WO2016139997A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2016139997A1
WO2016139997A1 PCT/JP2016/052848 JP2016052848W WO2016139997A1 WO 2016139997 A1 WO2016139997 A1 WO 2016139997A1 JP 2016052848 W JP2016052848 W JP 2016052848W WO 2016139997 A1 WO2016139997 A1 WO 2016139997A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid
sample
container
histories
probe
Prior art date
Application number
PCT/JP2016/052848
Other languages
English (en)
French (fr)
Inventor
浩一 西村
洋行 高山
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US15/554,086 priority Critical patent/US10591498B2/en
Priority to CN201680012665.1A priority patent/CN107250806B/zh
Priority to EP16758693.2A priority patent/EP3267205B1/en
Priority to JP2017503375A priority patent/JP6629832B2/ja
Publication of WO2016139997A1 publication Critical patent/WO2016139997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator
    • G01N2035/009Displaying information to the operator alarms, e.g. audible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Definitions

  • the present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine.
  • the contents stored in a sample container or reagent container are dispensed into a reaction container, a child sample container, or the like, and a predetermined process such as an analysis process is performed.
  • a predetermined process such as an analysis process is performed.
  • containers containing samples and reagents are sealed with a lid, etc., and the probe can be inserted into a previously drilled lid, or the lid can be directly punctured with a probe. Notes are being made.
  • the allowable number of insertions N in the probe lid is set, and when the number of insertions n exceeds the allowable number of insertions, control is performed so as not to perform insertion processing.
  • the allowable number of times of insertion with respect to the lid is determined, which can suppress the generation of foreign matter.
  • the above prior art does not take into consideration any wear or deformation of the probe. In other words, the more the probe is repeatedly inserted into the lid, the more it deteriorates due to wear or deformation, but no consideration is given to the generation of foreign matter from the lid due to degradation on the probe side.
  • the lid itself is made of an elastic material such as rubber, so the probe will not deteriorate as much as it is inserted once, but the probe insertion speed tends to be higher than before due to the need for improved dispensing capacity in recent years.
  • the insertion load applied to the probe once is relatively large.
  • deterioration such as wear and deformation of the probe leads to deterioration of the sharpness of the probe.
  • problems such as generation of foreign matters occur regardless of the number of insertions into the same lid.
  • an object of the present invention is to provide an automatic analyzer that can replace a probe according to the degree of deterioration of the probe while suppressing the occurrence of dispensing abnormality and analysis result abnormality.
  • a representative present invention includes an insertion mechanism that inserts a closed container lid through the container, and the insertion mechanism is inserted across a plurality of the containers.
  • a storage unit that stores the number of insertion histories corresponding to the cumulative load of the insertion mechanism according to the above, an allowable insertion history number that is an allowable value of the insertion history number, and the insertion history number and the allowable insertion history number.
  • a control unit that performs control for notifying an operator when the number of insertion histories reaches the allowable number of insertion histories.
  • the insertion mechanism can be replaced before a dispensing abnormality or an analysis result abnormality caused by a foreign substance on the lid occurs.
  • the present invention it is possible to replace the insertion mechanism while suppressing the occurrence of dispensing abnormality and analysis result abnormality due to deterioration of the insertion mechanism.
  • the “number of insertion histories” used in this specification is a number corresponding to the total load of the insertion mechanism due to the insertion mechanism being inserted across a plurality of lidded containers. This “insertion history number” serves as an indicator of the degree of deterioration of the insertion mechanism.
  • the insertion mechanism corresponds to a probe, a blade, a hollow tube, or the like.
  • FIG. 1 is a diagram schematically showing a dispensing mechanism of an automatic analyzer according to the first embodiment of the present invention together with its peripheral configuration.
  • an automatic analyzer 100 places a sample container 101 containing a sample 7, places a sample disk 102 that is driven to rotate, and a reaction vessel 106, and carries out a reaction that is driven to rotate.
  • a disk 109 and a reagent bottle 112 containing reagents corresponding to a plurality of analysis items to be analyzed in the automatic analyzer are placed, and the reagent disk 125 that is driven to rotate and the sample 7 of the sample container 101 are placed in the reaction container 106.
  • the sampling mechanism 1 for dispensing the reagent the reagent dispensing mechanism 108 for dispensing the reagent in the reagent bottle 112 into the reaction vessel 106, and the control unit (computer) 103 that controls the overall operation including each unit of the automatic analyzer 100. And.
  • the sampling mechanism 1 includes a sampling arm 2 that is driven up and down and rotated, and a sampling probe 105 that is provided at the tip of the sampling arm 2, and the operation of the sample syringe pump 107 that is provided in the automatic analyzer 100. Accordingly, the sampling probe 105 sucks the sample 7 in the sample container 101 and discharges it to the reaction container 106 to dispense the sample 7.
  • the reagent dispensing mechanism 108 has the same configuration as that of the sampling mechanism 1, and the reagent dispensing probe 110 removes the reagent in the reagent bottle 112 in accordance with the operation of the reagent syringe pump 111 provided in the automatic analyzer 100.
  • the reagent is dispensed by aspirating and discharging into the reaction vessel 106.
  • a control unit (computer) 103 controls the overall operation of the automatic analyzer 100 by exchanging signals with each component unit of the automatic analyzer 100 via the interface 104, and includes a keyboard 121, a display device 118, and the like.
  • the analysis processing of each sample is performed based on information and instructions regarding analysis items and the like input from the input means.
  • the analysis result is displayed on the display device 118 (for example, CRT), printed out by the printer 117, or stored in a memory (for example, a hard disk) as the storage unit 122.
  • FIG. 2 is a diagram conceptually showing specimen information input to a storage unit (hereinafter also referred to as memory) and various information stored therein.
  • FIG. 2 shows an outline of the sample container for explanation.
  • the sample container 101 contains the sample 7 and is sealed with a lid 101a.
  • the operator inputs information on the specimen in each sample container 101 to the storage unit 122 by an input unit such as the keyboard 121.
  • an input unit such as the keyboard 121.
  • the sample container 101 is provided with an individual identification mark (sample ID) such as a barcode or RFID (not shown) so that the contained sample 7 can be identified.
  • sample ID sample ID
  • a sample container 101 having the following information will be described as an example.
  • a numerical value indicating the probe insertion history (hereinafter referred to as the insertion history number K) is stored.
  • the number of insertion histories is, for example, a value calculated by the following equation (1), and k i is the amount of increase in the number of insertion histories at the time of the i-th insertion.
  • K i is a function with variables (a, b, c%) Such as the type of lid into which the probe is inserted, the probe insertion speed, the lid temperature, and the presence or absence of perforation.
  • K ⁇ ki (a, b, c%) Equation (1)
  • this corresponds to digitizing the amount of load applied to the probe once and integrating the amount of load.
  • Factors affecting the load include the probe insertion speed, the lid temperature, and the presence or absence of perforation. It should be noted that there is no variable, only the number of times, or the variable may be one or more. The more variables, the higher the load accuracy.
  • the number of times of simple insertion into the lid itself can be calculated as the number of insertion histories. Or it may be a value proportional to the number of times of insertion into the function inserted into the lid, not the number of times itself. That is, the number of insertion histories is calculated based on a value proportional to the number of insertions into the lid.
  • the load coefficient of A is larger than that of B.
  • A is 1.0 and B is 0.8.
  • the number of insertion histories is 18000 (10000 ⁇ 1.0 + 10000 ⁇ 0.8). That is, the number of insertion histories is calculated based on the load coefficient corresponding to the type of lid and the number of insertions for each lid. If the lids A and B have substantially the same hardness, both load coefficients may be 1.0 and the sum of both insertions may be used.
  • the load coefficient is stored in the storage unit 122.
  • the load of the probe may be governed by the probe insertion speed, the lid temperature, and the presence or absence of the lid perforation, rather than the lid type.
  • the faster the probe insertion speed the greater the probe load.
  • the temperature of the lid is low, it becomes hard, and if the temperature is low, the load on the probe increases.
  • the lid is perforated, the resistance of the lid is low, and if there is no perforation, the resistance of the lid is high. For this reason, if there is no perforation, the load of the probe is large. What is necessary is just to quantify these elements as a load coefficient, and to determine the function of Formula (1).
  • the storage unit 122 sets one of the following conditions as the condition when the probe passes through the lid and is inserted into the sample container: the lid type, the probe insertion speed, the lid temperature, and whether or not the lid is perforated.
  • the number of insertion histories is calculated based on the load coefficient according to the above condition and the number of insertions under the condition.
  • the load coefficient may be a combination of two, three, and four conditions. The more combinations, the higher the load accuracy, which is desirable.
  • the load factor without perforation of lid A is 1.0
  • the load factor with perforation of lid A is 0.2
  • the load factor without perforation of lid B is 0.8
  • there is perforation of lid B Is 0.1 and the number of insertions under each condition is 10,000
  • the number of insertion histories is 21000 (10000 ⁇ 1.0 + 10000 ⁇ 0.2 + 10000 ⁇ 10000 ⁇ 0.8 + 10000 ⁇ 0.1 ).
  • the condition without a hard lid perforation is the largest load factor
  • the condition with a soft lid perforation is the smallest load factor.
  • the load coefficient in the case of perforation may be set to zero. That is, the number of insertion histories is calculated based on the load coefficient by this combination and the number of insertions for each combination.
  • the memory 122 also stores the number of insertion histories (hereinafter, the allowable number of insertion histories K 0 ) that requires probe replacement.
  • the allowable insertion history number K 0 is obtained empirically from the result obtained in a prior experiment, and the possibility of occurrence of dispensing abnormality or analysis result abnormality due to the insertion of the sampling probe 105 into the lid 101a is substantial. This is the number of insertion histories of probes that are not unique.
  • the sample container 101 containing the sample 7 is transferred to the sample suction position with the intermittent rotation of the sample disk 102, and the sampling probe 105 is lowered into the sample container 101 stopped at the suction position.
  • a detection signal is output from the liquid level detection circuit 151, and the detection signal is input to the control unit 103 via the interface 104.
  • the control unit 103 controls to stop the descending operation of the sampling arm 2 by a driving unit (not shown) based on the detection signal. In this state, after a predetermined amount of sample is sucked into the sampling probe 105, the sampling probe 105 rises to the top dead center.
  • the pressure variation in the flow path between the sampling probe 105 and the sample syringe pump 107 is detected using a signal from the pressure sensor 152. If the abnormality is detected in the pressure fluctuation in the flow channel during the suction operation, it is determined that there is a high possibility that the predetermined amount is not sucked, and an alarm is added to the analysis data.
  • the sampling arm 2 is pivotally driven in the horizontal direction, and the sampling probe 105 is lowered at the position of the reaction vessel 106 transferred to the sample discharge position in accordance with the rotation operation of the reaction disk 109 and held in the reaction vessel 106.
  • the sample 7 that had been discharged is discharged.
  • the reaction container 106 containing the sample 7 is moved to the reagent addition position with the rotation of the reaction disk 109, and a reagent corresponding to the corresponding analysis item is added from the reagent dispensing probe 110.
  • the liquid level of the sample in the sample container 101 and the reagent in the reagent bottle 112 is detected, and based on the detection result, the remaining amount of the sample and reagent is calculated and stored.
  • the mixture in the reaction vessel 106 to which the sample and the reagent are added is stirred by the stirrer 113.
  • the plurality of reaction containers cross the light beam from the light source 114 during the transfer of the reaction container row accompanying the rotation operation of the reaction disk 109, so that the absorbance or luminescence value of each mixture is measured by the photometer 115 which is a measuring means. (Photometry).
  • a measurement signal (an absorbance signal or a luminescence value signal) is input to the control unit 103 via the interface 104 via the A / D converter 116, and the concentration of the analysis item is calculated.
  • the analysis result is printed out to the printer 117 via the interface 104 or output to the display device 118 such as a CRT and is stored in the storage unit 122 such as a hard disk.
  • the reaction vessel 106 for which photometry has been completed is transferred to the position of the washing mechanism 119, and is washed by supplying washing water into the reaction vessel 106 by the washing pump 120 and discharging the waste liquid.
  • the sample container 101 can be placed on the sample disk 102 when it is directly placed on the sample disk 102 or the sample container 101 can be placed on a test tube (not shown).
  • the structure is compatible with possible universal arrangements.
  • the sample disk 102 is formed with three rows of container holders so that the three rows of sample vessels 101 can be placed concentrically, and one sample suction position by the sampling probe 105 is set for each row. Has been.
  • FIG. 3 is a diagram schematically showing how the sampling probe 105 of the sampling mechanism 1 is inserted into the sample container 101.
  • the sample container 101 placed on the sample disk 102 accommodates the sample 7 and is sealed by a lid 101a.
  • the sampling probe 105 inserted into such a sample container 101 has a sharp tip shape, and has a function of performing a cutting process for making a cut into the lid 101a and a function of performing a suction by being immersed in the sample 7. ing.
  • the cutting process into the lid 101a including the case of immersion and suction in the sample 7 together
  • the suction is performed, the number of insertion histories is updated.
  • FIG. 4 is a flowchart showing details of the dispensing process.
