポンプ14を駆動する車載動力源として、走行用駆動源として設けられたモータジェネレータ4を用いる例を示した。しかし、オイルポンプを駆動する車載動力源としては、オイルポンプ専用の電動モータ(電動オイルポンプ)、走行用駆動源として設けられ、アイドル回転数域でエンジン回転数の低下制御が可能なエンジンを用いる例であっても良い。
 即ち、実施例1では、図7に示すように、モータジェネレータ4により駆動されるメインオイルポンプ14を設け、第1クラッチ3と第2クラッチ5とベルト式無段変速機6を油圧作動ユニットとする例を示した。しかし、図8に示すように、オイルポンプ専用の電動モータにより駆動される電動オイルポンプを設け、第1クラッチと第2クラッチとベルト式無段変速機を油圧作動ユニットとする例としても良い。更に、図9に示すように、アイドルストップ制御機能やコーストストップ制御機能を有するエンジン車において、電動オイルポンプを設け、変速機やクラッチを油圧作動ユニットとする例としても良い。
 実施例1では、車載動力源であるモータジェネレータ4のポンプ駆動出力として、モータトルクを用いる例を示した。しかし、ポンプ駆動出力としては、車載動力源が電動モータである場合は、モータトルク以外に、ポンプ駆動エネルギーの算出に用いられるモータ電流やモータ電圧等を用いても良い。車載動力源がエンジンである場合は、燃料噴射量等を用いても良い。
 実施例1では、本発明のオイルポンプ駆動制御装置を、1モータ・2クラッチの駆動形式によるFFハイブリッド車両に適用する例を示した。しかし、本発明のオイルポンプ駆動制御装置は、FRハイブリッド車両や1モータ・2クラッチの駆動形式以外の動力分割機構等を備えたハイブリッド車両に対しても適用することができる。さらに、車載動力源により駆動され、駆動力伝達経路に有する油圧作動ユニットへのポンプ吐出油を作り出すオイルポンプを備えた車両であれば、エンジン車であっても、電気自動車であっても、燃料電池車であっても適用することができる。

Claims (8)

  1.  車載動力源により駆動され、駆動力伝達経路に有する油圧作動ユニットへのポンプ吐出油を作り出すオイルポンプを備えた車両において、
     前記オイルポンプのポンプ駆動を制御するコントローラを設け、
     前記コントローラは、停車中、作動油温度が低いほど、前記オイルポンプを駆動するポンプ駆動エネルギーを下げる制御を行うものである車両のオイルポンプ駆動制御装置。
  2.  請求項1に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、ポンプ駆動エネルギーを下げる制御として、前記オイルポンプを駆動する前記車載動力源の駆動出力を下げる制御を行うものである車両のオイルポンプ駆動制御装置。
  3.  請求項2に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、前記油圧作動ユニットの油圧回路での作動油のリーク量を補填する必要オイルポンプ回転数を作動油温度に応じて設定し、前記車載動力源の駆動出力を下げる制御として、設定した前記必要オイルポンプ回転数を目標オイルポンプ回転数とする回転数制御を行うものである車両のオイルポンプ駆動制御装置。
  4.  請求項1~3のいずれか一項に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、ポンプ駆動エネルギー低下制御の許可条件として、車両停止条件に、クリープカット条件と非学習制御条件と異常無し判定条件を加えるものである車両のオイルポンプ駆動制御装置。
  5.  請求項4に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、前記許可条件が成立であるとの判断に基づいてポンプ駆動エネルギーの低下制御を開始するとき、制御開始に先行して前記油圧作動ユニットの油圧を低下させる制御を行うものである車両のオイルポンプ駆動制御装置。
  6.  請求項5に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、前記許可条件の成立/不成立の判断を、ポンプ駆動エネルギーの低下制御の継続中に行い、前記許可条件が不成立になったらポンプ駆動エネルギーの低下制御を停止するものである車両のオイルポンプ駆動制御装置。
  7.  請求項5又は請求項6に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、前記許可条件が不成立と判断されると、ポンプ駆動エネルギーの上昇指示と前記油圧作動ユニットの油圧上昇指示を同時に出力し、油圧復帰遅れ時間を経過すると、通常油圧制御に移行するものである車両のオイルポンプ駆動制御装置。
  8.  請求項7に記載された車両のオイルポンプ駆動制御装置において、
     前記コントローラは、前記ポンプ駆動エネルギーの上昇指示をするとき、前記ポンプ駆動エネルギーの低下勾配よりも急な上昇勾配を持たせてポンプ駆動エネルギーを復帰するものである車両のオイルポンプ駆動制御装置。
PCT/JP2016/056529 2015-03-19 2016-03-03 車両のオイルポンプ駆動制御装置 WO2016147875A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16764705.6A EP3273100A4 (en) 2015-03-19 2016-03-03 Vehicle oil pump driving control device
KR1020177025889A KR20170117543A (ko) 2015-03-19 2016-03-03 차량의 오일 펌프 구동 제어 장치
CN201680016720.4A CN107429826B (zh) 2015-03-19 2016-03-03 车辆的油泵驱动控制装置
US15/559,238 US10502314B2 (en) 2015-03-19 2016-03-03 Vehicle oil pump driving control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056944 2015-03-19
JP2015056944A JP6706884B2 (ja) 2015-03-19 2015-03-19 車両のオイルポンプ駆動制御装置

Publications (1)

Publication Number Publication Date
WO2016147875A1 true WO2016147875A1 (ja) 2016-09-22

Family

ID=56919826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056529 WO2016147875A1 (ja) 2015-03-19 2016-03-03 車両のオイルポンプ駆動制御装置

Country Status (6)

Country Link
US (1) US10502314B2 (ja)
EP (1) EP3273100A4 (ja)
JP (1) JP6706884B2 (ja)
KR (1) KR20170117543A (ja)
CN (1) CN107429826B (ja)
WO (1) WO2016147875A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223265A1 (de) * 2016-11-24 2018-05-24 Zf Friedrichshafen Ag Anbindung einer Ölpumpe an einem Hybridgetriebe eines Kraftfahrzeugs mit einer achsparallel zu einer Antriebswelle angeordneten elektrischen Maschine
CA3122836A1 (en) 2017-01-20 2018-07-26 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission
WO2018189897A1 (ja) * 2017-04-14 2018-10-18 日産自動車株式会社 電動車両の制御装置および電動車両の制御方法
JP6496366B2 (ja) * 2017-08-10 2019-04-03 本田技研工業株式会社 油圧制御装置
KR102659053B1 (ko) * 2018-12-07 2024-04-19 현대자동차주식회사 엔진클러치 고장에 대응하여 주행유지를 위한 협조제어 방법 및 장치
US11489356B2 (en) 2019-07-02 2022-11-01 Abb Schweiz Ag MVDC link-powered battery chargers and operation thereof
US11420609B2 (en) 2020-12-14 2022-08-23 Allison Transmission, Inc. System and method for controlling engine stop-start events
KR20220120785A (ko) * 2021-02-23 2022-08-31 현대자동차주식회사 하이브리드 차량의 eop 제어방법
KR20230135948A (ko) 2022-03-17 2023-09-26 현대자동차주식회사 차량용 오일 누유 진단방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797942A (en) * 1980-12-11 1982-06-17 Honda Motor Co Ltd Change gear operated by oil pressure for car
JP2003240110A (ja) * 2002-02-18 2003-08-27 Aisin Aw Co Ltd 車輌の制御装置
JP2006307950A (ja) * 2005-04-27 2006-11-09 Fuji Heavy Ind Ltd 変速機用オイルポンプの駆動制御装置
JP2014177964A (ja) * 2013-03-13 2014-09-25 Hitachi Automotive Systems Ltd オイル供給装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565024B2 (ja) * 1998-06-30 2004-09-15 日産自動車株式会社 自動変速機のオイルポンプ制御装置
JP3562324B2 (ja) * 1998-07-14 2004-09-08 日産自動車株式会社 自動変速機のオイルポンプ回転数制御装置
JP3780805B2 (ja) * 2000-03-06 2006-05-31 日産自動車株式会社 アイドルストップ車用自動変速機の電動オイルポンプ駆動制御装置
JP4464644B2 (ja) * 2003-09-11 2010-05-19 キャタピラージャパン株式会社 ファン回転数制御方法
JP4145856B2 (ja) * 2004-10-05 2008-09-03 ジヤトコ株式会社 ベルト式無段変速機のライン圧制御装置
JP4651467B2 (ja) * 2005-07-06 2011-03-16 株式会社小松製作所 冷却用油圧駆動ファンの制御装置および制御方法
JP5072793B2 (ja) * 2008-10-07 2012-11-14 ジヤトコ株式会社 無段変速機の制御装置及び制御方法
JP4435857B1 (ja) * 2009-04-30 2010-03-24 日産自動車株式会社 ベルト式無段変速機の制御装置と制御方法
JP5437336B2 (ja) * 2011-09-22 2014-03-12 日立オートモティブシステムズ株式会社 電動オイルポンプの制御装置
US9488285B2 (en) * 2011-10-24 2016-11-08 Eaton Corporation Line pressure valve to selectively control distribution of pressurized fluid
JP5612015B2 (ja) * 2012-03-30 2014-10-22 本田技研工業株式会社 自動変速機の保護制御装置
CN110259847B (zh) * 2013-03-11 2021-08-13 日产自动车株式会社 驱动力传递装置
WO2014141916A1 (ja) * 2013-03-12 2014-09-18 ジヤトコ株式会社 車両制御装置及び車両制御方法
WO2014147920A1 (ja) * 2013-03-19 2014-09-25 ジヤトコ株式会社 自動変速機の潤滑流量制御装置及び潤滑流量制御方法
KR101510331B1 (ko) * 2013-04-01 2015-04-07 현대자동차 주식회사 자동변속기의 펌프모터 제어장치 및 방법
JP6211321B2 (ja) * 2013-07-16 2017-10-11 日立オートモティブシステムズ株式会社 車両用電動オイルポンプの制御装置
JP2015138451A (ja) * 2014-01-23 2015-07-30 株式会社東芝 データ転送制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797942A (en) * 1980-12-11 1982-06-17 Honda Motor Co Ltd Change gear operated by oil pressure for car
JP2003240110A (ja) * 2002-02-18 2003-08-27 Aisin Aw Co Ltd 車輌の制御装置
JP2006307950A (ja) * 2005-04-27 2006-11-09 Fuji Heavy Ind Ltd 変速機用オイルポンプの駆動制御装置
JP2014177964A (ja) * 2013-03-13 2014-09-25 Hitachi Automotive Systems Ltd オイル供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273100A4 *

Also Published As

Publication number Publication date
JP6706884B2 (ja) 2020-06-10
US10502314B2 (en) 2019-12-10
EP3273100A4 (en) 2018-05-02
CN107429826B (zh) 2019-11-15
EP3273100A1 (en) 2018-01-24
US20180073628A1 (en) 2018-03-15
CN107429826A (zh) 2017-12-01
KR20170117543A (ko) 2017-10-23
JP2016176525A (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2016147875A1 (ja) 車両のオイルポンプ駆動制御装置
JP6420461B2 (ja) ハイブリッド車両の制御装置
US9776623B2 (en) Four-wheel drive electric vehicle control device
JP6256651B2 (ja) 車両の回生変速制御装置
RU2660088C1 (ru) Устройство рекуперативного управления скоростью транспортного средства
US20160193994A1 (en) Hybrid vehicle control device
JP6444488B2 (ja) ハイブリッド車両の制御装置
JP6194735B2 (ja) ハイブリッド車両の制御装置
WO2016021018A1 (ja) 電動車両の発進制御装置
JP6488788B2 (ja) ハイブリッド車両の制御装置
JP2016008015A (ja) 車両の発進制御装置
WO2015037042A1 (ja) ハイブリッド車両の制御装置
JP6488798B2 (ja) ハイブリッド車両の制御装置
WO2015037043A1 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025889

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764705

Country of ref document: EP