WO2016136726A1 - 樹脂組成物及びその成形体 - Google Patents

樹脂組成物及びその成形体 Download PDF

Info

Publication number
WO2016136726A1
WO2016136726A1 PCT/JP2016/055221 JP2016055221W WO2016136726A1 WO 2016136726 A1 WO2016136726 A1 WO 2016136726A1 JP 2016055221 W JP2016055221 W JP 2016055221W WO 2016136726 A1 WO2016136726 A1 WO 2016136726A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
rubber
carboxylic acid
earth metal
alkaline earth
Prior art date
Application number
PCT/JP2016/055221
Other languages
English (en)
French (fr)
Inventor
新治 松岡
沙紀 藤田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP16755470.8A priority Critical patent/EP3263645B1/en
Priority to JP2016513165A priority patent/JP6610537B2/ja
Priority to US15/552,953 priority patent/US10800901B2/en
Priority to KR1020177023005A priority patent/KR101884146B1/ko
Priority to CN201680012754.6A priority patent/CN107429037B/zh
Publication of WO2016136726A1 publication Critical patent/WO2016136726A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a resin composition containing a polyacetal resin, a salt composed of a carboxylic acid and an alkaline earth metal, and a rubber-containing graft polymer, and a molded article formed by molding this resin composition.
  • Polyacetal resin has excellent mechanical properties, fatigue resistance, friction and wear resistance, chemical resistance and moldability, so it can be used for automobile parts, electrical / electronic equipment parts, other precision machine parts, building materials / piping members, Widely used in fields such as daily life and cosmetic parts and medical parts.
  • the demand for quality has been increasing.
  • the properties required for polyacetal resin are that mechanical strength does not decrease during processing such as extrusion or molding, that there is no deposit on the mold (mold deposit), and long-term heating conditions (heat aging). No harmful substances or odors, no deterioration of mechanical properties, no molding defects such as silver streaks and voids in molded products, and no formaldehyde, a thermal decomposition product of polyacetal resin, remaining in molded products Etc.
  • thermal stability In particular, due to its chemical structure, polyacetal resins inherently decompose and generate formaldehyde under heated atmosphere, acidic conditions (eg, below pH 6.0) or alkaline conditions (eg, above pH 12.0).
  • thermal stability is improved, and thermal decomposition (formaldehyde generation, weight loss due to oxidation, strength reduction due to decrease in molecular weight of polyacetal resin) is suppressed and / or obtained during the molding process. It is required to suppress the generation of odors and harmful substances at the formaldehyde content and the operating temperature (80 to 120 ° C.) in the molded article.
  • the impact strength of polyacetal resin is not sufficient for many applications. Therefore, the impact strength is improved by blending a powder containing a rubber-containing graft polymer.
  • the rubber-containing graft polymer is generally produced by emulsion polymerization and recovered as a powder by coagulation with salt or acid or spray drying.
  • the powder containing the rubber-containing graft polymer is acidic (for example, 10 parts by weight of the powder containing the rubber-containing graft polymer is blended in 90 parts by weight of deionized water (water equivalent to JISK0557A3) and dispersed uniformly. If the dispersion measured at 25 ° C.
  • Patent Document 1 discloses an example in which magnesium stearate or calcium citrate is blended with a powder containing a rubber-containing graft polymer having a pH of 7.0 to 8.0.
  • a molding process of a resin composition containing a polyacetal resin and a rubber-containing graft polymer can be obtained only by blending a salt made of a carboxylic acid and an alkaline earth metal that are generally marketed as stabilizers for polyacetal resins.
  • thermal decomposition formaldehyde generation, weight loss due to oxidation, strength reduction due to molecular weight reduction of polyacetal resin
  • / or odor at the amount of formaldehyde and operating temperature (80-120 ° C) in the obtained molded product It was difficult to sufficiently suppress the generation of harmful substances.
  • the rubber-containing graft polymer generally used as a reinforcing agent for polyacetal resin contains a large amount of alkali metals such as sodium and potassium, it cannot sufficiently suppress thermal decomposition accompanied by weight loss in the molding process.
  • a salt (stabilizer) composed of a carboxylic acid having a pH of 8 to 12 and an alkaline earth metal is added to a resin composition containing a polyacetal resin and a rubber-containing graft polymer.
  • a resin composition comprising: An ISO-527 type 1A test piece obtained by injection molding of the resin composition at a molding temperature of 205 ° C. has a formaldehyde content of 0.10 ppm or less by a VDA275 test, The weight loss rate measured by TG-DTA after holding at 230 ° C. for 20 minutes in air is 4% or less.
  • Resin composition (2) polyacetal resin (A), Salt (B) comprising carboxylic acid and alkaline earth metal, and rubber-containing graft polymer (C)
  • a resin composition comprising: When the salt (B) composed of the carboxylic acid and the alkaline earth metal is dissolved in 18 parts by mass of deionized water containing 2 parts by mass of a nonionic dispersant (for example, 10 mol adduct of nonylphenol with ethylene oxide), the pH is 8 To 12, preferably 10 to 12, A resin composition having a sodium and potassium content of 200 ppm or less in the resin composition; (3) Salt (B) comprising carboxylic acid and alkaline earth metal, and rubber-containing graft polymer (C) A powder (X) containing The salt (B) composed of the carboxylic acid and the alkaline earth metal has a pH of 8 to 12 when 2 parts by mass thereof is dissolved in 18 parts by mass of deionized water containing a nonionic dispersant.
  • Powder (X) having a sodium and potassium content of 1500 ppm or less; (4) A resin composition comprising a polyacetal resin (A) and the powder (X) described in (3) above; (5) Resin composition as described in said (1) or (4) whose sodium and potassium content in a resin composition is 200 ppm or less; (6) The resin composition according to any one of (1), (2), (4) and (5), wherein the alkaline earth metal is calcium; (7) The above-mentioned (1), (2) and (4) to (6), wherein the rubber-containing graft polymer (C) contains one or more selected from the group consisting of butadiene rubber and styrene / butadiene copolymer rubber.
  • a resin composition according to any one of (8) The tensile yield value of a 1A type test piece of ISO 527 obtained by injection molding the resin composition at a molding temperature of 205 ° C. under a tensile speed of 50 mm / min is 28 MPa or more, The impact value at 25 ° C. of the Charpy impact test (notch tip radius 0.25 mm ⁇ 0.05 mm) is 12 kJ / m 2 or more.
  • a resin composition according to any one of (10) The resin composition according to any one of the above (1), (2), and (4) to (9), wherein the FOG value according to the VDA278 test is 100 ⁇ g / g or less; (11) Ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4- Hydroxyphenyl) propionate] and hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], one or more hindered phenolic antioxidants (D).
  • a process for producing a resin composition comprising: The salt (B) comprising the carboxylic acid and the alkaline earth metal has a pH of 8 to 12 when 2 parts by mass thereof is dissolved in 18 parts by mass of deionized water containing a nonionic dispersant.
  • molding process of the resin composition containing a polyacetal resin and a rubber containing graft polymer and the amount of formaldehyde in a molded article can be reduced.
  • These molded products are VDA (German Automobile Manufacturers Association) standards, VDA275 (formaldehyde amount in the molded product), VDA278 (molded product is kept at 90-120 ° C, and volatile content is detected for about 1h. (The organic compound having 32 or less carbon atoms)). Further, it has practical mechanical strength required for automobile vehicle members and the like, and is suitably used for vehicle interior members and the like.
  • the polyacetal resin is a polymer compound having an oxymethylene group (—CH 2 O—) as a main structural unit, and is a polyacetal homopolymer (for example, product name “Dellin” manufactured by DuPont, USA, manufactured by Asahi Kasei Corporation): Trade name “Tenac 4010”, etc.), polyacetal copolymer containing other comonomer units in addition to oxymethylene groups (for example, Ticona's trade name “Hosta Foam”, Polyplastics Co., Ltd .: trade name “Duracon” Etc.).
  • the comonomer unit contained in the polyacetal copolymer is an oxyalkylene unit having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms (for example, an oxyethylene group (—CH 2 CH 2 O—), an oxypropylene group, an oxytetramethylene group). Group) and the like.
  • the content of the comonomer unit contained in the polyacetal copolymer is preferably 0.01 to 20 mol%, more preferably 0.03 to 10 mol%, and more preferably 0.1 to 5 mol% with respect to 100 mol% of the whole polyacetal resin. Further preferred.
  • the salt (B) is generated from a carboxylic acid and an alkaline earth metal.
  • the carboxylic acid refers to an organic compound containing a carboxyl group.
  • Carboxylic acids include formic acid, acetic acid, maleic acid, fumaric acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachic acid, behenic acid , Lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melissic acid, laccellic acid, undecylenic acid, oleic acid, elaidic acid, cetreic acid, erucic acid, brassic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, propiol Acid, stearoleic acid, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, 16-hydroxyhexadecanoic acid, 10-hydroxyhexadecanoic
  • the carboxylic acid is preferably a saturated or unsaturated aliphatic carboxylic acid having 10 to 36 carbon atoms.
  • a saturated or unsaturated aliphatic carboxylic acid having 10 or more carbon atoms has an acid dissociation constant (pKa) of approximately 4.9, so that the salt with an alkaline earth metal has a preferable pH range (8 Therefore, the effect as a stabilizer is further improved. Further, since the molecular weight is large, the amount removed by the vent of the extruder is also reduced.
  • the carboxylic acid may be substituted with a hydroxyl group.
  • the carboxylic acid an aliphatic carboxylic acid having 12 to 22 carbon atoms is more preferable.
  • the salt with an alkaline earth metal is easily dispersed in the resin composition containing the polyacetal resin (A) or the rubber-containing graft polymer (C). The thermal stability of the is improved efficiently.
  • an alkali metal is an element other than hydrogen among elements corresponding to Group 1 in the periodic table, and corresponds to sodium, potassium, and the like.
  • an alkaline earth metal is an element corresponding to Group 2 in the periodic table, and corresponds to magnesium, calcium and the like.
  • salt (B) consisting of carboxylic acid and alkaline earth metal
  • the thermal stability of the polyacetal resin is further enhanced, and thermal decomposition during the molding process (formaldehyde generation, weight loss due to oxidation, strength due to molecular weight reduction of the polyacetal resin)
  • Salt of an aliphatic carboxylic acid having 12 to 22 carbon atoms and an alkaline earth metal is preferable, and a salt of aliphatic carboxylic acid having 12 to 22 carbon atoms and calcium is more preferable. More preferred is calcium phosphate.
  • Calcium stearate is a typical stabilizer for polyacetal resin. Calcium stearate available as an industrial product may contain a carboxylic acid and / or a salt composed of a carboxylic acid and an alkali metal as a minor component.
  • Examples of calcium stearate products include “Orlabrite NC”, “Calcium stearate GF-200”, and “Calcium stearate” manufactured by NOF Corporation.
  • calcium stearate is used as a stabilizer for polyacetal resin as a product of the above calcium stearate, and is a method of forming calcium stearate by adding calcium chloride to an aqueous solution of sodium stearate. Obtained by (wet method, metathesis method). From the manufacturing method, it is easy to contain stearic acid, calcium chloride, and sodium stearate as impurities.
  • “Olabrite NC” can also be obtained by a wet method, but it can be obtained by adjusting the ratio of raw materials to reduce sodium carboxylate (sodium stearate) as much as possible. Further, calcium stearate can also be obtained by a method (dry method / direct method) in which stearic acid is directly mixed and reacted with a calcium salt, such as “calcium stearate GF-200”. From the manufacturing method, it is easy to contain calcium hydroxide as an impurity.
  • the salt (B) composed of a carboxylic acid and an alkaline earth metal in the present invention 2 parts by mass of the salt (B) composed of the carboxylic acid and an alkaline earth metal is combined with 0.2 part by mass of an ethylene oxide 10 mol adduct of nonylphenol. It is preferable to mix in 18 parts by mass of an aqueous solution consisting of 17.8 parts by mass of deionized water having an electric conductivity of 4 ⁇ S / cm or less, and uniformly disperse, then having a pH measured at 25 ° C. of 8 to 12, More preferred is 10-12.
  • Examples of such a pH include the aforementioned “calcium stearate GF-200” (manufactured by NOF Corporation, pH 10.9 to 11.0 in the lot used in this example).
  • the pH of the above-mentioned “calcium stearate” is 7.5 in the lot used in this example, and the pH of “Olabrite NC” is about 6.0 to 7.0.
  • the salt (B) composed of a carboxylic acid and an alkaline earth metal has extremely low water solubility in water, and accuracy of pH measurement is not required unless an aqueous solution of a nonionic dispersant such as an ethylene oxide 10 mol adduct of nonylphenol is used. Lower.
  • the pH of the salt (B) composed of carboxylic acid and alkaline earth metal is 8 or more because the effect of stabilizing the polyacetal resin (A) is enhanced.
  • the pH of 12 or less is preferable because the amount of formaldehyde generated by thermal decomposition of the polyacetal resin (A) can be reduced.
  • the salt (B) composed of a carboxylic acid and an alkaline earth metal is basically alkaline.
  • the salt (B) composed of carboxylic acid and alkaline earth metal can be coordinated with 1 mol of alkaline earth metal with respect to 2 mol of carboxylic acid. (Coordination number is 2). The closer the coordination number is to 2, the more alkaline.
  • Products containing salts (B) consisting of carboxylic acids and alkaline earth metals that are generally commercially available include carboxylic acid and alkali metal salts, alkaline earth metal hydroxides, and carboxylic acids (free fatty acids). Which also affect the pH. Generally, when each of 1) to 3) is satisfied, the pH is inclined more toward the alkali side. 1) Many salts of carboxylic acid and sodium 2) Many salts of calcium hydroxide 3) Little carboxylic acid (free fatty acid)
  • the salt (B) consisting of carboxylic acid and alkaline earth metal can be obtained as a product.
  • a salt (B) composed of a carboxylic acid and an alkaline earth metal having a purity of 100% from a general commercial product a salt (B) composed of a carboxylic acid and an alkaline earth metal is 95%. If it is above, it shall be contained in "the salt (B) which consists of carboxylic acid and alkaline-earth metal" of this invention.
  • the rubber-containing graft polymer (C) constituting the resin composition of the present invention is obtained by graft polymerization of a “vinyl monomer” to a “rubber-like polymer”.
  • the rubbery polymer those having a glass transition temperature of 0 ° C. or lower can be used.
  • the glass transition temperature of the rubber-like polymer is 0 ° C. or less, the impact strength represented by the Charpy impact test value of the molded product obtained from the resin composition of the present invention is improved.
  • Specific examples of the rubbery polymer include the following.
  • the rubber-containing graft polymer (C) is a rubber having a lower glass transition temperature, such as butadiene rubber and styrene.
  • -It is preferable to contain 1 or more types chosen from the group which consists of a butadiene copolymer rubber, silicone rubber, and silicone-acrylic composite rubber. Due to improved strength development of polyacetal resin and low volatility of low molecular weight components of silicone under long-term heating conditions (heat aging) (excellent VDA278 characteristics), butadiene rubber and styrene are better than rubber containing silicone rubber.
  • -A rubber containing at least one selected from the group consisting of butadiene copolymer rubber is more preferable.
  • Rubber particle size affects mechanical strength (tensile properties, impact strength).
  • a preferred rubber mass average particle diameter is 100 to 300 nm.
  • the mass average particle diameter of rubber can be measured by a light scattering method, a capillary method, or the like, but it is preferable in terms of accuracy to measure by a capillary method (capillary particle size distribution meter).