  • the control unit 103 first reads the specimen ID of the sample container 101 that is the subject of the dispensing process (step S10). Next, based on the read specimen ID, information such as the container type of the sample container 101, the type of lid, the presence / absence of a lid, and a measurement request item, the number of probe insertion histories K, the number of allowable insertion histories K 0 and the like are stored. Read from the unit 122 (step S20). Next, it is determined whether there is a measurement request item (step S30). If the determination result is NO, the dispensing process is terminated, and the process proceeds to the dispensing process of the next sample container 101 to be dispensed. .
  • step S30 the control unit 103 determines whether the inserted record number K is smaller than the allowable insertion history number K 0 (step S40), if the judgment result is YES, the minute An injection operation (insertion of the sampling probe 105 into the sample container 101 through the lid 101a, suction of the sample 7, and discharge to the reaction container 106) is performed (step S50), and then the insertion history number K is incremented ( K ⁇ K + k i ) is performed (step S60).
  • the number of insertion histories k i to be added is determined simply by the number of times, or is determined by a load coefficient in consideration of any of the following conditions: lid type, probe insertion speed, lid temperature, and presence / absence of lid perforation.
  • step S70 it is determined whether or not all measurement request items have been completed. If the determination result is YES, the insertion history number K is stored (step S80), and the dispensing process is terminated. If the determination result in step S40 is NO, a probe replacement request warning is output and notified to the operator (step S90), the insertion history number K is stored (step S80), and the dispensing process is terminated. To do. If the determination result in step S70 is NO, all the measurement request items are completed, and the processes in steps S40 to S70 are repeated until the determination result in step S70 is YES.
  • step S40 If the determination result in step S40 is NO during the repetition of steps S40 to S70, the repetition is terminated and a probe replacement request warning is output (step S90), and the insertion history number K is stored. (Step S80), the dispensing process is terminated.
  • step S90 when a probe replacement request warning is output (step S90) and the dispensing process ends, the operator removes the target sample container 101 from the sample disk 102, manually removes the lid 101a, and again. Then, it is placed on the sample disk 102 and the dispensing operation is resumed.
  • the comparison of allowable insertion history number K 0 and inserts history number K step S40
  • it increments the insertion history number K step S60
  • the storage of the insertion history number K step S80
  • the sampling probe 105 constitutes an insertion mechanism that is inserted into the container through the lid of the closed container, and the storage unit 122 is an insertion mechanism into the container.
  • the number K of insertion histories is stored. This flow is repeated in another sample container, and the insertion history number K is accumulated. As a result, almost all of the load applied to the probe after the use of the apparatus is started can be accumulated.
  • the sample container 101 in which the sample 7 is accommodated in the sample disk 102 and closed with the lid 101a is placed, and the reagent bottles 112 corresponding to a plurality of analysis items to be analyzed are placed on the reagent disk 125.
  • information about the sample is input by an input unit such as a keyboard 121.
  • a dispensing process is performed on the sample 7 accommodated in the sample container 101 by the sampling probe 105 attached to the sampling arm 2 of the sampling mechanism 1 and dispensed into the reaction container 106.
  • the control unit 103 first determines information such as the container type of the sample container 101, the type of lid, the presence / absence of a lid, and a measurement request item based on the sample ID read from the sample container 101 to be dispensed.
  • the number of insertion histories K, the number of allowable insertion histories K 0, etc. are read from the storage unit 122 (steps S 10 and S 20 in FIG. 4).
  • the dispensing process is terminated and the sample for the next dispensing process target The process moves to the dispensing process of the container 101 (step S30 in FIG. 4). If there is a measurement request item and the insertion history number K is smaller than the allowable insertion history number K 0 , a dispensing operation (through the lid 101a of the sampling probe 105 to the sample container 101) is completed until all measurement request items are completed. Insertion and suction of the sample 7) and incrementing the insertion history number K are repeated (steps S40 to S70 in FIG. 4). When all the measurement request items are completed, the insertion history number K is updated and stored and dispensed.
  • step S80 the process ends, and the process proceeds to the dispensing process of the next sample container 101 to be dispensed (step S80 in FIG. 4). If the insertion history number K becomes equal to or greater than the allowable insertion history number K 0 during the dispensing process, a warning for probe replacement is output to notify the operator, and the insertion history number K is stored (step of FIG. 4). S90, S80), the dispensing process is terminated.
  • step S90 when a probe replacement request warning is output (step S90) and the dispensing process is completed, the operator removes the target sample container 101 from the sample disk 102, manually removes the lid 101a, The sample is placed on the sample disk 102 again, and the dispensing operation is repeated until all measurement request items are completed regardless of the number of already inserted histories. The same applies to the case of handling the sample container 101 without the lid 101a.
  • the reagent contained in the reagent bottle 112 is dispensed into the reaction container 106 by the reagent dispensing probe 110 of the reagent dispensing mechanism 108, and the sample and the mixture in the reaction container 106 to which the reagent has been added are stirred. Stirred by the vessel 113. Then, the plurality of reaction containers cross the light beam from the light source 114 during the transfer of the reaction container row accompanying the rotation operation of the reaction disk 109, so that the absorbance or luminescence value of each mixture is measured by the photometer 115 which is a measuring means. (Photometry).
  • a measurement signal (an absorbance signal or a luminescence value signal) is input to the control unit 103 via the interface 104 via the A / D converter 116, and the concentration of the analysis item is calculated. That is, the concentration analysis of the analysis item of the sample 7 is performed based on the photometric result of the photometer 115.
  • the reaction vessel 106 is transferred to the position of the washing mechanism 119, and is washed by supplying washing water into the reaction vessel 106 by the washing pump 120 and discharging the waste liquid.
  • an allowable insertion number N is set for each container type, and when the probe insertion number n exceeds the allowable insertion number N, the operator is notified of an allowable insertion number over warning for the container.
  • the above-described conventional technique merely sets the allowable number of insertions for a certain container, and does not take into consideration the generation of foreign matter from the lid due to deterioration on the probe side. For this reason, the conventional technology cannot prevent the generation of foreign matters based on the deterioration on the probe side. For example, in the case of a probe having an extremely poor sharpness, the generation of foreign matter or the like can occur in one or two times.
  • the storage unit 122 since the storage unit 122 stores the number of insertion histories representing the probe insertion history and the allowable number of insertion histories that is a threshold for issuing a probe replacement request, wear and deformation By managing the total amount of probe load (damage), a probe replacement request can be notified at an appropriate timing. That is, since a warning is issued based on the amount of damage accumulated on the probe, it is possible to notify a probe replacement request at an appropriate timing while suppressing the generation of foreign matter during dispensing.
  • a probe replacement request warning is output to notify the operator and the dispensing process is performed.
  • the analysis process may be automatically paused at the same time, or may be configured so that they can be set.
  • a foreign substance removal operation such as washing or blowing outside the probe, or a partial discharge operation of the sample held inside the probe, and then put it in the reaction container. It may be configured to dispense, or may be configured to execute or set them.
  • FIG. 5 is a diagram conceptually showing specimen information input to the storage unit and various information stored therein.
  • FIG. 6 shows the blade 205 and the sampling probe of the sampling mechanism 1 according to the present embodiment.
  • 105 is a diagram schematically showing a state of insertion of 105 into the sample container 101
  • FIG. 7 is a flowchart showing details of the dispensing process according to the present embodiment.
  • the same members as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the sample container 101 accommodates the sample 7 and is sealed with a lid 101a.
  • the operator inputs information on the specimen in each sample container 101 to the storage unit 122 by an input unit such as the keyboard 121.
  • an input unit such as the keyboard 121.
  • the sample container 101 is provided with an individual identification mark (sample ID) such as a barcode or RFID (not shown) so that the contained sample 7 can be identified.
  • the information stored in the storage unit 122 includes the number K of insertion histories of each probe, the implementation state of the cutting process (whether or not), and the allowable number of insertion histories K 0 of each probe.
  • Etc. are stored.
  • the number of insertion histories is the value calculated by the above equation (1), and is the amount of increase in the number of insertion histories at the i-th insertion. Is a function with variables (a, b, c%) Such as the type of lid into which the probe is inserted, the probe insertion speed, the lid temperature, and the presence or absence of perforation.
  • the storage unit 122 also stores the number of insertion histories that require probe replacement (hereinafter, the allowable number of insertion histories K 0 ).
  • the insertion history number K 0 is obtained empirically from the results obtained in a prior experiment, and the possibility of occurrence of dispensing abnormality or analysis result abnormality due to insertion of the sampling probe 105 into the lid 101a is substantial. This is the number of insertion histories of probes that are not present. Further, the number of insertion histories is stored in the storage unit for the blade as well as the probe.
  • the sample container 101 placed on the sample disk 102 accommodates the sample 7 and is sealed with a lid 101.
  • the blade 205 inserted into the sample container 101 has a sharp tip shape, and has a function of performing a cutting process for cutting the lid 101a (see FIG. 6A), and the sampling probe 105. Is inserted into the sample container 101 through the notch of the lid 101a that has been subjected to the incision process, and is immersed in the sample 7 for suction (see FIG. 6B). When inserting into the sample container 101 through the notch of the lid 101a and immersing in the sample 7 to perform suction, the number of insertion histories is updated.
  • the computer 103 first reads the specimen ID of the sample container 101 to be dispensed (step S10). Next, based on the read sample ID, sample information such as the container type of the sample container 101, the type of the lid, the presence / absence of the lid, the measurement request item, the implementation state of the cutting process (presence / absence of perforation of the lid), and the insertion history The number K, the allowable insertion history number K 0 and the like are read from the storage unit 122 (step S220). Next, it is determined whether there is a measurement request item (step S30).
  • step S30 it is determined whether or not the cutting process has been performed (step S35). If the determination result is YES, the number of already inserted histories K is subsequently greater than the allowable insertion history number K 0. It is determined whether it is small (step S40). Further, the cut processing when the determination result at step S35 is NO performed (including updated information implementation status in the specimen information) (step S36), followed by insertion history number K than the allowable insertion history number K 0 It is determined whether it is small (step S40).
  • step S40 a dispensing operation (insertion of the sampling probe 105 into the sample container 101 through the lid 101a, suction of the sample 7, and discharge to the reaction container 106) is performed (step S50), then, do the increment of the already inserted history the number of K (K ⁇ K + k i ) ( step S60).
  • the number of insertion histories k i to be added is determined simply by the number of times, or is determined by a load coefficient in consideration of any of the following conditions: lid type, probe insertion speed, lid temperature, and presence / absence of lid perforation. Then, it is determined whether or not all measurement request items have been completed (step S70).
  • step S80 the number K of already inserted histories is stored (step S80), and the dispensing process is terminated. If the determination result in step S40 is NO, a probe replacement request warning is output and notified to the operator (step S90), the insertion history number K is stored (step S80), and the dispensing process is terminated. To do. If the determination result in step S70 is NO, all the measurement request items are completed, and the processes in steps S40 to S70 are repeated until the determination result in step S70 is YES. If the determination result in step S40 is NO during the repetition of steps S40 to S70, the repetition is terminated and a probe replacement request warning is output (step S90), and the insertion history number K is stored. (Step S80), the dispensing process is terminated.
  • step S90 when a probe replacement request warning is output (step S90) and the dispensing process ends, the operator removes the target sample container 101 from the sample disk 102, manually removes the lid 101a, and again. Then, it is placed on the sample disk 102 and the dispensing operation is resumed.
  • the allowable insertion comparison history number K 0 and inserts history number K step S40
  • the increment of the insertion history number K step S60
  • the storage of the insertion history number K step S80
  • the storage unit also stores the number of insertion histories and the number of allowable insertion histories for the blade.
  • the load to be considered depends on the mere number of times, the type of lid, the insertion speed of the blade, the temperature of the lid It is a load factor.
  • a load that matches the processing condition is calculated and added to the number of insertion histories.
  • the number of insertion histories k i to be added is determined simply by the number of times, or is determined by a load coefficient in consideration of any of the conditions of lid type, probe insertion speed, and lid temperature.
  • the control unit compares the accumulated insertion history number with the allowable insertion history number, and when the insertion history number K becomes equal to or larger than the allowable insertion history number K 0 during the dispensing process, A blade replacement request warning is output and notified to the operator, and the insertion history number K is stored.
  • the sampling probe 105 constitutes an insertion mechanism that is inserted into the container through the lid of the closed container, and the storage unit 122 is an insertion mechanism into the container.
  • the number of insertion histories of is stored. This flow is repeated in another sample container, and the number K of sample probe insertion histories is accumulated. As a result, almost all of the load applied to the probe after the use of the apparatus is started can be accumulated. This flow is repeated in another sample container, and the blade insertion history number K is accumulated. As a result, almost all of the load applied to the blade can be accumulated after the use of the apparatus is started.
  • the sample container 101 in which the sample 7 is accommodated in the sample disk 102 and closed with the lid 101a is placed, and the reagent bottles 112 corresponding to a plurality of analysis items to be analyzed are placed on the reagent disk 125.
  • information about the sample is input by an input unit such as a keyboard 121.
  • a dispensing process is performed on the sample 7 accommodated in the sample container 101 by the blade 205 and the sampling probe 105 attached to the sampling arm 2 of the sampling mechanism 1 and then dispensed into the reaction container 106.
