WO2016133081A1 - 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル - Google Patents

光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル Download PDF

Info

Publication number
WO2016133081A1
WO2016133081A1 PCT/JP2016/054424 JP2016054424W WO2016133081A1 WO 2016133081 A1 WO2016133081 A1 WO 2016133081A1 JP 2016054424 W JP2016054424 W JP 2016054424W WO 2016133081 A1 WO2016133081 A1 WO 2016133081A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
conductive film
light transmissive
transmissive
Prior art date
Application number
PCT/JP2016/054424
Other languages
English (en)
French (fr)
Inventor
淳之介 村上
林 秀樹
崇志 福田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55755924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016133081(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680002153.7A priority Critical patent/CN106794666B/zh
Publication of WO2016133081A1 publication Critical patent/WO2016133081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a light-transmitting conductive film, a film roll thereof, and a touch panel having the same.
  • a light-transmitting conductive film mounted on a touch panel obtained by laminating a light-transmitting conductive layer made of indium tin oxide (ITO) or the like on a light-transmitting support layer made of polyethylene terephthalate (PET) or the like. Many films are used (Patent Document 1).
  • These light-transmitting conductive films are usually optically transparent adhesives (Optical Clear Adhesive; OCA) such as acrylic pressure-sensitive adhesive on one surface so that at least one light-transmitting conductive layer is exposed. After affixing, it is used for the further post-processing process, a roll conveyance process, etc.
  • OCA Optical Clear Adhesive
  • Patent Document 2 After affixing OCA on one side, a so-called baking process is performed in which silver paste is applied to the light-transmitting conductive layer on the opposite side, and this is thermally cured at, for example, about 150 ° C. for about ten minutes.
  • a light-transmitting conductive film in which a film-like OCA (OCA film) is attached to one surface is wound up by roll conveyance.
  • the present inventors have found a problem that bubble voids are generated in the OCA when the baking process is performed after the OCA is applied to the light-transmitting conductive film.
  • the present invention aims to solve this problem.
  • Item 1 (A) a light-transmitting support layer; and (B) a light-transmitting conductive film containing a light-transmitting conductive layer,
  • the light transmissive conductive layer (B) is disposed on one surface of the light transmissive support layer (A) directly or via one or more other layers, and the light transmissive conductive layer ( A light-transmitting conductive film, wherein the wetting tension of the surface opposite to B) is 34 dyn / cm or more.
  • the light transmissive conductive layer (B) is disposed on one surface of the light transmissive support layer (A) directly or via one or more other layers, and the light transmissive conductive layer ( B) is a method for producing a light-transmitting conductive film in which the wetting tension on the surface opposite to that of B is 34 dyn / cm or more, Manufacturing comprising the step of processing the surface to have a wetting tension of 34 dyn / cm or more by at least one treatment selected from the group consisting of atmospheric pressure plasma treatment, low pressure plasma treatment and corona treatment Method.
  • the light transmissive conductive film of the present invention By using the light transmissive conductive film of the present invention, it is possible to suppress bubble voids generated in the OCA when the baking process is performed after the OCA is applied.
  • the OCA film can be prevented from peeling even when the light-transmitting conductive film is rolled and conveyed after the OCA film is pasted.
  • the light transmissive conductive film of the present invention comprises: (A) a light-transmitting support layer; and (B) a light-transmitting conductive film containing a light-transmitting conductive layer,
  • the light transmissive conductive layer (B) is disposed on one surface of the light transmissive support layer (A) directly or via one or more other layers, and the light transmissive conductive layer (
  • the light-transmitting conductive film is characterized in that the wetting tension on the surface opposite to B) is 34 dyn / cm or more.
  • light-transmitting means having a property of transmitting light (translucent).
  • Light transmissivity includes transparency.
  • Light transmissivity means, for example, the property that the total light transmittance is 80% or more, preferably 85% or more, more preferably 88% or more. In the present invention, the total light transmittance is measured based on JIS-K-7105 using a haze meter (trade name: NDH-2000 manufactured by Nippon Denshoku Co., Ltd. or equivalent).
  • the thickness of each layer is determined using a commercially available reflection spectral film thickness meter (Otsuka Electronics, FE-3000 (product name), or equivalent). Alternatively, it may be obtained by observation using a commercially available transmission electron microscope. Specifically, the light-transmitting conductive film is thinly cut in a direction perpendicular to the film surface using a microtome or a focus ion beam, and the cross section is observed.
  • the light transmissive support layer (A) when mentioning the relative positional relationship between two layers among a plurality of layers arranged on one surface of the light transmissive support layer (A), the light transmissive support layer (A) is used as a reference.
  • one layer having a large distance from the light transmissive support layer (A) may be referred to as an “upper” layer or the like.
  • FIG. 1 shows an embodiment of the light-transmitting conductive film of the present invention.
  • the light transmissive conductive layer (B) is directly disposed on one surface of the light transmissive support layer (A).
  • the light-transmitting support layer refers to a light-transmitting conductive film containing a light-transmitting conductive layer that plays a role of supporting a layer including the light-transmitting conductive layer.
  • a light transmissive support layer A
  • the light transmissive conductive film for touch panels what is normally used as a light transmissive support layer can be used.
  • the material of the light transmissive support layer (A) is not particularly limited, and examples thereof include various organic polymers.
  • the organic polymer is not particularly limited.
  • examples thereof include resins, polyamide resins, polyvinyl chloride resins, polyacetal resins, polyvinylidene chloride resins, and polyphenylene sulfide resins.
  • the polyester resin is not particularly limited, and examples thereof include polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the polyolefin resin is not particularly limited, and examples thereof include cycloolefin polymer (COP).
  • PET is most preferable in terms of the effects of the present invention.
  • the light transmissive support layer (A) may be composed of any one of these, or may be composed of a plurality of types.
  • the thickness of the light transmissive support layer (A) is not particularly limited, and examples thereof include a range of 2 to 300 ⁇ m.
  • Light transmissive conductive layer (B) The light transmissive conductive layer (B) is disposed on at least one surface of the light transmissive support layer (A) directly or via one or more other layers.
  • the light-transmitting conductive layer means a layer containing a conductive substance, conducting electricity and transmitting visible light.
  • a light transmissive conductive layer B
  • what is normally used as a light transmissive conductive layer in the light transmissive conductive film for touch panels can be used.
  • the material of the light transmissive conductive layer (B) is not particularly limited, and examples thereof include indium oxide, zinc oxide, tin oxide, and titanium oxide.
  • the light transmissive conductive layer (B) is preferably a light transmissive conductive layer containing indium oxide doped with a dopant in terms of achieving both transparency and conductivity.
  • the light transmissive conductive layer (B) may be a light transmissive conductive layer made of indium oxide doped with a dopant. Although it does not specifically limit as a dopant, For example, a tin oxide, a zinc oxide, those mixtures, etc. are mentioned.
  • indium oxide doped with tin oxide As the material of the light transmissive conductive layer (B), indium oxide (III) (In 2 O 3 ) doped with tin oxide (IV) (SnO 2 ) (Tin-doped indium oxide; ITO) is preferable.
  • the addition amount of SnO 2 is not particularly limited, and examples thereof include 1 to 15% by weight, preferably 2 to 10% by weight, and more preferably 3 to 8% by weight.
  • you may use as a raw material of a transparent conductive layer (B) what added the other dopant to indium tin oxide in the range which the total amount of a dopant does not exceed the numerical range of the left. Although it does not specifically limit as another dopant in the left, For example, selenium etc. are mentioned.
  • the light transmissive conductive layer (B) may be composed of any one of the various materials described above, or may be composed of a plurality of types.
  • the light transmissive conductive layer (B) is not particularly limited, but may be a crystalline or amorphous body, or a mixture thereof.
  • a method including a step of baking a conductive substance is preferable.
  • a baking method For example, the drum heating at the time of performing sputtering etc., a hot-air-type baking furnace, a far-infrared baking furnace, etc. can be mentioned as an example.
  • the firing temperature is not particularly limited, but is usually 30 to 250 ° C, preferably 50 to 200 ° C, more preferably 80 to 180 ° C, and further preferably 100 to 160 ° C.
  • the firing time is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes, and even more preferably 10 minutes to 90 minutes.
  • an atmosphere such as nitrogen or argon, oxygen, hydrogenated nitrogen, or a combination of two or more of these can be given under vacuum.
  • an inert gas such as nitrogen or argon, oxygen, hydrogenated nitrogen, or a combination of two or more of these can be given under vacuum.
  • the thickness of the light transmissive conductive layer (B) is not particularly limited, but is usually 15 to 30 nm.
  • the thickness of the light transmissive conductive layer (B) is preferably less than 20 nm because advantages such as improved transmittance and reduction in pattern appearance of the patterned light transmissive conductive layer can be obtained.
  • the method for disposing the light transmissive conductive layer (B) may be either wet or dry, and is not particularly limited. Specific examples of the method for disposing the light transmissive conductive layer (B) include, for example, a sputtering method, a vacuum deposition method, an ion plating method, a CVD method, and a pulse laser deposition method.
  • the light transmissive conductive layer (B) is directly or one or more other layers on one surface of the light transmissive support layer (A). And the wetting tension of the surface opposite to the light transmissive conductive layer (B) is 34 dyn / cm or more.
  • the surface opposite to the light transmissive conductive layer (B) means the surface of the light transmissive conductive film opposite to the light transmissive conductive layer (B).
  • the “surface opposite to the light transmissive conductive layer (B)” means the light transmissive support layer (A).
  • the light transmissive conductive film when another layer is provided on the side opposite to the side where the light transmissive conductive layer (B) is provided of the light transmissive support layer (A) (that is, In the case where the surface of one surface of the light-transmitting conductive film is the surface of the “another layer”, the “surface opposite to the light-transmitting conductive layer (B)” is the “another layer” ”Means the surface opposite to the light-transmitting conductive layer (B).
  • the light-transmitting conductive film of the present invention has a wetting tension of one surface of 34 dyn / cm or more.
  • An OCA or OCA film can be affixed to this surface, and at this time, the surface of the other surface or a layer disposed on the surface of the other surface (but above the light-transmitting support layer).
  • a light transmissive conductive layer (B) is disposed.
  • the wetting tension is preferably 34 dyn / cm or more, and more preferably 36 dyn / cm or more.
  • the upper limit of the wetting tension is not particularly limited, but is usually 50 dyn / cm or less and is less likely to be whitened. Therefore, it is preferably 48 dyn / cm or less, and more preferably 46 dyn / cm or less. .
  • the range of the wetting tension is preferably 34 dyn / cm to 50 dyn / cm, more preferably 34 dyn / cm to 48 dyn / cm, still more preferably 34 dyn / cm to 46 dyn / cm, and still more preferably 36 dyn / cm to 46 dyn / cm. It is.
  • the wetting tension is measured at a room temperature of 23 ° C.
  • Wet tension is measured according to JIS K 6768 “Plastic-film and sheet-wetting tension test method” on the surface of a horizontal test piece, each 3 ml of a wetting tension test solution having a higher wetting tension in 3 cm.
  • the wetting tension (dyne / cm) of the working solution is used as the wetting tension of the test piece.
  • the wet tension test liquid mixed liquid for wet tension test, manufactured by Wako Pure Chemical Industries, Ltd.
  • the wet tension test liquid mixed liquid for wet tension test, manufactured by Wako Pure Chemical Industries, Ltd.
  • Measures for keeping the wet tension within the above range can be appropriately selected according to the type of the layer constituting the target surface.
  • examples of a method for adjusting the wetting tension include corona discharge treatment, ultraviolet irradiation treatment, ozone, Examples thereof include a method of applying at least one treatment selected from the group consisting of treatment and plasma treatment, a method of applying a coating agent for adjusting the wetting tension used for coating an easily adhesive layer, and the like.
  • the wet tension can be adjusted by appropriately selecting these methods.
  • Ozone treatment is performed by exposing the object to be treated to ozone.
  • the exposure method is performed by a method of holding in an atmosphere in which ozone exists for a predetermined time, a method of exposing in an ozone stream for a predetermined time, or the like.
  • an object to be treated is converted into a plasma generated by glow discharge in a gas containing at least one selected from the group consisting of argon, neon, helium, nitrogen, nitrogen dioxide, oxygen, air, and the like at low or normal pressure.
  • oxygen is introduced into the surface of the material by exposing to oxygen-containing gas such as air.
  • the corona discharge treatment is a state in which a corona discharge is generated by applying a high voltage of alternating current between a grounded metal roll and a knife-like, saw-like or wire-like electrode spaced apart from the grounded metal roll. This is a method of passing the material between them.
  • the various conditions of the corona discharge treatment, ultraviolet irradiation treatment, ozone treatment and plasma treatment are determined by the output and passage time, but are not particularly limited. Specifically, it is more desirable to carry out under the following conditions.
  • the discharge power per 1 minute treatment area (the discharge electrode length (m) multiplied by the treatment speed of the target film (m / min)) may be 15 W or more. desirable.
  • the optical transparent adhesive layer (C) may be disposed on the surface where the wetting tension is adjusted within the above range, if necessary.
  • the optically transparent adhesive layer means a layer having optical transparency and having adhesiveness. Although it does not specifically limit, Usually, it forms by sticking the layer formed by apply
  • OCA optical transparent adhesive
  • OCA film optical transparent adhesive film
  • the component constituting the optically transparent adhesive layer is not particularly limited, and examples thereof include an acrylic adhesive, a urethane adhesive, and a silicone adhesive.
  • the optically transparent pressure-sensitive adhesive layer may contain these alone or may contain a plurality of types.
  • acrylic pressure-sensitive adhesives are particularly preferable from the viewpoint of the effects of the present invention.
  • the optically transparent adhesive layer (C) disposed on the surface of the light transmissive support layer (A) containing PET preferably contains an acrylic adhesive.
  • the thickness of the optically transparent adhesive layer (C) is not particularly limited, but can usually be 10 to 200 ⁇ m. In addition, the minimum of thickness becomes like this. Preferably it is 15 micrometers, More preferably, it is 20 micrometers.
  • the upper limit of the thickness is preferably 90 ⁇ m, more preferably 80 ⁇ m, and even more preferably 60 ⁇ m. If necessary, the thickness of the optically transparent adhesive layer (C) may be 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less.
  • Hard coat layer (D) The light-transmitting conductive film of the present invention may further have a hard coat layer (D) as necessary.
  • the hard coat layer refers to a layer that plays a role in preventing scratches on the plastic surface.
  • the hard coat layer (D) is disposed on one surface of the light transmissive support layer (A) directly or via one or more other layers.
  • One layer of the hard coat layer (D) may be disposed.
  • two or more layers may be arranged adjacent to each other or separated from each other via other layers.
  • the hard coat layer (D) may be disposed on both surfaces of the light transmissive support layer (A).
  • the material of the hard coat layer (D) is not particularly limited.
  • an acrylic resin examples include silicone resins, urethane resins, melamine resins, and alkyd resins.
  • Examples of the material of the hard coat layer (D) further include those obtained by dispersing colloidal particles such as silica, zirconia, titania and alumina in the resin.
  • the hard coat layer (D) may be composed of any one of them, or may be composed of a plurality of types.
  • the thickness per layer of the hard coat layer (D) is not particularly limited, and examples thereof include 0.1 to 10 ⁇ m, 1 to 7 ⁇ m, and 2 to 6 ⁇ m. When two or more layers are disposed adjacent to each other, the total thickness of all the hard coat layers (D) adjacent to each other may be within the above range. In the example list shown on the left, the following are more preferable than the above.
  • the refractive index of the hard coat layer (D) is not particularly limited as long as the light-transmitting conductive film (A) can be used for touch panel applications, and examples thereof include 1.4 to 1.7.
  • the method of disposing the hard coat layer (D) is not particularly limited, and examples thereof include a method of applying to a film and curing with heat, a method of curing with active energy rays such as ultraviolet rays and electron beams, and the like. From the viewpoint of productivity, a method of curing with ultraviolet rays is preferable.
  • the light transmissive conductive film of the present invention may further contain at least one undercoat layer (E).
  • the light transmissive conductive layer (B) may be disposed adjacent to the undercoat layer (E).
  • an undercoat layer (E) is not specifically limited, For example, you may have a dielectric property.
  • the material for the undercoat layer (E) is not particularly limited.
  • the undercoat layer (E) may be composed of any one of them, or may be composed of a plurality of types.
  • One layer of the undercoat layer (E) may be disposed.
  • two or more layers may be arranged adjacent to each other or separated from each other via other layers.
  • Two or more undercoat layers (E) are preferably arranged adjacent to each other. Examples of such embodiments include, for example, stacking composed of adjacent SiO 2 layers and SiO x layers, and stacking composed of adjacent SiO 2 layers and SiO x N y layers.
  • stacking composed of adjacent SiO 2 layers and SiO x layers stacking composed of adjacent SiO 2 layers and SiO x N y layers.
  • the order of the SiO 2 layer and the SiO x layer is arbitrary, but the light transmissive underlayer (E) made of SiO 2 on the light transmissive support layer (A) side.
  • the thickness per layer of the undercoat layer (E) is not particularly limited, and examples thereof include 15 to 25 nm. When two or more layers are disposed adjacent to each other, the total thickness of all the undercoat layers (E) adjacent to each other may be within the above range.
  • the refractive index of the undercoat layer (E) is not particularly limited as long as the light-transmitting conductive film of the present invention can be used as a light-transmitting conductive film for touch panels, but is preferably 1.4 to 1.5, for example.
  • the method for disposing the undercoat layer (E) may be either a wet method or a dry method, and is not particularly limited.
  • the wet method include a sol-gel method or a method of applying a fine particle dispersion or colloid solution. Is mentioned.
  • Examples of the method for disposing the undercoat layer (E) include a dry method, for example, a method of laminating on an adjacent layer by a sputtering method, an ion plating method, a vacuum deposition method, and a pulse laser deposition method.
  • the light-transmitting conductive film of the present invention has a hard coat layer (D) on at least one surface of the light-transmitting support layer (A), in addition to the light-transmitting conductive layer (B).
  • a hard coat layer (D) on at least one surface of the light-transmitting support layer (A), in addition to the light-transmitting conductive layer (B).
  • at least one layer selected from the group consisting of an undercoat layer (E) and at least one other layer (F) different from them may be further disposed.
  • Other layers are not particularly limited, and examples thereof include an adhesive layer.
  • the adhesive layer is a layer that is disposed adjacent to each other between the two layers and is disposed to adhere the two layers to each other. Although it does not specifically limit as a contact bonding layer, For example, what is normally used as a contact bonding layer in the transparent conductive film for touchscreens can be used.
  • the adhesive layer may be composed of any one of these, or may be composed of a plurality of types.
  • the light-transmitting conductive film of the present invention is preferably used for the production of touch panels.
  • a light-transmitting conductive film used for manufacturing a resistive film type touch panel is generally required to have a surface resistivity (sheet resistance) of about 250 to 1,000 ⁇ / sq.
  • a light-transmitting conductive film used for manufacturing a capacitive touch panel generally has a lower surface resistivity.
  • the light-transmitting conductive film of the present invention has a reduced resistivity, and is thus preferably used for the production of a capacitive touch panel. The details of the capacitive touch panel are as described in 2.
  • Capacitive Touch Panel of the Present Invention includes the light transmissive conductive film of the present invention, and further includes other members as necessary.
  • the configuration of the capacitive touch panel according to the present invention include the following configurations.
  • the protective layer (1) side is used so that the operation screen side faces, and the glass (5) side faces the side opposite to the operation screen.
  • Protective layer (2) Light transmissive conductive film of the present invention (Y-axis direction) (3) Insulating layer (4) Light transmissive conductive film of the present invention (X-axis direction) (5) Glass
  • the capacitive touch panel of the present invention is not particularly limited, for example, it can be produced by combining the above (1) to (5) and other members as required according to a usual method. it can.
  • a hard coat layer (D) and an undercoat are formed on at least one surface of the light transmissive support layer (A).
  • Each may include a step of arranging at least one layer selected from the group consisting of the layer (E) and at least one other layer (F) different from them.
  • the light-transmitting support layer (A) may be sequentially disposed on at least one surface from the light-transmitting support layer (A) side, but the arrangement order is not particularly limited. For example, you may arrange
  • one composite layer is obtained by arranging two or more layers adjacent to each other on the one hand, or at the same time, two or more layers are similarly disposed adjacent to each other on the other side. Thus, one type of composite layer may be obtained, and these two types of composite layers may be further arranged adjacent to each other.
  • Example 1 A 19 nm thick ITO layer (Sn content 7 wt%) was deposited as a light transmissive conductive layer on a PET film (thickness 50 ⁇ m) by DC sputtering, and then annealed at 150 ° C. for 30 minutes to achieve light transmissive conductivity. A film was obtained. Next, N 2 gas was introduced as a processing gas into an atmospheric pressure plasma apparatus (“AP / TO2”, direct electrode type, manufactured by Sekisui Chemical Co., Ltd.) for adjusting the wetting tension, and the input power was 900 W (140 V-6.4 A).
  • AP / TO2 atmospheric pressure plasma apparatus
  • the plasma gas was generated by the above, the film was conveyed at a speed of 20 m / min, and the plasma treatment of the opposite surface on which ITO was laminated was performed.
  • the slit area which performs a plasma process was 200 mm ⁇ 2 > (200 mm in the width direction of a translucent conductive film, and 1 mm in the length direction).
  • the wetting tension of the surface of the obtained light-transmitting conductive film on which the light-transmitting conductive layer is not laminated is determined according to JIS K 6768 “Plastic-film and sheet-wetting tension test method”. The measurement was performed using a liquid mixture for optical wetting tension test. The results of measuring the wetting tension are shown in Table 1.
  • the surface of the light transmissive conductive film on which the light transmissive conductive layer is not laminated is bonded to a plate glass (Corning Corp., gorilla glass) via a 50 ⁇ m optical transparent adhesive layer (Sekisui Chemical, # 5400 series). And then left for 24 hours to obtain a sample. The obtained sample was allowed to stand at 85 ° C. and 85% for 1000 hours in a thermo-hygrostat (Espec Corp., high-power thermo-hygrostat AR series), with an optical microscope and the criteria shown in Table 2 by visual observation. Bubbles and whitening were evaluated. The evaluation results are shown in Table 1.
  • Examples 2 to 5 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 1 except that the plasma treatment speed was changed as shown in Table 1.
  • Example 6 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 1 except that the thickness of the optical transparent adhesive layer was changed to 100 ⁇ m.
  • Examples 7 to 10 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 6 except that the plasma treatment speed was changed as shown in Table 1.
  • Example 11 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 2 except that the thickness of the optical transparent adhesive layer was changed to 22 ⁇ m.
  • Example 12 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 3 except that the thickness of the optical transparent adhesive layer was changed to 22 ⁇ m.
  • an atmospheric pressure plasma device (“Sekisui Chemical Co., Ltd.,“ AP / TO2 ”, direct electrode type) as a wet tension adjustment to a PET film of 50 ⁇ m thickness. It was introduced as a gas, a plasma gas was generated at an input power of 900 W (
  • the slit area which performs a plasma process was 200 mm ⁇ 2 > (200 mm in the width direction of a translucent conductive film, and 1 mm in the length direction).
  • a 19 nm thick ITO layer (Sn content: 7 wt%) was deposited as a light-transmissive conductive layer on the plasma-treated PET film by DC sputtering, and then annealed at 150 ° C. for 30 minutes.
  • a permeable conductive film was obtained.
  • Examples 14 and 15 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 13 except that the thickness of the optical transparent adhesive layer was changed as shown in Table 1.
  • Example 1 A light-transmitting conductive film of the present invention was obtained in the same manner as in Example 1 except that the plasma treatment was not performed.
  • Comparative Example 2 A light-transmitting conductive film of the present invention was obtained in the same manner as in Comparative Example 1 except that the thickness of the optical transparent adhesive layer was changed to 100 ⁇ m.
  • the light-transmitting conductive film and the optically transparent adhesive layer are bonded by setting the wetting tension of the surface of the light-transmitting conductive film on which the light-transmitting conductive layer is not laminated to 34 dyn / cm or more.
  • the durability can be improved and the generation of bubbles can be suppressed.
  • the wetting tension to 48 dyn / cm or less, the hydrophilicity of the light transmissive conductive film can be reduced, and the penetration of water between the light transmissive conductive film and the optical transparent adhesive layer can be suppressed. Edge whitening can be suppressed.
  • Light-transmissive conductive film 11 Light-transmissive support layer (A) 12 Light transmissive conductive layer (B) 13 Optically transparent adhesive layer (C)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)

Abstract

 本発明は、(1)光透過性導電性フィルムにOCAを貼付してからベーク工程を行うと、OCAに気泡ボイドが発生してしまうという課題、並びに(2)光透過性導電性フィルムにOCAを貼付してからロール搬送を行うと、OCAフィルムが部分的に剥離し、光透過性導電性フィルムとの接着面にずれが生じることにより、光透過性導電性フィルムの端部からはみ出してしまうという課題を解決する。 (A)光透過性支持層;及び (B)光透過性導電層 を含有する光透過性導電性フィルムであって、 前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上であることを特徴とする、光透過性導電性フィルム。

Description

光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
 本発明は、光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネルに関する。
 タッチパネルに搭載される光透過性導電性フィルムとして、ポリエチレンテレフタラート(PET)等からなる光透過性支持層の上に酸化インジウムスズ(ITO)等からなる光透過性導電層等を積層して得られるフィルムが数多く使用されている(特許文献1)。
 これらの光透過性導電性フィルムは、通常、少なくとも一方の光透過性導電層が露出した状態となるように、一方の面にアクリル系粘着剤等の光学透明粘着剤(Optically Clear Adhesive;OCA)を貼付してから、さらなる後処理工程や、ロール搬送工程等に供される。
 例えば、一方の面にOCAを貼付した後、その反対側の面の光透過性導電層に銀ペーストを塗布し、これを例えば150℃程度で十数分間にわたり熱硬化させる、いわゆるベーク工程が行われる(特許文献2)。
 また、フィルム状のOCA(OCAフィルム)を一方の面に貼付した光透過性導電性フィルムを、ロール搬送により巻き取ることも行われている。
特開2012-128634号公報 特開2006-56117号公報
 本発明者らは、光透過性導電性フィルムにOCAを貼付してからベーク工程を行うと、OCAに気泡ボイドが発生してしまうという課題を見出した。
 また、本発明者らは、光透過性導電性フィルムにOCAを貼付してからロール搬送を行うと、OCAフィルムが部分的に剥離し、光透過性導電性フィルムとの接着面にずれが生じることにより、光透過性導電性フィルムの端部からはみ出してしまうという課題も見出した。
 本発明は、かかる課題を解決することを目的とする。
 本発明者らは、光透過性導電性フィルムの、OCAが貼付される面のぬれ張力を特定の範囲内とすることにより、上記課題を解決できることを見出した。本発明はさらなる検討を重ねることにより完成されたものであり、以下の態様を含む。
項1.
(A)光透過性支持層;及び
(B)光透過性導電層
を含有する光透過性導電性フィルムであって、
前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上であることを特徴とする、光透過性導電性フィルム。
項2.
項1に記載の光透過性導電性フィルムの、ぬれ張力が34dyn/cm以上である前記表面に、さらに、
(C)光学透明粘着層
が直接配置されている、光透過性導電性フィルム。
項3.
前記ぬれ張力が34dyn/cm~50dyn/cmである、項1又は2に記載の光透過性導電性フィルム。
項4.
項1~3のいずれか一項に記載の光透過性導電性フィルムを巻き取ってなる、フィルムロール。
項5.
項1~3のいずれか一項に記載の光透過性導電性フィルムを含む、タッチパネル。
項6.
(A)光透過性支持層;及び
(B)光透過性導電層
を含有する光透過性導電性フィルムであって、
前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上である光透過性導電性フィルムの製造方法であって、
大気圧プラズマ処理、低圧プラズマ処理及びコロナ処理からなる群より選択される少なくとも一種の処理により、前記表面をぬれ張力が34dyn/cm以上となるように加工する工程
を含むことを特徴とする、製造方法。
 本発明の光透過性導電性フィルムを利用することにより、OCAを貼付してからベーク工程する際にOCAに発生する気泡ボイドを抑制することができる。
 また、OCAフィルムを貼付してから光透過性導電性フィルムをロール搬送する際にも、OCAフィルムの剥離を抑制することができる。
光透過性支持層(A)の片面に、光透過性導電層(B)が、互いに隣接して配置されている、本発明の光透過性導電性フィルムを示す断面図である。 光透過性支持層(A)の片面に、光透過性導電層(B)が、互いに隣接して配置されており、さらに、光透過性導電層(B)と反対側の面に、OCA層が配置されている、本発明の光透過性導電性フィルムを示す断面図である。
 1. 光透過性導電性フィルム
本発明の光透過性導電性フィルムは、
(A)光透過性支持層;及び
(B)光透過性導電層
を含有する光透過性導電性フィルムであって、
前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上であることを特徴とする、光透過性導電性フィルムである。
 本発明において「光透過性」とは、光を透過させる性質を有する(translucent)ことを意味する。「光透過性」には、透明(transparent)が含まれる。「光透過性」とは、例えば、全光線透過率が80%以上、好ましくは85%以上、より好ましくは88%以上である性質をいう。本発明において全光線透過率は、ヘーズメーター(日本電色社製、商品名:NDH-2000、またはその同等品)を用いてJIS-K-7105に基づいて測定する。
 本発明において、各層の厚さは、市販の反射分光膜厚計(大塚電子、FE-3000(製品名)、又はその同等品)を用いて求める。又は、代替的に、市販の透過型電子顕微鏡を用いた観察により求めてもよい。具体的には、ミクロトーム又はフォーカスイオンビームなどを用いて光透過性導電性フィルムをフィルム面に対して垂直方向に薄く切断し、その断面を観察する。
 本明細書において、光透過性支持層(A)の一方の面に配置される複数の層のうち二つの層の相対的な位置関係について言及する場合、光透過性支持層(A)を基準にして、光透過性支持層(A)からの距離が大きい一方の層を「上の」層等ということがある。
 図1に、本発明の光透過性導電性フィルムの一態様を示す。この態様では、光透過性支持層(A)の一方の面に、光透過性導電層(B)が直接配置されている。
  1.1 光透過性支持層(A)
 本発明において光透過性支持層とは、光透過性導電層を含有する光透過性導電性フィルムにおいて、光透過性導電層を含む層を支持する役割を果たすものをいう。光透過性支持層(A)としては、特に限定されないが、例えば、タッチパネル用光透過性導電性フィルムにおいて、光透過性支持層として通常用いられるものを用いることができる。
 光透過性支持層(A)の素材は、特に限定されないが、例えば、各種の有機高分子等を挙げることができる。有機高分子としては、特に限定されないが、例えば、ポリエステル系樹脂、アセテート系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂、ポリメタクリル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、ポリアセタール系樹脂、ポリ塩化ビニリデン系樹脂及びポリフェニレンサルファイド系樹脂等が挙げられる。
 ポリエステル系樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等が挙げられる。
 ポリオレフィン系樹脂としては、特に限定されないが、例えば、シクロオレフィンポリマー(COP)等が挙げられる。
 これらのうち、本発明の効果の面で、PETが最も好ましい。
 光透過性支持層(A)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。
 光透過性支持層(A)の厚さは、特に限定されないが、例えば、2~300μmの範囲が挙げられる。
 1.2 光透過性導電層(B)
 光透過性導電層(B)は、光透過性支持層(A)の少なくとも一方の面に、直接又は一以上の他の層を介して配置されている。
 本発明において光透過性導電層とは、導電性物質を含有し、電気を導通しかつ可視光を透過する役割を果たすものをいう。光透過性導電層(B)としては、特に限定されないが、例えば、タッチパネル用光透過性導電性フィルムにおいて光透過性導電層として通常用いられるものを用いることができる。
 光透過性導電層(B)の素材は、特に限定されないが、例えば、酸化インジウム、酸化亜鉛、酸化錫及び酸化チタン等が挙げられる。光透過性導電層(B)としては、透明性と導電性を両立する点で酸化インジウムにドーパントをドープしたものを含む光透過性導電層が好ましい。光透過性導電層(B)は、酸化インジウムにドーパントをドープしたものからなる光透過性導電層であってもよい。ドーパントとしては、特に限定されないが、例えば、酸化スズ及び酸化亜鉛、並びにそれらの混合物等が挙げられる。
 光透過性導電層(B)の素材として酸化インジウムに酸化スズをドープしたものを用いる場合は、酸化インジウム(III)(In)に酸化スズ(IV)(SnO)をドープしたもの(tin-doped indium oxide;ITO)が好ましい。この場合、SnOの添加量としては、特に限定されないが、例えば、1~15重量%、好ましくは2~10重量%、より好ましくは3~8重量%等が挙げられる。また、ドーパントの総量が左記の数値範囲を超えない範囲で、酸化インジウムスズにさらに他のドーパントが加えられたものを光透過性導電層(B)の素材として用いてもよい。左記において他のドーパントとしては、特に限定されないが、例えばセレン等が挙げられる。
 光透過性導電層(B)は、上記の各種素材のうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。
 光透過性導電層(B)は、特に限定されないが、結晶体若しくは非晶質体、又はそれらの混合体であってもよい。
 光透過性導電層(B)を形成する方法としては、導電性物質を焼成する工程を含有する方法が好ましい。焼成方法としては、特に限定されないが、例えばスパッタリング等を行う際のドラム加熱や、熱風式焼成炉、遠赤外線焼成炉などを例として挙げることができる。焼成温度は、特に限定されないが、通常は30~250℃であり、好ましくは50~200℃、より好ましくは80~180℃、さらに好ましくは100~160℃である。焼成時間は、好ましくは3分~180分、より好ましくは5分~120分、さらに好ましくは10分~90分である。焼成を行う雰囲気としては、真空下、大気、窒素やアルゴンなどの不活性ガス、酸素、若しくは水素添加窒素等、又はこれらのうち二種以上の組合せが挙げられる。導電性物質を焼成することにより、導電性物質の結晶化が促進される。
 光透過性導電層(B)の厚さは、特に限定されないが、通常15~30nmである。光透過性導電層(B)の厚さは、20nm未満であると、改善された透過率及びパターン化された光透過性導電層のパターン見えの軽減等の利点が得られるため、好ましい。
 光透過性導電層(B)を配置する方法は、湿式及び乾式のいずれであってもよく、特に限定されない。光透過性導電層(B)を配置する方法の具体例として、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法及びパルスレーザーデポジション法等が挙げられる。
 1.3 ぬれ張力
 本発明の光透過性導電性フィルムは、前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上である。
 「光透過性導電層(B)とは反対側の表面」とは、光透過性導電性フィルムの光透過性導電層(B)とは反対側の表面を意味する。例えば、光透過性導電性フィルムにおいて、光透過性支持層(A)の光透過性導電層(B)を設けられた側と反対側に別の層が無い場合(すなわち、光透過性導電性フィルムの一方の面の表面が光透過性支持層(A)の表面である場合)、「光透過性導電層(B)とは反対側の表面」とは、光透過性支持層(A)の光透過性導電層(B)とは反対側の表面を意味する。別の例として、光透過性導電性フィルムにおいて、光透過性支持層(A)の光透過性導電層(B)を設けられた側と反対側に別の層が設けられている場合(すなわち、光透過性導電性フィルムの一方の面の表面が該「別の層」の表面である場合)、「光透過性導電層(B)とは反対側の表面」とは該「別の層」の光透過性導電層(B)とは反対側の表面を意味する。
 すなわち、本発明の光透過性導電性フィルムは、一方の面のぬれ張力が34dyn/cm以上である。この面にOCA又はOCAフィルムを貼付することができ、このとき、他方の面の表面、または他方の面の表面に配置されている層よりも下に(ただし、光透過性支持層よりは上に)、光透過性導電層(B)が配置されている。
 このような構成であるため、本発明の光透過性導電性フィルムは、OCA又はOCAフィルムを当該面に貼付した際に、光透過性導電層に(あるいはその上層に)銀ペーストを塗布後、ベーク工程を行ったとしても、OCAに気泡ボイドが発生しにくい。また、OCAフィルムを貼付した光透過性導電性フィルムをロール搬送により巻き取る際にも、OCAフィルムが剥離しにくく、光透過性導電性フィルムとの接着面にずれが生じにくい。
 かかる効果の点で、上記ぬれ張力は、34dyn/cm以上であれば好ましく、36dyn/cm以上であればより好ましい。なお、上記ぬれ張力の上限は、特に限定されないが、通常、50dyn/cm以下であり、白化が生じにくいことから、48dyn/cm以下であることが好ましく、46dyn/cm以下であることがより好ましい。上記ぬれ張力の範囲は、好ましくは34dyn/cm~50dyn/cm、より好ましくは34dyn/cm~48dyn/cm、さらに好ましくは34dyn/cm~46dyn/cm、よりさらに好ましくは36dyn/cm~46dyn/cmである。
 本発明において、ぬれ張力は、常温23℃において測定される。ぬれ張力の測定は、水平にした試験片表面に、JIS K 6768「プラスチック-フィルム及びシート-ぬれ張力試験方法」に準じ、順次より大きなぬれ張力を有するぬれ張力試験用液のそれぞれ1mlを3cmの高さからスポイトで滴下し、直ちに試験片を90度傾け、滴下面を垂直方向とした場合に、液滴がはじかれずに試験片表面をぬらしながら流れる時の最大のぬれ張力を有するぬれ張力試験用液のぬれ張力(dyne/cm)を試験片のぬれ張力とする方法である。ぬれ張力試験用液としては(ぬれ張力試験用混合液、和光純薬社製)又はその同等品を用いて行われる。
 上記ぬれ張力の範囲内となるようにする手段は、対象となる面を構成する層の種類に応じて適宜選択しうる。例えば、対象となる面を構成する層が、光透過性支持層(A)である場合には、ぬれ張力を調整する方法としては、例えば、対象面に、コロナ放電処理、紫外線照射処理、オゾン処理及びプラズマ処理からなる群より選択される少なくとも一種の処理を施す方法、並びに易接着層コート等のために使用されるぬれ張力調整用のコーティング剤を塗布する方法等などが挙げられる。対象となる面を構成する層が、光透過性支持層(A)以外の他の層である場合も、これらの方法を適宜選択して、ぬれ張力を調整することができる。
 オゾン処理は、被処理物をオゾンに暴露することによって行われる。暴露方法は、オゾンが存在する雰囲気に定められた時間保持する方法、オゾン気流中に定められた時間暴露する方法等で行われる。
 プラズマ処理は、被処理物を、低圧若しくは常圧のアルゴン、ネオン、ヘリウム、窒素、二酸化窒素、酸素及び空気等からなる群より選択される少なくとも一種を含むガス中で、グロー放電により生ずるプラズマにさらし、その後、空気などの酸素を含むガスにさらすことで、材料の表面に酸素を導入する方法である。
 コロナ放電処理は、接地された金属ロール、並びに、それと一定の間隔を置いたナイフ状、ノコギリ状又はワイヤー状等の電極の間に交流の高電圧をかけてコロナ放電を発生させた状態で、被処理物にその間を通過させる方法である。
 上記コロナ放電処理、紫外線照射処理、オゾン処理及びプラズマ処理の諸条件は、その出力と通過時間等により決定されるが、特に制限はされない。尚、具体的には、以下の条件で行うことがより望ましい。
 コロナ放電処理の場合は、1分間の処理面積(放電電極の長さ(m)に対象となるフィルムの処理速度(m/分)を乗じたもの)当りの放電電力が15W以上であることが望ましい。
 1.4 光学透明粘着層(C)
 本発明の光透過性導電性フィルムは、さらに必要に応じて、ぬれ張力が上記範囲内に調節されている面に、光学透明粘着層(C)が配置されていてもよい。
 本発明において、光学透明粘着層とは、光学透明性を有し、粘着性を備える層を意味する。特に限定されないが、通常、光学透明粘着剤(OCA)を表面に塗布することにより形成される層、あるいは、光学透明粘着フィルム(OCAフィルム)を表面に貼付することにより形成される。
 光学透明粘着層を構成する成分としては、特に限定されないが、アクリル系粘着剤、ウレタン粘着剤及びシリコーン粘着剤等が挙げられる。光学透明粘着層は、これらを単独で含有していてもよいし、複数種を含有していてもよい。
 これらの中でも、本発明の効果の点で、アクリル系粘着剤が特に好ましい。特に、PETを含有する光透過性支持層(A)の表面に配置される光学透明粘着層(C)としては、アクリル系粘着剤を含有するものが好ましい。
 アクリル系粘着剤としては、特に限定されないが、例えば、高透明両面テープセキスイ#5400シリーズ(積水化学工業社製)等が挙げられる。
 光学透明粘着層(C)の厚さは、特に限定されないが、通常、10~200μmとすることができる。なお、厚さの下限は、好ましくは15μmであり、より好ましくは20μmである。厚さの上限は、好ましくは90μmであり、より好ましくは80μmであり、さらに好ましくは60μmである。また、必要に応じて、光学透明粘着層(C)の厚さは、50μm以下、40μm以下、あるいは30μm以下であってもよい。
 1.5 ハードコート層(D)
 本発明の光透過性導電性フィルムは、さらに必要に応じてハードコート層(D)を有していてもよい。
 本発明においてハードコート層とは、プラスチック表面の傷つきを防止する役割を果たすものをいう。
 ハードコート層(D)は、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されている。
 ハードコート層(D)は、一層が配置されていてもよい。あるいは二層以上が互いに隣接して、または他の層を介して互いに離間して配置されていてもよい。
 ハードコート層(D)は、光透過性支持層(A)の両面に配置されていてもよい。
 ハードコート層(D)の素材は、特に限定されないが、例えば、アクリル系樹脂、
シリコーン系樹脂、ウレタン系樹脂、メラミン系樹脂及びアルキド系樹脂等が挙げられる。ハードコート層(D)の素材としては、さらに、シリカ、ジルコニア、チタニア及びアルミナ等のコロイド粒子等を上記樹脂中に分散させたものも挙げられる。ハードコート層(D)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。
 ハードコート層(D)の一層あたりの厚さは、特に限定されないが、例えば0.1~10μm、1~7μm、及び2~6μm等が挙げられる。二層以上が互いに隣接して配置されている場合は互いに隣接している全てのハードコート層(D)の合計厚さが上記範囲内であればよい。左記の例示列挙においては後出のものが前出のものよりも好ましい。
 ハードコート層(D)の屈折率は、光透過性導電性フィルム(A)が、タッチパネル用途として使用できる限り特に限定されないが、例えば、1.4~1.7等が挙げられる。
 ハードコート層(D)を配置する方法としては、特に限定されないが、例えば、フィルムに塗布して、熱で硬化する方法、紫外線や電子線などの活性エネルギー線で硬化する方法等が挙げられる。生産性の点で、紫外線により硬化する方法が好ましい。
 1.6 アンダーコート層(E)
 本発明の光透過性導電性フィルムは、さらに、少なくとも一層のアンダーコート層(E)を含有していてもよい。
 光透過性導電層(B)は、アンダーコート層(E)に隣接して配置されていてもよい。
 アンダーコート層(E)の素材は、特に限定されないが、例えば、誘電性を有するものであってもよい。アンダーコート層(E)の素材としては、特に限定されないが、例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、シリコンアルコキシド、アルキルシロキサン及びその縮合物、ポリシロキサン、シルセスキオキサン、ポリシラザン及びアクリルシリカハイブリッド等が挙げられる。アンダーコート層(E)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。アンダーコート層(E)としては、ポリシラザン、アクリルシリカハイブリッド及びSiO(x=1.0~2.0)からなる群より選択される1種を含む光透過性下地層が好ましい。
 アンダーコート層(E)は、一層が配置されていてもよい。あるいは二層以上が互いに隣接して、または他の層を介して互いに離間して配置されていてもよい。アンダーコート層(E)が二層以上互いに隣接して配置されているのが好ましい。このような態様の例としては、例えば、隣接するSiO層及びSiO層からなる積層(stacking)、及び隣接するSiO層及びSiO層からなる積層が挙げられる。例えば二層が互いに隣接して配置されている場合、SiO層及びSiO層の順序は任意であるが、光透過性支持層(A)側にSiOからなる光透過性下地層(E-1)、光透過性導電層(B)側にSiO(x=1.0~2.0)からなる光透過性下地層(E-2)を配置させるのが好ましい。
 アンダーコート層(E)の一層あたりの厚さとしては、特に限定されないが、例えば15~25nm等が挙げられる。二層以上が互いに隣接して配置されている場合は互いに隣接している全てのアンダーコート層(E)の合計厚さが上記範囲内であればよい。
 アンダーコート層(E)の屈折率は、本発明の光透過性導電性フィルムがタッチパネル用光透過性導電性フィルムとして使用できる限り特に限定されないが、例えば、1.4~1.5が好ましい。
 アンダーコート層(E)を配置するための方法としては、湿式及び乾式のいずれでもよく、特に限定されないが、湿式としては例えば、ゾル-ゲル法、又は微粒子分散液若しくはコロイド溶液を塗布する方法等が挙げられる。
 アンダーコート層(E)を配置する方法として、乾式としては、例えば、スパッタリング法、イオンプレーティング法、真空蒸着法及びパルスレーザーデポジション法により隣接する層上に積層する方法等が挙げられる。
 1.7 その他の層
 本発明の光透過性導電性フィルムは、光透過性支持層(A)の少なくとも一方の面に、光透過性導電層(B)に加えて、ハードコート層(D)、アンダーコート層(E)及びそれらと異なる少なくとも1種のその他の層(F)からなる群より選択される少なくとも1種の層がさらに配置されていてもよい。
 その他の層としては、特に限定されないが、例えば、接着層等が挙げられる。
 接着層とは、二層の間に当該二層と互いに隣接して配置され、当該二層間を互いに接着するために配置される層である。接着層としては、特に限定されないが、例えば、タッチパネル用光透過性導電性フィルムにおいて接着層として通常用いられるものを用いることができる。接着層は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。
 1.8 本発明の光透過性導電性フィルムの用途
 本発明の光透過性導電性フィルムは、タッチパネルの製造のために好ましく用いられる。
 抵抗膜方式タッチパネルの製造のために用いられる光透過性導電性フィルムは一般に表面抵抗率(シート抵抗)が250~1,000Ω/sq程度は必要であるとされる。これに対して静電容量型タッチパネルの製造のために用いられる光透過性導電性フィルムは一般に表面抵抗率が低いほうが有利である。本発明の光透過性導電性フィルムは、抵抗率が低減されており、これにより、静電容量型タッチパネルの製造のために好ましく用いられる。静電容量型タッチパネルについて詳細は、2で説明する通りである。
 2. 本発明の静電容量型タッチパネル
 本発明の静電容量型タッチパネルは、本発明の光透過性導電性フィルムを含み、さらに必要に応じてその他の部材を含んでなる。
 本発明の静電容量型タッチパネルの具体的な構成例としては、次のような構成が挙げられる。なお、保護層(1)側が操作画面側を、ガラス(5)側が操作画面とは反対側を向くようにして使用される。
(1)保護層
(2)本発明の光透過性導電性フィルム(Y軸方向)
(3)絶縁層
(4)本発明の光透過性導電性フィルム(X軸方向)
(5)ガラス
 本発明の静電容量型タッチパネルは、特に限定されないが、例えば、上記(1)~(5)、並びに必要に応じてその他の部材を通常の方法に従って組み合わせることにより製造することができる。
 3. 本発明の光透過性導電性フィルムの製造方法
 本発明の光透過性導電性フィルムの製造方法において、それぞれの層を配置する工程は、それぞれの層について説明した通りである。
 本発明の光透過性導電性フィルムの製造方法は、光透過性支持層(A)の少なくとも一方の面に、光透過性導電層(B)に加えて、ハードコート層(D)、アンダーコート層(E)及びそれらと異なる少なくとも1種のその他の層(F)からなる群より選択される少なくとも1種の層をそれぞれ配置する工程をそれぞれ含んでいてもよい。
 例えば、光透過性支持層(A)の少なくとも一方の面に光透過性支持層(A)側から順次配置させてもよいが、配置の順番は特に限定されない。例えば、最初に光透過性支持層(A)ではない層の一方の面に他の層を配置させてもよい。あるいは、一方で2種以上の層を互いに隣接するように配置させることにより1種の複合層を得てから、又はそれと同時に、他方で同様に2種以上の層を互いに隣接するように配置させることにより1種の複合層を得て、これらの2種の複合層をさらに互いに隣接するように配置させてもよい。
 以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
[実施例1]
 DCスパッタ法により、PETフィルム(厚さ50μm)上に光透過性導電層としてITO層(Sn含有量7wt%)を19nm堆積させた後、150℃で30分間アニールすることで光透過性導電性フィルムを得た。次いで、ぬれ張力の調整として大気圧プラズマ装置(積水化学工業株式会社製、「AP/TO2」、ダイレクト電極タイプ)にNガスを処理ガスとして導入し、投入電力900W(140V-6.4A)でプラズマガスを発生させ、前記フィルムを20m/分の速度で搬送し、ITOを積層した反対面のプラズマ処理を行った。なお、プラズマ処理を行うスリット面積は200mm(光透過性導電性フィルムの幅方向に200mmかつ長さ方向に1mm)とした。得られた光透過性導電性フィルムの光透過性導電層を積層していない面のぬれ張力をJIS K 6768「プラスチック-フィルム及びシート-ぬれ張力試験方法」に準じ、ぬれ張力試験用液(和光純薬製、ぬれ張力試験用混合液)を用いて測定した。ぬれ張力を測定した結果を表1に示す。
(耐久性評価)
 光透過性導電性フィルムの光透過性導電層を積層していない面と板ガラス(コーニング社製、ゴリラガラス)とを50μmの光学透明粘着層(積水化学製、#5400シリーズ)を介して貼りあわせた後、24時間静置してサンプルを得た。得られたサンプルを恒温恒湿器(エスペック社、ハイパワー恒温恒湿器ARシリーズ)で85℃、85%の条件で1000時間静置し、光学顕微鏡、並びに、目視によって表2に示す基準で気泡と白化について評価した。評価結果は表1に示す。
Figure JPOXMLDOC01-appb-T000001
 評価基準は表2の通りとした。
Figure JPOXMLDOC01-appb-T000002
[実施例2~5]
 プラズマ処理速度を表1に記載の通りに変えた以外は実施例1と同様にして本発明の光透過性導電性フィルムを得た。
[実施例6]
 光学透明粘着層の厚みを100μmに変更した以外は実施例1と同様にして本発明の光透過性導電性フィルムを得た。
[実施例7~10]
 プラズマ処理速度を表1に記載の通りに変えた以外は実施例6と同様にして本発明の光透過性導電性フィルムを得た。
[実施例11]
 光学透明粘着層の厚みを22μmに変更した以外は実施例2と同様にして本発明の光透過性導電性フィルムを得た。
[実施例12]
 光学透明粘着層の厚みを22μmに変更した以外は実施例3と同様にして本発明の光透過性導電性フィルムを得た。
[実施例13]
 厚さ50μmのPETフィルムに、ぬれ張力の調整として大気圧プラズマ装置(積水化学工業株式会社製、「AP/TO2」、ダイレクト電極タイプ)にN:O=96:4の混合ガスを処理ガスとして導入し、投入電力900W(140V-6.4A)でプラズマガスを発生させ、前記フィルムを8m/分の速度で搬送し、ITOを積層した反対面のプラズマ処理を行った。なお、プラズマ処理を行うスリット面積は200mm(光透過性導電性フィルムの幅方向に200mmかつ長さ方向に1mm)とした。次いで、DCスパッタ法により、上記プラズマ処理後のPETフィルムに光透過性導電層としてITO層(Sn含有量7wt%)を19nm堆積させた後、150℃で30分間アニールすることで本発明の光透過性導電性フィルムを得た。
[実施例14及び15]
 光学透明粘着層の厚みを表1に記載の通りに変えた以外は実施例13と同様にして本発明の光透過性導電性フィルムを得た。
[比較例1]
 プラズマ処理を行わなかったこと以外は実施例1と同様にして本発明の光透過性導電性フィルムを得た。
[比較例2]
 光学透明粘着層の厚みを100μmに変更した以外は比較例1と同様にして本発明の光透過性導電性フィルムを得た。
 表1に示すように、光透過性導電性フィルムの光透過性導電層を積層していない面のぬれ張力を34dyn/cm以上にすることで光透過性導電性フィルムと光学透明粘着層の接着の耐久性が向上し、気泡の発生を抑制することができる。また、ぬれ張力を48dyn/cm以下にすることで、光透過性導電性フィルムの親水性を低減でき、光透過性導電性フィルムと光学透明粘着層の間への水の浸入を抑制できるため、端部の白化を抑制することができる。
1    光透過性導電性フィルム
11   光透過性支持層(A)
12   光透過性導電層(B)
13   光学透明粘着層(C)

Claims (6)

  1. (A)光透過性支持層;及び
    (B)光透過性導電層
    を含有する光透過性導電性フィルムであって、
    前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上であることを特徴とする、光透過性導電性フィルム。
  2. 請求項1に記載の光透過性導電性フィルムの、ぬれ張力が34dyn/cm以上である前記表面に、さらに、
    (C)光学透明粘着層
    が直接配置されている、光透過性導電性フィルム。
  3. 前記ぬれ張力が34dyn/cm~50dyn/cmである、請求項1又は2に記載の光透過性導電性フィルム。
  4. 請求項1~3のいずれか一項に記載の光透過性導電性フィルムを巻き取ってなる、フィルムロール。
  5. 請求項1~3のいずれか一項に記載の光透過性導電性フィルムを含む、タッチパネル。
  6. (A)光透過性支持層;及び
    (B)光透過性導電層
    を含有する光透過性導電性フィルムであって、
    前記光透過性導電層(B)が、前記光透過性支持層(A)の一方の面に、直接又は一以上の他の層を介して配置されており、かつ前記光透過性導電層(B)とは反対側の表面のぬれ張力が34dyn/cm以上である光透過性導電性フィルムの製造方法であって、
    大気圧プラズマ処理、低圧プラズマ処理及びコロナ処理からなる群より選択される少なくとも一種の処理により、前記表面をぬれ張力が34dyn/cm以上となるように加工する工程
    を含むことを特徴とする、製造方法。
PCT/JP2016/054424 2015-02-19 2016-02-16 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル WO2016133081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680002153.7A CN106794666B (zh) 2015-02-19 2016-02-16 透光性导电膜、其膜卷及具有它的触摸面板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015030909 2015-02-19
JP2015-030909 2015-02-19
JP2015-147738 2015-07-27
JP2015147738A JP5905983B1 (ja) 2015-02-19 2015-07-27 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル

Publications (1)

Publication Number Publication Date
WO2016133081A1 true WO2016133081A1 (ja) 2016-08-25

Family

ID=55755924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054424 WO2016133081A1 (ja) 2015-02-19 2016-02-16 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル

Country Status (3)

Country Link
JP (2) JP5905983B1 (ja)
CN (1) CN106794666B (ja)
WO (1) WO2016133081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981565B1 (ja) * 2021-03-18 2021-12-15 東洋インキScホールディングス株式会社 積層体および透明電極フィルム
JP7078169B1 (ja) 2021-12-10 2022-05-31 東洋インキScホールディングス株式会社 透明電極フィルム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905983B1 (ja) * 2015-02-19 2016-04-20 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
CN109471567B (zh) * 2018-09-27 2022-02-11 广西中沛光电科技有限公司 一种电容式触摸屏的贴合工艺
CN112562887B (zh) * 2020-11-18 2022-07-15 深圳市华科创智技术有限公司 一种耐弯曲性能优异的纳米银线透明导电膜
WO2022196760A1 (ja) 2021-03-18 2022-09-22 東洋インキScホールディングス株式会社 積層体および透明電極フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198934A (ja) * 2009-02-25 2010-09-09 Nitto Denko Corp 透明導電積層体の製造方法、透明導電積層体およびタッチパネル
JP2013067737A (ja) * 2011-09-22 2013-04-18 Daicel Corp 透明粘着シート
WO2013114945A1 (ja) * 2012-01-31 2013-08-08 東レフィルム加工株式会社 透明導電性フィルム、タッチパネルおよび表示装置
JP2014208471A (ja) * 2013-03-25 2014-11-06 積水ナノコートテクノロジー株式会社 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP2016032935A (ja) * 2014-07-29 2016-03-10 大日本印刷株式会社 積層体、導電性積層体及びタッチパネル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922109B2 (ja) * 2001-10-17 2007-05-30 東洋紡績株式会社 透明導電性フィルムロールの製造方法
JP2007034027A (ja) * 2005-07-28 2007-02-08 Nof Corp ディスプレイ用表面材及びそれを備えたディスプレイ
JP5506011B2 (ja) * 2007-03-02 2014-05-28 日東電工株式会社 粘着剤層付き透明導電性フィルムおよびその製造方法
JP5099893B2 (ja) * 2007-10-22 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
JP5552271B2 (ja) * 2009-07-08 2014-07-16 日東電工株式会社 粘着剤層付き透明導電性フィルム、透明導電性積層体及びタッチパネル
JP5806066B2 (ja) * 2011-09-30 2015-11-10 富士フイルム株式会社 電極パターン、タッチパネル、液晶表示装置及び、有機elディスプレイ
JP6044823B2 (ja) * 2012-08-24 2016-12-14 国立大学法人 東京大学 透明電極、導電性透明薄膜の製造方法ならびに導電性透明薄膜
JP6103306B2 (ja) * 2013-09-17 2017-03-29 東レフィルム加工株式会社 積層フィルムおよび透明導電性フィルム
JP5905983B1 (ja) * 2015-02-19 2016-04-20 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198934A (ja) * 2009-02-25 2010-09-09 Nitto Denko Corp 透明導電積層体の製造方法、透明導電積層体およびタッチパネル
JP2013067737A (ja) * 2011-09-22 2013-04-18 Daicel Corp 透明粘着シート
WO2013114945A1 (ja) * 2012-01-31 2013-08-08 東レフィルム加工株式会社 透明導電性フィルム、タッチパネルおよび表示装置
JP2014208471A (ja) * 2013-03-25 2014-11-06 積水ナノコートテクノロジー株式会社 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP2016032935A (ja) * 2014-07-29 2016-03-10 大日本印刷株式会社 積層体、導電性積層体及びタッチパネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981565B1 (ja) * 2021-03-18 2021-12-15 東洋インキScホールディングス株式会社 積層体および透明電極フィルム
JP7078169B1 (ja) 2021-12-10 2022-05-31 東洋インキScホールディングス株式会社 透明電極フィルム
JP2023086587A (ja) * 2021-12-10 2023-06-22 東洋インキScホールディングス株式会社 透明電極フィルム

Also Published As

Publication number Publication date
JP2016155380A (ja) 2016-09-01
CN106794666B (zh) 2020-07-28
JP2016155366A (ja) 2016-09-01
JP5905983B1 (ja) 2016-04-20
JP6577886B2 (ja) 2019-09-18
CN106794666A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6577886B2 (ja) 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
JP6495635B2 (ja) 透明導電性フィルム積層体及びそれを用いて得られるタッチパネル、並びに透明導電性フィルムの製造方法
JP6470040B2 (ja) 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル
JP5425351B1 (ja) 光透過性導電性フィルム、その製造方法及びその用途
JP5651259B2 (ja) 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP5876892B2 (ja) 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP2015159091A (ja) 透明導電層付フィルム
KR20190045831A (ko) 투명 도전성 필름 및 투명 도전성 필름 적층체
JP6425598B2 (ja) 透明導電性フィルム及びタッチパネル
JP2014123567A (ja) 光透過性導電性フィルム及びそれを有する静電容量型タッチパネル
US20230397500A1 (en) Piezoelectric film, touch panel, and piezoelectric film manufacturing method
KR20130071427A (ko) 투명 도전성기재
JP6134419B1 (ja) 光透過性導電性フィルム、及びハードコート付き光透過性フィルム
JP2014136386A (ja) 両面導電性フィルム、両面導電性フィルムロール及び両面導電性フィルムを含有するタッチパネル、並びに両面導電性フィルムの製造方法
JP2019089341A (ja) 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル
JP5987045B2 (ja) 光透過性導電性フィルム、その製造方法及びその用途
JP5564145B1 (ja) 光透過性導電性フィルム、その製造方法及びその用途
JP6666688B2 (ja) 光透過性導電性フィルム、およびハードコート付き光透過性フィルム
JP6406968B2 (ja) 光透過性導電性フィルムの製造方法
JP2016150578A (ja) 光透過性導電性フィルム、その製造方法及びその用途
JP6475461B2 (ja) 光透過性導電性フィルム
JP2015173109A (ja) 光透過性導電性フィルムの製造方法
JP2015165493A (ja) 光透過性導電性フィルムの製造方法及びその光透過性導電性フィルム、並びにその光透過性導電性フィルムを含有するタッチパネル
JP2015056321A (ja) 金属層付き導電性フィルム、その製造方法及びそれを含有するタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752467

Country of ref document: EP

Kind code of ref document: A1