  • the particle diameter is in the range of 100 to 300 nm, the impact value represented by the notched Charpy impact test and the like is improved while maintaining the tensile properties (elastic modulus and tensile yield strength).
  • the particle diameter of the rubber is preferably monodispersed.
  • the degree of monodispersity can be shown by a value (dw / dn) obtained by dividing the mass average particle diameter (dw) by the number average particle diameter (dn).
  • the ratio of the rubber-like polymer in the rubber-containing graft polymer (C) is 70 to 90% by mass, the powder characteristics (powder fluidity and particle diameter), the polyacetal resin (A) and the rubber-containing graft polymer. It is preferable at the point of the mechanical strength (tensile yield strength and impact strength) of the resin composition containing (C).
  • vinyl monomers that are graft-polymerized to rubbery polymers include aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; acrylic acid esters such as methyl acrylate and butyl acrylate; methyl methacrylate And methacrylates such as ethyl methacrylate. These monomers can be used individually by 1 type or in combination of 2 or more types.
  • the vinyl monomer is selected so that the glass transition temperature of the polymer or copolymer obtained by polymerizing the vinyl monomer (homopolymerization or copolymerization in combination of two or more) is 70 ° C or higher. It is preferable from the viewpoint of powder characteristics (powder fluidity and particle diameter) obtained from the subsequent coagulation step.
  • the glass transition temperature is more preferably 80 ° C. or higher, and further preferably in the range of 80 ° C. to 90 ° C.
  • a copolymer of methyl methacrylate and butyl acrylate and a copolymer of styrene and acrylonitrile have a glass transition temperature in the range of 80 ° C. to 90 ° C. and are preferably used.
  • the vinyl monomer to be graft-polymerized with respect to the rubber-like polymer when at least one selected from the group consisting of methyl methacrylate and butyl acrylate is used, polyacetal resin (A) and rubber-containing graft weight are used. It is preferable because the mechanical strength (tensile yield strength and impact strength) of the resin composition containing the coalescence (C) is excellent.
  • the rubber-containing graft polymer (C) is usually produced by emulsion polymerization.
  • the rubber-like polymer can be made into a latex state in the presence of an emulsifier and water, and a vinyl monomer can be added thereto for graft polymerization.
  • polymerization initiator used in the graft polymerization examples include peroxides and azo initiators.
  • Examples of the emulsifier used in the preparation of the rubbery polymer and in the graft polymerization include alkali metal salts of acids such as carboxylic acid (fatty acid), sulfonic acid, sulfuric acid and phosphoric acid.
  • the powder containing the rubber-containing graft polymer (C) was mixed uniformly with 90 parts by weight of deionized water (water equivalent to JISK0557A3) in 10 parts by weight of the rubber-containing graft polymer (C).
  • the dispersion measured at 25 ° C. is preferably 6 to 12, and more preferably 7 to 8, when the dispersion is allowed to stand for 20 hours. If the pH is 6 to 12, the amount of formaldehyde generated by the thermal decomposition of the polyacetal resin (A) can be reduced.
  • the powder containing the rubber-containing graft polymer (C) has a sodium and potassium content (total amount of sodium and potassium) of 1500 ppm or less in the powder. It is preferable at the point which can reduce the thermal decomposition (weight loss by oxidation) in the shaping
  • the powder containing the rubber-containing graft polymer (C) is recovered as a powder by coagulating the obtained rubber-containing graft polymer latex using a coagulant or by spray drying. Since the sodium and potassium contents in the powder can be reduced, it is preferable to recover by coagulation.
  • Coagulants include alkaline earth metals (Group 2) or salts containing earth metals (Group 13) such as aluminum (calcium chloride, calcium acetate, magnesium chloride, magnesium sulfate, aluminum sulfate, etc.) and strong acids (sulfuric acid, Hydrochloric acid, nitric acid, etc.) can be used.
  • earth metals Group 2
  • salts containing earth metals Group 13
  • aluminum calcium chloride, calcium acetate, magnesium chloride, magnesium sulfate, aluminum sulfate, etc.
  • strong acids sulfuric acid, Hydrochloric acid, nitric acid, etc.
  • alkaline earth metal salts calcium chloride (neutral), calcium acetate (weak alkali), magnesium chloride are used as coagulants. (Neutral), magnesium sulfate (neutral), etc.) are preferred, and calcium acetate is more effective in that it does not contain chlorine that leads to rusting of the mold and has excellent coagulation power and can remove the coagulant from the powder. preferable.
  • Calcium acetate is used as a coagulant, and after collecting the wet powder, it is washed with deionized water at least 10 times the solid content in the latex, and the water in the slurry is removed using a centrifuge. By sufficiently removing it, the calcium acetate used as the coagulant can be removed. Further, in order to remove calcium acetate in the powder, it is preferable to wash with 20 times or more deionized water, and particularly preferably 30 times or more.
  • the powder (X) of the present invention comprises a salt (B) comprising a carboxylic acid and an alkaline earth metal and a rubber-containing graft polymer (C), and
  • the salt (B) composed of a carboxylic acid and an alkaline earth metal contains 2 parts by mass of 0.2 parts by mass of nonylphenol ethylene oxide 10 mol adduct and 17.8 parts by mass of deionized water having a conductivity of 4 ⁇ S / cm or less.
  • a resin composition of a polyacetal resin (A) and a rubber-containing graft polymer (C) is molded by using a salt (B ′) composed of a carboxylic acid having an pH of 8 to 12 and an alkaline earth metal. Formaldehyde in the molded product can be reduced.
  • a preferred pH is 10-12. Examples of such a pH include the aforementioned “calcium stearate GF-200” (manufactured by NOF Corporation).
  • Sodium and potassium in the powder containing the rubber-containing graft polymer (C) are preferably 900 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less.
  • the conditions for the pH of the salt (B) comprising carboxylic acid and alkaline earth metal to be 8 to 12 include, for example, satisfying the following A-1 and satisfying A-2 or A-3. It is preferable to satisfy all of A-1 to A-3.
  • A-1) Carboxylic acid (free fatty acid) is 0.2% or less
  • Carboxylic acid and sodium salt is 0.3% or more and 1.0% or less in terms of sodium
  • Calcium hydroxide 0.5% to 1.0% salt
  • the pH can be adjusted to 8 to 12 by satisfying all the following requirements of B-1 to B-4.
  • B-1) The pKa of the carboxylic acid simple substance constituting is 4 to 5.
  • B-2) The amount of alkali metals (sodium and potassium) is 50 ppm or less.
  • B-3) The concentration (mass%) of the alkaline earth metal (calcium or magnesium) in the salt (B) composed of the carboxylic acid and the alkaline earth metal is the molecular weight of the alkaline earth metal / carboxylic acid and the alkaline earth metal.
  • the molecular weight of the salt consisting of B-4) Free fatty acid (carboxylic acid simple substance) is 0.2% or less.
  • “Calcium stearate GF-200” manufactured by NOF Corporation used in this example satisfies the above requirements B-1 to B-4.
  • B-1) The pKa of stearic acid is approximately 4.9.
  • B-2) The amount of alkali metals (sodium and potassium) in “calcium stearate GF-200” is 30 ppm or less.
  • the amount of alkaline earth metal in “Calcium stearate GF-200” is 7.2 mass%.
  • B-4) Free fatty acid is 0.1% or less.
  • the sodium and potassium contents in the powder As a condition for the sodium and potassium contents in the powder to be 1500 ppm or less, for example, one of the following requirements C-1) and C-2) is satisfied. It is more preferable to satisfy all 2).
  • C-1) For all raw materials other than deionized water used in the process of producing the latex of rubber-containing graft polymer (C), sodium and / or potassium conversion of raw material concentration containing sodium and / or potassium The amount (sodium and / or potassium equivalent concentration) is 1500 ppm or less. Specific examples include rubber-containing graft polymers (C) comprising the following four raw materials.
  • the feed concentration of the raw material containing sodium and / or potassium with respect to all raw materials other than deionized water used in the process of producing the latex of the rubber-containing graft polymer (C) is adjusted to sodium and / or Alternatively, a latex is produced at a potassium equivalent amount (sodium and / or potassium equivalent concentration) of 1500 ppm or less, spray dried, and then a salt (B ′) comprising a carboxylic acid and an alkaline earth metal having a pH of 8 to 12 Are mixed and recovered as a powder.
  • the powder (X) is coagulated with a coagulant in the latex of the rubber-containing graft polymer (C), and then the salt (B ′) composed of carboxylic acid and alkaline earth metal having a pH of 8 to 12. Are mixed and recovered as a powder.
  • the sodium and potassium contents in the powder containing the rubber-containing graft polymer (C) are mainly derived from the emulsifier used in the production. Therefore, the latex of the rubber-containing graft polymer (C) is coagulated with a coagulant, and the resulting wet powder is deionized water at least 10 times the latex solid content of the rubber-containing graft polymer (C). It is preferable to wash using Further, in order to remove sodium and potassium in the powder, it is preferable to wash with 20 times or more deionized water, and particularly preferably 30 times or more.
  • the carboxylic acid having a pH of 8 to 12 and the salt (B ′) made of an alkaline earth metal are mixed. More preferably.
  • the resin composition of the present invention contains a polyacetal resin (A), a salt (B) composed of a carboxylic acid and an alkaline earth metal, and a rubber-containing graft polymer (C).
  • a polyacetal resin (A) a polyacetal resin
  • B a salt
  • C a rubber-containing graft polymer
  • the formaldehyde content measured by the VDA275 test of a 1A type test piece defined in ISO 527 obtained by injection molding the resin composition at a molding temperature of 205 ° C. is 0.10 ppm or less, and 20% at 230 ° C. under air.
  • the weight loss rate measured by TG-DTA after the minute retention is 4% or less.
  • a pellet formed by extrusion molding is used as the resin composition to be measured by TG-DTA. Extrusion conditions are set as follows.
  • the extrusion residence time described here is the time it takes for the pellets charged from the hopper to enter the barrel entrance and exit from the extruder die.
  • the actual measurement method is as follows. (i) With no resin in the barrel of the extruder, set the actual number of screw revolutions in the barrel to be extruded. (ii) Set to the pellet speed actually sent from the hopper. (iii) The pellet is put into the hopper, and the time when the pellet enters the barrel entrance is set to zero. (iv) Measure the time for the molten resin to exit from the extruder die.
  • the pellet obtained by the above-mentioned method is measured for the weight reduction rate after being held at 230 ° C. for 20 minutes in the air by thermogravimetric / differential heat (TG-DTA) measurement according to the following procedure.
  • the pellets to be measured are separately dried in a dryer at 120 ° C. for about 3 hours, then stored in a dry container and used for thermogravimetric / differential heat (TG-DTA) measurement.
  • the measurement conditions are as follows. The weight reduction rate after (iii) was measured, and “weight reduction rate measured by TG-DTA after holding at 230 ° C.
  • the weight reduction rate measured by TG-DTA after being kept at 230 ° C. for 20 minutes in air must be 4% or less. If it is 4% or less, the thermal stability during the molding process is sufficient. It is preferably 3.5% or less, more preferably 3% or less, and particularly preferably 2% or less.
  • the molded product used for the measurement of the amount of formaldehyde by the VDA275 test is performed using a 1A type test piece (dumbbell tensile test piece) of ISO527 obtained under the following injection conditions.
  • a 1A type test piece (dumbbell tensile test piece) of ISO527 obtained under the following injection conditions.
  • the following molding conditions are set.
  • the shape of the molded product obtained is ISO527 1A type test piece (dumbbell tensile test piece)
  • Drying temperature of resin composition set at 120 ° C for 3 hours and then set at 80 ° C and held.
  • the molding residence time described here is the time until the resin charged from the injection molding hopper is filled in the mold. Specifically, it can be calculated by dividing the theoretical injection volume of the injection molding machine (the volume of resin that can be filled into the cylinder) by the amount of injection resin per injection molding and multiplying it by the molding cycle time. Specific examples are given below.
  • the ISO527 type 1A test piece (dumbbell tensile test piece) obtained under the above injection molding conditions is stored for 24 hours under conditions of 25 ° C. and 50% humidity, and the amount of formaldehyde is quantified by a method according to the VDA275 standard. Details of the measurement method are described in the section of evaluation of the examples. It is essential that the value is 0.10 ppm, preferably 0.07 ppm or less, and more preferably 0.05 ppm or less. If the amount of formaldehyde by the above-mentioned VDA275 test is 0.10 ppm or less, it is suitable as a vehicle interior member.
  • the salt (B) composed of a carboxylic acid and an alkaline earth metal is a salt (B ′) composed of a carboxylic acid and an alkaline earth metal having a pH of 8 to 12 measured by the method described above.
  • the sodium and potassium contents in the resin composition are 200 ppm or less.
  • a resin composition of a polyacetal resin (A) and a rubber-containing graft polymer (C) is formed by using a salt (B ′) made of a carboxylic acid having a pH of 8 to 12 and an alkaline earth metal. Formaldehyde in the molded body can be reduced. A preferred pH is 10-12. Examples of such a pH include the aforementioned “calcium stearate GF-200” (manufactured by NOF Corporation).
  • the content of sodium and potassium in the resin composition is preferably 150 ppm or less, more preferably 100 ppm or less, and even more preferably 10 ppm or less.
  • the conditions under which the pH of the salt (B) comprising carboxylic acid and alkaline earth metal is 8 to 12 are as described in the section of the powder (X).
  • An example of a method for setting the sodium and potassium contents in the resin composition to 200 ppm or less is to satisfy both the above-mentioned requirements of C-1 and C-2.
  • C-1) With respect to all raw materials other than deionized water used in the process of producing the latex of the rubber-containing graft polymer (C), the concentration of the raw material containing sodium and / or potassium is converted into sodium and / or potassium.
  • the amount (sodium and / or potassium equivalent concentration) is 1500 ppm or less.
  • Another method includes a method that satisfies all of the following D-1 to D-3.
  • D-1) The amount of sodium and potassium contained in the salt (B ′) comprising a carboxylic acid and an alkaline earth metal having a pH of 8 to 12 is 30 ppm or less.
  • D-2) The amount of the salt (B ′) composed of carboxylic acid and alkaline earth metal having a pH of 8 to 12 in the resin composition is 2.0% by mass or less.
  • D-3) The amount of the powder containing the rubber-containing graft polymer (C) in the resin composition is 200 ppm ⁇ the sodium and potassium contents in the powder.
  • the amount of salt (B ′) composed of carboxylic acid and alkaline earth metal having a pH of 8 to 12 in the resin composition is 2% or less (D-2), and carboxylic acid having a pH of 8 to 12.
  • the resin composition includes a polyacetal resin (A) and a powder (X).
  • the resin composition of the present invention has a tensile yield value of 28 MPa or more under conditions of a tensile speed of 50 mm / min according to ISO 527 and a Charpy impact test (type A: notch tip radius 0.25 mm ⁇ 0.05 mm) at 25 ° C.
  • the impact value is preferably 12 kJ / m 2 or more.
  • E-1 and E-2 must be satisfied.
  • E-1) A preferable range of the rubber-containing graft polymer (C) described in the preceding section.
  • Monodispersity: dw / dn 1.2
  • the rubber-containing graft polymers (C-1, C-2) described in this example are preferably used.
  • the content of the rubber-containing graft polymer (C) is changed to a polyacetal resin (A), a salt (B) composed of a salt formed from a carboxylic acid and an alkali (earth) earth metal, and a rubber-containing graft polymer. 15 mass% or more and 38 mass% or less in the total 100 mass% of (C).
  • an impact value at 25 ° C. in a Charpy impact test (type A: notch tip radius 0.25 mm ⁇ 0.05 mm) is 12 kJ / m 2 or more. If the blending amount of the coalesced (C) is increased, the impact value becomes 12 kJ / m 2 or more, but the tensile yield value under the condition of a tensile speed of 50 mm / min according to ISO 527 decreases. A tensile yield value of 28 MPa or more is preferable for a vehicle member or the like.
  • the molded specimen used in the tensile and impact test is an ISO527 1A type specimen (dumbbell tensile specimen) used in the VDA275 test.
  • the test piece 1A is processed into a predetermined size to prepare a test piece according to ISO 179, and a type A notch (notch tip radius 0.25 mm ⁇ 0.05 mm) is cut. Use a hammer of 15J.
  • the tensile yield value under the condition of a tensile speed of 50 mm / min is preferably 30 MPa or more, more preferably 31 MPa or more, and particularly preferably 32 MPa or more.
  • Charpy impact test impact value 25 ° C. (type A notch tip radius 0.25 mm ⁇ 0.05 mm) is preferably 14 kJ / m 2 or more, more preferably 15 kJ / m 2 or more, 16 kJ / m 2 or more is particularly preferred .
  • the content of the polyacetal resin (A) is 94.9 to 60% by mass in a total of 100% by mass of the polyacetal (A), the salt (B) composed of a carboxylic acid and an alkaline earth metal, and the rubber-containing graft polymer (C). %, More preferably 80 to 61% by mass, and still more preferably 80 to 70% by mass. If the content of the polyacetal resin (A) is 60% by mass or more, the resin composition has sufficient tensile properties (elastic modulus and strength), and if it is 94.9% by mass or less, a molded article of the resin composition. Has sufficient impact strength (impact strength in Charpy impact test, elongation at break in tensile test).
  • the content of the salt (B) composed of carboxylic acid and alkaline earth metal is 100 mass in total of the polyacetal resin (A), the salt (B) composed of carboxylic acid and alkaline earth metal, and the rubber-containing graft polymer (C).
  • % Is preferably 0.1 to 2% by mass, more preferably 0.1 to 1% by mass, and still more preferably 0.1 to 0.6% by mass. If the content of the salt (B) composed of carboxylic acid and alkaline earth metal is 0.1% by mass or more, the generation of formaldehyde from the molding process or the molded product can be reduced, and the content is 2% by mass or less.
  • the molded body of the resin composition has sufficient mechanical properties (Charpy impact strength and tensile properties), and the appearance of the molded product without bleeding the salt (B) composed of carboxylic acid and alkaline earth metal. I will not damage.
  • the content of the rubber-containing graft polymer (C) is 5 to 5% in a total of 100% by mass of the polyacetal resin (A), the salt (B) composed of a carboxylic acid and an alkaline earth metal, and the rubber-containing graft polymer (C). 40% by mass is preferable, 15 to 38% by mass is more preferable, and 19.9 to 29.4% by mass is further preferable.
  • the content of the rubber-containing graft polymer (C) is 5% by mass or more, the molded article of the resin composition has an effect of improving impact strength. If the content is 40% by mass or less, the molded article can be improved in impact strength without a significant decrease in tensile properties (elastic modulus and strength).
  • the resin composition of the present invention preferably has an FOG (aggregating compound, fogging) value of 100 ⁇ g / g or less as a vehicle interior member according to the VDA278 test, more preferably 90 ⁇ g / g or less, and more preferably 80 ⁇ g / g or less. It is particularly preferred.
  • FOG aggregating compound, fogging
  • the resin composition of the present invention contains, as an antioxidant, ethylene bis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], pentaerythritol tetrakis [3- (3,5 -Di-tert-butyl-4-hydroxyphenyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], one or more hindered phenols selected from the group consisting of
  • the antioxidant (D) the FOG value according to the VDA278 test is preferably 100 ⁇ g / g or less.
  • the content of the hindered phenol antioxidant (D) is 100 parts by mass in total of the polyacetal resin (A), the salt (B) composed of carboxylic acid and alkaline earth metal, and the rubber-containing graft polymer (C).
  • the amount is preferably 0.08 to 0.7 parts by mass.
  • the content of the hindered phenol antioxidant (D) is particularly preferably 0.1 to 0.4 parts by mass. If it is 0.08 parts by mass or more, the FOG value according to the VDA278 test is 100 ⁇ g / g or less, and if it is 0.7 parts by mass or less, coloring of the hindered phenol-based antioxidant does not cause a problem.
  • the resin composition of the present invention includes various known additives, for example, stabilizers such as antioxidants, flame retardants, flame retardant aids, water additives, and the like as long as the object of the present invention is not impaired.
  • stabilizers such as antioxidants, flame retardants, flame retardant aids, water additives, and the like as long as the object of the present invention is not impaired.
  • Decomposition inhibitors, antistatic agents, foaming agents, dyes and pigments can be contained.
  • the polyacetal resin (A) is blended with a powder containing a carboxylic acid having a pH of 8 to 12 and a salt (B ′) made of an alkaline earth metal and a rubber-containing graft polymer, It can be mixed and melt processed (extrusion / injection molding, etc.), or a powder (X) containing a salt (B ′) composed of a carboxylic acid and an alkaline earth metal and a rubber-containing graft polymer can be converted into a polyacetal resin (A ), Mixed, and melt processed (extrusion, injection molding, etc.).
  • the blending method of each material when preparing the resin composition of the present invention includes a known blending method, and is not particularly limited. Examples thereof include a method of mixing and kneading with a tumbler, V-type blender, super mixer, nauter mixer, Banbury mixer, kneading roll, extruder or the like.
  • the resin composition of the present invention can be molded into a desired shape by a known molding method.
  • the resin composition can be formed directly by pelletization with a melt extruder, and then molded by an extrusion molding method, an injection molding method, a compression molding method, or the like.
  • the molded body is not particularly limited, and can be developed into automobile parts, electrical / electronic equipment parts, other precision machine parts, building materials / piping members, lifestyle / cosmetic parts, medical parts, and the like.
  • Part means “part by mass”
  • % means “% by mass”.
  • the amount of carboxylic acid in the rubber-containing graft polymer obtained in each production example or the carboxylic acid derived from the carboxylate was measured by the following method. First, 0.2 g of a sample was dissolved in 10 ml of 0.1% trifluoroacetic acid (toluene solution) (80 ° C., 60 minutes). Next, 1 g of boron trifluoride methanol was added and methyl esterification treatment was performed at 80 ° C. for 30 minutes.
  • the ion concentration in the rubber-containing graft polymer obtained in each production example or in the resin composition was measured by the following method. First, 0.25 g of a sample is weighed into a decomposition container, 8 ml of nitric acid is decomposed in a microwave (wet decomposition), cooled, added with 2 ml of hydrofluoric acid, treated again with microwave, and diluted to 50 ml with distilled water. Up and used as a test solution. This sample solution was quantified (in ppm) with respect to the amounts of sodium and potassium ions using an ICP emission analyzer (IRIS Interp II II XSP: manufactured by Thermo).
  • ICP emission analyzer IRIS Interp II II XSP: manufactured by Thermo
  • -PH of salt (B) consisting of carboxylic acid and alkaline earth metal
  • An aqueous solution prepared by mixing 2 parts of a salt (B) composed of a carboxylic acid and an alkaline earth metal with 0.2 part of a 10-mol nonylphenol ethylene oxide adduct and 17.8 parts of deionized water having a conductivity of 4 ⁇ S / cm or less. After blending in 18 parts and uniformly dispersing, the pH was measured at 25 ° C.
  • B The pH of various commercially available salts (B) composed of carboxylic acid and alkaline earth metal was as follows.
  • B-1-1 “Calcium stearate GF-200” lot number: 403523 (manufactured by NOF) (pH: 11.0)
  • B-1-2 “Calcium stearate GF-200” lot number: 406533 (manufactured by NOF) (pH: 10.9)
  • B-2 “Calcium stearate” (manufactured by NOF) (pH: 7.5)
  • a mold temperature of 85 ° C., an injection pressure of 60 to 70 MPa, a holding pressure of 60 MPa, an injection time of 4 seconds, a holding time of 20 seconds, a downtime of 30 seconds, a molding residence time of about 2 minutes (injection amount per time 50cc, cycle time: 54 seconds) to obtain a 1A-type molded body (dumbbell tensile test piece) of ISO-527.
  • a tensile test was performed at a tensile speed of 50 mm / min according to ISO-527, and the tensile modulus, tensile yield strength, and elongation at break were measured.
  • Charpy impact test Drying temperature of each resin composition 120 ° C. for 3 hours, then set to 80 ° C. and held at Sumitomo injection molding machine SE100DU (Sumitomo Heavy Industries, Ltd., theoretical injection volume: 113 cc) Supply, cylinder temperature 205 ° C., mold temperature 85 ° C., injection pressure 60-70 MPa, holding pressure 60 MPa, injection time 4 seconds, holding time 20 seconds, down time 30 seconds, molding residence time about 2 minutes (once The injection molding amount was 50 cc per cycle, and the cycle time was 54 seconds.
  • SE100DU Sumitomo injection molding machine SE100DU (Sumitomo Heavy Industries, Ltd., theoretical injection volume: 113 cc) Supply
  • cylinder temperature 205 ° C. mold temperature 85 ° C.
  • injection pressure 60-70 MPa holding pressure 60 MPa
  • injection time 4 seconds holding time 20 seconds
  • down time 30 seconds molding residence time about 2 minutes (once The injection molding amount was 50 cc per cycle, and the cycle
  • the Charpy impact test was based on ISO-179-1, and a type A notch (notch tip radius: 0.25 mm ⁇ 0.05 mm) compliant with ISO2818 was measured at 25 ° C. The hammer that gives impact was 15J.
  • UV-visible spectrophotometer UVmini-1240 manufactured by Shimadzu Corporation, with the absorbance of 412 nm of the solution of 4 as a control sample using an aqueous formaldehyde solution whose concentration is set in advance. Measure with As the amount of formaldehyde in the molded article, the amount relative to the weight of the dumbbell tensile test piece measured in 1 is calculated in ppm.
  • TG Thermogravimetric loss amount of extruded pellets
  • Thermogravimetric measurement (TG) of each pellet was performed.
  • TG / DTA6200 manufactured by Seiko Instruments Inc.
  • the measurement conditions were as follows: the temperature was raised to 230 ° C. at 10 ° C./min under a nitrogen stream, switched to air and held for 10 min, and the weight loss was quantified.
  • the pellets to be measured are separately dried in a dryer at 120 ° C. for about 3 hours, stored in a dry container, and used for thermogravimetric / differential heat (TG-DTA) measurement.
  • the measurement conditions (the thermal history of the pellets) are as follows.
  • the weight reduction rate after (iii) was measured, and “weight reduction rate measured by TG-DTA after holding at 230 ° C. for 20 minutes in air” It is defined as (i) The temperature is increased to 100 ° C. at a rate of temperature increase of 50 degrees per minute under a nitrogen stream and held for 10 minutes.
  • the temperature is increased to 230 ° C. at a rate of 100 ° C. per minute under a nitrogen stream.
  • VDA278 VDA278
  • the pellets to be measured are separately dried in a dryer at 120 ° C for about 3 hours, stored in a dried container, and used for measuring the FOG value by the VDA278 test.
  • 15 mg of a sample was put in a sample cup (Eco Cup LF), and was heated and extracted at 120 ° C. for 1 hour in a helium gas atmosphere with a heating furnace type pyrolyzer (manufactured by Frontier Lab, PY-3030D) connected to GC. .
  • the gas generated at that time is concentrated and collected by cooling a part of the GC column to liquid nitrogen temperature, and then the collected gas component is collected by GC-MS (GC: Agilent Technologies, Agilent 7890, MS: Agilent). Quantitative determination was performed using Technologies, Agilent 5975C). The total peak area of compounds having 16 to 20 carbon atoms among the detected components in the retention time of 5.5 to 16 minutes in this measurement was converted to normal hexadecane, and the value was defined as the FOG value ( ⁇ g / g).
  • a polymerization initiator of “Component 3” shown in Table 2 was added, and after 1 hour, a second monomer mixture of “Component 4”, an emulsifier aqueous solution of “Component 5”, “Component”
  • the polymerization initiator 6 was continuously added dropwise over 8 hours. Reaction was performed for 4 hours from the start of polymerization to obtain a butadiene-based rubbery polymer latex (R-1).
  • ⁇ Production Example 4 Production of rubber-containing graft polymer (C-1) powder
  • the stabilizer emulsion of Production Example 1 was added to 243.9 parts of the latex of the butadiene polymer-containing vinyl polymer obtained in Production Example 2. 2.2 parts were blended and dispersed.
  • An aqueous solution in which “Component 1” shown in Table 4 was blended was set to 30 ° C., and the obtained latex was put into the aqueous solution, and the temperature of the solution was raised to 80 ° C. for salting out.
  • the agglomerated polymer was recovered, immersed in 1500 parts of deionized water and dehydrated twice, and dried at 80 ° C. overnight to obtain a rubber-containing graft polymer (C-1) powder.
  • the resulting rubber-containing graft polymer (C-1) had a pH of 7.2.
  • the resulting rubber-containing graft polymer (C-1) had a sodium and potassium content of 10 ppm.
  • the amount of carboxylic acid (salt) of the obtained rubber-containing graft polymer (C-1) is 0.03% or less, and the calcium acetate used in the coagulation can be removed by washing.
  • aqueous solution containing “Component 1” shown in Table 6 was set to 30 ° C., the latex obtained in the aqueous solution was added, the liquid temperature was raised to 80 ° C., and salting out was performed. The agglomerated polymer was recovered, immersed in 1500 parts of deionized water and dehydrated twice, and dried at 80 ° C. overnight to obtain a rubber-containing graft polymer (C-2) powder.
  • the resulting rubber-containing graft polymer (C-2) had a pH of 6.0.
  • the obtained rubber-containing graft polymer (C-2) had an amount of sodium and potassium of 14 ppm.
  • the amount of the carboxylic acid (salt) of the obtained rubber-containing graft polymer (C-2) is 0.03% or less, and the calcium acetate used in the coagulation can be removed by washing.
  • Rubber-containing graft polymer C-2 Powder containing methyl methacrylate-butadiene-styrene rubber-containing graft polymer obtained from Production Example 6. pH 6.0, sodium and potassium content 14ppm Rubber-containing graft polymer C-3: Powder that is a rubber-containing graft polymer of methyl methacrylate-butadiene-styrene.
  • Antioxidant (n-octadecyl-3- (3 ′, 5′di-t-butyl-4′-hydroxyphenyl) propionate: IRGANOX1076 manufactured by BASF)
  • Hindered phenol antioxidant D-1 (pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]: IRGANOX1010 manufactured by BASF)
  • Hindered phenolic antioxidant (D-2) (ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate: IRGANOX245 BASF)
  • the resin composition of Comparative Example 1 did not contain a rubber-containing graft polymer, impact strength and tensile elongation at break were low.
  • the pH of the salt (B) composed of the carboxylic acid and the alkaline earth metal measured as described above is 7.5, VDA275 is as high as 0.14 ppm, and the molded product A lot of formaldehyde was detected in it.
  • the resin composition of Comparative Example 3 does not contain a salt (B) composed of a carboxylic acid and an alkaline earth metal, the impact strength and tensile elongation at break are improved, but TG- after holding at 230 ° C. for 20 minutes in the air.
  • the weight loss rate measured by DTA was as high as 37%, and it was easy to thermally decompose.
  • the resin compositions of the examples have a VDA275 of 0.10 ppm or less, a small amount of formaldehyde in the molded product, and a weight reduction rate measured by TG-DTA of 20% at 230 ° C. in air for 4% or less. Excellent thermal decomposition resistance.
  • the resin composition of Example 3 is composed of a hindered phenol antioxidant (D-1) (pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) and hindered phenol.
  • D-1 hindered phenol antioxidant
  • D-278 characteristics were improved because it further contained the system antioxidant (D-2) (ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate]).
  • the polyacetal resin composition containing a rubber-containing graft polymer obtained in the present invention can reduce formaldehyde in a molded product, which has been difficult in the past, and can sufficiently suppress thermal decomposition accompanied by weight loss in the molding process. In addition, it has excellent mechanical properties and can be applied to materials in various fields including automobile interior members and household appliance members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)、及びゴム含有グラフト重合体(C)を含む樹脂組成物、ならびに前記樹脂組成物を成形してなる成形体に関する。本発明の樹脂組成物及び成形体は、成形加工過程における重量損失を伴う熱分解や成形品中のホルムアルデヒドが低減されている点に特徴を有する。

Description

樹脂組成物及びその成形体
[関連出願]
 本出願は、日本特許出願2015-034842(2015年2月25日出願)に基づく優先権を主張しており、この内容は本明細書に参照として取り込まれる。
 本発明は、ポリアセタール樹脂、カルボン酸とアルカリ土類金属からなる塩及びゴム含有グラフト重合体を含む樹脂組成物、及びこの樹脂組成物を成形してなる成形体に関する。
 ポリアセタール樹脂は、機械的性質、耐疲労性、耐摩擦・摩耗性、耐薬品性及び成形性に優れているため、自動車部品、電気・電子機器部品、その他の精密機械部品、建材・配管部材、生活・化粧用部品、医用部品などの分野において広く利用されている。しかし、用途の拡大、多様化に伴い、その品質に対する要求はより高度化する傾向を示している。
 ポリアセタール樹脂に要求される特性として、押出又は成形工程などの加工工程において機械的強度が低下しないこと、金型への付着物(モールドデポジット)が発生しないこと、長期加熱条件下(ヒートエージング)において有害物質・臭気がでないこと及び機械的物性が低下しないこと、成形品のシルバーストリークやボイドなどの成形不良が生じないこと、ポリアセタール樹脂の熱分解生成物であるホルムアルデヒドを成形品中に残存させないことなどが挙げられる。これらの現象の重要な因子の1つに熱安定性が挙げられる。特に、ポリアセタール樹脂は、その化学構造から本質的に、加熱雰囲気下、酸性条件(例えばpH6.0より下)又はアルカリ条件下(例えばpH12.0より上)では容易に分解しホルムアルデヒドを発生する。そのため、ポリアセタール樹脂の本質的な課題として、熱安定性を高め、成形加工過程での熱分解(ホルムアルデヒドの生成、酸化による重量損失、ポリアセタール樹脂の分子量低下による強度低下)の抑制、及び/又は得られた成形品中のホルムアルデヒド量や使用温度(80~120℃)での臭気及び有害物質の発生を抑制することが要求されている。
 ところで、ポリアセタール樹脂の衝撃強度は、多くの用途において十分ではない。そのためゴム含有グラフト重合体を含む粉体を配合し、衝撃強度を改善させることが行われている。ゴム含有グラフト重合体は、一般的に乳化重合で製造され、塩もしくは酸による凝析又は噴霧乾燥により粉体として回収される。ゴム含有グラフト重合体を含む粉体が酸性(例えば、ゴム含有グラフト重合体を含む粉体10質量部を脱イオン水(JISK0557A3と同等の水)90質量部に配合し、均一に分散させ、20時間放置した分散液の、25℃で測定したpHが6.0より下)又はアルカリ性(例えば前記測定条件にてpH12.0より上)であると、ポリアセタール樹脂が分解するので、前記pHが7.0~8.0程度となるゴム含有グラフト重合体を含む粉体を用いることが好ましい。しかし、そのpH領域(7.0~8.0)においても、ゴム含有グラフト重合体を含む粉体中の成分がポリアセタール樹脂の熱分解を引き起こすことが知られている。そのため、ステアリン酸カルシウムやステアリン酸マグネシウム等の、カルボン酸とアルカリ土類金属からなる塩(安定剤)を配合し、熱分解を抑制することが行われている。特許文献1は、pHが7.0~8.0のゴム含有グラフト重合体を含む粉体にステアリン酸マグネシウムやクエン酸カルシウムを配合した例を開示している。
 しかしながら、一般的にポリアセタール樹脂用の安定剤として市販されているカルボン酸とアルカリ土類金属からなる塩を配合するだけでは、ポリアセタール樹脂とゴム含有グラフト重合体とを含む樹脂組成物の成形加工過程の熱分解(ホルムアルデヒドの生成、酸化による重量損失、ポリアセタール樹脂の分子量低下による強度低下)の抑制、及び/又は得られた成形品中のホルムアルデヒド量や使用温度(80~120℃)での臭気及び有害物質の発生を十分に抑制することは困難であった。
 また、一般的にポリアセタール樹脂用の強化剤として用いられているゴム含有グラフト重合体はナトリウムやカリウム等アルカリ金属を多く含むため成形加工過程における重量損失を伴う熱分解を十分に抑制できない。
特表2004-510024号公報
 本発明者らが検討を行った結果、ポリアセタール樹脂とゴム含有グラフト重合体とを含む樹脂組成物に、pHが8~12であるカルボン酸とアルカリ土類金属からなる塩(安定剤)を配合することで、好ましい機械的強度(耐衝撃特性と引張特性等)を発現し、かつ、成形加工過程における重量損失を伴う熱分解や成形品中のホルムアルデヒド量を低減できることを発見した。
 前記課題は以下の本発明[1]~[16]のいずれかによって解決される。
(1)ポリアセタール樹脂(A)、
カルボン酸とアルカリ土類金属からなる塩(B)、及び
ゴム含有グラフト重合体(C)
を含む樹脂組成物であって、
該樹脂組成物を成形温度205℃で射出成形したISO-527の1A形試験片の、VDA275試験によるホルムアルデヒド量が0.10ppm以下であり、
空気下、230℃で20分保持後のTG-DTAで測定される重量減少率が4%以下である、
樹脂組成物;
(2)ポリアセタール樹脂(A)、
カルボン酸とアルカリ土類金属からなる塩(B)、及び
ゴム含有グラフト重合体(C)
を含む樹脂組成物であって、
前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤(例えば、ノニルフェノールのエチレンオキサイド10mol付加物)を含む脱イオン水18質量部に溶解したときにpH8~12、好ましくは10~12となるものであり、
樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下である樹脂組成物;
(3)カルボン酸とアルカリ土類金属からなる塩(B)、及びゴム含有グラフト重合体(C)
を含む粉体(X)であって、
前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤を含む脱イオン水18質量部に溶解したときにpH8~12となるものであり、
ナトリウム及びカリウム含有量が1500ppm以下である、粉体(X);
(4)ポリアセタール樹脂(A)と、上記(3)に記載の粉体(X)とを含む樹脂組成物;
(5)樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下である、上記(1)又は(4)に記載の樹脂組成物;
(6)前記アルカリ土類金属がカルシウムである、上記(1)、(2)、(4)及び(5)のいずれかに記載の樹脂組成物;
(7)前記ゴム含有グラフト重合体(C)がブタジエンゴム、及びスチレン・ブタジエン共重合ゴムからなる群より選ばれる1種以上を含む、上記(1)、(2)及び(4)~(6)のいずれかに記載の樹脂組成物;
(8)樹脂組成物を成形温度205℃で射出成形したISO527の1A形試験片の、引張速度50mm/min条件での引張降伏値が28MPa以上であり、
シャルピー衝撃試験(ノッチ先端半径0.25mm±0.05mm)の25℃の衝撃値が12kJ/m以上である、
上記(1)、(2)、及び(4)~(7)のいずれかに記載の樹脂組成物;
(9)ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)、及びゴム含有グラフト重合体(C)の合計100質量%中、カルボン酸とアルカリ土類金属からなる塩(B)の含有率が0.1~2質量%、ゴム含有グラフト重合体(C)の含有率が5~40質量%である、上記(1)、(2)、及び(4)~(8)のいずれかに記載の樹脂組成物;
(10)VDA278試験によるFOG値が100μg/g以下である、上記(1)、(2)、及び(4)~(9)のいずれかに記載の樹脂組成物;
(11)エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、及びヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]からなる群より選ばれる1種以上のヒンダートフェノール系酸化防止剤(D)をさらに含む、上記(1)、(2)、及び(4)~(10)のいずれかに記載の樹脂組成物;
(12)ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量部に対し、ヒンダートフェノール系酸化防止剤(D)の含有量が0.08~0.7質量部である、上記(11)に記載の樹脂組成物;
(13)上記(1)、(2)、及び(4)~(12)のいずれかに記載の樹脂組成物を成形してなる成形体;
(14)ゴム含有グラフト重合体(C)のラテックスを凝析剤を用いて凝析し、ついでカルボン酸とアルカリ土類金属からなる塩(B)を混合する、上記(3)に記載の粉体(X)の製造方法;
(15)ゴム含有グラフト重合体(C)のラテックスを凝析剤を用いて凝析し、その固形分に対して10倍量以上の脱イオン水を用いて洗浄し、ついでカルボン酸とアルカリ土類金属からなる塩(B)を混合する、上記(14)に記載の製造方法;
(16)ポリアセタール樹脂(A)、
カルボン酸とアルカリ土類金属からなる塩(B)、及び
ゴム含有グラフト重合体(C)を含みナトリウム及びカリウム含有量が1500ppm以下である粉体(Y)
を混合する、樹脂組成物の製造方法であって、
前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤を含む脱イオン水18質量部に溶解したときにpH8~12となるものである、
樹脂組成物の製造方法。
 本発明によれば、ポリアセタール樹脂とゴム含有グラフト重合体とを含む樹脂組成物の成形加工過程における重量損失を伴う熱分解や成形品中のホルムアルデヒド量を低減することができる。
 これらの成形品は、VDA(ドイツ自動車工業会)の規格の内、VDA275(成形品中のホルムアルデヒド量)、VDA278(成形品を90~120℃に保持し、保持時間1h程度で検出する揮発分(炭素数32以下の有機化合物))の規格を満たすものである。
 また自動車車両部材等に求められる実用的な機械的強度を有し、車両用内装部材等に好適に用いられる。
[ポリアセタール樹脂(A)]
 ポリアセタール樹脂とは、オキシメチレン基(-CHO-)を主たる構成単位とする高分子化合物であり、ポリアセタールホモポリマー(例えば、米国デュポン社製:商品名「デルリン」、旭化成(株)製:商品名「テナック4010」など)、オキシメチレン基以外に他のコモノマー単位を含有するポリアセタールコポリマー(例えば、Ticona社製:商品名「ホスタフォーム」、ポリプラスチックス(株)製:商品名「ジュラコン」など)が挙げられる。
 ポリアセタールコポリマーが含有するコモノマー単位としては、炭素数2~6、好ましくは炭素数2~4のオキシアルキレン単位(例えば、オキシエチレン基(-CHCHO-)、オキシプロピレン基、オキシテトラメチレン基)等が挙げられる。
 ポリアセタールコポリマーが含有するコモノマー単位の含有率は、ポリアセタール樹脂全体100モル%に対して0.01~20モル%が好ましく、0.03~10モル%がより好ましく、0.1~5モル%がさらに好ましい。
[カルボン酸とアルカリ土類金属からなる塩(B)(安定剤)]
 塩(B)は、カルボン酸とアルカリ土類金属から生成される。
 本発明においてカルボン酸とは、カルボキシル基を含む有機化合物をいう。
 カルボン酸としては、ギ酸、酢酸、マレイン酸、フマル酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオール酸、ステアロール酸、12-ヒドロキシドデカン酸、3-ヒドロキシデカン酸、16-ヒドロキシヘキサデカン酸、10-ヒドロキシヘキサデカン酸、12-ヒドロキシオクタデカン酸(12-ヒドロキシステアリン酸)、10-ヒドロキシ-8-オクタデカン酸、dl-エリスロ-9,10-ジヒドロキシオクタデカン酸等が挙げられる。
 カルボン酸としては、10~36個の炭素原子を有する飽和または不飽和脂肪族カルボン酸が好ましい。10以上の炭素原子を有する飽和または不飽和脂肪族カルボン酸であると、その酸解離定数(pKa)はほぼ4.9であるため、そのアルカリ土類金属との塩は好ましいpHの範囲(8~12)になる、そのため安定剤としての効果がより向上する。また、分子量が大きいので押出機のベントにて取り除かれる量も少なくなる。該カルボン酸は、水酸基で置換されていてもよい。
 また、カルボン酸としては、炭素数12~22の脂肪族カルボン酸がより好ましい。炭素数が12~22の脂肪酸カルボン酸であると、そのアルカリ土類金属との塩がポリアセタール樹脂(A)やゴム含有グラフト重合体(C)を含む樹脂組成物中に分散しやすく、ポリアセタール樹脂の熱安定性を効率的に改良する。
 本発明においてアルカリ金属とは、周期表で1族に該当する元素の内、水素以外の元素であり、ナトリウム、カリウム等が該当する。本発明においてアルカリ土類金属とは、周期表で2族に該当する元素であり、マグネシウム、カルシウム等が該当する。
 カルボン酸とアルカリ土類金属からなる塩(B)としては、ポリアセタール樹脂の熱安定性をさらに高め、成形加工過程での熱分解(ホルムアルデヒドの生成、酸化による重量損失、ポリアセタール樹脂の分子量低下による強度低下)が抑制されることから、炭素数12~22の脂肪族カルボン酸とアルカリ土類金属からなる塩が好ましく、炭素数12~22の脂肪族カルボン酸とカルシウムからなる塩がより好ましく、ステアリン酸カルシウムがさらに好ましい。
 ステアリン酸カルシウムは、ポリアセタール樹脂用の安定剤として代表的なものである。工業品として入手できるステアリン酸カルシウムは、少量成分として、カルボン酸及び/又はカルボン酸とアルカリ金属からなる塩を含むことがある。
 ステアリン酸カルシウムの製品としては、日油(株)製の「オーラブライトNC」、「カルシウムステアレートGF-200」、「カルシウムステアレート」等が挙げられる。
 一般的に上記のステアリン酸カルシウムの製品としてポリアセタール樹脂用の安定剤として活用されているのは「カルシウムステアレート」であり、ステアリン酸ナトリウム塩の水溶液に塩化カルシウムを配合し、ステアリン酸カルシウムを生成させる方法(湿式法・複分解法)で得られる。製法上からは、不純物としてステアリン酸、塩化カルシウム、ステアリン酸ナトリウム塩を含みやすい。
 「オーラブライトNC」も湿式法で得られるが、原料の比率を調整して、カルボン酸ナトリウム(ステアリン酸ナトリウム塩)を極力削減する方法で得られる。また「カルシウムステアレートGF-200」等、ステアリン酸に直接カルシウム塩と混合溶融反応させる方法(乾式法・直接法)でステアリン酸カルシウムを得ることもできる。製法上からは、不純物としてカルシウムの水酸化物を含みやすい。
 本発明におけるカルボン酸とアルカリ土類金属からなる塩(B)は、前記カルボン酸とアルカリ土類金属からなる塩(B)2質量部を、ノニルフェノールのエチレンオキサイド10mol付加物0.2質量部と電導度4μS/cm以下である脱イオン水17.8質量部とからなる水溶液18質量部に配合し、均一に分散させた後、25℃で測定したpHが8~12となるものが好ましく、10~12となるものがより好ましい。
 このようなpHを示すものとしては、例えば前述の「カルシウムステアレートGF-200」(日油(株)製、本実施例で用いたロットではpH10.9~11.0)が挙げられる。
 一方、前述の「カルシウムステアレート」のpHは本実施例で用いたロットでは7.5、「オーラブライトNC」のpHは6.0~7.0程度である。
 カルボン酸とアルカリ土類金属からなる塩(B)は、水に対する水溶性が極端に低く、ノニルフェノールのエチレンオキサイド10mol付加物のようなノニオン系分散剤の水溶液を活用しなければpH測定の精度が低くなる。
 カルボン酸とアルカリ土類金属からなる塩(B)の前記pHが8以上であれば、ポリアセタール樹脂(A)を安定化する効果が高くなるため好ましい。前記pHが12以下であれば、ポリアセタール樹脂(A)の熱分解によるホルムアルデヒド発生量が低減できるため好ましい。
 カルボン酸とアルカリ土類金属からなる塩(B)は基本的にアルカリ性を示す。
 カルボン酸とアルカリ土類金属からなる塩(B)はカルボン酸2モルに対してアルカリ土類金属1モル配位することができる。(配位数が2)。配位数が2に近いほどアルカリ性を示す。
 カルボン酸のpKaで示される酸性が低いほど(pKaが大きいほど)、アルカリ土類金属のイオン半径が大きいほど(ボーリングによるイオン半径は、それぞれマグネシウムは65pm、カルシウムは99pm)アルカリ性になる。
 一般的に市販で入手できるカルボン酸とアルカリ土類金属からなる塩(B)を含む製品はカルボン酸とアルカリ金属の塩、アルカリ土類金属の水酸化物、カルボン酸(遊離脂肪酸)を含むことがあり、これらも前記pHに影響する。一般的に1)~3)のそれぞれを満たすと、前記pHはよりアルカリ側に傾く。
 1)カルボン酸とナトリウムの塩が多い
 2)カルシウムの水酸化物の塩が多い
 3)カルボン酸(遊離脂肪酸)が少ない
 カルボン酸とアルカリ土類金属からなる塩(B)は、製品として入手することができる。だが、一般的な市販品からは純度100%のカルボン酸とアルカリ土類金属からなる塩(B)は入手は困難であるため、カルボン酸とアルカリ土類金属からなる塩(B)が95%以上であれば、本発明の「カルボン酸とアルカリ土類金属からなる塩(B)」に含まれるものとする。
[ゴム含有グラフト重合体(C)]
 本発明の樹脂組成物を構成するゴム含有グラフト重合体(C)は、「ゴム状重合体」に対して「ビニル系単量体」がグラフト重合されたものである。
 ゴム状重合体としては、ガラス転移温度が0℃以下のものを用いることができる。ゴム状重合体のガラス転移温度が0℃以下であれば、本発明の樹脂組成物から得られる成形体のシャルピー衝撃試験の値で表される衝撃強度が改善される。ゴム状重合体としては、具体的には以下のものが挙げられる。ブタジエンゴム、スチレン・ブタジエン共重合ゴム、シリコーンゴム、シリコーン・アクリル複合ゴム(ジメチルシロキサンを主体とする単量体から得られるゴム状重合体の存在下に、ビニル系単量体の1種又は2種以上を重合させて得られるもの)、アクリロニトリル・ブタジエン共重合ゴム、ポリアクリル酸ブチル等のアクリル系ゴム、ポリイソプレン、ポリクロロプレン、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン三元共重合ゴム、スチレン・ブタジエンブロック共重合ゴム、スチレン・イソプレンブロック共重合ゴム等のブロック共重合体、及びそれらの水素添加物等。
 寒冷地においては、より低温(-20℃以下)での成形体の衝撃強度の改良が求められるため、ゴム含有グラフト重合体(C)は、よりガラス転移温度の低いゴムであるブタジエンゴム、スチレン・ブタジエン共重合ゴム、シリコーンゴム、シリコーン・アクリル複合ゴムからなる群より選ばれる1種以上を含むことが好ましい。ポリアセタール樹脂の強度発現性が向上すること並びに長期加熱条件下(ヒートエージング)においてシリコーンの低分子量成分の揮発が少ないこと(VDA278特性が優れること)から、シリコーンゴムを含むゴムより、ブタジエンゴム、スチレン・ブタジエン共重合ゴムからなる群より選ばれる1種以上を含むゴムがより好ましい。
 ゴムの粒子径は機械的強度(引張特性、衝撃強度)に影響する。好ましいゴムの質量平均粒子径は100~300nmである。ゴムの質量平均粒子径は光散乱法、キャピラリー法等で測定できるが、キャピラリー法(キャピラリー粒度分布計)で測定することが精度の点で好ましい。100~300nmの粒子径範囲であれば、引張特性(弾性率・引張降伏強度)を維持したままノッチ付シャルピー衝撃試験等に代表される衝撃値が向上する。併せて、ゴムの粒子径は単分散性の方が好ましい。質量平均粒子径(dw)を個数平均粒子径(dn)で割った値(dw/dn)で単分散性の程度を示すことができる。ゴムの質量平均粒子径が100~300nmで、かつ、dw/dnの値が1.0~1.4であることが、ポリアセタール樹脂(A)とゴム含有グラフト重合体(C)を含む樹脂組成物のノッチ付シャルピー衝撃試験等に代表される衝撃強度の点で好ましい。
 ゴム含有グラフト重合体(C)中のゴム状重合体の比率は70~90質量%であることが粉体特性(粉の流動性や粒子径)並びにポリアセタール樹脂(A)やゴム含有グラフト重合体(C)を含む樹脂組成物の機械的強度(引張降伏強度と衝撃強度)の点で好ましい。
 ゴム状重合体に対してグラフト重合されるビニル系単量体としては、例えば、スチレン、α-メチルスチレン等の芳香族ビニル化合物;アクリル酸メチル、アクリル酸ブチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステルが挙げられる。これらの単量体は、1種を単独で又は2種以上を組み合せて用いることができる。ビニル系単量体を重合(単独重合又は2種以上を組み合わせて共重合)して得られる重合体又は共重合体のガラス転移温度が70℃以上となるようにビニル系単量体を選択することが、その後の凝析工程から得られる粉体特性(粉の流動性や粒子径)の点から好ましい。このガラス転移温度は80℃以上がより好ましく、80℃から90℃の範囲がさらに好ましい。例えばメタクリル酸メチルとアクリル酸ブチルとの共重合体、スチレンとアクリロニトリルとの共重合体は、ガラス転移温度が80℃から90℃の範囲であり、好適に用いられる。
 ゴム状重合体に対してグラフト重合されるビニル系単量体としては、メタクリル酸メチルとアクリル酸ブチルとからなる群より選ばれる1種以上を用いると、ポリアセタール樹脂(A)やゴム含有グラフト重合体(C)を含む樹脂組成物の機械的強度(引張降伏強度と衝撃強度)が優れるために好ましい。
 ゴム含有グラフト重合体(C)は、通常、乳化重合にて製造される。乳化剤と水の存在下でゴム状重合体をラテックス状態とし、そこにビニル系単量体を添加してグラフト重合させることができる。
 グラフト重合の際に使用される重合開始剤としては、過酸化物やアゾ系開始剤等が挙げられる。
 ゴム状重合体作成時及びグラフト重合の際に使用される乳化剤としては、カルボン酸(脂肪酸)、スルホン酸、硫酸、リン酸等の酸のアルカリ金属塩等が挙げられる。
[粉体]
 ゴム含有グラフト重合体(C)を含む粉体は、得られたゴム含有グラフト重合体(C)の粉体10質量部を脱イオン水(JISK0557A3と同等の水)90質量部に配合し、均一に分散させ、20時間放置した分散液の、25℃で測定したpHが6~12であることが好ましく、7~8であることがより好ましい。pHが6~12であれば、ポリアセタール樹脂(A)の熱分解によるホルムアルデヒド発生量が低減できる。
 また、ゴム含有グラフト重合体(C)を含む粉体は、粉体中のナトリウム及びカリウム含有量が(ナトリウム及びカリウムの合計量で)1500ppm以下であることがポリアセタール樹脂(A)やゴム含有グラフト重合体(C)を含む樹脂組成物の成形加工過程での熱分解(酸化による重量損失)を低減できる点で好ましい。
 ゴム含有グラフト重合体(C)を含む粉体は、得られたゴム含有グラフト重合体ラテックスを、凝析剤を用いて凝析するか、又は、噴霧乾燥することにより粉体として回収される。粉体中のナトリウム及びカリウム含有量を低減できることから、凝析により回収することが好ましい。
 凝析剤としては、アルカリ土類金属(2族)又はアルミニウム等の土類金属(13族)を含む塩(塩化カルシウム、酢酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硫酸アルミニウム等)や強酸(硫酸、塩酸、硝酸等)を使用することができる。
 ゴム含有グラフト重合体(C)を含む粉体の前記pHを6~12とするため、凝析剤としてはアルカリ土類金属塩(塩化カルシウム(中性)、酢酸カルシウム(弱アルカリ)、塩化マグネシウム(中性)、硫酸マグネシウム(中性)等)が好ましく、金型の錆びにつながる塩素を含まず凝析力が優れる点や、粉体中から凝析剤を取り除ける点で、酢酸カルシウムがより好ましい。
 凝析剤として酢酸カルシウムを使用し、湿粉を回収した後ラテックス中の固形分に対して10倍以上の脱イオン水を用いて洗浄し、遠心分離機等を活用してスラリー中の水分を充分に取り除くことで、凝析剤とて用いた酢酸カルシウムを除くことができる。さらに粉体の中の酢酸カルシウムを取り除くために20倍以上の脱イオン水を用いて洗浄することが好ましく、30倍以上であると特に好ましい。
[粉体(X)]
 本発明の粉体(X)は、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)を含み、かつ、
 カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部を、ノニルフェノールのエチレンオキサイド10mol付加物0.2質量部と電導度4μS/cm以下である脱イオン水17.8質量部とからなる水溶液18質量部に配合し、均一に分散させた後、25℃で測定したpHが8~12となるカルボン酸とアルカリ土類金属からなる塩(B’)であり、
 粉体中のナトリウム及びカリウムが1500ppm以下である、粉体である。
 前記pHが8~12となるカルボン酸とアルカリ土類金属からなる塩(B’)を用いることにより、ポリアセタール樹脂(A)とゴム含有グラフト重合体(C)との樹脂組成物を成形してなる成形体中のホルムアルデヒドを低減させることができる。好ましいpHは10~12である。このようなpHを示すものとしては、例えば前述の「カルシウムステアレートGF-200」(日油(株)製)が挙げられる。
 粉体中のナトリウム及びカリウムが1500ppm以下であることにより、ポリアセタール樹脂(A)とゴム含有グラフト重合体(C)との成形加工過程での熱分解(酸化による重量損失)を低減できる。
 ゴム含有グラフト重合体(C)を含む粉体の中のナトリウム及びカリウムは、900ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下がさらに好ましい。
 カルボン酸とアルカリ土類金属からなる塩(B)の前記pHが8~12になる条件として、例えば以下のA-1を満たし、かつ、A-2もしくはA-3を満たすことが挙げられる。A-1~A-3をすべて満たすことが好ましい。
 A-1)カルボン酸(遊離脂肪酸)が0.2%以下
 A-2)カルボン酸とナトリウムの塩がナトリウム換算で0.3%以上1.0%以下
 A-3)カルシウムの水酸化物の塩が0.5%以上1.0%以下
 このほか、以下のB-1~B-4の要件をすべて満たすことによっても、前記pHを8~12とすることが可能である。
 B-1)構成するカルボン酸単体のpKaが4~5であること。
 B-2)アルカリ金属(ナトリウム及びカリウム)の量が50ppm以下であること。
 B-3)カルボン酸とアルカリ土類金属からなる塩(B)中のアルカリ土類金属(カルシウムまたはマグネシウム)の濃度(質量%)が、アルカリ土類金属の分子量÷カルボン酸とアルカリ土類金属からなる塩の分子量以上であること。
 B-4)遊離脂肪酸(カルボン酸単体)が0.2%以下であること。
 例えば、本実施例で用いる日油(株)製の「カルシウムステアレートGF-200」は上記要件B-1~B-4を満たす。
 B-1)ステアリン酸のpKaはほぼ4.9である。
 B-2)「カルシウムステアレートGF-200」中のアルカリ金属(ナトリウム及びカリウム)の量は30ppm以下である。
 B-3)ステアリン酸カルシウムの分子量は647.1でカルシウムの分子量は40.1であるので、アルカリ土類金属の分子量÷カルボン酸とアルカリ土類金属からなる塩の分子量=6.6質量%。「カルシウムステアレートGF-200」中のアルカリ土類金属の量は7.2質量%である。
 B-4)遊離脂肪酸は0.1%以下である。
 粉体中のナトリウム及びカリウム含有量が1500ppm以下になる条件としては、例えば以下のC-1)とC-2)の要件の内ひとつを満たすことがあげられるが、C-1)とC-2)を共にすべて満たすことがより好ましい。
 C-1)ゴム含有グラフト重合体(C)のラテックスを製造する過程で用いる脱イオン水以外の全ての原料に対して、ナトリウム及び/又はカリウムを含む原料の仕込み濃度のナトリウム及び/又はカリウム換算量(ナトリウム及び/又はカリウム換算濃度)にて1500ppm以下にする。
 具体例として、以下の4つの原料からなるゴム含有グラフト重合体(C)が挙げられる。
・乳化剤A:1g(分子量300、ナトリウムを一分子あたり1個含む)
・ゴム原料:50g(ナトリウム及び/又はカリウムを含まない)
・グラフト原料:49g(ナトリウム及び/又はカリウムを含まない)
・脱イオン水:100g(ナトリウム及び/又はカリウムを含まない)
 ラテックスAのナトリウム及び/又はカリウム換算濃度:
(1×(23[ナトリウムの分子量]÷300))÷(1+50+49)
=7.6×10-4(760ppm)
 C-2)ゴム含有グラフト重合体(C)のラテックスに凝析剤を用いて凝析し、得られた湿粉をゴム含有グラフト重合体(C)のラテックス固形分に対して10倍以上の脱イオン水を用いて洗浄する。
[粉体(X)の製法]
 粉体(X)は、ゴム含有グラフト重合体(C)のラテックスを製造する過程で用いる脱イオン水以外の全ての原料に対して、ナトリウム及び/又はカリウムを含む原料の仕込み濃度をナトリウム及び/又はカリウム換算量(ナトリウム及び/又はカリウム換算濃度)にて1500ppm以下としてラテックスを製造し、噴霧乾燥し、ついで前記pHが8~12となるカルボン酸とアルカリ土類金属からなる塩(B’)を混合し、粉体として回収することにより得られる。
 または、粉体(X)は、ゴム含有グラフト重合体(C)のラテックスに凝析剤を用いて凝析し、ついでpH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)を混合し、粉体として回収することにより得られる。
 ゴム含有グラフト重合体(C)を含む粉体の中のナトリウム及びカリウム含有量は主に製造時に用いた乳化剤由来である。そのためゴム含有グラフト重合体(C)のラテックスに凝析剤を用いて凝析し、得られた湿粉をゴム含有グラフト重合体(C)のラテックス固形分に対して10倍以上の脱イオン水を用いて洗浄することが好ましい。さらに粉体の中のナトリウム及びカリウムを取り除くために20倍以上の脱イオン水を用いて洗浄することが好ましく、30倍以上であると特に好ましい。
 上記の洗浄を行い、乾燥してゴム含有グラフト重合体(C)を含む粉体を得た後、前記pHが8~12となるカルボン酸とアルカリ土類金属からなる塩(B’)を混合することがより好ましい。
[樹脂組成物]
 本発明の樹脂組成物はポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)を含む。
 一つの態様において、該樹脂組成物を成形温度205℃で射出成形したISO527に規定される1A形試験片のVDA275試験により測定したホルムアルデヒド量は0.10ppm以下であり、空気下、230℃で20分保持後のTG-DTAで測定される重量減少率は4%以下である。
 TG-DTAで測定する樹脂組成物は、押出成形にてペレット化したものを用いる。押出条件は以下のように設定する。
 ・ポリアセタール樹脂の乾燥:110℃で3時間以上24時間未満
 ・バレル温度:180℃~190℃
 ・押出機の種類:脱揮式二軸押出機
 ・スクリューの長さ(L)と直径(D)の比率:L/D=20~26
 ・吐出量:1時間当たり10~18kg
 ・押出滞留時間:3分以内
 ここで述べる押出滞留時間は、ホッパーから投入したペレットが、バレルの入り口に入って、押出機ダイから出てくるまでの時間である。実際の測定方法は、以下の通りである。
(i) 押出機のバレル内に樹脂がない状態で、実際の押出するバレル内のスクリュー回転数に設定する。
(ii) 実際にホッパーから送り出すペレットスピードに設定する。
(iii) ホッパーにペレットを投入し、ペレットがバレル入口に入った時間をゼロとする。
(iv) 押出機のダイから溶融樹脂が出る時間を計測する。
 上述の方法で得られたペレットを、以下の手順に従い熱重量・示差熱(TG-DTA)測定にて空気下、230℃で20分保持後の重量減少率を測定する。
 測定するペレットを120℃で3時間ほど別途乾燥機にて乾燥した後、乾燥した容器に保管し、熱重量・示差熱(TG-DTA)測定に用いる。測定条件(ペレットの熱履歴)は以下の通りで、(iii)の後の重量減少率を測定し、「空気下、230℃で20分保持後のTG-DTAで測定される重量減少率」と定義する。
(i) 窒素気流下で1分あたり50度の昇温速度で100℃まで上げ、10分間保持
(ii) 窒素気流下で1分あたり100度の昇温速度で230℃まで上げる。
(iii) 空気気流下に変え、20分間保持する。
 「空気下、230℃で20分保持後のTG-DTAで測定される重量減少率」は4%以下が必須である。4%以下であれば成形加工中の熱安定性が十分である。3.5%以下が好ましく、3%以下がより好ましく、2%以下が特に好ましい。
 VDA275試験によるホルムアルデヒド量の測定に用いる成形品は、以下の射出条件で得られたISO527の1A形試験片(ダンベル引張試験片)を用いて行う。該樹脂組成物を成形温度205℃で射出成形する際は、以下の成形条件に設定する。
 ・用いるペレットはTG-DTAで測定するペレットを用いる。
 ・得られる成形品の形状はISO527の1A形試験片(ダンベル引張試験片)
 ・樹脂組成物の乾燥温度:120℃で3時間、その後80℃に設定し保持。
 ・金型温度:80~90℃
 ・射出圧力:60~120MPa
 ・保持圧力:60~80MPa
 ・射出時間:4~10s
 ・保持時間:20~30s
 ・成形滞留時間:1分以上3分以内
 ここで述べる成形滞留時間は、射出成型のホッパーから投入した樹脂が金型内に充填されるまでの時間である。具体的には射出成形機の理論射出体積(シリンダーに充填できる樹脂体積)を射出成形1回当たりの射出樹脂量で割りそれを成形サイクルタイムにかけ合わせることで算出できる。
 以下、具体例を挙げる。
 理論射出体積:150cc
 射出成形1回当たりの射出樹脂量:50cc
 成形サイクルタイム:射出時間(5s)+保持時間(25s)+休止時間(30s)=60s=1分
 成形滞留時間[分]=150÷50×1=3分
 上記射出成形条件にて得られたISO527の1A形試験片(ダンベル引張試験片)を25℃、湿度50%の条件で24時間保管し、VDA275規格に準ずる方法でホルムアルデヒド量を定量する。測定方法の詳細は実施例の評価の項に記載する。その値が0.10ppmであることが必須であり、0.07ppm以下が好ましく、0.05ppm以下がより好ましい。上記記載のVDA275試験によるホルムアルデヒド量が0.10ppm以下であれば車両用内装部材として好適である。
 別の態様において、カルボン酸とアルカリ土類金属からなる塩(B)が、前述の方法で測定したpHが8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)であり、樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下である。
 前記pHが8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)を用いることにより、ポリアセタール樹脂(A)とゴム含有グラフト重合体(C)の樹脂組成物を成形してなる成形体中のホルムアルデヒドを低減させることができる。好ましいpHは10~12である。このようなpHを示すものとしては、例えば前述の「カルシウムステアレートGF-200」(日油(株)製)が挙げられる。
 樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下であることにより、ポリアセタール樹脂(A)とゴム含有グラフト重合体(C)との成形加工過程での熱分解(酸化による重量損失)を低減できる。該樹脂組成物中のナトリウム及びカリウム含有量は、150ppm以下が好ましく、100ppm以下がより好ましく、10ppm以下がさらに好ましい。
カルボン酸とアルカリ土類金属からなる塩(B)の前記pHが8~12になる条件は、粉体(X)の項に記載したとおりである。
 樹脂組成物中のナトリウム及びカリウム含有量を200ppm以下にする方法は、例えば前述のC-1とC-2の要件を共に満たすことが挙げられる。
 C-1)ゴム含有グラフト重合体(C)のラテックスを製造する過程で用いる脱イオン水以外の全ての原料に対して、ナトリウム及び/又はカリウムを含む原料の仕込み濃度をナトリウム及び/又はカリウム換算量(ナトリウム及び/又はカリウム換算濃度)にて1500ppm以下にする。
 C-2)ゴム含有グラフト重合体(C)のラテックスに凝析剤を用いて凝析し、得られた湿粉をゴム含有グラフト重合体(C)のラテックス固形分に対して10倍以上の脱イオン水を用いて洗浄する。
 また他の方法として、以下のD-1~D-3を全て満たす手法が挙げられる。
 D-1)pH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)のナトリウム及びカリウム含有量の量が30ppm以下であること。
 D-2)pH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)の該樹脂組成物中の配合量は2.0質量%以下である。
 D-3)ゴム含有グラフト重合体(C)を含む粉体の樹脂組成物中の配合量を、200ppm÷粉体中のナトリウム及びカリウム含有量にすることである。
 仮に、ゴム含有グラフト重合体(C)を含む粉体のナトリウム及びカリウム含有量が1500ppmであれば、
 200÷1500=13.3%
 となる。従ってゴム含有グラフト重合体(C)を含む粉体の樹脂組成物中の配合量を13%以下にすると、必然的に該樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下になる。右記の計算ではpH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)のナトリウム及びカリウム含有量を無視している。この理由として該樹脂組成物中のpH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)配合量は2%以下(D-2)を前提とし、pH8~12であるカルボン酸とアルカリ土類金属からなる塩(B’)由来のナトリウム及びカリウム含有量は無視できる程度と見なしている。(2%×30ppm=0.6ppm)
 別の態様において、樹脂組成物はポリアセタール樹脂(A)及び粉体(X)を含む。
 本発明の樹脂組成物は、ISO527に準じた引張速度50mm/min条件での引張降伏値が28MPa以上で、シャルピー衝撃試験(タイプA:ノッチ先端半径0.25mm±0.05mm)の25℃の衝撃値が12kJ/m以上であることが好ましい。
 上記パラメータを満たすためにはE-1とE-2を共に満たさなければならない。
 E-1)前項に記載したゴム含有グラフト重合体(C)の好ましい範囲であること。
 例えば
 ゴム状重合体;ブタジエン系ゴムであり
 質量平均粒子径(dw):200nm
 単分散性:dw/dn=1.2
 グラフト重合体の組成:メタクリル酸メチルとアクリル酸ブチルとの共重合体
 ゴム状重合体のゴム含有グラフト重合体の比率:80質量%
 等が挙げられ、本実施例に記載のゴム含有グラフト重合体(C-1、C-2)を用いることが好ましい。
 E-2)ゴム含有グラフト重合体(C)の含有率をポリアセタール樹脂(A)、カルボン酸とアルカリ(土類)土類金属から生成される塩からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量%中15質量%以上38質量%以下。
 車両用部材等で用いる強化系樹脂においてシャルピー衝撃試験(タイプA:ノッチ先端半径0.25mm±0.05mm)の25℃の衝撃値が12kJ/m以上であることが好ましい、ゴム含有グラフト重合体(C)の配合量を増量すれば衝撃値が12kJ/m以上になるが、ISO527に準じた引張速度50mm/min条件での引張降伏値が低下する。引張降伏値が28MPa以上であれば車両用部材等で好ましい。
 引張及び衝撃試験で用いる成形試験片はVDA275の試験で使用するISO527の1A形試験片(ダンベル引張試験片)を用いる。シャルピー衝撃試験では、前記1A形試験片を所定の寸法に加工してISO179に準じた試験片を作成し、タイプAノッチ(ノッチ先端半径0.25mm±0.05mm)を刻む。用いるハンマーは15Jのものを活用する。
 ISO527:引張速度50mm/min条件での引張降伏値は30MPa以上が好ましく、31MPa以上がさらに好ましく、32MPa以上が特に好ましい。
 シャルピー衝撃試験(タイプA:ノッチ先端半径0.25mm±0.05mm)の25℃の衝撃値は14kJ/m以上が好ましく、15kJ/m以上がさらに好ましく、16kJ/m以上が特に好ましい。
 ポリアセタール樹脂(A)の含有率は、ポリアセタール(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量%中、94.9~60質量%が好ましく、80~61質量%がより好ましく、80~70質量%がさらに好ましい。ポリアセタール樹脂(A)の含有量が60質量%以上であれば、樹脂組成物の引張特性(弾性率や強度)が十分にあり、94.9質量%以下であれば、樹脂組成物の成形体は十分な衝撃強度(シャルピー衝撃試験での衝撃強度、引張試験時の破断伸び率)を有する。
 カルボン酸とアルカリ土類金属からなる塩(B)の含有率は、ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量%中、0.1~2質量%が好ましく、0.1~1質量%がより好ましく、0.1~0.6質量%がさらに好ましい。カルボン酸とアルカリ土類金属からなる塩(B)の含有率が0.1質量%以上であれば、成形加工過程又は成形品からのホルムアルデヒドの発生を低減することができ、2質量%以下であれば、押出時の樹脂の滑りを低減できることから、溶融樹脂に練りが効果的に加わり、ポリアセタール樹脂(A)中にゴム含有グラフト重合体(C)が均一に分散させることができる。そのため樹脂組成物の成形体は十分な機械特性(シャルピー衝撃強度や引張特性)を有し、またカルボン酸とアルカリ土類金属からなる塩(B)がブリードすることもなく成形品の外観等を損ねない。
 ゴム含有グラフト重合体(C)の含有率は、ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量%中、5~40質量%が好ましく、15~38質量%がより好ましく、19.9~29.4質量%がさらに好ましい。ゴム含有グラフト重合体(C)のの含有率が5質量%以上であると、樹脂組成物の成形体は衝撃強度の改良効果がある。その含有率が40質量%以下であれば成形体は、引張特性(弾性率や強度)の著しい低下がなく衝撃強度の改良ができる。
 本発明の樹脂組成物は、VDA278試験によるFOG(凝集性化合物,Fogging)値が100μg/g以下であることが車両用内装部材として好ましく、90μg/g以下がより好ましく、80μg/g以下であることが特に好ましい。
 本発明の樹脂組成物には、酸化防止剤として、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチルー4-ヒドロキシーm-トリル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチルー4-ヒドロキシフェニル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジーtert-ブチルー4-ヒドロキシフェニル)プロピオネート]からなる群より選ばれる1種以上のヒンダートフェノール系酸化防止剤(D)を配合することでVDA278試験によるFOG値が100μg/g以下となり好ましい。
 ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量部に対し、ヒンダートフェノール系酸化防止剤(D)の含有量が0.08~0.7質量部であることが好ましい。ヒンダートフェノール系酸化防止剤(D)の含有部が0.1~0.4質量部が特に好ましい。0.08質量部以上であるとVDA278試験によるFOG値が100μg/g以下となり、0.7質量部以下であればヒンダートフェノール系酸化防止剤の着色が問題とならない。
[その他の添加剤等]
 本発明の樹脂組成物は、上記の材料の他、本発明の目的を損なわない範囲で、周知の種々の添加剤、例えば、酸化防止剤等の安定剤、難燃剤、難燃助剤、加水分解抑制剤、帯電防止剤、発泡剤、染顔料等を含有することができる。
[樹脂組成物の製造]
 本発明の樹脂組成物は、ポリアセタール樹脂(A)に、前記pH8~12となるカルボン酸とアルカリ土類金属からなる塩(B’)とゴム含有グラフト重合体を含む粉体をそれぞれ配合し、混合し、溶融加工(押出・射出成形等)することもできるし、カルボン酸とアルカリ土類金属からなる塩(B’)とゴム含有グラフト重合体を含む粉体(X)をポリアセタール樹脂(A)に配合し、混合し、溶融加工(押出・射出成形等)することもできる。
[配合方法]
 本発明の樹脂組成物の調製する際の各材料の配合方法としては、公知のブレンド方法が挙げられ、特に限定されない。例えばタンブラー、V型ブレンダー、スーパーミキサー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等で混合・混練する方法が挙げられる。
[成形体]
 本発明の樹脂組成物は、公知の成形方法によって、所望形状の成形体とすることができる。樹脂組成物は、直接に、或いは溶融押出機で一旦ペレット状にしてから、押出成形法、射出成形法、圧縮成形法等によって成形することができる。成形体は、特に限定されず、自動車部品、電気・電子機器部品、その他の精密機械部品、建材・配管部材、生活・化粧用部品、医用部品等に展開できる。
 以下、製造例及び実施例により本発明を更に詳細に説明する。尚、「部」は「質量部」を意味し、「%」は「質量%」を意味する。
 各種測定方法は以下の通り。
   ・ ゴム質重合体の質量平均粒子径とdw/dn
 キャピラリー粒度分布計(米国MATEC社製CHDF2000型)を用い測定した。
   ・ ゴム含有グラフト重合体のpH
 ゴム含有グラフト重合体の粉体10部を脱イオン水(JISK0557A3と同等の水)90部に配合し、均一に分散させ、20時間放置した分散液について、25℃でpH測定した。
   ・ カルボン酸(塩)の量の測定
 各製造例で得られたゴム含有グラフト重合体中のカルボン酸、またはカルボン酸塩に由来するカルボン酸の量を、以下の方法で測定した。まず、試料0.2gを0.1%トリフロオロ酢酸(トルエン溶液)10mlで溶解した(80℃、60分間)。次に三フッ化ほう素メタノール1gを加え80℃、30分間でメチルエステル化処理を行った。蒸留水10mlとヘキサン10mlを加え二層分離させ、このヘキサン層の1μlをGCに注入し、酢酸、パルミチン酸、オレイン酸、ステアリン酸、アルケニルコハク酸ジカリウム、ロジン酸の量(カルボン酸)を測定した。本測定ではカルボン酸とアルカリ金属またはアルカリ土類金属と配位した化合物もカルボン酸として計測される。
   ・ ナトリウム、カリウム、カルシウムイオン量の定量
 各製造例で得られたゴム含有グラフト重合体中または樹脂組成物のイオン濃度を、以下の方法で測定した。まず、試料0.25gを分解容器に量り取り、硝酸8mlをマイクロウエーブ(湿式分解)にて分解させ、冷却後、フッ化水素酸2ml入れ、再度マイクロウエーブで処理し、蒸留水で50mlにメスアップし検液とした。この検液をICP発光分析装置(IRIS Interpid II XSP:Thermo社製)を用いてナトリウム、カリウムのイオン量を定量(ppm単位)した。
   ・ カルボン酸とアルカリ土類金属からなる塩(B)のpH
 カルボン酸とアルカリ土類金属からなる塩(B)2部をノニルフェノールのエチレンオキサイド10mol付加物0.2部と電導度4μS/cm以下である脱イオン水17.8部とを配合してなる水溶液18部に配合し、均一に分散させた後、25℃でpHを測定した。
 各種市販品であるカルボン酸とアルカリ土類金属からなる塩(B)のpHは以下の通りであった。
B-1-1「カルシウムステアレートGF-200」ロット番号:403523(日油製)(pH:11.0)
B-1-2「カルシウムステアレートGF-200」ロット番号: 406533(日油製)(pH:10.9)
B-2「カルシウムステアレート」(日油製)(pH:7.5)
   ・ 引張試験(ISO-527)
 各ペレットを樹脂組成物の乾燥温度:120℃で3時間、その後80℃に設定し保持し住友射出成形機SE100DU(住友重機械工業(株)製、理論射出体積:113cc)に供給し、シリンダー温度205℃、金型温度85℃にて、射出圧力60~70MPa、保持圧60MPa、射出時間4秒、保持時間20秒、休止時間30秒、成形滞留時間約2分(1回当たりの射出量50cc、サイクルタイム:54秒)で成形しISO-527の1A形の成形体(ダンベル引張試験片)を得た。ISO-527に準じて引張速度50mm/minにて引張試験を実施し、引張弾性率、引張降伏強度と破断伸び率を測定した。
   ・ シャルピー衝撃試験
 各ペレットを樹脂組成物の乾燥温度:120℃で3時間、その後80℃に設定し保持し住友射出成形機SE100DU(住友重機械工業(株)製、理論射出体積:113cc)に供給し、シリンダー温度205℃、金型温度85℃にて、射出圧力60~70MPa、保持圧60MPa、射出時間4秒、保持時間20秒、休止時間30秒、成形滞留時間約2分(一回当たりの射出量50cc、サイクルタイム:54秒)で成形し、ISO-527の1A形の成形体(ダンベル引張試験片)を得た。その試験片から長さ80mm×幅10mm×厚さ4mmの成形体(試験片)を切り出した。シャルピー衝撃試験はISO-179-1に準拠し、ISO2818に準拠したタイプAのノッチ(ノッチ先端半径0.25mm±0.05mm)を刻んで25℃で測定した。衝撃を与えるハンマーは15Jのものを用いた。
   ・ 成形品中のホルムアルデヒド定量(VDA-275)
 各ペレットを樹脂組成物の乾燥温度:120℃で3時間、その後80℃に設定し保持し住友射出成形機SE100DU(住友重機械工業(株)製、理論射出体積:113cc)に供給し、シリンダー温度205℃、金型温度85℃にて、射出圧力60~70MPa、保持圧60MPa、射出時間4秒、保持時間20秒、休止時間30秒、成形滞留時間約2分(1回当たりの射出量50cc、サイクルタイム:54秒)で成形し、ISO-527の1A形の成形体(ダンベル引張試験片)を得た。25℃、湿度50%の条件で24時間保管し、下記1)~5)を実施してVDA275による成形品中のホルムアルデヒド量を定量した。
 1)ダンベル引張試験片を引っかけてぶら下げるための穴を開け、試料の重さを正確に秤量する。
 2)1Lポリエチレン容器に脱イオン水(JISK0557A3と同等の水)50mlを入れる。穴をあけたダンベル引張試験片を容器に付けられたフックにつるして蓋をし、60℃のオーブン内で3時間放置する。
 3)容器をオーブンより取出し、60分室温に放置後、ダンベル引張試験片を容器から取り出す。
 4)1Lポリエチレン容器内の水溶液25ml、0.4%アセチルアセトン水溶液10mlと20%酢酸アンモニウム水溶液10mlを50mlメスフラスコに加える。40℃の温浴中で15分間撹拌する。緑黄色に変化した水溶液を暗所に1時間放置して室温まで冷却する。
 5)4の溶液の412nmの吸光度を、あらかじめ濃度を設定したホルムアルデヒド水溶液を対照サンプルとして、紫外可視分光光度計:島津製作所製UVmini-1240
にて測定する。成形品中のホルムアルデヒド量としては1で測定したダンベル引張試験片の重さに対する量をppm単位で算出する。
   ・ 押出ペレットの熱重量損失量
 各ペレットの熱重量測定(TG)を実施した。測定装置としてTG/DTA6200(セイコーインスツルメンツ社製)を使用した。測定条件は230℃まで窒素気流下で10℃/minで昇温し、空気に切り替え10min保持して重量損失量を定量した。
 測定するペレットを120℃で3時間ほど別途乾燥機にて乾燥し、乾燥した容器に保管し、熱重量・示差熱(TG-DTA)測定に用いる。測定条件(ペレットの熱履歴)は以下の通りで、(iii)の後の重量減少率を測定し、「空気下、230℃で20分保持後のTG-DTAで測定される重量減少率」と定義する。
(i)窒素気流下で1分あたり50度の昇温速度で100℃まで上げ、10分間保持する。
(ii)窒素気流下で1分あたり100度の昇温速度で230℃まで上げる。
(iii)空気気流下に変え、20分間保持する。
   ・ 押出ペレットのVDA278(FOG)の測定方法
 測定するペレットを120℃で3時間ほど別途乾燥機にて乾燥し、乾燥した容器に保管し、VDA278試験によるFOG値の測定に用いる。サンプル15mgを試料カップ(エコカップLF)に入れ、GCに接続した加熱炉型のパイロライザー(フロンティアラボ製、PY-3030D)にてヘリウムガス雰囲気下、120℃×1時間の加熱抽出を行った。その際に発生したガスをGCカラムの一部を液体窒素温度に冷却することで濃縮捕集した後、捕集した発生ガス成分をGC-MS(GC:Agilent Technologies製、Agilent 7890、MS:Agilent Technologies製、Agilent 5975C)を用いて定量した。
 本測定の保持時間5.5分から16分における検出成分のうち炭素数16から20までの化合物のピーク面積の総計をノルマルヘキサデカン換算し、その値をFOG値(μg/g)とした。
・GC(ガスクロマトグラフ)
  カラム:フロンティアラボ製、Ultla ALLOY+5(0.25μm、0.25mmφ×30m)
  カラム温度:50℃(2分間ホールド)→25℃/分にて昇温→160℃(ホールドなし)→10℃/分で昇温→280℃(ホールドなし)
  キャリアーガス:He(1ml/min)(コンスタントフローモード)
  注入口:スプリットモード(スプリット比=20:1、トータル流量=28ml/分、温度300℃)
・MS(質量分析計)
  イオン化法:EI
  インターフェイス温度:300℃
  イオン源温度:230℃
  検出器温度:150℃
  測定質量範囲:m/z=33-800
<製造例1> 安定剤エマルジョン(E-1)の調製
 表1に示す「成分1」を80℃で溶解させた。次いで表1に示す「成分2」の水溶液を上記の溶液に投入し強制乳化させ、安定剤エマルジョン(E-1)を調製した。
Figure JPOXMLDOC01-appb-T000001
 <製造例2> ブタジエン系ゴム質重合体ラテックス(R-1)の製造
 第一単量体混合液として表2に示す「成分1」を容量70Lのオートクレーブ内に仕込み、昇温して、液温が43℃になった時点で、表2に示す「成分2」のレドックス系開始剤を添加して反応を開始し、その後さらに液温を65℃まで昇温した。
 重合開始から3時間後に表2に示す「成分3」の重合開始剤を添加し、その1時間後から「成分4」の第二単量体混合液、「成分5」の乳化剤水溶液、「成分6」の重合開始剤を8時間かけて連続的に滴下した。
 重合開始から4時間反応させて、ブタジエン系ゴム質重合体ラテックス(R-1)を得た。このブタジエン系ゴム質重合体の質量平均粒子径は170nmであり、dw/dn=1.2であった。
Figure JPOXMLDOC01-appb-T000002
 <製造例3> ゴム含有グラフト重合体ラテックス(G-1)の製造
 このジエン系ゴム質重合体ラテックス219部(仕込みモノマー成分として77.5部)を、攪拌機及び還流冷却管を備えた反応容器内に仕込み、表3に示す「成分1」を添加した。
 次いで、反応容器を55℃に昇温し、表3に示す「成分2」からなる水溶液を加え、引き続き、表3に示す「成分3」の混合物を60分間かけて滴下し、さらに60分間加熱攪拌を続けた。引き続き表3に示す「成分4」の混合物を60分間かけて滴下し、さらに60分間加熱攪拌を続けた。このようにして、ブタジエン重合体含有ビニル重合体のラテックス(G-1)を得た。
Figure JPOXMLDOC01-appb-T000003
 <製造例4> ゴム含有グラフト重合体(C-1)の粉体の製造
 製造例2で得られたブタジエン重合体含有ビニル重合体のラテックス243.9部に、製造例1の安定剤エマルションを2.2部配合して、分散させた。
 表4に示す「成分1」を配合した水溶液を30℃に設定し、その水溶液中に得られたラテックスを投入し、液温を80℃に昇温し、塩析した。凝集ポリマーを回収し、脱イオン水1500部に浸し、脱水する工程を2度繰り返し、80℃で一晩乾燥して、ゴム含有グラフト重合体(C-1)の粉体を得た。
 得られたゴム含有グラフト重合体(C-1)のpHは7.2であった。
 得られたゴム含有グラフト重合体(C-1)のナトリウムとカリウム量は10ppmであった。
 得られたゴム含有グラフト重合体(C-1)のカルボン酸(塩)の量は0.03%以下であり、凝析で用いた酢酸カルシウムは洗浄により除去できている。
Figure JPOXMLDOC01-appb-T000004
 <製造例5> ゴム含有グラフト重合体ラテックス(G-2)の製造
 ジエン系ゴム質重合体ラテックス(R-1)232部(仕込みモノマー成分として82部)を、攪拌機及び還流冷却管を備えた反応容器内に仕込み、表5に示す「成分1」を添加した。
 次いで、反応容器を55℃に昇温し、表3に示す「成分2」からなる水溶液を加え、引き続き、表3に示す「成分3」の混合物を60分間かけて滴下し、さらに60分間加熱攪拌を続けた。このようにして、ブタジエン重合体含有ビニル重合体のラテックス(G-2)を得た。
Figure JPOXMLDOC01-appb-T000005
<製造例6> ゴム含有グラフト重合体(C-2)の粉体の製造
 製造例5で得られたブタジエン重合体含有ビニル重合体のラテックス252.3部に、フェノール系酸化防止剤のIrg1076(n-オクタデシル-3-(3’,5’ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート)1.0質量部と、チオエーテル系酸化防止剤であるAO-412S(ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3―プロパンジイル)を0.2質量部添加し、分散させた。
 表6に示す「成分1」を配合した水溶液を30℃に設定し、その水溶液中に得られたラテックスを投入し、液温を80℃に昇温し、塩析した。凝集ポリマーを回収し、脱イオン水1500部に浸し、脱水する工程を2度繰り返し、80℃で一晩乾燥して、ゴム含有グラフト重合体(C-2)の粉体を得た。
 得られたゴム含有グラフト重合体(C-2)のpHは6.0であった。
 得られたゴム含有グラフト重合体(C-2)のナトリウムとカリウム量は14ppmであった。
 得られたゴム含有グラフト重合体(C-2)のカルボン酸(塩)の量は0.03%以下であり、凝析で用いた酢酸カルシウムは洗浄により除去できている。
Figure JPOXMLDOC01-appb-T000006
<実施例> 樹脂組成物の製造
 ポリアセタール樹脂(HOSTAFORMC9021(商品名)、Ticona製)を110℃で3時間以上乾燥し、カルボン酸とアルカリ土類金属からなる塩(B)、製造例で得られたゴム含有グラフト重合体(C)と酸化防止剤(IRGANOX1076 BASF製)又はヒンダートフェノール系酸化防止剤(D)を表7に示す組成で配合・混合した。各混合物をバレル温度180℃に加熱した脱揮式二軸押出機(池貝鉄工社製、PCM-30、L/D=24、吐出量は1時間当たり12~16kg)に供給して混練し樹脂組成物のペレットを作製した。各種評価結果を表7に示した。
<比較例>
 表7に示すように配合を変更した以外は、実施例と同様にして行った。
Figure JPOXMLDOC01-appb-T000007
  表中の略号は以下の通り。
  POM:ポリアセタール樹脂(HOSTAFORMC9021(商品名)、Ticona製)
 B-1-1:「カルシウムステアレートGF-200」ロット番号: 403523(日油製)(pH:11.0)
 B-1-2「カルシウムステアレートGF-200」ロット番号: 406533(日油製)(pH:10.9)
 B-2:「カルシウムステアレート」(日油製)(pH:7.5)
 ゴム含有グラフト重合体C-1:製造例4から得られたメチルメタクリレートーブタジエンースチレンのゴム含有グラフト重合体を含む粉体。pHが7.2、ナトリウムとカリウムの量が10ppm
 ゴム含有グラフト重合体C-2:製造例6から得られたメチルメタクリレートーブタジエンースチレンのゴム含有グラフト重合体を含む粉体。pHが6.0、ナトリウムとカリウムの量が14ppm
 ゴム含有グラフト重合体C-3:メチルメタクリレートーブタジエンースチレンのゴム含有グラフト重合体である粉体。ポリブタジエンが67質量%、pHが7.3、ナトリウムとカリウムの量が2600ppm
 酸化防止剤(n-オクタデシル-3-(3’,5’ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート:IRGANOX1076 BASF製)
 ヒンダートフェノール系酸化防止剤(D-1)(ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチルー4-ヒドロキシフェニル)プロピオネート]:IRGANOX1010 BASF製)
 ヒンダートフェノール系酸化防止剤(D-2)(エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチルー4-ヒドロキシーm-トリル)プロピオネート:IRGANOX245 BASF製)
 比較例1の樹脂組成物は、ゴム含有グラフト重合体を含まないため、衝撃強度や引張破断伸びが低かった。
 比較例2の樹脂組成物は、前述のようにして測定されるカルボン酸とアルカリ土類金属からなる塩(B)のpHが7.5であるため、VDA275が0.14ppmと高く、成形品中にホルムアルデヒドが多く検出された。
 比較例3の樹脂組成物は、カルボン酸とアルカリ土類金属からなる塩(B)を含まないため、衝撃強度や引張破断伸びは改善するものの空気下、230℃で20分保持後のTG-DTAで測定される重量減少率が37%と高く、熱分解しやすかった。
 比較例4の樹脂組成物は、ゴム含有グラフト重合体(C-3)(ナトリウム及びカリウム含有量が2600ppm)を含む。また樹脂組成物中のナトリウム及びカリウム含有量が2600ppm×0.095=247ppmは含まれ、200ppmを超える。そのため、230℃で20分保持後のTG-DTAで測定される重量減少率が5%と高く、熱分解しやすかった。実施例の樹脂組成物は、VDA275が0.10ppm以下で成形品中のホルムアルデヒドが少なく、空気下、230℃で20分保持後のTG-DTAで測定される重量減少率が4%以下であり耐熱分解性に優れていた。
 実施例3の樹脂組成物は、ヒンダートフェノール系酸化防止剤(D-1)(ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチルー4-ヒドロキシフェニル)プロピオネート])とヒンダートフェノール系酸化防止剤(D-2)(エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチルー4-ヒドロキシーm-トリル)プロピオネート])をさらに含むため、VDA278特性が改良した。
 本発明で得られるゴム含有グラフト重合体を含むポリアセタール樹脂組成物は、従来困難であった成形品中のホルムアルデヒドを低減でき、かつ成形加工過程における重量損失を伴う熱分解を十分に抑制できる。かつ機械的物性も優れ、自動車内装部材や家電部材等を含むさまざまな分野の素材に適用可能である。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。
 

 

Claims (16)

  1. ポリアセタール樹脂(A)、
    カルボン酸とアルカリ土類金属からなる塩(B)、及び
    ゴム含有グラフト重合体(C)
    を含む樹脂組成物であって、
    該樹脂組成物を成形温度205℃で射出成形したISO-527の1A形試験片の、VDA275試験によるホルムアルデヒド量が0.10ppm以下であり、
    空気下、230℃で20分保持後のTG-DTAで測定される重量減少率が4%以下である、
    樹脂組成物。
  2. ポリアセタール樹脂(A)、
    カルボン酸とアルカリ土類金属からなる塩(B)、及び
    ゴム含有グラフト重合体(C)
    を含む樹脂組成物であって、
    前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤を含む脱イオン水18質量部に溶解したときにpH8~12となるものであり、
    樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下である樹脂組成物。
  3. カルボン酸とアルカリ土類金属からなる塩(B)、及びゴム含有グラフト重合体(C)
    を含む粉体(X)であって、
    前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤を含む脱イオン水18質量部に溶解したときにpH8~12となるものであり、
    ナトリウム及びカリウム含有量が1500ppm以下である、粉体(X)。
  4. ポリアセタール樹脂(A)と、請求項3に記載の粉体(X)とを含む樹脂組成物。
  5. 樹脂組成物中のナトリウム及びカリウム含有量が200ppm以下である、請求項1又は4に記載の樹脂組成物。
  6. 前記アルカリ土類金属がカルシウムである、請求項1、2及び4のいずれか1項に記載の樹脂組成物。
  7. 前記ゴム含有グラフト重合体(C)がブタジエンゴム、及びスチレン・ブタジエン共重合ゴムからなる群より選ばれる1種以上を含む、請求項1、2及び4のいずれか1項に記載の樹脂組成物。
  8. 樹脂組成物を成形温度205℃で射出成形したISO527の1A形試験片の、引張速度50mm/min条件での引張降伏値が28MPa以上であり、
    シャルピー衝撃試験(ノッチ先端半径0.25mm±0.05mm)の25℃の衝撃値が12kJ/m以上である、
    請求項1、2及び4のいずれか1項に記載の樹脂組成物。
  9. ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)、及びゴム含有グラフト重合体(C)の合計100質量%中、カルボン酸とアルカリ土類金属からなる塩(B)の含有率が0.1~2質量%、ゴム含有グラフト重合体(C)の含有率が5~40質量%である、請求項1、2及び4のいずれか1項に記載の樹脂組成物。
  10. VDA278試験によるFOG値が100μg/g以下である、請求項1、2、及び4のいずれか1項に記載の樹脂組成物。
  11. エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシーm-トリル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、及びヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]からなる群より選ばれる1種以上のヒンダートフェノール系酸化防止剤(D)をさらに含む、請求項1、2及び4のいずれか1項に記載の樹脂組成物。
  12. ポリアセタール樹脂(A)、カルボン酸とアルカリ土類金属からなる塩(B)及びゴム含有グラフト重合体(C)の合計100質量部に対し、ヒンダートフェノール系酸化防止剤(D)の含有量が0.08~0.7質量部である、請求項11に記載の樹脂組成物。
  13. 請求項1、2及び4のいずれか1項に記載の樹脂組成物を成形してなる成形体。
  14. ゴム含有グラフト重合体(C)のラテックスを凝析剤を用いて凝析し、ついでカルボン酸とアルカリ土類金属からなる塩(B)を混合する、請求項3に記載の粉体(X)の製造方法。
  15. ゴム含有グラフト重合体(C)のラテックスを凝析剤を用いて凝析し、その固形分に対して10倍量以上の脱イオン水を用いて洗浄し、ついでカルボン酸とアルカリ土類金属からなる塩(B)を混合する、請求項14に記載の製造方法。
  16. ポリアセタール樹脂(A)、
    カルボン酸とアルカリ土類金属からなる塩(B)、及び
    ゴム含有グラフト重合体(C)を含みナトリウム及びカリウム含有量が1500ppm以下である粉体(Y)
    を混合する、樹脂組成物の製造方法であって、
    前記カルボン酸とアルカリ土類金属からなる塩(B)が、その2質量部をノニオン性分散剤を含む脱イオン水18質量部に溶解したときにpH8~12となるものである、
    樹脂組成物の製造方法。

     
PCT/JP2016/055221 2015-02-25 2016-02-23 樹脂組成物及びその成形体 WO2016136726A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16755470.8A EP3263645B1 (en) 2015-02-25 2016-02-23 Resin composition and article molded therefrom
JP2016513165A JP6610537B2 (ja) 2015-02-25 2016-02-23 樹脂組成物及びその成形体
US15/552,953 US10800901B2 (en) 2015-02-25 2016-02-23 Resin composition and article molded therefrom
KR1020177023005A KR101884146B1 (ko) 2015-02-25 2016-02-23 수지 조성물 및 그의 성형체
CN201680012754.6A CN107429037B (zh) 2015-02-25 2016-02-23 树脂组合物及其成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034842 2015-02-25
JP2015-034842 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136726A1 true WO2016136726A1 (ja) 2016-09-01

Family

ID=56789004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055221 WO2016136726A1 (ja) 2015-02-25 2016-02-23 樹脂組成物及びその成形体

Country Status (7)

Country Link
US (1) US10800901B2 (ja)
EP (1) EP3263645B1 (ja)
JP (1) JP6610537B2 (ja)
KR (1) KR101884146B1 (ja)
CN (1) CN107429037B (ja)
TW (1) TWI610980B (ja)
WO (1) WO2016136726A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719045A4 (en) * 2017-11-27 2020-12-23 Mitsubishi Chemical Corporation RUBBER-CONTAINING GRAFT-POLYMER, RESIN COMPOSITION WITH RUBBER-CONTAINING GRAFT-POLYMER AND MOLDED ARTICLES THEREOF
JP2021011563A (ja) * 2019-07-03 2021-02-04 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
WO2022210417A1 (ja) * 2021-03-31 2022-10-06 テクノUmg株式会社 熱可塑性樹脂組成物、成形品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322230A (ja) * 1993-05-12 1994-11-22 Mitsubishi Gas Chem Co Inc ポリアセタール樹脂組成物
JPH07324155A (ja) * 1994-04-07 1995-12-12 Asahi Chem Ind Co Ltd ポリアセタール樹脂組成物
JP2005171080A (ja) * 2003-12-11 2005-06-30 Toray Ind Inc ポリオキシメチレン樹脂組成物
JP2008019305A (ja) * 2006-07-11 2008-01-31 Mitsubishi Rayon Co Ltd ポリアセタール樹脂用衝撃強度改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
JP2008260874A (ja) * 2007-04-13 2008-10-30 Asahi Kasei Chemicals Corp ポリアセタール樹脂組成物
JP2016000828A (ja) * 2015-09-14 2016-01-07 三菱レイヨン株式会社 ゴム質グラフト重合体、熱可塑性樹脂組成物及び成形品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2141752A1 (en) 1994-02-15 1995-08-16 Nazir A. Memon Impact modified polyacetal compositions
US20030162912A1 (en) * 2000-09-26 2003-08-28 Stefan Disch Impact-resistant polyoxymethylene moulding compounds with a low emission, the use thereof and moulded bodies produced therefrom
JP2005112949A (ja) 2003-10-06 2005-04-28 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
PL1637557T3 (pl) 2004-09-17 2012-07-31 Mitsubishi Gas Chemical Co Kompozycja żywicy poliacetalowej
US7928184B2 (en) * 2005-03-15 2011-04-19 Polyplastics Co., Ltd. Unstable terminal group decomposer, and stabilized polyacetal resin, manufacturing method, composition and molded article using the same
JP5269302B2 (ja) 2006-07-31 2013-08-21 三菱レイヨン株式会社 ポリアセタール樹脂用耐衝撃性改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
CN101357973A (zh) 2008-09-11 2009-02-04 四川大学 制备热稳定共聚甲醛的方法
US8816015B2 (en) * 2012-06-05 2014-08-26 Ticona, Llc Low emission polyoxymethylene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322230A (ja) * 1993-05-12 1994-11-22 Mitsubishi Gas Chem Co Inc ポリアセタール樹脂組成物
JPH07324155A (ja) * 1994-04-07 1995-12-12 Asahi Chem Ind Co Ltd ポリアセタール樹脂組成物
JP2005171080A (ja) * 2003-12-11 2005-06-30 Toray Ind Inc ポリオキシメチレン樹脂組成物
JP2008019305A (ja) * 2006-07-11 2008-01-31 Mitsubishi Rayon Co Ltd ポリアセタール樹脂用衝撃強度改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
JP2008260874A (ja) * 2007-04-13 2008-10-30 Asahi Kasei Chemicals Corp ポリアセタール樹脂組成物
JP2016000828A (ja) * 2015-09-14 2016-01-07 三菱レイヨン株式会社 ゴム質グラフト重合体、熱可塑性樹脂組成物及び成形品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719045A4 (en) * 2017-11-27 2020-12-23 Mitsubishi Chemical Corporation RUBBER-CONTAINING GRAFT-POLYMER, RESIN COMPOSITION WITH RUBBER-CONTAINING GRAFT-POLYMER AND MOLDED ARTICLES THEREOF
US11634526B2 (en) 2017-11-27 2023-04-25 Mitsubishi Chemical Corporation Rubber-containing graft polymer, resin composition containing rubber-containing graft polymer, and shaped article of same
JP2021011563A (ja) * 2019-07-03 2021-02-04 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形品
WO2022210417A1 (ja) * 2021-03-31 2022-10-06 テクノUmg株式会社 熱可塑性樹脂組成物、成形品
JPWO2022210417A1 (ja) * 2021-03-31 2022-10-06
JP7242971B2 (ja) 2021-03-31 2023-03-20 テクノUmg株式会社 熱可塑性樹脂組成物、成形品
US11976189B2 (en) 2021-03-31 2024-05-07 Techno-Umg Co., Ltd. Thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
TW201643215A (zh) 2016-12-16
KR20170106421A (ko) 2017-09-20
JPWO2016136726A1 (ja) 2017-11-30
US20180030240A1 (en) 2018-02-01
EP3263645A1 (en) 2018-01-03
CN107429037A (zh) 2017-12-01
CN107429037B (zh) 2022-11-25
EP3263645B1 (en) 2023-10-11
TWI610980B (zh) 2018-01-11
KR101884146B1 (ko) 2018-07-31
US10800901B2 (en) 2020-10-13
EP3263645A4 (en) 2018-02-28
JP6610537B2 (ja) 2019-11-27

Similar Documents

Publication Publication Date Title
CN106046589B (zh) 一种用于吹塑成型的高刚性、高熔体强度和耐低温冲击性的热塑性abs树脂组合物
JP6610537B2 (ja) 樹脂組成物及びその成形体
EP3363833B1 (en) Thermoplastic resin and thermoplastic resin composition
EP3248994B1 (en) Rubber polymer and preparation method therefor, graft copolymer, and thermoplastic resin composition
WO2015066910A1 (zh) 易电镀的电镀pc/abs合金材料及其制备方法
WO2018008611A1 (ja) ポリアミド樹脂成形体
TWI391438B (zh) 包含接枝聚合物之供擠壓加工用組成物
EP3121226B1 (en) Thermoplastic resin composition and resin molded article
JPH0786165B2 (ja) 耐衝撃性熱可塑性樹脂組成物
KR102257966B1 (ko) 열가소성 수지 조성물의 제조방법 및 이로부터 제조된 열가소성 수지 조성물
JP6729377B2 (ja) 樹脂組成物及びその成形体
JP2007106953A (ja) ドリップ防止用粉体及び難燃樹脂組成物
JP2022552188A (ja) 透明熱可塑性樹脂及びその製造方法
JP2008019305A (ja) ポリアセタール樹脂用衝撃強度改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
JP6387720B2 (ja) グラフト共重合体含有粉体および熱可塑性樹脂組成物の製造方法
JP6413705B2 (ja) 樹脂組成物及びその成形体
KR102538844B1 (ko) 방향족 비닐 화합물-비닐시안 화합물 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
EP4008734A1 (en) Method for preparing vinyl cyanide compound-conjugated diene rubber-aromatic vinyl compound graft copolymer, method for preparing thermoplastic resin composition comprising same, and thermoplastic resin composition
JPH0131779B2 (ja)
TWI708812B (zh) 樹脂組成物與其製造方法、及其成形體
KR20210132484A (ko) 그라프트 공중합체 제조방법, 그라프트 공중합체 및 이를 포함하는 수지 조성물
JP2008297334A (ja) 低温衝撃強度に優れた熱可塑性樹脂組成物
EP4279517A1 (en) Resin additive, resin composition, and molded article
JP2022115097A (ja) ポリアミド樹脂組成物、及びその製造方法
JPS6257446A (ja) 耐熱性にすぐれた熱可塑性樹脂組成物の製法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513165

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016755470

Country of ref document: EP