  • the control unit 103 first determines the container type of the sample container 101, the type of the lid, the presence / absence of the lid, the measurement request item, and the cutting process based on the sample ID read from the sample container 101 to be dispensed.
  • Information such as the execution state, the insertion history number K, the allowable insertion history number K 0 and the like are read from the storage unit 122 (steps S10 and S20 in FIG. 7).
  • the dispensing process is terminated.
  • the process proceeds to the dispensing process for the sample container 101 to be dispensed (step S30 in FIG. 4).
  • the cutting process (including updating of the sample information) is performed if the cutting process has not been performed, and the cutting process is not performed if the cutting process has been performed (step S35 in FIG. 7). , S36).
  • a dispensing operation insertion of the sampling probe 105 into the sample container 101 via the lid 101a and The sample 7 is aspirated
  • the insertion history number K is incremented repeatedly (steps S40 to S70 in FIG.
  • the insertion history number K is updated and stored, and the dispensing process is terminated.
  • the process proceeds to the dispensing process of the sample container 101 to be the next dispensing process (step S80 in FIG. 7). If the insertion history number K becomes equal to or greater than the allowable insertion history number K 0 during the dispensing process, a warning for probe replacement is output to notify the operator, and the insertion history number K is stored (step of FIG. 7). S90, S80), the dispensing process is terminated.
  • step S90 when a warning is output indicating that the allowable insertion history number is exceeded (step S90) and the dispensing process is terminated, the lid operator takes out the target sample container 101 from the sample disk 102 and manually removes the lid 101a. Then, the sample is placed again on the sample disk 102, and the dispensing operation is repeated until all measurement request items are completed regardless of the insertion history number K. The same applies to the case of handling the sample container 101 without the lid 101a.
  • the storage unit stores the number of blade insertion histories and the number of allowable insertion histories.
  • a load that matches the processing condition is calculated and added to the number of insertion histories.
  • the control unit compares the accumulated insertion history number with the allowable insertion history number, and when the insertion history number K becomes equal to or larger than the allowable insertion history number K 0 during the dispensing process, A blade replacement request warning is output and notified to the operator, and the insertion history number K is stored.
  • the present invention may be applied only to the blade.
  • the reagent contained in the reagent bottle 112 is dispensed into the reaction container 106 by the reagent dispensing probe 110 of the reagent dispensing mechanism 108, and the sample and the mixture in the reaction container 106 to which the reagent has been added are stirred. Stirred by the vessel 113. Then, the plurality of reaction containers cross the light beam from the light source 114 during the transfer of the reaction container row accompanying the rotation operation of the reaction disk 109, so that the absorbance or luminescence value of each mixture is measured by the photometer 115 which is a measuring means. (Photometry).
  • a measurement signal (an absorbance signal or a luminescence value signal) is input to the control unit 103 via the interface 104 via the A / D converter 116, and the concentration of the analysis item is calculated.
  • the reaction vessel 106 is transferred to the position of the washing mechanism 119, and is washed by supplying washing water into the reaction vessel 106 by the washing pump 120 and discharging the waste liquid.
  • the storage unit 122 is configured to store the execution state of the cutting process into the lid 101a of the sample container 101, that is, the presence or absence of the execution, the generation of foreign matters and the mixing of the sample 7 into the sample are prevented. It is possible to suppress the occurrence of dispensing abnormality and analysis result abnormality. That is, the state of insertion of the blade 205 into the lid 101a (the implementation state of the cutting process) is stored and managed in the storage unit 122, so that the cutting process into the lid 101a can be prevented from being repeated. It is possible to suppress the generation of foreign matters accompanying the injection and the mixing into the sample, and the occurrence of dispensing abnormality and analysis result abnormality can be suppressed.
  • a warning indicating that the allowable insertion history number is exceeded is output.
  • the dispensing process is terminated by informing the operator, the analysis process may be automatically paused at the same time, or may be configured so that they can be set.
  • a foreign substance removal operation such as washing or blowing outside the probe, or a partial discharge operation of the sample held inside the probe, and then put it in the reaction container. It may be configured to dispense, or may be configured to execute or set them. The same applies to the blades as well as the probes.
  • FIG. 8 is a diagram schematically illustrating how the blade 205, the hollow tube 305, and the sampling probe 105 of the sampling mechanism 1 according to the present embodiment are inserted into the sample container 101, and FIG. It is a flowchart which shows the detail of the dispensing process which concerns on this form.
  • the same members as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the sample container 101 placed on the sample disk 109 accommodates the sample 7 and is sealed by a lid 101a.
  • the blade 205 inserted into the sample container 101 has a sharp tip shape, and has a function of performing a cutting process for cutting the lid 101a (see FIG. 8A).
  • the hollow tube 305 is inserted into the sample container 101 through the notch of the lid 101a that has been subjected to the cutting process by the blade 205 (see FIG. 8B), and the sampling probe 105 passes through the hollow tube 305 through the sample.
  • the sample is inserted into the container 101 and immersed in the sample 7 for suction (see FIG. 8C).
  • the case where the hollow tube 305 is inserted into the sample container 101 through the notch of the lid 101a corresponds to the case where the number of insertion histories is counted.
  • the control unit 103 first reads the specimen ID of the sample container 101 to be dispensed (step S10). Next, based on the read sample ID, sample information such as the container type of the sample container 101, the presence / absence of a lid, a measurement request item, the implementation state of the cutting process, the insertion history number K of the hollow tube 305, and the allowable insertion history The number K 0 and the like are read from the storage unit 122 (step S320). Next, it is determined whether there is a measurement request item (step S30). If the determination result is NO, the dispensing process is terminated, and the process proceeds to the dispensing process of the next sample container 101 to be dispensed. .
  • step S35 it is determined whether or not the cutting process has been performed. If the determination result is YES, the insertion history number K of the hollow tube 305 is the allowable insertion history number. It is determined whether it is smaller than K 0 (step S40). In addition, when the determination result in step S35 is NO, a cutting process (including updating of the implementation state information in the sample information) is performed (step S36), and then the insertion history number K of the hollow tube 305 is the allowable insertion history. It is determined whether it is smaller than the number K 0 (step S40).
  • step S40 a dispensing operation (insertion of the hollow tube 305 into the sample container 101 via the lid 101a, and the sampling probe 105 via the hollow tube 305 to the sample container 101) Insertion, aspiration of the sample 7, and discharge into the reaction vessel 106) (step S50), and then, it is determined whether all measurement request items have been completed (step S70). If the determination result is YES, Remove the hollow tube 305 from the lid 101a, it performs increment of the insertion history number K of the hollow tube 305 (K ⁇ K + k i ) (step S70), and save the inserted history number K (step S80), partial The note process ends.
  • the number of insertion histories k i of hollow tubes to be added is determined simply by the number of times, or is determined by a load coefficient in consideration of any of the conditions of the type of lid, the insertion speed of the hollow tube, and the temperature of the lid. If the determination result in step S40 is NO, a hollow tube replacement request warning is output to notify the operator (step S90), and the dispensing process is terminated. Moreover, when the determination result in step S70 is NO, all the measurement request items are completed while the insertion state of the hollow tube 305 into the lid 101a is maintained, and step is performed until the determination result in step S70 becomes YES. The processes of S50 and S70 are repeated. If the determination result in step S40 is NO during the repetition of steps S40 to S70, the repetition is terminated and a hollow tube replacement request warning is output (step S90), and the dispensing process is terminated. To do.
  • step S90 when the hollow tube replacement request warning is output (step S90) and the dispensing process ends, the operator removes the target sample container 101 from the sample disk 102 and manually removes the lid 101a. Then, it is placed on the sample disk 102 again and the dispensing operation is resumed.
  • step S35 when handling the sample container 101 without the lid 101a, the state of the cutting process is confirmed (step S35), and the insertion history number K of the hollow tube is compared with the allowable insertion history number K 0 ( Step S40), incrementing the insertion history number K (step S75), and storing the insertion history number K (step S80) are skipped without being performed.
  • the sampling probe 105 constitutes an insertion mechanism that is inserted into the container through the lid of the closed container, and the storage unit 122 is an insertion mechanism into the container.
  • the number of insertion histories of is stored. This flow is repeated in another sample container, and the insertion history number K of the hollow tube is accumulated. As a result, almost all of the load applied to the hollow tube after the start of use of the apparatus can be accumulated.
  • the sample container 101 in which the sample 7 is accommodated in the sample disk 102 and closed with the lid 101a is placed, and the reagent bottles 112 corresponding to a plurality of analysis items to be analyzed are placed on the reagent disk 125.
  • information about the sample is input by an input unit such as a keyboard 121.
  • a dispensing process is performed on the sample 7 accommodated in the sample container 101 by the blade 205 and the sampling probe 105 attached to the sampling arm 2 of the sampling mechanism 1 and then dispensed into the reaction container 106.
  • the control unit 103 first determines the container type of the sample container 101, the type of the lid, the presence / absence of the lid, the measurement request item, and the cutting process based on the sample ID read from the sample container 101 to be dispensed. and information such as exemplary state, read and insert history number K and the allowable insertion history number K 0 of the hollow pipe 305 from the storage unit 122 (FIG.
  • step S10, S320 the case where there is no measurement request item dispensing process
  • the process ends, and the process proceeds to the dispensing process of the next sample container 101 to be dispensed (step S30 in FIG. 9).
  • the cutting process (including updating of sample information) is performed if the cutting process has not been performed, and the cutting process is not performed if the cutting process has been performed (step S35 in FIG. 9). , S36).
  • the hollow tube insertion history number K is smaller than the allowable insertion history number K 0 , a dispensing operation (through the lid 101a of the hollow tube 305 to the sample container 101) is completed until all measurement request items are completed.
  • Insertion, insertion of the sampling probe 105 into the sample container 101 through the hollow tube 305 and suction of the sample 7) are repeated (steps S50 and S70 in FIG. 9).
  • the increment of the empty tube insertion history number K and the update history number K are updated and stored, the dispensing process is terminated, and the process proceeds to the dispensing process of the next sample container 101 to be dispensed (step S75 in FIG. 9). S80).
  • the lid operator removes the target sample container 101 from the sample disk 102 and manually removes the lid 101a. Then, it is placed on the sample disk 102 again, and the dispensing operation is repeated until all measurement request items are completed regardless of the number n of past insertion histories. The same applies to the case of handling the sample container 101 without the lid 101a.
  • the reagent contained in the reagent bottle 112 is dispensed into the reaction container 106 by the reagent dispensing probe 105 of the reagent dispensing mechanism 108, and the sample and the mixture in the reaction container 106 to which the reagent has been added are stirred. Stirred by the vessel 113. Then, the plurality of reaction containers cross the light beam from the light source 114 during the transfer of the reaction container row accompanying the rotation operation of the reaction disk 109, so that the absorbance or luminescence value of each mixture is measured by the photometer 115 which is a measuring means. (Photometry).
  • a measurement signal (an absorbance signal or a luminescence value signal) is input to the computer 103 via the interface 104 via the A / D converter 116, and the concentration of the analysis item is calculated.
  • the reaction vessel 106 is transferred to the position of the washing mechanism 119, and is washed by supplying washing water into the reaction vessel 106 by the washing pump 120 and discharging the waste liquid.
  • the number of insertion histories of the hollow tube 305 into the lid 101a of the sample container 101 is stored in the storage unit 122, generation of foreign matters and dispensing of the sample 7 into the sample can be suppressed. Therefore, the occurrence of dispensing abnormality and analysis result abnormality can be suppressed. That is, the number of insertion histories into the lid 101a of the hollow tube 305 is stored and managed in the storage unit 122, and the allowable insertion history number K 0 can be set so as not to insert more than that. It is possible to suppress the generation of foreign matters and mixing into a sample accompanying dispensing, and it is possible to suppress the occurrence of dispensing abnormality and analysis result abnormality.
  • a hollow tube replacement request warning is output.
  • the dispensing process is terminated by informing the operator, but the analysis process may be automatically paused at the same time, or may be configured so that they can be set.
  • a foreign substance removal operation such as washing or blowing outside the probe, or a partial discharge operation of the sample held inside the probe, and then put it in the reaction container. It may be configured to dispense, or may be configured to execute or set them.
  • the container type and the lid type are determined from the container image captured by a camera or the like.
  • a configuration including a container type determination unit or a lid type determination unit for determination, a configuration for determination from a barcode or RFID, a configuration for determination from the passage time of the lid during container movement using a reflective sensor, or the like may be used.
  • the sample ID may be managed by a host computer higher than the automatic analyzer 100.
  • the number of dispenses can be shared among a plurality of automatic analyzers managed by the HOST computer.
  • the storage period of the number of dispenses may be arbitrarily set, and an error in resetting the number of dispenses can be prevented.
  • the operator can use a keyboard 121 or the like for a target sample for which an output request for replacement of the insertion mechanism (probe, blade, hollow tube) is issued
  • the configuration may be such that analysis of the target sample is not resumed unless information indicating that the lid 101a is removed from the input means is input. In this case, the probability of occurrence of a human error such as forgetting to remove the lid 101a can be reduced. .
  • the operator when the insertion history number K is larger than the allowable insertion history number K 0 , the operator is notified of a replacement request for the insertion mechanism (probe, blade, hollow tube) and performs a dispensing operation.
  • a replacement request for the insertion mechanism probe, blade, hollow tube
  • a warning is given to the insertion mechanism replacement notice.
  • An operation may be performed.
  • the threshold value ⁇ K in this case may be a fixed value, set by an operator, or automatically set from a statistical value such as a daily dispensing frequency. Also, a plurality of threshold values ⁇ K may be set, and different warnings may be notified for each.
  • the puncture operation may be changed by reducing the dispensing processing capacity, or a mechanism for heating the lid may be provided in the apparatus. good. In this case, it is desirable to provide a heating unit that heats the lid before the insertion mechanism penetrates the lid of the container.
  • the resetting of the insertion history number K after replacement of the insertion mechanism is performed by the operator inputting from an input means such as the keyboard 121.
  • an input means such as the keyboard 121.
  • a confirmation operation (detailed later) is not performed unless the insertion mechanism is replaced. It is good also as composition to do. That is, the number of insertion histories can be reset, and when the reset is performed and the control unit does not accept the replacement information of the insertion mechanism, the control unit preferably does not perform the insertion operation of the replaced insertion mechanism. .
  • the exchange information may be input manually or automatically.
  • the probe can be automatically determined whether the probe has been replaced. For example, it is carried out by observing the probe with a camera, measuring pressure changes during suction / discharge, checking the stop position using a jig or the like. Or you may carry out by performing dispensing operation
  • the lid is made of a material that does not generate foreign matter at the time of dispensing with a new probe, but generates foreign matter at the time of dispensing with a probe having an insertion history number sufficiently smaller than the allowable number of insertion history. Confirmation of the presence or absence of foreign matter at this time may be performed using a reagent that changes color by contact with the foreign matter, or may be performed by measuring the color change by absorbance.
  • the load coefficient is stored in the storage unit in advance, this load coefficient can be changed. Since the operating environment varies depending on the facility, it may be better to change the load coefficient after operating the device. Therefore, it is desirable to provide a display device that changes the setting of the load coefficient.
  • a display device that displays the number of insertion histories when the insertion mechanism is exchanged is provided, the storage unit stores the number of insertion histories when the insertion mechanism is exchanged, and the display device has an insertion history when the insertion mechanism is exchanged. It is desirable to list the numbers. In addition, for this list display, it is desirable to display the types of lids and the number of insertions for each lid along with the number of milk histories.
  • the number of insertion histories is a numerical value of the degree of deterioration and is the cumulative load of the insertion mechanism.
  • the number of insertion histories may be calculated by taking into account elements other than the number of insertions and elements other than the load coefficient. . Therefore, the value may not be proportional to the number of insertions, but may be based on the value. Further, the integrated value of the load coefficient corresponding to the type of the lid and the number of insertions for each lid may not be used.
  • the sample disk 102 type has been described as an example.
  • the present invention can be applied to a so-called rack type.
  • rack type the sample container 101 is transported by the rack.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 挿入機構の劣化に伴う分注異常や分析結果異常の発生を抑制しつつ、挿入機構の交換を行うことができる自動分析装置を提供する。閉じられた容器の蓋を貫通させて該容器中に挿入する挿入機構と、複数の該容器に跨って前記挿入機構が挿入されることによる前記挿入機構の負荷の累計に相当する挿入履歴数と、前記挿入履歴数の許容値である許容挿入履歴数と、を記憶する記憶部と、前記挿入履歴数と前記許容挿入履歴数とを比較し、前記挿入履歴数が前記許容挿入履歴数に達した場合にオペレータに報知する制御を行う制御部と、を備えた。

Description

自動分析装置
 本発明は、血液や尿などの生体試料の定性・定量分析を行う自動分析装置に関する。
 自動分析装置においては、試料容器や試薬容器に収容された収容物を反応容器や子検体容器などに分注して分析処理などの所定の工程を実施している。通常、試料や試薬などの収容物を収容した状態の容器は蓋などの構成により密閉されており、事前に穿孔した蓋にプローブを挿入したり、プローブで直接蓋を穿刺したりして、分注を行っている。
 密閉された容器にプローブを繰り返し挿入すると、たとえ事前に穿孔した蓋にプローブを挿入してもプローブが蓋に接触するため、その接触により異物が発生して収容物への混入が懸念される。従い、同一の蓋に繰り返し挿入すればする程、この異物混入リスクが高まることになる。このため、従来技術として、例えば特許文献1のように、プローブの蓋への許容挿入回数Nを設定し、挿入回数nが許容挿入回数数を超えた場合に、挿入処理を行わない制御を行う技術が開示されている。
特開2012-21871号公報
 上記従来技術では、蓋に対する挿入回数の許容回数を決定しており、これにより異物の発生等を抑制することが可能である。しかしながら、上記従来技術では、プローブの摩耗や変形については何ら考慮されていない。つまり、プローブは繰り返し蓋に挿入すればする程、摩耗や変形などにより劣化していくものであるが、プローブ側の劣化による蓋からの異物の発生等については何ら考慮されていない。
 蓋自体はゴム等の弾性部材で出来ているため1回の挿入でそれ程プローブの劣化を生じさせないが、近年の分注処理能力の向上のニーズによりプローブの挿入速度が以前に比べて大きくなる傾向にあり、プローブに掛かる1回の挿入負荷は相対的に大きくなってきている。その一方で、プローブの摩耗や変形などの劣化はプローブの切れ味の劣化に繋がり、切れ味が大幅に劣化した場合には、同一蓋への挿入回数に係わらず、異物の発生等の課題が生じる。
 結果的にプローブの切れ味が劣化した場合にはプローブを交換することになるが、これまでは異物が発生した段階でオペレータはこの問題に気付きプローブを交換していた。しかしながら、異物が発生した後では、異物発生により分析結果が無駄になったり、交換時間中は分析ができなくなり処理効率が低下する虞があった。
 また、期間を目安として交換することも考えられるが、装置の運用状況が施設によって異なるため、プローブの切れ味の劣化度合いと期間の関係を導くことが困難であった。運用状況に係わらず一律に期間でプローブを交換するのは不経済である。例えば、分析回数が少なくプローブの切れ味が劣化しておらずまだ使える場合であっても、プローブ交換をしなければならなくなる。
 特許文献1の技術では、プローブの劣化度合いを知ることができず、上記課題を解決することができない。本発明は上記に鑑みてなされたものであり、分注異常や分析結果異常の発生を抑制しつつ、プローブの劣化度合いに応じてプローブを交換することができる自動分析装置を提供することを目的とする。
 また、特にプローブは挿入回数が多いため劣化度合いを知ることが有効であるが、蓋に挿入される機構としては、プローブ以外にもブレードや中空管などがあり、これらについても劣化度合いを知ることは交換の目安となるため有効である。
 上記目的を達成するために、代表的な本発明は、閉じられた容器の蓋を貫通させて該容器中に挿入する挿入機構と、複数の該容器に跨って前記挿入機構が挿入されることによる前記挿入機構の負荷の累計に相当する挿入履歴数と、前記挿入履歴数の許容値である許容挿入履歴数と、を記憶する記憶部と、前記挿入履歴数と前記許容挿入履歴数とを比較し、前記挿入履歴数が前記許容挿入履歴数に達した場合にオペレータに報知する制御を行う制御部と、を備えた自動分析装置である。
 オペレータは許容挿入履歴数に達したことを知ることができるため、蓋の異物を原因とする分注異常や分析結果異常が発生する前に、挿入機構を交換することができる。
 本発明によれば、挿入機構の劣化に伴う分注異常や分析結果異常の発生を抑制しつつ、挿入機構の交換を行うことができる。
本発明の第1の実施の形態に係る自動分析装置の分注機構をその周辺構成とともに概略的に示す図である。 記憶部に入力される検体の情報、記憶される各種情報の様子を概念的に示す図である。 サンプリング機構1のサンプリングプローブのサンプル容器への挿入の様子を模式的に示す図である。 分注処理の詳細を示すフローチャートである。 本発明の第2の実施の形態に係る記憶部に入力される検体の情報、記憶される各種情報の様子を概念的に示す図である。 本発明の第2の実施の形態に係るブレード、及び、サンプリング機構のサンプリングプローブのサンプル容器への挿入の様子を模式的に示す図である。 本発明の第2の実施の形態に係る分注処理の詳細を示すフローチャートである。 本発明の第3の実施の形態に係るブレード、中空管、及び、サンプリング機構のサンプリングプローブのサンプル容器への挿入の様子を模式的に示す図である。 本発明の第3の実施の形態に係る分注処理の詳細を示すフローチャートである。
 以下、本発明の実施の形態について図面を参照しつつ説明する。
 本明細書で使用する「挿入履歴数」とは、複数の蓋付き容器に跨って挿入機構が挿入されることによる挿入機構の負荷の累計に相当する数である。この「挿入履歴数」が挿入機構の劣化度合いの指標となる。また、挿入機構は、プローブ、ブレード、中空管などが相当する。
 図1は、本発明の第1の実施の形態に係る自動分析装置の分注機構をその周辺構成とともに概略的に示す図である。
 図1において、本実施の形態の自動分析装置100は、試料7を収容したサンプル容器101を載置し、回転駆動されるサンプルディスク102と、反応容器106を載置し、回転駆動される反応ディスク109と、自動分析装置における分析対象となる複数の分析項目に対応する試薬を収容した試薬ボトル112を載置し、回転駆動される試薬ディスク125と、サンプル容器101の試料7を反応容器106に分注するサンプリング機構1と、試薬ボトル112の試薬を反応容器106に分注する試薬分注機構108と、自動分析装置100の各ユニットを含む全体の動作を制御する制御部(コンピュータ)103とを備えている。
 サンプリング機構1は、上下駆動及び回転駆動されるサンプリングアーム2と、サンプリングアーム2の先端に設けられたサンプリングプローブ105とを備えており、自動分析装置100に設けられたサンプル用シリンジポンプ107の動作に伴って、サンプリングプローブ105はサンプル容器101内の試料7を吸引し、反応容器106に吐出することにより試料7の分注を行う。
 試薬分注機構108もサンプリング機構1と同様の構成を備えており、自動分析装置100に設けられた試薬用シリンジポンプ111の動作に伴って、試薬分注プローブ110は試薬ボトル112内の試薬を吸引し、反応容器106に吐出することにより試薬の分注処理を行う。
 制御部(コンピュータ)103は、インターフェース104を介して自動分析装置100の各構成ユニットと信号の授受を行うことにより自動分析装置100全体の動作を制御するものであり、キーボード121や表示装置118などの入力手段から入力される分析項目等に関する情報や指示に基づいて各試料の分析処理を行う。また、分析結果を表示装置118(例えば、CRT)に表示したり、プリンタ117により印字出力したり、記憶部122であるメモリ(例えば、ハードディスク)に記憶したりする。
 図2は、記憶部(以下、メモリとも言う)に入力される検体の情報、記憶される各種情報の様子を概念的に示す図である。なお、図2には説明のためにサンプル容器の概略を示している。
 図2に示すように、サンプル容器101には試料7が収容されており蓋101aにより密閉されている。オペレータは、キーボード121などの入力手段により、記憶部122に各サンプル容器101における検体の情報を入力する。本実施の形態では、検体ID、容器種類、蓋の有無、測定依頼項目を入力する場合を示している。サンプル容器101には、図示しないバーコードやRFIDなどの個体識別標識(検体ID)が設けられており、収容された試料7を識別可能となっている。本実施の形態では、以下のような情報を有するサンプル容器101を例に取り説明する。
 (入力情報)
検体ID:1
容器種類:B
蓋の有無:有
測定依頼項目:TEST1~TEST6
 記憶部122に記憶される情報には、上記入力情報のほかに、プローブの挿入履歴を表す数値(以下、挿入履歴数Kとする)が記憶されている。挿入履歴数とは、例えば、以下の式(1)で計算される値とし、kiはi回目の挿入時における挿入履歴数の増加量とする。また、kiはプローブを挿入する蓋の種類やプローブの挿入速度、蓋の温度、穿孔の有無などを変数(a,b,c…)とした関数とする。

       K=Σki(a,b,c…)       式(1)
 つまり、プローブにかかる1回の負荷量を数値化して、その負荷量を積算することに相当する。負荷量に影響する要素として、プローブの挿入速度、蓋の温度、穿孔の有無が挙げられる。なお上記変数は無く回数のみでも、又は、変数は1以上であればよい。変数は多ければ多い程、負荷量の精度は高くなる。
 簡単な例として、同一種類の蓋である場合には、単純に蓋に挿入した回数そのものを挿入履歴数として算出することができる。又は、回数そのものでなくても蓋に挿入した関数に挿入した回数に比例した値であってもよい。つまり、挿入履歴数は、蓋に挿入した回数に比例する値に基づき算出される。
 また、異なる種類の蓋を貫通させる場合には、夫々の蓋の貫通時にかかる負荷を考慮する。例えば、蓋の種類AとBがあり、Aの方がBよりも硬い蓋であるとする。なお、蓋はゴム栓であるため相対的な硬さを意味する。この場合、蓋Aの方がプローブに対する負荷が大きいため、負荷係数をAの方がBよりも大きくする。例えば、Aを1.0としBを0.8とする。蓋AとBに夫々10000回プローブを挿入した場合、挿入履歴数は、18000となる(10000×1.0+10000×0.8)。つまり、挿入履歴数は、蓋の種類に応じた負荷係数と蓋毎の挿入回数に基づき算出される。なお、蓋AとBの硬さがほぼ同等であれば負荷係数を両方とも1.0とし両方の挿入回数の和としてもよい。負荷係数は記憶部122に記憶されている。
 また、プローブの負荷量として、蓋の種類よりも、蓋へのプローブの挿入速度や、蓋の温度や、蓋の穿孔の有無が支配的な場合が考えられる。プローブの挿入速度は速ければ速い程、プローブの負荷は大きくなる。また、蓋の温度は低ければ硬くなるため温度が低ければプローブの負荷が大きくなる。また、蓋の穿孔が有れば蓋の抵抗が低く穿孔が無ければ蓋の抵抗が高い。このため、穿孔が無ければプローブの負荷が大きい。これらの要素を負荷係数として数値化して、式(1)の関数を決めればよい。つまり、記憶部122は、プローブが蓋を貫通させてサンプル容器に挿入するときの条件として、蓋の種類、プローブの挿入速度、蓋の温度、蓋の穿孔の有無のうち、いずれかの条件を負荷係数として記憶し、挿入履歴数は、上記条件に応じた負荷係数と当該条件における挿入回数に基づき算出される。この条件を2つ、3つ、4つと組合せた負荷係数であってもよい。組合せが多い程、負荷量の精度は高くなるためその方が望ましい。
 代表的な2つの組合せとして、蓋の種類と蓋の穿孔の有無の組合せが考えられる。例えば、蓋Aの穿孔の無しの負荷係数を1.0、蓋Aの穿孔の有りの負荷係数を0.2、蓋Bの穿孔の無しの負荷係数を0.8、蓋Bの穿孔の有りの負荷係数を0.1とし、夫々の条件での挿入回数を10000回とすると、挿入履歴数は、21000となる(10000×1.0+10000×0.2+10000×10000×0.8+10000×0.1)。硬い蓋の穿孔の無しの条件が一番大きい負荷係数となり柔らかい蓋の穿孔の有りの条件が一番小さい負荷係数となる。なお、穿孔の有りの場合の負荷係数を0としてもよい。つまり、挿入履歴数は、この組合せによる負荷係数とこの組合せ毎の挿入回数に基づき算出される。
 また、メモリ122にはプローブの交換が必要となる挿入履歴数(以下、許容挿入履歴数K0)も記憶されている。
 許容挿入履歴数K0は、事前実験で得られた結果などから経験的に得られるものであり、サンプリングプローブ105の蓋101aへの挿入によって分注異常や分析結果異常の発生する可能性が実質的にないプローブの挿入履歴数である。
 ここで、自動分析装置100における分析処理の概要を説明する。
 まず、試料7を収容したサンプル容器101は、サンプルディスク102の間欠回転に伴ってサンプル吸引位置へ移送され、その吸引位置に停止中のサンプル容器101内にサンプリングプローブ105が降下動作される。その下降動作に伴ってサンプリングプローブ105の先端が試料7の液面に接触すると液面検出回路151から検出信号が出力され、その検出信号はインターフェース104を介して制御部103に入力される。制御部103は、その検出信号に基づいてサンプリングアーム2の図示しない駆動部による下降動作を停止するよう制御する。この状態でサンプリングプローブ105内に所定量のサンプルを吸引した後、サンプリングプローブ105は上死点まで上昇する。なお、サンプリングプローブ105が試料7を所定量吸引している吸引動作中は、サンプリングプローブ105とサンプル用シリンジポンプ107の間の流路内圧力変動を圧力センサ152からの信号を用いて圧力検出回路153で監視し、吸引動作中の流路内圧力変動に異常を発見した場合は所定量吸引されていない可能性が高いと判定し、その分析データに対してアラームを付加する。
 次にサンプリングアーム2を水平方向に旋回駆動し、反応ディスク109の回転動作に伴ってサンプル吐出位置へ移送された反応容器106の位置でサンプリングプローブ105を下降して、反応容器106内へ保持していた試料7を吐出する。その後、試料7が入った反応容器106が反応ディスク109の回転動作に伴って試薬添加位置まで移動され、該当する分析項目に対応した試薬が試薬分注プローブ110から添加される。試料、及び試薬の分注に伴ってサンプル容器101内の試料、及び試薬ボトル112内の試薬の液面が検出され、その検出結果に基づいて試料、及び試薬の残量等が算出されて記憶部122に記憶される。試料、及び試薬が加えられた反応容器106内の混合物は、攪拌器113により攪拌される。そして、反応ディスク109の回転動作に伴う反応容器列の移送中に複数の反応容器が光源114からの光束を横切ることにより、各混合物の吸光度、あるいは発光値が測定手段である光度計115により測定(測光)される。測定信号(吸光度信号や発光値信号)は、A/D変換器116を経由しインターフェース104を介して制御部103に入力され、分析項目の濃度が計算される。分析結果は、インターフェース104を介してプリンタ117に印字出力したり、CRTなどの表示装置118に画面出力したりすると共に、ハードディスクなどの記憶部122に記憶される。
 測光が終了した反応容器106は、洗浄機構119の位置に移送され、洗浄用ポンプ120による反応容器106内への洗浄水の供給、及び廃液の排出によって洗浄される。
 なお、図1からもわかるように、サンプル容器101のサンプルディスク102への配置は、サンプルディスク102上へ直接配置する場合や試験管(図示せず)上にサンプル容器101を載置する事も可能なユニバーサルな配置に対応可能な構造となっている。また、サンプルディスク102は、同心円状に3列のサンプル容器101が載置できるように3列の容器保持部が形成されており、サンプリングプローブ105によるサンプル吸引位置が各々の列に1個ずつ設定されている。
 さらに、サンプリング機構1の分注処理について説明する。
 図3は、サンプリング機構1のサンプリングプローブ105のサンプル容器101への挿入の様子を模式的に示す図である。
 図3に示すように、サンプルディスク102に載置されたサンプル容器101には、試料7が収容されており、蓋101aにより密閉されている。このようなサンプル容器101に挿入されるサンプリングプローブ105は鋭利な先端形状を有しており、蓋101aに切込みを入れる切込み処理を行う機能と、試料7に浸漬して吸引を行う機能とを備えている。蓋101aへの切込み処理を行う場合(合わせて試料7への浸漬及び吸引を行う場合も含む)、または、既にあけられた蓋101aの切込みを介してサンプル容器101内に挿入され試料7に浸漬して吸引を行う場合に挿入履歴数の更新を行う。
 図4は、分注処理の詳細を示すフローチャートである。
 本実施の形態における分析処理において、制御部103はまず、分注処理対象のサンプル容器101の検体IDを読み取る(ステップS10)。次に、読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の種類、蓋の有無、測定依頼項目などの情報や、プローブの挿入履歴数K、許容挿入履歴数K0などを記憶部122から読み出す(ステップS20)。次に、測定依頼項目があるかどうかを判定し(ステップS30)、その判定結果がNOの場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する。ステップS30での判定結果がYESの場合は、制御部103は挿入履歴数Kが許容挿入履歴数K0よりも小さいかどうかを判定し(ステップS40)、その判定結果がYESの場合は、分注動作(サンプリングプローブ105のサンプル容器101への蓋101aを介しての挿入、試料7の吸引、及び、反応容器106への吐出)を行い(ステップS50)、その後、挿入履歴数Kのインクリメント(K←K+ki)を行う(ステップS60)。足される挿入履歴数kiは、単なる回数により決まる、又は、蓋の種類、プローブの挿入速度、蓋の温度、蓋の穿孔の有無のうちいずれかの条件を考慮した負荷係数により決まる。そして、測定依頼項目を全て終了したかどうかを判定し(ステップS70)、判定結果がYESであれば、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。また、ステップS40での判定結果がNOの場合は、プローブ交換要求の警告を出力してオペレータに報知し(ステップS90)、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。また、ステップS70での判定結果がNOの場合は、測定依頼項目を全て完了してステップS70での判定結果がYESになるまでステップS40~ステップS70の処理を繰り返す。なお、ステップS40~ステップS70の繰り返し中にステップS40での判定結果がNOとなった場合は、繰り返しを終了してプローブ交換要求の警告を出力し(ステップS90)、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。
 上記分注処理において、プローブ交換要求の警告出力がなされて(ステップS90)分注処理を終了した場合、オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して分注動作を再開する。この場合(蓋101aの無いサンプル容器101を扱う場合)の分注処理では、挿入履歴数Kと許容挿入履歴数K0の比較(ステップS40)、挿入履歴数Kのインクリメント(ステップS60)、及び挿入履歴数Kの保存(ステップS80)は実施せずスキップする。
 以上のように構成した本実施の形態において、サンプリングプローブ105は、閉じられた容器の蓋を貫通させて該容器中に挿入される挿入機構を構成し、記憶部122は、容器への挿入機構の挿入履歴数Kを記憶する。このフローを別のサンプル容器でも繰り返し挿入履歴数Kを累積する。これにより装置の使用を開始してからプローブにかかる負荷のほぼ全てを累積できる。
 以上のように構成した本実施の形態の動作を説明する。
 まず、分析処理の準備として、サンプルディスク102に試料7を収容し蓋101aで塞いだサンプル容器101を載置し、試薬ディスク125に分析対象となる複数の分析項目に対応する試薬ボトル112を載置する。また、キーボード121などの入力手段により各サンプル容器101に関する検体の情報(検体ID、容器種類、蓋の種類、蓋の有無、測定依頼項目など)を入力する。この状態で分析処理の開始を指示することにより、自動分析装置における検体の分析処理が開始される。
 分析処理では、まず、サンプリング機構1のサンプリングアーム2にとりつけられたサンプリングプローブ105によって、サンプル容器101に収容された試料7に分注処理が実施され、反応容器106に分注される。分注処理では、制御部103はまず、分注処理対象のサンプル容器101から読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の種類、蓋の有無、測定依頼項目などの情報や、挿入履歴数K、許容挿入履歴数K0などを記憶部122から読み出し(図4ステップS10,S20)、測定依頼項目が無い場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図4のステップS30)。また、測定依頼項目が有り、挿入履歴数Kが許容挿入履歴数K0よりも小さい場合は、測定依頼項目が全て完了するまで分注動作(サンプリングプローブ105のサンプル容器101への蓋101aを介しての挿入、及び試料7の吸引)、及び、挿入履歴数Kのインクリメントを繰り返し行い(図4のステップS40~S70)、測定依頼項目が全て終了したら挿入履歴数Kを更新保存して分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図4のステップS80)。分注処理中に挿入履歴数Kが許容挿入履歴数K0以上となった場合は、プローブ交換要求の警告を出力してオペレータに報知し、挿入履歴数Kを保存して(図4のステップS90,S80)、分注処理を終了する。
 なお、分注処理において、プローブ交換要求の警告出力がなされて(ステップS90)分注処理を終了した場合、オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して、既挿入履歴数に関係なく測定依頼項目が全て完了するまで分注動作を繰り返す。蓋101aの無いサンプル容器101を扱う場合についても同様である。
 続いて、試薬分注機構108の試薬分注プローブ110によって、試薬ボトル112に収容された試薬が反応容器106に分注され、試料、及び試薬が加えられた反応容器106内の混合物は、攪拌器113により攪拌される。そして、反応ディスク109の回転動作に伴う反応容器列の移送中に複数の反応容器が光源114からの光束を横切ることにより、各混合物の吸光度、あるいは発光値が測定手段である光度計115により測定(測光)される。測定信号(吸光度信号や発光値信号)は、A/D変換器116を経由しインターフェース104を介して制御部103に入力され、分析項目の濃度が計算される。つまり、光度計115の測光結果に基づき試料7の分析項目の濃度分析が行われる。測光が終了した反応容器106は、洗浄機構119の位置に移送され、洗浄用ポンプ120による反応容器106内への洗浄水の供給、及び廃液の排出によって洗浄される。
 以上のように構成した本実施の形態の効果を説明する。
 従来技術においては、各容器種類で許容挿入回数Nを設定し、プローブの挿入回数nが許容挿入回数Nを超えた場合に、オペレータにその容器に対する許容挿入回数オーバの警告を告知していた。しかしながら、上記従来技術では、ある1つの容器に対する許容挿入回数を設定しているにすぎず、プローブ側の劣化による蓋からの異物の発生等については何ら考慮されていなかった。そのため、従来技術では、プローブ側の劣化に基づく異物の発生等を防ぐことはできない。例えば、極めて切れ味の悪いプローブであれば1、2回で異物の発生等が生じ得る。
 これに対して本実施の形態においては、プローブの挿入履歴を表す挿入履歴数、およびプローブの交換要求を出す閾値である許容挿入履歴数を記憶部122に記憶する構成としたので、摩耗や変形といったプローブの負荷量(ダメージ)の累計を管理することで適切なタイミングでプローブ交換要求を告知することができる。すなわち、プローブへのダメージ蓄積量を基準に警告を出すため、分注時の異物発生を抑えつつ、適切なタイミングでプローブ交換要求を告知することができる。
 なお、本実施の形態においては、分注処理でプローブの挿入履歴数Kが許容挿入履歴数K0以上である場合には、プローブ交換要求の警告を出力してオペレータに報知して分注処理を終了するよう構成したが、合わせて分析処理を自動的に一時停止するよう構成しても良く、また、それらを設定できるように構成しても良い。または、プローブでサンプルを吸引し、蓋から抜針した後、プローブ外側の洗浄やブローなどの異物除去動作や、プローブ内に保持したサンプルの一部吐出によるつまり除去動作を入れ、その後反応容器に分注するよう構成してもよく、また、それらを実行するか設定できるように構成してもよい。
  本発明の第2の実施の形態を図5~図7を参照しつつ説明する。本実施の形態は、第1の実施の形態に示した構成に加え、サンプリングプローブ105の挿入のためにサンプル容器101の蓋101aに切込み処理を行うブレード205をさらに設け、切込み処理の実施状態(実施の有無)、及び分注処理におけるブレード205の蓋101aへの既挿入履歴数を管理するように構成したものである。図5は、記憶部に入力される検体の情報、記憶される各種情報の様子を概念的に示す図であり、図6は本実施の形態に係るブレード205、及び、サンプリング機構1のサンプリングプローブ105のサンプル容器101への挿入の様子を模式的に示す図であり、図7は本実施の形態に係る分注処理の詳細を示すフローチャートである。図中、第1の実施の形態で説明したものと同一の部材には同じ符号を付し説明を省略する。
 図5に示すように、サンプル容器101には試料7が収容されており蓋101aにより密閉されている。オペレータは、キーボード121などの入力手段により、記憶部122に各サンプル容器101における検体の情報を入力する。本実施の形態では、検体ID、容器種類、蓋の有無、測定依頼項目を入力する場合を示している。サンプル容器101には、図示しないバーコードやRFIDなどの個体識別標識(検体ID)が設けられており、収容された試料7を識別可能となっている。記憶部122に記憶される情報には、オペレータにより入力された情報のほかに、各プローブの挿入履歴数K、切込み処理の実施状態(実施の有無)や、各プローブの許容挿入履歴数K0などが記憶されている。挿入履歴数とは、前記の式(1)で計算される値とし、はi回目の挿入時における挿入履歴数の増加量とする。また、はプローブを挿入する蓋の種類やプローブの挿入速度、蓋の温度、穿孔の有無などを変数(a,b,c…)とした関数とする。
 また、記憶部122にはプローブの交換が必要となる挿入履歴数(以下、許容挿入履歴数K0)も記憶されている。挿入履歴数K0は、事前実験で得られた結果などから経験的に得られるものであり、サンプリングプローブ105の蓋101aへの挿入によって分注異常や分析結果異常の発生する可能性が実質的にないプローブの挿入履歴数である。また、プローブ同様にブレードに対しても挿入履歴数が記憶部に記憶される。
 図6に示すように、サンプルディスク102に載置されたサンプル容器101には、試料7が収容されており、蓋101により密閉されている。このようなサンプル容器101に挿入されるブレード205は鋭利な先端形状を有しており、蓋101aに切込みを入れる切込み処理を行う機能を備えており(図6(a)参照)、サンプリングプローブ105は切込み処理を行った蓋101aの切込みを介してサンプル容器101内に挿入され試料7に浸漬して吸引を行う(図6(b)参照)。蓋101aの切込みを介してサンプル容器101内に挿入され試料7に浸漬して吸引を行う場合が前述の挿入履歴数の更新を行う。
 図7に示すように、本実施の形態における分析処理においては、コンピュータ103はまず、分注処理対象のサンプル容器101の検体IDを読み取る(ステップS10)。次に、読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の種類、蓋の有無、測定依頼項目、切込み処理の実施状態(蓋の穿孔の有無)などの検体情報や、挿入履歴数Kや許容挿入履歴数K0などを記憶部122から読み出す(ステップS220)。次に、測定依頼項目があるかどうかを判定し(ステップS30)、その判定結果がNOの場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する。ステップS30での判定結果がYESの場合は、切込み処理が実施済みかどうかを判定し(ステップS35)、判定結果YESの場合は、続いて既挿入履歴数Kが許容挿入履歴数K0よりも小さいかどうかを判定する(ステップS40)。また、ステップS35での判定結果がNOの場合は切込み処理(検体情報における実施状態の情報の更新を含む)を行い(ステップS36)、続いて挿入履歴数Kが許容挿入履歴数K0よりも小さいかどうかを判定する(ステップS40)。ステップS40での判定結果がYESの場合は、分注動作(サンプリングプローブ105のサンプル容器101への蓋101aを介しての挿入、試料7の吸引、及び、反応容器106への吐出)を行い(ステップS50)、その後、既挿入履歴数Kのインクリメント(K←K+ki)を行う(ステップS60)。足される挿入履歴数kiは、単なる回数により決まる、又は、蓋の種類、プローブの挿入速度、蓋の温度、蓋の穿孔の有無のうちいずれかの条件を考慮した負荷係数により決まる。そして、測定依頼項目を全て終了したかどうかを判定し(ステップS70)、判定結果がYESであれば、既挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。また、ステップS40での判定結果がNOの場合は、プローブ交換要求の警告を出力してオペレータに報知し(ステップS90)、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。また、ステップS70での判定結果がNOの場合は、測定依頼項目を全て完了してステップS70での判定結果がYESになるまでステップS40~ステップS70の処理を繰り返す。なお、ステップS40~ステップS70の繰り返し中にステップS40での判定結果がNOとなった場合は、繰り返しを終了してプローブ交換要求の警告を出力し(ステップS90)、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。
 上記分注処理において、プローブ交換要求の警告出力がなされて(ステップS90)分注処理を終了した場合、オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して分注動作を再開する。この場合(蓋101aの無いサンプル容器101を扱う場合)の分注処理では、切込み処理の実施状態の確認(ステップS35)、挿入履歴数Kと許容挿入履歴数K0の比較(ステップS40)、挿入履歴数Kのインクリメント(ステップS60)、及び挿入履歴数Kの保存(ステップS80)は実施せずスキップする。
 また、ブレードに着目すればブレードに対しても記憶部は挿入履歴数と許容挿入履歴数を記憶する。但し、蓋の穿孔が有る場合には、ブレードを容器に挿入することが実質的にないため、考慮される負荷としては、単なる回数、あるいは、蓋の種類、ブレードの挿入速度、蓋の温度による負荷係数である。ステップS36での切り込み処理を行うことで、その処理条件に合った負荷が算出され、挿入履歴数に加算される。加算される挿入履歴数kiは、単なる回数により決まる、又は、蓋の種類、プローブの挿入速度、蓋の温度の有無のうちいずれかの条件を考慮した負荷係数により決まる。制御部は、プローブと場合と同様に、累積された挿入履歴数と許容挿入履歴数とを比較し、分注処理中に挿入履歴数Kが許容挿入履歴数K0以上となった場合は、ブレード交換要求の警告を出力してオペレータに報知し、挿入履歴数Kを保存する。
 以上のように構成した本実施の形態において、サンプリングプローブ105は、閉じられた容器の蓋を貫通させて該容器中に挿入される挿入機構を構成し、記憶部122は、容器への挿入機構の挿入履歴数を記憶する。このフローを別のサンプル容器でも繰り返しサンプルプローブの挿入履歴数Kを累積する。これにより装置の使用を開始してからプローブにかかる負荷のほぼ全てを累積できる。また、このフローを別のサンプル容器でも繰り返しブレードの挿入履歴数Kを蓄積する。これにより装置の使用を開始してからブレードにかかる負荷のほぼ全てを累積できる。
 以上のように構成した本実施の形態の動作を説明する。
 まず、分析処理の準備として、サンプルディスク102に試料7を収容し蓋101aで塞いだサンプル容器101を載置し、試薬ディスク125に分析対象となる複数の分析項目に対応する試薬ボトル112を載置する。また、キーボード121などの入力手段により各サンプル容器101に関する検体の情報(検体ID、容器種類、蓋の種類、蓋の有無、測定依頼項目など)を入力する。この状態で分析処理の開始を指示することにより、自動分析装置における検体の分析処理が開始される。
 分析処理では、まず、ブレード205、及びサンプリング機構1のサンプリングアーム2にとりつけられたサンプリングプローブ105によって、サンプル容器101に収容された試料7に分注処理が実施され、反応容器106に分注される。分注処理では、制御部103はまず、分注処理対象のサンプル容器101から読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の種類、蓋の有無、測定依頼項目、切込み処理の実施状態などの情報や、挿入履歴数Kや許容挿入履歴数K0などを記憶部122から読み出し(図7ステップS10,S20)、測定依頼項目が無い場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図4のステップS30)。また、測定依頼項目が有る場合は、切込み処理が未実施の場合は切込み処理(検体情報の更新含む)を実施し、切込み処理が実施済みの場合は切込み処理を実施しない(図7のステップS35,S36)。続いて、挿入履歴数Kが許容挿入履歴数K0よりも小さい場合は、測定依頼項目が全て完了するまで分注動作(サンプリングプローブ105のサンプル容器101への蓋101aを介しての挿入、及び試料7の吸引)、及び、挿入履歴数Kのインクリメントを繰り返し行い(図7のステップS40~S70)、測定依頼項目が全て終了したら挿入履歴数Kを更新保存して分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図7のステップS80)。分注処理中に挿入履歴数Kが許容挿入履歴数K0以上となった場合は、プローブ交換要求の警告を出力してオペレータに報知し、挿入履歴数Kを保存して(図7のステップS90,S80)、分注処理を終了する。
 なお、分注処理において、許容挿入履歴数オーバの警告出力がなされて(ステップS90)分注処理を終了した場合、蓋オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して、挿入履歴数Kに関係なく測定依頼項目が全て完了するまで分注動作を繰り返す。蓋101aの無いサンプル容器101を扱う場合についても同様である。
 また、ブレードについても先に説明したとおり、記憶部はブレードの挿入履歴数と許容挿入履歴数を記憶する。ステップS36での切り込み処理を行うことで、その処理条件に合った負荷が算出され、挿入履歴数に加算される。制御部は、プローブと場合と同様に、累積された挿入履歴数と許容挿入履歴数とを比較し、分注処理中に挿入履歴数Kが許容挿入履歴数K0以上となった場合は、ブレード交換要求の警告を出力してオペレータに報知し、挿入履歴数Kを保存する。なお、本実施の形態では、挿入履歴数についてプローブとブレードの両方で算出する例を示したが、ブレードのみに適用してもよい。
 続いて、試薬分注機構108の試薬分注プローブ110によって、試薬ボトル112に収容された試薬が反応容器106に分注され、試料、及び試薬が加えられた反応容器106内の混合物は、攪拌器113により攪拌される。そして、反応ディスク109の回転動作に伴う反応容器列の移送中に複数の反応容器が光源114からの光束を横切ることにより、各混合物の吸光度、あるいは発光値が測定手段である光度計115により測定(測光)される。測定信号(吸光度信号や発光値信号)は、A/D変換器116を経由しインターフェース104を介して制御部103に入力され、分析項目の濃度が計算される。測光が終了した反応容器106は、洗浄機構119の位置に移送され、洗浄用ポンプ120による反応容器106内への洗浄水の供給、及び廃液の排出によって洗浄される。
 以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。
 また、サンプル容器101の蓋101aへの切込み処理の実施状態、すなわち、実施の有無を記憶部122に記憶するように構成したので、試料7の分注に伴う異物の発生及び試料への混入を抑制することができ、分注異常や分析結果異常の発生を抑制することができる。すなわち、ブレード205の蓋101aへの挿入状態(切込み処理の実施状態)を記憶部122で記憶して管理し、蓋101aへの切込み処理を重複して行わないようにできるので、試料7の分注に伴う異物の発生及び試料への混入を抑制することができ、分注異常や分析結果異常の発生を抑制することができる。
 なお、本実施の形態においても、分注処理で分注対象のサンプル容器101の挿入履歴数Kが許容挿入履歴数K0以上である場合には、許容挿入履歴数オーバの警告を出力してオペレータに報知して分注処理を終了するよう構成したが、合わせて分析処理を自動的に一時停止するよう構成しても良く、また、それらを設定できるように構成しても良い。または、プローブでサンプルを吸引し、蓋から抜針した後、プローブ外側の洗浄やブローなどの異物除去動作や、プローブ内に保持したサンプルの一部吐出によるつまり除去動作を入れ、その後反応容器に分注するよう構成してもよく、また、それらを実行するか設定できるように構成してもよい。このことは、プローブに限らず、ブレードについても同様である。
  本発明の第3の実施の形態を図8及び図9を参照しつつ説明する。本実施の形態は、第2の実施の形態に示した構成に加え、サンプリングプローブ105を通すための中空管305をさらに設け、分注処理における中空管305の蓋101aへの既挿入履歴数を管理するように構成したものである。なお、第2の実施の形態の如く、ブレードの挿入履歴数を管理してもよい。図8は、本実施の形態に係るブレード205、中空管305、及び、サンプリング機構1のサンプリングプローブ105のサンプル容器101への挿入の様子を模式的に示す図であり、図9は本実施の形態に係る分注処理の詳細を示すフローチャートである。図中、第1の実施の形態で説明したものと同一の部材には同じ符号を付し説明を省略する。
 図8に示すように、サンプルディスク109に載置されたサンプル容器101には、試料7が収容されており、蓋101aにより密閉されている。このようなサンプル容器101に挿入されるブレード205は鋭利な先端形状を有しており、蓋101aに切込みを入れる切込み処理を行う機能を備えている(図8(a)参照)。中空管305は、ブレード205による切込み処理を行った蓋101aの切込みを介してサンプル容器101内に挿入され(図8(b)参照)、サンプリングプローブ105はその中空管305の内部を通してサンプル容器101内に挿入され試料7に浸漬して吸引を行う(図8(c)参照)。本実施の形態においては、中空管305が蓋101aの切込みを介してサンプル容器101内に挿入される場合が前述の挿入履歴数にカウントする場合に相当する。
 図9に示すように、本実施の形態における分析処理においては、制御部103はまず、分注処理対象のサンプル容器101の検体IDを読み取る(ステップS10)。次に、読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の有無、測定依頼項目、切込み処理の実施状態などの検体情報や、中空管305の挿入履歴数Kや許容挿入履歴数K0などを記憶部122から読み出す(ステップS320)。次に、測定依頼項目があるかどうかを判定し(ステップS30)、その判定結果がNOの場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する。ステップS30での判定結果がYESの場合は、切込み処理が実施済みかどうかを判定し(ステップS35)、判定結果YESの場合は、続いて中空管305の挿入履歴数Kが許容挿入履歴数K0よりも小さいかどうかを判定する(ステップS40)。また、ステップS35での判定結果がNOの場合は切込み処理(検体情報における実施状態の情報の更新を含む)を行い(ステップS36)、続いて中空管305の挿入履歴数Kが許容挿入履歴数K0よりも小さいかどうかを判定する(ステップS40)。ステップS40での判定結果がYESの場合は、分注動作(中空管305のサンプル容器101への蓋101aを介しての挿入、サンプリングプローブ105のサンプル容器101への中空管305を介しての挿入、試料7の吸引、及び、反応容器106への吐出)を行い(ステップS50)、その後、測定依頼項目を全て終了したかどうかを判定し(ステップS70)判定結果がYESであれば、中空管305を蓋101aから抜き、中空管305の挿入履歴数Kのインクリメント(K←K+ki)を行い(ステップS70)、挿入履歴数Kを保存して(ステップS80)、分注処理を終了する。足される中空管の挿入履歴数kiは、単なる回数により決まる、又は、蓋の種類、中空管の挿入速度、蓋の温度のうちいずれかの条件を考慮した負荷係数により決まる。また、ステップS40での判定結果がNOの場合は、中空管交換要求の警告を出力してオペレータに報知し(ステップS90)、分注処理を終了する。また、ステップS70での判定結果がNOの場合は、中空管305の蓋101aへの挿入状態を持続したまま、測定依頼項目を全て完了してステップS70での判定結果がYESになるまでステップS50,S70の処理を繰り返す。なお、ステップS40~ステップS70の繰り返し中にステップS40での判定結果がNOとなった場合は、繰り返しを終了して中空管交換要求の警告を出力し(ステップS90)、分注処理を終了する。
 上記分注処理において、中空管交換要求の警告出力がなされて(ステップS90)分注処理を終了した場合、オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して分注動作を再開する。この場合(蓋101aの無いサンプル容器101を扱う場合)の分注処理では、切込み処理の実施状態の確認(ステップS35)、中空管の挿入履歴数Kと許容挿入履歴数K0の比較(ステップS40)、挿入履歴数Kのインクリメント(ステップS75)、及び挿入履歴数Kの保存(ステップS80)は実施せずスキップする。
 以上のように構成した本実施の形態において、サンプリングプローブ105は、閉じられた容器の蓋を貫通させて該容器中に挿入される挿入機構を構成し、記憶部122は、容器への挿入機構の挿入履歴数を記憶する。このフローを別のサンプル容器でも繰り返し中空管の挿入履歴数Kを累積する。これにより装置の使用を開始してから中空管にかかる負荷のほぼ全てを累積できる。
 以上のように構成した本実施の形態の動作を説明する。
 まず、分析処理の準備として、サンプルディスク102に試料7を収容し蓋101aで塞いだサンプル容器101を載置し、試薬ディスク125に分析対象となる複数の分析項目に対応する試薬ボトル112を載置する。また、キーボード121などの入力手段により各サンプル容器101に関する検体の情報(検体ID、容器種類、蓋の種類、蓋の有無、測定依頼項目など)を入力する。この状態で分析処理の開始を指示することにより、自動分析装置における検体の分析処理が開始される。
 分析処理では、まず、ブレード205、及びサンプリング機構1のサンプリングアーム2にとりつけられたサンプリングプローブ105によって、サンプル容器101に収容された試料7に分注処理が実施され、反応容器106に分注される。分注処理では、制御部103はまず、分注処理対象のサンプル容器101から読み取った検体IDに基づいて、サンプル容器101の容器種類、蓋の種類、蓋の有無、測定依頼項目、切込み処理の実施状態などの情報や、中空管305の挿入履歴数Kや許容挿入履歴数K0などを記憶部122から読み出し(図9ステップS10,S320)、測定依頼項目が無い場合は分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図9のステップS30)。また、測定依頼項目が有る場合は、切込み処理が未実施の場合は切込み処理(検体情報の更新含む)を実施し、切込み処理が実施済みの場合は切込み処理を実施しない(図9のステップS35,S36)。続いて、中空管の挿入履歴数Kが許容挿入履歴数K0よりも小さい場合は、測定依頼項目が全て完了するまで分注動作(中空管305のサンプル容器101への蓋101aを介しての挿入、サンプリングプローブ105のサンプル容器101への中空管305を介しての挿入及び試料7の吸引)を繰り返し行い(図9のステップS50,S70)、測定依頼項目が全て終了したら、中空管の挿入履歴数Kのインクリメント及び挿入履歴数Kを更新保存して分注処理を終了し、次の分注処理対象のサンプル容器101の分注処理に移行する(図9のステップS75,S80)。
 なお、分注処理において、プローブ交換要求の警告出力がなされて(ステップS90)分注処理を終了した場合、蓋オペレータは対象のサンプル容器101をサンプルディスク102から取り出して、蓋101aを手動で取り外し、再度、サンプルディスク102に載置して、既挿入履歴数nに関係なく測定依頼項目が全て完了するまで分注動作を繰り返す。蓋101aの無いサンプル容器101を扱う場合についても同様である。
 続いて、試薬分注機構108の試薬分注プローブ105によって、試薬ボトル112に収容された試薬が反応容器106に分注され、試料、及び試薬が加えられた反応容器106内の混合物は、攪拌器113により攪拌される。そして、反応ディスク109の回転動作に伴う反応容器列の移送中に複数の反応容器が光源114からの光束を横切ることにより、各混合物の吸光度、あるいは発光値が測定手段である光度計115により測定(測光)される。測定信号(吸光度信号や発光値信号)は、A/D変換器116を経由しインターフェース104を介してコンピュータ103に入力され、分析項目の濃度が計算される。測光が終了した反応容器106は、洗浄機構119の位置に移送され、洗浄用ポンプ120による反応容器106内への洗浄水の供給、及び廃液の排出によって洗浄される。
 以上のように構成した本実施の形態においても第1及び第2の実施の形態と同様の効果を得ることができる。
 また、中空管305のサンプル容器101の蓋101aへの挿入履歴数を記憶部122に記憶するように構成したので、試料7の分注に伴う異物の発生及び試料への混入を抑制することができ、分注異常や分析結果異常の発生を抑制することができる。すなわち、中空管305の蓋101aへの挿入履歴数を記憶部122で記憶して管理し、許容挿入履歴数K0を設定してそれを超える挿入を行わないようにできるので、試料7の分注に伴う異物の発生及び試料への混入を抑制することができ、分注異常や分析結果異常の発生を抑制することができる。
 なお、本実施の形態においても、分注処理で分注対象のサンプル容器101の挿入履歴数Kが許容挿入履歴数K0以上である場合には、中空管の交換要求の警告を出力してオペレータに報知して分注処理を終了するよう構成したが、合わせて分析処理を自動的に一時停止するよう構成しても良く、また、それらを設定できるように構成しても良い。または、プローブでサンプルを吸引し、蓋から抜針した後、プローブ外側の洗浄やブローなどの異物除去動作や、プローブ内に保持したサンプルの一部吐出によるつまり除去動作を入れ、その後反応容器に分注するよう構成してもよく、また、それらを実行するか設定できるように構成してもよい。
 また、本発明の実施の形態においては、容器種類や蓋の種類をオペレータが入力する場合を例にとり説明したが、これに限られず、カメラ等で撮影した容器画像から容器種類や蓋の種類を判定する容器種別判定部又は蓋種別判定部を備える構成や、バーコードやRFIDから判定する構成、反射型センサなどを用いて容器移動時における蓋の通過時間などから判別する構成などとしても良い。また、蓋101aの切込み処理の実施状態をカメラ等で撮影した蓋101aの画像から切込み処理の実施状態を判定する切込み状態判定部を備える構成としても良い。また、検体IDを自動分析装置100よりも上位のHOSTコンピュータで管理するようにしてもよく、この場合は、HOSTコンピュータが管理する複数の自動分析装置間で既分注回数を共有することができる。さらに、既分注回数の記憶期間を任意に設定可能としてもよく、既分注回数のリセット操作ミスを防止することができる。
 さらに、蓋101aの有無を判定する判定部を持たない構成の場合は、挿入機構(プローブ、ブレード、中空管)交換要求の警告出力がなされた対象サンプルに対して、オペレータがキーボード121などの入力手段から蓋101aを取り外したという情報を入力しないと当該対象サンプルの分析を再開しない構成としてもよく、この場合には、蓋101aの取り忘れなどのヒューマンエラーの発生確率を低減することができる。
 本発明の実施の形態においては、挿入履歴数Kが許容挿入履歴数K0より大きい場合に挿入機構(プローブ、ブレード、中空管)交換要求の警告をオペレータに報知するとともに分注動作を行わない場合を例にとり説明したが、これとは別に挿入履歴数Kと許容挿入履歴数K0との差分がある閾値ΔKより小さくなった場合に、挿入機構交換予告の警告を報知して分注動作を行ってもよい。この場合のある閾値ΔKは固定値としてもよいし、オペレータが設定したり、1日の分注頻度などの統計値から自動で設定したりしてもよい。また、複数の閾値ΔKを設定し、それぞれにおいて異なる警告を報知するようにしてもよい。
 1回の穿刺による挿入履歴数Kの増加量を抑えるため、たとえば分注処理能力を落として穿刺動作を変更するようにしたり、蓋部を加温する機構を装置内に持たせたりしても良い。この場合、挿入機構が容器の蓋を貫通する前に、蓋部を加温する加温部を備えることが望ましい。
 挿入機構交換後の挿入履歴数Kのリセットは、オペレータがキーボード121などの入力手段から入力して行う。このとき、挿入機構の交換忘れなどのヒューマンエラーを防止するため、挿入履歴数Kのリセット作業後に、挿入機構が交換されたかの確認動作(後に詳述)を行わないと分注動作を行わないとする構成としても良い。つまり、挿入履歴数はリセット可能であり、リセットが行われ、かつ、制御部が挿入機構の交換情報を受け付けない場合、制御部は、交換された挿入機構の挿入動作を行わなくするのが望ましい。交換情報の入力は手動でも自動でも構わない。
 特に、プローブが交換されたかの判別は、自動で行うことができる。例えば、プローブのカメラ観察や吸引・吐出時の圧力変化の測定、冶具等を使った停止位置チェックなどによって行う。または、プローブの状態を確認するための特殊な蓋付容器で分注動作を実施することで行っても良い。この蓋は、新品のプローブでは分注時に異物が発生しないが、許容挿入履歴数より十分に小さい挿入履歴数のプローブでは分注時に異物が発生するような材質でできている。この際の異物発生有無の確認は、異物との接触により色が変わる試薬を用いて行っても良く、色の変化を吸光度で測定することで行ってもよい。
 また、負荷係数は予め記憶部に記憶されているが、この負荷係数は変更することが可能である。施設によって運用環境が異なるため装置を動作させた後に負荷係数を変更した方がよい場合がある。従い、負荷係数の設定を変更する表示装置を備えることが望ましい。
 また、負荷係数を変更する場合等には、挿入機構が交換されたときの挿入履歴数を確認したい場合がある。過去の挿入履歴数を参考にしてより精度の高い負荷係数を設定し直すことができるためである。そのため、挿入機構が交換されたときの挿入履歴数を表示する表示装置を備え、記憶部は、挿入機構が交換されたときの挿入履歴数を記憶し、表示装置は交換されたときの挿入履歴数を一覧表示することが望ましい。加えて、この一覧表示には、蓋の種類とその蓋毎の挿入回数もス乳履歴数に並べて表示することが望ましい。
 また、挿入履歴数は、劣化度合いを数値化しており、挿入機構の負荷の累積であるが、挿入回数以外の要素や負荷係数以外の要素を加味して、挿入履歴数を算出してもよい。従い、挿入回数に比例した値そのものでなくてもよく、基づくものであれば良い。また、蓋の種類に応じた負荷係数と蓋毎の挿入回数の積分値そのものでなくてもよく、基づくものであれば良い。
 また、本実施の形態では、サンプルディスク102タイプを例にして説明したが、いわゆるラックタイプの場合であっても本発明は適用できる。ラックタイプの場合には、ラックによりサンプル容器101が搬送される。
 なお、本発明は上記した実施の形態に限定されるものでなく、発明の概念を逸脱しない限り様々な変形例が含まれる。
1 サンプリング機構
2 サンプリングアーム
7 試料
100 自動分析装置
101 サンプル容器
101a 蓋
102 サンプルディスク
103 制御部(コンピュータ)
104 インターフェース
105 サンプリングプローブ
106 反応容器
107 サンプル用シリンジポンプ
108 試薬分注機構
109 反応ディスク
110 試薬分注プローブ
111 試薬用シリンジポンプ
112 試薬ボトル
113 攪拌器
114 光源
115 光度計
116 A/D変換器
117 プリンタ
118 表示装置
119 洗浄機構
120 洗浄用ポンプ
121 キーボード
122 記憶部(メモリ)
125 試薬ディスク
151 液面検出回路
152 圧力センサ
153 圧力検出回路
205 ブレード
305 中空管

Claims (14)

  1.  閉じられた容器の蓋を貫通させて該容器中に挿入する挿入機構と、
     複数の該容器に跨って前記挿入機構が挿入されることによる前記挿入機構の負荷の累計に相当する挿入履歴数と、前記挿入履歴数の許容値である許容挿入履歴数と、を記憶する記憶部と、
     前記挿入履歴数と前記許容挿入履歴数とを比較し、前記挿入履歴数が前記許容挿入履歴数に達した場合にオペレータに報知する制御を行う制御部と、を備えたことを特徴とする自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記挿入機構は、同一種類の蓋を貫通させて該容器中に挿入する機構であって、
     前記挿入履歴数は、前記蓋に挿入した回数に比例する値に基づき、算出されることを特徴とする自動分析装置。
  3.  請求項1記載の自動分析装置において、
     前記挿入機構は、異なる種類の蓋を貫通させて該容器中に挿入する機構であって、
     前記記憶部は、蓋の種類に応じた負荷係数を記憶し、
     前記挿入履歴数は、蓋の種類に応じた負荷係数と蓋毎の挿入回数に基づき、算出されることを特徴とする自動分析装置。
  4.  請求項1記載の自動分析装置において、
     前記記憶部は、前記挿入機構が蓋を貫通させて該容器中に挿入するときの条件として、蓋の種類、前記挿入機構の蓋への挿入速度、蓋の温度、蓋の穿孔の有無のうち、いずれかの条件を負荷係数として記憶し、
     前記挿入履歴数は、前記条件に応じた負荷係数と当該条件における挿入回数に基づき、算出されることを特徴とする自動分析装置。
  5.  請求項1記載の自動分析装置において、
     前記挿入機構は、異なる種類の蓋を貫通させて該容器中に挿入する機構であって、
     前記記憶部は、蓋の種類と蓋の穿孔の有無の組合せによる負荷係数を記憶し、
     前記挿入履歴数は、前記組合せによる負荷係数と前記組合せ毎の挿入回数に基づき、算出されることを特徴とする自動分析装置。
  6.  請求項3~5のいずれかに記載の自動分析装置において、
     前記負荷係数の設定を変更する表示装置を備えることを特徴とする自動分析装置。
  7.  請求項1記載の自動分析装置において、
     前記挿入機構が前記容器の蓋を貫通する前に、前記蓋部を加温する加温部を備えることを特徴とする自動分析装置。
  8.  請求項1記載の自動分析装置において、
     前記挿入履歴数はリセット可能であり、前記リセットが行われ、かつ、前記制御部が前記挿入機構の交換情報を受け付けない場合、前記制御部は、交換された前記挿入機構の挿入動作を行わないことを特徴とする自動分析装置。
  9.  請求項1~8のいずれかに記載の自動分析装置において、
     前記挿入機構は、前記閉じられた容器に収容された対象物を吸引するためのサンプルプローブであって、
     前記制御部は、前記サンプルプローブの交換要求の警告をオペレータに報知することを特徴とする自動分析装置。
  10.  請求項9記載の自動分析装置において、
     前記制御部は、前記サンプルプローブが交換されたことを自動で判別することを特徴とする自動分析装置。
  11.  請求項1~8のいずれかに記載の自動分析装置において、
     前記挿入機構は、前記蓋に切り込みを入れて穿孔するために挿入されるブレードであって、
     前記制御部は、前記ブレードの交換要求の警告をオペレータに報知することを特徴とする自動分析装置。
  12.  請求項1~8のいずれかに記載の自動分析装置において、
     前記閉じられた容器に収容された対象物を吸引するためのサンプルプローブと、
     前記蓋に切り込みを入れて穿孔するために挿入されるブレードと、を備え、
     前記挿入機構は、前記ブレードの挿入による孔を介して前記容器内に挿入される中空管であって、
     前記サンプルプローブは、前記中空管の中空部を介して前記容器内に挿入され、前記対象物を吸引し、
     前記制御部は、前記中空管の交換要求の警告をオペレータに報知することを特徴とする自動分析装置。
  13.  請求項1~8のいずれかに記載の自動分析装置において、
     前記挿入機構が交換されたときの前記挿入履歴数を表示する表示装置を備え、
     前記記憶部は、前記挿入機構が交換されたときの前記挿入履歴数を記憶し、
     前記表示装置は、前記交換されたときの前記挿入履歴数を一覧表示することを特徴とする自動分析装置。
  14.  請求項1~8のいずれかに記載の自動分析装置において、
     前記容器は試料を収容するサンプル容器であって、
     前記試料と試薬との混合液を収容する反応容器を載置する反応ディスクと、
     前記反応容器に収容された混合液を測光する光度計と、を備え、
     前記光度計の測光結果に基づき、前記試料の分析項目の濃度分析が行われることを特徴とする自動分析装置。
PCT/JP2016/052848 2015-03-02 2016-02-01 自動分析装置 WO2016139997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/554,086 US10591498B2 (en) 2015-03-02 2016-02-01 Automated analysis device
CN201680012665.1A CN107250806B (zh) 2015-03-02 2016-02-01 自动分析装置
EP16758693.2A EP3267205B1 (en) 2015-03-02 2016-02-01 Automated analysis device
JP2017503375A JP6629832B2 (ja) 2015-03-02 2016-02-01 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039787 2015-03-02
JP2015-039787 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016139997A1 true WO2016139997A1 (ja) 2016-09-09

Family

ID=56848811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052848 WO2016139997A1 (ja) 2015-03-02 2016-02-01 自動分析装置

Country Status (5)

Country Link
US (1) US10591498B2 (ja)
EP (1) EP3267205B1 (ja)
JP (1) JP6629832B2 (ja)
CN (1) CN107250806B (ja)
WO (1) WO2016139997A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425747A (zh) * 2017-08-22 2019-03-05 东芝泰格有限公司 药液滴下装置及药液滴下系统
WO2020054336A1 (ja) * 2018-09-12 2020-03-19 株式会社日立ハイテクノロジーズ 自動分析装置
JP2021051051A (ja) * 2019-09-26 2021-04-01 株式会社島津製作所 試料注入装置
WO2022185919A1 (ja) * 2021-03-04 2022-09-09 株式会社日立ハイテク 自動分析装置、および検体の分注方法
WO2023182167A1 (ja) 2022-03-22 2023-09-28 富士フイルム株式会社 検査装置
WO2023182165A1 (ja) * 2022-03-22 2023-09-28 富士フイルム株式会社 穿孔具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051543A (ja) * 2006-08-22 2008-03-06 Sysmex Corp 検体分析装置
JP2011117814A (ja) * 2009-12-03 2011-06-16 Yasui Kikai Kk 検体検査の検査前処理方法と装置
JP2012021871A (ja) * 2010-07-14 2012-02-02 Hitachi High-Technologies Corp 自動分析装置
JP2012117916A (ja) * 2010-12-01 2012-06-21 Hitachi High-Technologies Corp 自動分析装置
JP2014089129A (ja) * 2012-10-30 2014-05-15 Sysmex Corp 検体分析装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049650A1 (en) * 1996-10-16 2002-04-25 Reff Albert A. Method and apparatus for providing inventory control of medical objects
DE69727396T2 (de) * 1996-11-13 2004-10-28 Beckman Coulter, Inc., Fullerton Automatische chemische analysevorrichtung mit mittel zum durchlochen der probenröhrchenstopfen
JP3980031B2 (ja) * 2005-02-09 2007-09-19 株式会社日立製作所 自動分析装置
ES2629330T3 (es) 2006-08-22 2017-08-08 Sysmex Corporation Analizador de muestras
JP4979305B2 (ja) * 2006-08-22 2012-07-18 シスメックス株式会社 分析装置
JP2008180640A (ja) * 2007-01-25 2008-08-07 Olympus Corp 自動分析装置、発注管理システムおよび発注管理方法
JP3180120U (ja) * 2012-09-21 2012-12-06 株式会社島津製作所 キャップピアッシング用穿孔針
JP6215018B2 (ja) * 2013-11-26 2017-10-18 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051543A (ja) * 2006-08-22 2008-03-06 Sysmex Corp 検体分析装置
JP2011117814A (ja) * 2009-12-03 2011-06-16 Yasui Kikai Kk 検体検査の検査前処理方法と装置
JP2012021871A (ja) * 2010-07-14 2012-02-02 Hitachi High-Technologies Corp 自動分析装置
JP2012117916A (ja) * 2010-12-01 2012-06-21 Hitachi High-Technologies Corp 自動分析装置
JP2014089129A (ja) * 2012-10-30 2014-05-15 Sysmex Corp 検体分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267205A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425747A (zh) * 2017-08-22 2019-03-05 东芝泰格有限公司 药液滴下装置及药液滴下系统
WO2020054336A1 (ja) * 2018-09-12 2020-03-19 株式会社日立ハイテクノロジーズ 自動分析装置
JPWO2020054336A1 (ja) * 2018-09-12 2021-10-14 株式会社日立ハイテク 自動分析装置
JP7073516B2 (ja) 2018-09-12 2022-05-23 株式会社日立ハイテク 自動分析装置
US12031995B2 (en) 2018-09-12 2024-07-09 Hitachi High-Tech Corporation Automatic analysis device
JP2021051051A (ja) * 2019-09-26 2021-04-01 株式会社島津製作所 試料注入装置
JP7243555B2 (ja) 2019-09-26 2023-03-22 株式会社島津製作所 試料注入装置
WO2022185919A1 (ja) * 2021-03-04 2022-09-09 株式会社日立ハイテク 自動分析装置、および検体の分注方法
JP7539547B2 (ja) 2021-03-04 2024-08-23 株式会社日立ハイテク 自動分析装置、および検体の分注方法
WO2023182167A1 (ja) 2022-03-22 2023-09-28 富士フイルム株式会社 検査装置
WO2023182165A1 (ja) * 2022-03-22 2023-09-28 富士フイルム株式会社 穿孔具

Also Published As

Publication number Publication date
JP6629832B2 (ja) 2020-01-15
EP3267205A1 (en) 2018-01-10
CN107250806B (zh) 2019-09-17
CN107250806A (zh) 2017-10-13
US20180038879A1 (en) 2018-02-08
US10591498B2 (en) 2020-03-17
JPWO2016139997A1 (ja) 2017-12-21
EP3267205B1 (en) 2021-11-17
EP3267205A4 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2016139997A1 (ja) 自動分析装置
CN115144603A (zh) 自动分析装置以及自动分析方法
EP2154537A1 (en) Analysis device and analysis method
JP6676489B2 (ja) 自動分析装置で液体をピペッティングする方法
CN111175240A (zh) 自动分析装置
JP6635661B2 (ja) 自動分析装置及び試料希釈攪拌方法
EP3415921A1 (en) Automated analyzer
JP4891749B2 (ja) 自動分析装置
JP2018017676A (ja) 自動分析装置及びプログラム
JP6026110B2 (ja) 自動分析装置
JP2012021871A (ja) 自動分析装置
JP7174066B2 (ja) 自動分析装置
JP2007047084A (ja) 試料分析装置
JP6121743B2 (ja) 自動分析装置
JP6039940B2 (ja) 自動分析装置
JP2018204962A (ja) 自動分析装置及びプログラム
WO2021079645A1 (ja) 自動分析装置および試薬の分注方法
JP2023056431A (ja) 自動分析装置
CN110914692B (zh) 自动分析装置及图像处理方法
JP5205124B2 (ja) 自動分析装置及びその管理方法
JP2016170075A (ja) 自動分析装置及び自動分析方法
JP2016125877A (ja) 自動分析装置
JP2017026480A (ja) 自動分析装置
JP2016125879A (ja) 自動分析装置
JP2010271111A (ja) 生化学自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758693

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016758693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017503375

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15554086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE