WO2016121139A1 - 酸化亜鉛粉体、分散液、塗料、化粧料 - Google Patents
酸化亜鉛粉体、分散液、塗料、化粧料 Download PDFInfo
- Publication number
- WO2016121139A1 WO2016121139A1 PCT/JP2015/061370 JP2015061370W WO2016121139A1 WO 2016121139 A1 WO2016121139 A1 WO 2016121139A1 JP 2015061370 W JP2015061370 W JP 2015061370W WO 2016121139 A1 WO2016121139 A1 WO 2016121139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- oxide powder
- dispersion
- mass
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/27—Zinc; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/04—Compounds of zinc
- C09C1/043—Zinc oxide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/413—Nanosized, i.e. having sizes below 100 nm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/591—Mixtures of compounds not provided for by any of the codes A61K2800/592 - A61K2800/596
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/65—Characterized by the composition of the particulate/core
- A61K2800/651—The particulate/core comprising inorganic material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- the present invention relates to a zinc oxide powder, a dispersion, a paint, and a cosmetic.
- This application claims priority based on Japanese Patent Application No. 2015-017135 filed in Japan on January 30, 2015, the contents of which are incorporated herein by reference.
- Zinc oxide has an ultraviolet shielding function, a gas permeation suppression function, and the like, and has high transparency. For this reason, it is used for applications that require transparency, such as ultraviolet shielding films, ultraviolet shielding glasses, cosmetics, and gas barrier films.
- One method for obtaining transparency is to reduce the primary particle diameter of the zinc oxide particles.
- As a method for producing zinc oxide fine particles various methods such as a thermal decomposition method and a gas phase method have been studied (see, for example, Patent Documents 1 to 7).
- Zinc oxide fine particles have high transparency, but have high surface energy because they are fine particles. For this reason, it is difficult to blend this powder directly into final products such as cosmetics. Moreover, even if the primary particle diameter of the zinc oxide fine particles is small, the particles are aggregated depending on the way of blending, and high transparency cannot be maintained. Therefore, in order to prevent the particles from aggregating, generally, a method is used in which zinc oxide powder is dispersed in a dispersion medium to form a dispersion, and the dispersion and other components are mixed. Yes.
- the dispersion containing zinc oxide powder (hereinafter sometimes referred to as “zinc oxide dispersion”) preferably has a higher solid content concentration as the content of zinc oxide powder is larger.
- the reason is as follows. For example, in order to improve the ultraviolet shielding ability of zinc oxide, it is necessary to increase the content of zinc oxide powder in the zinc oxide dispersion.
- the content of the zinc oxide powder is small and the solid content concentration is low, the amount of the dispersion medium is increased as compared with the case where the solid content concentration is high. For this reason, the content of other components is reduced, the degree of freedom of formulation is low, and there are few functions that can be imparted.
- the zinc oxide dispersion becomes less fluid and cannot be sufficiently stirred by a mixer or a mill. Therefore, there existed a subject that solid content concentration was high and the uniform zinc oxide dispersion liquid was not obtained.
- the present invention has been made in view of the above circumstances, and provides a zinc oxide powder that can be dispersed in a dispersion medium in a state where the solid content concentration is high, and a dispersion, a paint, and a cosmetic containing the zinc oxide powder.
- the purpose is to provide.
- the zinc oxide powder of the present invention has a specific surface area of 1.5 m 2 / g to 65 m 2 / g, a conductivity of 150 ⁇ S / cm or less, and a bulk specific volume of 0.5 mL / g to 10 mL / g. It is characterized by the following.
- the dispersion of the present invention comprises the zinc oxide powder of the present invention and a dispersion medium, and the content of the zinc oxide powder is 50% by mass or more and 90% by mass or less.
- the coating material of the present invention comprises the zinc oxide powder of the present invention, a resin, and a dispersion medium, and the content of the zinc oxide powder is 10% by mass or more and 40% by mass or less. It is characterized by.
- the cosmetic of the present invention is characterized by containing at least one selected from the group consisting of the zinc oxide powder of the present invention and the dispersion of the present invention.
- the specific surface area is 1.5 m 2 / g to 65 m 2 / g
- the conductivity is 150 ⁇ S / cm or less
- the bulk specific volume is 0.5 mL / g to 10 mL. / G or less
- the dispersion of the present invention contains the zinc oxide powder of the present invention and a dispersion medium, and the content of the zinc oxide powder is 50% by mass or more and 90% by mass or less. When mixed with other components, the amount of the dispersion medium added to obtain the desired effect of zinc oxide can be reduced.
- the zinc oxide powder of the present invention a resin, and a dispersion medium are contained, and the content of the zinc oxide powder is 10% by mass or more and 40% by mass or less. Therefore, it is possible to obtain a coating material containing a high concentration of solid content (zinc oxide powder) and uniformly dispersing the zinc oxide powder.
- the cosmetic of the present invention since it contains at least one selected from the group consisting of the zinc oxide powder of the present invention and the dispersion of the present invention, the degree of freedom in formulating other ingredients is improved. Can be improved.
- the zinc oxide powder of this embodiment has a specific surface area of 1.5 m 2 / g to 65 m 2 / g, a conductivity of 150 ⁇ S / cm or less, and a bulk specific volume of 0.5 mL / g to 10 mL / g. g or less.
- the zinc oxide powder of the present invention may be manufactured using the methods described in Patent Documents 1 to 7, but in order to obtain the physical properties of the present invention, further cleaning, selection of materials, and manufacturing conditions It is necessary to perform a process such as selection as necessary.
- the specific surface area in the zinc oxide powder of the present embodiment means a value measured by the BET method using a fully automatic specific surface area measuring device (trade name: Macsorb HM Model-1201, manufactured by Mountec).
- the electrical conductivity in the zinc oxide powder of the present embodiment means a value measured by the following method. 10 g of zinc oxide powder and 75 g of pure water are mixed, and this mixed solution is boiled on a hot plate for 10 minutes. Next, after allowing the mixed solution to cool to room temperature, pure water is added to the mixed solution so that the total amount of zinc oxide powder and pure water is 85 g. Next, the mixture is solid-liquid separated by centrifugation, and the conductivity of the supernatant is a value measured by a conductivity meter (trade name: ES-12, manufactured by Horiba, Ltd.).
- the bulk specific volume in the zinc oxide powder of the present embodiment is measured according to JIS K5101-12-1 (pigment test method-part 12: apparent density or apparent specific volume-section 1: stationary method). Value.
- the conductivity of the zinc oxide powder of the present embodiment is 150 ⁇ S / cm or less, preferably 100 ⁇ S / cm or less, more preferably 50 ⁇ S / cm or less, and further 30 ⁇ S / cm or less. Preferably, it is most preferably 10 ⁇ S / cm or less. Moreover, the lower limit value of the electrical conductivity in the zinc oxide powder of this embodiment is 0 ⁇ S / cm.
- the electrical conductivity exceeds 150 ⁇ S / cm
- the zinc oxide powder is contained in a high concentration
- the influence of the ionic component derived from the zinc oxide powder on the charge balance of the dispersion increases, and the dispersion stability This is not preferable because the properties are lowered.
- the ion component derived from the zinc oxide powder is adsorbed on the dispersant and has a great effect of inhibiting the dispersion effect. This is not preferable because the dispersion stability decreases.
- Examples of a method for adjusting the conductivity of the zinc oxide powder within the above range include a method for reducing the content of impurities in the zinc oxide powder. Therefore, when producing zinc oxide powder, high-purity raw materials are used, the heat decomposition temperature in the production process is adjusted as appropriate, impurities are prevented from being mixed during the production process, A zinc oxide powder having a low conductivity can be obtained by providing a cleaning step.
- the zinc oxide powder of the present embodiment preferably has a low content of water-soluble substances (hereinafter referred to as “water-soluble substances”).
- water-soluble substances preferably 0.08% by mass or less, and more preferably 0.05% by mass or less.
- the content of water-soluble matter in the zinc oxide powder of the present embodiment means a value measured by the following method.
- this measuring method is a measuring method according to “67. Water soluble matter test method” described in Quasi-drug raw material standard 2006 (Kotohara regulations).
- Weigh 5 g of zinc oxide powder add 70 mL of pure water to this zinc oxide powder, and boil for 5 minutes.
- pure water is added to this mixed solution to make 100 mL, and further mixed and then filtered.
- 10 mL of the first filtrate is removed, and 40 mL of the next filtrate obtained thereafter is collected.
- the collected filtrate is evaporated to dryness on a water bath and then dried at 105 ° C. for 1 hour, and the mass of the dry residue is measured.
- the percentage of the value obtained by dividing the mass of this dry residue by the mass of the zinc oxide powder initially weighed is taken as the content of water-soluble substances in the zinc oxide powder.
- Preferred embodiments of the zinc oxide powder of the present embodiment include a first embodiment and a second embodiment described later.
- the specific surface area of the zinc oxide powder within the above range, the zinc oxide powder can be dispersed at a high concentration in the dispersion medium.
- the transparency of the dispersion, paint, cosmetic, etc. containing this zinc oxide powder can be increased.
- a specific surface area of less than 8 m 2 / g is not preferred because the transparency of the dispersion tends to decrease when the zinc oxide powder is contained at a high concentration.
- the specific surface area exceeds 65 m 2 / g, when the zinc oxide powder is contained at a high concentration, the viscosity of the dispersion is likely to increase, and it is difficult to obtain a uniform and highly fluid dispersion. Since there is a tendency, it is not preferable.
- the method for adjusting the specific surface area of the zinc oxide powder within the above range is not particularly limited.
- the average primary particle diameter (average particle diameter) converted from the BET specific surface area is adjusted to 15 nm or more and 135 nm or less. A method is mentioned.
- the specific surface area decreases as the primary particle diameter increases, and the specific surface area increases as the primary particle diameter decreases.
- the specific surface area of the zinc oxide powder can also be adjusted by adjusting the particle shape or providing pores in the particle.
- the bulk specific volume in the zinc oxide powder of the first embodiment is 1 mL / g or more and 10 mL / g or less, preferably 1.5 mL / g or more and 9.5 mL / g or less, 3.0 mL / G and 8.0 mL / g or less is more preferable, and 4.0 mL / g or more and 7.0 mL / g or less is further more preferable.
- the bulk specific volume is less than 1 mL / g, the transparency of the dispersion tends to decrease when the zinc oxide powder is contained at a high concentration, which is not preferable.
- the bulk specific volume exceeds 10 mL / g, when the zinc oxide powder is contained at a high concentration, the viscosity of the dispersion is likely to increase, and it is difficult to obtain a uniform and highly fluid dispersion. Since there is a tendency, it is not preferable.
- the method for controlling the volume specific volume of the zinc oxide powder within the above range is not particularly limited.
- the volume specific volume of raw materials such as zinc oxalate, zinc hydroxide, zinc carbonate, and basic zinc carbonate
- the volume specific volume of the zinc oxide powder can be controlled within the above range by adjusting the temperature or adjusting the thermal decomposition temperature.
- the volume specific volume of the zinc oxide powder is controlled within the above range by appropriately adjusting the temperature in the production process. can do.
- the average particle diameter of the zinc oxide powder of the first embodiment can be arbitrarily selected. For example, generally 15 nm to 75 nm can be preferably used, 20 nm to 55 nm is more preferable, and 25 nm to 45 nm is even more preferable.
- the method for producing the zinc oxide powder of the first embodiment is not particularly limited.
- the production method preferably includes the above-described method for adjusting the specific surface area of the zinc oxide powder, the method for adjusting the conductivity of the zinc oxide powder, the method for adjusting the bulk specific volume of the zinc oxide powder, and the like. Depending on the application, a method for appropriately carrying out these adjustment methods may be mentioned.
- zinc carbonate having a bulk specific volume of 1.0 mL / g to 10.0 mL / g is 300 ° C. to 700 ° C., preferably 400 ° C.
- Examples of the method include thermal decomposition and sintering (granular growth) at a temperature of from 600 ° C. to 600 ° C.
- the specific surface area of the zinc oxide powder of the present embodiment is 1.5 m 2 / g or more and less than 8.0 m 2 / g, preferably 2.0 m 2 / g or more and 7.5 m 2 / g or less. 3.0 m 2 / g or more and 7.0 m 2 / g or less is more preferable.
- the zinc oxide powder can be dispersed at a high concentration in the dispersion medium. In addition, it is possible to maintain the transparency of the dispersion, paint, cosmetic, and the like containing this zinc oxide powder.
- Zinc oxide powder having a specific surface area within the above range is preferable because it can be used in combination with natural oil.
- natural oil is an oil component derived from nature, and is not particularly limited as long as it can be used as a cosmetic.
- the natural oil may be derived from a plant or an animal. Examples of such natural oils include oleic acid, jojoba oil, olive oil, coconut oil, grape seed oil, castor oil, rice bran oil, horse oil, mink oil, squalane and the like.
- the zinc oxide powder having a specific surface area within the above range has a critical wavelength of 370 nm or more, and cosmetics containing this zinc oxide powder have a wide range of long-wavelength ultraviolet (UVA) and short-wavelength ultraviolet (UVB). It is preferable because it can block ultraviolet rays. If the specific surface area is less than 1.5 m 2 / g, the transparency of the dispersion tends to be remarkably lowered when the zinc oxide powder is contained at a high concentration, which is not preferable.
- the specific surface area is 8.0 m 2 / g or more
- the viscosity of the dispersion tends to increase, and a uniform and highly fluid dispersion can be obtained. This is not preferable because it tends to be difficult to be obtained.
- the method for adjusting the specific surface area of the zinc oxide powder within the above range is not particularly limited.
- the average primary particle diameter converted from the BET specific surface area is preferably more than 135 nm and not more than 715 nm, more preferably The method of adjusting to 140 nm or more and 535 nm or less, More preferably, 150 nm or more and 360 nm or less is mentioned.
- the bulk specific volume in the zinc oxide powder of the second embodiment is 0.5 mL / g or more and 6 mL / g or less, preferably 1 mL / g or more and 5 mL / g or less, preferably 2 mL / g or more and More preferably, it is 4 mL / g or less.
- the volume specific volume of the zinc oxide powder can be uniformly dispersed in the dispersion medium at a high concentration.
- a bulk specific volume of less than 0.5 mL / g is not preferred because the transparency of the dispersion tends to decrease when the zinc oxide powder is contained at a high concentration.
- the method for controlling the bulk specific volume of the second embodiment within the above range is not particularly limited.
- control can be performed in the same manner as in the first embodiment described above.
- the maximum primary particle diameter of the zinc oxide powder of the second embodiment is preferably 900 nm or less, more preferably 800 nm or less, further preferably 600 nm or less, and 400 nm or less. Is most preferred. When zinc oxide having a primary particle diameter exceeding 900 nm is included, it is not preferable because the appearance becomes whitish when a cosmetic prepared using this zinc oxide powder is applied to the skin.
- the primary particle diameter in the second embodiment is the longest diameter which is the largest diameter among a plurality of diameters passing through the central point of these primary particles by selecting 150 primary particles of zinc oxide with a scanning electron microscope (SEM). Means.
- the maximum value of the primary particle diameter in the second embodiment means the largest value among the 150 primary particle diameters measured by the above method.
- the manufacturing method of the zinc oxide powder of the second embodiment is not particularly limited, the above-described method for adjusting the specific surface area of the zinc oxide powder, the method for adjusting the conductivity of the zinc oxide powder, and the volume of the zinc oxide powder. Including methods for adjusting the specific volume and the like, there are methods for appropriately carrying out these adjustment methods according to the use of the zinc oxide powder.
- a method for producing the zinc oxide powder of the second embodiment for example, zinc carbonate having a bulk specific volume of 0.5 mL / g to 6 mL / g is 300 ° C. to 1000 ° C., preferably 400 ° C. to 800 ° C. And pyrolysis and sintering (grain growth).
- At least one part of the surface may be surface-treated by at least one of an inorganic component and an organic component.
- the zinc oxide powder surface-treated with at least one of the inorganic component and the organic component is referred to as a surface-treated zinc oxide powder.
- An inorganic component and an organic component are suitably selected according to the use of zinc oxide powder.
- the inorganic component and organic component to be used are not particularly limited as long as they are generally used in cosmetics and are surface treatment agents.
- the inorganic component include at least one selected from silica, alumina, and the like.
- the organic component include at least one selected from the group consisting of a silicone compound, an organopolysiloxane, a fatty acid, a fatty acid soap, a fatty acid ester, and an organic titanate compound.
- surfactant as an inorganic component or an organic component.
- silicone oils such as methyl hydrogen polysiloxane, dimethyl polysiloxane, and methylphenyl polysiloxane; methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane Alkyl silanes such as; Fluoroalkyl silanes such as trifluoromethylethyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, methicone, hydrogen dimethicone, triethoxysilylethyl polydimethylsiloxyethyl dimethicone, triethoxysilylethyl polydimethylsiloxyethyl hexyl dimethicone (Acrylates / Tridecyl acrylate / Triethoxysilylpropyl methacrylate
- fatty acids examples include palmitic acid, isostearic acid, stearic acid, lauric acid, myristic acid, behenic acid, oleic acid, rosin acid, 12-hydroxystearic acid and the like.
- fatty acid soaps examples include aluminum stearate, calcium stearate, and 12-hydroxyaluminum stearate.
- fatty acid esters include dextrin fatty acid esters, cholesterol fatty acid esters, sucrose fatty acid esters, starch fatty acid esters, and the like.
- organic titanate compound examples include isopropyl triisostearoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dodecyl) benzenesulfonyl titanate, neopentyl (diallyl) oxy-tri (dioctyl) phosphate titanate, neopentyl (diallyl) oxy-trineododeca Noyl titanate etc. are mentioned.
- the surface-treated zinc oxide powder of this embodiment is used in industrial applications such as an ultraviolet shielding film and a gas barrier film, in addition to inorganic components and organic components used in cosmetics, anionic dispersants, cationic dispersions
- a dispersant such as a dispersant, a nonionic dispersant, a silane coupling agent, and a wetting dispersant, that is, a general dispersant used when dispersing particles can be appropriately selected and used.
- the surface activity of zinc oxide can be suppressed, or the dispersibility of zinc oxide in the dispersion medium can be improved.
- the method for producing the surface-treated zinc oxide powder of the present embodiment is not particularly limited, and may be appropriately performed by a known method depending on the components used for the surface treatment.
- the dispersion liquid of this embodiment contains the zinc oxide powder of this embodiment and the dispersion medium, and the content of the zinc oxide powder is 50% by mass or more and 90% by mass or less.
- the dispersion liquid of this embodiment also includes a paste-like dispersion having a high viscosity.
- the dispersion liquid of this embodiment contains the zinc oxide powder of the above-mentioned 1st Embodiment or the zinc oxide powder of 2nd Embodiment as a zinc oxide powder.
- the dispersion liquid of the present embodiment is a zinc oxide powder that is not surface-treated, and at least a part of the surface is surface-treated with at least one of an inorganic component and an organic component (surface Treated zinc oxide powder).
- the content of the zinc oxide powder in the dispersion of this embodiment is 50% by mass or more and 90% by mass or less, preferably 60% by mass or more and 80% by mass or less, and 64% by mass or more and 75% by mass. % Or less, more preferably 64% by mass or more and 70% by mass or less.
- the content of the zinc oxide powder in the dispersion is within the above range, it is possible to obtain a dispersion in which the solid content (zinc oxide powder) is contained at a high concentration and the zinc oxide powder is uniformly dispersed. it can.
- “Uniform” means that the zinc oxide powder is uniformly mixed without any separation of the zinc oxide powder when the dispersion is visually observed.
- the viscosity of the dispersion according to this embodiment is preferably 5 Pa ⁇ s or more and 300 Pa ⁇ s or less, more preferably 8 Pa ⁇ s or more and 100 Pa ⁇ s or less, and more preferably 10 Pa ⁇ s or more and 80 Pa ⁇ s or less. More preferably, it is 15 Pa ⁇ s or more and 60 Pa ⁇ s or less.
- the viscosity of the dispersion is within the above range, a dispersion that is easy to handle can be obtained even when the solid (zinc oxide powder) is contained at a high concentration.
- the preferable range of the viscosity of the dispersion liquid of the present embodiment is the same when the zinc oxide powder includes a surface-treated zinc oxide powder and the surface-treated zinc oxide powder.
- the dispersion medium is appropriately selected according to the use of the dispersion. Although a suitable dispersion medium is illustrated below, the dispersion medium in this embodiment is not limited to these.
- the dispersion medium include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol, glycerin and other alcohols; ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether Esters such as acetate, propylene glycol monoethyl ether acetate, ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether And ethers such as diethylene glycol monoethyl
- dispersion media include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, and cyclohexanone; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; cyclic hydrocarbons such as cyclohexane; dimethylformamide, N Amides such as N, dimethylacetoacetamide and N-methylpyrrolidone; and chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane and diphenylpolysiloxane; are also preferably used. These dispersion media may be used alone or in combination of two or more.
- Still other dispersion media include cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexanesiloxane; amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, fluorine Modified polysiloxanes such as modified polysiloxanes are also preferably used. These dispersion media may be used alone or in combination of two or more.
- dispersion media different from the above include liquid paraffin, squalane, isoparaffin, branched light paraffin, petroleum oil such as petrolatum, ceresin, isopropyl myristate, cetyl isooctanoate, glyceryl trioctano.
- Ester oil such as ate, silicone oil such as decamethylcyclopentasiloxane, dimethylpolysiloxane, methylphenylpolysiloxane, higher fatty acids such as uric acid, myristic acid, palmitic acid, stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, A hydrophobic dispersion medium such as higher alcohols such as hexyl decanol and isostearyl alcohol may be used. These dispersion media may be used alone or in combination of two or more. Examples of the various types of dispersion media described above may be used alone or in combination of two or more as required.
- the dispersion of the present embodiment may contain commonly used additives as long as the characteristics are not impaired.
- additives include dispersants, stabilizers, water-soluble binders, thickeners, oil-soluble preservatives, ultraviolet absorbers, oil-soluble drugs, oil-soluble pigments, oil-soluble proteins, vegetable oils, animal oils, and the like. It is done.
- the critical wavelength (critical wavelength) of the dispersion liquid containing the zinc oxide powder of the second embodiment is preferably 370 nm or more.
- the cosmetic containing this dispersion liquid has a critical wavelength of 370 nm or more, and shields a wide range of ultraviolet rays such as long wavelength ultraviolet rays (UVA) and short wavelength ultraviolet rays (UVB). be able to.
- the preferable range of the critical wavelength of the dispersion liquid of this embodiment is the same when the surface-treated zinc oxide powder is included as well as when the surface-treated zinc oxide powder is included.
- the manufacturing method of the dispersion liquid of this embodiment is not specifically limited.
- a method of mechanically dispersing the zinc oxide powder of this embodiment and the dispersion medium with a known dispersion device can be mentioned.
- the dispersing device can be selected as necessary, and examples thereof include a stirrer, a self-revolving mixer, a homomixer, an ultrasonic homogenizer, a sand mill, a ball mill, and a roll mill.
- the dispersion of the present embodiment can be used for cosmetics, paints having an ultraviolet shielding function, a gas permeation suppressing function, and the like.
- the coating material of this embodiment contains the zinc oxide powder of this embodiment, resin, and a dispersion medium, and content of a zinc oxide powder is 10 mass% or more and 40 mass% or less.
- the dispersion liquid of this embodiment contains the zinc oxide powder of the first embodiment or the zinc oxide powder of the second embodiment as zinc oxide powder.
- the content of the zinc oxide powder in the coating material of this embodiment is 10% by mass or more and 40% by mass or less, preferably 15% by mass or more and 35% by mass or less, and more preferably 20% by mass or more and 30% by mass. The following is more preferable.
- a paint in which the solid content (zinc oxide powder) is contained at a high concentration and the zinc oxide powder is uniformly dispersed can be obtained.
- the dispersion medium is not particularly limited as long as it is generally used in industrial applications. For example, water, alcohols such as methanol, ethanol, propanol, methyl acetate, ethyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, etc. These organic solvents are mentioned. These dispersion media may be used alone or in combination of two or more.
- the content of the dispersion medium in the coating material of this embodiment is not particularly limited, and is appropriately adjusted according to the properties of the target coating material.
- the resin is not particularly limited as long as it is generally used in industrial applications, and examples thereof include acrylic resins, epoxy resins, urethane resins, polyester resins, and silicone resins. These resins may be used alone or in combination of two or more.
- the content of the resin in the paint of the present embodiment is not particularly limited, and is appropriately adjusted according to the properties of the target paint.
- the paint of the present embodiment may contain commonly used additives as long as the characteristics are not impaired.
- the additive include a polymerization initiator, a dispersant, and an antiseptic.
- the manufacturing method of the coating material of this embodiment is not specifically limited, For example, the method of mechanically mixing the zinc oxide powder of this embodiment, resin, and a dispersion medium with a well-known mixing apparatus is mentioned. . Moreover, the method of mixing mechanically the dispersion liquid mentioned above and resin with a well-known mixing apparatus is mentioned.
- the mixing device include a stirrer, a self-revolving mixer, a homomixer, and an ultrasonic homogenizer.
- the coating material of the present embodiment is applied to a substrate selected as necessary by a normal coating method such as a roll coating method, a flow coating method, a spray coating method, a screen printing method, a brush coating method, or a dipping method.
- a coating film can be formed by applying to a plastic substrate such as a polyester film. These coating films can be used as an ultraviolet shielding film or a gas barrier film.
- the cosmetic of one embodiment of the present embodiment contains at least one selected from the group consisting of the zinc oxide powder of the present embodiment and the dispersion of the present embodiment.
- Another embodiment includes a base and at least one selected from the group consisting of the zinc oxide powder of the present embodiment and the dispersion of the present embodiment dispersed in the base.
- the cosmetic of this embodiment contains the zinc oxide powder of the first embodiment or the zinc oxide powder of the second embodiment as zinc oxide powder.
- the cosmetic of the present embodiment can be obtained, for example, by blending the dispersion of the present embodiment into a base such as an emulsion, cream, foundation, lipstick, blusher, or eye shadow as usual.
- the zinc oxide powder of the present embodiment may be blended with an oil phase or an aqueous phase to form an O / W type or W / O type emulsion and then blended with a base.
- the sunscreen cosmetic will be specifically described.
- the content of the zinc oxide powder in the sunscreen cosmetic is preferably 1% by mass to 30% by mass in order to effectively shield ultraviolet rays, particularly long wavelength ultraviolet rays (UVA). % Or more and 20% by mass or less, more preferably 5% by mass or more and 15% by mass or less.
- hydrophobic dispersion medium inorganic fine particles and inorganic pigments other than zinc oxide powder
- hydrophilic dispersion medium fats and oils
- surfactant moisturizer, thickener, pH adjuster
- It may contain nutrients, antioxidants, fragrances and the like.
- hydrophobic dispersion medium include hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin, and ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
- Silicone oil such as decamethylcyclopentasiloxane, dimethylpolysiloxane, methylphenylpolysiloxane, higher fatty acids such as uric acid, myristic acid, palmitic acid, stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldodecanol, iso Examples include higher alcohols such as stearyl alcohol.
- inorganic fine particles and inorganic pigments other than zinc oxide powder examples include calcium carbonate, calcium phosphate (apatite), magnesium carbonate, calcium silicate, magnesium silicate, aluminum silicate, kaolin, talc, titanium oxide, aluminum oxide, yellow
- examples thereof include iron oxide, ⁇ -iron oxide, cobalt titanate, cobalt violet, and silicon oxide.
- the sunscreen cosmetic may further contain at least one organic ultraviolet absorber.
- organic UV absorbers include benzotriazole UV absorbers, benzoylmethane UV absorbers, benzoic acid UV absorbers, anthranilic acid UV absorbers, salicylic acid UV absorbers, and cinnamic acid UV absorbers. Agents, silicone-based cinnamic acid UV absorbers, organic UV absorbers other than these, and the like.
- benzotriazole ultraviolet absorber examples include 2,2′-hydroxy-5-methylphenylbenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′- And hydroxy-5′-methylphenylbenzotriazole.
- benzoylmethane ultraviolet absorber examples include dibenzalazine, dianisoylmethane, 4-tert-butyl-4′-methoxydibenzoylmethane, 1- (4′-isopropylphenyl) -3-phenylpropane-1,3- And dione, 5- (3,3′-dimethyl-2-norbornylidene) -3-pentan-2-one, and the like.
- benzoic acid ultraviolet absorber examples include paraaminobenzoic acid (PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl PABA ethyl ester, N, N-dimethyl PABA butyl ester, N, N-dimethyl PABA methyl ester and the like can be mentioned.
- PABA paraaminobenzoic acid
- PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester
- N-diethoxy PABA ethyl ester N, N-dimethyl PABA ethyl ester
- N, N-dimethyl PABA butyl ester N, N-dimethyl PABA methyl ester and the like
- anthranilic acid ultraviolet absorber examples include homomenthyl-N-acetylanthranylate.
- salicylic acid-based UV absorber examples include amyl salicylate, menthyl salicylate, homomenthyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, p-2-propanolphenyl salicylate, and the like.
- cinnamic acid-based UV absorbers examples include octylmethoxycinnamate, di-paramethoxycinnamic acid-mono-2-ethylhexanoic acid glyceryl, octylcinnamate, ethyl-4-isopropylcinnamate, methyl-2, 5-diisopropyl cinnamate, ethyl-2,4-diisopropyl cinnamate, methyl-2,4-diisopropyl cinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl-p-methoxycinnamate, Octyl-p-methoxycinnamate (2-ethylhexyl-p-methoxycinnamate), 2-ethoxyethyl-p-methoxycinnamate, cyclohexyl
- silicone-based cinnamic acid ultraviolet absorber examples include [3-bis (trimethylsiloxy) methylsilyl-1-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilyl- 3-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methyl Silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silyl-1-methyl Propyl] -3,4-dimethoxy
- organic ultraviolet absorbers other than the above examples include 3- (4′-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl Examples include -5-methylbenzoxazole, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one, silicone-modified UV absorber, and fluorine-modified UV absorber.
- the critical wavelength (Critical Wavelength) of the cosmetic containing the zinc oxide powder of the second embodiment is preferably 370 nm or more.
- the critical wavelength of the cosmetic is 370 nm or more, a wide range of ultraviolet rays such as long wavelength ultraviolet rays (UVA) and short wavelength ultraviolet rays (UVB) can be shielded.
- UVA long wavelength ultraviolet rays
- UVB short wavelength ultraviolet rays
- the specific surface area, the electrical conductivity, and the bulk specific volume are adjusted to predetermined ranges. Even if it is dispersed, it can be uniformly dispersed. And even if the zinc oxide powder is contained in the dispersion medium at a high concentration, it is uniformly dispersed. Therefore, when mixed with other components, the conventional high transparency effect can be obtained. . Moreover, since it becomes possible to mix with another component in the state by which zinc oxide powder was disperse
- the surface-treated zinc oxide powder of this embodiment it is preferable that at least a part of the surface of the zinc oxide powder of this embodiment is surface-treated with at least one of an inorganic component and an organic component.
- the surface activity of zinc oxide can be suppressed, and the dispersibility in the dispersion medium can be improved.
- the zinc oxide powder is contained in a high concentration, it is uniformly dispersed, so when mixed with other components, the conventional high transparency effect can be obtained.
- blending which contains other components can be improved.
- the dispersion of this embodiment since the solid concentration is high and the dispersion is uniform, when mixing with other components, the amount of the dispersion medium added to obtain the desired effect of zinc oxide is reduced. Can be reduced. Moreover, when the viscosity of the dispersion is 5 Pa ⁇ s or more and 300 Pa ⁇ s or less, the handling of the dispersion becomes easy.
- the amount of the dispersion medium added to obtain the desired effect of zinc oxide is reduced. be able to.
- the cosmetic of the present embodiment since zinc oxide powder can be blended at a high concentration, the degree of freedom in formulating blending other components is increased. Moreover, since it becomes easy to mix
- Example 1 "Preparation of dispersion containing zinc oxide"
- a zinc oxide powder (A1) (specific surface area 35 m 2 / g, conductivity 8 ⁇ S / cm, bulk specific volume 5.2 mL / g, average primary particle size: 31 nm) was prepared. Thereafter, 28.5 parts by mass of cyclopentasiloxane, 6.5 parts by mass of PEG-9 polydimethylsiloxyethyl dimethicone, and 65 parts by mass of zinc oxide powder (A1) were stirred at a rotation speed of 4000 rpm by a homomixer. The mixture was stirred and dispersed for 5 minutes to prepare a dispersion liquid (B1) of Example 1. The obtained dispersion (B1) was a paste-like dispersion having no sediment and good dispersibility.
- an average primary particle diameter is the value computed by (1) Formula using the specific surface area value (35m ⁇ 2 > / g).
- “Preparation of surface-treated zinc oxide-containing dispersions” 95 parts by mass of zinc oxide powder (A1) and 5 parts by mass of methyl hydrogen polysiloxane were mixed at room temperature (25 ° C.) with a Henschel mixer for 30 minutes at a stirring speed of 1000 rpm. Next, the temperature was raised to 150 ° C., and the stirring rotation speed was increased to 2000 rpm, followed by stirring for 3 hours to obtain the surface-treated zinc oxide powder (C1) of Example 1.
- a dispersion liquid (D1) in which the surface-treated zinc oxide powder (C1) was dispersed was prepared.
- the obtained dispersion (D1) was a paste-like dispersion having no sediment and good dispersibility.
- Oil-in-water sun cream 24.5 parts by mass of dispersion (D1), 20.4 parts by mass of ethylhexyl methoxycinnamate, 4.1 parts by mass of 4-t-butyl-4′-methoxydibenzoylmethane, 20.4 parts by mass of squalane Vaseline 10.2 parts by mass, stearyl alcohol 6.1 parts by mass, stearic acid 6.1 parts by mass, glyceryl monostearate 6.1 parts by mass, and polyethyl acrylate 2.1 parts by mass, It mixed at 70 degreeC and was set as the oil phase component.
- Example 2 instead of zinc oxide powder (A1), zinc oxide powder (A2) (specific surface area 35 m 2 / g, conductivity 25 ⁇ S / cm, bulk specific volume 5.3 mL / g, average particle size: 31 nm) is prepared. Except for using this, the dispersion (B2) containing the zinc oxide powder (A2) of Example 2, the surface-treated zinc oxide powder (C2), and the surface-treated oxidation were carried out in the same manner as in Example 1. Dispersion liquid (D2) containing zinc powder (C2) and oil-in-water sunscreen cream (E2) were obtained. The obtained dispersion liquid (B2) and dispersion liquid (D2) were paste-like dispersion liquids having no sediment and good dispersibility. In the same manner as in Example 1, the zinc oxide powder (A2), the dispersion liquid (B2), the dispersion liquid (D2) and the oil-in-water sunscreen cream (E2) were evaluated. The results are shown in Table 1.
- Example 3 instead of zinc oxide powder (A1), zinc oxide powder (A3) (specific surface area 35 m 2 / g, conductivity 80 ⁇ S / cm, bulk specific volume 5.1 mL / g, average particle diameter: 31 nm) is prepared. Except that this was used, the dispersion (B3) containing the zinc oxide powder (A3) of Example 3, the surface-treated zinc oxide powder (C3), and the surface-treated zinc oxide were the same as in Example 1. A dispersion (D3) containing powder (C3) and an oil-in-water sunscreen cream (E3) were obtained. The obtained dispersion liquid (B3) and dispersion liquid (D3) were paste-form dispersion liquids having no sediment and good dispersibility. In the same manner as in Example 1, zinc oxide powder (A3), dispersion liquid (B3), dispersion liquid (D3) and oil-in-water sunscreen cream (E3) were evaluated. The results are shown in Table 1.
- Example 4 instead of zinc oxide powder (A1), zinc oxide powder (A4) (specific surface area 35 m 2 / g, conductivity 140 ⁇ S / cm, bulk specific volume 5.2 mL / g, average particle size: 31 nm) is prepared. Except for using this, the dispersion (B4) containing the zinc oxide powder (A4) of Example 4, the surface-treated zinc oxide powder (C4), and the surface-treated zinc oxide are the same as in Example 1. Dispersion liquid (D4) containing powder (C4) and oil-in-water sunscreen cream (E4) were obtained. The obtained dispersion liquid (B4) and dispersion liquid (D4) were paste-like dispersion liquids having no sediment and good dispersibility. In the same manner as in Example 1, zinc oxide powder (A4), dispersion liquid (B4), dispersion liquid (D4) and oil-in-water sunscreen cream (E4) were evaluated. The results are shown in Table 1.
- Example 5 instead of zinc oxide powder (A1), zinc oxide powder (A5) (specific surface area 10 m 2 / g, conductivity 8 ⁇ S / cm, bulk specific volume 3.1 mL / g, average particle size: 107 nm) is prepared. Except for using this, the dispersion (B5) containing the zinc oxide powder (A5) of Example 5, the surface-treated zinc oxide powder (C5), and the surface-treated zinc oxide are the same as in Example 1. A dispersion (D5) containing powder (C5) and an oil-in-water sunscreen cream (E5) were obtained. The obtained dispersion (B5) and dispersion (D5) were paste-like dispersions having no sediment and good dispersibility. In the same manner as in Example 1, the zinc oxide powder (A5), the dispersion (B5), the dispersion (D5) and the oil-in-water sunscreen cream (E5) were evaluated. The results are shown in Table 1.
- Example 6 instead of zinc oxide powder (A1), zinc oxide powder (A6) (specific surface area 60 m 2 / g, conductivity 8 ⁇ S / cm, bulk specific volume 5.5 mL / g, average particle diameter: 18 nm) is prepared. Except for using this, the dispersion (B6) containing the zinc oxide powder (A6) of Example 6, the surface-treated zinc oxide powder (C6), and the surface-treated zinc oxide are the same as in Example 1. A dispersion liquid (D6) containing powder (C6) and an oil-in-water sunscreen cream (E6) were obtained. The obtained dispersion (B6) and dispersion (D6) were paste-form dispersions having no sediment and good dispersibility. In the same manner as in Example 1, the zinc oxide powder (A6), the dispersion (B6), the dispersion (D6) and the oil-in-water sunscreen cream (E6) were evaluated. The results are shown in Table 1.
- Example 7 instead of zinc oxide powder (A1), zinc oxide powder (A7) (specific surface area 35 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 9.5 mL / g, average particle size: 31 nm) is prepared. Except for using this, the dispersion (B7) containing the zinc oxide powder (A7) of Example 7, the surface-treated zinc oxide powder (C7), and the surface-treated zinc oxide are the same as in Example 1. A dispersion (D7) containing powder (C7) and an oil-in-water sunscreen cream (E7) were obtained. The obtained dispersion liquid (B7) and dispersion liquid (D7) were paste-like dispersion liquids having no sediment and good dispersibility. In the same manner as in Example 1, zinc oxide powder (A7), dispersion liquid (B7), dispersion liquid (D7) and oil-in-water sunscreen cream (E7) were evaluated. The results are shown in Table 1.
- Example 8 instead of zinc oxide powder (A1), zinc oxide powder (A8) (specific surface area 35 m 2 / g, conductivity 80 ⁇ S / cm, bulk specific volume 1.7 mL / g, average particle diameter: 31 nm) is prepared. Except for using this, the dispersion (B8) containing the zinc oxide powder (A8) of Example 8, the surface-treated zinc oxide powder (C8), and the surface-treated zinc oxide were the same as in Example 1. Dispersion liquid (D8) containing powder (C8) and oil-in-water sunscreen cream (E8) were obtained. The obtained dispersion (B8) and dispersion (D8) were paste-like dispersions having no sediment and good dispersibility. In the same manner as in Example 1, zinc oxide powder (A8), dispersion liquid (B8), dispersion liquid (D8) and oil-in-water sunscreen cream (E8) were evaluated. The results are shown in Table 1.
- a surface-treated zinc oxide powder (C9) of Comparative Example 1 was obtained in the same manner as in Example 1 except that the zinc oxide powder (A9) was used instead of the zinc oxide powder (A1).
- preparation of (D9) was attempted, the surface-treated zinc oxide powder (C9) was separated, and a uniform dispersion (D9) could not be obtained. Therefore, sunscreen cream (E9) could not be prepared.
- the zinc oxide powder (A9) was evaluated. The results are shown in Table 1.
- Example 2 instead of zinc oxide powder (A1), zinc oxide powder (A10) (specific surface area 35 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 12.1 mL / g, bulkier than the raw materials used in the examples.
- a dispersion containing the zinc oxide powder (A10) of Comparative Example 2 was prepared in the same manner as in Example 1 except that a raw material having a high specific volume was used and the average particle diameter was 31 nm. Although preparation of B10) was attempted, the zinc oxide powder (A10) was separated, and a uniform dispersion could not be obtained.
- a surface-treated zinc oxide powder (C10) of Comparative Example 2 was obtained in the same manner as in Example 1 except that the zinc oxide powder (A10) was used instead of the zinc oxide powder (A1).
- preparation of (D10) was tried, the surface-treated zinc oxide powder (C10) was separated, and a uniform dispersion (D10) was not obtained. Therefore, sunscreen cream (E10) could not be prepared.
- the zinc oxide powder (A10) was evaluated. The results are shown in Table 1.
- the obtained dispersion (B11) and dispersion (D11) were paste-form dispersions having no sediment and good dispersibility.
- zinc oxide powder (A11), dispersion liquid (B11), dispersion liquid (D11) and oil-in-water sunscreen cream (E11) were evaluated. The results are shown in Table 1.
- Example 9 Evaluation of zinc oxide powder
- Zinc oxide powder (A12) (specific surface area 5.0 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 2.0 mL / g, water-soluble material less than 0.05 mass%, average primary particle size: 214 nm) The following evaluation was performed using
- “Preparation of surface-treated zinc oxide-containing dispersions” 98 parts by mass of zinc oxide powder (A12) and 2 parts by mass of methyl hydrogen polysiloxane were mixed at room temperature (25 ° C.) with a Henschel mixer for 30 minutes at 1000 rpm. Next, the temperature was raised to 150 ° C., and the stirring rotation speed was increased to 2000 rpm, followed by stirring for 3 hours to obtain the surface-treated zinc oxide powder (C12) of Example 9.
- a dispersion (D12) in which the surface-treated zinc oxide powder (C12) was dispersed was prepared by stirring and dispersing for 10 minutes.
- the obtained dispersion (D12) was a paste-like dispersion having no sediment and good dispersibility.
- Oil-in-water sun cream Dispersion (D12) 21.3 parts by mass, ethylhexyl methoxycinnamate 20.4 parts by mass, 4-t-butyl-4′-methoxydibenzoylmethane 4.1 parts by mass, squalane 20.4 parts by mass, Vaseline 10.2 parts by mass, stearyl alcohol 6.1 parts by mass, stearic acid 6.1 parts by mass, glyceryl monostearate 6.1 parts by mass, and polyethyl acrylate 2.1 parts by mass, It mixed at 70 degreeC and was set as the oil phase component.
- Example 10 Instead of zinc oxide powder (A12), zinc oxide powder (A13) (specific surface area 5.0 m 2 / g, conductivity 25 ⁇ S / cm, bulk specific volume 1.9 mL / g, water-soluble substance 0.05 Dispersion (B13) containing the zinc oxide powder (A13) of Example 10 and surface-treated zinc oxide powder in exactly the same manner as in Example 9, except that less than mass% and average primary particle diameter: 214 nm) were used. Body (C13), dispersion (D13) containing surface-treated zinc oxide powder (C13), and oil-in-water sunscreen cream (E13) were obtained.
- the obtained dispersion liquid (B13) and dispersion liquid (D13) were paste-form dispersion liquids having no sediment and good dispersibility.
- the zinc oxide powder (A13), the dispersion (B13), the dispersion (D13), and the oil-in-water sunscreen cream (E13) were evaluated.
- the evaluation results of Example 10 are shown in Table 2 and Table 3.
- Example 11 Instead of zinc oxide powder (A12), zinc oxide powder (A14) (specific surface area 5.0 m 2 / g, conductivity 80 ⁇ S / cm, bulk specific volume 2.0 mL / g, water-soluble matter 0.05 Dispersion (B14) containing the zinc oxide powder (A14) of Example 11 and surface-treated zinc oxide powder in exactly the same manner as in Example 9 except that less than mass% and average primary particle diameter: 214 nm) were used. Body (C14), dispersion (D14) containing surface-treated zinc oxide powder (C14), and oil-in-water sunscreen cream (E14) were obtained.
- the obtained dispersion (B14) and dispersion (D14) were paste-like dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A14), the dispersion (B14), the dispersion (D14) and the oil-in-water sunscreen cream (E14) were evaluated.
- the evaluation results of Example 11 are shown in Table 2 and Table 3.
- Example 12 Instead of zinc oxide powder (A12), zinc oxide powder (A15) (specific surface area 5.0 m 2 / g, conductivity 140 ⁇ S / cm, bulk specific volume 2.1 mL / g, water-soluble substance 0.08 Dispersion (B15) containing the zinc oxide powder (A15) of Example 12 and surface-treated zinc oxide powder in exactly the same manner as in Example 9, except that less than mass% and average primary particle size: 214 nm) were used. Body (C15), dispersion (D15) containing surface-treated zinc oxide powder (C15), and oil-in-water sunscreen cream (E15) were obtained.
- the obtained dispersion (B15) and dispersion (D15) were paste-like dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A15), the dispersion (B15), the dispersion (D15) and the oil-in-water sunscreen cream (E15) were evaluated.
- the evaluation results of Example 12 are shown in Table 2 and Table 3.
- Example 13 Instead of zinc oxide powder (A12), zinc oxide powder (A16) (specific surface area 2.0 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 1.1 mL / g, water-soluble matter 0.05 Dispersion (B16) containing the zinc oxide powder (A16) of Example 13 and surface-treated zinc oxide powder exactly as in Example 9, except that less than mass% and average primary particle size: 535 nm) were used.
- Body (C16), dispersion liquid (D16) containing surface-treated zinc oxide powder (C16), and oil-in-water sunscreen cream (E16) were obtained.
- the obtained dispersion (B16) and dispersion (D16) were paste-form dispersions having no sediment and good dispersibility.
- Example 13 In the same manner as in Example 9, the zinc oxide powder (A16), the dispersion liquid (B16), the dispersion liquid (D16) and the oil-in-water sunscreen cream (E16) were evaluated. The evaluation results of Example 13 are shown in Table 2 and Table 3.
- Example 14 Instead of zinc oxide powder (A12), zinc oxide powder (A17) (specific surface area 7.9 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 4.2 mL / g, water-soluble substance 0.05 Dispersion (B17) containing the zinc oxide powder (A17) of Example 14 and surface-treated zinc oxide powder in exactly the same manner as in Example 9 except that less than mass% and average primary particle size: 135 nm) were used. Body (C17), dispersion (D17) containing surface-treated zinc oxide powder (C17), and oil-in-water sunscreen cream (E17) were obtained.
- the obtained dispersion (B17) and dispersion (D17) were paste-like dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A17), the dispersion liquid (B17), the dispersion liquid (D17) and the oil-in-water sunscreen cream (E17) were evaluated.
- the evaluation results of Example 14 are shown in Table 2 and Table 3.
- Example 15 Instead of zinc oxide powder (A12), zinc oxide powder (A18) (specific surface area 2.0 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 0.5 mL / g, water-soluble matter 0.05 Dispersion (B18) containing the zinc oxide powder (A18) of Example 15 and surface-treated zinc oxide powder in exactly the same manner as in Example 9, except that less than mass% and average primary particle size: 535 nm) were used. Body (C18), dispersion (D18) containing surface-treated zinc oxide powder (C18), and oil-in-water sunscreen cream (E18) were obtained.
- the obtained dispersion (B18) and dispersion (D18) were paste-like dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A18), the dispersion (B18), the dispersion (D18) and the oil-in-water sunscreen cream (E18) were evaluated.
- the evaluation results of Example 15 are shown in Table 2 and Table 3.
- Example 16 Instead of zinc oxide powder (A12), zinc oxide powder (A19) (specific surface area 7.9 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 6.0 mL / g, water-soluble matter 0.05 A dispersion (B19) containing the zinc oxide powder (A19) of Example 16 and a surface-treated zinc oxide powder in exactly the same manner as in Example 9, except that less than mass% and average primary particle size: 135 nm) were used. Body (C19), dispersion (D19) containing surface-treated zinc oxide powder (C19), and oil-in-water sunscreen cream (E19) were obtained.
- the obtained dispersion (B19) and dispersion (D19) were paste-form dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A19), the dispersion (B19), the dispersion (D19) and the oil-in-water sunscreen cream (E19) were evaluated.
- the evaluation results of Example 16 are shown in Table 2 and Table 3.
- a surface-treated zinc oxide powder (C20) of Comparative Example 4 was obtained in the same manner as in Example 9 except that the zinc oxide powder (A20) was used instead of the zinc oxide powder (A12).
- preparation of (D20) was tried, the surface-treated zinc oxide powder (C20) was separated, and a uniform dispersion (D20) was not obtained. Therefore, sunscreen cream (E20) could not be prepared.
- the zinc oxide powder (A20) was evaluated.
- the evaluation results of Comparative Example 4 are shown in Table 4 and Table 5.
- Comparative Example 5 instead of zinc oxide powder (A12), zinc oxide powder (A21) (specific surface area 1.0 m 2 / g, conductivity 5 ⁇ S / cm, bulk specific volume 0.7 mL / g, water soluble matter 0.05 The oxidation of Comparative Example 5 was carried out in exactly the same manner as in Example 9, except that less than mass%, average primary particle size: 1070 nm, and zinc oxide powder having an average primary particle size larger than that of the example. Dispersion (B21) containing zinc powder (A21), surface-treated zinc oxide powder (C21), dispersion (D21) containing surface-treated zinc oxide powder (C21), oil-in-water sunscreen cream ( E21) was obtained.
- the obtained dispersion (B21) and dispersion (D21) were paste-like dispersions having no sediment and good dispersibility.
- the zinc oxide powder (A21), the dispersion (B21), the dispersion (D21) and the oil-in-water sunscreen cream (E21) were evaluated.
- the oil-in-water sunscreen cream (E21) had a lower SPF than the sunscreen creams of the examples, had a poor transparency when applied to the skin, and had a whitish appearance.
- the evaluation results of Comparative Example 5 are shown in Table 4 and Table 5.
- a surface-treated zinc oxide powder (C23) of Comparative Example 7 was obtained in the same manner as in Example 9, except that the zinc oxide powder (A23) was used instead of the zinc oxide powder (A12).
- the preparation of (D23) was attempted, the viscosity of the dispersion became higher than that in Example 9 and the stirring was insufficient, so that the surface-treated zinc oxide powder (C23) was separated, and a uniform dispersion was obtained. It was not obtained. Therefore, sunscreen cream (E23) could not be prepared.
- the zinc oxide powder (A23) was evaluated.
- the evaluation results of Comparative Example 7 are shown in Table 4 and Table 5.
- the present invention provides a zinc oxide powder that can be dispersed in a dispersion medium with a high solid content concentration, and a dispersion, a coating material, and a cosmetic containing the zinc oxide powder.
- the zinc oxide powder of the present invention is dispersed in a dispersion medium to form a dispersion liquid, the zinc oxide powder has high transparency, a high solid content concentration, and is uniform. Therefore, the zinc oxide powder of the present invention can improve the degree of freedom of formulation design when applied to dispersions, paints and water-based cosmetics, and its industrial value is great.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Cosmetics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Abstract
本発明の酸化亜鉛粉体は、比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下である。
Description
本発明は、酸化亜鉛粉体、分散液、塗料及び化粧料に関する。
本願は、2015年1月30日に、日本に出願された特願2015-017135号に基づき優先権を主張し、その内容をここに援用する。
本願は、2015年1月30日に、日本に出願された特願2015-017135号に基づき優先権を主張し、その内容をここに援用する。
酸化亜鉛は、紫外線遮蔽機能やガス透過抑制機能等を有し、かつ透明性も高い。このため、紫外線遮蔽フィルム、紫外線遮蔽ガラス、化粧料やガスバリアフィルム等、透明性が必要な用途に使用される。
透明性を得るための方法の1つとしては、酸化亜鉛粒子の一次粒子径を小さくすることが挙げられる。酸化亜鉛微粒子の製造方法については、熱分解法や気相法等の種々の方法が検討されている(例えば、特許文献1~7参照)。
透明性を得るための方法の1つとしては、酸化亜鉛粒子の一次粒子径を小さくすることが挙げられる。酸化亜鉛微粒子の製造方法については、熱分解法や気相法等の種々の方法が検討されている(例えば、特許文献1~7参照)。
酸化亜鉛微粒子は、透明性が高いが、微粒子であるために表面エネルギーが高い。このため、この粉体を化粧料等の最終製品に、直接配合することは難しい。また、酸化亜鉛微粒子は、一次粒子径が小さくても、配合の仕方によっては粒子同士が凝集してしまい、高透明性を維持することができない。そこで、粒子同士が凝集することを防止するために、一般的に、分散媒に酸化亜鉛粉体を分散させて分散液とし、その分散液と、他の成分とを混合する手法が用いられている。
酸化亜鉛粉体を含む分散液(以下、「酸化亜鉛分散液」と言うこともある。)は、酸化亜鉛粉体の含有量が多いほど、すなわち、固形分濃度が高いことが好ましい。その理由は、次の通りである。例えば、酸化亜鉛が有する紫外線遮蔽能を向上させる場合には、酸化亜鉛分散液中の酸化亜鉛粉体の含有量を多くする必要がある。ここで、酸化亜鉛粉体の含有量が少なく、固形分濃度が低いと、固形分濃度が高い場合に比べて、分散媒の配合量が多くなる。このため、他の成分の含有量が減り、処方の自由度が低く、付与できる機能も少ない。
しかし、酸化亜鉛分散液における酸化亜鉛粉体の含有量が多くなるに伴って、酸化亜鉛分散液は、流動性が低くなり、ミキサーやミル等で十分に撹拌することができなくなる。そのため、固形分濃度が高く、均一な酸化亜鉛分散液が得られないという課題があった。
本発明は上記事情に鑑みてなされたものであって、固形分濃度が高い状態で分散媒に分散が可能な酸化亜鉛粉体、並びに、酸化亜鉛粉体を含む分散液、塗料及び化粧料を提供することを目的とする。
本発明の酸化亜鉛粉体は、比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下であることを特徴とする。
本発明の分散液は、本発明の酸化亜鉛粉体と、分散媒と、を含有してなり、前記酸化亜鉛粉体の含有量が、50質量%以上かつ90質量%以下であることを特徴とする。
本発明の塗料は、本発明の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなり、前記酸化亜鉛粉体の含有量が、10質量%以上かつ40質量%以下であることを特徴とする。
本発明の化粧料は、本発明の酸化亜鉛粉体及び本発明の分散液からなる群から選択される少なくとも1種を含有してなることを特徴とする。
本発明の酸化亜鉛粉体によれば、比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下であるため、固形分が高く、均一な酸化亜鉛粉体を含む分散液を提供することができる。これら3つの特徴が組み合わされることにより、これまで知られていなかった予想を上回る効果が得られることを、本発明の発明者は発見した。
本発明の分散液によれば、本発明の酸化亜鉛粉体と、分散媒と、を含有してなり、前記酸化亜鉛粉体の含有量が、50質量%以上かつ90質量%以下であるため、他の成分と混合する場合、酸化亜鉛の所望の効果を得るために添加する分散媒の量を減らすことができる。
本発明の塗料によれば、本発明の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなり、前記酸化亜鉛粉体の含有量が、10質量%以上かつ40質量%以下であるため、固形分(酸化亜鉛粉体)を高濃度に含むとともに、酸化亜鉛粉体を均一に分散した塗料を得ることができる。
本発明の化粧料によれば、本発明の酸化亜鉛粉体及び本発明の分散液からなる群から選択される少なくとも1種を含有してなるため、他の成分を配合する処方の自由度を向上することができる。
本発明の酸化亜鉛粉体、分散液、塗料及び化粧料の好ましい実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[酸化亜鉛粉体]
本実施形態の酸化亜鉛粉体は、比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下である。
なお、本発明の酸化亜鉛粉体は特許文献1~7に記載の方法を使用して製造してもよいが、本願発明の物性を得るためには、更に洗浄や材料の選択や製造条件の選択などの工程を必要に応じて行う必要がある。
本実施形態の酸化亜鉛粉体は、比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下である。
なお、本発明の酸化亜鉛粉体は特許文献1~7に記載の方法を使用して製造してもよいが、本願発明の物性を得るためには、更に洗浄や材料の選択や製造条件の選択などの工程を必要に応じて行う必要がある。
本実施形態の酸化亜鉛粉体における比表面積とは、全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用い、BET法により測定された値を意味する。
本実施形態の酸化亜鉛粉体における導電率とは、次の方法により測定された値を意味する。
酸化亜鉛粉体10gと、純水75gとを混合し、この混合液をホットプレート上で10分間煮沸する。次いで、混合液を室温まで放冷した後、酸化亜鉛粉体と純水の合計量が85gになるように、混合液に純水を加える。次いで、遠心分離により、混合液を固液分離し、上澄み液の導電率を導電率計(商品名:ES-12、堀場製作所社製)により測定された値を意味する。
酸化亜鉛粉体10gと、純水75gとを混合し、この混合液をホットプレート上で10分間煮沸する。次いで、混合液を室温まで放冷した後、酸化亜鉛粉体と純水の合計量が85gになるように、混合液に純水を加える。次いで、遠心分離により、混合液を固液分離し、上澄み液の導電率を導電率計(商品名:ES-12、堀場製作所社製)により測定された値を意味する。
本実施形態の酸化亜鉛粉体における嵩比容積とは、JIS K5101-12-1(顔料試験方法-第12部:見掛け密度又は見掛け比容-第1節:静置法)に準じて測定された値を意味する。
本実施形態の酸化亜鉛粉体における導電率は、150μS/cm以下であり、100μS/cm以下であることが好ましく、50μS/cm以下であることがより好ましく、30μS/cm以下であることがさらに好ましく、10μS/cm以下であることが最も好ましい。また、本実施形態の酸化亜鉛粉体における導電率の下限値は、0μS/cmである。
酸化亜鉛粉体の導電率を150μS/cm以下とすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
ここで、導電率が150μS/cmを超えると、酸化亜鉛粉体が高濃度で含有されているため、酸化亜鉛粉体由来のイオン成分が分散液の電荷バランスに与える影響が大きくなり、分散安定性が低下するため好ましくない。また、分散剤を用いた場合であっても、酸化亜鉛粉体が高濃度で含有されているため、酸化亜鉛粉体由来のイオン成分が分散剤に吸着して分散効果を阻害する効果が大きくなり、分散安定性が低下するため好ましくない。
酸化亜鉛粉体の導電率を150μS/cm以下とすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
ここで、導電率が150μS/cmを超えると、酸化亜鉛粉体が高濃度で含有されているため、酸化亜鉛粉体由来のイオン成分が分散液の電荷バランスに与える影響が大きくなり、分散安定性が低下するため好ましくない。また、分散剤を用いた場合であっても、酸化亜鉛粉体が高濃度で含有されているため、酸化亜鉛粉体由来のイオン成分が分散剤に吸着して分散効果を阻害する効果が大きくなり、分散安定性が低下するため好ましくない。
酸化亜鉛粉体の導電率を上記の範囲内に調整する方法としては、例えば、酸化亜鉛粉体における不純物の含有量を減らす方法が挙げられる。そのため、酸化亜鉛粉体を作製する場合に、純度の高い原料を用いたり、作製工程の加熱分解温度を適宜調整したり、作製工程中の不純物の混入を防止したり、作製工程の過程で適宜洗浄工程を設けたりすること等により、導電率の低い酸化亜鉛粉体を得ることができる。
また、本実施形態の酸化亜鉛粉体は、水に可溶な物質(以下、「水可溶物」と言う。)の含有量が少ないことが好ましい。具体的には、酸化亜鉛粉体における水可溶物の含有量が0.08質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。
酸化亜鉛粉体における水可溶物の含有量を上記の範囲内にする、すなわち、なるべく少なくすることにより、分散液中の酸化亜鉛粉体由来の水可溶物が分散液の安定性を阻害し難くなる。このため、酸化亜鉛が高濃度で分散されていても、分散液の安定性を保つことができる。
酸化亜鉛粉体における水可溶物の含有量を上記の範囲内にする、すなわち、なるべく少なくすることにより、分散液中の酸化亜鉛粉体由来の水可溶物が分散液の安定性を阻害し難くなる。このため、酸化亜鉛が高濃度で分散されていても、分散液の安定性を保つことができる。
本実施形態の酸化亜鉛粉体における水可溶物の含有量とは、次の方法により測定された値を意味する。なお、この測定方法は、医薬部外品原料規格2006(外原規)に記載されている「67.水可溶物試験法」に準ずる測定方法である。
酸化亜鉛粉体5gを秤量し、この酸化亜鉛粉体に純水70mLを加えて5分間煮沸する。次いで、酸化亜鉛粉体と純水の混合液を冷却した後、この混合液に純水を加えて100mLとし、さらに、混合し、その後ろ過する。次いで、初めのろ液10mLを除き、その後得られた、次のろ液40mLを採取する。この採取したろ液を水浴上で蒸発乾固し、次いで、105℃で1時間乾燥させて、乾燥残留物の質量を測定する。この乾燥残留物の質量を、最初に秤量した酸化亜鉛粉体の質量で割った値の百分率を、酸化亜鉛粉体における水可溶物の含有量とする。
酸化亜鉛粉体5gを秤量し、この酸化亜鉛粉体に純水70mLを加えて5分間煮沸する。次いで、酸化亜鉛粉体と純水の混合液を冷却した後、この混合液に純水を加えて100mLとし、さらに、混合し、その後ろ過する。次いで、初めのろ液10mLを除き、その後得られた、次のろ液40mLを採取する。この採取したろ液を水浴上で蒸発乾固し、次いで、105℃で1時間乾燥させて、乾燥残留物の質量を測定する。この乾燥残留物の質量を、最初に秤量した酸化亜鉛粉体の質量で割った値の百分率を、酸化亜鉛粉体における水可溶物の含有量とする。
本実施形態の酸化亜鉛粉体の好ましい実施の形態としては、後述する第1の実施形態と第2の実施形態が挙げられる。
(第1の実施形態)
第1の実施形態の酸化亜鉛粉体における比表面積は8m2/g以上かつ65m2/g以下であり、15m2/g以上かつ60m2/g以下であることが好ましく、20m2/g以上かつ50m2/g以下であることがより好ましく、25m2/g以上かつ45m2/g以下であることがさらに好ましい。
酸化亜鉛粉体の比表面積を上記の範囲内に調整することにより、分散媒に、酸化亜鉛粉体を高濃度で分散させることができる。加えて、この酸化亜鉛粉体を含有する分散液、塗料、化粧料等の透明性を高くすることができる。
比表面積が8m2/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、比表面積が65m2/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
第1の実施形態の酸化亜鉛粉体における比表面積は8m2/g以上かつ65m2/g以下であり、15m2/g以上かつ60m2/g以下であることが好ましく、20m2/g以上かつ50m2/g以下であることがより好ましく、25m2/g以上かつ45m2/g以下であることがさらに好ましい。
酸化亜鉛粉体の比表面積を上記の範囲内に調整することにより、分散媒に、酸化亜鉛粉体を高濃度で分散させることができる。加えて、この酸化亜鉛粉体を含有する分散液、塗料、化粧料等の透明性を高くすることができる。
比表面積が8m2/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、比表面積が65m2/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
酸化亜鉛粉体の比表面積を上記の範囲内に調整する方法としては、特に限定されないが、例えば、BET比表面積から換算した平均一次粒子径(平均粒子径)を15nm以上かつ135nm以下に調整する方法が挙げられる。一般的に、一次粒子径が大きくなれば比表面積は小さくなり、一次粒子径が小さくなれば比表面積は大きくなる。
また、粒子形状を調整したり、粒子に細孔を設けたりすることによっても、酸化亜鉛粉体の比表面積を調整することができる。
また、粒子形状を調整したり、粒子に細孔を設けたりすることによっても、酸化亜鉛粉体の比表面積を調整することができる。
第1の実施形態の酸化亜鉛粉体における嵩比容積は、1mL/g以上かつ10mL/g以下であり、1.5mL/g以上かつ9.5mL/g以下であることが好ましく、3.0mL/g以上かつ8.0mL/g以下であることがより好ましく、4.0mL/g以上かつ7.0mL/g以下であることがさらに好ましい。
酸化亜鉛粉体の嵩比容積を上記の範囲内にすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
嵩比容積が1mL/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、嵩比容積が10mL/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
酸化亜鉛粉体の嵩比容積を上記の範囲内にすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
嵩比容積が1mL/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、嵩比容積が10mL/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
酸化亜鉛粉体の嵩比容積を上記の範囲内に制御する方法としては、特に限定されない。
例えば、特許文献2に記載されているような熱分解法で酸化亜鉛粉体を作製する場合では、原料となるシュウ酸亜鉛、水酸化亜鉛、炭酸亜鉛、及び塩基性炭酸亜鉛等の嵩比容積を調整したり、熱分解温度を調整したりすること等により、酸化亜鉛粉体の嵩比容積を上記の範囲内に制御することができる。
例えば、特許文献4に記載されているような気相法で酸化亜鉛を作製する場合では、作製過程における温度を適宜調整することにより、酸化亜鉛粉体の嵩比容積を上記の範囲内に制御することができる。
例えば、特許文献2に記載されているような熱分解法で酸化亜鉛粉体を作製する場合では、原料となるシュウ酸亜鉛、水酸化亜鉛、炭酸亜鉛、及び塩基性炭酸亜鉛等の嵩比容積を調整したり、熱分解温度を調整したりすること等により、酸化亜鉛粉体の嵩比容積を上記の範囲内に制御することができる。
例えば、特許文献4に記載されているような気相法で酸化亜鉛を作製する場合では、作製過程における温度を適宜調整することにより、酸化亜鉛粉体の嵩比容積を上記の範囲内に制御することができる。
第1の実施形態の酸化亜鉛粉体の平均粒子径は任意に選択できる。例を挙げれば、一般的には15nm~75nmを好ましく使用することができ、20nm~55nmであることがより好ましく、25nm~45nmであることがさらに好ましい。平均粒子径は、BET比表面積値を(1)式によって算出することができる。なお、この換算方法は、第2の実施形態でも同様である。
平均粒子径=6000/(BET比表面積×ρ)・・・(1)
(式中、ρは酸化亜鉛粒子の密度で、本明細書ではρ=5.606g/cm3として換算した。)
平均粒子径=6000/(BET比表面積×ρ)・・・(1)
(式中、ρは酸化亜鉛粒子の密度で、本明細書ではρ=5.606g/cm3として換算した。)
第1の実施形態の酸化亜鉛粉体の製造方法は、特に限定されない。製造方法には、上述の酸化亜鉛粉体の比表面積の調整方法、酸化亜鉛粉体の導電率の調整方法、酸化亜鉛粉体の嵩比容積の調整方法等を好ましく含み、酸化亜鉛粉体の用途に応じて、これらの調整方法を適宜実施する方法が挙げられる。
第1の実施形態の酸化亜鉛粉体の製造方法の例としては、例えば、嵩比容積が1.0mL/g~10.0mL/gである炭酸亜鉛を、300℃~700℃、好ましくは400℃~600℃で、熱分解及び焼結(粒成長)する方法が挙げられる。
第1の実施形態の酸化亜鉛粉体の製造方法の例としては、例えば、嵩比容積が1.0mL/g~10.0mL/gである炭酸亜鉛を、300℃~700℃、好ましくは400℃~600℃で、熱分解及び焼結(粒成長)する方法が挙げられる。
(第2の実施形態)
本実施形態の酸化亜鉛粉体における比表面積は1.5m2/g以上かつ8.0m2/g未満であり、2.0m2/g以上かつ7.5m2/g以下であることが好ましく、3.0m2/g以上かつ7.0m2/g以下であることがより好ましい。
酸化亜鉛粉体の比表面積を上記の範囲内に調整することにより、分散媒に、酸化亜鉛粉体を高濃度で分散させることができる。加えて、この酸化亜鉛粉体を含有する分散液、塗料、化粧料等の透明性を維持することができる。
本実施形態の酸化亜鉛粉体における比表面積は1.5m2/g以上かつ8.0m2/g未満であり、2.0m2/g以上かつ7.5m2/g以下であることが好ましく、3.0m2/g以上かつ7.0m2/g以下であることがより好ましい。
酸化亜鉛粉体の比表面積を上記の範囲内に調整することにより、分散媒に、酸化亜鉛粉体を高濃度で分散させることができる。加えて、この酸化亜鉛粉体を含有する分散液、塗料、化粧料等の透明性を維持することができる。
比表面積が上記の範囲内である酸化亜鉛粉体は、ナチュラルオイルと併用することができるため好ましい。
ここで、ナチュラルオイルは、自然由来のオイル成分であって、化粧料として使用できるものであれば特に限定されない。ナチュラルオイルは、植物由来であってもよく、動物由来であってもよい。このようなナチュラルオイルとしては、例えば、オレイン酸、ホホバ油、オリーブ油、ココナッツオイル、グレープシード油、ヒマシ油、米ぬか油、馬油、ミンク油、スクワラン等が挙げられる。
ここで、ナチュラルオイルは、自然由来のオイル成分であって、化粧料として使用できるものであれば特に限定されない。ナチュラルオイルは、植物由来であってもよく、動物由来であってもよい。このようなナチュラルオイルとしては、例えば、オレイン酸、ホホバ油、オリーブ油、ココナッツオイル、グレープシード油、ヒマシ油、米ぬか油、馬油、ミンク油、スクワラン等が挙げられる。
また、比表面積が上記の範囲内である酸化亜鉛粉体は、臨界波長が370nm以上となり、この酸化亜鉛粉体を含む化粧料が長波長紫外線(UVA)及び短波長紫外線(UVB)の広範囲の紫外線を遮蔽できるため好ましい。
比表面積が1.5m2/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が著しく低下する傾向があるため好ましくない。一方、比表面積が8.0m2/g以上であると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
比表面積が1.5m2/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が著しく低下する傾向があるため好ましくない。一方、比表面積が8.0m2/g以上であると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
酸化亜鉛粉体の比表面積を上記の範囲内に調整する方法としては、特に限定されないが、例えば、BET比表面積から換算した平均一次粒子径を、好ましくは135nmを超えかつ715nm以下、より好ましくは140nm以上かつ535nm以下、さらに好ましくは150nm以上かつ360nm以下に調整する方法が挙げられる。
第2の実施形態の酸化亜鉛粉体における嵩比容積は、0.5mL/g以上かつ6mL/g以下であり、1mL/g以上かつ5mL/g以下であることが好ましく、2mL/g以上かつ4mL/g以下であることがより好ましい。
酸化亜鉛粉体の嵩比容積を上記の範囲内にすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
嵩比容積が0.5mL/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、嵩比容積が6mL/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
酸化亜鉛粉体の嵩比容積を上記の範囲内にすることにより、分散媒に、酸化亜鉛粉体を高濃度、かつ均一に分散させることができる。
嵩比容積が0.5mL/g未満では、酸化亜鉛粉体が高濃度で含有された場合に、分散液の透明性が低下する傾向があるため好ましくない。一方、嵩比容積が6mL/gを超えると、酸化亜鉛粉体が高濃度で含有された場合に、分散液の粘度が上昇しやすくなり、均一で流動性の高い分散液が得られ難くなる傾向があるため好ましくない。
第2の実施形態の嵩比容積を上記の範囲内に制御する方法としては、特に限定されない。例えば、上述の第1の実施形態と同様に制御することができる。
第2の実施形態の酸化亜鉛粉体の一次粒子径の最大値は、900nm以下であることが好ましく、800nm以下であることがより好ましく、600nm以下であることがさらに好ましく、400nm以下であることが最も好ましい。
一次粒子径が900nmを超える酸化亜鉛が含まれている場合、この酸化亜鉛粉体を用いて作製した化粧料を肌に塗布した際に、外観が白っぽくなってしまうため好ましくない。
一次粒子径が900nmを超える酸化亜鉛が含まれている場合、この酸化亜鉛粉体を用いて作製した化粧料を肌に塗布した際に、外観が白っぽくなってしまうため好ましくない。
第2の実施形態における一次粒子径とは、走査型電子顕微鏡(SEM)で酸化亜鉛の一次粒子を150個選び、これらの一次粒子の中心点を通る複数の径のうち最大の径である長径を意味する。
第2の実施形態における一次粒子径の最大値とは、上記の方法で測定した150個の一次粒子径の中で最も大きい値を意味する。
第2の実施形態における一次粒子径の最大値とは、上記の方法で測定した150個の一次粒子径の中で最も大きい値を意味する。
第2の実施形態の酸化亜鉛粉体の製造方法は、特に限定されないが、上述の酸化亜鉛粉体の比表面積の調整方法、酸化亜鉛粉体の導電率の調整方法、酸化亜鉛粉体の嵩比容積の調整方法等を含み、酸化亜鉛粉体の用途に応じて、これらの調整方法を適宜実施する方法が挙げられる。
第2の実施形態の酸化亜鉛粉体の製造方法としては、例えば、嵩比容積が0.5mL/g~6mL/gである炭酸亜鉛を、300℃~1000℃、好ましくは400℃~800℃で熱分解及び焼結(粒成長)する方法が挙げられる。
第2の実施形態の酸化亜鉛粉体の製造方法としては、例えば、嵩比容積が0.5mL/g~6mL/gである炭酸亜鉛を、300℃~1000℃、好ましくは400℃~800℃で熱分解及び焼結(粒成長)する方法が挙げられる。
[表面処理酸化亜鉛粉体]
本実施形態の酸化亜鉛粉体は、その表面の少なくとも一部が、無機成分及び有機成分の少なくとも一方で表面処理されていてもよい。このように無機成分及び有機成分の少なくとも一方で表面処理されている酸化亜鉛粉体を、表面処理酸化亜鉛粉体と言う。
無機成分と有機成分は、酸化亜鉛粉体の用途に応じて、適宜選択される。
本実施形態の酸化亜鉛粉体は、その表面の少なくとも一部が、無機成分及び有機成分の少なくとも一方で表面処理されていてもよい。このように無機成分及び有機成分の少なくとも一方で表面処理されている酸化亜鉛粉体を、表面処理酸化亜鉛粉体と言う。
無機成分と有機成分は、酸化亜鉛粉体の用途に応じて、適宜選択される。
本実施形態の表面処理酸化亜鉛粉体が化粧料に用いられる場合、使用する無機成分及び有機成分としては、一般的に化粧料に用いられ表面処理剤であれば特に限定されない。
無機成分としては、例えば、シリカ、及びアルミナ等から選択される少なくとも一種が挙げられる。
有機成分としては、例えば、シリコーン化合物、オルガノポリシロキサン、脂肪酸、脂肪酸石鹸、脂肪酸エステル及び有機チタネート化合物からなる群から選択される少なくとも1種が挙げられる。
また、無機成分または有機成分としては、界面活性剤を用いてもよい。
このような無機成分及び有機成分の少なくとも一方で、酸化亜鉛粉体を表面処理した場合、酸化亜鉛の表面活性を抑制したり、酸化亜鉛の分散媒への分散性を向上したりすることができる。
無機成分としては、例えば、シリカ、及びアルミナ等から選択される少なくとも一種が挙げられる。
有機成分としては、例えば、シリコーン化合物、オルガノポリシロキサン、脂肪酸、脂肪酸石鹸、脂肪酸エステル及び有機チタネート化合物からなる群から選択される少なくとも1種が挙げられる。
また、無機成分または有機成分としては、界面活性剤を用いてもよい。
このような無機成分及び有機成分の少なくとも一方で、酸化亜鉛粉体を表面処理した場合、酸化亜鉛の表面活性を抑制したり、酸化亜鉛の分散媒への分散性を向上したりすることができる。
表面処理に用いられるシリコーン化合物としては、例えば、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーンオイル; メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン等のアルキルシラン; トリフルオロメチルエチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のフルオロアルキルシラン、メチコン、ハイドロゲンジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン、(アクリレーツ/アクリル酸トリデシル/メタクリル酸トリエトキシシリルプロピル/メタクリル酸ジメチコン)コポリマー、トリエトキシカプリリルシラン等が挙げられる。これらのシリコーン化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、シリコーン化合物としては、これらのシリコーン化合物の共重合体を用いてもよい。
脂肪酸としては、例えば、パルミチン酸、イソステアリン酸、ステアリン酸、ラウリン酸、ミリスチン酸、ベヘニン酸、オレイン酸、ロジン酸、12-ヒドロキシステアリン酸等が挙げられる。
脂肪酸石鹸としては、例えば、ステアリン酸アルミニウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸アルミニウム等が挙げられる。
脂肪酸エステルとしては、例えば、デキストリン脂肪酸エステル、コレステロール脂肪酸エステル、ショ糖脂肪酸エステル、デンプン脂肪酸エステル等が挙げられる。
脂肪酸石鹸としては、例えば、ステアリン酸アルミニウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸アルミニウム等が挙げられる。
脂肪酸エステルとしては、例えば、デキストリン脂肪酸エステル、コレステロール脂肪酸エステル、ショ糖脂肪酸エステル、デンプン脂肪酸エステル等が挙げられる。
有機チタネート化合物としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ドデシル)ベンゼンスルホニルチタネート、ネオペンチル(ジアリル)オキシートリ(ジオクチル)ホスフェイトチタネート、ネオペンチル(ジアリル)オキシートリネオドデカノイルチタネート等が挙げられる。
本実施形態の表面処理酸化亜鉛粉体が、紫外線遮蔽フィルムやガスバリア性フィルム等の工業用途で用いられる場合、化粧料に用いられる無機成分や有機成分の他に、アニオン系分散剤、カチオン系分散剤、ノニオン系分散剤、シランカップリング剤、湿潤分散剤等の分散剤等、すなわち、粒子を分散させる際に使用される一般的な分散剤も、適宜選択して用いることができる。
このような表面処理をした場合、酸化亜鉛の表面活性を抑制したり、酸化亜鉛の分散媒への分散性を向上したりすることができる。
このような表面処理をした場合、酸化亜鉛の表面活性を抑制したり、酸化亜鉛の分散媒への分散性を向上したりすることができる。
本実施形態の表面処理酸化亜鉛粉体の製造方法は、特に限定されず、表面処理に用いる成分に応じて、公知の方法で適宜実施すればよい。
[分散液]
本実施形態の分散液は、本実施形態の酸化亜鉛粉体と、分散媒と、を含有してなり、酸化亜鉛粉体の含有量が、50質量%以上かつ90質量%以下である。
なお、本実施形態の分散液は、粘度が高いペースト状の分散体も含む。また、本実施形態の分散液は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。さらに、本実施形態の分散液は、酸化亜鉛粉体として、表面処理されていないもの、並びに、その表面の少なくとも一部が、無機成分及び有機成分の少なくとも一方で表面処理されているもの(表面処理酸化亜鉛粉体)の少なくともいずれか一方を含む。
本実施形態の分散液は、本実施形態の酸化亜鉛粉体と、分散媒と、を含有してなり、酸化亜鉛粉体の含有量が、50質量%以上かつ90質量%以下である。
なお、本実施形態の分散液は、粘度が高いペースト状の分散体も含む。また、本実施形態の分散液は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。さらに、本実施形態の分散液は、酸化亜鉛粉体として、表面処理されていないもの、並びに、その表面の少なくとも一部が、無機成分及び有機成分の少なくとも一方で表面処理されているもの(表面処理酸化亜鉛粉体)の少なくともいずれか一方を含む。
本実施形態の分散液における酸化亜鉛粉体の含有量は、50質量%以上かつ90質量%以下であり、60質量%以上かつ80質量%以下であることが好ましく、64質量%以上かつ75質量%以下であることがより好ましく、64質量%以上かつ70質量%以下であることがさらに好ましい。
分散液における酸化亜鉛粉体の含有量が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含むとともに、酸化亜鉛粉体を均一に分散した分散液を得ることができる。
なお、「均一」とは、分散液を目視で観察したとき、酸化亜鉛粉体の分離等がなく、一様に酸化亜鉛粉体が混合されている状態を意味する。
分散液における酸化亜鉛粉体の含有量が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含むとともに、酸化亜鉛粉体を均一に分散した分散液を得ることができる。
なお、「均一」とは、分散液を目視で観察したとき、酸化亜鉛粉体の分離等がなく、一様に酸化亜鉛粉体が混合されている状態を意味する。
本実施形態の分散液の粘度は、5Pa・s以上かつ300Pa・s以下であることが好ましく、8Pa・s以上かつ100Pa・s以下であることがより好ましく、10Pa・s以上かつ80Pa・s以下であることがさらに好ましく、15Pa・s以上かつ60Pa・s以下であることが最も好ましい。
分散液の粘度が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含んでいても、取り扱いが容易な分散液を得ることができる。
なお、本実施形態の分散液の粘度の好ましい範囲は、酸化亜鉛粉体として、表面処理されていないものを含む場合も、表面処理酸化亜鉛粉体を含む場合も同様である。
分散液の粘度が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含んでいても、取り扱いが容易な分散液を得ることができる。
なお、本実施形態の分散液の粘度の好ましい範囲は、酸化亜鉛粉体として、表面処理されていないものを含む場合も、表面処理酸化亜鉛粉体を含む場合も同様である。
分散媒は、分散液の用途に応じて、適宜選択される。好適な分散媒を以下に例示するが、本実施形態における分散媒は、これらに限定されない。
分散媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;が好適に用いられる。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
分散媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;が好適に用いられる。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
また、他の分散媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;シクロヘキサン等の環状炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類;ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類;も好適に用いられる。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
また、さらに他の分散媒としては、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類;アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類;も好適に用いられる。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
また、上記とはさらに異なる他の分散媒としては、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコールなどの高級アルコール等の疎水性の分散媒を用いてもよい。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
以上述べた様々な種類の分散媒の例は、必要に応じて1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
以上述べた様々な種類の分散媒の例は、必要に応じて1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
本実施形態の分散液は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。添加剤としては、例えば、分散剤、安定剤、水溶性バインダー、増粘剤、油溶性防腐剤、紫外線吸収剤、油溶性薬剤、油溶性色素類、油溶性蛋白質類、植物油、動物油等が挙げられる。
本実施形態の分散液のうち、上述の第2の実施形態の酸化亜鉛粉体を含む分散液の臨界波長(Critical Wavelength)は、370nm以上であることが好ましい。分散液の臨界波長が370nm以上であることにより、この分散液を含有する化粧料は、臨界波長が370nm以上となり、長波長紫外線(UVA)及び短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
なお、本実施形態の分散液の臨界波長の好ましい範囲は、酸化亜鉛粉体として、表面処理されていないものを含む場合も、表面処理酸化亜鉛粉体を含む場合も同様である。
なお、本実施形態の分散液の臨界波長の好ましい範囲は、酸化亜鉛粉体として、表面処理されていないものを含む場合も、表面処理酸化亜鉛粉体を含む場合も同様である。
本実施形態の分散液の製造方法は、特に限定されない。例えば、本実施形態の酸化亜鉛粉体と、分散媒とを、公知の分散装置で、機械的に分散する方法が挙げられる。
分散装置は必要に応じて選択でき、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
分散装置は必要に応じて選択でき、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
本実施形態の分散液は、化粧料の他、紫外線遮蔽機能やガス透過抑制機能等を有する塗料等に用いることができる。
[塗料]
本実施形態の塗料は、本実施形態の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなり、酸化亜鉛粉体の含有量が10質量%以上かつ40質量%以下である。
本実施形態の分散液は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。
本実施形態の塗料は、本実施形態の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなり、酸化亜鉛粉体の含有量が10質量%以上かつ40質量%以下である。
本実施形態の分散液は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。
本実施形態の塗料における酸化亜鉛粉体の含有量は、10質量%以上かつ40質量%以下であり、15質量%以上かつ35質量%以下であることが好ましく、20質量%以上かつ30質量%以下であることがより好ましい。
塗料における酸化亜鉛粉体の含有量が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含むとともに、酸化亜鉛粉体を均一に分散した塗料を得ることができる。
塗料における酸化亜鉛粉体の含有量が上記の範囲内であることにより、固形分(酸化亜鉛粉体)を高濃度に含むとともに、酸化亜鉛粉体を均一に分散した塗料を得ることができる。
分散媒としては、工業用途で一般的に用いられるものであれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール等のアルコール類、酢酸メチル、酢酸エチル、トルエン、メチルエチルケトン、メチルイソブチルケトン等の有機溶媒が挙げられる。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
本実施形態の塗料における分散媒の含有量は、特に限定されず、目的とする塗料の特性に応じて適宜調整される。
これらの分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
本実施形態の塗料における分散媒の含有量は、特に限定されず、目的とする塗料の特性に応じて適宜調整される。
樹脂としては、工業用途で一般的に用いられるものであれば特に限定されないが、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。
これらの樹脂は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
本実施形態の塗料における樹脂の含有量は、特に限定されず、目的とする塗料の特性に応じて適宜調整される。
これらの樹脂は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
本実施形態の塗料における樹脂の含有量は、特に限定されず、目的とする塗料の特性に応じて適宜調整される。
本実施形態の塗料は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。添加剤としては、例えば、重合開始剤、分散剤、防腐剤等が挙げられる。
本実施形態の塗料の製造方法は、特に限定されないが、例えば、本実施形態の酸化亜鉛粉体と、樹脂と、分散媒とを、公知の混合装置で、機械的に混合する方法が挙げられる。
また、上述した分散液と、樹脂とを、公知の混合装置で、機械的に混合する方法が挙げられる。
混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー等が挙げられる。
また、上述した分散液と、樹脂とを、公知の混合装置で、機械的に混合する方法が挙げられる。
混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー等が挙げられる。
本実施形態の塗料を、ロールコート法、フローコート法、スプレーコート法、スクリーン印刷法、はけ塗り法、浸漬法等の通常の塗布方法により、必要に応じて選択される基材に、例えば、ポリエステルフィルム等のプラスチック基材等に塗布することにより、塗膜を形成することができる。これらの塗膜は、紫外線遮蔽膜やガスバリア膜として活用することができる。
[化粧料]
本実施形態の一実施形態の化粧料は、本実施形態の酸化亜鉛粉体及び本実施形態の分散液からなる群から選択される少なくとも1種を含有してなる。
別の一実施形態としては、基剤と、基剤に分散される、本実施形態の酸化亜鉛粉体及び本実施形態の分散液からなる群から選択される少なくとも1種を含有してなる。
本実施形態の化粧料は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。
本実施形態の化粧料は、例えば、本実施形態の分散液を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の基剤に、従来通りに配合することにより得られる。
また、本実施形態の酸化亜鉛粉体を油相または水相に配合して、O/W型またはW/O型のエマルションとしてから、基剤と配合してもよい。
以下、日焼け止め化粧料について具体的に説明する。
本実施形態の一実施形態の化粧料は、本実施形態の酸化亜鉛粉体及び本実施形態の分散液からなる群から選択される少なくとも1種を含有してなる。
別の一実施形態としては、基剤と、基剤に分散される、本実施形態の酸化亜鉛粉体及び本実施形態の分散液からなる群から選択される少なくとも1種を含有してなる。
本実施形態の化粧料は、酸化亜鉛粉体として、上述の第1の実施形態の酸化亜鉛粉体または第2の実施形態の酸化亜鉛粉体を含む。
本実施形態の化粧料は、例えば、本実施形態の分散液を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の基剤に、従来通りに配合することにより得られる。
また、本実施形態の酸化亜鉛粉体を油相または水相に配合して、O/W型またはW/O型のエマルションとしてから、基剤と配合してもよい。
以下、日焼け止め化粧料について具体的に説明する。
日焼け止め化粧料における酸化亜鉛粉体の含有率は、紫外線、特に長波長紫外線(UVA)を効果的に遮蔽するためには、1質量%以上かつ30質量%以下であることが好ましく、3質量%以上かつ20質量%以下であることがより好ましく、5質量%以上かつ15質量%以下であることがさらに好ましい。
日焼け止め化粧料は、必要に応じて、疎水性分散媒、酸化亜鉛粉体以外の無機微粒子や無機顔料、親水性分散媒、油脂、界面活性剤、保湿剤、増粘剤、pH調整剤、栄養剤、酸化防止剤、香料等を含んでいてもよい。
疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
酸化亜鉛粉体以外の無機微粒子や無機顔料としては、例えば、炭酸カルシウム、リン酸カルシウム(アパタイト)、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、カオリン、タルク、酸化チタン、酸化アルミニウム、黄酸化鉄、γ-酸化鉄、チタン酸コバルト、コバルトバイオレット、酸化ケイ素等が挙げられる。
日焼け止め化粧料は、さらに有機系紫外線吸収剤を少なくとも1種含有していてもよい。
有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤、これら以外の有機系紫外線吸収剤等が挙げられる。
有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤、これら以外の有機系紫外線吸収剤等が挙げられる。
ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール等が挙げられる。
ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
安息香酸系紫外線吸収剤としては、例えば、パラアミノ安息香酸 (PABA)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル、N,N-ジメチルPABAメチルエステル等が挙げられる。
アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
ケイ皮酸系紫外線吸収剤としては、例えば、オクチルメトキシシンナメート、ジ-パラメトキシケイ皮酸-モノ-2-エチルヘキサン酸グリセリル、オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、オクチル-p-メトキシシンナメート(2-エチルヘキシル-p-メトキシシンナメート)、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等が挙げられる。
シリコーン系ケイ皮酸紫外線吸収剤としては、例えば、[3-ビス(トリメチルシロキシ)メチルシリル-1-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリル-3-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリル-1-メチルプロピル]-3,4-ジメトキシシンナメート等が挙げられる。
上記以外の有機系紫外線吸収剤としては、例えば、3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン、シリコーン変性紫外線吸収剤、フッ素変性紫外線吸収剤等が挙げられる。
本実施形態の化粧料のうち、上述の第2の実施形態の酸化亜鉛粉体を含む化粧料の臨界波長(Critical Wavelength)は、370nm以上であることが好ましい。化粧料の臨界波長が370nm以上であることにより、長波長紫外線(UVA)及び短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
以上説明したように、本実施形態の酸化亜鉛粉体によれば、比表面積と、導電率と、嵩比容積とを所定の範囲に調整したため、この酸化亜鉛粉体を50質量%以上分散媒に分散させても、均一に分散させることができる。そして、分散媒に酸化亜鉛粉体が高濃度に含有されていても、均一に分散されているため、他の成分と混合した場合には、従来通りの高透明性の効果を得ることができる。
また、酸化亜鉛粉体が高濃度に分散された状態で、他の成分と混合することが可能になるため、他の成分を含有させる配合の自由度を向上することができる。
また、酸化亜鉛粉体における水可溶物の含有量が0.08質量%以下である場合には、より固形分濃度が高く、かつ均一な優れた分散液を得ることができ好ましい。
また、酸化亜鉛粉体が高濃度に分散された状態で、他の成分と混合することが可能になるため、他の成分を含有させる配合の自由度を向上することができる。
また、酸化亜鉛粉体における水可溶物の含有量が0.08質量%以下である場合には、より固形分濃度が高く、かつ均一な優れた分散液を得ることができ好ましい。
本実施形態の表面処理酸化亜鉛粉体によれば、本実施形態の酸化亜鉛粉体の表面の少なくとも一部が、無機成分及び有機成分の少なくとも一方で表面処理されていることが好ましい。この場合、酸化亜鉛の表面活性を抑制することができ、また、分散媒への分散性を向上することができる。そして、酸化亜鉛粉体が高濃度に含有されていても、均一に分散されているため、他の成分と混合した場合には、従来通りの高透明性の効果を得ることができる。
また、表面処理酸化亜鉛粉体が高濃度に分散された状態で、他の成分と混合することが可能になるため、他の成分を含有させる配合の自由度を向上することができる。
また、表面処理酸化亜鉛粉体における水可溶物の含有量が0.08質量%以下である場合には、より固形分濃度が高く、かつ均一な分散液を得ることができる。
また、表面処理酸化亜鉛粉体が高濃度に分散された状態で、他の成分と混合することが可能になるため、他の成分を含有させる配合の自由度を向上することができる。
また、表面処理酸化亜鉛粉体における水可溶物の含有量が0.08質量%以下である場合には、より固形分濃度が高く、かつ均一な分散液を得ることができる。
本実施形態の分散液によれば、固形分濃度が高く、かつ均一な分散液であるため、他の成分と混合する場合、酸化亜鉛の所望の効果を得るために添加する分散媒の量を減らすことができる。
また、分散液の粘度が5Pa・s以上かつ300Pa・s以下である場合には、分散液の取り扱いが容易となる。
また、分散液の粘度が5Pa・s以上かつ300Pa・s以下である場合には、分散液の取り扱いが容易となる。
本実施形態の塗料によれば、固形分濃度が高く、かつ均一な分散液であるため、他の成分と混合する場合、酸化亜鉛の所望の効果を得るために添加する分散媒の量を減らすことができる。
本実施形態の化粧料によれば、酸化亜鉛粉体を高濃度に配合することができるため、他の成分を配合する処方の自由度が高まる。また、他の多くの成分を配合し易くなるため、多機能の化粧料を得ることができる。
以下、実施例及び比較例により本発明の好ましい例をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
「酸化亜鉛含有分散液の作製」
酸化亜鉛粉体(A1)(比表面積35m2/g、導電率8μS/cm、嵩比容積5.2mL/g、平均一次粒子径:31nm)を用意した。その後、シクロペンタシロキサン28.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン6.5質量部と、酸化亜鉛粉体(A1)65質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、実施例1の分散液(B1)を調製した。
得られた分散液(B1)は、沈降物がなく、分散性が良好なペースト状の分散液であった。なお、平均一次粒子径は、比表面積値(35m2/g)を用いて(1)式で算出した値である。
「酸化亜鉛含有分散液の作製」
酸化亜鉛粉体(A1)(比表面積35m2/g、導電率8μS/cm、嵩比容積5.2mL/g、平均一次粒子径:31nm)を用意した。その後、シクロペンタシロキサン28.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン6.5質量部と、酸化亜鉛粉体(A1)65質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、実施例1の分散液(B1)を調製した。
得られた分散液(B1)は、沈降物がなく、分散性が良好なペースト状の分散液であった。なお、平均一次粒子径は、比表面積値(35m2/g)を用いて(1)式で算出した値である。
「表面処理酸化亜鉛含有分散液の作製」
酸化亜鉛粉体(A1)を95質量部と、メチルハイドロジェンポリシロキサンを5質量部とを、室温(25℃)で、ヘンシェルミキサーにより、1000rpmの撹拌回転数で30分混合した。
次いで、温度を150℃に上昇させるとともに、撹拌回転数を2000rpmに上げて3時間撹拌し、実施例1の表面処理酸化亜鉛粉体(C1)を得た。
酸化亜鉛粉体(A1)を95質量部と、メチルハイドロジェンポリシロキサンを5質量部とを、室温(25℃)で、ヘンシェルミキサーにより、1000rpmの撹拌回転数で30分混合した。
次いで、温度を150℃に上昇させるとともに、撹拌回転数を2000rpmに上げて3時間撹拌し、実施例1の表面処理酸化亜鉛粉体(C1)を得た。
表面処理酸化亜鉛粉体(C1)70質量部と、シクロペンタシロキサン23質量部と、PEG-9ポリジメチルシロキシエチルジメチコン7質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、表面処理酸化亜鉛粉体(C1)を分散させた分散液(D1)を調製した。
得られた分散液(D1)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
得られた分散液(D1)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
「水中油型日焼け止めクリーム」
分散液(D1)24.5質量部と、メトキシケイヒ酸エチルヘキシル20.4質量部と、4-t-ブチル-4’-メトキシジベンゾイルメタン4.1質量部と、スクワラン20.4質量部と、ワセリン10.2質量部と、ステアリルアルコール6.1質量部と、ステアリン酸6.1質量部と、グリセリルモノステアレート6.1質量部と、ポリアクリル酸エチル2.1質量部とを、70℃で混合し、油相成分とした。
分散液(D1)24.5質量部と、メトキシケイヒ酸エチルヘキシル20.4質量部と、4-t-ブチル-4’-メトキシジベンゾイルメタン4.1質量部と、スクワラン20.4質量部と、ワセリン10.2質量部と、ステアリルアルコール6.1質量部と、ステアリン酸6.1質量部と、グリセリルモノステアレート6.1質量部と、ポリアクリル酸エチル2.1質量部とを、70℃で混合し、油相成分とした。
精製水84.2質量部と、ジプロピレングリコール13.7質量部と、エデト酸二ナトリウム0.1質量部と、トリエタノールアミン2.0質量部とを混合し、水相成分とした。
この水相成分51質量部に、上記の油相成分49質量部を加え、ホモミキサーにより混合した後、冷却して、実施例1の水中油型日焼け止めクリーム(E1)を得た。
この水相成分51質量部に、上記の油相成分49質量部を加え、ホモミキサーにより混合した後、冷却して、実施例1の水中油型日焼け止めクリーム(E1)を得た。
[評価]
「酸化亜鉛粉体(A1)の水可溶物の評価」
酸化亜鉛粉体(A1)を5g秤量し、この酸化亜鉛粉体(A1)に純水70mLを加えて5分間煮沸した。次いで、酸化亜鉛粉体(A1)と純水の混合液を冷却した後、この混合液に純水を加えて100mLとし、さらに、混合し、ろ過した。次いで、初めのろ液10mLを除き、次のろ液40mLを採取し、この採取したろ液を水浴上で蒸発乾固し、次いで、105℃で1時間乾燥させた。次いで、乾燥残留物の質量を測定し、この乾燥残留物の質量を、最初に秤量した酸化亜鉛粉体(A1)の質量で割った値の百分率を、酸化亜鉛粉体(A1)における水可溶物の含有量として算出した。結果を表1に示す。
「酸化亜鉛粉体(A1)の水可溶物の評価」
酸化亜鉛粉体(A1)を5g秤量し、この酸化亜鉛粉体(A1)に純水70mLを加えて5分間煮沸した。次いで、酸化亜鉛粉体(A1)と純水の混合液を冷却した後、この混合液に純水を加えて100mLとし、さらに、混合し、ろ過した。次いで、初めのろ液10mLを除き、次のろ液40mLを採取し、この採取したろ液を水浴上で蒸発乾固し、次いで、105℃で1時間乾燥させた。次いで、乾燥残留物の質量を測定し、この乾燥残留物の質量を、最初に秤量した酸化亜鉛粉体(A1)の質量で割った値の百分率を、酸化亜鉛粉体(A1)における水可溶物の含有量として算出した。結果を表1に示す。
「分散液(B1)と分散液(D1)の粘度の評価」
酸化亜鉛粉体を含有する分散液(B1)及び表面処理酸化亜鉛粉体(C1)を含有する分散液(D1)の粘度を、デジタル粘度計(商品名:DV-I+Viscometer、Brookfield社製)を用いて、25℃、20rpmの条件で測定した。結果を表1に示す。
酸化亜鉛粉体を含有する分散液(B1)及び表面処理酸化亜鉛粉体(C1)を含有する分散液(D1)の粘度を、デジタル粘度計(商品名:DV-I+Viscometer、Brookfield社製)を用いて、25℃、20rpmの条件で測定した。結果を表1に示す。
「水中油型日焼け止めクリーム(E1)の透明感の評価」
水中油型日焼け止めクリーム(E1)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布して、石英ガラス板上に塗膜を形成し、そのときの塗膜の透明感を目視にて評価した。評価基準は、次の通りである。結果を表1に示す。
◎:透明感が非常に高い
○:透明感が高い
△:透明感が普通
×:透明感が低い
水中油型日焼け止めクリーム(E1)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布して、石英ガラス板上に塗膜を形成し、そのときの塗膜の透明感を目視にて評価した。評価基準は、次の通りである。結果を表1に示す。
◎:透明感が非常に高い
○:透明感が高い
△:透明感が普通
×:透明感が低い
「水中油型日焼け止めクリーム(E1)の紫外線遮蔽性の評価」
水中油型日焼け止めクリーム(E1)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、SPF値を算出した。これら6箇所のSPF値の平均値を表1に示す。
水中油型日焼け止めクリーム(E1)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、SPF値を算出した。これら6箇所のSPF値の平均値を表1に示す。
[実施例2]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A2)(比表面積35m2/g、導電率25μS/cm、嵩比容積5.3mL/g、平均粒子径:31nm)を用意し、これを用いた以外は、実施例1と全く同様にして、実施例2の酸化亜鉛粉体(A2)を含有する分散液(B2)、表面処理酸化亜鉛粉体(C2)、表面処理酸化亜鉛粉体(C2)を含有する分散液(D2)、水中油型日焼け止めクリーム(E2)を得た。
得られた分散液(B2)及び分散液(D2)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A2)、分散液(B2)、分散液(D2)及び水中油型日焼け止めクリーム(E2)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A2)(比表面積35m2/g、導電率25μS/cm、嵩比容積5.3mL/g、平均粒子径:31nm)を用意し、これを用いた以外は、実施例1と全く同様にして、実施例2の酸化亜鉛粉体(A2)を含有する分散液(B2)、表面処理酸化亜鉛粉体(C2)、表面処理酸化亜鉛粉体(C2)を含有する分散液(D2)、水中油型日焼け止めクリーム(E2)を得た。
得られた分散液(B2)及び分散液(D2)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A2)、分散液(B2)、分散液(D2)及び水中油型日焼け止めクリーム(E2)を評価した。結果を表1に示す。
[実施例3]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A3)(比表面積35m2/g、導電率80μS/cm、嵩比容積5.1mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例3の酸化亜鉛粉体(A3)を含有する分散液(B3)、表面処理酸化亜鉛粉体(C3)、表面処理酸化亜鉛粉体(C3)を含有する分散液(D3)、水中油型日焼け止めクリーム(E3)を得た。
得られた分散液(B3)及び分散液(D3)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A3)、分散液(B3)、分散液(D3)及び水中油型日焼け止めクリーム(E3)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A3)(比表面積35m2/g、導電率80μS/cm、嵩比容積5.1mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例3の酸化亜鉛粉体(A3)を含有する分散液(B3)、表面処理酸化亜鉛粉体(C3)、表面処理酸化亜鉛粉体(C3)を含有する分散液(D3)、水中油型日焼け止めクリーム(E3)を得た。
得られた分散液(B3)及び分散液(D3)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A3)、分散液(B3)、分散液(D3)及び水中油型日焼け止めクリーム(E3)を評価した。結果を表1に示す。
[実施例4]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A4)(比表面積35m2/g、導電率140μS/cm、嵩比容積5.2mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例4の酸化亜鉛粉体(A4)を含有する分散液(B4)、表面処理酸化亜鉛粉体(C4)、表面処理酸化亜鉛粉体(C4)を含有する分散液(D4)、水中油型日焼け止めクリーム(E4)を得た。
得られた分散液(B4)及び分散液(D4)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A4)、分散液(B4)、分散液(D4)及び水中油型日焼け止めクリーム(E4)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A4)(比表面積35m2/g、導電率140μS/cm、嵩比容積5.2mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例4の酸化亜鉛粉体(A4)を含有する分散液(B4)、表面処理酸化亜鉛粉体(C4)、表面処理酸化亜鉛粉体(C4)を含有する分散液(D4)、水中油型日焼け止めクリーム(E4)を得た。
得られた分散液(B4)及び分散液(D4)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A4)、分散液(B4)、分散液(D4)及び水中油型日焼け止めクリーム(E4)を評価した。結果を表1に示す。
[実施例5]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A5)(比表面積10m2/g、導電率8μS/cm、嵩比容積3.1mL/g、平均粒子径:107nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例5の酸化亜鉛粉体(A5)を含有する分散液(B5)、表面処理酸化亜鉛粉体(C5)、表面処理酸化亜鉛粉体(C5)を含有する分散液(D5)、水中油型日焼け止めクリーム(E5)を得た。
得られた分散液(B5)及び分散液(D5)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A5)、分散液(B5)、分散液(D5)及び水中油型日焼け止めクリーム(E5)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A5)(比表面積10m2/g、導電率8μS/cm、嵩比容積3.1mL/g、平均粒子径:107nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例5の酸化亜鉛粉体(A5)を含有する分散液(B5)、表面処理酸化亜鉛粉体(C5)、表面処理酸化亜鉛粉体(C5)を含有する分散液(D5)、水中油型日焼け止めクリーム(E5)を得た。
得られた分散液(B5)及び分散液(D5)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A5)、分散液(B5)、分散液(D5)及び水中油型日焼け止めクリーム(E5)を評価した。結果を表1に示す。
[実施例6]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A6)(比表面積60m2/g、導電率8μS/cm、嵩比容積5.5mL/g、平均粒子径:18nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例6の酸化亜鉛粉体(A6)を含有する分散液(B6)、表面処理酸化亜鉛粉体(C6)、表面処理酸化亜鉛粉体(C6)を含有する分散液(D6)、水中油型日焼け止めクリーム(E6)を得た。
得られた分散液(B6)及び分散液(D6)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A6)、分散液(B6)、分散液(D6)及び水中油型日焼け止めクリーム(E6)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A6)(比表面積60m2/g、導電率8μS/cm、嵩比容積5.5mL/g、平均粒子径:18nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例6の酸化亜鉛粉体(A6)を含有する分散液(B6)、表面処理酸化亜鉛粉体(C6)、表面処理酸化亜鉛粉体(C6)を含有する分散液(D6)、水中油型日焼け止めクリーム(E6)を得た。
得られた分散液(B6)及び分散液(D6)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A6)、分散液(B6)、分散液(D6)及び水中油型日焼け止めクリーム(E6)を評価した。結果を表1に示す。
[実施例7]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A7)(比表面積35m2/g、導電率5μS/cm、嵩比容積9.5mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例7の酸化亜鉛粉体(A7)を含有する分散液(B7)、表面処理酸化亜鉛粉体(C7)、表面処理酸化亜鉛粉体(C7)を含有する分散液(D7)、水中油型日焼け止めクリーム(E7)を得た。
得られた分散液(B7)及び分散液(D7)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A7)、分散液(B7)、分散液(D7)及び水中油型日焼け止めクリーム(E7)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A7)(比表面積35m2/g、導電率5μS/cm、嵩比容積9.5mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例7の酸化亜鉛粉体(A7)を含有する分散液(B7)、表面処理酸化亜鉛粉体(C7)、表面処理酸化亜鉛粉体(C7)を含有する分散液(D7)、水中油型日焼け止めクリーム(E7)を得た。
得られた分散液(B7)及び分散液(D7)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A7)、分散液(B7)、分散液(D7)及び水中油型日焼け止めクリーム(E7)を評価した。結果を表1に示す。
[実施例8]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A8)(比表面積35m2/g、導電率80μS/cm、嵩比容積1.7mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例8の酸化亜鉛粉体(A8)を含有する分散液(B8)、表面処理酸化亜鉛粉体(C8)、表面処理酸化亜鉛粉体(C8)を含有する分散液(D8)、水中油型日焼け止めクリーム(E8)を得た。
得られた分散液(B8)及び分散液(D8)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A8)、分散液(B8)、分散液(D8)及び水中油型日焼け止めクリーム(E8)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A8)(比表面積35m2/g、導電率80μS/cm、嵩比容積1.7mL/g、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、実施例8の酸化亜鉛粉体(A8)を含有する分散液(B8)、表面処理酸化亜鉛粉体(C8)、表面処理酸化亜鉛粉体(C8)を含有する分散液(D8)、水中油型日焼け止めクリーム(E8)を得た。
得られた分散液(B8)及び分散液(D8)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A8)、分散液(B8)、分散液(D8)及び水中油型日焼け止めクリーム(E8)を評価した。結果を表1に示す。
[比較例1]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A9)(比表面積35m2/g、導電率200μS/cm、嵩比容積5.2mL/g、実施例の酸化亜鉛粉体よりも洗浄回数を減らして作製したもの、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例1の酸化亜鉛粉体(A9)を含有する分散液(B9)の作製を試みたが、酸化亜鉛粉体(A9)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A9)(比表面積35m2/g、導電率200μS/cm、嵩比容積5.2mL/g、実施例の酸化亜鉛粉体よりも洗浄回数を減らして作製したもの、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例1の酸化亜鉛粉体(A9)を含有する分散液(B9)の作製を試みたが、酸化亜鉛粉体(A9)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A9)を用いた以外は実施例1と同様にして、比較例1の表面処理酸化亜鉛粉体(C9)を得た。表面処理酸化亜鉛粉体(C1)の代わりに表面処理酸化亜鉛粉体(C9)を用いた以外は、実施例1と全く同様にして、表面処理酸化亜鉛粉体(C9)を含有する分散液(D9)の作製を試みたが、表面処理酸化亜鉛粉体(C9)が分離してしまい、均一な分散液(D9)が得られなかった。
そのため、日焼け止めクリーム(E9)を作製することができなかった。
実施例1と同様にして、酸化亜鉛粉体(A9)を評価した。結果を表1に示す。
そのため、日焼け止めクリーム(E9)を作製することができなかった。
実施例1と同様にして、酸化亜鉛粉体(A9)を評価した。結果を表1に示す。
[参考例1]
シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A9)40質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、固形分濃度が低い分散液を調製した。
得られた固形分濃度が低い分散液は、沈降物がなく、分散性が良好な分散液であった。
シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A9)40質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、固形分濃度が低い分散液を調製した。
得られた固形分濃度が低い分散液は、沈降物がなく、分散性が良好な分散液であった。
[比較例2]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A10)(比表面積35m2/g、導電率5μS/cm、嵩比容積12.1mL/g、実施例で使用した原料よりも嵩比容積が高い原料を使用、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例2の酸化亜鉛粉体(A10)を含有する分散液(B10)の作製を試みたが、酸化亜鉛粉体(A10)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A10)(比表面積35m2/g、導電率5μS/cm、嵩比容積12.1mL/g、実施例で使用した原料よりも嵩比容積が高い原料を使用、平均粒子径:31nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例2の酸化亜鉛粉体(A10)を含有する分散液(B10)の作製を試みたが、酸化亜鉛粉体(A10)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A10)を用いた以外は実施例1と同様にして、比較例2の表面処理酸化亜鉛粉体(C10)を得た。表面処理酸化亜鉛粉体(C1)の代わりに表面処理酸化亜鉛粉体(C10)を用いた以外は、実施例1と全く同様にして、表面処理酸化亜鉛粉体(C10)を含有する分散液(D10)の作製を試みたが、表面処理酸化亜鉛粉体(C10)が分離してしまい、均一な分散液(D10)が得られなかった。
そのため、日焼け止めクリーム(E10)を作製することができなかった。
実施例1と同様にして、酸化亜鉛粉体(A10)を評価した。結果を表1に示す。
そのため、日焼け止めクリーム(E10)を作製することができなかった。
実施例1と同様にして、酸化亜鉛粉体(A10)を評価した。結果を表1に示す。
[参考例2]
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A10)40質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、固形分濃度が低い分散液を調製した。
得られた固形分濃度が低い分散液は、沈降物がなく、分散性が良好な分散液であった。
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A10)40質量部とを、ホモミキサーにより、4000rpmの撹拌回転数で5分間攪拌して分散させ、固形分濃度が低い分散液を調製した。
得られた固形分濃度が低い分散液は、沈降物がなく、分散性が良好な分散液であった。
[比較例3(比較参考例)]
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A11)(比表面積5m2/g、導電率8μS/cm、嵩比容積2.1mL/g、実施例の酸化亜鉛粉体よりも平均一次粒子径が大きい酸化亜鉛粉体、平均粒子径:214nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例3の酸化亜鉛粉体(A11)を含有する分散液(B11)、表面処理酸化亜鉛粉体(C11)、表面処理酸化亜鉛粉体(C11)を含有する分散液(D11)、水中油型日焼け止めクリーム(E11)を得た。
得られた分散液(B11)及び分散液(D11)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A11)、分散液(B11)、分散液(D11)及び水中油型日焼け止めクリーム(E11)を評価した。結果を表1に示す。
酸化亜鉛粉体(A1)の代わりに、酸化亜鉛粉体(A11)(比表面積5m2/g、導電率8μS/cm、嵩比容積2.1mL/g、実施例の酸化亜鉛粉体よりも平均一次粒子径が大きい酸化亜鉛粉体、平均粒子径:214nm)を用意し、これを用いた以外は実施例1と全く同様にして、比較例3の酸化亜鉛粉体(A11)を含有する分散液(B11)、表面処理酸化亜鉛粉体(C11)、表面処理酸化亜鉛粉体(C11)を含有する分散液(D11)、水中油型日焼け止めクリーム(E11)を得た。
得られた分散液(B11)及び分散液(D11)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例1と同様にして、酸化亜鉛粉体(A11)、分散液(B11)、分散液(D11)及び水中油型日焼け止めクリーム(E11)を評価した。結果を表1に示す。
表1の結果から、実施例1~8のように、比表面積と、導電率と、嵩比容積とが所定の範囲内の酸化亜鉛粉体を用いることにより、透明性が高く、固形分濃度が高く、かつ均一な分散液が得られることが確認された。
[実施例9]
「酸化亜鉛粉体の評価」
酸化亜鉛粉体(A12)(比表面積5.0m2/g、導電率5μS/cm、嵩比容積2.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いて次の評価を行った。
「酸化亜鉛粉体の評価」
酸化亜鉛粉体(A12)(比表面積5.0m2/g、導電率5μS/cm、嵩比容積2.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いて次の評価を行った。
(オレイン酸混合試験)
オレイン酸20質量部と、イソプロピルアルコール80質量部とを混合し、20質量%オレイン酸イソプロピルアルコール溶液を調製した。この20質量%オレイン酸イソプロピルアルコール溶液50質量部に、酸化亜鉛粉体(A12)10質量部を加え、これらを撹拌した後、48時間静置して、酸化亜鉛とオレイン酸を含有するイソプロピルアルコール懸濁液を調製した。
調製完了から48時間後の懸濁液の流動性を目視にて観察し、観察結果を次の3段階で評価した。
○:低粘度の液状
△:ゲル状
×:固化
結果を表2に示す。
オレイン酸20質量部と、イソプロピルアルコール80質量部とを混合し、20質量%オレイン酸イソプロピルアルコール溶液を調製した。この20質量%オレイン酸イソプロピルアルコール溶液50質量部に、酸化亜鉛粉体(A12)10質量部を加え、これらを撹拌した後、48時間静置して、酸化亜鉛とオレイン酸を含有するイソプロピルアルコール懸濁液を調製した。
調製完了から48時間後の懸濁液の流動性を目視にて観察し、観察結果を次の3段階で評価した。
○:低粘度の液状
△:ゲル状
×:固化
結果を表2に示す。
(酸化亜鉛粉体の一次粒子径)
走査型電子顕微鏡(SEM)を用いて、酸化亜鉛粉体を撮影した。
次いで、酸化亜鉛の一次粒子を150個選び、これらの微粒子の中心点を通る複数の直径のうち最大直径を一次粒子径とした。
結果を表2に示す。
走査型電子顕微鏡(SEM)を用いて、酸化亜鉛粉体を撮影した。
次いで、酸化亜鉛の一次粒子を150個選び、これらの微粒子の中心点を通る複数の直径のうち最大直径を一次粒子径とした。
結果を表2に示す。
「酸化亜鉛含有分散液の作製」
シクロペンタシロキサンを28.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコンを6.5質量部と、酸化亜鉛粉体(A12)75質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、実施例9の分散液(B12)を調製した。
得られた分散液(B12)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
シクロペンタシロキサンを28.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコンを6.5質量部と、酸化亜鉛粉体(A12)75質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、実施例9の分散液(B12)を調製した。
得られた分散液(B12)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
「表面処理酸化亜鉛含有分散液の作製」
酸化亜鉛粉体(A12)98質量部と、メチルハイドロジェンポリシロキサン2質量部とを、室温(25℃)で、ヘンシェルミキサーにより、1000rpmの撹拌回転数で30分混合した。
次いで、温度を150℃に上昇させるとともに、撹拌回転数を2000rpmに上げて3時間撹拌し、実施例9の表面処理酸化亜鉛粉体(C12)を得た。
酸化亜鉛粉体(A12)98質量部と、メチルハイドロジェンポリシロキサン2質量部とを、室温(25℃)で、ヘンシェルミキサーにより、1000rpmの撹拌回転数で30分混合した。
次いで、温度を150℃に上昇させるとともに、撹拌回転数を2000rpmに上げて3時間撹拌し、実施例9の表面処理酸化亜鉛粉体(C12)を得た。
表面処理酸化亜鉛粉体(C12)78質量部と、シクロペンタシロキサン14.2質量部と、PEG-9ポリジメチルシロキシエチルジメチコン7.8質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、表面処理酸化亜鉛粉体(C12)を分散させた分散液(D12)を調製した。
得られた分散液(D12)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
得られた分散液(D12)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
「水中油型日焼け止めクリーム」
分散液(D12)21.3質量部と、メトキシケイヒ酸エチルヘキシル20.4質量部と、4-t-ブチル-4’-メトキシジベンゾイルメタン4.1質量部と、スクワラン20.4質量部と、ワセリン10.2質量部と、ステアリルアルコール6.1質量部と、ステアリン酸6.1質量部と、グリセリルモノステアレート6.1質量部と、ポリアクリル酸エチル2.1質量部とを、70℃で混合し、油相成分とした。
分散液(D12)21.3質量部と、メトキシケイヒ酸エチルヘキシル20.4質量部と、4-t-ブチル-4’-メトキシジベンゾイルメタン4.1質量部と、スクワラン20.4質量部と、ワセリン10.2質量部と、ステアリルアルコール6.1質量部と、ステアリン酸6.1質量部と、グリセリルモノステアレート6.1質量部と、ポリアクリル酸エチル2.1質量部とを、70℃で混合し、油相成分とした。
精製水87.2質量部と、ジプロピレングリコール13.7質量部と、エデト酸二ナトリウム0.1質量部と、トリエタノールアミン2.0質量部とを混合し、水相成分とした。
この水相成分51質量部に、上記の油相成分49質量部を加え、ホモミキサーにより混合した後、冷却して、実施例9の水中油型日焼け止めクリーム(E12)を得た。
この水相成分51質量部に、上記の油相成分49質量部を加え、ホモミキサーにより混合した後、冷却して、実施例9の水中油型日焼け止めクリーム(E12)を得た。
[評価]
「分散液(B12)と分散液(D12)の粘度の評価」
酸化亜鉛粉体(A12)を含有する分散液(B12)及び表面処理酸化亜鉛粉体(C12)を含有する分散液(D12)の粘度を、デジタル粘度計(商品名:DV-I+Viscometer、Brookfield社製)を用いて、25℃、20rpmの条件で測定した。結果を表3に示す。
「分散液(B12)と分散液(D12)の粘度の評価」
酸化亜鉛粉体(A12)を含有する分散液(B12)及び表面処理酸化亜鉛粉体(C12)を含有する分散液(D12)の粘度を、デジタル粘度計(商品名:DV-I+Viscometer、Brookfield社製)を用いて、25℃、20rpmの条件で測定した。結果を表3に示す。
「分散液(B12)のCritical Wavelength(臨界波長)の評価」
分散液(B12)を酸化亜鉛濃度が5質量%になるようにシクロペンタシロキサンで希釈した。
次いで、石英ガラス板上に、希釈した分散液(B12)を厚さが12μmとなるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。
この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、分散液(B12)のCritical Wavelengthを算出した。これら6箇所のCritical Wavelength値の平均値を表3に示す。
分散液(B12)を酸化亜鉛濃度が5質量%になるようにシクロペンタシロキサンで希釈した。
次いで、石英ガラス板上に、希釈した分散液(B12)を厚さが12μmとなるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。
この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、分散液(B12)のCritical Wavelengthを算出した。これら6箇所のCritical Wavelength値の平均値を表3に示す。
「水中油型日焼け止めクリーム(E12)の紫外線遮蔽性の評価」
水中油型日焼け止めクリーム(E12)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、SPF値及びCritical Wavelengthを算出した。これら6箇所のSPF値及びCritical Wavelengthの平均値を表3に示す。
水中油型日焼け止めクリーム(E12)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の紫外線領域における分光透過率を、SPFアナライザーUV-1000S(Labsphere社製)を用いて、6箇所測定し、SPF値及びCritical Wavelengthを算出した。これら6箇所のSPF値及びCritical Wavelengthの平均値を表3に示す。
「水中油型日焼け止めクリーム(E12)の透明感の評価」
水中油型日焼け止めクリーム(E12)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の透明感を目視にて評価した。評価基準は、次の通りである。結果を表3に示す。
◎:透明感が非常に高い
○:透明感が高い
△:透明感が普通
×:透明感が低い
水中油型日焼け止めクリーム(E12)を石英ガラス板上に、塗布量が2mg/cm2となるように塗布し、15分間自然乾燥させて、石英ガラス板上に塗膜を形成した。この塗膜の透明感を目視にて評価した。評価基準は、次の通りである。結果を表3に示す。
◎:透明感が非常に高い
○:透明感が高い
△:透明感が普通
×:透明感が低い
[実施例10]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A13)(比表面積5.0m2/g、導電率25μS/cm、嵩比容積1.9mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例10の酸化亜鉛粉体(A13)を含有する分散液(B13)、表面処理酸化亜鉛粉体(C13)、表面処理酸化亜鉛粉体(C13)を含有する分散液(D13)、水中油型日焼け止めクリーム(E13)を得た。
得られた分散液(B13)及び分散液(D13)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A13)、分散液(B13)、分散液(D13)及び水中油型日焼け止めクリーム(E13)を評価した。
実施例10の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A13)(比表面積5.0m2/g、導電率25μS/cm、嵩比容積1.9mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例10の酸化亜鉛粉体(A13)を含有する分散液(B13)、表面処理酸化亜鉛粉体(C13)、表面処理酸化亜鉛粉体(C13)を含有する分散液(D13)、水中油型日焼け止めクリーム(E13)を得た。
得られた分散液(B13)及び分散液(D13)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A13)、分散液(B13)、分散液(D13)及び水中油型日焼け止めクリーム(E13)を評価した。
実施例10の評価結果を表2および表3に示す。
[実施例11]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A14)(比表面積5.0m2/g、導電率80μS/cm、嵩比容積2.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例11の酸化亜鉛粉体(A14)を含有する分散液(B14)、表面処理酸化亜鉛粉体(C14)、表面処理酸化亜鉛粉体(C14)を含有する分散液(D14)、水中油型日焼け止めクリーム(E14)を得た。
得られた分散液(B14)及び分散液(D14)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A14)、分散液(B14)、分散液(D14)及び水中油型日焼け止めクリーム(E14)を評価した。
実施例11の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A14)(比表面積5.0m2/g、導電率80μS/cm、嵩比容積2.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例11の酸化亜鉛粉体(A14)を含有する分散液(B14)、表面処理酸化亜鉛粉体(C14)、表面処理酸化亜鉛粉体(C14)を含有する分散液(D14)、水中油型日焼け止めクリーム(E14)を得た。
得られた分散液(B14)及び分散液(D14)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A14)、分散液(B14)、分散液(D14)及び水中油型日焼け止めクリーム(E14)を評価した。
実施例11の評価結果を表2および表3に示す。
[実施例12]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A15)(比表面積5.0m2/g、導電率140μS/cm、嵩比容積2.1mL/g、水可溶物0.08質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例12の酸化亜鉛粉体(A15)を含有する分散液(B15)、表面処理酸化亜鉛粉体(C15)、表面処理酸化亜鉛粉体(C15)を含有する分散液(D15)、水中油型日焼け止めクリーム(E15)を得た。
得られた分散液(B15)及び分散液(D15)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A15)、分散液(B15)、分散液(D15)及び水中油型日焼け止めクリーム(E15)を評価した。
実施例12の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A15)(比表面積5.0m2/g、導電率140μS/cm、嵩比容積2.1mL/g、水可溶物0.08質量%未満、平均一次粒子径:214nm)を用いた以外は実施例9と全く同様にして、実施例12の酸化亜鉛粉体(A15)を含有する分散液(B15)、表面処理酸化亜鉛粉体(C15)、表面処理酸化亜鉛粉体(C15)を含有する分散液(D15)、水中油型日焼け止めクリーム(E15)を得た。
得られた分散液(B15)及び分散液(D15)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A15)、分散液(B15)、分散液(D15)及び水中油型日焼け止めクリーム(E15)を評価した。
実施例12の評価結果を表2および表3に示す。
[実施例13]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A16)(比表面積2.0m2/g、導電率5μS/cm、嵩比容積1.1mL/g、水可溶物0.05質量%未満、平均一次粒子径:535nm)を用いた以外は実施例9と全く同様にして、実施例13の酸化亜鉛粉体(A16)を含有する分散液(B16)、表面処理酸化亜鉛粉体(C16)、表面処理酸化亜鉛粉体(C16)を含有する分散液(D16)、水中油型日焼け止めクリーム(E16)を得た。
得られた分散液(B16)及び分散液(D16)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A16)、分散液(B16)、分散液(D16)及び水中油型日焼け止めクリーム(E16)を評価した。
実施例13の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A16)(比表面積2.0m2/g、導電率5μS/cm、嵩比容積1.1mL/g、水可溶物0.05質量%未満、平均一次粒子径:535nm)を用いた以外は実施例9と全く同様にして、実施例13の酸化亜鉛粉体(A16)を含有する分散液(B16)、表面処理酸化亜鉛粉体(C16)、表面処理酸化亜鉛粉体(C16)を含有する分散液(D16)、水中油型日焼け止めクリーム(E16)を得た。
得られた分散液(B16)及び分散液(D16)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A16)、分散液(B16)、分散液(D16)及び水中油型日焼け止めクリーム(E16)を評価した。
実施例13の評価結果を表2および表3に示す。
[実施例14]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A17)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積4.2mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm)を用いた以外は実施例9と全く同様にして、実施例14の酸化亜鉛粉体(A17)を含有する分散液(B17)、表面処理酸化亜鉛粉体(C17)、表面処理酸化亜鉛粉体(C17)を含有する分散液(D17)、水中油型日焼け止めクリーム(E17)を得た。
得られた分散液(B17)及び分散液(D17)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A17)、分散液(B17)、分散液(D17)及び水中油型日焼け止めクリーム(E17)を評価した。
実施例14の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A17)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積4.2mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm)を用いた以外は実施例9と全く同様にして、実施例14の酸化亜鉛粉体(A17)を含有する分散液(B17)、表面処理酸化亜鉛粉体(C17)、表面処理酸化亜鉛粉体(C17)を含有する分散液(D17)、水中油型日焼け止めクリーム(E17)を得た。
得られた分散液(B17)及び分散液(D17)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A17)、分散液(B17)、分散液(D17)及び水中油型日焼け止めクリーム(E17)を評価した。
実施例14の評価結果を表2および表3に示す。
[実施例15]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A18)(比表面積2.0m2/g、導電率5μS/cm、嵩比容積0.5mL/g、水可溶物0.05質量%未満、平均一次粒子径:535nm)を用いた以外は実施例9と全く同様にして、実施例15の酸化亜鉛粉体(A18)を含有する分散液(B18)、表面処理酸化亜鉛粉体(C18)、表面処理酸化亜鉛粉体(C18)を含有する分散液(D18)、水中油型日焼け止めクリーム(E18)を得た。
得られた分散液(B18)及び分散液(D18)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A18)、分散液(B18)、分散液(D18)及び水中油型日焼け止めクリーム(E18)を評価した。
実施例15の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A18)(比表面積2.0m2/g、導電率5μS/cm、嵩比容積0.5mL/g、水可溶物0.05質量%未満、平均一次粒子径:535nm)を用いた以外は実施例9と全く同様にして、実施例15の酸化亜鉛粉体(A18)を含有する分散液(B18)、表面処理酸化亜鉛粉体(C18)、表面処理酸化亜鉛粉体(C18)を含有する分散液(D18)、水中油型日焼け止めクリーム(E18)を得た。
得られた分散液(B18)及び分散液(D18)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A18)、分散液(B18)、分散液(D18)及び水中油型日焼け止めクリーム(E18)を評価した。
実施例15の評価結果を表2および表3に示す。
[実施例16]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A19)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積6.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm)を用いた以外は実施例9と全く同様にして、実施例16の酸化亜鉛粉体(A19)を含有する分散液(B19)、表面処理酸化亜鉛粉体(C19)、表面処理酸化亜鉛粉体(C19)を含有する分散液(D19)、水中油型日焼け止めクリーム(E19)を得た。
得られた分散液(B19)及び分散液(D19)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A19)、分散液(B19)、分散液(D19)及び水中油型日焼け止めクリーム(E19)を評価した。
実施例16の評価結果を表2および表3に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A19)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積6.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm)を用いた以外は実施例9と全く同様にして、実施例16の酸化亜鉛粉体(A19)を含有する分散液(B19)、表面処理酸化亜鉛粉体(C19)、表面処理酸化亜鉛粉体(C19)を含有する分散液(D19)、水中油型日焼け止めクリーム(E19)を得た。
得られた分散液(B19)及び分散液(D19)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A19)、分散液(B19)、分散液(D19)及び水中油型日焼け止めクリーム(E19)を評価した。
実施例16の評価結果を表2および表3に示す。
[比較例4]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A20)(比表面積5.0m2/g、導電率200μS/cm、嵩比容積2.0mL/g、水可溶物0.10質量%未満、平均一次粒子径:214nm、実施例の酸化亜鉛粉体よりも洗浄回数を減らして作製したもの)を用いた以外は実施例9と全く同様にして、比較例4の酸化亜鉛粉体(A20)を含有する分散液(B20)の作製を試みたが、酸化亜鉛粉体(A20)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A20)(比表面積5.0m2/g、導電率200μS/cm、嵩比容積2.0mL/g、水可溶物0.10質量%未満、平均一次粒子径:214nm、実施例の酸化亜鉛粉体よりも洗浄回数を減らして作製したもの)を用いた以外は実施例9と全く同様にして、比較例4の酸化亜鉛粉体(A20)を含有する分散液(B20)の作製を試みたが、酸化亜鉛粉体(A20)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A20)を用いた以外は実施例9と同様にして、比較例4の表面処理酸化亜鉛粉体(C20)を得た。表面処理酸化亜鉛粉体(C20)の代わりに表面処理酸化亜鉛粉体(C20)を用いた以外は、実施例9と全く同様にして、表面処理酸化亜鉛粉体(C20)を含有する分散液(D20)の作製を試みたが、表面処理酸化亜鉛粉体(C20)が分離してしまい、均一な分散液(D20)が得られなかった。
そのため、日焼け止めクリーム(E20)を作製することができなかった。
実施例9と同様にして、酸化亜鉛粉体(A20)を評価した。
比較例4の評価結果を表4および表5に示す。
そのため、日焼け止めクリーム(E20)を作製することができなかった。
実施例9と同様にして、酸化亜鉛粉体(A20)を評価した。
比較例4の評価結果を表4および表5に示す。
[参考例3]
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A20)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B20-2)を調製した。
得られた固形分濃度が低い分散液(B20-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B20-2)を用いて、実施例9と同様にして、Critical Wavelengthを測定した。
参考例3の評価結果を表4および表5に示す。
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A20)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B20-2)を調製した。
得られた固形分濃度が低い分散液(B20-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B20-2)を用いて、実施例9と同様にして、Critical Wavelengthを測定した。
参考例3の評価結果を表4および表5に示す。
[比較例5]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A21)(比表面積1.0m2/g、導電率5μS/cm、嵩比容積0.7mL/g、水可溶物0.05質量%未満、平均一次粒子径:1070nm、実施例の酸化亜鉛粉体よりも平均一次粒子径が大きい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、比較例5の酸化亜鉛粉体(A21)を含有する分散液(B21)、表面処理酸化亜鉛粉体(C21)、表面処理酸化亜鉛粉体(C21)を含有する分散液(D21)、水中油型日焼け止めクリーム(E21)を得た。
得られた分散液(B21)及び分散液(D21)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A21)、分散液(B21)、分散液(D21)及び水中油型日焼け止めクリーム(E21)を評価した。
水中油型日焼け止めクリーム(E21)は、実施例の日焼け止めクリームに比べてSPFが低く、皮膚に塗った際の透明感も劣り、白っぽい外観であった。
比較例5の評価結果を表4および表5に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A21)(比表面積1.0m2/g、導電率5μS/cm、嵩比容積0.7mL/g、水可溶物0.05質量%未満、平均一次粒子径:1070nm、実施例の酸化亜鉛粉体よりも平均一次粒子径が大きい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、比較例5の酸化亜鉛粉体(A21)を含有する分散液(B21)、表面処理酸化亜鉛粉体(C21)、表面処理酸化亜鉛粉体(C21)を含有する分散液(D21)、水中油型日焼け止めクリーム(E21)を得た。
得られた分散液(B21)及び分散液(D21)は、沈降物がなく、分散性が良好なペースト状の分散液であった。
実施例9と同様にして、酸化亜鉛粉体(A21)、分散液(B21)、分散液(D21)及び水中油型日焼け止めクリーム(E21)を評価した。
水中油型日焼け止めクリーム(E21)は、実施例の日焼け止めクリームに比べてSPFが低く、皮膚に塗った際の透明感も劣り、白っぽい外観であった。
比較例5の評価結果を表4および表5に示す。
[比較例6]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A22)(比表面積15.0m2/g、導電率5μS/cm、嵩比容積4.5mL/g、水可溶物0.05質量%未満、平均一次粒子径:71nm、実施例の酸化亜鉛粉体よりも平均一次粒子径が小さい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、オレイン酸イソプロピルアルコール溶液に、酸化亜鉛粉体(A22)を加えたところ、酸化亜鉛粉体(A22)を混合することができなかった。そのため、酸化亜鉛粉体(A22)について、それ以外の評価を行わなかった。
比較例6の評価結果を表4および表5に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A22)(比表面積15.0m2/g、導電率5μS/cm、嵩比容積4.5mL/g、水可溶物0.05質量%未満、平均一次粒子径:71nm、実施例の酸化亜鉛粉体よりも平均一次粒子径が小さい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、オレイン酸イソプロピルアルコール溶液に、酸化亜鉛粉体(A22)を加えたところ、酸化亜鉛粉体(A22)を混合することができなかった。そのため、酸化亜鉛粉体(A22)について、それ以外の評価を行わなかった。
比較例6の評価結果を表4および表5に示す。
[参考例4]
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A22)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B22-2)を調製した。
得られた固形分濃度が低い分散液(B22-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B22-2)を用いて、実施例9と同様にしてCritical Wavelengthを測定した。
参考例4の評価結果を表4および表5に示す。
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A22)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B22-2)を調製した。
得られた固形分濃度が低い分散液(B22-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B22-2)を用いて、実施例9と同様にしてCritical Wavelengthを測定した。
参考例4の評価結果を表4および表5に示す。
[比較例7]
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A23)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積8.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm、実施例の酸化亜鉛粉体よりも嵩比容積が大きい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、比較例7の酸化亜鉛粉体(A23)を含有する分散液(B23)の作製を試みたが、実施例9に比べて分散液の粘度が高くなって攪拌が不十分となり、酸化亜鉛粉体(A23)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A23)を用いた以外は実施例9と同様にして、比較例7の表面処理酸化亜鉛粉体(C23)を得た。表面処理酸化亜鉛粉体(C12)の代わりに表面処理酸化亜鉛粉体(C23)を用いた以外は、実施例9と全く同様にして、表面処理酸化亜鉛粉体(C23)を含有する分散液(D23)の作製を試みたが、実施例9に比べて分散液の粘度が高くなって攪拌が不十分となり、表面処理酸化亜鉛粉体(C23)が分離してしまい、均一な分散液が得られなかった。
そのため、日焼け止めクリーム(E23)を作製することができなかった。
実施例9と同様にして、酸化亜鉛粉体(A23)を評価した。
比較例7の評価結果を表4および表5に示す。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A23)(比表面積7.9m2/g、導電率5μS/cm、嵩比容積8.0mL/g、水可溶物0.05質量%未満、平均一次粒子径:135nm、実施例の酸化亜鉛粉体よりも嵩比容積が大きい酸化亜鉛粉体)を用いた以外は実施例9と全く同様にして、比較例7の酸化亜鉛粉体(A23)を含有する分散液(B23)の作製を試みたが、実施例9に比べて分散液の粘度が高くなって攪拌が不十分となり、酸化亜鉛粉体(A23)が分離してしまい、均一な分散液が得られなかった。
酸化亜鉛粉体(A12)の代わりに、酸化亜鉛粉体(A23)を用いた以外は実施例9と同様にして、比較例7の表面処理酸化亜鉛粉体(C23)を得た。表面処理酸化亜鉛粉体(C12)の代わりに表面処理酸化亜鉛粉体(C23)を用いた以外は、実施例9と全く同様にして、表面処理酸化亜鉛粉体(C23)を含有する分散液(D23)の作製を試みたが、実施例9に比べて分散液の粘度が高くなって攪拌が不十分となり、表面処理酸化亜鉛粉体(C23)が分離してしまい、均一な分散液が得られなかった。
そのため、日焼け止めクリーム(E23)を作製することができなかった。
実施例9と同様にして、酸化亜鉛粉体(A23)を評価した。
比較例7の評価結果を表4および表5に示す。
[参考例5]
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A23)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B23-2)を調製した。
得られた固形分濃度が低い分散液(B23-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B23-2)を用いて、実施例1と同様にしてCritical Wavelengthを測定した。
参考例5の評価結果を表4および表5に示す。
なお、シクロペンタシロキサン55.5質量部と、PEG-9ポリジメチルシロキシエチルジメチコン4.0質量部と、酸化亜鉛粉体(A23)40質量部とを、ホモミキサーにより、5000rpmの撹拌回転数で10分間攪拌して分散させ、固形分濃度が低い分散液(B23-2)を調製した。
得られた固形分濃度が低い分散液(B23-2)は、沈降物がなく、分散性が良好な分散液であった。
分散液(B23-2)を用いて、実施例1と同様にしてCritical Wavelengthを測定した。
参考例5の評価結果を表4および表5に示す。
表2および表3の結果から、実施例9~実施例16のように、比表面積と、導電率と、嵩比容積とが所定の範囲内の酸化亜鉛粉体を用いることにより、透明性が高く、固形分濃度が高く、かつ均一な分散液が得られ、さらに、その分散液を含む日焼け止めクリームは紫外線遮蔽性に優れることが確認された。
一方、表4および表5の結果から、比較例4~比較例7のように、比表面積と、導電率と、嵩比容積とが所定の範囲内でない酸化亜鉛粉体を用いると、均一な分散液が得られないことが確認された。
一方、表4および表5の結果から、比較例4~比較例7のように、比表面積と、導電率と、嵩比容積とが所定の範囲内でない酸化亜鉛粉体を用いると、均一な分散液が得られないことが確認された。
本発明は、固形分濃度が高い状態で分散媒に分散が可能な酸化亜鉛粉体、並びに、酸化亜鉛粉体を含む分散液、塗料及び化粧料を提供する。
本発明の酸化亜鉛粉体は、分散媒に分散して分散液とした場合において、透明性が高く、固形分濃度が高く、かつ均一である。したがって、本発明の酸化亜鉛粉体は、分散液、塗料及び水系化粧料へ適用した場合の配合設計の自由度を向上させることができ、その工業的価値は大きい。
本発明の酸化亜鉛粉体は、分散媒に分散して分散液とした場合において、透明性が高く、固形分濃度が高く、かつ均一である。したがって、本発明の酸化亜鉛粉体は、分散液、塗料及び水系化粧料へ適用した場合の配合設計の自由度を向上させることができ、その工業的価値は大きい。
Claims (9)
- 比表面積が1.5m2/g以上かつ65m2/g以下、導電率が150μS/cm以下、及び、嵩比容積が0.5mL/g以上かつ10mL/g以下であることを特徴とする酸化亜鉛粉体。
- 水可溶物の含有量が0.08質量%以下であることを特徴とする請求項1に記載の酸化亜鉛粉体。
- 前記比表面積が8.0m2/g以上かつ65m2/g以下、前記嵩比容積が1mL/g以上かつ10mL/g以下であることを特徴とする請求項1または2に記載の酸化亜鉛粉体。
- 前記比表面積が1.5m2/g以上かつ8.0m2/g未満、前記嵩比容積が0.5mL/g以上かつ6mL/g以下であることを特徴とする請求項1または2に記載の酸化亜鉛粉体。
- 一次粒子径の最大値が900nm以下であることを特徴とする請求項4に記載の酸化亜鉛粉体。
- 無機成分及び有機成分の少なくとも一方で表面処理されたことを特徴とする請求項1~5のいずれか1項に記載の酸化亜鉛粉体。
- 請求項1~6のいずれか1項に記載の酸化亜鉛粉体と、分散媒と、を含有してなり、
前記酸化亜鉛粉体の含有量が、50質量%以上かつ90質量%以下であることを特徴とする分散液。 - 請求項1~6のいずれか1項に記載の酸化亜鉛粉体と、樹脂と、分散媒と、を含有してなり、
前記酸化亜鉛粉体の含有量が、10質量%以上かつ40質量%以下であることを特徴とする塗料。 - 請求項1~6のいずれか1項に記載の酸化亜鉛粉体及び請求項7に記載の分散液からなる群から選択される少なくとも1種を含有してなることを特徴とする化粧料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177010368A KR101904015B1 (ko) | 2015-01-30 | 2015-04-13 | 산화아연 분체, 분산액, 도료, 화장료 |
ES15880034T ES2905098T3 (es) | 2015-01-30 | 2015-04-13 | Polvo de óxido de zinc, dispersión, pintura y material cosmético |
CN201580074116.2A CN107207275B (zh) | 2015-01-30 | 2015-04-13 | 氧化锌粉体、分散液、涂料及化妆料 |
EP15880034.2A EP3252011B1 (en) | 2015-01-30 | 2015-04-13 | Zinc oxide powder, dispersion, paint, and cosmetic material |
US14/811,096 US9403691B1 (en) | 2015-01-30 | 2015-07-28 | Zinc oxide powder, dispersion, paint, and cosmetic material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015017135A JP5850189B1 (ja) | 2015-01-30 | 2015-01-30 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
JP2015-017135 | 2015-01-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/811,096 Continuation US9403691B1 (en) | 2015-01-30 | 2015-07-28 | Zinc oxide powder, dispersion, paint, and cosmetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121139A1 true WO2016121139A1 (ja) | 2016-08-04 |
Family
ID=55237938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061370 WO2016121139A1 (ja) | 2015-01-30 | 2015-04-13 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9403691B1 (ja) |
EP (1) | EP3252011B1 (ja) |
JP (1) | JP5850189B1 (ja) |
KR (1) | KR101904015B1 (ja) |
CN (1) | CN107207275B (ja) |
ES (1) | ES2905098T3 (ja) |
WO (1) | WO2016121139A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022114169A1 (ja) * | 2020-11-30 | 2022-06-02 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017130632A1 (ja) * | 2016-01-29 | 2017-08-03 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 |
JP2018053097A (ja) * | 2016-09-29 | 2018-04-05 | 住友大阪セメント株式会社 | 塗料、塗膜 |
JP6922529B2 (ja) * | 2017-08-01 | 2021-08-18 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子の製造方法 |
CN111849241A (zh) * | 2020-07-24 | 2020-10-30 | 安徽江锐新材料有限公司 | 用于低温环境的环氧云铁中间漆固化剂及其制备方法 |
US11325840B1 (en) * | 2020-11-30 | 2022-05-10 | Sumitomo Osaka Cement Co., Ltd. | Zinc oxide powder, dispersion, paint, and cosmetic |
JP2023111131A (ja) * | 2022-01-31 | 2023-08-10 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046152A1 (fr) * | 1999-02-05 | 2000-08-10 | Showa Denko K.K. | Particules d'oxyde de zinc ultra-fines, procede de preparation desdites particules et produit cosmetique les contenant |
JP2002201024A (ja) * | 2000-12-27 | 2002-07-16 | Hakusui Tech Co Ltd | 酸化亜鉛を主成分とする複合微粒子の製造方法 |
JP2002201382A (ja) * | 2000-12-27 | 2002-07-19 | Hakusui Tech Co Ltd | 紫外線遮蔽用酸化亜鉛微粒子 |
JP2008230915A (ja) * | 2007-03-20 | 2008-10-02 | Mitsui Mining & Smelting Co Ltd | 導電性酸化亜鉛粒子及びその製造方法 |
WO2012147888A1 (ja) * | 2011-04-28 | 2012-11-01 | 堺化学工業株式会社 | 酸化亜鉛粒子、その製造方法、化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033766B2 (ja) * | 1981-06-15 | 1985-08-05 | 三菱マテリアル株式会社 | 酸化亜鉛超微粉末の製造法 |
JPS60255620A (ja) * | 1984-05-30 | 1985-12-17 | Honjiyou Chem Kk | 塩基性炭酸亜鉛及び微細酸化亜鉛の製造方法 |
JPS63288914A (ja) * | 1987-05-21 | 1988-11-25 | Nikko Aen Kk | 球状酸化亜鉛の製造方法 |
JPH075308B2 (ja) * | 1987-05-21 | 1995-01-25 | 日鉱亜鉛株式会社 | 酸化亜鉛の製造方法 |
JP2687640B2 (ja) * | 1989-12-28 | 1997-12-08 | 三菱マテリアル株式会社 | 紫外線吸収能に優れた超微粒子酸化亜鉛粉末およびその製造方法 |
JP2821357B2 (ja) * | 1994-02-22 | 1998-11-05 | 株式会社日本触媒 | 酸化亜鉛微粒子の製法 |
CN100537430C (zh) * | 1999-02-05 | 2009-09-09 | 昭和电工株式会社 | 超微粒子氧化锌及其制造方法和使用其的化妆材料 |
DE10235758A1 (de) * | 2002-08-05 | 2004-02-26 | Degussa Ag | Dotiertes Zinkoxidpulver, Verfahren zu seiner Herstellung und Verwendung |
DE60330600D1 (de) * | 2002-12-25 | 2010-01-28 | Hakusui Tech Co Ltd | Elektrisch leitendes zinkoxydpulver und dessen herstellungsverfahren und elektrisch leitende zusammensetzung |
DE102006051635A1 (de) * | 2006-11-02 | 2008-05-08 | Evonik Degussa Gmbh | Hydrophobes Zinkoxid |
-
2015
- 2015-01-30 JP JP2015017135A patent/JP5850189B1/ja active Active
- 2015-04-13 KR KR1020177010368A patent/KR101904015B1/ko active IP Right Grant
- 2015-04-13 CN CN201580074116.2A patent/CN107207275B/zh active Active
- 2015-04-13 ES ES15880034T patent/ES2905098T3/es active Active
- 2015-04-13 EP EP15880034.2A patent/EP3252011B1/en active Active
- 2015-04-13 WO PCT/JP2015/061370 patent/WO2016121139A1/ja active Application Filing
- 2015-07-28 US US14/811,096 patent/US9403691B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046152A1 (fr) * | 1999-02-05 | 2000-08-10 | Showa Denko K.K. | Particules d'oxyde de zinc ultra-fines, procede de preparation desdites particules et produit cosmetique les contenant |
JP2002201024A (ja) * | 2000-12-27 | 2002-07-16 | Hakusui Tech Co Ltd | 酸化亜鉛を主成分とする複合微粒子の製造方法 |
JP2002201382A (ja) * | 2000-12-27 | 2002-07-19 | Hakusui Tech Co Ltd | 紫外線遮蔽用酸化亜鉛微粒子 |
JP2008230915A (ja) * | 2007-03-20 | 2008-10-02 | Mitsui Mining & Smelting Co Ltd | 導電性酸化亜鉛粒子及びその製造方法 |
WO2012147888A1 (ja) * | 2011-04-28 | 2012-11-01 | 堺化学工業株式会社 | 酸化亜鉛粒子、その製造方法、化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 |
Non-Patent Citations (2)
Title |
---|
ATSUSHI KISHIMOTO: "Ultrafine zinc oxide particles", TOSO TO TORYO, no. 570, 1997, pages 27 - 33, XP009504505 * |
See also references of EP3252011A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022114169A1 (ja) * | 2020-11-30 | 2022-06-02 | 住友大阪セメント株式会社 | 酸化亜鉛粉体、分散液、塗料、化粧料 |
Also Published As
Publication number | Publication date |
---|---|
CN107207275A (zh) | 2017-09-26 |
KR101904015B1 (ko) | 2018-10-04 |
US20160221835A1 (en) | 2016-08-04 |
ES2905098T3 (es) | 2022-04-07 |
JP2016141578A (ja) | 2016-08-08 |
EP3252011B1 (en) | 2022-01-12 |
US9403691B1 (en) | 2016-08-02 |
KR20170056669A (ko) | 2017-05-23 |
EP3252011A1 (en) | 2017-12-06 |
JP5850189B1 (ja) | 2016-02-03 |
CN107207275B (zh) | 2020-02-21 |
EP3252011A4 (en) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6197282B1 (en) | Fine ultraviolet screening particles, process for preparing the same, and cosmetic preparation | |
JP5850189B1 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
WO2017130632A1 (ja) | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 | |
WO2007069430A1 (ja) | 微粒子酸化チタン分散物及びそれを含む化粧料 | |
JP6551482B2 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
WO2020067406A1 (ja) | 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 | |
JP6314898B2 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
JP2020050811A (ja) | 表面処理金属酸化物粒子、分散液、組成物および化粧料 | |
JP6682950B2 (ja) | 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子 | |
WO2020067417A1 (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
JP6922529B2 (ja) | 表面処理酸化亜鉛粒子の製造方法 | |
JP6729591B2 (ja) | 酸化亜鉛粉体、分散液、組成物、及び化粧料 | |
JP2020055737A (ja) | 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 | |
US11325840B1 (en) | Zinc oxide powder, dispersion, paint, and cosmetic | |
JP2020050561A (ja) | 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法 | |
WO2023145102A1 (ja) | 酸化亜鉛粉体、分散液、塗料、化粧料 | |
CN116529323A (zh) | 氧化锌粉体、分散液、涂料及化妆品 | |
KR20240134165A (ko) | 표면 처리 산화 아연 입자, 분산액, 화장료, 표면 처리 산화 아연 입자의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15880034 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177010368 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015880034 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |