WO2016129172A1 - インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法 - Google Patents

インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法 Download PDF

Info

Publication number
WO2016129172A1
WO2016129172A1 PCT/JP2015/084273 JP2015084273W WO2016129172A1 WO 2016129172 A1 WO2016129172 A1 WO 2016129172A1 JP 2015084273 W JP2015084273 W JP 2015084273W WO 2016129172 A1 WO2016129172 A1 WO 2016129172A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
substrate
indium phosphide
polishing
surface roughness
Prior art date
Application number
PCT/JP2015/084273
Other languages
English (en)
French (fr)
Inventor
新也 藤原
恭明 樋口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56615152&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016129172(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP15882046.4A priority Critical patent/EP3258481A4/en
Priority to CN201580073159.9A priority patent/CN107112201B/zh
Priority to US15/541,754 priority patent/US10473445B2/en
Priority to CN202010677512.7A priority patent/CN111952150B/zh
Priority to JP2016574632A priority patent/JP6296177B2/ja
Priority to EP22213440.5A priority patent/EP4174913A1/en
Publication of WO2016129172A1 publication Critical patent/WO2016129172A1/ja
Priority to US16/540,674 priority patent/US10663277B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • G01B5/285Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces for controlling eveness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02016Backside treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Definitions

  • the present invention relates to an indium phosphide substrate, an indium phosphide substrate inspection method, and an indium phosphide substrate manufacturing method.
  • Indium phosphide (InP) substrates are widely used for semiconductor lasers, LEDs (Light Emitting Diodes), or high-speed devices due to their light-emitting properties and high electron movement speed. .
  • the light emission performance can be easily inspected by measuring the PL intensity after forming an epitaxial film on the InP substrate.
  • the PL emission intensity should be strong.
  • the electrical characteristics are more stable when there are fewer n-type or p-type impurities at the interface.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-31490 discloses a technique for reducing impurities on the surface of a compound semiconductor substrate by setting the surface roughness Rms of the compound semiconductor substrate to 0.2 nm or less. .
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-248050
  • an indium phosphide substrate is washed with sulfuric acid / hydrogen peroxide and phosphoric acid, the impurity concentration on the surface of the substrate is reduced and an epitaxial layer is formed on the substrate.
  • a technique for suppressing deterioration of PL characteristics and electrical characteristics is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-31490 regulates the surface roughness of the compound semiconductor substrate, but does not regulate the in-plane variation of the surface roughness. Therefore, when the surface area of the compound semiconductor substrate is large and the surface roughness has in-plane variation, the impurity concentration on the surface of the substrate cannot be reduced uniformly.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-248050 defines cleaning conditions in order to reduce the impurity concentration on the substrate surface.
  • the impurity concentration on the substrate surface is also related to the surface roughness of the substrate, and the surface roughness of the substrate is affected by the polishing conditions of the substrate.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-248050 does not disclose controlling the surface roughness of the substrate according to the polishing conditions of the substrate.
  • the present invention provides an indium phosphide substrate in which the surface roughness of the substrate is controlled, the uniformity of an epitaxial film grown on the substrate is improved, and the PL characteristics of an epitaxial wafer using the epitaxial film can be improved, and
  • An object of the present invention is to provide an indium phosphide substrate inspection method and an indium phosphide substrate manufacturing method.
  • An indium phosphide substrate is (1) an indium phosphide substrate including a first main surface and a second main surface, the surface roughness Ra1 at the center of the first main surface, and The average value m1 of the surface roughness Ra2, Ra3, Ra4 and Ra5 at four locations arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the first main surface is 0.4 nm or less,
  • the standard deviation ⁇ 1 of the surface roughness Ra1, Ra2, Ra3, Ra4, and Ra5 is 10% or less of the average value m1, the surface roughness Ra6 at the center of the second main surface, and the second main surface
  • the average value m2 of the surface roughness Ra7, Ra8, Ra9 and Ra10 at four locations arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the surface is 0.2 nm or more and 3 nm or less, Surface roughness Ra6, Ra7, Ra8, Ra9 and standard deviation ⁇ 2 of Ra10, said 10% or
  • the indium phosphide substrate preferably has a maximum diameter of 150 mm or more.
  • the indium phosphide substrate inspection method according to one aspect of the present invention is arranged at equal intervals along the outer edge portion at the center of the main surface of the indium phosphide substrate and 5 mm inside from the outer edge portion of the main surface.
  • the indium phosphide substrate inspection method includes a step of measuring the surface roughness of the indium phosphide substrate using an atomic force microscope at a pitch of 0.4 nm with a 1 ⁇ m square field of view.
  • a method for manufacturing an indium phosphide substrate according to one embodiment of the present invention is the method for manufacturing an indium phosphide substrate according to (1) or (2) above, wherein the first main surface and the second main surface.
  • a step of preparing an indium phosphide wafer containing, a step of double-side polishing the first main surface and the second main surface of the indium phosphide wafer using a first polishing cloth A method for manufacturing an indium phosphide substrate, comprising: a step of polishing one side of a first main surface using a second polishing cloth; and a step of cleaning the indium phosphide wafer subjected to the single side finish polishing.
  • the surface roughness of the substrate is controlled, the uniformity of the epitaxial film grown on the substrate is improved, and the PL characteristics of the epitaxial wafer using the epitaxial film can be improved.
  • FIG. 1 is a schematic perspective view showing an indium phosphide substrate according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the indium phosphide substrate of FIG. 1 cut along line AA. It is the top view which looked at the indium phosphorus substrate concerning one mode of the present invention from the 1st principal surface side. It is the top view which looked at the indium phosphorus substrate concerning one mode of the present invention from the 2nd principal surface side. It is a flowchart which shows the manufacturing process of the indium phosphorus substrate concerning 1 aspect of this invention.
  • A is the schematic of a double-side polish apparatus.
  • (B) is a schematic plan view of a wafer carrier on which an indium phosphide wafer is installed. It is the schematic of a single-side polish apparatus.
  • An indium phosphide substrate is (1) an indium phosphide substrate including a first main surface and a second main surface, the surface roughness Ra1 at the center of the first main surface, and The average value m1 of the surface roughness Ra2, Ra3, Ra4 and Ra5 at four locations arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the first main surface is 0.4 nm or less,
  • the standard deviation ⁇ 1 of the surface roughness Ra1, Ra2, Ra3, Ra4, and Ra5 is 10% or less of the average value m1, the surface roughness Ra6 at the center of the second main surface, and the second main surface
  • the average value m2 of the surface roughness Ra7, Ra8, Ra9 and Ra10 at four locations arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the surface is 0.2 nm or more and 3 nm or less, Surface roughness Ra6, Ra7, Ra8, Ra9 and standard deviation ⁇ 2 of Ra10, said 10% or
  • the four locations arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the first main surface are the outer edge portion 5 mm inside from the outer edge portion of the first main surface.
  • the above-mentioned indium phosphide substrate has a small average surface roughness of the first main surface and a small variation in surface roughness over the entire surface of the first main surface. Therefore, the surface roughness of the first main surface of the substrate is small. Is controlled, the uniformity of the epitaxial film grown on the first main surface can be improved, and the PL characteristics of the epitaxial film can be improved.
  • the average value of the surface roughness of the second main surface is small, and the variation of the surface roughness is small over the entire surface of the first main surface. Therefore, the epitaxial film is formed on the first main surface of the substrate.
  • the contact state between the susceptor supporting the substrate and the second main surface of the substrate can be prevented from locally changing. For this reason, it is possible to suppress the occurrence of a problem that the temperature distribution of the substrate is biased with the change in the contact state, and as a result, an epitaxial film having excellent film quality can be formed.
  • the indium phosphide substrate preferably has a maximum diameter of 150 mm or more.
  • the indium phosphide substrate of (1) above is a large-diameter substrate having a maximum diameter of 150 mm or more because the surface roughness of the first main surface and the second main surface is controlled over the entire main surface.
  • a uniform epitaxial film can be formed on the substrate surface. In this way, by using a large-area substrate, the number of semiconductor elements (chips) that can be formed on the substrate can be increased. As a result, the manufacturing cost in the process of forming the semiconductor element (device process) can be reduced, and the productivity can be improved.
  • the method for inspecting an indium phosphide substrate according to one aspect of the present invention includes (3) a center of the main surface of the indium phosphide substrate, and 5 mm inside from the outer edge of the main surface, arranged at equal intervals along the outer edge.
  • the indium phosphide substrate inspection method includes a step of measuring the surface roughness of the indium phosphide substrate using an atomic force microscope at a pitch of 0.4 nm with a 1 ⁇ m square field of view.
  • AFM atomic force microscope
  • a method for manufacturing an indium phosphide substrate according to one embodiment of the present invention is (4) the method for manufacturing an indium phosphide substrate according to (1) or (2) above, wherein the first main surface and the second main surface are provided.
  • a step of preparing an indium phosphide wafer containing, a step of double-side polishing the first main surface and the second main surface of the indium phosphide wafer using a first polishing cloth A method for manufacturing an indium phosphide substrate, comprising: a step of polishing one side of a first main surface using a second polishing cloth; and a step of cleaning the indium phosphide wafer subjected to the single side finish polishing.
  • the average value of the surface roughness of the first main surface and the second main surface of the substrate and the variation of the surface roughness can be controlled within a desired range.
  • FIG. 1 is a schematic perspective view showing an indium phosphide substrate 10 according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the indium phosphide substrate 10 of FIG. 1 taken along the line AA.
  • FIG. 3 is a plan view of the indium phosphide substrate 10 as viewed from the first main surface 11 side.
  • FIG. 4 is a plan view of the indium phosphide substrate 10 as viewed from the second main surface 12 side.
  • the indium phosphide substrate (hereinafter also referred to as InP substrate) 10 is made of a single crystal of indium phosphide (InP). As shown in FIG. 1, the InP substrate 10 is substantially circular in plan view. As shown in FIG. 2, the InP substrate 10 includes a first main surface 11 and a second main surface 12, and the first main surface 11 and the second main surface 12 are substantially parallel. . When growing an epitaxial film using an InP substrate, the epitaxial film is grown on the first main surface 11. At this time, the second main surface 12 is placed in contact with the susceptor of the film forming apparatus.
  • the average value m1 of Ra3, Ra4, and Ra5 is 0.4 nm or less, and the standard deviation ⁇ 1 of the surface roughness Ra1, Ra2, Ra3, Ra4, and Ra5 is 10% or less of the average value m1.
  • the surface roughness refers to the arithmetic average roughness Ra specified in JIS B 0601. From the roughness curve, only the reference length is extracted in the direction of the average line, and from the average line of the extracted part to the measurement curve. The distance (absolute value of deviation) is summed and averaged.
  • the surface roughness Ra1 at the center of the first main surface 11 is a value measured by the following method.
