WO2023182165A1 - 穿孔具 - Google Patents

穿孔具 Download PDF

Info

Publication number
WO2023182165A1
WO2023182165A1 PCT/JP2023/010395 JP2023010395W WO2023182165A1 WO 2023182165 A1 WO2023182165 A1 WO 2023182165A1 JP 2023010395 W JP2023010395 W JP 2023010395W WO 2023182165 A1 WO2023182165 A1 WO 2023182165A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft portion
drilling tool
axial direction
distal end
inclined surface
Prior art date
Application number
PCT/JP2023/010395
Other languages
English (en)
French (fr)
Inventor
大輔 日部
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023182165A1 publication Critical patent/WO2023182165A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/24Perforating by needles or pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B7/00Hand- or power-operated devices for opening closed containers
    • B67B7/24Hole-piercing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the technology of the present disclosure relates to a drilling tool.
  • a liquid container used for testing a sample which includes a well-shaped container that stores a liquid such as a reagent, and a sealing film that seals an opening formed at the top of the container. It has been known.
  • the sealing membrane is perforated by piercing the sealing membrane with the tip of a piercing tool.
  • the sealing film when the sealing film is perforated with a piercing tool, the liquid contained inside the container may scatter to the outside of the container.
  • the punch described in JP-A-2005-37179 has a rod-like shape as a whole and a sharp tip.
  • the distal end has a sharp shape, but after that it has a shaft portion with a constant diameter toward the proximal end.
  • the liquid is held so as to close the gap.
  • the diameter of the shaft portion is constant, even if the amount of insertion of the punch increases, the gap width remains narrow and the gap continues to be filled with liquid.
  • the pressure inside the container increases due to the insertion of the piercing tool into the container, and the air inside the container tends to blow out of the container through the gap between the through hole and the piercing tool.
  • the internal pressure increases, and the pressure at which the air inside the container tries to blow out of the container through the gap also increases.
  • the air within the container eventually blows out of the container together with the liquid that has filled the gap. Due to this mechanism, the liquid held in the gap between the through hole and the punching tool may be ejected to the outside of the container, and the liquid may be scattered around the through hole.
  • the technology according to the present disclosure aims to suppress the scattering of liquid to the outside of the container more than before when perforating a sealing film that seals the opening of a container containing liquid.
  • the piercing tool of the present disclosure is a piercing tool capable of piercing a sealing membrane that seals an opening of a container containing a liquid, and has a rod-shaped shaft portion extending from a distal end side to a proximal end side that pierces the sealing membrane.
  • the diameter of the circumscribed circle that circumscribes the outer shape of the cross section perpendicular to the axial direction is the diameter of the circumscribed circle that circumscribes the outer shape of the cross section of the shaft, which is the large diameter part formed at the tip of the shaft.
  • the length from the tip of the shank to the proximal end of the shank is shorter than the maximum insertion depth of the shank into the container.
  • the large diameter portion may be formed of a plate-shaped portion that protrudes in the radial direction of the shaft portion and has a plate surface that extends in the axial direction.
  • a plurality of plate-shaped portions may be formed at symmetrical positions with respect to the shaft portion.
  • the thickness of the plate portion may be thinner than the outer diameter of the shaft portion.
  • the distal end surface which is the end surface on the distal side of the shaft portion, is an inclined surface that slopes toward the proximal end in a direction perpendicular to the axial direction of the shaft portion, and is a straight line extending in the axial direction. It may have an inclined surface with an acute angle between it and the surface.
  • the distal end surface which is the end surface on the distal side of the shaft portion, is an inclined surface that slopes toward the proximal end in a direction perpendicular to the axial direction of the shaft portion, and is a straight line extending in the axial direction.
  • the distal end surface may have, in addition to the inclined surface, an orthogonal surface connected to the inclined surface and orthogonal to the axial direction.
  • the distal end surface which is the end surface on the distal side of the shaft portion, is an inclined surface that slopes toward the proximal end in a direction perpendicular to the axial direction of the shaft portion, and is a straight line extending in the axial direction.
  • the tip surface may be formed only of the inclined surface.
  • the distal end of the plate-like portion may be located at a position offset from the distal end surface, which is the end surface on the distal end side of the shaft portion, toward the proximal end side.
  • the distal end portion of the plate-shaped portion may have a shape in which the width in the radial direction of the shaft portion becomes narrower from the proximal end side toward the distal end side.
  • the proximal end portion of the plate-like portion may have a shape in which the width in the radial direction of the shaft portion becomes narrower from the distal end side toward the proximal end side.
  • the large diameter portion may be a cylindrical portion whose cross-sectional shape perpendicular to the axial direction is circular or polygonal.
  • the cylindrical portion may have a similar shape to the shaft portion, and may have a shape in which the diameter of the shaft portion is expanded.
  • the distal end surface which is the end surface on the distal side of the cylindrical portion, is an inclined surface that is inclined toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion, and extends in the axial direction. It may have an inclined surface with an acute angle with respect to a straight line.
  • the distal end surface which is the end surface on the distal side of the cylindrical portion, is an inclined surface that is inclined toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion, and extends in the axial direction.
  • the tip surface may have, in addition to the inclined surface, an orthogonal surface that is connected to the inclined surface and is orthogonal to the axial direction. .
  • the distal end surface which is the end surface on the distal side of the cylindrical portion, is an inclined surface that is inclined toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion, and extends in the axial direction.
  • the tip surface may be formed only of the inclined surface.
  • the shaft portion may be inserted into the inside of the cylindrical portion.
  • At least one of the distal end surfaces which are the end surfaces on the distal side of the shaft portion and the cylindrical portion, is an inclined surface that slopes toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion.
  • it may have an inclined surface having an acute angle with respect to a straight line extending in the axial direction.
  • At least one of the distal end surfaces which are the end surfaces on the distal side of the shaft portion and the cylindrical portion, is an inclined surface that slopes toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion.
  • the tip surface has an inclined surface with an acute angle with a straight line extending in the axial direction
  • the tip surface has an orthogonal surface that is connected to the inclined surface and perpendicular to the axial direction, in addition to the inclined surface. may have.
  • At least one of the distal end surfaces which are the end surfaces on the distal side of the shaft portion and the cylindrical portion, is an inclined surface that slopes toward the proximal end with respect to the direction perpendicular to the axial direction of the shaft portion.
  • the tip surface may be formed only of the inclined surface.
  • the shaft portion has a conduit formed therein through which liquid flows, and may function as a nozzle that sucks and discharges the liquid.
  • FIG. 2 is a perspective view showing a cartridge as an example of a container that can be pierced by the piercing tool of the present disclosure.
  • A is a sectional view showing a cartridge as an example of a container that can be pierced by the piercing tool of the present disclosure
  • B is a top view.
  • A) is a perspective view showing the punching tool according to the first embodiment of the present disclosure
  • B) is a side view showing the state inserted into the container
  • (C) is a side view showing the state inserted into the container.
  • D) is a sectional view taken along the line DD in (B) and (C).
  • (A) is a side view showing a state in which the sealing membrane of a container is being perforated with a punching tool according to a comparative example
  • (B) is a side view showing a state in which the punching tool is pressed against the sealing film
  • (C) is a side view showing the state in which the sealing membrane is perforated
  • (D) is a side view showing the state in which the perforator is inserted into the container
  • (E) is a side view showing the state in which the perforator is inserted from the container. It is a side view showing a state in which it is pulled out
  • (F) is a view taken along the line FF in (C).
  • FIG. 7 is a side view showing an example of a liquid scattering situation when a sealing film of a container is perforated with a perforation tool according to a comparative example.
  • A is a side view showing a state in which the sealing membrane of a container is about to be punched with the punching tool of the present disclosure
  • B is a side view showing a state in which the punching tool is pressed against the sealing film.
  • C is a side view showing the state in which the sealing membrane is perforated
  • D is a side view showing the state in which the punching tool is inserted into the container
  • (E) is a side view showing the state in which the punching tool is pulled out from the container.
  • (A) is a perspective view showing a state in which the punching tool of the present disclosure is inserted into a container
  • (B) is a plan view showing the shape of the through hole.
  • (A) is a perspective view showing a modification of the drilling tool according to the first embodiment of the present disclosure
  • (B) is a side view.
  • (A) is a perspective view showing a modification of the drilling tool according to the first embodiment of the present disclosure
  • (B) is a side view.
  • (A) is a side view showing a state in which liquid is attached to the tip of the punching tool according to the first embodiment of the present disclosure
  • (B) is a side view showing a situation in which liquid is attached to the tip of the punching tool of a modified example.
  • FIG. 3 is a side view showing the situation.
  • FIG. (A) is a perspective view showing a modification of the drilling tool according to the first embodiment of the present disclosure, and (B) is a side view.
  • (A) is a perspective view showing a modification of the drilling tool according to the first embodiment of the present disclosure
  • (B) is a side view.
  • (A) is a perspective view showing a punching tool according to a second embodiment of the present disclosure
  • (B) is a cross-sectional view showing a state inserted into a container
  • (C) is a cross-sectional view taken along CC in (B).
  • FIG. (A) is a sectional view showing a modification of the punching tool according to the second embodiment of the present disclosure
  • (B) is a sectional view showing another modification.
  • FIG. (A) is a sectional view showing a modification of the drilling tool according to the second embodiment of the present disclosure
  • (B) is a sectional view showing another modification
  • (C) is a sectional view showing still another modification.
  • FIG. (A) is a sectional view showing a modification of the drilling tool according to the second embodiment of the present disclosure
  • (B) is a sectional view showing another modification
  • (C) is a sectional view showing still another modification.
  • the directions indicated by arrows X and Y are along the horizontal plane and are orthogonal to each other. Further, the direction indicated by arrow Z is a direction along the vertical direction (up and down direction). It is assumed that the directions indicated by arrows X, Y, and Z in each figure coincide with each other.
  • the punching tool 10 is, for example, a nozzle that has a function of sucking and discharging a liquid contained in a cartridge RC shown in FIG. 1 .
  • Cartridge RC is, for example, a liquid container loaded into an immunoanalyzer. In an immunoanalyzer, a detection process is performed in which a label is attached to a substance to be detected in a specimen such as blood collected from a living body, and light from the label is detected.
  • Cartridge RC is an example of a container containing liquid.
  • the cartridge RC contains a liquid for executing the detection process.
  • the liquid contained in the cartridge RC includes, for example, a buffer solution to be mixed with the specimen, a labeling reagent containing a label modified with a binding substance that specifically binds to the target substance in the specimen, and a labeling agent for causing the label to emit light.
  • a buffer solution to be mixed with the specimen for example, a labeling reagent containing a label modified with a binding substance that specifically binds to the target substance in the specimen, and a labeling agent for causing the label to emit light.
  • a labeling reagent containing a label modified with a binding substance that specifically binds to the target substance in the specimen includes, for example, a labeling reagent containing a label modified with a binding substance that specifically binds to the target substance in the specimen.
  • a labeling agent for causing the label to emit light for example, a labeling agent for causing the label to emit light.
  • the cartridge RC includes a container body 16 and a sealing film 32.
  • the container body 16 is provided with a plurality of storage sections 20, 22, 24, 26, and 28 that respectively store liquids such as a specimen, a buffer solution, and a reagent.
  • the accommodating parts 20, 22, 24, 26, and 28 are each shaped like a well, and have openings 20A, 22A, 24A, 26A, and 28A formed at their upper ends, respectively.
  • the container main body 16 is, for example, a molded plastic product, in which a plurality of accommodating parts 20, 22, 24, 26, and 28 are integrally molded.
  • the upper end side of the container body 16 is a plate-shaped top plate part 30, and the top plate part 30 also functions as a connecting part that connects each of the accommodating parts 20, 22, 24, 26, and 28.
  • the planar shape (the shape when the container body 16 is viewed from above) of the opening 20A, the openings 22A, 24A, 26A, and 28A is, for example, an ellipse.
  • the openings 20A, 22A, 24A, 26A, and 28A are arranged in a line along the longitudinal direction (Y direction) of the cartridge RC, with the longitudinal directions of each oval shape being parallel to each other.
  • the planar shape of the top plate portion 30 is rectangular.
  • One sealing film 32 is adhered to the upper surface of the top plate section 30.
  • the sealing film 32 has a shape and size that match the outer shape of the top plate portion 30.
  • This sealing film 32 is a film material made of aluminum, and can be perforated by being pierced by a rod-shaped member such as the perforator 10 .
  • the boundaries of the three centrally located accommodating sections 22, 24, and 26 among the five accommodating sections 20, 22, 24, 26, and 28 are They are in contact with each other, and the wall portions of adjacent storage sections are shared.
  • a housing section 20 and a housing section 28 are arranged on both sides of the three housing sections 22, 24, and 26, respectively.
  • the accommodating part 20 and the accommodating part 28 are not in contact with the accommodating part 22 and the accommodating part 26, respectively, and have independent walls. Thereby, the interval between the accommodating parts 20 and 22 and the interval between the accommodating parts 26 and 28 are relatively wider than the intervals between the three accommodating parts 22, 24, and 26.
  • the storage section 20 stores the reaction reagent K1
  • the storage sections 22 and 24 store the luminescent reagents K2 and K3, respectively
  • the storage section 26 stores the labeled reagent K4
  • the storage section 28 stores the buffer reagent K1. Liquid K5 is stored.
  • the punch 10 shown in FIGS. 3A, 3B, and 3C is a punch that can punch a sealing film that seals the opening of a container containing a liquid. That is, the punching tool 10 includes a sealing film 32 that seals the openings 20A, 22A, 24A, 26A, and 28A formed in each of the housing sections 20, 22, 24, 26, and 28 of the cartridge RC shown in FIG. It is a piercing tool that can drill holes.
  • the punching tool 10 of this example is installed in a dispensing mechanism provided in the above-mentioned immunoanalyzer (not shown).
  • the drive device M is a drive device for the dispensing mechanism.
  • the drive device M moves the punching tool 10 vertically within the immunoassay device with a predetermined stroke.
  • the drive device M inserts the punching tool 10 into each of the accommodating sections 20, 22, 24, 26, and 28 of the cartridge RC loaded in the immunoanalyzer, or Pull out from 26 and 28. Since the punching tool 10 of this example also has the function of a nozzle, it sucks and discharges the liquid in each of the accommodating parts 20, 22, 24, 26, and 28.
  • the punching tool 10 includes a rod-shaped shaft portion 12 that pierces the sealing film 32 and extends from the distal end side FS to the proximal end side RS; A large diameter portion 14 is formed at the tip.
  • the shaft portion 12 has a cylindrical shape with a circular cross section perpendicular to the axial direction of the shaft portion 12.
  • the shaft portion 12 has a conduit 12A formed therein through which a liquid flows, and functions as a nozzle for sucking and discharging liquid, as described above.
  • the end face on the tip side of the shaft portion 12 is formed of a surface perpendicular to the axial direction of the shaft portion 12.
  • the center line of the shaft portion 12 is shown as the center line CL.
  • the "axial direction" of the shaft portion 12 is a direction along this center line CL.
  • the large diameter portion 14 is formed of two plate-like portions 14A and 14B that protrude in the radial direction of the shaft portion 12 and have plate surfaces extending in the axial direction of the shaft portion 12.
  • the “radial direction” of the shaft portion 12 is a direction perpendicular to the axial direction of the shaft portion 12 and a direction that intersects with the center line CL.
  • the plate portions 14A and 14B are formed at symmetrical positions with the shaft portion 12 as the center.
  • the pair of plate-shaped portions 14A and 14B have a blade-like shape that extends from the shaft portion 12 on both sides in the radial direction. Further, as shown in FIG. 3(D), the thickness t1 of the plate-like portions 14A and 14B is thinner than the diameter R1 of the shaft portion 12.
  • the distal portion 14C of each of the plate-like portions 14A and 14B has a shape in which the width in the radial direction of the shaft portion 12 becomes narrower from the proximal side RS to the distal side FS. be.
  • the tip positions of the plate-like portions 14A and 14B in the axial direction of the shaft portion 12 coincide with the tip position of the shaft portion 12.
  • the proximal end portions 14D of the plate-like portions 14A and 14B have a shape in which the width in the radial direction of the shaft portion 12 becomes narrower from the distal end side FS to the proximal end side RS.
  • the shaft portion 12 The width in the radial direction is constant.
  • the long base of each of the plate-like parts 14A and 14B is connected to the shaft part 1. It is joined to the shaft portion 12, and is formed into a trapezoidal shape with a short base disposed at a position away from the shaft portion 12.
  • the diameter R2 of the circumscribed circle that circumscribes the outer shape of the cross section of the large diameter portion 14 formed by the plate-shaped portions 14A and 14B is the diameter R2 that circumscribes the outer shape of the cross section of the shaft portion 12. is larger than the diameter R1 of the circumscribed circle.
  • the “cross section” of the large diameter portion 14 and the “cross section” of the shaft portion 12 are cross sections perpendicular to the axial direction of the shaft portion 12, and are cut along the line DD in FIGS. 3(B) and (C). (the hatched portion in FIG. 3(D)).
  • the diameter of the circumscribed circle that circumscribes the outer shape is referred to as a "large diameter" when the diameter is larger than that of the comparison target. That is, the outer shape of the cross section of the large diameter portion 14 itself is not necessarily circular, and the diameter of the large diameter portion means the diameter of the circumscribed circle.
  • the outer shape of the cross section of the shaft portion 12 other than the large diameter portion 14, that is, the portion where the plate-like portions 14A and 14B are not provided, is circular, and the circumscribed circle is the outer shape of the cross section of the shaft portion 12. matches.
  • the large diameter of the large diameter portion 14 means that the diameter of the outer diameter of the cross section of the shaft portion 12 is larger than the comparison target.
  • the length L1 from the tip of the shaft portion 12, that is, the tip of the drilling tool 10 to the end of the proximal side RS of the large diameter portion 14, is the length L1 of the shaft portion It is shorter than the maximum insertion depth L2 into the accommodating part 12 (for example, the accommodating part 24).
  • Maximum insertion depth refers to the maximum value of the insertion amount of the punching tool 10 inserted into the housing section 24 when performing suction or discharge.
  • the maximum insertion depth is a value determined by the stroke setting of the drive device M (see FIG. 1) within the depth of the accommodating part 24 (the length from the sealing film 32 to the bottom of the accommodating part 24). .
  • the meaning of defining the maximum insertion depth L2 is that when the punching tool 10 is inserted into the accommodating part 24, the entire large diameter part 14 enters into the accommodating part 24, and the upper end of the large diameter part 14 reaches the sealing film 32. This is because it is necessary to position it below.
  • the maximum insertion depth L2 changes depending on the depth of the accommodating part.
  • the cartridge RC is provided with five accommodating sections, and when the punching tool 10 is shared by a plurality of accommodating sections, the maximum insertion depth is adjusted according to the accommodating section with the shallowest depth.
  • length L2 and length L1 are determined.
  • the accommodating part into which the punching tool 10 and various modified examples are inserted may be explained using the "accommodating part 24" as an example, but this is for convenience's sake. This is explained as an example. Any of the accommodating parts 20, 22, 24, 26, and 28 may be used as the accommodating part into which the perforating tool 10 and various modified examples of the perforating tools are inserted.
  • 4 and 5 show a comparative example.
  • the comparative example will be explained using FIGS. 4 and 5, and then the drilling tool 10 of this example will be explained using FIGS. Explain the effects of.
  • the drilling tool 500 of the “comparative example” does not have a large diameter portion, and the diameter of the shaft portion is constant from the distal end side to the proximal end side.
  • the sealing film 32 is pressed with the tip of the punching tool 500, and as shown in FIG. 4(C), by piercing the sealing film 32 with the punching tool 500, the sealing film 32, a through hole 32T close to the diameter of the shaft portion of the punching tool 500 is opened.
  • the luminescent reagent K3 (hereinafter referred to as liquid K3) in the container 24 is attached to the back surface of the sealing film 32, when the through hole 32T is opened, the liquid K3 attached to the back surface of the sealing film 32 is released.
  • the liquid K3 goes around the gap between the through hole 32T and the punching tool 500, and enters the gap.
  • the diameter of the punching tool 500 and the diameter of the through hole 32T are close to each other, that is, when the gap width between the punching tool 500 and the inner edge of the through hole 32T is narrow, the liquid K3 is held so as to close the gap.
  • the gap width will remain narrow and the gap will remain closed with the liquid K3. continue.
  • the pressure inside the housing section 24 increases due to the insertion of the punching tool 500 into the housing section 24, and the air inside the housing section 24 tries to blow out of the housing section 24 through the gap between the through hole 32T and the punching tool 500. .
  • the internal pressure increases, and the pressure at which the air inside the housing section 24 tends to blow out of the housing section 24 through the gap also increases. As shown in FIG.
  • liquid K4 labeled reagent K4: hereinafter referred to as liquid K4
  • liquid K4 the liquid reagent K4
  • each liquid When the two liquids are mixed in this way, there is a possibility that the mixed liquid will adhere to the drilling tool 500.
  • each liquid When testing each liquid separately, each liquid will be mixed with another liquid, which may cause unintended contamination between the liquids and affect the test results. be. Furthermore, even when a test is performed by mixing quantitative amounts of each liquid, an error occurs in the mixing amount, which may affect the test results.
  • a large diameter portion 14 is formed at the tip of the shaft portion 12.
  • the diameter R2 of the circumscribed circle of the cross section perpendicular to the axial direction of the shaft portion 12 is larger than the diameter R1 of the circumscribed circle of the cross section of the shaft portion 12. big.
  • FIG. 6(A) when punching the sealing film 32 using the punching tool 10, as shown in FIG. 6(B), the sealing film 32 is pressed with the tip of the punching tool 10.
  • FIG. 6(C) by piercing the sealing film 32 with the punching tool 10, a through hole 32S is opened in the sealing film 32.
  • the sealing film 32 is perforated and penetrated by the shaft portion 12 and the large diameter portion 14 formed at the tip of the shaft portion 12.
  • a hole 32S is formed.
  • the area of the through hole 32S is larger than the area of the cross section 12S of the shaft portion 12, and further larger than the area of the cross section 14S of the large diameter portion 14.
  • the large diameter part 14 is all accommodated in the accommodating part 24, and the shaft part 12 where the large diameter part 14 is not provided is at the position of the sealing film 32.
  • the gap between the punching tool 10 and the inner edge of the through hole 32S becomes larger. Since the shaft portion 12 has a smaller diameter than the large diameter portion 14, the gap is larger than when using the comparative example drilling tool 500 in which the large diameter portion 14 is not formed. Thereby, the liquid K3 inside the storage portion 24 is difficult to be retained in the gap.
  • the sealing film 32 that seals the opening 24A of the accommodating portion 24 containing the liquid can be punched.
  • the large diameter portion 14 protrudes in the radial direction of the shaft portion 12, and the plate portions 14A and 14B have plate surfaces extending in the axial direction. It is formed of.
  • the sealing film 32 is formed as shown in FIGS.
  • a through hole 32S is formed extending from the shaft portion 12 toward the plate portions 14A and 14B. That is, the through hole 32S can be formed up to a position distant from the shaft portion 12. For this reason, for example, when extracting the punching tool 10 from the accommodating portion 24, it is possible to suppress the liquid adhering to the shaft portion 12 from filling the through hole 32S.
  • a plurality of plate-shaped parts 14A and 14B forming the large-diameter part 14 are formed at symmetrical positions with the shaft part 12 at the center (that is, two plates).
  • a plurality of (that is, two) gaps are formed in the sealing film 32 at symmetrical positions with the shaft portion 12 as the center. Therefore, even if the liquid is unevenly attached to the back surface of the sealing film 32, it is easy to ensure an air passage in any of the gaps.
  • the thickness t1 of the plate-like portions 14A and 14B is thinner than the outer diameter (diameter R1) of the shaft portion 12, as shown in FIG. 3(D). Since the thickness t1 of the plate-like parts 14A and 14B is thinner than the outer diameter (diameter R1) of the shaft part 12, there are cases where the thickness t1 of the plate-like parts 14A and 14B is equal to or larger than the outer diameter (diameter R1) of the shaft part 12. In comparison, when the sealing film 32 is pressed with the same force, the pressure acting per unit area of the sealing film 32 can be increased. Therefore, the sealing film 32 is easily perforated.
  • the punching tool 10 of the present disclosure as shown in FIG. 12 has a shape in which the width in the radial direction becomes narrower. That is, the tips of the plate-like portions 14A and 14B are sharp. Therefore, the sealing film 32 is easily perforated.
  • the width of the plate-shaped portion is constant, the resistance force that the punching tool 10 receives from the sealing film 32 when punching the sealing film 32 is large, making it difficult to punch the hole.
  • the width of the proximal end portions 14D of the plate-like portions 14A and 14B in the radial direction of the shaft portion 12 becomes narrower from the distal end side FS to the proximal end side RS of the shaft portion 12. It is the shape. That is, the rear ends of the plate portions 14A and 14B are sharp. Therefore, it is easy to insert the plate-shaped parts 14A and 14B into the large diameter through hole 32S formed by the central portion 14E, and it is easy to pull out the punching tool 10. On the other hand, when the width of the plate-shaped part is constant, the plate-shaped part is easily caught on the open end of the through hole 32S, and it is difficult to pull out the punching tool 10 from the inside of the housing part 24.
  • the shaft portion 12 has a conduit formed therein through which liquid flows, and functions as a nozzle that sucks and discharges the liquid. If this drilling tool 10 is used, the scattering of the liquid to the outside of the storage section 24 is suppressed, so that the liquid outside the storage section 24 is mixed with the liquid inside the drilling tool 10, which is a nozzle. can be suppressed.
  • the distal end surface which is the end surface of the distal end side FS of the shaft portion 42, is It has an inclined surface 42A that is inclined toward the proximal end side RS and has an acute angle ⁇ 1 with respect to a straight line (center line CL) extending in the axial direction.
  • the distal end surface of the shaft portion 42 has an orthogonal surface 42B that is connected to the inclined surface 42A and is perpendicular to the axial direction.
  • the configuration of the plate-like portions 44A and 44B forming the large diameter portion 44 in the punching tool 40 is similar to the configuration of the plate-like portions 14A and 14B in the punching tool 10.
  • the position of the tip of the plate-like portion 44A in the axial direction of the shaft portion 42 coincides with the position of the orthogonal surface 42B.
  • the position of the distal end of the plate-like portion 44B in the axial direction of the shaft portion 42 coincides with the position of the proximal end of the inclined surface 42A.
  • the distal end surface which is the end surface on the distal side of the shaft portion 42, has the above-described inclined surface 42A. That is, the distal end surface has a shape in which the width in the radial direction gradually decreases from the proximal end side RS of the shaft portion 42 toward the distal end side FS. That is, the tip end surface of the shaft portion 42 is sharper than in the case where the inclined surface 42A is not provided. Therefore, the sealing film 32 is easily perforated.
  • Modification 2 In the drilling tool 50 according to the modified example shown in FIGS. It has an inclined surface 52A that is inclined toward the proximal end side RS with respect to a direction perpendicular to the direction, and has an acute angle ⁇ 2 with respect to a straight line (center line CL) extending in the axial direction.
  • the tip end surface is formed only by this inclined surface 52A.
  • the configuration of the plate-like portions 54A and 54B forming the large diameter portion 54 in the punching tool 50 is similar to the configuration of the plate-like portions 14A and 14B in the punching tool 10.
  • the position of the distal end of the plate-like portion 54A in the axial direction of the shaft portion 52 coincides with the position of the distal end of the inclined surface 52A.
  • the position of the distal end of the plate-like portion 54B in the axial direction of the shaft portion 52 coincides with the position of the proximal end of the inclined surface 52A.
  • the tip surface of the shaft portion 52 is composed of only an inclined surface 52A.
  • the distal end surface of the shaft portion 52 is formed obliquely with respect to a surface perpendicular to the axial direction of the shaft portion 52.
  • the punching tool 50 when the punching tool 50 is moved along the axial direction of the shaft portion 52, first, the acute corner portion 50E formed by the inclined surface 52A, which is the end surface of the shaft portion 52, and the side surface is sealed. It contacts the surface of the membrane 32 (see FIG. 1(A)). In other words, the inclined surface 52A and the sealing film 32 come into contact in a state close to point contact.
  • the contact area with the sealing film 32 is smaller compared to, for example, a case in which the tip end surface of the shaft is formed of "an orthogonal surface perpendicular to the axial direction", so the sealing film 32 can be pressed against the sealing film 32 with the same force.
  • the pressure acting per unit area of the sealing film 32 can be increased.
  • the tip end surface of the shaft portion 42 is formed to be more pointed. Therefore, the effect of making it easier to perforate the sealing film 32 is enhanced.
  • FIG. 10(A) shows the shaft portion 12 of the drilling tool 10 whose distal end surface is formed of "only an orthogonal surface perpendicular to the axial direction.”
  • FIG. 10(B) shows a shaft portion 42 of a punching tool 40 in which an inclined surface 42A and an orthogonal surface 42B are formed on the distal end surface.
  • FIG. 10(C) shows the shaft portion 52 of the punching tool 50 whose tip end surface is an inclined surface 52A. Note that in FIG. 10, illustration of the plate-like portion is omitted.
  • the larger the slope at the tip of the shaft (in other words, the shaft 52 is larger than the shaft 42, or the shaft 42 is larger than the shaft 12).
  • the liquid (for example, liquid K3) adhering to the end surface is formed offset from the center line CL of the shaft toward the side surface of the shaft.
  • droplets may be formed on the end surface of the shaft portion 52, that is, the inclined surface 52A. If the shaft portion is formed offset from the shaft portion toward the side surface, the liquid tends to flow around the side surface of the shaft portion. If the liquid wraps around the side surface of the shaft, when the liquid is ejected from the shaft 52, which is a nozzle, the entire amount of droplets may not be able to be dropped, and some liquid may remain on the shaft 52.
  • a drilling tool 60 according to a modification shown in FIGS. 11(A) and 11(B) includes a shaft portion 62, a plate-like portion 64A, and 64B, but differs from the drilling tool 10 in the following points.
  • the tips of the plate-shaped portions 64A and 64B forming the large diameter portion 64 are arranged at positions offset from the distal end surface of the shaft portion 62 toward the proximal end side.
  • FIG. 12(A) shows the shaft portion 12 and plate-like portions 14A and 14B of the punching tool 10.
  • the tips of the plate-shaped portions 14A and 14B are aligned with the tip surface of the shaft portion 12. Therefore, liquid adhering to the end surface of the shaft portion 12 easily wraps around the plate-like portions 14A and 14B.
  • FIG. 12(B) shows the shaft portion 62 and plate-like portions 64A and 64B of the punching tool 60.
  • the distal ends of the plate-like portions 64A and 64B are arranged at positions offset from the distal end surface of the shaft portion 62 toward the proximal end side. Therefore, the liquid adhering to the end surface of the shaft portion 62 is difficult to wrap around the plate portions 64A and 64B. Thereby, in the punching tool 60, when the liquid is discharged from the shaft portion 62, it is possible to suppress the liquid droplets from going around the plate-like portions 64A and 64B and remaining liquid.
  • the distal ends of 74A and 74B are arranged at positions offset from the distal end surface of the shaft portion 72 toward the proximal end side. Furthermore, the distal end surface, which is the end surface of the distal end side FS of the shaft section 72, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction orthogonal to the axial direction of the shaft section 72, and is a straight line (center The inclined surface 72A has an acute angle ⁇ 3 with respect to the line CL). In addition to the inclined surface 72A, the distal end surface of the shaft portion 72 has an orthogonal surface 72B connected to the inclined surface 72A and orthogonal to the axial direction.
  • the distal ends of 84A and 84B are arranged at positions offset from the distal end surface of the shaft portion 82 toward the proximal end side.
  • the distal end surface which is the end surface of the distal end side FS of the shaft portion 82, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the shaft portion 82, and is a straight line (center
  • the inclined surface 82A has an acute angle ⁇ 4 with respect to the line CL).
  • the tip end surface of the shaft portion 82 is formed only by this inclined surface 52A.
  • both the same effect as the drilling tool 50 shown in FIGS. 9(A) and (B) and the same effect as the drilling tool 60 shown in FIGS. 11(A) and (B) can be obtained. Effect can be obtained.
  • the distal end portions 14C of the plate-like portions 14A and 14B have a narrow width in the radial direction of the shaft portion 12 from the proximal end side RS to the distal end side FS.
  • the shape is as follows.
  • the proximal end portions 14D of the plate-like portions 14A and 14B have a shape in which the width in the radial direction of the shaft portion 12 becomes narrower from the distal end side FS to the proximal end side RS. Not limited to.
  • the plate-shaped portion may have the same width along the axial direction of the shaft portion. That is, the plate-like portion may have a rectangular or square shape when viewed from the front. Even with such a shape, it is possible to suppress the liquid from scattering to the outside of the storage section 24 when the sealing film 32 that seals the opening 24A of the storage section 24 in which the liquid is stored is perforated. Moreover, if the plate-like part has the same width along the axial direction of the shaft part, it is easy to manufacture the plate-like part.
  • distal end portion 14C of the plate-like portion may have a shape whose width becomes narrower from the proximal end RS toward the distal end FS.
  • proximal end portion 14D of the plate-like portion may have a shape whose width becomes narrower from the distal end side FS to the proximal end side RS.
  • the plate-like portion has a shape in which the width becomes narrower from the proximal end side RS to the distal end side FS over the entire length in the axial direction of the shaft portion 12, or the width becomes narrower from the distal end side FS toward the proximal end side RS. It is also possible to have a shape like this. Examples of such a shape include a triangular shape when the plate-like portion is viewed from the front.
  • the large diameter portion 14 is formed of two plate-like portions 14A and 14B, but the embodiments of the present disclosure are not limited to this.
  • the large diameter portion may be formed by one plate-shaped portion, or may be formed by three or more plate-shaped portions. That is, in each embodiment in which the large diameter portion is formed of a plate-like portion, the number of plate-like portions is not particularly limited. If the number of plate-shaped parts is reduced, it is easy to form a large diameter part, and if the number of plate-shaped parts is increased, a large number of gaps can be formed around the shaft part.
  • a punching tool 200 shown in FIG. 15 is a punching tool that can punch a sealing film that seals the opening of a container containing a liquid, like the punching tools according to the first embodiment. That is, a punching tool capable of piercing the sealing film 32 that seals the openings 20A, 22A, 24A, 26A, and 28A formed in each of the accommodating parts 20, 22, 24, 26, and 28 of the cartridge RC shown in FIG. It is.
  • the punching tool 200 includes a rod-shaped shaft portion 202 that pierces the sealing film 32 and extends from the distal end side FS to the proximal end side RS, and a A cylindrical portion 204 as a large diameter portion is provided.
  • the shaft portion 202 has a cylindrical shape with a circular cross section perpendicular to the axial direction of the shaft portion 202, has a pipe 202A through which liquid flows, and functions as a nozzle for sucking and discharging liquid. .
  • the cylindrical portion 204 is a cylindrical portion whose cross-sectional shape perpendicular to the axial direction is circular. Further, this cylindrical portion 204 has a similar shape to the shaft portion 202 and has a shape with an enlarged diameter of the shaft portion 202. That is, the rear end portion 204A of the cylindrical portion 204 has a tapered shape that gradually increases in diameter from the base end side RS of the shaft portion 202 toward the distal end side FS. A distal end portion 204B is connected to the distal end of the rear end portion 204A. The distal end portion 204B is formed into a cylindrical shape having the same diameter along the axial direction of the shaft portion 202.
  • the cylindrical portion 204 that is, the tip of the tip side portion 204B is formed perpendicular to the axial direction of the shaft portion 202. Note that "similar shapes" indicates that the outer shapes of the shaft portion 202 and the cylindrical portion 204 are similar.
  • the wall thicknesses of the shaft portion 202 and the cylindrical portion 204 may be different from each other or may be the same.
  • the diameter R4 of the circumscribed circle that circumscribes the outer shape of the cross section of the cylindrical portion 204 is larger than the diameter R3 of the circumscribed circle that circumscribes the outer shape of the cross section of the shaft portion 202.
  • the “cross section” of the cylindrical portion 204 and the “cross section” of the shaft portion 202 are cross sections perpendicular to the axial direction of the shaft portion 202, and are the cross sections taken along line CC in FIG. 15(B). be.
  • the length L3 from the tip of the shaft portion 202, that is, the tip of the drilling tool 200 to the end of the proximal side RS of the cylindrical portion 204, which is the large diameter portion, is It is shorter than the maximum insertion depth L4 of the portion 202 into the accommodating portion 24.
  • the cylindrical portion 204 is a part of the shaft portion 202, and “the tip of the shaft portion 202” refers to the tip of the cylindrical portion 204.
  • a cylindrical portion 204 as a large diameter portion is formed at the tip of the shaft portion 202.
  • the diameter R4 of the circumscribed circle of the cross section perpendicular to the axial direction of the shaft portion 202 is larger than the diameter R3 of the circumscribed circle of the cross section of the shaft portion 202. big.
  • a through hole 32S is also opened in the sealing film 32, as shown in FIG. 15(B). Then, when the punching tool 200 is pushed into the housing section 24, the liquid is prevented from spouting out to the outside of the housing section 24 along with the air.
  • the gap is larger than in the case of using the punching tool 500 of the comparative example in which the diameter of the shaft portion is constant from the distal end side to the proximal end side. Thereby, the liquid K3 inside the storage portion 24 is difficult to be retained in the gap.
  • the large diameter portion is a cylindrical portion 204 whose cross-sectional shape perpendicular to the axial direction is circular. That is, there is no plate-like member that protrudes to the outside of the cylindrical member, unlike in the case where the large diameter portion is a plate-like portion that protrudes in the radial direction of the shaft portion. Therefore, there is little possibility that the punching tool 200 will get caught on some member arranged around the punching tool.
  • the cylindrical portion 204 which is a large diameter portion, has a similar shape to the shaft portion 202 and has a shape that is an enlarged diameter of the shaft portion 202. Since the cylindrical portion 204 has a similar shape to the shaft portion 202, when the punching tool 200 is inserted into the housing portion 24 and the shaft portion 202 is placed in the through hole 32S, an equal width is formed around the shaft portion 202. gaps are likely to form. Thereby, even if the liquid is unevenly attached to the back surface of the sealing film 32, gaps are likely to be formed even in areas where the liquid is not attached, so that it is easy to ensure a passage for air.
  • the shaft portion 202 of the cylindrical portion 204 has an enlarged diameter, the cross-sectional area of the cylindrical portion 204 is larger than that of the shaft portion 202. For this reason, the strength of the cylindrical portion 204, which is likely to be subjected to a load when perforating the sealing film 32, is greater than other portions. Therefore, the punching tool 200 is less likely to be damaged and maintenance is easy.
  • a punching tool 210 according to a modification shown in FIG. 16(A) includes a shaft portion 212 and a cylindrical portion 214.
  • the drilling tool 210 differs from the drilling tool 200 in the following points.
  • the distal end surface which is the end surface of the distal end side FS of the cylindrical portion 214, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the shaft portion 212, and is a straight line (center line) extending in the axial direction.
  • CL has an inclined surface 214A with an acute angle ⁇ 5.
  • the distal end surface of the cylindrical portion 214 has an orthogonal surface 214B that is connected to the inclined surface 214A and orthogonal to the axial direction.
  • a punching tool 220 according to a modification shown in FIG. 16(B) includes a shaft portion 222 and a cylindrical portion 224.
  • the drilling tool 220 differs from the drilling tool 200 in the following points.
  • the drilling tool 220 has an inclined surface 224A that is inclined toward the proximal end side RS and has an acute angle ⁇ 6 with respect to a straight line (center line CL) extending in the axial direction.
  • the tip end surface is formed only by this inclined surface 224A.
  • a punching tool 230 according to a modification shown in FIG. 17(A) includes a shaft portion 232 and a cylindrical portion 234.
  • the drilling tool 230 differs from the drilling tool 200 in the following points.
  • a shaft portion 232 is inserted into a cylindrical portion 234.
  • the punching tool 230 has a shaft portion 232 that is a straight pipe with an equal cross-sectional shape in the axial direction, and a cylindrical portion 234 that covers the outer periphery of the shaft portion 232, forming a double pipe.
  • the cylindrical portion 234 is joined to the shaft portion 232 at an end portion on the proximal side RS, with the diameter decreasing from the distal side FS toward the proximal side RS.
  • the punching tool 230 having such a double tube structure can be formed by, for example, manufacturing the shaft portion 232 and the cylindrical portion 234 separately and joining them, so that it is easy to form the large diameter portion.
  • the shaft portion 232 and the cylindrical portion 234 separately and joining them, so that it is easy to form the large diameter portion.
  • the liquid sucked inside the housing part 24 is discharged outside the housing part 24 using the punching tool 230 as a nozzle, for example, the liquid is discharged through the inside of the shaft part 232 which is a straight pipe. . Therefore, when the liquid passes through the large diameter portion, turbulence is unlikely to occur, and the discharge performance is stabilized.
  • the large-diameter portion is formed by a cylindrical portion whose diameter is enlarged from the shaft portion, a bent portion is formed in the conduit in the enlarged-diameter portion. Furthermore, if the machining accuracy is poor, unevenness may be formed in the enlarged diameter portion.
  • turbulence may occur within the conduit or dirt may easily adhere to the conduit.
  • one measure is to polish the inner surface of the pipe, but such measures are not necessarily sufficient and are also time-consuming to manufacture. .
  • a punching tool 240 according to a modified example shown in FIG. 17(B) includes a shaft portion 242 and a cylindrical portion 244.
  • the drilling tool 240 differs from the drilling tool 230 in the following points.
  • the distal end surface which is the end surface of the distal end side FS of the shaft portion 242, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the shaft portion 242, and is aligned with a straight line (center line CL) extending in the axial direction. ) has an inclined surface 242A with an acute angle ⁇ 6.
  • the distal end surface of the shaft portion 242 has an orthogonal surface 242B that is connected to the inclined surface 242A and is orthogonal to the axial direction.
  • the distal end surface which is the end surface of the distal end side FS of the cylindrical portion 244, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the cylindrical portion 244, and extends in the axial direction.
  • the inclined surface 244A has an acute angle ⁇ 6 with respect to the straight line (center line CL).
  • the distal end surface of the cylindrical portion 244 has an orthogonal surface 244B that is connected to the inclined surface 244A and is orthogonal to the axial direction.
  • the inclined surfaces 242A and 244A are surfaces formed on the same plane, and the orthogonal surface 242B and the orthogonal surface 244B are also surfaces formed on the same plane.
  • the inclination angles of the inclined surfaces 242A and 244A are the same included angle ⁇ 6, they may be different angles.
  • at least one of the inclined surfaces 242A and 244A may be formed. That is, the tip end surface of either the shaft portion 242 or the cylindrical portion 244 may be formed of only an orthogonal surface orthogonal to the axial direction.
  • a punching tool 250 according to a modification shown in FIG. 17(C) includes a shaft portion 252 and a cylindrical portion 254.
  • the drilling tool 250 differs from the drilling tool 230 in the following points.
  • the distal end surface which is the end surface of the distal end side FS of the shaft section 252, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the shaft section 252, and is aligned with a straight line (center line CL) extending in the axial direction. ) has an inclined surface 252A with an acute angle ⁇ 7. The tip end surface is formed only by this inclined surface 252A.
  • the distal end surface which is the end surface of the distal end side FS of the cylindrical portion 254, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction orthogonal to the axial direction of the cylindrical portion 254, and extends in the axial direction.
  • the inclined surface 254A has an acute angle ⁇ 7 with respect to a straight line (center line CL).
  • the tip end surface is formed only by this inclined surface 254A.
  • the inclined surfaces 252A and 254A are surfaces formed on the same plane. Although the inclination angles of the inclined surfaces 252A and 254A are the same included angle ⁇ 7, they may be different angles. Moreover, at least one of the inclined surfaces 252A and 254A may be formed. That is, the tip end surface of either the shaft portion 252 or the cylindrical portion 254 may be formed of only an orthogonal surface orthogonal to the axial direction.
  • a punching tool 260 according to a modification shown in FIG. 18(A) includes a shaft portion 262 and a cylindrical portion 264.
  • the drilling tool 260 differs from the drilling tool 230 in the following points.
  • the distal end of the cylindrical portion 264 is arranged at a position offset from the distal end surface of the shaft portion 262 toward the proximal end side. According to such a punching tool 260, the same effects as the punching tool 60 shown in FIGS. 11(A) and 11(B) can be obtained.
  • a punching tool 270 according to a modified example shown in FIG. 18(B) includes a shaft portion 272 and a cylindrical portion 274.
  • the drilling tool 270 differs from the drilling tool 230 in the following points.
  • the distal end of the cylindrical portion 274 is arranged at a position offset from the distal end surface of the shaft portion 272 toward the proximal end side.
  • the distal end surface which is the end surface of the distal end side FS of the shaft portion 272, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction orthogonal to the axial direction of the shaft portion 272, and is a straight line extending in the axial direction (center
  • the inclined surface 272A has an acute angle ⁇ 8 with respect to the line CL).
  • the distal end surface of the shaft portion 272 has an orthogonal surface 272B connected to the inclined surface 272A and orthogonal to the axial direction.
  • the distal end surface which is the end surface of the distal end side FS of the cylindrical portion 274, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction orthogonal to the axial direction of the cylindrical portion 274, and extends in the axial direction.
  • the inclined surface 274A has an acute angle ⁇ 8 with respect to a straight line (center line CL).
  • the distal end surface of the cylindrical portion 274 has an orthogonal surface 274B that is connected to the inclined surface 274A and is orthogonal to the axial direction.
  • both the same effect as the drilling tool 40 shown in FIGS. 8(A) and (B) and the same effect as the drilling tool 60 shown in FIGS. 11(A) and (B) can be obtained.
  • effect can be obtained.
  • a punching tool 280 according to a modified example shown in FIG. 18(C) includes a shaft portion 282 and a cylindrical portion 284.
  • the drilling tool 280 differs from the drilling tool 230 in the following points.
  • the distal end of the cylindrical portion 284 is arranged at a position offset from the distal end surface of the shaft portion 282 toward the proximal end side.
  • the distal end surface which is the end surface of the distal end side FS of the shaft portion 282, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction orthogonal to the axial direction of the shaft portion 282, and is a straight line extending in the axial direction (center
  • the inclined surface 282A has an acute angle ⁇ 9 with respect to the line CL).
  • the tip end surface is formed only by this inclined surface 282A.
  • the distal end surface which is the end surface of the distal end side FS of the cylindrical portion 284, is an inclined surface that is inclined toward the proximal end side RS with respect to the direction perpendicular to the axial direction of the cylindrical portion 284, and extends in the axial direction.
  • the inclined surface 284A has an acute angle ⁇ 9 with respect to a straight line (center line CL).
  • the tip end surface is formed only by this inclined surface 284A.
  • both the same effect as the drilling tool 50 shown in FIGS. 9(A) and (B) and the same effect as the drilling tool 60 shown in FIGS. 11(A) and (B) can be obtained. Effect can be obtained.
  • the cylindrical portion has a similar shape to the shaft portion, but the embodiments of the present disclosure are not limited to this.
  • the cylindrical portion may be polygonal or elliptical.
  • a conduit through which liquid flows is not necessarily formed inside the shaft portion.
  • the punching tool of the present disclosure may be any tool that can punch through the sealing film 32.
  • cartridge RC has been described as an example of a container to be perforated by each perforator of the present disclosure, it goes without saying that the perforator 10 can be used for other containers capable of containing liquid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Devices For Opening Bottles Or Cans (AREA)

Abstract

穿孔具10は、液体が収容された容器の開口部を封止する封止膜を穿孔可能な穿孔具であって、封止膜を突き刺す先端側から基端側へ延びる棒状の軸部12と、軸部12の先端部に形成された太径部であって、軸方向と直交する横断面の外形に外接する外接円の径が、軸部12の横断面の外形に外接する外接円の径よりも大きな太径部14と、軸部12の先端から太径部14の基端側の端部までの長さL1は、軸部12の容器に対する最大挿入深さL2より短い。

Description

穿孔具
 本開示の技術は、穿孔具に関する。
 試料の検査に用いられる液体容器であって、試薬などの液体が収容されるウェル状の収容部と、収容部の上部に形成された開口部を封止する封止膜とを備えた液体容器が知られている。このような液体容器では、穿孔具の先端を封止膜に突き刺すことによって封止膜が穿孔される。このような液体容器では、穿孔具によって封止膜を穿孔する際に、容器内部に収容された液体が、容器外部へ飛散する場合がある。
 特開2005-37179号公報に記載の穿孔具は、全体として棒状をしており、かつ、先端が鋭利な形状となっている。先端は鋭利な形状となっているが、それ以後は基端側に向かって径が一定の軸部を有している。このような棒状の穿孔具の先端形状とすることにより、穿孔時に封止膜に過大な圧力がかかることが抑制され、容器内の液体の飛散が抑制される。
 しかしながら、特開2005-37179号公報に記載の穿孔具のように先端を鋭利な形状としても、軸部の径が一定の場合は、封止膜を穿孔する際の液体の飛散を抑制するには不十分であった。理由は次のとおりである。まず、穿孔具の先端を封止膜に突き刺すことにより、封止膜には穿孔具の径に近い貫通孔が開く。封止膜の裏面には容器内の液体が付着しているため、貫通孔が開くと、封止膜の裏面に付着した液体が貫通孔と穿孔具との隙間に回り込み、液体が隙間に進入する。穿孔具の径と貫通孔の径とが近い場合、すなわち、穿孔具と貫通孔の内縁との間の隙間幅が狭いと、液体が隙間を塞ぐように保持される。軸部の径が一定であると、穿孔具の挿入量が多くなっても、隙間幅が狭い状態は変化せず、隙間を液体が塞いだ状態が継続する。一方、容器内への穿孔具の挿入により容器内の圧力も上昇し、容器内の空気は貫通孔と穿孔具の隙間から容器外へ噴出しようとする。穿孔具の挿入量が増加するにつれて内部の圧力上昇は高くなり、容器内の空気が隙間を通じて容器外へ噴出しようとする圧力も上昇する。穿孔具の挿入量がさらに増加して容器内の圧力がさらに上昇すると、やがて容器内の空気は隙間を塞いだ液体を伴って容器外へ噴出する。こうしたメカニズムによって貫通孔と穿孔具との隙間に保持された液体が容器外部へ噴出し、貫通孔の周囲に液体が飛散する場合があった。
 本開示に係る技術は、液体が収容された容器の開口部を封止する封止膜を穿孔する際に、液体が容器外部に飛散することを従来よりも抑制することを目的とする。
 本開示の穿孔具は、液体が収容された容器の開口部を封止する封止膜を穿孔可能な穿孔具であって、封止膜を突き刺す先端側から基端側へ延びる棒状の軸部と、軸部の先端部に形成された太径部であって、軸方向と直交する横断面の外形に外接する外接円の径が、軸部の横断面の外形に外接する外接円の径よりも大きな太径部と、軸部の先端から太径部の基端側の端部までの長さは、軸部の容器に対する最大挿入深さより短い。
 本開示の穿孔具においては、太径部は、軸部の径方向に張り出し、かつ、板面が軸方向に延びる板状部、で形成されていてもよい。
 本開示の穿孔具においては、板状部は、軸部を中心とする対称位置に複数枚形成されていてもよい。
 本開示の穿孔具においては、板状部の厚みは、軸部の外径より薄くてもよい。
 本開示の穿孔具においては、軸部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有していてもよい。
 本開示の穿孔具においては、軸部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面に加えて、傾斜面と接続し、かつ、軸方向と直交する直交面を有していてもよい。
 本開示の穿孔具においては、軸部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面のみで形成されていてもよい。
 本開示の穿孔具においては、板状部の先端は、軸部の先端側の端面である先端面から基端側へオフセットした位置に配置されていてもよい。
 本開示の穿孔具においては、板状部の先端側部分は、基端側から先端側に向かって軸部の径方向における幅が細くなる形状でもよい。
 本開示の穿孔具においては、板状部の基端側部分は、先端側から基端側に向かって軸部の径方向における幅が細くなる形状でもよい。
 本開示の穿孔具においては、太径部は、軸方向と直交する断面形状が円又は多角形の筒状部でもよい。
 本開示の穿孔具においては、筒状部は、軸部と相似形で、かつ、軸部を拡径した形状でもよい。
 本開示の穿孔具においては、筒状部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有していてもよい。
 本開示の穿孔具においては、筒状部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面に加えて、傾斜面と接続し、かつ、軸方向と直交する直交面を有していてもよい。
 本開示の穿孔具においては、筒状部の先端側の端面である先端面は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面のみで形成されていてもよい。
 本開示の穿孔具においては、筒状部の内部には軸部が挿通されていてもよい。
 本開示の穿孔具においては、軸部及び筒状部の先端側の端面である先端面の少なくとも一方は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有していてもよい。
 本開示の穿孔具においては、軸部及び筒状部の先端側の端面である先端面の少なくとも一方は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面に加えて、傾斜面と接続し、かつ、軸方向と直交する直交面を有していてもよい。
 本開示の穿孔具においては、軸部及び筒状部の先端側の端面である先端面の少なくとも一方は、軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、軸方向に延びる直線との挟み角が鋭角な傾斜面を有している場合に、先端面は、傾斜面のみで形成されていてもよい。
 本開示の穿孔具においては、軸部は、内部に液体が流れる管路が形成されており、液体の吸引及び吐出を行うノズルとして機能してもよい。
 本開示の技術によれば、液体が収容された容器の開口部を封止する封止膜を穿孔する際に、液体が容器外部に飛散することを従来よりも抑制することができる。
本開示の穿孔具によって穿孔可能な容器の一例としてのカートリッジを示す斜視図である。 (A)は本開示の穿孔具によって穿孔可能な容器の一例としてのカートリッジを示す断面図であり、(B)は上面図である。 (A)は本開示の第一実施形態に係る穿孔具を示す斜視図であり、(B)は容器に挿入された状態を示す側面図であり、(C)は容器に挿入された状態を示す側面図であり、(D)は(B)、(C)におけるD-D線断面図である。 (A)は比較例に係る穿孔具で容器の封止膜を穿孔しようとしている状態を示す側面図であり、(B)は穿孔具を封止膜に押し当てている状態を示す側面図であり、(C)は封止膜を穿孔した状態を示す側面図であり、(D)は穿孔具を容器に挿入している状態を示す側面図であり、(E)は穿孔具を容器から引き抜いている状態を示す側面図であり、(F)は(C)におけるF-F線矢視図である。 比較例に係る穿孔具で容器の封止膜を穿孔した場合の液体の飛散状況の一例を示す側面図である。 (A)は本開示の穿孔具で容器の封止膜を穿孔しようとしている状態を示す側面図であり、(B)は穿孔具を封止膜に押し当てている状態を示す側面図であり、(C)は封止膜を穿孔した状態を示す側面図であり、(D)は穿孔具を容器に挿入している状態を示す側面図であり、(E)は穿孔具を容器から引き抜いている状態を示す側面図である。 (A)は本開示の穿孔具を容器に挿入した状態を示す斜視図であり、(B)は貫通孔の形状を示す平面図である。 (A)は本開示の第一実施形態に係る穿孔具の変形例を示す斜視図であり、(B)は側面図である。 (A)は本開示の第一実施形態に係る穿孔具の変形例を示す斜視図であり、(B)は側面図である。 (A)は本開示の第一実施形態に係る穿孔具の先端に液体が付着している状況を示す側面図であり、(B)は変形例の穿孔具の先端に液体が付着している状況を示す側面図であり、(C)は別の変形例の穿孔具の先端に液体が付着している状況を示す側面図である。 (A)は本開示の第一実施形態に係る穿孔具の変形例を示す斜視図であり、(B)は側面図である。 (A)は本開示の第一実施形態に係る穿孔具の先端に液体が付着している状況を示す側面図であり、(B)は変形例の穿孔具の先端に液体が付着している状況を示す側面図である。 (A)は本開示の第一実施形態に係る穿孔具の変形例を示す斜視図であり、(B)は側面図である。 (A)は本開示の第一実施形態に係る穿孔具の変形例を示す斜視図であり、(B)は側面図である。 (A)は本開示の第二実施形態に係る穿孔具を示す斜視図であり、(B)は容器に挿入された状態を示す断面図であり、(C)は(B)におけるC-C線断面図である。 (A)は本開示の第二実施形態に係る穿孔具の変形例を示す断面図であり、(B)は別の変形例を示す断面図である。 (A)は本開示の第二実施形態に係る穿孔具の変形例を示す断面図であり、(B)は別の変形例を示す断面図であり、(C)はさらに別の変形例を示す断面図である。 (A)は本開示の第二実施形態に係る穿孔具の変形例を示す断面図であり、(B)は別の変形例を示す断面図であり、(C)はさらに別の変形例を示す断面図である。
 以下、本開示の実施形態に係る穿孔具について、図面を参照しながら説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。但し、明細書中に特段の断りが無い限り、各構成要素は一つに限定されず、複数存在してもよい。
 また、各図面において重複する構成及び符号については、説明を省略する場合がある。なお、本開示は以下の実施形態に限定されるものではなく、本開示の目的の範囲内において構成を省略する又は異なる構成と入れ替える等、適宜変更を加えて実施することができる。
 各図面において矢印X、Yで示す方向は水平面に沿う方向であり、互いに直交している。また、矢印Zで示す方向は鉛直方向(上下方向)に沿う方向である。各図において矢印X、Y、Zで示される各方向は、互いに一致するものとする。
<カートリッジ>
 本開示の実施形態に係る穿孔具10は、一例として、図1に示すカートリッジRCに収容された液体の吸引及び吐出を行う機能を有するノズルである。カートリッジRCは、一例として、免疫分析装置に装填される液体容器である。免疫分析装置においては、例えば生体から採取された血液等の検体中の被検出物質に標識を付与して、標識からの光を検出する検出処理が実行される。カートリッジRCは、液体が収容された容器の一例である。
 カートリッジRCには、検出処理を実行するための液体が収容されている。カートリッジRCに収容される液体としては、例えば、検体と混合される緩衝液、検体中の対象物質と特異的に結合する結合物質が修飾された標識を含む標識試薬、及び、標識を発光させるための発光試薬等がある。
 図2に示すように、カートリッジRCは、容器本体16と封止膜32とを備えている。容器本体16には、検体、緩衝液及び試薬などの液体をそれぞれ収容する複数の収容部20、22、24、26及び28が設けられている。収容部20、22、24、26及び28はそれぞれ、ウェル形状であり、上端部には、それぞれ開口部20A、22A、24A、26A及び28Aが形成されている。容器本体16は、例えば、プラスチックの成形品であり、複数の収容部20、22、24、26及び28を一体成形したものである。容器本体16の上端側は板状の天板部30となっており、天板部30は、各収容部20、22、24、26及び28を連結する連結部としても機能する。
 図2(B)に示すように、開口部20A、開口部22A、24A、26A及び28Aの平面形状(容器本体16を上方から平面視した場合の形状)は一例として長円形状である。開口部20A、22A、24A、26A及び28Aは、それぞれの長円形状の長手方向が平行になる姿勢で、カートリッジRCの長手方向(Y方向)に沿って並んで配置されて
いる。
 天板部30の平面形状は長方形状である。天板部30の上面には、1枚の封止膜32が接着されている。封止膜32は、天板部30の外形に合わせた形状とサイズを有している。このような封止膜32が天板部30の上面に接着されることにより、開口部20A、22A、24A、26A及び28Aは、封止膜32によって封止される。この封止膜32はアルミ製の膜材であり、穿孔具10等の棒状部材によって突き刺されることにより穿孔可能である。
 図2(A)に示すように、本例のカートリッジRCは、5つの収容部20、22、24、26及び28のうち、中央に配置される3つの収容部22、24及び26の境界は接しており、隣接する収容部の壁部が共用されている。3つの収容部22、24及び26の両側には、収容部20と収容部28とがそれぞれ配置されている。収容部20及び収容部28のそれぞれは、収容部22及び収容部26のそれぞれとは境界が接しておらず、壁部も独立している。これにより、収容部20と収容部22との間隔、及び収容部26と収容部28との間隔は、3つの収容部22、24及び26同士の間隔よりも相対的に広くなっている。
 一例として、収容部20には反応試薬K1が収容され、収容部22、24にはそれぞれ発光試薬K2、K3が収容され、収容部26には標識試薬K4が収容され、収容部28には緩衝液K5が収容されている。
<穿孔具の第一実施形態>
 図3(A)、(B)及び(C)に示す穿孔具10は、液体が収容された容器の開口部を封止する封止膜を穿孔可能な穿孔具である。すなわち、穿孔具10は、図1に示すカートリッジRCの各収容部20、22、24、26及び28に形成された開口部20A、22A、24A、26A及び28Aを封止する封止膜32を穿孔可能な穿孔具である。
 本例の穿孔具10は、上述した免疫分析装置(図示せず)内に設けられた分注機構に設けられる。駆動装置Mは、分注機構の駆動装置である。駆動装置Mは、穿孔具10を、免疫分析装置内において、予め定められたストロークで上下方向に移動させる。これにより、駆動装置Mは、穿孔具10を、免疫分析装置に装填されたカートリッジRCの各収容部20、22、24、26及び28へ挿入し、または、各収容部20、22、24、26及び28から引き抜く。そして、本例の穿孔具10はノズルの機能も有しているため、各収容部20、22、24、26及び28内の液体の吸引及び吐出を行う。
 図3(A)、(B)及び(C)に示すように、穿孔具10は、封止膜32を突き刺す先端側FSから基端側RSへ延びる棒状の軸部12と、軸部12の先端部に形成された太径部14と、を備えている。
 軸部12は軸部12の軸方向に対して直交する断面が円形の筒状である。軸部12は、内部に液体が流れる管路12Aが形成されており、上述したとおり、液体の吸引及び吐出を行うノズルとして機能する。軸部12の先端側の端面は、本例では、軸部12の軸方向に対して直交する面で形成されている。なお、図3において、軸部12の中心線を中心線CLとして図示している。軸部12の「軸方向」とは、この中心線CLに沿う方向である。
 一方、太径部14は、軸部12の径方向に張り出し、かつ、板面が軸部12の軸方向に延びる2枚の板状部14A及び14Bで形成されている。軸部12の「径方向」とは、軸部12の軸方向と直交する方向であり、かつ、中心線CLと交わる方向である。
 板状部14A、14Bは、軸部12を中心とする対称位置に形成されている。本例において、一対の板状部14A及び14Bは、軸部12から径方向の両側に張り出した羽根のような形状をしている。また、図3(D)に示すように、板状部14A及び14Bの厚みt1は、軸部12の径R1より薄い。
 図3(C)に示すように、それぞれの板状部14A及び14Bの先端側部分14Cは、基端側RSから先端側FSに向かって、軸部12の径方向における幅が細くなる形状である。軸部12の軸方向における板状部14A及び14Bの先端位置は、軸部12の先端位置と一致している。一方、板状部14A及び14Bの基端側部分14Dは、先端側FSから基端側RSに向かって軸部12の径方向における幅が細くなる形状である。
 また、板状部14A及び14Bの先端側部分14Cと基端側部分14Dとの間、すなわち板状部14A及び14Bの中央側部分14Eは、軸部12の軸方向に沿って、軸部12の径方向における幅が一定の形状である。
 これにより、それぞれの板状部14A及び14Bは、板状部14A及び14Bの面の法線方向からみて(つまり、板状部14A及び14Bを正面視して、)、長い底辺が軸部12に接合され、短い底辺が軸部12から離れた位置に配置された台形状に形成されている。
 ここで、図3(D)に示すように、板状部14A及び14Bで形成された太径部14の断面の外形に外接する外接円の径R2は、軸部12の断面の外形に外接する外接円の径R1よりも大きい。なお、太径部14の「断面」及び軸部12の「断面」とは、軸部12の軸方向と直交する断面であり、図3(B)及び(C)におけるD-D線によって切断される断面(図3(D)においてハッチングで示す部分)である。本明細書においては、外形に外接する外接円の径が、比較対象より大きいことを「太径」であると称する。すなわち、太径部14の断面の外形そのものは必ずしも円形であるとは限らず、太径の径とは、外接円の径を意味する。一方、太径部14以外の軸部12、すなわち、板状部14A及び14Bが設けられていない部分の軸部12の断面の外形は円形であり、その外接円は軸部12の断面の外形と一致する。つまり、太径部14の太径とは、軸部12の断面の外形の径を比較対象とした場合に、比較対象よりも太いことを意味する。
 また、図3(B)及び(C)に示すように、軸部12の先端、すなわち穿孔具10の先端から太径部14の基端側RSの端部までの長さL1は、軸部12の収容部(一例として、収容部24)に対する最大挿入深さL2より短い。「最大挿入深さ」とは、吸引又は吐出を行う際に収容部24に対して挿入する穿孔具10の挿入量の最大値をいう。最大挿入深さは、収容部24の深さ(封止膜32から収容部24の底部までの長さ)の範囲内で、駆動装置M(図1参照)のストロークの設定によって決まる値である。最大挿入深さL2を規定する意味は、収容部24に穿孔具10を挿入した場合に、太径部14の全体が収容部24内に進入し、太径部14の上端が封止膜32よりも下方に位置させることが必要になるためである。
 このように最大挿入深さL2は、収容部の深さに応じて変化する。本例のようにカートリッジRCには5つの収容部が設けられており、かつ、穿孔具10を複数の収容部で共用する場合には、深さが一番浅い収容部に合わせて最大挿入深さL2及び長さL1が決定されることが好ましい。
 また、以下の説明において、穿孔具10や各種の変形例に係る穿孔具が挿入される収容部を「収容部24」を例に説明する場合があるが、これは、便宜上、収容部24を一例と
して説明するものである。穿孔具10や各種の変形例に係る穿孔具が挿入される収容部は、収容部20、22、24、26及び28の何れでもよい。
 以下、図4~図7を用いて、上記構成の穿孔具10の作用効果を説明する。図4及び図5は比較例を示しており、まずは図4及び図5を用いて比較例を説明した後に、比較例と対比する形で図6及び図7を用いて本例の穿孔具10の作用効果を説明する。
(比較例)
 図4(A)に示すように、「比較例」の穿孔具500は、太径部が形成されておらず、軸部の径は先端側から基端側まで一定である。図4(B)に示すように、穿孔具500の先端で封止膜32を押圧し、図4(C)に示すように、穿孔具500を封止膜32に突き刺すことにより、封止膜32には、穿孔具500の軸部の径に近い貫通孔32Tが開く。封止膜32の裏面には収容部24内の発光試薬K3(以下、液体K3と称す)が付着しているため、貫通孔32Tが開くと、封止膜32の裏面に付着した液体K3が貫通孔32Tと穿孔具500との隙間に回り込み、液体K3が隙間に進入する。穿孔具500の径と貫通孔32Tの径とが近い場合、すなわち、穿孔具500と貫通孔32Tの内縁との間の隙間幅が狭いと、液体K3が隙間を塞ぐように保持される。
 比較例の穿孔具500のように軸部の径が一定であると、穿孔具500の挿入量が多くなっても、隙間幅が狭い状態は変化せず、隙間を液体K3が塞いだ状態が継続する。一方、収容部24内への穿孔具500の挿入により収容部24内の圧力は上昇し、収容部24内の空気は貫通孔32Tと穿孔具500の隙間から収容部24外へ噴出しようとする。穿孔具500の挿入量が増加するにつれて内部の圧力上昇は高くなり、収容部24内の空気が隙間を通じて収容部24外へ噴出しようとする圧力も上昇する。図4(D)に示すように、穿孔具500の挿入量がさらに増加して収容部24内の圧力がさらに上昇すると、やがて収容部24内の空気は隙間を塞いだ液体K3を伴って容器外へ噴出する。こうしたメカニズムによって貫通孔32Tと穿孔具500との隙間に保持された液体K3が収容部24の外部へ噴出し、貫通孔32Tの周囲に液体K3が飛散する場合があった。また、仮にカートリッジRCが加温されているような場合は、温度上昇による圧力上昇もあるため、さらに噴出量が多くなる傾向があった。
 さらに、図4(E)に示すように、穿孔具500を収容部24から引き抜く際には、貫通孔32Tの内縁と穿孔具500との摩擦力によって封止膜32が穿孔具500に引きずられて貫通孔32Tの周辺が収容部24の外側に張り出す状態となる可能性がある。この際、貫通孔32Tの周辺において封止膜32の裏面に付着した液体K3が、貫通孔32Tから収容部24の外部に噴出して飛散してしまう虞がある。収容部24の外部へ液体K3が飛散すると、カートリッジRC(図1参照)が配置された環境を汚染する虞がある。
 そして、収容部24の外部へ液体K3が飛散した状態で、図5に示すように、穿孔具500を用いて、例えば収容部24と隣り合う収容部26を覆う封止膜32を穿孔すると、収容部26及び収容部24の外部へ液体(標識試薬K4:以下、液体K4と称す)が飛散する可能性がある。これにより、収容部24及び26の外部において、2つの液体(液体K3及び液体K4)が混合される。
 このように2つの液体が混合されると、混合された液体が穿孔具500に付着する可能性がある。それぞれの液体を個別に用いて試験を実施する場合は、それぞれの液体に、別の液体が混入することになるため、意図しない液体同士のコンタミネーションが生じ、試験結果に影響を及ぼす可能性がある。また、それぞれの液体を定量混合して試験を実施する場合も、混合量に誤差が生じるため、試験結果に影響を及ぼす可能性がある。
<作用及び効果>
 これに対して、図3(A)に示すように、本開示の穿孔具10では、軸部12の先端部に太径部14が形成されている。図3(D)に示すように、この太径部14は、軸部12の軸方向と直交する横断面の外接円の径R2が、軸部12の横断面の外接円の径R1よりも大きい。
 図6(A)に示すように、穿孔具10を用いて封止膜32を穿孔する際には、図6(B)に示すように、穿孔具10の先端で封止膜32を押圧し、図6(C)に示すように、穿孔具10を封止膜32に突き刺すことにより、封止膜32には、貫通孔32Sが開く。具体的には、図7(A)に示すように、封止膜32には、軸部12及び軸部12の先端部に形成された太径部14によって封止膜32が穿孔されて貫通孔32Sが形成される。この貫通孔32Sの面積は、軸部12の横断面12Sの面積より大きく、さらに、太径部14の横断面14Sの面積より大きい面積となる。
 なぜならば、封止膜32には、軸部12によって穿孔される部分と、太径部14によって穿孔される部分と、が繋がって貫通孔32Sが形成されるが、この貫通孔32Sは、図7(B)に示すように、軸部12及び太径部14の外周部において、軸部12の中心点Oから最も離れた位置を結ぶようにして形成されやすい。すなわち、穿孔具10を用いることで、太径部14が形成されていない比較例の穿孔具500と比較して、太径の貫通孔を形成できる。
 このため、軸部12と貫通孔32Sの内縁との間に大きな隙間が形成される。このため、貫通孔32Sの周辺において封止膜32の裏側に液体K3が付着していても、封止膜32の裏面に付着した液体K3が穿孔具10と貫通孔32Sの内縁との隙間に回り込み難く、液体K3が隙間に進入し難い。このため、液体K3は隙間を塞ぐように保持され難い。
 また、図6(D)に示すように、穿孔具10を収容部24へ押し込んでも、液体K3が、空気に伴われて収容部24の外部へ噴出することが抑制される。
 なぜならば、穿孔具10の収容部24への挿入量が増して、太径部14がすべて収容部24に収まり、太径部14が設けられていない軸部12が封止膜32の位置に達すると、穿孔具10と貫通孔32Sの内縁との隙間が大きくなる。軸部12は太径部14より細径であるため、太径部14が形成されていない比較例の穿孔具500を用いた場合と比較して、隙間は大きい。これにより、収容部24の内部の液体K3は、隙間に保持され難い。
 したがって、穿孔具10の挿入量が増加しても、隙間に空気の通り道が確保されるため、液体K3が収容部24の外部へ噴出することが抑制される。
 さらに、図6(E)に示すように、穿孔具10を収容部24から引き抜く際にも、貫通孔32Sの内縁と穿孔具10とが接触し難いため、貫通孔32Sの周辺において封止膜32の裏面に付着した液体K3が、収容部24の外部に噴出し難い。
 このように、穿孔具10を用いることで、仮に封止膜32の裏面に液体が付着していても、液体が収容された収容部24の開口部24Aを封止する封止膜32を穿孔する際に、液体が収容部24の外部へ飛散することを抑制できる。
 また、本開示の穿孔具10では、図3(A)に示すように、太径部14が、軸部12の径方向に張り出し、かつ、板面が軸方向に延びる板状部14A及び14Bで形成されている。このように、軸部12の径方向に張り出す板状部14A及び14Bで太径部14を形成することにより、図7(A)、(B)に示すように、封止膜32には軸部12から板状
部14A及び14Bの方向へ伸びる貫通孔32Sが形成される。すなわち、軸部12から離れた位置まで貫通孔32Sを形成できる。このため、例えば穿孔具10を収容部24から抜き取る際に、軸部12に付着した液体が貫通孔32Sに充填されることを抑制できる。
 また、本開示の穿孔具10では、太径部14を形成する板状部14A及び14Bが、軸部12を中心とする対称位置に複数枚(すなわち、2枚)形成されている。これにより、封止膜32には、軸部12を中心として対称な位置に複数の(すなわち、2つの)隙間が形成される。このため、封止膜32の裏面に液体が偏って付着している場合でも、何れかの隙間に空気の通り道を確保し易い。
 また、本開示の穿孔具10では、図3(D)に示すように、板状部14A及び14Bの厚みt1が、軸部12の外径(径R1)より薄い。板状部14A及び14Bの厚みt1が軸部12の外径(径R1)より薄いことにより、板状部14A及び14Bの厚みt1が軸部12の外径(径R1)以上である場合と比較して、同じ力で封止膜32を押圧した場合において、封止膜32の単位面積あたりに作用する圧力を高くすることができる。このため、封止膜32を穿孔し易い。
 また、本開示の穿孔具10では、図3(C)に示すように、板状部14A及び14Bの先端側部分14Cが、軸部12の基端側RSから先端側FSに向かって軸部12の径方向における幅が細くなる形状である。すなわち、板状部14A及び14Bの先端が尖っている。このため、封止膜32を穿孔し易い。これに対して、板状部の幅が一定幅の場合、封止膜32を穿孔する際に穿孔具10が封止膜32から受ける抵抗力が大きく、穿孔し難い。
 また、本開示の穿孔具10では、板状部14A及び14Bの基端側部分14Dが、軸部12の先端側FSから基端側RSに向かって軸部12の径方向における幅が細くなる形状である。すなわち、板状部14A及び14Bの後端が尖っている。このため、中央側部分14Eによって形成された大径の貫通孔32Sに対して、板状部14A及び14Bを挿入し易く、穿孔具10を引抜き易い。これに対して、板状部の幅が一定幅の場合、当該板状部は貫通孔32Sの開口端に引っ掛かり易く、穿孔具10を収容部24の内部から引き抜き難い。
 また、本開示の穿孔具10では、軸部12は、内部に液体が流れる管路が形成されており、液体の吸引及び吐出を行うノズルとして機能する。そして、この穿孔具10を用いれば、収容部24の外部への液体の飛散が抑制されるため、ノズルである穿孔具10の内部の液体に、収容部24の外部の液体が混合されることを抑制できる。
(変形例1)
 図8(A)、図8(B)に示す変形例に係る穿孔具40においては、軸部42の先端側FSの端面である先端面は、軸部42の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ1が鋭角な傾斜面42Aを有している。また、軸部42の先端面は、傾斜面42Aに加えて、傾斜面42Aと接続し、かつ、軸方向と直交する直交面42Bを有している。
 穿孔具40において太径部44を形成する板状部44A及び44Bの構成は、穿孔具10における板状部14A及び14Bの構成と同様である。但し、軸部42の軸方向における板状部44Aの先端位置は、直交面42Bの位置と一致している。一方、軸部42の軸方向における板状部44Bの先端位置は、傾斜面42Aの基端側端部の位置と一致している。
 穿孔具40では、軸部42の先端側の端面である先端面が、上述した傾斜面42Aを有している。すなわち、先端面が、軸部42の基端側RSから先端側FSへ向かって、徐々に径方向における幅が小さくなる形状とされている。すなわち、軸部の42の先端面が、傾斜面42Aを備えていない場合と比較して尖っている。このため、封止膜32を穿孔し易い。
(変形例2)
 図9(A)、図9(B)に示す変形例に係る穿孔具50においては、穿孔具40と同様に、軸部52の先端側FSの端面である先端面は、軸部52の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ2が鋭角な傾斜面52Aを有している。そして、先端面は、この傾斜面52Aのみで形成されている。
 穿孔具50において太径部54を形成する板状部54A及び54Bの構成は、穿孔具10における板状部14A及び14Bの構成と同様である。但し、軸部52の軸方向における板状部54Aの先端位置は、傾斜面52Aの先端側端部の位置と一致している。一方、軸部52の軸方向における板状部54Bの先端位置は、傾斜面52Aの基端側端部の位置と一致している。
 穿孔具50では、軸部52の先端面が、傾斜面52Aのみで構成されている。換言すると、軸部52の先端面が、軸部52の軸方向と直交する面に対して、斜めに形成されている。
 このため、穿孔具50を軸部52の軸方向に沿って移動させた場合に、まず、軸部52の端面である傾斜面52Aと側面とで形成された鋭角の角部50Eが、封止膜32(図1(A)参照)の表面に接触する。つまり、傾斜面52Aと封止膜32とが点接触に近い状態で接触する。
 これにより、例えば軸部の先端面が「軸方向と直交する直交面」で形成されている場合と比較して、封止膜32との接触面積が小さくなるため、同じ力で封止膜32を押圧した場合において、封止膜32の単位面積あたりに作用する圧力を高くすることができる。また、上述した穿孔具40と比較しても、軸部の42の先端面が、より尖って形成されている。このため、封止膜32を穿孔し易い効果が高められている。
 ここで、図10(A)には、先端面が「軸方向と直交する直交面のみ」で形成されている穿孔具10の軸部12が示されている。図10(B)には、先端面に傾斜面42A及び直交面42Bが形成された穿孔具40の軸部42が示されている。図10(C)には、先端面が傾斜面52Aである穿孔具50の軸部52が示されている。なお、図10においては、板状部の図示は省略されている。
 これらの図10に示されるように、軸部の先端面において傾斜面が大きくなればなるほど(換言すると、軸部52は軸部42よりも、または、軸部42は軸部12よりも、)端面に付着する液体(例えば液体K3)が、軸部の中心線CLから軸部の側面側へオフセットして形成される。
 例えば図10(C)に示されるように、軸部52の端面、すなわち傾斜面52Aに液滴を形成する場合があるが、このように、端面に付着する液体が、軸部の中心線CLから側面側へオフセットして形成されると、液体は軸部の側面に回り込み易くなる。液体が軸部の側面に回り込むと、ノズルである軸部52から液体を吐出する際には、この液滴の全量
を滴下できず、軸部52に液残りする可能性がある。
 これに対して、図10(B)に示す軸部42の傾斜面42A及び直交面42Bに液滴を形成する場合は、直交面が形成されていない軸部52と比較して、液体が軸部の側面に回り込み難い。このため、軸部42から液体を吐出する際には、液体を無駄なく使用し易い。図10(A)に示す軸部12は、軸部42と比較して、さらに液体を無駄なく使用し易い。
 このように、軸部の端面において傾斜面を大きくすれば封止膜の穿孔性能が向上し、直交面を大きくすれば液残りを少なくできる。
(変形例3)
 図11(A)、(B)に示す変形例に係る穿孔具60は、穿孔具10における軸部12、板状部14A及び14Bと同様の構成を備えた軸部62、板状部64A及び64Bを備えているが、以下の点で、穿孔具10と異なっている。
 穿孔具60においては、太径部64を形成する板状部64A及び64Bの先端は、軸部62の先端面から基端側へオフセットした位置に配置されている。
 ここで、図12(A)には、穿孔具10の軸部12、板状部14A及び14Bが示されている。穿孔具10においては、板状部14A及び14Bの先端が軸部12の先端面の位置と一致している。このため、軸部12の端面に付着した液体が、板状部14A及び14Bに回り込み易い。
 一方、図12(B)には、穿孔具60の軸部62、板状部64A及び64Bが示されている。穿孔具60においては、板状部64A及び64Bの先端は、軸部62の先端面から基端側へオフセットした位置に配置されている。このため、軸部62の端面に付着する液体は、板状部64A及び64Bに回り込み難い。これにより、穿孔具60では、軸部62から液体を吐出する際に、液滴が板状部64A及び64Bに回り込んで液残りすることを抑制できる。
(変形例4)
 図13(A)、(B)に示す変形例に係る穿孔具70においては、図11(A)、(B)に示した穿孔具60と同様に、太径部74を形成する板状部74A及び74Bの先端は、軸部72の先端面から基端側へオフセットした位置に配置されている。さらに、軸部72の先端側FSの端面である先端面は、軸部72の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ3が鋭角な傾斜面72Aを有している。また、軸部72の先端面は、傾斜面72Aに加えて、傾斜面72Aと接続し、かつ、軸方向と直交する直交面72Bを有している。
 このような穿孔具70によると、図8(A)、(B)に示した穿孔具40と同様の効果及び図11(A)及び図11(B)に示した穿孔具60と同様の効果の双方の効果を得ることができる。
(変形例5)
 図14(A)、(B)に示す変形例に係る穿孔具80においては、図11(A)、(B)に示した穿孔具60と同様に、太径部84を形成する板状部84A及び84Bの先端は、軸部82の先端面から基端側へオフセットした位置に配置されている。さらに、軸部82の先端側FSの端面である先端面は、軸部82の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ4が鋭角な傾斜面82Aを有している。そして、軸部82の先端面は、この傾斜面52Aのみで形成されている。
 このような穿孔具80によると、図9(A)、(B)に示した穿孔具50と同様の効果及び図11(A)、(B)に示した穿孔具60と同様の効果の双方の効果を得ることができる。
(その他の変形例)
 穿孔具10では、図3(C)に示すように、板状部14A及び14Bの先端側部分14Cは、基端側RSから先端側FSに向かって、軸部12の径方向における幅が細くなる形状である。また、板状部14A及び14Bの基端側部分14Dは、先端側FSから基端側RSに向かって軸部12の径方向における幅が細くなる形状であるが、本開示の実施形態はこれに限らない。
 例えば板状部は、軸部の軸方向に沿って「同一幅」としてもよい。すなわち、板状部は、板状部を正面視して長方形状や正方形状としてもよい。このような形状としても、液体が収容された収容部24の開口部24Aを封止する封止膜32を穿孔する際に、液体が収容部24の外部へ飛散することを抑制できる。また、板状部を、軸部の軸方向に沿って同一幅とすれば、板状部の製作が容易である。
 なお、板状部の先端側部分14Cだけを、基端側RSから先端側FSに向かって幅が細くなる形状としてもよい。あるいは、板状部の基端側部分14Dだけを、先端側FSから基端側RSに向かって幅が細くなる形状としてもよい。
 また、板状部は、軸部12の軸方向における全長に亘って、基端側RSから先端側FSに向かって幅が細くなる形状や先端側FSから基端側RSに向かって幅が細くなる形状としてもよい。このような形状としては、板状部を正面視した場合の形状が三角形状である形状等が挙げられる。
 また、穿孔具10では、図3(A)に示すように、太径部14が2枚の板状部14A及び14Bで形成されているが、本開示の実施形態はこれに限らない。例えば太径部は、1枚の板状部で形成してもよいし、3枚以上の板状部で形成してもよい。すなわち、太径部を板状部で形成する各実施形態において、板状部の枚数は特に限定されるものではない。板状部の枚数を少なくすれば、太径部の形成が容易であり、板状部の枚数を多くすれば、軸部の周りに多くの隙間を形成できる。なお、太径部を複数の板状部で形成する場合は、軸部の周方向において等間隔に配置することが好ましい。
<穿孔具の第二実施形態>
 図15に示す穿孔具200は、第一実施形態に係る各穿孔具と同様に、液体が収容された容器の開口部を封止する封止膜を穿孔可能な穿孔具である。すなわち、図1に示すカートリッジRCの各収容部20、22、24、26及び28に形成された開口部20A、22A、24A、26A及び28Aを封止する封止膜32を穿孔可能な穿孔具である。
 図15(A)、(B)に示すように、穿孔具200は、封止膜32を突き刺す先端側FSから基端側RSへ延びる棒状の軸部202と、軸部202の先端部に形成された太径部としての筒状部204と、を備えている。
 軸部202は、軸部202の軸方向に対して直交する断面が円形の筒状とされ、内部に液体が流れる管路202Aが形成されており、液体の吸引及び吐出を行うノズルとして機能する。
 一方、筒状部204は、軸方向と直交する断面形状が円形の筒状部である。また、この筒状部204は、軸部202と相似形で、かつ、軸部202を拡径した形状である。すなわち、筒状部204の後端側部分204Aは、軸部202の基端側RSから先端側FSへ向かって徐々に拡径するテーパー形状である。そして、後端側部分204Aの先端に、先端側部分204Bが接続されている。先端側部分204Bは、軸部202の軸方向に沿って同一径の筒状に形成されている。筒状部204、すなわち先端側部分204Bの先端は、軸部202の軸方向に対して直交して形成されている。なお、「相似形」とは、軸部202と筒状部204の外形が相似形であることを示している。軸部202と筒状部204の肉厚は互いに異なっていてもよいし、等しくてもよい。
 ここで、図15(C)に示すように、筒状部204の断面の外形に外接する外接円の径R4は、軸部202の断面の外形に外接する外接円の径R3よりも大きい。なお、筒状部204の「断面」及び軸部202の「断面」とは、軸部202の軸方向と直交する断面であり、図15(B)におけるC-C線によって切断される断面である。
 また、図15(B)に示すように、軸部202の先端、すなわち穿孔具200の先端から太径部である筒状部204の基端側RSの端部までの長さL3は、軸部202の収容部24に対する最大挿入深さL4より短い。なお、筒状部204は、軸部202の一部であり、「軸部202の先端」とは筒状部204の先端を示す。
<作用及び効果>
 本開示の穿孔具200では、図15(A)に示すように、軸部202の先端部に太径部としての筒状部204が形成されている。図15(C)に示すように、この筒状部204は、軸部202の軸方向と直交する横断面の外接円の径R4が、軸部202の横断面の外接円の径R3よりも大きい。
 この穿孔具200を用いて封止膜32を穿孔する際にも、図15(B)に示すように、封止膜32には、貫通孔32Sが開く。そして、穿孔具200を収容部24へ押し仕込んだ際には、液体が空気に伴われて収容部24の外部へ噴出することが抑制される。
 なぜならば、穿孔具200の収容部24への挿入量が増して、筒状部204がすべて収容部24に収まり、筒状部204が設けられていない軸部202が封止膜32の位置に達すると、穿孔具200と貫通孔32Sの内縁との隙間が大きくなる。軸部202は筒状部204より細径であるため、筒状部204と貫通孔32Sの内縁との隙間より、軸部202と貫通孔32Sの内縁との隙間のほうが大きい。また、軸部の径が先端側から基端側まで一定である比較例の穿孔具500を用いた場合と比較しても、隙間は大きい。これにより、収容部24の内部の液体K3は、隙間に保持され難い。
 したがって、穿孔具200の挿入量が増加しても、隙間に空気の通り道が常に確保されるため、液体K3が収容部24の外部へ噴出することが抑制される。
 また、本開示の穿孔具200では、太径部が、軸方向と直交する断面形状が円形の筒状部204とされている。すなわち、太径部が軸部の径方向に張り出した板状部である場合のように、筒状の部材の外側へ張り出す板状部材が無い。このため穿孔具200は、穿孔具の周辺に配置された何らかの部材に引っ掛かる虞が少ない。
 また、本開示の穿孔具200では、太径部である筒状部204が、軸部202と相似形で、かつ、軸部202を拡径した形状である。筒状部204が軸部202と相似形であることにより、穿孔具200を収容部24に挿入して、軸部202を貫通孔32Sに配置し
た際に、軸部202の周囲には均等幅の隙間が形成されやすい。これにより、封止膜32の裏面に液体が偏って付着している場合でも、液体が付着していない部分にも隙間が形成されやすいので、空気の通り道を確保し易い。
 また、筒状部204は軸部202が拡径しているため、軸部202より断面積が大きくなる。このため、封止膜32を穿孔する際等に負荷が掛かりやすい筒状部204の強度が他の部分より大きくなる。このため、穿孔具200が破損し難く、メンテンナンスが容易である。
(変形例1)
 図16(A)に示す変形例に係る穿孔具210は、軸部212及び筒状部214を備えている。穿孔具210は、以下の点で穿孔具200と異なる。
 筒状部214の先端側FSの端面である先端面は、軸部212の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ5が鋭角な傾斜面214Aを有している。また、筒状部214の先端面は、傾斜面214Aに加えて、傾斜面214Aと接続し、かつ、軸方向と直交する直交面214Bを有している。
 このような穿孔具210によると、図8(A)、(B)に示した穿孔具40と同様の効果を得ることができる。
(変形例2)
 図16(B)に示す変形例に係る穿孔具220は、軸部222及び筒状部224を備えている。穿孔具220は、以下の点で穿孔具200と異なる。
 図16(B)に示す変形例に係る穿孔具220においては、穿孔具210と同様に、筒状部214の先端側FSの端面である先端面は、軸部212の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ6が鋭角な傾斜面224Aを有している。そして、先端面は、この傾斜面224Aのみで形成されている。
 このような穿孔具220によると、図9(A)、(B)に示した穿孔具50と同様の効果を得ることができる。
(変形例3)
 図17(A)に示す変形例に係る穿孔具230は、軸部232及び筒状部234を備えている。穿孔具230は、以下の点で穿孔具200と異なる。
 穿孔具230においては、筒状部234の内部に軸部232が挿通されている。具体的には、穿孔具230は、軸方向に亘って断面形状が等しい直管である軸部232と、軸部232の外周を覆う筒状部234とで、二重管が形成されている。筒状部234は、基端側RSの端部が、先端側FSから基端側RSへ向かって縮径して、軸部232に接合されている。
 このような二重管構造の穿孔具230は、例えば軸部232と筒状部234とを別々に製造し、接合することで形成できるため、太径部の形成が容易である。これに対して、軸部を拡径した筒状部で太径部を形成する場合は、切削や絞り加工等によって形成する必要があり、太径部を形成し難い。
 また、例えば穿孔具230をノズルとして用いて、収容部24の内部で吸引した液体を収容部24の外部で吐出する際、液体は、直管である軸部232の内側を通って吐出される。このため、液体が太径部を通過する際に乱流などが発生し難く、吐出性能が安定する。これに対して、軸部を拡径した筒状部で太径部を形成する場合は、拡径部分において、管路に屈曲部が形成される。また、加工精度が悪い場合、拡径部分に凹凸が形成される場合もある。液体を扱う管路の内表面に屈曲部や凹凸があると、管路内で乱流が発生したり汚れが付着したりし易くなる。このような乱流や汚れの発生を抑制するためには、管路の内表面を研磨する対策が挙げられるが、このような対策は必ずしも十分とは言えず、また、製作にも手間がかかる。
 穿孔具230のように二重管構造とすることで、管路の内表面を研磨する必要性が低くなり、たとえ研磨する場合でも、研磨作業が容易である。
(変形例4)
 図17(B)に示す変形例に係る穿孔具240は、軸部242及び筒状部244を備えている。穿孔具240は、以下の点で穿孔具230と異なる。
 軸部242の先端側FSの端面である先端面は、軸部242の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ6が鋭角な傾斜面242Aを有している。また、軸部242の先端面は、傾斜面242Aに加えて、傾斜面242Aと接続し、かつ、軸方向と直交する直交面242Bを有している。
 同様に、筒状部244の先端側FSの端面である先端面は、筒状部244の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ6が鋭角な傾斜面244Aを有している。また、筒状部244の先端面は、傾斜面244Aに加えて、傾斜面244Aと接続し、かつ、軸方向と直交する直交面244Bを有している。
 このような穿孔具240によると、図8(A)、(B)に示した穿孔具40と同様の効果を得ることができる。
 なお、傾斜面242A及び244Aは、同一平面上に形成される面であり、直交面242B及び直交面244Bも、同一平面上に形成される面である。傾斜面242A及び244Aの傾斜角度は同じ挟み角θ6とされているが、異なる角度としてもよい。また、傾斜面242A及び244Aは、少なくとも一方が形成されていればよい。すなわち、軸部242及び筒状部244の何れか一方は、先端面を、軸方向と直交する直交面のみで形成してもよい。
(変形例5)
 図17(C)に示す変形例に係る穿孔具250は、軸部252及び筒状部254を備えている。穿孔具250は、以下の点で穿孔具230と異なる。
 軸部252の先端側FSの端面である先端面は、軸部252の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ7が鋭角な傾斜面252Aを有している。そして、先端面は、この傾斜面252Aのみで形成されている。
 同様に、筒状部254の先端側FSの端面である先端面は、筒状部254の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線
CL)との挟み角θ7が鋭角な傾斜面254Aを有している。そして、先端面は、この傾斜面254Aのみで形成されている。
 このような穿孔具250によると、図9(A)、(B)に示した穿孔具50と同様の効果を得ることができる。
 なお、傾斜面252A及び254Aは、同一平面上に形成される面である。傾斜面252A及び254Aの傾斜角度は同じ挟み角θ7とされているが、異なる角度としてもよい。また、傾斜面252A及び254Aは、少なくとも一方が形成されていればよい。すなわち、軸部252及び筒状部254の何れか一方は、先端面を、軸方向と直交する直交面のみで形成してもよい。
(変形例6)
 図18(A)に示す変形例に係る穿孔具260は、軸部262及び筒状部264を備えている。穿孔具260は、以下の点で穿孔具230と異なる。
 穿孔具260においては、筒状部264の先端は、軸部262の先端面から基端側へオフセットした位置に配置されている。このような穿孔具260によると、図11(A)、(B)に示した穿孔具60と同様の効果を得ることができる。
(変形例7)
 図18(B)に示す変形例に係る穿孔具270は、軸部272及び筒状部274を備えている。穿孔具270は、以下の点で穿孔具230と異なる。
 穿孔具270においては、筒状部274の先端は、軸部272の先端面から基端側へオフセットした位置に配置されている。
 また、軸部272の先端側FSの端面である先端面は、軸部272の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ8が鋭角な傾斜面272Aを有している。また、軸部272の先端面は、傾斜面272Aに加えて、傾斜面272Aと接続し、かつ、軸方向と直交する直交面272Bを有している。
 同様に、筒状部274の先端側FSの端面である先端面は、筒状部274の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ8が鋭角な傾斜面274Aを有している。また、筒状部274の先端面は、傾斜面274Aに加えて、傾斜面274Aと接続し、かつ、軸方向と直交する直交面274Bを有している。
 このような穿孔具270によると、図8(A)、(B)に示した穿孔具40と同様の効果及び図11(A)、(B)に示した穿孔具60と同様の効果の双方の効果を得ることができる。
(変形例8)
 図18(C)に示す変形例に係る穿孔具280は、軸部282及び筒状部284を備えている。穿孔具280は、以下の点で穿孔具230と異なる。
 穿孔具280においては、筒状部284の先端は、軸部282の先端面から基端側へオフセットした位置に配置されている。
 また、軸部282の先端側FSの端面である先端面は、軸部282の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ9が鋭角な傾斜面282Aを有している。そして、先端面は、この傾斜面282Aのみで形成されている。
 同様に、筒状部284の先端側FSの端面である先端面は、筒状部284の軸方向と直交する方向に対して基端側RSに傾斜する傾斜面であって、軸方向に延びる直線(中心線CL)との挟み角θ9が鋭角な傾斜面284Aを有している。そして、先端面は、この傾斜面284Aのみで形成されている
 このような穿孔具280によると、図9(A)、(B)に示した穿孔具50と同様の効果及び図11(A)、(B)に示した穿孔具60と同様の効果の双方の効果を得ることができる。
(その他の変形例)
 太径部として筒状部が形成された第二実施形態における上記の各実施例において、筒状部は軸部と相似形状とされているが、本開示の実施形態はこれに限らない。例えば軸部が真円形状の場合、筒状部は多角形状や楕円形状としてもよい。
 また、太径部として板状部が形成された第一実施形態及び筒状部が形成された第二実施形態の双方において、軸部の内部には、必ずしも液体が流れる管路を形成しなくてもよい。すなわち、本開示の穿孔具は、封止膜32を穿孔可能なものであればよい。
 また、本開示の各穿孔具によって穿孔される容器としては、カートリッジRCを例示して説明したが、穿孔具10は、液体が収容可能な他の容器に使用することができることは勿論である。
 なお、本開示は以上の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において構成を省略する又は異なる構成と入れ替える等、適宜変更を加えて実施することができる。
 2022年3月22日に出願された日本国特許出願2022-045776号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (20)

  1.  液体が収容された容器の開口部を封止する封止膜を穿孔可能な穿孔具であって、
     前記封止膜を突き刺す先端側から基端側へ延びる棒状の軸部と、
     前記軸部の先端部に形成された太径部であって、軸方向と直交する横断面の外形に外接する外接円の径が、前記軸部の前記横断面の外形に外接する外接円の径よりも大きな太径部と、
     前記軸部の先端から前記太径部の前記基端側の端部までの長さは、前記軸部の前記容器に対する最大挿入深さより短い、
     穿孔具。
  2.  前記太径部は、
     前記軸部の径方向に張り出し、かつ、板面が前記軸方向に延びる板状部、で形成されている、
     請求項1に記載の穿孔具。
  3.  前記板状部は、軸部を中心とする対称位置に複数枚形成されている、
     請求項2に記載の穿孔具。
  4.  前記板状部の厚みは、前記軸部の外径より薄い、
     請求項2又は3に記載の穿孔具。
  5. 前記軸部の前記先端側の端面である先端面は、前記軸部の軸方向と直交する方向に対して前記基端側に傾斜する傾斜面であって、前記軸方向に延びる直線との挟み角が鋭角な傾斜面を有している、
     請求項2~4の何れか1項に記載の穿孔具。
  6.  前記先端面は、前記傾斜面に加えて、前記傾斜面と接続し、かつ、軸方向と直交する直交面を有する、請求項5に記載の穿孔具。
  7.  前記先端面は、前記傾斜面のみで形成されている、請求項5に記載の穿孔具。
  8.  前記板状部の先端は、前記軸部の前記先端側の端面である先端面から前記基端側へオフセットした位置に配置されている、請求項2~7の何れか1項に記載の穿孔具。
  9.  前記板状部の先端側部分は、前記基端側から前記先端側に向かって前記軸部の径方向における幅が細くなる形状である、請求項2~8の何れか1項に記載の穿孔具。
  10.  前記板状部の基端側部分は、前記先端側から前記基端側に向かって前記軸部の径方向における幅が細くなる形状である、請求項2~9の何れか1項に記載の穿孔具。
  11.  前記太径部は、前記軸方向と直交する断面形状が円又は多角形の筒状部である、
     請求項1に記載の穿孔具。
  12.  前記筒状部は、前記軸部と相似形で、かつ、前記軸部を拡径した形状である、
     請求項11に記載の穿孔具。
  13.  前記筒状部の前記先端側の端面である先端面は、前記軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、前記軸方向に延びる直線との挟み角が鋭角な傾斜面を有している、請求項11又は12に記載の穿孔具。
  14.  前記先端面は、前記傾斜面に加えて、前記傾斜面と接続し、かつ、軸方向と直交する直交面を有する、請求項13に記載の穿孔具。
  15.  前記先端面は、前記傾斜面のみで形成されている、請求項13に記載の穿孔具。
  16.  前記筒状部の内部には前記軸部が挿通されている、
     請求項12に記載の穿孔具。
  17.  前記軸部及び前記筒状部の前記先端側の端面である先端面の少なくとも一方は、前記軸部の軸方向と直交する方向に対して基端側に傾斜する傾斜面であって、前記軸方向に延びる直線との挟み角が鋭角な傾斜面を有している、
     請求項16に記載の穿孔具。
  18.  前記先端面は、前記傾斜面に加えて、前記傾斜面と接続し、かつ、軸方向と直交する直交面を有する、請求項17に記載の穿孔具。
  19.  前記先端面は、前記傾斜面のみで形成されている、請求項17に記載の穿孔具。
  20.  前記軸部は、内部に液体が流れる管路が形成されており、前記液体の吸引及び吐出を行うノズルとして機能する、請求項1~19の何れか1項に記載の穿孔具。
PCT/JP2023/010395 2022-03-22 2023-03-16 穿孔具 WO2023182165A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-045776 2022-03-22
JP2022045776 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182165A1 true WO2023182165A1 (ja) 2023-09-28

Family

ID=88101518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010395 WO2023182165A1 (ja) 2022-03-22 2023-03-16 穿孔具

Country Status (1)

Country Link
WO (1) WO2023182165A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974457A (en) * 1989-04-13 1990-12-04 Hightech Network S.C.I. Ab Apparatus and method for providing a passage in a sealing member of a container of a fluid sample
JPH03180764A (ja) * 1989-12-08 1991-08-06 Toshiba Corp 分注ノズル
JPH04116767U (ja) * 1991-03-30 1992-10-20 株式会社島津製作所 分注装置
US6698470B1 (en) * 2000-02-08 2004-03-02 Cybio Instruments Gmbh Method and device for collecting fractions after material separation
WO2009041031A1 (ja) * 2007-09-25 2009-04-02 Fujifilm Corporation 試薬容器
WO2013076998A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 分注装置に用いられるピペットチップセット及びこれを用いた試薬カートリッジフィルムへの穴開け方法
WO2016098622A1 (ja) * 2014-12-18 2016-06-23 株式会社 日立ハイテクノロジーズ サンプリングノズルおよびこれを用いた自動分析装置並びにサンプリングノズルの製造方法
WO2016139997A1 (ja) * 2015-03-02 2016-09-09 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2018083646A (ja) * 2016-11-22 2018-05-31 キョーラク株式会社 積層剥離容器
WO2019107155A1 (ja) * 2017-11-29 2019-06-06 栄研化学株式会社 チップセット
JP2019174189A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 穴開け器、分注ピペットラック、核酸抽出セット、穴開け方法および核酸抽出方法
WO2019202805A1 (ja) * 2018-04-20 2019-10-24 積水メディカル株式会社 サンプリング機構及びサンプリング方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974457A (en) * 1989-04-13 1990-12-04 Hightech Network S.C.I. Ab Apparatus and method for providing a passage in a sealing member of a container of a fluid sample
JPH03180764A (ja) * 1989-12-08 1991-08-06 Toshiba Corp 分注ノズル
JPH04116767U (ja) * 1991-03-30 1992-10-20 株式会社島津製作所 分注装置
US6698470B1 (en) * 2000-02-08 2004-03-02 Cybio Instruments Gmbh Method and device for collecting fractions after material separation
WO2009041031A1 (ja) * 2007-09-25 2009-04-02 Fujifilm Corporation 試薬容器
WO2013076998A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 分注装置に用いられるピペットチップセット及びこれを用いた試薬カートリッジフィルムへの穴開け方法
WO2016098622A1 (ja) * 2014-12-18 2016-06-23 株式会社 日立ハイテクノロジーズ サンプリングノズルおよびこれを用いた自動分析装置並びにサンプリングノズルの製造方法
WO2016139997A1 (ja) * 2015-03-02 2016-09-09 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2018083646A (ja) * 2016-11-22 2018-05-31 キョーラク株式会社 積層剥離容器
WO2019107155A1 (ja) * 2017-11-29 2019-06-06 栄研化学株式会社 チップセット
JP2019174189A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 穴開け器、分注ピペットラック、核酸抽出セット、穴開け方法および核酸抽出方法
WO2019202805A1 (ja) * 2018-04-20 2019-10-24 積水メディカル株式会社 サンプリング機構及びサンプリング方法

Similar Documents

Publication Publication Date Title
JP5272205B2 (ja) 試薬容器
JP2011506006A (ja) 2本のピンを有するスパイク
JP2014506494A (ja) 第1のリザーバーを第2のリザーバーに接続する接続装置
US11234682B2 (en) Apparatus for detecting analyte in a liquid sample
JP2011006153A (ja) 貫通性キャップおよび関連する流体移動デバイス
RU2442968C2 (ru) Механическое устройство для смешивания пробы текучей среды с обрабатывающим раствором
JP2007071575A (ja) 液体試料吸引装置、及びこの液体試料吸引装置を備える分析装置
KR101984502B1 (ko) 철근 콘크리트 구조물 안전진단용 탄산화 깊이 측정장치
JP7161492B2 (ja) チップセット
WO2023182165A1 (ja) 穿孔具
JP6681899B2 (ja) 自動分析装置
EP3565665B1 (en) Sample tube with integrated mixing plunger head
JP3180120U (ja) キャップピアッシング用穿孔針
JP6041800B2 (ja) 試薬容器
JP5849950B2 (ja) 送液装置
US7850919B2 (en) Liquid sample collector interface
JPH07191040A (ja) 試薬容器用の蓋
JP2019174189A (ja) 穴開け器、分注ピペットラック、核酸抽出セット、穴開け方法および核酸抽出方法
WO2023182166A1 (ja) 液体容器
CN213567462U (zh) 用于医疗样品运输和处理的重新闭合隔膜盖
JP7386722B2 (ja) サンプルピペッターのための中空針
WO2021020547A1 (ja) 試薬カートリッジ
CN113804910A (zh) 微量样本加样方法、装置、样本分析仪及可读存储介质
EP4140587A1 (en) Particle detection device and operation method
CN216144810U (zh) 一种微粒检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774761

Country of ref document: EP

Kind code of ref document: A1