WO2016140306A1 - チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法 - Google Patents
チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法 Download PDFInfo
- Publication number
- WO2016140306A1 WO2016140306A1 PCT/JP2016/056580 JP2016056580W WO2016140306A1 WO 2016140306 A1 WO2016140306 A1 WO 2016140306A1 JP 2016056580 W JP2016056580 W JP 2016056580W WO 2016140306 A1 WO2016140306 A1 WO 2016140306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- oxide layer
- layer
- heat treatment
- separator
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 149
- 239000010936 titanium Substances 0.000 title claims abstract description 147
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 140
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 133
- 239000000446 fuel Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- -1 separator Substances 0.000 title claims description 13
- 239000007787 solid Substances 0.000 title abstract description 14
- 229920000642 polymer Polymers 0.000 title abstract description 9
- 239000010410 layer Substances 0.000 claims abstract description 233
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002344 surface layer Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 83
- 239000003575 carbonaceous material Substances 0.000 claims description 55
- 229910000510 noble metal Inorganic materials 0.000 claims description 48
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 40
- 229910052760 oxygen Inorganic materials 0.000 claims description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 33
- 239000001301 oxygen Substances 0.000 claims description 33
- 239000012298 atmosphere Substances 0.000 claims description 31
- 239000005518 polymer electrolyte Substances 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 230000007797 corrosion Effects 0.000 abstract description 21
- 238000005260 corrosion Methods 0.000 abstract description 21
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 6
- 239000004917 carbon fiber Substances 0.000 abstract description 6
- 150000003608 titanium Chemical class 0.000 abstract description 6
- 229910003087 TiOx Inorganic materials 0.000 abstract 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 28
- 239000007789 gas Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000010439 graphite Substances 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 238000010248 power generation Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 206010021143 Hypoxia Diseases 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- NMJKIRUDPFBRHW-UHFFFAOYSA-N titanium Chemical compound [Ti].[Ti] NMJKIRUDPFBRHW-UHFFFAOYSA-N 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/106—Other heavy metals refractory metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0215—Glass; Ceramic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1286—Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a titanium material for a separator of a polymer electrolyte fuel cell, a separator using the titanium material, a polymer electrolyte fuel cell provided with the separator, and a method for producing the titanium material.
- Fuel cells generate electricity using the energy generated during the combined reaction of hydrogen and oxygen. For this reason, fuel cells are expected to be introduced and spread from both aspects of energy saving and environmental measures.
- fuel cells such as solid electrolyte type, molten carbonate type, phosphoric acid type, and solid polymer type.
- the polymer electrolyte fuel cell has a high output density and can be miniaturized, operates at a lower temperature than other types of fuel cells, and is easy to start and stop. From such advantages, the polymer electrolyte fuel cell is expected to be used for small cogeneration for automobiles and households, and has attracted particular attention in recent years.
- the fuel cell 1 is an assembly (stack) of single cells.
- an anode side gas diffusion electrode layer also referred to as “fuel electrode membrane”; hereinafter referred to as “anode”
- anode also referred to as “fuel electrode membrane”; hereinafter referred to as “anode”
- cathode On the other surface of the solid polymer electrolyte membrane 2, a cathode side gas diffusion electrode layer (also referred to as “oxidizer electrode membrane”; hereinafter referred to as “cathode”) 4 is laminated.
- Separators (bipolar plates) 5a and 5b are stacked on both surfaces of the laminate.
- Fuel cells include water-cooled fuel cells in which a separator having a cooling water flow path is arranged between two adjacent single cells or every several single cells.
- the present invention is also directed to a titanium material for a separator of such a water-cooled fuel cell.
- electrolyte membrane As the solid polymer electrolyte membrane (hereinafter simply referred to as “electrolyte membrane”) 2, a fluorine-based proton conductive membrane having a hydrogen ion (proton) exchange group is mainly used.
- Each of the anode 3 and the cathode 4 is mainly composed of a carbon sheet (or carbon paper thinner than the carbon sheet, or thinner carbon cloth) made of conductive carbon fibers in the form of a sheet.
- a catalyst layer may be provided on the anode 3 and the cathode 4 in some cases.
- the catalyst layer is made of a particulate platinum catalyst, graphite powder, and, if necessary, a fluorine resin having a hydrogen ion (proton) exchange group. In this case, the fuel gas or oxidizing gas and the catalyst layer come into contact with each other to promote the reaction.
- a groove-like flow path 6a is formed on the surface of the separator 5a on the anode 3 side.
- a fuel gas (hydrogen or hydrogen-containing gas) A flows through the flow path 6a, and hydrogen is supplied to the anode 3.
- a groove-like channel 6b is formed on the surface of the separator 5b on the cathode 4 side.
- An oxidizing gas B such as air flows through the flow path 6 b and oxygen is supplied to the cathode 4. By supplying these gases, an electrochemical reaction occurs and DC power is generated.
- the main functions required for a separator of a polymer electrolyte fuel cell are as follows. (1) Function as a “flow path” for uniformly supplying fuel gas or oxidizing gas into the battery surface (2) Water produced on the cathode side, together with a carrier gas such as air and oxygen after reaction, fuel Function as a “flow path” for efficiently discharging the battery out of the system (3) Contact with the electrode film (anode 3 and cathode 4) to form an electrical path, and further, electrical between two adjacent single cells Function as “connector” (4) Function as “partition wall” between the anode chamber of one cell and the cathode chamber of the adjacent cell between adjacent cells (5) In the water-cooled fuel cell, adjacent to the cooling water flow path Function as a "partition wall”
- the base material of a separator (hereinafter simply referred to as “separator”) used in a polymer electrolyte fuel cell needs to be able to perform such a function.
- Substrate materials are roughly classified into metal materials and carbon materials.
- a separator made of a carbon-based material is manufactured, for example, by the following method.
- -A method in which a graphite substrate is impregnated with a thermosetting resin such as phenol or furan and cured and fired.
- a method in which carbon powder is kneaded with phenol resin, furan resin, tar pitch, or the like, press-formed or injection-molded into a plate shape, and baked to form glassy carbon.
- Titanium, stainless steel, carbon steel, etc. are used as metal materials. Separators made of these metal-based materials are manufactured by pressing or the like. Metallic materials are excellent in workability as a characteristic property of metals. Thereby, the thickness of a separator can be made thin and the weight reduction of a separator can be achieved.
- the conductivity of the separator surface made of a metal-based material may decrease over time. Such a decrease in conductivity is caused by oxidation of the separator surface. Further, in an environment containing fluorine (for example, an environment in which fluorine is supplied from an electrolyte membrane containing fluorine), the conductivity of the separator surface is also reduced by the generation of fluoride due to corrosion of the separator surface. Thus, there is a problem that the contact resistance between the separator made of a metal-based material and the gas diffusion layer (anode and cathode) can be increased. The following measures have been proposed for this problem.
- Patent Document 1 proposes that after a passive film is removed from a surface to be in contact with an electrode in a titanium separator substrate, the surface is plated with a noble metal such as gold.
- a noble metal such as gold.
- the polymer electrolyte fuel cell is expected to be widely used as a mobile fuel cell and a stationary fuel cell. If the method of patent document 1 is employ
- Patent Document 2 proposes a titanium alloy in which an increase in contact resistance is suppressed by pickling a titanium alloy containing one or more platinum group elements and concentrating the platinum group elements on the surface.
- Patent Document 3 after the surface of a platinum group element is concentrated by pickling, the titanium separator is subjected to heat treatment in a low oxygen concentration atmosphere for the purpose of improving the adhesion between the platinum group element concentrated on the surface and the matrix.
- any of the separators contains a platinum group element, and has a large number of man-hours at the time of manufacture, so a significant cost increase cannot be avoided.
- Patent Document 4 attempts to solve the above problem without using noble metals. Specifically, a method has been proposed in which a conductive contact layer made of carbon is formed on the surface of the metal separator made of titanium by vapor deposition.
- Patent Document 5 proposes a method of reducing contact resistance by dispersing conductive ceramics on the separator surface.
- Patent Document 7 discloses a fuel cell separator material in which an oxide layer containing 20% by mass or more of O is formed with a thickness of 5 to 30 nm between a Ti base and an Au layer or an Au alloy layer. Has been.
- Patent Document 5 when a material obtained as a plate material is press-molded into a separator shape, dispersed ceramics impede molding. As a result, cracks or through holes may occur in the separator during processing. Further, since ceramics wear the press die, it is necessary to use an expensive material such as cemented carbide as the press die. Because of these problems, the method of Patent Document 5 has not been put into practical use.
- Patent Document 7 describes that the thickness of an atomic oxide layer is increased by anodic oxidation of a titanium material, and this titanium material is considered to have a certain degree of conductivity. Corrosion resistance is low because it is not treated.
- the present invention solves the above-mentioned problems of the prior art, has high corrosion resistance in the environment inside the fuel cell, can maintain low contact resistance with respect to an electrode made of carbon fiber, etc., and is a solid polymer type that is inexpensive It aims at providing the titanium material for the separator of a fuel cell.
- Another object of the present invention is to provide a solid polymer fuel cell separator that has high corrosion resistance in the environment within the fuel cell, can maintain low contact resistance with respect to an electrode made of carbon fiber, and is inexpensive. With the goal.
- an object of the present invention is to provide a polymer electrolyte fuel cell that is excellent in initial power generation performance, has little deterioration in power generation performance, and is inexpensive.
- the present invention provides a titanium material for a separator of a polymer electrolyte fuel cell, which has high corrosion resistance in the environment inside the fuel cell, can maintain a low contact resistance with respect to an electrode made of carbon fiber or the like, and is inexpensive. It aims at providing the manufacturing method of.
- a titanium material for a separator of a polymer electrolyte fuel cell Comprising a base material, a first oxide layer, and a second oxide layer;
- the base material is made of industrial pure titanium
- the first oxide layer is formed on a surface layer portion of the titanium material, and is made of rutile crystalline TiO 2 and has a thickness of 0.1 to 1.5 nm.
- the second oxide layer is a titanium material formed between the base material and the first oxide layer, made of TiO x (1 ⁇ x ⁇ 2), and having a thickness of 3 to 20 nm. .
- the first oxide layer is made of a rutile crystalline titanium oxide whose chemical formula is represented by TiO 2 .
- TiO 2 has substantially no electrical conductivity as an intrinsic property of the substance.
- the thickness of the first oxide layer is 0.1 to 1.5 nm, and the conductivity between the electrode in contact with the surface of the titanium material and the second oxide layer is substantially hindered. Thin enough to not.
- the second oxide layer existing between the first oxide layer and the base material is made of titanium oxide whose chemical formula is represented by TiO x (1 ⁇ x ⁇ 2). TiO x (1 ⁇ x ⁇ 2) has conductivity.
- the presence of the first oxide layer in the surface layer portion prevents the second oxide layer from being oxidized to become an oxide that is rutile crystalline TiO 2 . For this reason, the contact resistance of this titanium material is kept low.
- the titanium material is formed on the first oxide layer and includes at least one of a noble metal layer and a conductive carbon material layer, according to at least one of the noble metal layer and the conductive carbon material layer, Oxidation of the second oxide layer is further suppressed, and the contact resistance of the titanium material is kept low.
- the polymer electrolyte fuel cell equipped with this separator is excellent in initial power generation performance and has little deterioration in power generation performance.
- the titanium material of the present invention it is not essential to use an expensive material such as a platinum group element, and even when a noble metal layer is not provided, sufficient performance as a fuel cell separator can be secured. For this reason, the titanium material, separator, and solid polymer fuel cell of the present invention can be made inexpensive. Even when the noble metal layer is provided, the amount of the noble metal used can be made extremely small, and the increase in cost can be made small compared with the case where the noble metal layer is not provided. Furthermore, even when a conductive carbon material layer is provided, the conductive carbon material used is not expensive and can be used in an extremely small amount, compared with a case where a conductive carbon material layer is not provided. Thus, the increase in cost can be made small.
- the titanium material can be produced by the titanium material production method of the present invention.
- the first oxide layer is formed by the heat treatment in the second heat treatment step.
- the first oxide layer becomes dense and has higher corrosion resistance than the natural oxide film.
- FIG. 1A is a perspective view of a polymer electrolyte fuel cell.
- FIG. 1B is an exploded perspective view showing the structure of a single cell constituting the polymer electrolyte fuel cell.
- Figure 2A is a diagram showing an example of the relationship between the energy shift amount of L 2 end depth and Ti from the surface of the titanium material.
- Figure 2B is a diagram showing an example of the relationship between the energy shift amount of L 2 end depth and Ti from the surface of the second heat treatment step before the titanium material.
- FIG. 3A is a photograph showing an example of an X-ray diffraction pattern obtained by TEM observation of the surface of the titanium material before the second heat treatment step.
- FIG. 3B is a photograph showing an example of an X-ray diffraction pattern obtained by TEM observation of the surface of the titanium material after the second heat treatment step.
- FIG. 4 is a diagram showing the configuration of an apparatus for measuring the contact resistance of a titanium material.
- Titanium material of the present invention ⁇ Relationship between energy shift amount by EELS and conductivity>
- the present inventors have for the surface portion of a titanium material having an oxide film, TEM by using a spectrometer that came with the (transmission electron microscopy), by EELS (electron energy-loss spectroscope), energy shift of L 2 ends of Ti The amount (hereinafter simply referred to as “energy shift amount”) was determined.
- the amount of energy shift is based on the energy of titanium metal and has a correlation with x of TiO x (1 ⁇ x ⁇ 2).
- the first oxide layer is located at the outermost layer portion of the titanium material.
- the thickness of the first oxide layer is thinner, with corrosion resistance is lowered, it can not be sufficiently suppressed to be a TiO 2 oxide of the second oxide layer of the lower layer progresses. For this reason, the thickness of the first oxide layer is 0.1 nm or more, and preferably 0.3 nm or more.
- the thickness of the first oxide layer increases, the conductivity between the electrode in contact with the surface of the titanium material and the second oxide layer decreases. For this reason, the thickness of the first oxide layer is 1.5 nm or less, and preferably 1.3 nm or less.
- the second oxide layer is made of titanium oxide having a thickness of 3 to 20 nm and a chemical formula represented by TiO x (1 ⁇ x ⁇ 2).
- TiO x (1 ⁇ x ⁇ 2).
- the conductivity of the second oxide layer is lowered depending on the remaining components of TiO x .
- the said ratio is 90 mass% or more, and it is more preferable that it is 95 mass% or more.
- the thickness of the second oxide layer is set to 20 nm or less.
- the thickness of the second oxide layer is preferably 17 nm or less, and more preferably 15 nm or less.
- the thickness of the second oxide layer is preferably thinner, but it is difficult to make the thickness of the second oxide layer less than 3 nm in the presence of the first oxide layer.
- the thickness of the second oxide layer may be 5 nm or more.
- the noble metal layer may not be formed.
- the noble metal layer is composed of gold (Au), silver (Ag), and platinum group elements (ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt).
- the proportion of these elements in the noble metal layer is preferably 80% by mass or more, and more preferably 90% by mass or more.
- Both the noble metal layer and the conductive carbon material layer may be formed on the first oxide layer.
- the ratio (coverage) of the area where the surface is covered with at least one of the noble metal layer and the conductive carbon material layer is 98%. Less than. This coverage may be 50% or less, for example 2%.
- the aqueous solution containing fluoride ions may contain components other than fluoride ions.
- This aqueous solution may be, for example, a solution in which 0.5% by mass of HF, 0.5% by mass of NaF, 0.5% by mass of NaCl, and 0.5% by mass of HNO 3 are dissolved.
- the substrate that has undergone the first heat treatment step is heat-treated at 200 to 500 ° C. for 2 to 30 minutes in a high oxygen partial pressure atmosphere with an oxygen partial pressure of 10,000 Pa or more.
- the high oxygen partial pressure atmosphere can be an air atmosphere, for example.
- the surface layer of the titanium oxide film which is present after performing the first heat treatment step the first oxide layer composed of TiO 2 of the rutile type crystalline is formed.
- the remainder of the titanium oxide film becomes the second oxide layer.
- rutile-type crystalline TiO 2 is formed in the first oxide layer, so that the first oxide layer is dense, has high mechanical strength, and an environment in which fluorine ions are present, and a voltage is applied. High resistance to corrosion in different environments.
- the heat treatment time varies depending on the heat treatment temperature, but is in the range of 2 to 30 minutes. If the heat treatment time is too short, the thickness of the first oxide layer cannot be secured to 0.1 nm or more. If the heat treatment time is too long, the oxidation proceeds too much and the thickness of the first oxide layer cannot be suppressed to 1.5 nm or less. The higher the heat treatment temperature, the shorter the heat treatment time. The lower the heat treatment temperature, the longer the heat treatment time must be. When the heat treatment temperature is 200 ° C., the heat treatment time can be, for example, 20 to 30 minutes. When the heat treatment temperature is 500 ° C., the heat treatment time can be, for example, 2 to 10 minutes.
- these titanium materials were subjected to heat treatment under a low oxygen partial pressure atmosphere and heat treatment under a high oxygen partial pressure atmosphere under the conditions shown in Table 1.
- the first and second heat treatment steps in the method for producing the titanium material of the present invention are all applied to the sample of the invention.
- the sample of the comparative example did not satisfy any of these requirements.
- Some samples were subjected to a precious metal layer forming step after being subjected to a heat treatment in a high oxygen partial pressure atmosphere.
- the noble metal was supplied to the surface of the titanium material by plating to form a noble metal layer.
- a heat treatment was performed in a high oxygen partial pressure atmosphere, and then a conductive carbon material layer forming step was performed.
- graphite particles were supplied to the surface of the titanium material by sliding pressure bonding to form a graphite layer as a conductive carbon material layer. Sliding pressure bonding was carried out by rubbing block-like graphite manufactured by Mechanical Carbon Co. on the surface of the titanium material.
- titanium materials 2-1 Measurement of thickness of first and second oxide layers From the relationship between the depth from the surface of the titanium material and the amount of energy shift due to EELS, the first oxide layer and the second oxide layer were measured according to the method described above. The boundary with the oxide layer was specified, and the thickness of the first oxide layer was determined. Regarding the titanium material on which the noble metal layer or the conductive carbon material layer was formed, the energy shift amount was measured by EELS at a portion where these layers did not exist.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Fuel Cell (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
(1)燃料ガス、または酸化性ガスを、電池面内に均一に供給する「流路」としての機能
(2)カソード側で生成した水を、反応後の空気、酸素といったキャリアガスとともに、燃料電池から効率的に系外に排出する「流路」としての機能
(3)電極膜(アノード3、カソード4)と接触して電気の通り道となり、さらに、隣接する2つの単セル間の電気的「コネクタ」となる機能
(4)隣り合うセル間で、一方のセルのアノード室と隣接するセルのカソード室との「隔壁」としての機能
(5)水冷型燃料電池では、冷却水流路と隣接するセルとの「隔壁」としての機能
・黒鉛基板に、フェノール系、フラン系などの熱硬化性樹脂を含浸し硬化して焼成する方法。
・炭素粉末を、フェノール樹脂、フラン樹脂、またはタールピッチなどと混練して、板状に、プレス成形、または射出成型して焼成し、ガラス状カーボンにする方法。
母材、第1の酸化物層、および第2の酸化物層を備え、
前記母材は、工業用純チタンからなり、
前記第1の酸化物層は、当該チタン材の表層部に形成され、ルチル型結晶性のTiO2からなり、0.1~1.5nmの厚さを有し、
前記第2の酸化物層は、前記母材と前記第1の酸化物層との間に形成され、TiOx(1<x<2)からなり、3~20nmの厚さを有する、チタン材。
前記液処理工程を経た前記基材を、酸素分圧が0.1Pa以下の低酸素分圧雰囲気下で、200~550℃で、10~300分、熱処理する第1熱処理工程と、
前記第1熱処理工程を経た前記基材を、酸素分圧が10000Pa以上の高酸素分圧雰囲気下で、200~500℃で、2~30分、熱処理する第2熱処理工程と、
を含む、チタン材の製造方法。
〈EELSによるエネルギーシフト量と導電性との関係〉
本発明者らは、酸化皮膜を有するチタン材の表層部について、TEM(透過型電子顕微鏡)に付属した分光装置を用いて、EELS(電子エネルギー損失分光)により、TiのL2端のエネルギーシフト量(以下、単に、「エネルギーシフト量」という。)を求めた。エネルギーシフト量は、金属チタンのエネルギーを基準としており、TiOx(1<x≦2)のxと相関がある。
(i) 最表層では、TiO2のエネルギーシフト量を示す。
(ii) 表面から深部に向かって1.5nmまでの間でエネルギーシフト量が低減し始める。
(iii) エネルギーシフト量が低減し始めてから母材までの間では、TiOx(1<x<2)のエネルギーシフト量を示し、この間では、エネルギーシフト量に対応するTiOxのxの値は、表層側ほど2に近く、母材側ほど1に近くなる。
母材は、工業用純チタンからなる。工業用純チタンとは、例えば、JISH4600:2014に規定される1種~4種チタンである。以下、単に、「純チタン」という。
貴金属層および導電性の炭素材層のいずれも形成されていない場合、第1の酸化物層は、このチタン材の最表層部に位置する。
第2の酸化物層は、3~20nmの厚さを有し、化学式がTiOx(1<x<2)で表されるチタン酸化物からなる。第2の酸化物層におけるTiOxの割合が低くなると、TiOxの残部の成分によっては、第2の酸化物層の導電性が低くなる。このため、当該割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
貴金属層は形成しなくてもよい。貴金属層は、金(Au)、銀(Ag)、ならびに白金族元素(ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、および白金(Pt)の1種、または2種以上を主成分とする。これらの元素が貴金属層に占める割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
導電性の炭素材層は、形成しなくてもよい。導電性の炭素材層は、導電性を有する炭素材を主成分とする。導電性の炭素材は、黒鉛(グラファイト)、非晶質炭素などである。導電性の炭素材は、黒鉛であることが好ましい。これは、黒鉛粒子において良好な導電性を示す面が、一定の方向に配向しやすく、導電性の炭素材層は、その方向について、良好な導電性を示すためである。また、C面間隔d002が3.38Å以下の黒鉛は、炭素の純度が高く、良好な導電性が得られる。このため、そのような面間隔の黒鉛は、導電性の炭素材層を構成する物質として、好ましい。
母材(純チタン)の表層部にルチル型結晶性のTiO2からなる第1の酸化物層が形成されていること、および、第1の酸化物層の厚さが0.1nm以上であることにより、耐食性が得られる。
第1および第2の酸化物層の厚さは、チタン材の表面からの深さと、EELSにより測定されたエネルギーシフト量との関係(図2A参照)、およびTEM像に基づいて決定することができる。EELSによるエネルギーシフト量は、貴金属層および導電性の炭素材層のいずれも存在しない部分で測定するものとする。ただし第2熱処理工程前では図2Bのように第1の酸化物層が形成されていない。
本発明者らは、チタンの一般的な酸洗に用いる塩酸水溶液またはふっ硝酸水溶液で、純チタンからなる基材の酸化皮膜を除去し、その後、この基材の表面に形成(修復)されるチタン酸化皮膜を、ふっ化物イオンを含む水溶液で処理(不動態化処理)した場合、そのチタン酸化皮膜が導電性を有することを見出した。本発明のチタン材の製造方法は、この知見に基づいて完成されたものである。
この工程では、純チタンからなる基材を、ふっ化物イオンを含む水溶液で処理する。
貴金属層を備えたチタン材を製造する場合は、第1、2の熱処理工程を実施した後、基材の表面に、貴金属を供給して貴金属層を形成する貴金属層形成工程を実施する。また、貴金属を形成する方法は、特に限定されないが、たとえば、めっき、蒸着等の方法を採用することができる。いずれの方法による場合でも、好ましくは、貴金属層の被覆率が98%未満となるように、処理時間を短くして、目付量を少なくする。これにより、コストを低減することができる。貴金属層を備えていないチタン材を製造する場合は、貴金属層形成工程は実施しない。
導電性の炭素材層を備えたチタン材を製造する場合は、第1、2の熱処理工程を実施した後、基材の表面に、炭素を供給して導電性の炭素材層を形成する導電性炭素材層形成工程を実施する。導電性の炭素材層を形成する方法は、特に限定されないが、たとえば、摺動圧着、塗布等の方法を採用することができる。いずれの方法による場合でも、導電性の炭素材層の被覆率を98%未満とすることで、処理時間を短くすることができる。導電性の炭素材層を備えていないチタン材を製造する場合は、導電性炭素材層形成工程は実施しない。
この工程では、液処理工程を経た基材を、酸素分圧が0.1Pa以下の低酸素分圧雰囲気下で、200~550℃で、10~300分、熱処理する。これにより、チタン酸化皮膜の酸素の欠損量が増加し、チタン酸化皮膜の導電性がさらに高くなる。後述のように、第2の酸化物層は、主として、第1熱処理工程により形成される。このため、第1熱処理工程を実施した後、チタン酸化皮膜の酸素欠損量が、およそ、TiOx(1<x<2)を満たすことが好ましい。
この工程では、第1熱処理工程を経た基材を、酸素分圧が10000Pa以上の高酸素分圧雰囲気下で、200~500℃で、2~30分、熱処理する。高酸素分圧雰囲気は、たとえば、大気雰囲気とすることができる。これにより、第1熱処理工程を実施した後に存在するチタン酸化皮膜の表層部に、ルチル型結晶性のTiO2からなる第1の酸化物層が形成される。チタン酸化皮膜の残部は、第2の酸化物層となる。第1の酸化物層は、この製造方法では、ルチル型結晶性のTiO2が形成されるので、緻密であり、機械的強度が高く、また、ふっ素イオンが存在する環境、および電圧が印加された環境における腐食耐性が高い。
1.チタン材の作製
0.1mm厚に圧延後、焼鈍したチタン板(箔)を用意した。このチタン板の両面(アノード側、およびカソード側)に、幅2mm、深さ1mmの溝状のガス流路を、プレス加工により形成し、セパレータとして用いることができる形態にした。
2-1. 第1および第2の酸化物層の厚さの測定
上述の方法により、チタン材の表面からの深さとEELSによるエネルギーシフト量との関係から、第1の酸化物層と第2の酸化物層との境界を特定して、第1の酸化物層の厚さを求めた。貴金属層または導電性の炭素材層を形成したチタン材に関しては、これらの層が存在しない部分で、EELSによりエネルギーシフト量を測定した。
上記非特許文献1に記載の方法に従い、図4に模式的に示す装置を用いて、各試料の接触抵抗を測定した。具体的には、まず、作製したチタン材(以下、「チタンセパレータ」という。)11を、ガス拡散層(図1のアノード3、およびカソード4)に使用される1対のカーボンペーパー(東レ(株)製 TGP-H-90)12で挟み込み、これを金めっきした1対の電極13で挟んだ。各カーボンペーパーの面積は、1cm2であった。
(a)低酸素分圧雰囲気下での熱処理時間が10分未満。
(b)低酸素分圧雰囲気下での熱処理を行わなかった。
(c)高酸素濃度雰囲気下の熱処理時の処理温度が200℃未満。
(d)高酸素濃度雰囲気下の熱処理時の処理時間が2分未満。
2:固体高分子電解質膜
3:アノード
4:カソード
5a、5b:セパレータ
Claims (7)
- 固体高分子形燃料電池のセパレータ用チタン材であって、
母材、第1の酸化物層、および第2の酸化物層を備え、
前記母材は、工業用純チタンからなり、
前記第1の酸化物層は、当該チタン材の表層部に形成され、ルチル型結晶性のTiO2からなり、0.1~1.5nmの厚さを有し、
前記第2の酸化物層は、前記母材と前記第1の酸化物層との間に形成され、TiOx(1<x<2)からなり、3~20nmの厚さを有する、チタン材。 - 前記第1の酸化物層の上に形成された貴金属層および導電性の炭素材層の少なくとも一種をさらに備えた、請求項1に記載のチタン材。
- 固体高分子形燃料電池用のセパレータであって、請求項1または2に記載のチタン材を有するセパレータ。
- 請求項3に記載のセパレータを備えた固体高分子形燃料電池。
- 工業用純チタンからなる基材を、ふっ化物イオンを含む水溶液で処理する液処理工程と、
前記液処理工程を経た前記基材を、酸素分圧が0.1Pa以下の低酸素分圧雰囲気下で、200~550℃で、10~300分、熱処理する第1熱処理工程と、
前記第1熱処理工程を経た前記基材を、酸素分圧が10000Pa以上の高酸素分圧雰囲気下で、200~500℃で、2~30分、熱処理する第2熱処理工程と、
を含む、チタン材の製造方法。 - 前記第1および第2熱処理工程を実施した後、前記チタン材の表面に、貴金属を供給して貴金属層を形成する貴金属層形成工程をさらに含む、請求項5に記載のチタン材の製造方法。
- 前記第1および第2熱処理工程を実施した後、前記基材の表面に、炭素を供給して導電性の炭素材層を形成する導電性炭素材層形成工程をさらに含む、請求項5または6に記載のチタン材の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2978236A CA2978236C (en) | 2015-03-03 | 2016-03-03 | Titanium product, separator, and proton exchange membrane fuel cell, and method for producing titanium product |
RU2017132990A RU2660484C1 (ru) | 2015-03-03 | 2016-03-03 | Титановый продукт, сепаратор и топливный элемент с протонообменной мембраной, а также способ производства титанового продукта |
JP2016546105A JP6108042B2 (ja) | 2015-03-03 | 2016-03-03 | チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法 |
EP16758998.5A EP3267521B1 (en) | 2015-03-03 | 2016-03-03 | Titanium material, separator, solid high-polymer fuel cell, and titanium-material manufacturing method |
KR1020177028038A KR101970094B1 (ko) | 2015-03-03 | 2016-03-03 | 티탄재, 세퍼레이터, 및 고체 고분자형 연료 전지, 및 티탄재의 제조 방법 |
US15/554,272 US10505205B2 (en) | 2015-03-03 | 2016-03-03 | Titanium product, separator, and proton exchange membrane fuel cell, and method for producing titanium product |
CN201680013478.5A CN107408710B (zh) | 2015-03-03 | 2016-03-03 | 钛材、分隔件、以及固体高分子型燃料电池以及钛材的制造方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-040939 | 2015-03-03 | ||
JP2015040939 | 2015-03-03 | ||
JP2015139865 | 2015-07-13 | ||
JP2015-139865 | 2015-07-13 | ||
JP2016-000165 | 2016-01-04 | ||
JP2016000165 | 2016-01-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016140306A1 true WO2016140306A1 (ja) | 2016-09-09 |
Family
ID=56848933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056580 WO2016140306A1 (ja) | 2015-03-03 | 2016-03-03 | チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10505205B2 (ja) |
EP (1) | EP3267521B1 (ja) |
JP (1) | JP6108042B2 (ja) |
KR (1) | KR101970094B1 (ja) |
CN (1) | CN107408710B (ja) |
CA (1) | CA2978236C (ja) |
RU (1) | RU2660484C1 (ja) |
WO (1) | WO2016140306A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110140247A (zh) * | 2016-12-28 | 2019-08-16 | 日本制铁株式会社 | 钛材、隔离件、电池单元和固体高分子型燃料电池 |
WO2019176911A1 (ja) * | 2018-03-16 | 2019-09-19 | 日本製鉄株式会社 | 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019133838A (ja) * | 2018-01-31 | 2019-08-08 | トヨタ自動車株式会社 | 燃料電池用セパレータ |
CN113584441B (zh) * | 2021-08-02 | 2023-11-07 | 杭州兴态环保科技有限公司 | 一种金属双极板涂层及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026052A1 (fr) * | 2001-09-18 | 2003-03-27 | Furuya Metal Co., Ltd. | Plaque bipolaire pour pile a combustible et procede de production associe |
WO2008041560A1 (fr) * | 2006-09-29 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | ProcÉDÉ de PRODUction d'un SÉPARATEUR POUR pile À combustible, SÉPARATEUR POUR pile À combustible ET pile A combustible |
JP2009228123A (ja) * | 2008-02-27 | 2009-10-08 | Kobe Steel Ltd | 電極用チタン材の表面処理方法 |
JP2009238438A (ja) * | 2008-03-26 | 2009-10-15 | Kobe Steel Ltd | 燃料電池用セパレータ及びその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2299474C (en) | 1997-10-14 | 2007-10-09 | Nisshin Steel Co., Ltd. | A separator of a low-temperature fuel cell and manufacturing method thereof |
JP4010036B2 (ja) | 1997-12-02 | 2007-11-21 | 旭硝子株式会社 | 固体高分子電解質型燃料電池 |
JP2003105523A (ja) | 2001-09-27 | 2003-04-09 | Daido Steel Co Ltd | 耐食性金属部材の製造方法及び耐食性金属部材 |
JP4367062B2 (ja) | 2002-10-18 | 2009-11-18 | 日立電線株式会社 | 燃料電池用セパレータ |
US20050244689A1 (en) * | 2004-04-28 | 2005-11-03 | Munehisa Horiguchi | Separator and fuel cell system using that separator |
JP4981284B2 (ja) | 2004-12-09 | 2012-07-18 | 株式会社神戸製鋼所 | 燃料電池のセパレータ用チタン材の製造方法 |
JP4032068B2 (ja) | 2005-07-28 | 2008-01-16 | 株式会社神戸製鋼所 | 燃料電池用のセパレータに用いるチタン材 |
EP1850412A1 (en) | 2006-04-26 | 2007-10-31 | Technical University of Denmark | A multi-layer coating |
JP4823202B2 (ja) * | 2007-11-15 | 2011-11-24 | 株式会社神戸製鋼所 | 燃料電池セパレータ用チタン基材の製造方法および燃料電池セパレータの製造方法 |
JP2010236083A (ja) | 2009-03-11 | 2010-10-21 | Kobe Steel Ltd | 電極用チタン材および電極用チタン材の表面処理方法 |
JP2010238394A (ja) | 2009-03-30 | 2010-10-21 | Nippon Mining & Metals Co Ltd | 燃料電池用セパレータ材料、それを用いた燃料電池スタック |
JP5639216B2 (ja) | 2013-03-27 | 2014-12-10 | 株式会社神戸製鋼所 | 燃料電池セパレータ用チタン板材およびその製造方法 |
EP2816639A3 (en) * | 2013-06-19 | 2015-05-13 | QuantumScape Corporation | Protective coatings for conversion material cathodes |
-
2016
- 2016-03-03 RU RU2017132990A patent/RU2660484C1/ru active
- 2016-03-03 CA CA2978236A patent/CA2978236C/en active Active
- 2016-03-03 EP EP16758998.5A patent/EP3267521B1/en active Active
- 2016-03-03 KR KR1020177028038A patent/KR101970094B1/ko active IP Right Grant
- 2016-03-03 US US15/554,272 patent/US10505205B2/en active Active
- 2016-03-03 CN CN201680013478.5A patent/CN107408710B/zh active Active
- 2016-03-03 WO PCT/JP2016/056580 patent/WO2016140306A1/ja active Application Filing
- 2016-03-03 JP JP2016546105A patent/JP6108042B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026052A1 (fr) * | 2001-09-18 | 2003-03-27 | Furuya Metal Co., Ltd. | Plaque bipolaire pour pile a combustible et procede de production associe |
WO2008041560A1 (fr) * | 2006-09-29 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | ProcÉDÉ de PRODUction d'un SÉPARATEUR POUR pile À combustible, SÉPARATEUR POUR pile À combustible ET pile A combustible |
JP2009228123A (ja) * | 2008-02-27 | 2009-10-08 | Kobe Steel Ltd | 電極用チタン材の表面処理方法 |
JP2009238438A (ja) * | 2008-03-26 | 2009-10-15 | Kobe Steel Ltd | 燃料電池用セパレータ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3267521A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110140247A (zh) * | 2016-12-28 | 2019-08-16 | 日本制铁株式会社 | 钛材、隔离件、电池单元和固体高分子型燃料电池 |
EP3565042A4 (en) * | 2016-12-28 | 2020-08-05 | Nippon Steel Corporation | TITANIUM MATERIAL, SEPARATOR, PIEL AND POLYMER SOLID FUEL CELL |
CN110140247B (zh) * | 2016-12-28 | 2022-08-19 | 日本制铁株式会社 | 钛材、隔离件、电池单元和固体高分子型燃料电池 |
US11764368B2 (en) | 2016-12-28 | 2023-09-19 | Nippon Steel Corporation | Titanium material, separator, cell, and polymer electrolyte fuel cell stack |
WO2019176911A1 (ja) * | 2018-03-16 | 2019-09-19 | 日本製鉄株式会社 | 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材 |
JPWO2019176911A1 (ja) * | 2018-03-16 | 2020-12-03 | 日本製鉄株式会社 | 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
KR101970094B1 (ko) | 2019-04-17 |
CN107408710B (zh) | 2020-09-29 |
RU2660484C1 (ru) | 2018-07-06 |
CA2978236A1 (en) | 2016-09-09 |
EP3267521A4 (en) | 2018-08-29 |
KR20170121289A (ko) | 2017-11-01 |
US10505205B2 (en) | 2019-12-10 |
CA2978236C (en) | 2019-05-28 |
CN107408710A (zh) | 2017-11-28 |
EP3267521A1 (en) | 2018-01-10 |
EP3267521B1 (en) | 2019-05-08 |
US20180047997A1 (en) | 2018-02-15 |
JPWO2016140306A1 (ja) | 2017-04-27 |
JP6108042B2 (ja) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6607311B2 (ja) | チタン合金材、セパレータ、セル、および燃料電池 | |
JP5880798B1 (ja) | 固体高分子形燃料電池のセパレータ用チタン材、これを用いたセパレータ、およびこれを備えた固体高分子形燃料電池 | |
US8778562B2 (en) | Method of depositing durable thin gold coating on fuel cell bipolar plates | |
JP6108042B2 (ja) | チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法 | |
JPWO2006126613A1 (ja) | 燃料電池用セパレータ及びその製造方法 | |
JP6225716B2 (ja) | 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法 | |
WO2019176911A1 (ja) | 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材 | |
JP6686822B2 (ja) | 金属材、セパレータ、セル、および燃料電池 | |
JP6753165B2 (ja) | 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ | |
JP6206622B1 (ja) | チタン材、セパレータおよび固体高分子形燃料電池 | |
JP2017088955A (ja) | 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ | |
JP7035665B2 (ja) | セパレータ、セル、および燃料電池 | |
JP2007005112A (ja) | 固体高分子型燃料電池用セパレータおよびその製造方法 | |
JP7151471B2 (ja) | 金属材、セパレータ、燃料電池セル、および燃料電池スタック | |
JP2019171704A (ja) | 金属板、セパレータ、セル、および燃料電池 | |
JP7136140B2 (ja) | 燃料電池用セパレータ | |
JP6308330B2 (ja) | チタン合金、チタン材、セパレータ、セル、および固体高分子型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016546105 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16758998 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15554272 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2978236 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2016758998 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177028038 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017132990 Country of ref document: RU |