  • a field of view of 1 ⁇ m square is extracted from the first main surface 11 so as to include the center point of the first main surface 11 like a region indicated by 1 surrounded by a square in FIG.
  • the surface roughness Ra1 is measured using an atomic force microscope with the sampling range at a pitch of 0.4 nm.
  • the four places arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the first main surface are the first region as indicated by 2 to 5 surrounded by the square in FIG.
  • the surface roughness Ra2, Ra3, Ra4 and Ra5 at the four locations are values measured by the following method. A field of view of 1 ⁇ m square is extracted from the first main surface 11 so as to include the four locations.
  • the surface roughness Ra2, Ra3, Ra4 and Ra5 are respectively measured using an atomic force microscope with the sampling range at a pitch of 0.4 nm.
  • the average value m1 of the surface roughness Ra1, Ra2, Ra3, Ra4 and Ra5 at the five locations on the first main surface of the substrate is 0.4 nm or less as described above, but preferably 0.1 nm or more and 0.3 nm. It is as follows. By setting the average value m1 of the surface roughness to 0.4 nm or less, a good epitaxial film can be formed on the first main surface of the substrate.
  • the standard deviation ⁇ 1 of the surface roughnesses R1, R2, R3, R4 and R5 at five locations on the first main surface of the substrate is 10% or less of the average value m1, preferably 8% or less, more preferably 6% or less.
  • the surface roughness of the first main surface of the substrate is controlled, and a uniform epitaxial film can be formed on the substrate surface.
  • the second main surface 12 is arranged at equal intervals along the outer edge portion 5 mm inward from the outer edge portion of the second main surface and the surface roughness Ra6 at the center of the second main surface 12.
  • the average value m2 of the surface roughness Ra7, Ra8, Ra9 and Ra10 at the location is 0.2 nm or more and 3 nm or less, and the standard deviation ⁇ 2 of the surface roughness Ra6, Ra7, Ra8, Ra9 and Ra10 is the average value m2 It is preferable that it is 10% or less.
  • the contact state between the second main surface 12 and the susceptor of the film forming apparatus on which the InP substrate 10 is mounted can be made uniform over the entire second main surface 12. For this reason, generation
  • the surface roughness Ra6 at the center of the second main surface 12 is a value measured by the following method.
  • a field of view of 1 ⁇ m square is extracted from the second main surface 12 so as to include the center point of the second main surface 12 like a region 6 indicated by a square in FIG.
  • the surface roughness Ra6 is measured using an atomic force microscope with a sampling range of 0.4 nm pitch.
  • the four places arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the second main surface are the second regions as indicated by 7 to 10 surrounded by the square in FIG. 4 regions located on the inner side (indicated by d2 in FIG. 4) at a distance of 5 mm from the location where the outer edge portion is equally divided into four on the extended portion of the main surface of the main surface toward the center of the second main surface It is.
  • the surface roughness Ra7, Ra8, Ra9 and Ra10 at the four locations are values measured by the following method. A field of view of 1 ⁇ m square is extracted from the second main surface 12 so as to include the four locations.
  • the surface roughness Ra7, Ra8, Ra9 and Ra10 are respectively measured using an atomic force microscope with the sampling range at a pitch of 0.4 nm.
  • the average value m2 of the surface roughnesses Ra6, Ra7, Ra8, Ra9 and Ra10 at five locations on the second main surface of the substrate is 0.2 nm or more and 3 nm or less, preferably 0.4 nm or more and 3 nm or less, preferably 0.5 nm or more. 2 nm or less is more preferable.
  • the average value m2 of the surface roughness on the second main surface exceeds 3 nm, the contact state between the susceptor and the second main surface of the substrate in the epitaxial film forming step is locally changed (varies). As a result, the temperature distribution of the substrate becomes non-uniform, and the quality of the resulting epitaxial film may be degraded.
  • the standard deviation ⁇ 2 of the surface roughness of the second main surface is 10% or less of the average value m2, preferably 8% or less, and more preferably 6% or less. In this way, the contact state between the second main surface and the susceptor can be made substantially uniform over the entire second main surface, and as a result, a uniform epitaxial film can be formed on the first main surface. .
  • the diameter D of the InP substrate 10 is preferably 150 mm or more, and more preferably 150 mm or more and 300 mm or less. Since the surface roughness of the first main surface and the second main surface of the InP substrate 10 is controlled over the entire main surface, even the large-diameter substrate having a maximum diameter of 150 mm or more is uniform on the substrate surface. An epitaxial growth layer can be formed. In this way, by using a large-area substrate, the number of semiconductor elements (chips) that can be formed on the substrate can be increased. As a result, the manufacturing cost in the process of forming the semiconductor element (device process) can be reduced, and the productivity can be improved.
  • the thickness of the InP substrate 10 is preferably 500 ⁇ m or more and 800 ⁇ m or less. According to this, even if the InP substrate is relatively large, the front and back surface roughness is controlled, and the yield in the epitaxial layer forming process and the semiconductor element manufacturing process can be reduced.
  • a field of view of 1 ⁇ m square is extracted from the center of the main surface of the indium phosphide substrate 10 and at four positions arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the main surface.
  • the main surface of the InP substrate 10 may be either the first main surface 11 or the second main surface 12.
  • the four locations arranged at equal intervals along the outer edge 5 mm inside from the outer edge of the main surface are the regions indicated by 2 to 5 surrounded by the square in FIG. 3 and the square in FIG. Like the region indicated by 7 to 10, a distance of 5 mm (d1 in FIG. 3 or d1 in FIG.
  • the four locations are four locations arranged at equal intervals along the outer edge portion 5 mm inward from the outer edge portion of the first main surface or the second main surface, and the orientation flat (crystal (001) orientation) as a reference, the four locations are arranged at intervals of 90 °.
  • the four positions are positioned as follows.
  • a line connecting the notch and the center of the substrate is rotated by 45 ° about the center of the substrate as a rotation axis, and a position 5 mm inside from the outer edge of the first main surface or the second main surface is used as a reference. It was set as A point. From the position of the reference A point, a line connecting the reference A point and the center of the substrate is rotated by 90 ° about the center of the substrate as an axis of rotation, and is 5 mm inside from the outer edge of the first main surface. The positions were point B, point C, and point D. The reference A point, the B point, the C point, and the D point are the four locations.
  • the field of view By setting the field of view to be measured in a total of five places, the surface roughness of the entire main surface of the InP substrate can be measured, so that the entire main surface of the InP substrate can be inspected. In addition, the inspection can be quickly performed by setting the visual field to be measured to five places.
  • the field of view is 1 ⁇ m square.
  • an atomic force microscope for example, “Dimension 3000” manufactured by Veeco
  • a scanning probe microscope for example, “Dimension ICON” manufactured by Bruker AXS
  • the InP substrate inspection method of the second embodiment irregularities on the atomic order can be reliably detected. Moreover, since the unevenness
  • AFM atomic force microscope
  • SPM scanning probe microscope
  • the method for manufacturing an indium phosphide substrate includes a step (S10) of preparing an indium phosphide wafer including a first main surface and a second main surface, A step (S20) of double-side polishing the surface and the second main surface using a first polishing cloth, and a single-side finish polishing of the first main surface of the double-side polished indium phosphide wafer using a second polishing cloth And a step (S40) of cleaning the indium phosphide wafer polished and polished on one side.
  • an InP ingot is prepared.
  • the ingot may be made of InP and may contain a dopant made of at least one substance selected from the group consisting of Fe, S, Sn, and Zn.
  • the InP wafer is sliced from the prepared ingot.
  • the method for slicing is not particularly limited. This InP wafer includes a damaged layer by slicing.
  • Double-side polishing can be performed using, for example, a double-side polishing apparatus 60 shown in FIG.
  • the double-side polishing apparatus 60 includes an upper surface plate 61 that rotates, and a lower surface plate 62 that rotates with the upper surface plate 61 sharing a rotation axis.
  • a first polishing cloth 63 is attached to the lower surface of the upper surface plate 61 and the upper surface of the lower surface plate 62, respectively.
  • the double-side polishing apparatus 60 includes a wafer carrier 65 that is provided so as to be sandwiched between an upper surface plate 61 and a lower surface plate 62, and that holds an InP wafer 66 that rotates while sharing a rotation axis with the surface plate.
  • a polishing liquid injection hole 64 for supplying a polishing liquid to the polishing surface of the InP wafer 66 from the outside is formed in the upper surface plate 61.
  • the InP wafer 66 is held on the wafer carrier 65 so that the first main surface faces the upper surface plate 61 and the second main surface faces the lower surface plate 62.
  • the relative speed of the upper surface plate 61 to the InP wafer 66 is preferably the same as the relative speed of the lower surface plate 62 to the InP wafer 66.
  • FIG. 6B is a schematic plan view showing a state in which the InP wafer 66 is set on the wafer carrier 65 of the double-side polishing apparatus. As shown in FIG. 6B, the InP wafer 66 is installed inside the holding hole of the wafer carrier 65. The wafer carrier 65 is formed so that the thickness of the InP wafer 66 is larger than the thickness of the wafer carrier 65.
  • the upper surface plate 61 and the lower surface plate 62 have a diameter of 750 mm or more because the flatness of the polished InP wafer surface is improved.
  • the first polishing cloth for example, a nonwoven fabric base material impregnated with polyurethane resin is preferably used.
  • the first polishing cloth is preferably pre-dressed with diamond pellets before polishing the InP wafer. Thereby, the flatness and surface roughness of the surface of the first polishing pad are uniform. Therefore, the surface roughness of the InP substrate polished using the first polishing cloth is also uniform.
  • the conditions for double-sided polishing are, for example, that double-side polishing is performed under normal conditions up to 7/10 of the machining allowance, and then the remaining 3/10 of the machining allowance is polished by reducing the rotational speed to 50% of normal Double-side polishing can be performed at a speed of 1/3.
  • the normal double-side polishing conditions include, for example, an upper surface plate 5 to 10 rpm (forward rotation direction), a lower surface plate 20 to 30 rpm (forward rotation direction), an internal gear 5 to 10 rpm (forward rotation direction), and a sun gear 10 to 15 rpm.
  • Each surface plate and each gear are rotated at a rotational speed of (forward rotation direction), a load of 80 to 150 g / cm 2 is applied to the surface pressure, and an abrasive (for example, “INSEC IPP” manufactured by Fujimi Incorporated) ) At a flow rate of 300 ml / min. According to this, the surface roughness of the substrate can be effectively reduced. Therefore, the front and back surface roughness of the substrate is controlled. Double-side polishing is preferably performed while flowing a polishing liquid and a surfactant at a constant flow rate.
  • the average value of the surface roughness of the first main surface and the second main surface of the InP wafer after double-side polishing is preferably 1.0 nm or less.
  • the average value of the surface roughness is the average value of the surface roughness at the center of the main surface of the InP wafer and the four points arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the main surface. It is.
  • the standard deviation of the surface roughness is preferably 0.1 nm or less. According to this, it is easy to adjust the surface roughness and variation of the InP substrate to a desired range in a subsequent process.
  • the single-sided polishing can be performed using, for example, a single-side polishing apparatus 70 shown in FIG. Specifically, first, a plurality of InP wafers 74 are attached to the surface of a disk-shaped ceramic polishing plate 72 using wax 73. Alternatively, a wafer-sucking backing film is attached to the surface of a porcelain disk-like polishing plate 72, and a plurality of InP wafers 74 are attached thereon with water surface tension.
  • a second polishing cloth 76 is affixed on a disk-shaped polishing surface plate 77 having a diameter of 600 mm or more.
  • the polishing surface plate 77 is rotatably supported by a rotating shaft 78.
  • the polishing plate 72 is rotatably held by a shaft 722 suspended from the polishing head 720.
  • a polishing liquid supply pipe 79 is provided above the polishing surface plate 77, and the polishing liquid 75 is supplied onto the second polishing cloth 76 therefrom.
  • the InP wafer 74 is polished by rotating the polishing surface plate 77 and the polishing plate 72 in the forward direction.
  • the second polishing cloth 76 it is preferable to use a non-woven cloth type polishing cloth.
  • the polishing liquid 75 a known InP polishing abrasive can be used.
  • the condition of single-sided finish polishing is, for example, that after performing single-side polishing under normal conditions until 9/10 of the machining allowance, the remaining 1/10 of the machining allowance is reduced to the normal 50%, One-side polishing can be performed at a polishing rate of 1/2.
  • the normal single-side polishing condition is that each surface plate is rotated at a rotation speed of 50 to 80 rpm (forward rotation direction) of the lower surface plate and 50 to 80 rpm (forward rotation direction) of the upper surface plate to obtain a surface pressure of 40 to 100 g / cm. No. 2 is applied, and polishing is performed while flowing an abrasive (for example, “INSEC SP” manufactured by Fujimi Incorporated) at a flow rate of 140 ml / min. According to this, the surface roughness of the substrate can be effectively reduced. Therefore, the front and back surface roughness of the substrate is controlled.
  • the single-side finish polishing is preferably performed while flowing a polishing liquid and a surfactant at a constant flow rate
  • the average value of the surface roughness of the first main surface of the InP wafer after the single-side finish polishing is preferably 0.4 nm or less.
  • the average value of the surface roughness is the average value of the surface roughness at the center of the main surface of the InP wafer and the four points arranged at equal intervals along the outer edge portion 5 mm inside from the outer edge portion of the main surface. It is.
  • the standard deviation of the surface roughness is preferably 0.05 nm or less. According to this, it is easy to adjust the surface roughness and variation of the InP substrate to a desired range in a subsequent process.
  • the single-sided finish-polished indium phosphide wafer is cleaned (S40).
  • an acidic solution composed of at least one of dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid, and organic acid can be used.
  • an acid solution is used to reduce irregularities in the atomic order of the main surface of the InP wafer, and the average value m1 of the surface roughness of the first main surface of the InP substrate can be made 0.4 nm or less.
  • the acidic solution used in the washing step (S40) is at least one of dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid, and organic acid.
  • organic acid for example, formic acid, acetic acid, succinic acid, lactic acid, malic acid, and citric acid are preferably used.
  • the pH of the acidic solution is preferably from 0 to 4, more preferably from 1 to 3.
  • the concentration of dilute hydrochloric acid is 0.001% to 0.5%
  • the concentration of dilute sulfuric acid is 0.001% to 0.5%
  • the concentration of dilute nitric acid is 0.001% to 0.5%
  • the concentration of organic acid is 0 It is preferably 1% to 1%.
  • the washing step (S40) is preferably performed by adding an oxidizing agent to the acidic solution.
  • An oxidizing agent is not specifically limited, For example, hydrogen peroxide water etc. can be used.
  • the concentration of the oxidizing agent is not particularly limited, but is preferably 0.5 ppm or more and 10 ppm or less, and more preferably 1 ppm or more and 5 ppm or less.
  • concentration of the oxidizing agent By setting the concentration of the oxidizing agent to 0.5 ppm or more, it is possible to suppress a reduction in the cleaning ability of the acidic solution.
  • concentration of the oxidizing agent By setting the concentration of the oxidizing agent to 10 ppm or less, it is possible to prevent reaction with oxides, organic substances, fine particles or the like on the surface of the InP wafer.
  • the temperature of the acidic solution used in the washing step (S40) is not particularly limited, but is preferably room temperature. By setting the temperature to room temperature, the equipment for performing the surface treatment of the InP wafer can be simplified.
  • the cleaning time is not particularly limited, but is preferably 10 seconds or more and 300 seconds or less, for example.
  • the washing step (S40) is performed within this range, the cost of the acidic solution can be reduced, and the productivity can be improved.
  • cleaning in order to remove washing
  • the pure water rinsing process after the final cleaning process the moisture of the InP wafer is removed by centrifugal drying or the like.
  • the adhesion of fine particles can be prevented by applying an ultrasonic wave of 900 to 2000 kHz.
  • pure water degassed to an oxygen concentration of 100 ppb or less is used to prevent oxidation of the surface of the InP wafer.
  • the epitaxial wafer in the present embodiment will be described.
  • the epitaxial wafer includes the InP substrate in the first embodiment and an epitaxial film formed on the first main surface of the InP substrate.
  • the epitaxial film may be a single layer or a plurality of layers.
  • the Si concentration is 1.8 ⁇ 10 17 atoms / cm 3 or less
  • the S concentration is 2 ⁇ 10 13 atoms / cm 3 or less.
  • an InP substrate is manufactured according to the third embodiment.
  • an epitaxial film is formed on the surface of the InP substrate.
  • the method for forming the epitaxial film is not particularly limited, and OMVPE (Organo Metallic Vapor Phase Epitaxy) method, HVPE (Hydride Vapor Phase Epitaxy) method, MBE (Molecular Molecular Growth). Epitaxy method or the like can be employed.
  • a dividing process such as dicing may be performed.
  • an epitaxial wafer By performing the above steps, an epitaxial wafer can be manufactured.
  • the epitaxial wafer manufactured in this way is mounted on a lead frame, for example. Then, by performing a wire bonding process or the like, a semiconductor device using the element can be obtained.
  • the epitaxial wafer manufacturing method according to the present embodiment uses the InP substrate 10 according to the first embodiment. For this reason, an epitaxial wafer in which deterioration of PL characteristics is suppressed can be manufactured.
  • the InP substrate contains a dopant made of at least one substance selected from the group consisting of Fe, S, Sn, and Zn, the following effects are obtained.
  • the epitaxial wafer has a dopant concentration of, for example, 1 ⁇ 10 16 atoms / cc or more and 1 ⁇ 10 17 atoms / cc, and the electrical characteristics are semi-insulating.
  • the Si and S concentrations are high at the interface between the InP substrate and the epitaxial layer, abnormal electrical characteristics (leakage) occur.
  • the epitaxial wafer is made of HEMT (High Electron Mobility Transistor), HBT (Heterojunction Bipolar). (Transistor: heterojunction bipolar transistor).
  • the epitaxial wafer When the dopant is S, the epitaxial wafer has a dopant concentration of, for example, 0.5 ⁇ 10 18 atoms / cc or more and 8 ⁇ 10 18 atoms / cc, and the electrical characteristics are n-type.
  • the O and C concentrations are high at the interface between the InP substrate and the epitaxial film, abnormal electrical characteristics and a decrease in light emission intensity occur.
  • the epitaxial wafer is preferably used for a laser or the like.
  • Haze can be reduced, the emission intensity of the epitaxial wafer can be further improved.
  • the epitaxial wafer has, for example, a dopant concentration of 1 ⁇ 10 18 atoms / cc or more and 6 ⁇ 10 18 atoms / cc, and the electrical characteristics are n-type.
  • the O and C concentrations are high at the interface between the InP substrate and the epitaxial film, abnormal electrical characteristics and a decrease in light emission intensity occur.
  • the epitaxial wafer is preferably used for a laser or the like.
  • Haze can be reduced, the emission intensity of the epitaxial wafer can be further improved.
  • the epitaxial wafer has a dopant concentration of, for example, 3 ⁇ 10 18 atoms / cc or more and 8 ⁇ 10 18 atoms / cc, and the electrical characteristics are p-type.
  • the Si and S concentrations are high at the interface between the InP substrate 10 and the epitaxial film, abnormal electrical characteristics and a decrease in emission intensity occur.
  • the epitaxial wafer is preferably used for a laser or the like.
  • Haze can be reduced, the emission intensity of the epitaxial wafer can be further improved.
  • both surfaces of the main surface of the InP wafer were polished using a double-side polishing apparatus (plate size 750 mm).
  • a double-side polishing apparatus plate size 750 mm.
  • a nonwoven fabric base material impregnated with polyurethane resin (Suba IV manufactured by Nitta Haas) was used.
  • the polishing cloth is pre-dressed with diamond pellets (Padless 200H manufactured by Fujimi Incorporated).
  • the specific contents of “(a) Double-side polishing conditions” shown in Table 1 are as follows.
  • polishing is performed while applying a surface pressure of 100 g / cm 2 and flowing an abrasive (for example, “INSEC IPP” manufactured by Fujimi Incorporated) at a flow rate of 300 ml / min.
  • an abrasive for example, “INSEC IPP” manufactured by Fujimi Incorporated
  • Double-side polishing is performed under the above standard conditions until 7/10 of double-side polishing allowance. Thereafter, the rotational speed is reduced to the normal 50%, so that the polishing speed is reduced to 1/3 and the remaining 3/10 of the machining allowance is double-side polished.
  • (a-1) surfactant shown in Table 1 are as follows. Existence: When polishing the remaining 3/10 of the allowance under the above-mentioned (a) double-side polishing conditions, a surfactant (NCW1001 manufactured by Wako Pure Chemical Industries, Ltd.) is flowed at a constant flow rate together with the polishing liquid. Polish both sides.
  • a surfactant NCW1001 manufactured by Wako Pure Chemical Industries, Ltd.
  • (b-1) surfactant shown in Table 1 are as follows. Existence: In the above (b) single-side finish polishing conditions, when polishing the remaining 1/10 of the machining allowance, a surfactant (NCW1001 manufactured by Wako Pure Chemical Industries, Ltd.) is flowed at a constant flow rate together with the polishing liquid. Polish both sides.
  • a surfactant NCW1001 manufactured by Wako Pure Chemical Industries, Ltd.
  • the surface roughnesses Ra1 to Ra10 were respectively measured at four points 5 mm inside from the center of the substrate and the outer edge of the substrate with a field of view of 0.2 ⁇ m square.
  • the surface roughness was measured for 512 rows.
  • the tapping mode was used. From the measured surface roughness values, average surface roughness values m1 and m2, standard deviations ⁇ 1, ⁇ 2, ⁇ 1 / m1, and ⁇ 2 / m2 were calculated. The results are shown in Table 1.
  • An InP film having a thickness of 300 nm was formed on the first main surface of the obtained InP substrate by the OMVPE method.
  • an InGaAs film having a thickness of 5 nm was formed by OMVPE.
  • An InP film having a thickness of 300 nm was formed on the InGaAs film by OMVPE.
  • an epitaxial wafer having an epitaxial film formed on the InP substrate was manufactured.
  • the InP substrate temperature during the formation of the epitaxial film was 580 ° C.
  • the PL intensity of the InGaAs film was measured.
  • the PL measurement is performed using a semiconductor laser with an excitation light wavelength of 532 nm, under the conditions of an irradiation beam diameter of 100 ⁇ m, a measurement temperature of 25 ° C., and an excitation light intensity of 300 mW.
  • the measurement wavelength range is 1250 nm to 1500 nm corresponding to the emission wavelength from the InGaAs layer. there were.
  • the PL intensity was the peak intensity of the emission wavelength.
  • PLM150 manufactured by Nanometrics was used. The results are shown in Table 1.
  • the average value m1 of the surface roughness of the first main surface is 0.4 nm or less, and the standard deviation ⁇ 1 of the surface roughness is 10% or less of the average value m1.
  • the second main surface has an average value m2 of surface roughness of 0.2 nm to 3 nm, and a standard deviation ⁇ 2 of surface roughness is 10% or less of the average value m2.
  • the front and back surface roughness of the substrate was controlled in-plane, so that the substrate temperature during epitaxial growth became uniform in-plane, and the PL characteristics of the epitaxial growth film were excellent.
  • the average value m2 of the surface roughness of the second main surface exceeds 4.4 nm, and in-plane control of the surface roughness of the substrate is insufficient, and during epitaxial growth
  • the substrate temperature was not sufficiently uniform in the plane, and the PL characteristics of the epitaxially grown film were inferior.
  • the indium phosphide substrate of the present invention is useful when used for semiconductor lasers, LEDs, light beam devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 基板上に成長させるエピタキシャル膜の均一性を良好にし、該エピタキシャル膜を用いたエピタキシャルウエハのPL特性および電気特性を向上させることのできるインジウムリン基板、ならびに、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法を提供する。インジウムリン基板は、第1の主面および第2の主面を含むインジウムリン基板であって、前記インジウムリン基板の第1の主面の中心における表面粗さRa1、ならびに、前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa2、Ra3、Ra4およびRa5の平均値m1は0.5nm以下であり、前記表面粗さRa1、Ra2、Ra3、Ra4およびRa5の標準偏差σ1は0.2nm以下である。

Description

インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法
 本発明は、インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法に関する。
 インジウムリン(InP)基板は、発光する特性を持っていること、電子の移動速度が速いことなどにより、半導体レーザ、LED(Light Emitting Diode:発光ダイオード)、あるいは高速デバイスなどに広く用いられている。半導体レーザおよびLEDでは、InP基板上にエピタキシャル膜を形成した後にPL強度を測定することで、簡易的に発光性能を検査することができる。このPL発光強度は強い方がよい。また、高速デバイスでは、InP基板とエピタキシャル膜との界面の不純物によるリークが問題になるので、界面にn型もしくはp型の不純物が少ない方が電気特性が安定する。
 特許文献1(特開2007-311490号公報)には、化合物半導体基板の表面粗さRmsを0.2nm以下にすることにより、化合物半導体基板の表面の不純物を低減するする技術が開示されている。
 特許文献2(特開2010-248050号公報)には、インジウムリン基板を硫酸過水およびリン酸で洗浄することにより、基板表面の不純物濃度を低減し、基板上にエピタキシャル層を成形した場合に、PL特性および電気特性が悪化することを抑制する技術が開示されている。
特開2007-311490号公報 特開2010-248050号公報
 特許文献1(特開2007-311490号公報)の技術は、化合物半導体基板の表面粗さを規定するが、表面粗さの面内バラツキについて規定していない。したがって、化合物半導体基板の表面積が大きく、表面粗さに面内ばらつきがある場合、基板の表面の不純物濃度を一律に低減することができない。
 特許文献2(特開2010-248050号公報)の技術は、基板表面の不純物濃度を低減するために、洗浄条件を規定している。基板表面の不純物濃度は、基板の表面粗さにも関係し、基板の表面粗さは、基板の研磨条件の影響を受ける。しかし、特許文献2(特開2010-248050号公報)には、基板の研磨条件により基板の表面粗さを制御することについては開示されていない。
 本発明は、基板の表裏面粗さが制御され、基板上に成長させるエピタキシャル膜の均一性を良好にし、該エピタキシャル膜を用いたエピタキシャルウエハのPL特性を向上させることのできるインジウムリン基板、ならびに、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法を提供することを目的とする。
 本発明の一態様に係るインジウムリン基板は、(1)第1の主面および第2の主面を含むインジウムリン基板であって、前記第1の主面の中心における表面粗さRa1、ならびに前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa2、Ra3、Ra4およびRa5の平均値m1は0.4nm以下であり、前記表面粗さRa1、Ra2、Ra3、Ra4およびRa5の標準偏差σ1は、前記平均値m1の10%以下であり、前記第2の主面の中心における表面粗さRa6、ならびに前記第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa7、Ra8、Ra9およびRa10の平均値m2は0.2nm以上3nm以下であり、前記表面粗さRa6、Ra7、Ra8、Ra9およびRa10の標準偏差σ2は、前記平均値m2の10%以下である、インジウムリン基板である。
 (2)前記インジウムリン基板は、最大径が150mm以上であることが好ましい。
 (3)本発明の一態様に係るインジウムリン基板の検査方法は、前記インジウムリン基板の主面の中心、および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所において、1μm四方の視野で、0.4nmのピッチで、原子間力顕微鏡を用いてインジウムリン基板の表面粗さを測定する工程を含む、インジウムリン基板の検査方法である。
 (4)本発明の一態様に係るインジウムリン基板の製造方法は、上記(1)または(2)に記載のインジウムリン基板の製造方法であって、第1の主面および第2の主面を含むインジウムリンウエハを準備する工程と、前記インジウムリンウエハの第1の主面および第2の主面を第1の研磨布を用いて両面研磨する工程と、前記両面研磨したインジウムリンウエハの第1の主面を第2の研磨布を用いて片面仕上げ研磨する工程と、前記片面仕上げ研磨したインジウムリンウエハを洗浄する工程とを備える、インジウムリン基板の製造方法である。
 上記態様によれば、基板の表裏面粗さが制御され、基板上に成長させるエピタキシャル膜の均一性を良好にし、該エピタキシャル膜を用いたエピタキシャルウエハのPL特性を向上させることのできるインジウムリン基板、ならびに、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法を提供することが可能となる。
本発明の一態様にかかるインジウムリン基板を示す斜視模式図である。 図1のインジウムリン基板をA-A線で切断した断面図である。 本発明の一態様にかかるインジウムリン基板を第1の主面側から見た平面図である。 本発明の一態様にかかるインジウムリン基板を第2の主面側から見た平面図である。 本発明の一態様にかかるインジウムリン基板の製造工程を示すフローチャートである。 (a)は両面研磨装置の概略図である。(b)はインジウムリンウエハを設置したウエハキャリアの概略平面図である。 片面研磨装置の概略図である。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、“-”(バー)を数字の上につけることになっているが、本明細書中では、数字の前に負の符号を付けている。
 本発明の一態様に係るインジウムリン基板は、(1)第1の主面および第2の主面を含むインジウムリン基板であって、前記第1の主面の中心における表面粗さRa1、ならびに前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa2、Ra3、Ra4およびRa5の平均値m1は0.4nm以下であり、前記表面粗さRa1、Ra2、Ra3、Ra4およびRa5の標準偏差σ1は、前記平均値m1の10%以下であり、前記第2の主面の中心における表面粗さRa6、ならびに前記第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa7、Ra8、Ra9およびRa10の平均値m2は0.2nm以上3nm以下であり、前記表面粗さRa6、Ra7、Ra8、Ra9およびRa10の標準偏差σ2は、前記平均値m2の10%以下である、インジウムリン基板である。ここで、前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所とは、前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所であって、オリエンテーションフラット方向(結晶の主面を(100)とした場合、[0-1-1]方向)を基準にして、90°の間隔で配置される4箇所を意味する。
 上記のインジウムリン基板は、第1の主面の表面粗さの平均値が小さく、第1の主面の全面にわたって表面粗さのばらつきが小さいため、基板の第1の主面の表面粗さが制御され、第1の主面上に成長させるエピタキシャル膜の均一性を良好にし、該エピタキシャル膜のPL特性を向上させることができる。
 上記のインジウムリン基板は、第2の主面の表面粗さの平均値が小さく、第1の主面の全面にわたって表面粗さのばらつきが小さいため、基板の第1の主面上にエピタキシャル膜を形成する工程において、基板を支持するサセプタと基板の第2の主面との接触状態が局所的に変わることを抑制できる。このため、当該接触状態の変化に伴って基板の温度分布が偏るといった問題の発生を抑制でき、結果的に膜質の優れたエピタキシャル膜を形成できる。
 (2)前記インジウムリン基板は、最大径が150mm以上であることが好ましい。
 上記(1)のインジウムリン基板は、第1の主面および第2の主面の表面粗さが、主面全体にわたって制御されているため、最大径が150mm以上の大口径基板であっても、基板表面に均一なエピタキシャル膜を形成できる。また、このようにすれば、大面積の基板を用いることで当該基板に形成できる半導体素子(チップ)の数を増加させることができる。この結果、半導体素子を形成する工程(デバイス工程)での製造コストを低減できるとともに、生産性を改善できる。
 本発明の一態様に係るインジウムリン基板の検査方法は、(3)前記インジウムリン基板の主面の中心、および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所において、1μm四方の視野で、0.4nmのピッチで、原子間力顕微鏡を用いてインジウムリン基板の表面粗さを測定する工程を含む、インジウムリン基板の検査方法である。
 原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて、0.4nmのピッチで表面粗さを測定することによって、原子オーダーでの凹凸を確実に検出できる。さらに、表面粗さを主面の中心および外縁部4箇所の合計5か所において測定することにより、基板主面の全体における表面粗さのばらつきを算出できる。これにより、主面上にエピタキシャル膜を均一に形成できる基板を選別できる。また、既存のAFMを用いることによって、選別のコストを低減できる。
 本発明の一態様に係るインジウムリン基板の製造方法は、(4)上記(1)または(2)に記載のインジウムリン基板の製造方法であって、第1の主面および第2の主面を含むインジウムリンウエハを準備する工程と、前記インジウムリンウエハの第1の主面および第2の主面を第1の研磨布を用いて両面研磨する工程と、前記両面研磨したインジウムリンウエハの第1の主面を第2の研磨布を用いて片面仕上げ研磨する工程と、前記片面仕上げ研磨したインジウムリンウエハを洗浄する工程とを備える、インジウムリン基板の製造方法である。
 これによると、基板の第1の主面と第2の主面の表面粗さの平均値および表面粗さのばらつきを、所望の範囲に制御することができる。
 [本発明の実施形態の詳細]
 本発明の実施形態にかかるインジウムリン基板、インジウムリン基板の検査方法およびインジウムリン基板の製造方法の具体例を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 <実施の形態1>
 本発明の一実施の形態におけるインジウムリン基板について、図1~図4を用いて説明する。図1は、本発明の一態様にかかるインジウムリン基板10を示す斜視模式図である。図2は、図1のインジウムリン基板10をA-A線で切断した断面図である。図3は、インジウムリン基板10を第1の主面11側から見た平面図である。図4は、インジウムリン基板10を第2の主面12側から見た平面図である。
 インジウムリン基板(以下、InP基板とも記す)10は、インジウムリン(InP)の単結晶からなる。図1に示されるように、InP基板10は、平面視において略円形である。図2に示されるように、InP基板10は、第1の主面11と、第2の主面12とを含み、第1の主面11と第2の主面12とは略平行である。InP基板を用いてエピタキシャル膜を成長させる際には、第1の主面11上にエピタキシャル膜を成長させる。この際、第2の主面12は、成膜装置のサセプタに接して載置される。
 前記第1の主面11の中心における表面粗さRa1、ならびに前記第1の主面11の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa2、Ra3、Ra4およびRa5の平均値m1は0.4nm以下であり、前記表面粗さRa1、Ra2、Ra3、Ra4およびRa5の標準偏差σ1は、前記平均値m1の10%以下である。
 ここで、表面粗さは、JIS B 0601に規定される算術平均粗さRaをいい、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの距離(偏差の絶対値)を合計し平均した値と定義される。
 第1の主面11の中心における表面粗さRa1とは、以下の方法で測定した値である。第1の主面11から、図3の四角で囲まれた1で示される領域のように、第1の主面11の中心点を含むように、1μm四方の視野を抜き取る。該抜き取り範囲を0.4nmのピッチで、原子間力顕微鏡を用いて表面粗さRa1を測定する。
 第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所とは、図3の四角で囲まれた2~5で示される領域のように、第1の主面の外縁部上で該外縁部を4等分する場所から、第1の主面の中心に向かって、5mmの距離(図3中、d1で示される)内側に位置する4つの領域である。前記4箇所における表面粗さRa2、Ra3、Ra4およびRa5とは、以下の方法で測定した値である。第1の主面11から、前記4箇所を含むように、1μm四方の視野を抜き取る。該抜き取り範囲を0.4nmのピッチで、原子間力顕微鏡を用いて表面粗さRa2、Ra3、Ra4およびRa5をそれぞれ測定する。
 基板の第1の主面の5箇所における表面粗さRa1、Ra2、Ra3、Ra4およびRa5の平均値m1は、上述のように0.4nm以下としているが、好ましくは0.1nm以上0.3nm以下である。表面粗さの平均値m1を0.4nm以下にすることで、基板の第1の主面上に良好なエピタキシャル膜を形成することができる。
 基板の第1の主面の5か所における表面粗さR1、R2、R3、R4およびR5の標準偏差σ1は前記平均値m1の10%以下としているが、好ましくは8%以下、より好ましくは6%以下である。このように標準偏差σを前記平均値m1の10%以下にすることで、基板の第1の主面の表面粗さが制御され、基板表面に均一なエピタキシャル膜を形成できる。
 第2の主面12は、前記第2の主面12の中心における表面粗さRa6、ならびに前記第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa7、Ra8、Ra9およびRa10の平均値m2は0.2nm以上3nm以下であり、前記表面粗さRa6、Ra7、Ra8、Ra9およびRa10の標準偏差σ2は、前記平均値m2の10%以下であることが好ましい。このように、第1の主面11に加えて第2の主面12についても表面粗さが管理されたInP基板10においては、第1の主面11にエピタキシャル膜を成長させる際に、第2の主面12と、InP基板10が搭載された成膜装置のサセプタとの間の接触状態を第2の主面12全体で均一化することができる。このため、局所的な接触状態のばらつきが発生することに起因するInP基板10での温度分布の発生を抑制できる。このため、形成されるエピタキシャル膜の結晶性や不純物濃度といった膜質の均一性を向上させることができる。この結果、当該エピタキシャル膜の歩留りを向上させることができる。
 第2の主面12の中心における表面粗さRa6とは、以下の方法で測定した値である。第2の主面12から、図4の四角で囲まれた6で示される領域のように、第2の主面12の中心点を含むように、1μm四方の視野を抜き取る。該抜き取り範囲を0.4nmのピッチで、原子間力顕微鏡を用いて表面粗さRa6を測定する。
 第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所とは、図4の四角で囲まれた7~10で示される領域のように、第2の主面の外延部上で該外縁部を4等分する場所から、第2の主面の中心に向かって、5mmの距離(図4中、d2で示される)内側に位置する4つの領域である。前記4箇所における表面粗さRa7、Ra8、Ra9およびRa10とは、以下の方法で測定した値である。第2の主面12から、前記4箇所を含むように、1μm四方の視野を抜き取る。該抜き取り範囲を0.4nmのピッチで、原子間力顕微鏡を用いて表面粗さRa7、Ra8、Ra9およびRa10をそれぞれ測定する。
 基板の第2の主面の5箇所における表面粗さRa6、Ra7、Ra8、Ra9およびRa10の平均値m2は0.2nm以上3nm以下であり、0.4nm以上3nm以下が好ましく、0.5nm以上2nm以下がさらに好ましい。なお、第2の主面における表面粗さの平均値m2が3nmを超えると、エピタキシャル膜の形成工程での、サセプタと基板の第2の主面との接触状態が局所的に変わる(ばらつく)ことから基板の温度分布が不均一となり、結果的に得られるエピタキシャル膜の品質が低下する恐れがある。また、第2の主面の表面粗さの平均値m2を0.2nm未満にするためには高度な表面処理が必要であり、基板の製造コストが増大するとともに基板の製造工程における生産性が低下する。たとえば、基板裏面の表面粗さの平均値m2を0.2nm未満にするためには、中性のダイヤモンドスラリーを用いた通常の研磨では難しく、コロイダルシリカとケミカル成分とを用いたCMP処理などが必要になる。
 第2の主面の表面粗さの標準偏差σ2は、前記平均値m2の10%以下であり、8%以下が好ましく、6%以下がさらに好ましい。このようにすれば、第2の主面とサセプタとの接触状態を第2の主面全体でほぼ均一にすることができ、結果的に第1の主面上に均一なエピタキシャル膜を形成できる。
 InP基板10の直径Dは、150mm以上であることが好ましく、150mm以上300mm以下がさらに好ましい。InP基板10は、第1の主面および第2の主面の表面粗さが、主面全体にわたって制御されているため、最大径が150mm以上の大口径基板であっても、基板表面に均一なエピタキシャル成長層を形成できる。また、このようにすれば、大面積の基板を用いることで当該基板に形成できる半導体素子(チップ)の数を増加させることができる。この結果、半導体素子を形成する工程(デバイス工程)での製造コストを低減できるとともに、生産性を改善できる。
 InP基板10の厚みは500μm以上800μm以下が好ましい。これによると、InP基板が比較的大型であっても、表裏面粗さが制御され、エピタキシャル層の形成工程や半導体素子の製造工程における歩留まりを低減できる。
 <実施の形態2>
 本発明の一実施の形態におけるインジウムリン基板の検査方法について、図3および図4を用いて説明する。
 インジウムリン基板の検査方法は、前記インジウムリン基板の主面の中心、および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所において、1μm四方の視野で、0.4nmのピッチで、原子間力顕微鏡を用いてインジウムリン基板の表面粗さを測定する工程を含む。
 詳細には、まず、インジウムリン基板10の主面の中心、および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所において、1μm四方の視野を抜き取る。ここで、InP基板10の主面とは、第1の主面11および第2の主面12のいずれでもよい。主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所とは、図3の四角で囲まれた2~5で示される領域や、図4の四角で囲まれた7~10で示される領域のように、主面の外延部上で該外縁部を4等分する場所から、主面の中心に向かって、5mmの距離(図3のd1または図4のd2で示される距離)の内側に位置する領域である。なお、前記4箇所は、前記第1の主面または前記第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所であって、オリエンテーションフラット(結晶の(001)方位)を基準にして、90°の間隔で配置される4箇所である。インジウムリン基板がノッチ付ウエハの場合は、前記4箇所は以下の通り位置決めする。ノッチから、ノッチと基板の中心とを結ぶ線を、基板の中心を回転軸として45°回転した線上で、第1の主面または前記第2の主面の外縁部から5mm内側の位置を基準A点とした。基準A点の位置から、基準A点と基板の中心とを結ぶ線を、基板の中心を回転軸として、90°間隔で回転させた線上で、第1の主面の外縁部から5mm内側の位置をB点、C点、D点とした。基準A点と、B点、C点、D点を前記4箇所とする。測定する視野を合計5箇所とすることによって、InP基板の主面の全面についての表面粗さを測定できるので、InP基板の主面の全面について検査ができる。また、測定する視野を5箇所とすることによって、検査を迅速に行うことができる。視野は1μm四方である。
 次に、上記視野において、0.4nmのピッチで、原子間力顕微鏡(AFM)(例えば、Veeco社製の「Dimension3000」)や走査型プローブ顕微鏡(例えば、Bruker AXS社製の「Dimension ICON」)を用いてInP基板の表面粗さを測定する。
 以上説明したように、実施の形態2におけるInP基板の検査方法によれば、原子オーダーの凹凸を確実に検出できる。また、InP基板の表面について原子オーダーの凹凸を既存の原子間力顕微鏡(AFM)や、走査型プローブ顕微鏡(SPM)を用いて測定できるので、コストがかからない。この方法で測定した原子オーダーの凹凸と、エピタキシャル成長を実施したのち、SIMSでエピタキシャル膜とInP基板との界面の不純物量を評価したところ、原子オーダーでの凹凸と界面の不純物とに関係があることが判明した。この方法によって、コストを低減するとともに、InP基板に成長したエピタキシャル膜と基板との界面の不純物量を減少できる。
 <実施の形態3>
 実施の形態1に記載されたインジウムリン基板の製造方法について、図5を用いて説明する。図5に示されるように、インジウムリン基板の製造方法は、第1の主面および第2の主面を含むインジウムリンウエハを準備する工程(S10)と、前記インジウムリンウエハの第1の主面および第2の主面を第1の研磨布を用いて両面研磨する工程(S20)と、前記両面研磨したインジウムリンウエハの第1の主面を第2の研磨布を用いて片面仕上げ研磨する工程(S30)と、前記片面仕上げ研磨したインジウムリンウエハを洗浄する工程(S40)とを備える。
 インジウムリンウエハ(以下、InPウエハともいう)を準備する工程では(S10)、まず、InPインゴットを準備する。このインゴットは、InPからなっていてもよく、Fe、S、Sn、およびZnからなる群より選ばれる少なくとも一種の物質よりなるドーパントを含んでいてもよい。
 次に、準備したインゴットからInPウエハをスライス加工する。スライス加工する方法は特に限定されない。このInPウエハは、スライス加工によりダメージ層を含む。
 次に、スライス加工したInPウエハの第1の主面および第2の主面を第1の研磨布を用いて両面研磨する(S20)。両面研磨は、たとえば、図6(a)に示す両面研磨装置60を用いて行うことができる。両面研磨装置60は、回転運動する上定盤61と、上定盤61と回転軸を共有して回転運動する下定盤62とを含む。上定盤61の下面および下定盤62の上面には、それぞれ第1の研磨布63が装着されている。また、両面研磨装置60は、上定盤61と下定盤62とによって挟まれるように設けられ、定盤と回転軸を共有して回転運動する、InPウエハ66を保持するウエハキャリヤ65を含む。上定盤61には、外部からInPウエハ66の研磨面に研磨液を供給するための研磨液注入孔64が形成されている。両面研磨工程では、InPウエハ66は、第1の主面が上定盤61に対向し、第2の主面が下定盤62に対向するように、ウエハキャリヤ65に保持される。上定盤61のInPウエハ66に対する相対速度は、下定盤62のInPウエハ66に対する相対速度と同じであることが好ましい。
 図6(b)は、両面研磨装置のウエハキャリア65にInPウエハ66を設置した状態を示す概略平面図である。図6(b)に示されるように、InPウエハ66は、ウエハキャリア65の保持孔の内部に設置されている。InPウエハ66の厚みがウエハキャリア65の厚みよりも大きくなるように、ウエハキャリア65は形成されている。
 上定盤61および下定盤62のサイズは径750mm以上であると、研磨後のInPウエハ表面の平坦度が向上するため好ましい。第1の研磨布としては、たとえば、不織布の基材にポリウレタンの樹脂を含浸させたものを用いることが好ましい。なお、第1の研磨布は、InPウエハを研磨する前に、あらかじめダイヤモンドペレットを用いてドレッシングをしておくことが好ましい。これにより、第1の研磨布の表面の平坦度と表面粗さが均一になる。よって、第1の研磨布を用いて研磨したInP基板も、表面粗さが均一になる。
 両面研磨の条件は、たとえば、取り代の7/10までは通常の条件で両面研磨を実施した後、取り代の残りの3/10は、回転数を通常の50%に落とすことで、研磨速度を1/3にして両面研磨することができる。なお、通常の両面研磨条件とは、例えば、上定盤5~10rpm(正転方向)、下定盤20~30rpm(正転方向)、インターナルギア5~10rpm(正転方向)、サンギア10~15rpm(正転方向)の回転数で各定盤および各ギアを回転させ、面圧80~150g/cmの荷重を負荷し、研磨材(例えば、(株)フジミインコーポレーテッド製の「INSEC IPP」)を300ml/minの流量で流しながら研磨する条件である。これによると、基板の表面粗さを効果的に低減することができる。よって、基板の表裏面粗さが制御される。両面研磨は、研磨液および界面活性剤を一定流量で流しながら行うことが好ましい。
 両面研磨を行った後のInPウエハの第1の主面および第2の主面の表面粗さの平均値は、それぞれ1.0nm以下であることが好ましい。なお、表面粗さの平均値とは、InPウエハの主面の中心および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さの平均値である。なお、これらの表面粗さの標準偏差は、0.1nm以下が好ましい。これによると、後の工程において、InP基板の表面粗さおよびばらつきを所望の範囲に調整することが容易である。
 次に、両面研磨したウエハの第1の主面を第2の研磨布を用いて片面仕上げ研磨する(S30)。片面仕上げ研磨は、例えば、図7に示す片面研磨装置70を用いて行うことができる。具体的には、まず、円板状の陶器製の研磨プレート72の表面に、ワックス73を用いて、InPウエハ74を複数枚貼り付ける。または、陶器製の円板状の研磨プレート72の表面にウエハ吸着用のバッキングフィルムを貼り付け、その上に、水の表面張力で、InPウエハ74を複数枚貼り付ける。径が600mm以上の円板状の研磨定盤77上に、第2の研磨布76を貼り付ける。研磨定盤77は回転軸78によって回転可能に支持されている。研磨プレート72は研磨ヘッド720から垂下されたシャフト722によって回転可能に保持されている。研磨定盤77の上方には研磨液供給管79があり、そこから研磨液75が第2の研磨布76の上に与えられる。研磨定盤77と研磨プレート72とを順方向に回転させることにより、InPウエハ74を研磨する。
 第2の研磨布76としては、不織布タイプの研磨布を用いることが好ましい。研磨液75としては、公知のInP研磨用研磨剤を用いることができる。
 片面仕上げ研磨の条件は、たとえば、取り代の9/10までは通常の条件で片面研磨を実施した後、取り代の残りの1/10は、回転数を通常の50%に落とすことで、研磨速度を1/2にして片面研磨することができる。なお、通常の片面研磨条件とは、下定盤50~80rpm(正転方向)、上定盤50~80rpm(正転方向)の回転数で各定盤を回転させ、面圧40~100g/cmの荷重を負荷し、研磨材(例えば、(株)フジミインコーポレーテッド製の「INSEC SP」)を140ml/minの流量で流しながら研磨する条件である。これによると、基板の表面粗さを効果的に低減することができる。よって、基板の表裏面粗さが制御される。片面仕上げ研磨は、研磨液および界面活性剤を一定流量で流しながら行うことが好ましい。
 片面仕上げ研磨を行った後のInPウエハの第1の主面の表面粗さの平均値は、0.4nm以下であることが好ましい。なお、表面粗さの平均値とは、InPウエハの主面の中心および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さの平均値である。なお、これらの表面粗さの標準偏差は、0.05nm以下が好ましい。これによると、後の工程において、InP基板の表面粗さおよびばらつきを所望の範囲に調整することが容易である。
 次に、片面仕上げ研磨したインジウムリンウエハを洗浄する(S40)。洗浄液には、希塩酸、希硫酸、希硝酸、および有機酸の少なくとも1つからなる酸性溶液を用いることができる。洗浄工程では、酸性溶液を用いて、InPウエハの主面の原子オーダーでの凹凸を低減して、InP基板の第1の主面の表面粗さの平均値m1を0.4nm以下にできる。
 洗浄工程(S40)で用いる酸性溶液は、希塩酸、希硫酸、希硝酸、および有機酸の少なくとも1つである。有機酸としては、たとえば蟻酸、酢酸、蓚酸、乳酸、りんご酸、およびクエン酸などを用いることが好ましい。酸性溶液のpHは、0~4であることが好ましく、1~3であることがより好ましい。希塩酸の濃度は0.001%~0.5%、希硫酸の濃度は0.001%~0.5%、希硝酸の濃度は0.001%~0.5%、有機酸の濃度は0.1%~1%であることが好ましい。酸性溶液をこの範囲内とすることによって、InP基板の表面粗さをより低減できる。
 洗浄工程(S40)は、酸性溶液に酸化剤を添加して行なわれることが好ましい。酸化剤は、特に限定されず、たとえば過酸化水素水などを用いることができる。酸化剤を添加した酸性溶液を用いてInPウエハの表面を洗浄することにより、洗浄工程の速度を上げることができる。なお、酸化剤の濃度は、特に限定されないが、たとえば0.5ppm以上10ppm以下が好ましく、1ppm以上5ppm以下がより好ましい。酸化剤の濃度を0.5ppm以上とすることによって、酸性溶液の洗浄能力の低減を抑制できる。酸化剤の濃度を10ppm以下とすることによって、InPウエハ表面の酸化物、有機物、または微粒子等と反応することを防止できる。
 洗浄工程(S40)で用いられる酸性溶液の温度は特に限定されないが、室温とすることが好ましい。室温とすることによって、InPウエハの表面処理を行なう設備を簡略化できる。
 また、洗浄時間は特に限定されないが、たとえば10秒以上300秒以下が好ましい。この範囲内で洗浄工程(S40)を実施すると、酸性溶液の費用を削減でき、生産性の向上を図ることができる。なお、これらの洗浄後には、酸あるいはアルカリ液などの洗浄液を除去するため、純水リンス工程が実施されてもよい。さらに、最終の洗浄工程後の純水リンス工程後には、遠心乾燥等でInPウエハの水分が除去される。この純水リンス工程時においては、900~2000kHzの超音波を印加することで、微粒子の付着を防止できる。また、純水リンス時には、InPウエハの表面の酸化防止のために、酸素濃度が100ppb以下に脱気された純水が用いられる。以上の工程により、InPウエハからInP基板が作製される。
 <実施の形態4>
 本実施の形態におけるエピタキシャルウエハについて説明する。エピタキシャルウエハは、実施の形態1におけるInP基板と、InP基板の第1の主面上に形成されたエピタキシャル膜とを備えている。エピタキシャル膜は、1層であってもよく、複数層であってもよい。
 InP基板とエピタキシャル膜との界面において、たとえば、Si濃度は1.8×1017atoms/cm以下であり、S濃度は2×1013atoms/cm以下である。
 続いて、本実施の形態におけるエピタキシャルウエハの製造方法について説明する。まず、実施の形態3にしたがって、InP基板を製造する。
 次に、InP基板の表面上にエピタキシャル膜を形成する。エピタキシャル膜を形成する方法は特に限定されず、OMVPE(Organo Metallic Vapor Phase Epitaxy:有機金属気相成長)法、HVPE(Hydride Vapor Phase Epitaxy:ハイドライド気相成長)法、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法などを採用することができる。
 なお、所定の構造のエピタキシャル膜をInP基板の第1の主面上に形成した後にInP基板を個々の素子に分割するために、たとえばダイシングなどを行なう分割工程を行ってもよい。
 以上の工程を実施することにより、エピタキシャルウエハを製造することができる。
 このように製造されたエピタキシャルウエハは、たとえばリードフレームなどに搭載される。そして、ワイヤボンディング工程などを実施することにより、上記素子を用いた半導体装置を得ることができる。
 本実施の形態におけるエピタキシャルウエハの製造方法は、実施の形態1のInP基板10を用いている。このため、PL特性の悪化が抑制されたエピタキシャルウエハを製造することができる。
 このようなエピタキシャルウエハにおいて、InP基板がFe、S、Sn、およびZnからなる群より選ばれた少なくとも一種の物質よりなるドーパントを含んでいる場合には、次の効果を有する。
 ドーパントがFeの場合、エピタキシャルウエハは、たとえば1×1016atoms/cc以上1×1017atoms/ccのドーパント濃度を有し、電気特性は半絶縁性である。この場合、InP基板とエピタキシャル層との界面において、Si、Sの濃度が高いと電気特性異常(リーク)が発生する。しかし、本実施の形態では、InP基板とエピタキシャル層との界面において、Si、Sの濃度を低減できるため、エピタキシャルウエハは、HEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)、HBT(Heterojunction Bipolar Transistor:ヘテロ接合バイポーラトランジスタ)などに好適に用いられる。
 ドーパントがSの場合、エピタキシャルウエハは、たとえば0.5×1018atoms/cc以上8×1018atoms/ccのドーパント濃度を有し、電気特性はn型である。この場合、InP基板とエピタキシャル膜との界面において、O、Cの濃度が高いと電気特性異常および発光強度低下が発生する。しかし、本実施の形態では、InP基板とエピタキシャル層との界面において、O、Cの濃度を低減できるため、エピタキシャルウエハは、レーザなどに好適に用いられる。また、Hazeを低減できる場合には、さらにエピタキシャルウエハの発光強度を向上することができる。
 ドーパントがSnの場合、エピタキシャルウエハは、たとえば1×1018atoms/cc以上6×1018atoms/ccのドーパント濃度を有し、電気特性はn型である。この場合、InP基板とエピタキシャル膜との界面において、O、Cの濃度が高いと電気特性異常および発光強度低下が発生する。しかし、本実施の形態では、InP基板とエピタキシャル層との界面において、O、Cの濃度を低減できるため、エピタキシャルウエハは、レーザなどに好適に用いられる。また、Hazeを低減できる場合には、さらにエピタキシャルウエハの発光強度を向上することができる。
 ドーパントがZnの場合、エピタキシャルウエハは、たとえば3×1018atoms/cc以上8×1018atoms/ccのドーパント濃度を有し、電気特性はp型である。この場合、InP基板10とエピタキシャル膜との界面において、Si、Sの濃度が高いと電気特性異常および発光強度低下が発生する。しかし、本実施の形態では、InP基板とエピタキシャル層との界面において、Si、Sの濃度を低減できるため、エピタキシャルウエハは、レーザなどに好適に用いられる。また、Hazeを低減できる場合には、さらにエピタキシャルウエハの発光強度を向上することができる。
 本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。
 <製造例A~L>
 (InP基板の製造)
 まず、InP単結晶を垂直ブリッジマン法(Vertical Bridgeman法、VB法)により[100]方向に結晶成長させて、InPインゴット得た。次に、InPインゴットをスライス加工して、主面が(100)から[110]方向に2°オフしたInPウエハを得た。InPウエハは、直径が153mm、厚み780μmの円盤状であった。
 次に、両面研磨装置(定盤サイズ750mm)を用いてInPウエハの主面の両面を研磨した。研磨布には、不織布の基材にポリウレタンの樹脂を含浸させたもの(ニッタハース社製のSubaIV)を用いた。なお、研磨布はあらかじめダイヤモンドペレット((株)フジミインコーポレーテッド社製のPadless200H)でドレッシングされたものである。表1に示される「(a)両面研磨条件」の具体的な内容は以下の通りである。
 標準:上定盤8rpm(正転方向)、下定盤24rpm(正転方向)、インターナルギア7rpm(正転方向)、サンギア11rpm(正転方向)の回転数で各定盤、各ギアを回転させ、面圧100g/cmの荷重を負荷し、研磨材(例えば、(株)フジミインコーポレーテッド製の「INSEC IPP」)を300ml/minの流量で流しながら研磨する。
 変更:両面研磨の取り代の7/10までは、上記の標準の条件で両面研磨を実施する。その後、回転数を通常の50%に落とすことで、研磨速度を1/3にして取り代の残りの3/10を両面研磨する。
 表1に示される「(a-1)界面活性剤」の具体的な内容は以下の通りである。
 有:上記の(a)両面研磨条件において、取り代の残りの3/10の厚みを研磨する際に、研磨液とともに、界面活性剤(和光純薬社製のNCW1001)を一定の流量で流しながら両面研磨する。
 無:上記の(a)両面研磨条件において、界面活性剤を使用しない。
 表1に示される「(a-2)取り代(μm)」とは、取り代の厚みを示す。
 次に、両面研磨後のInPウエハの片面(第1の主面に該当)を、片面研磨装置(定盤サイズ830mm)を用いて研磨した。研磨布には、不織布(千代田(株)社製のCIEGAL PS8410)を用い、研磨材には仕上げ研磨材((株)フジミインコーポレーテッド社製のINSEC SP)を用いた。表1に示される「(b)片面仕上げ研磨条件」の具体的な内容は以下の通りである。
 標準:下定盤60rpm(正転方向)、上定盤60rpm(正転方向)の回転数で各定盤を回転させ、面圧80g/cmの荷重を負荷し、研磨材(例えば、(株)フジミインコーポレーテッド製の「INSEC SP」)を140ml/minの流量で流しながら研磨する。片面仕上げ研磨の取り代は約1μmである。
 変更:片面仕上げ研磨の取り代の9/10までは、上記の標準の条件で片面研磨を実施する。その後、回転数を通常の50%に落とすことで、研磨速度を1/2にして取り代の残りの1/10を片面研磨する。
 表1に示される「(b-1)界面活性剤」の具体的な内容は以下の通りである。
 有:上記の(b)片面仕上げ研磨条件において、取り代の残りの1/10の厚みを研磨する際に、研磨液とともに界面活性剤(和光純薬社製のNCW1001)を一定の流量で流しながら両面研磨する。
 無:上記の(b)片面仕上げ研磨条件において、界面活性剤を使用しない。
 次に、0.1%のフッ化水素でInPウエハを洗浄した後、溶存酸素量50ppbの超純水でリンスを行い、IPA蒸気乾燥機にて乾燥を実施した。これにより、製造例A~LのInP基板を得た。
 (InP基板の測定)
 得られたInP基板について、図3および図4に示すように、基板中心および基板の外縁から5mm内側の4点において、0.2μm四方の視野で、それぞれ表面粗さRa1~Ra10を測定した。具体的には、InP基板の第1の主面および第2の主面について、AFM装置(Veeco社製の「Dimension3000」)で、各箇所について、0.40nmのピッチで、1列当たり512サンプルで512列について表面粗さを測定した。この時、タッピングモードを用いた。表面粗さの測定値から、表面粗さの平均値m1、m2、標準偏差σ1、σ2、σ1/m1、σ2/m2を算出した。結果を表1に示す。
 (エピタキシャル膜の形成)
 得られたInP基板の第1の主面上に、OMVPE法により300nmの厚みを有するInP膜を形成した。このInP膜上に、OMVPE法により5nmの厚みを有するInGaAs膜を形成した。このInGaAs膜上に、OMVPE法により300nmの厚みを有するInP膜を形成した。これにより、InP基板上にエピタキシャル膜が形成されたエピタキシャルウエハを製造した。エピタキシャル膜形成時のInP基板温度は580℃であった。
 <評価>
 製造例A~製造例Lのエピタキシャルウエハについて、InGaAs膜のPL強度を測定した。PL測定は、励起光波長532nmの半導体レーザを用い、照射ビーム径100μm、測定温度25℃、励起光強度300mWの条件で行い、測定波長範囲はInGaAs層からの発光波長に相当する1250nm~1500nmであった。又、PL強度は、発光波長のピーク強度とした。測定機は、ナノメトリクス社製のPLM150を用いた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <評価結果>
 製造例A~C、E~Gは、第1の主面は、表面粗さの平均値m1が0.4nm以下であり、表面粗さの標準偏差σ1は、前記平均値m1の10%以下であり、第2の主面は、表面粗さの平均値m2が0.2nm以上3nm以下であり、表面粗さの標準偏差σ2は、前記平均値m2の10%以下である。これらの製造例は、基板の表裏面粗さを面内で制御することで、エピタキシャル成長時の基板温度が面内で均一になり、エピタキシャル成長膜のPL特性が優れていた。
 製造例D、H、Lは、第2の主面の表面粗さの平均値m2が4.4nmを超えており、基板の表裏面粗さの面内での制御が不十分で、エピタキシャル成長時の基板温度が面内では十分に均一にならず、エピタキシャル成長膜のPL特性が劣っていた。
 製造例I、J、Kは、第1の主面の表面粗さの平均値m1が0.4nmを超えており、エピタキシャル成長膜のPL特性が劣っていた。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明のインジウムリン基板は、半導体レーザ、LED、光束デバイス等に用いると有益である。
 10 インジウムリン基板、11 第1の主面、12 第2の主面、60 両面研磨装置、61 上定盤、62 下定盤、63 研磨布、64 研磨液注入孔、70 片面研磨装置、74 InPウエハ、75 研磨液、76 第2の研磨布、77 研磨定盤、78 回転軸、79 研磨液供給管、720 研磨ヘッド、722 シャフト。

Claims (4)

  1.  第1の主面および第2の主面を含むインジウムリン基板であって、
     前記第1の主面の中心における表面粗さRa1、ならびに前記第1の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa2、Ra3、Ra4およびRa5の平均値m1は0.4nm以下であり、
     前記表面粗さRa1、Ra2、Ra3、Ra4およびRa5の標準偏差σ1は、前記平均値m1の10%以下であり、
     前記第2の主面の中心における表面粗さRa6、ならびに前記第2の主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所における表面粗さRa7、Ra8、Ra9およびRa10の平均値m2は0.2nm以上3nm以下であり、
     前記表面粗さRa6、Ra7、Ra8、Ra9およびRa10の標準偏差σ2は、前記平均値m2の10%以下である、
     インジウムリン基板。
  2.  前記インジウムリン基板は、最大径が150mm以上である、
     請求項1に記載のインジウムリン基板。
  3.  インジウムリン基板の検査方法であって、
     前記インジウムリン基板の主面の中心、および、主面の外縁部から5mm内側に前記外縁部に沿って等間隔に配置される4箇所において、1μm四方の視野で、0.4nmのピッチで、原子間力顕微鏡を用いてインジウムリン基板の表面粗さを測定する工程を含む、
     インジウムリン基板の検査方法。
  4.  請求項1または請求項2に記載のインジウムリン基板の製造方法であって、
     第1の主面および第2の主面を含むインジウムリンウエハを準備する工程と、
     前記インジウムリンウエハの第1の主面および第2の主面を第1の研磨布を用いて両面研磨する工程と、
     前記両面研磨したインジウムリンウエハの第1の主面を第2の研磨布を用いて片面仕上げ研磨する工程と、
     前記片面仕上げ研磨したインジウムリンウエハを洗浄する工程とを備える、
     インジウムリン基板の製造方法。
PCT/JP2015/084273 2015-02-09 2015-12-07 インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法 WO2016129172A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15882046.4A EP3258481A4 (en) 2015-02-09 2015-12-07 Indium phosphorus substrate, indium phosphorus substrate inspection method, and indium phosphorus substrate manufacturing method
CN201580073159.9A CN107112201B (zh) 2015-02-09 2015-12-07 磷化铟衬底、检查磷化铟衬底的方法和制造磷化铟衬底的方法
US15/541,754 US10473445B2 (en) 2015-02-09 2015-12-07 Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate
CN202010677512.7A CN111952150B (zh) 2015-02-09 2015-12-07 磷化铟衬底和制造磷化铟衬底的方法
JP2016574632A JP6296177B2 (ja) 2015-02-09 2015-12-07 インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法
EP22213440.5A EP4174913A1 (en) 2015-02-09 2015-12-07 Indium phosphorus substrate, indium phosphorus substrate inspection method, and indium phosphorus substrate manufacturing method
US16/540,674 US10663277B2 (en) 2015-02-09 2019-08-14 Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023050 2015-02-09
JP2015-023050 2015-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/541,754 A-371-Of-International US10473445B2 (en) 2015-02-09 2015-12-07 Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate
US16/540,674 Continuation US10663277B2 (en) 2015-02-09 2019-08-14 Indium phosphide substrate, method of inspecting indium phosphide substrate, and method of producing indium phosphide substrate

Publications (1)

Publication Number Publication Date
WO2016129172A1 true WO2016129172A1 (ja) 2016-08-18

Family

ID=56615152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084273 WO2016129172A1 (ja) 2015-02-09 2015-12-07 インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法

Country Status (6)

Country Link
US (2) US10473445B2 (ja)
EP (2) EP3258481A4 (ja)
JP (3) JP6296177B2 (ja)
CN (2) CN107112201B (ja)
TW (2) TWI701709B (ja)
WO (1) WO2016129172A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198718A1 (ja) * 2017-04-28 2018-11-01 Jx金属株式会社 半導体ウエハ及び半導体ウエハの研磨方法
WO2019019859A1 (en) * 2017-07-25 2019-01-31 Beijing Tongmei Xtal Technology Co., Ltd. INDIUM PHOSPHIDE WAFER HAVING HOLLOWS ON THE REAR ROD, METHOD AND ETCHING SOLUTION FOR MANUFACTURING THE SAME
CN114252397A (zh) * 2021-12-27 2022-03-29 中国电子科技集团公司第十三研究所 一种增透膜剩余反射率测试陪片
WO2023139759A1 (ja) * 2022-01-21 2023-07-27 住友電気工業株式会社 Iii-v族化合物半導体単結晶基板およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112201B (zh) * 2015-02-09 2020-07-28 住友电气工业株式会社 磷化铟衬底、检查磷化铟衬底的方法和制造磷化铟衬底的方法
JP6521198B1 (ja) * 2018-02-23 2019-05-29 住友電気工業株式会社 リン化インジウム結晶基板
JP6701418B1 (ja) * 2019-07-26 2020-05-27 Jx金属株式会社 リン化インジウム基板、及びリン化インジウム基板の製造方法
JP6761917B1 (ja) * 2019-11-29 2020-09-30 Jx金属株式会社 リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
TWI831435B (zh) * 2022-10-24 2024-02-01 台亞半導體股份有限公司 基板研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182126A (ja) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd 化合物半導体基板の加工方法および化合物半導体基板
JP2009182135A (ja) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd 化合物半導体基板の製造方法および化合物半導体基板
JP2013229584A (ja) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd 駆動回路、駆動回路を備える信号処理装置、信号処理装置の作製方法および表示装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207976B2 (ja) 2006-05-17 2009-01-14 住友電気工業株式会社 化合物半導体基板の表面処理方法、および化合物半導体結晶の製造方法
CA1018642A (en) * 1973-12-10 1977-10-04 Klaus J. Bachmann Inp led's doped with cd sn p2
JPS6376413A (ja) 1986-09-19 1988-04-06 Nippon Mining Co Ltd 半導体ウエハ及びその製造方法
JP3456254B2 (ja) 1994-05-31 2003-10-14 昭和電工株式会社 ホール素子用エピタキシャルウェーハ及びその製造方法
JP3306578B2 (ja) * 1996-10-24 2002-07-24 昭和電工株式会社 化合物半導体エピタキシャルウエハ
JPH11207607A (ja) * 1998-01-22 1999-08-03 Japan Energy Corp 研磨方法及びInP基板
JP2001102337A (ja) 1999-09-28 2001-04-13 Hitachi Cable Ltd 半導体結晶ウエハの研磨方法及び半導体結晶ウエハ
US6492279B1 (en) * 2000-01-27 2002-12-10 Micron Technology, Inc. Plasma etching methods
JP3624809B2 (ja) * 2000-02-29 2005-03-02 昭和電工株式会社 洗浄剤組成物、洗浄方法及びその用途
JP2002151448A (ja) * 2000-11-13 2002-05-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤用cmpパッド及び基板の研磨方法
JP2002255692A (ja) * 2001-03-02 2002-09-11 Nippon Steel Corp 炭化珪素エピタキシャル基板およびその製造方法
JP2003218033A (ja) 2002-01-21 2003-07-31 Nikko Materials Co Ltd エピタキシャル成長方法
JP2003257899A (ja) 2002-03-04 2003-09-12 Sumitomo Electric Ind Ltd ウエハー加工方法
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
CN1207756C (zh) * 2003-06-27 2005-06-22 中国科学院上海光学精密机械研究所 ZnAl2O4/α-Al2O3复合衬底材料的制备方法
JP4359770B2 (ja) * 2003-12-26 2009-11-04 日立電線株式会社 Iii−v族窒化物系半導体基板及びその製造ロット
JP2006173425A (ja) * 2004-12-17 2006-06-29 Hitachi Cable Ltd 半導体結晶ウェハ
JP4577138B2 (ja) * 2005-08-01 2010-11-10 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置
JP2007103463A (ja) 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd ポリシングスラリー、GaxIn1−xAsyP1−y結晶の表面処理方法およびGaxIn1−xAsyP1−y結晶基板
JP2007180270A (ja) * 2005-12-28 2007-07-12 Sumitomo Chemical Co Ltd 化合物半導体エピタキシャル基板の製造方法
JP2007234952A (ja) 2006-03-02 2007-09-13 Sumitomo Electric Ind Ltd 化合物半導体基板の表面処理方法、化合物半導体の製造方法、化合物半導体基板、および半導体ウエハ
JP5003033B2 (ja) * 2006-06-30 2012-08-15 住友電気工業株式会社 GaN薄膜貼り合わせ基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
JP2008198855A (ja) 2007-02-14 2008-08-28 Hitachi Cable Ltd 化合物半導体ウェハ
JP5471001B2 (ja) 2009-04-20 2014-04-16 住友電気工業株式会社 インジウムリン基板の製造方法、エピタキシャルウエハの製造方法、インジウムリン基板およびエピタキシャルウエハ
JP5370393B2 (ja) 2011-03-03 2013-12-18 住友電気工業株式会社 化合物半導体単結晶基板
JP2012190918A (ja) * 2011-03-09 2012-10-04 Sumitomo Metal Mining Co Ltd 表面粗さ測定装置
US8605428B2 (en) * 2011-07-01 2013-12-10 Intel Corporation Apparatus, system and method for concealed venting thermal solution
US8872189B2 (en) 2011-08-05 2014-10-28 Sumitomo Electric Industries, Ltd. Substrate, semiconductor device, and method of manufacturing the same
US20140096793A1 (en) * 2012-10-04 2014-04-10 Sunedison, Inc. Uv treatment of polished wafers
JP2014157979A (ja) 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2015126003A (ja) 2013-12-25 2015-07-06 日立金属株式会社 化合物半導体ウェハの製造方法
CN107112201B (zh) * 2015-02-09 2020-07-28 住友电气工业株式会社 磷化铟衬底、检查磷化铟衬底的方法和制造磷化铟衬底的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182126A (ja) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd 化合物半導体基板の加工方法および化合物半導体基板
JP2009182135A (ja) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd 化合物半導体基板の製造方法および化合物半導体基板
JP2013229584A (ja) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd 駆動回路、駆動回路を備える信号処理装置、信号処理装置の作製方法および表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258481A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198718A1 (ja) * 2017-04-28 2018-11-01 Jx金属株式会社 半導体ウエハ及び半導体ウエハの研磨方法
US10679842B2 (en) 2017-04-28 2020-06-09 Jx Nippon Mining & Metals Corporation Semiconductor wafer, and method for polishing semiconductor wafer
WO2019019859A1 (en) * 2017-07-25 2019-01-31 Beijing Tongmei Xtal Technology Co., Ltd. INDIUM PHOSPHIDE WAFER HAVING HOLLOWS ON THE REAR ROD, METHOD AND ETCHING SOLUTION FOR MANUFACTURING THE SAME
US11094549B2 (en) 2017-07-25 2021-08-17 Beijing Tongmei Xtal Technology Co., Ltd. Indium phosphide wafer having pits on the back side, method and etching solution for manufacturing the same
CN114252397A (zh) * 2021-12-27 2022-03-29 中国电子科技集团公司第十三研究所 一种增透膜剩余反射率测试陪片
CN114252397B (zh) * 2021-12-27 2024-06-11 中国电子科技集团公司第十三研究所 一种增透膜剩余反射率测试陪片
WO2023139759A1 (ja) * 2022-01-21 2023-07-27 住友電気工業株式会社 Iii-v族化合物半導体単結晶基板およびその製造方法

Also Published As

Publication number Publication date
CN111952150B (zh) 2023-06-20
US10473445B2 (en) 2019-11-12
US20200041247A1 (en) 2020-02-06
TWI701709B (zh) 2020-08-11
TW201937541A (zh) 2019-09-16
TWI667687B (zh) 2019-08-01
JP6508373B2 (ja) 2019-05-08
JP2018133571A (ja) 2018-08-23
CN107112201A (zh) 2017-08-29
EP4174913A1 (en) 2023-05-03
US10663277B2 (en) 2020-05-26
US20170363406A1 (en) 2017-12-21
JP6296177B2 (ja) 2018-03-20
EP3258481A4 (en) 2018-09-19
TW201638995A (zh) 2016-11-01
CN111952150A (zh) 2020-11-17
CN107112201B (zh) 2020-07-28
JPWO2016129172A1 (ja) 2017-04-27
JP2019145812A (ja) 2019-08-29
EP3258481A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6296177B2 (ja) インジウムリン基板、インジウムリン基板の検査方法、およびインジウムリン基板の製造方法
TWI430352B (zh) 製造經磊晶塗覆的半導體晶圓的方法
WO2015146320A9 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
US9431489B2 (en) β-Ga2O3-based single crystal substrate
TWI478228B (zh) Silicon wafer manufacturing method
TWI722923B (zh) 磷化銦基板、半導體磊晶晶圓、及磷化銦基板之製造方法
US8815710B2 (en) Silicon epitaxial wafer and method for production thereof
TWI722922B (zh) 磷化銦基板、半導體磊晶晶圓、及磷化銦基板之製造方法
TWI735256B (zh) 磷化銦基板、半導體磊晶晶圓、及磷化銦基板之製造方法
JP6477990B1 (ja) Iii−v族化合物半導体基板およびエピタキシャル層付iii−v族化合物半導体基板
JP2006004983A (ja) シリコンウエーハの製造方法及びシリコンウエーハ
US10395933B2 (en) Method for manufacturing semiconductor wafer
JP4244411B2 (ja) シリコンエピタキシャルウェーハの製造方法
CN103367571A (zh) 氮化镓基板及外延晶片
CN116988156A (zh) 一种氧化镓衬底及其制备方法
JP7499933B1 (ja) リン化インジウム基板及び半導体エピタキシャルウエハ
JP7499932B1 (ja) リン化インジウム基板及び半導体エピタキシャルウエハ
CN113544817B (zh) 硅外延晶片的制造方法和硅外延晶片
JP2023108951A (ja) シリコンエピタキシャルウェーハの製造方法
US20150011079A1 (en) Method for manufacturing silicon epitaxial wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016574632

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541754

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015882046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE