WO2020067406A1 - 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 - Google Patents

表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 Download PDF

Info

Publication number
WO2020067406A1
WO2020067406A1 PCT/JP2019/038100 JP2019038100W WO2020067406A1 WO 2020067406 A1 WO2020067406 A1 WO 2020067406A1 JP 2019038100 W JP2019038100 W JP 2019038100W WO 2020067406 A1 WO2020067406 A1 WO 2020067406A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
metal oxide
ppm
treated metal
treated
Prior art date
Application number
PCT/JP2019/038100
Other languages
English (en)
French (fr)
Inventor
哲朗 板垣
浩和 松下
藤橋 岳
直 根矢
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018183487A external-priority patent/JP7414390B2/ja
Priority claimed from JP2018183485A external-priority patent/JP7095534B2/ja
Priority claimed from JP2019126291A external-priority patent/JP7275939B2/ja
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2020067406A1 publication Critical patent/WO2020067406A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • the present invention relates to surface-treated metal oxide particles, dispersions, compositions, cosmetics, and methods for producing surface-treated metal oxide particles.
  • This application is filed with Japanese Patent Application No. 2018-183485 filed on September 28, 2018 in Japan, Japanese Patent Application No. 2018-183486 filed in Japan on September 28, 2018, and filed in Japan on September 28, 2018.
  • the priority is claimed based on Japanese Patent Application No. 2018-183487 and Japanese Patent Application No. 2019-126291 filed on July 5, 2019, the contents of which are incorporated herein by reference.
  • Ultraviolet shielding metal oxide particles such as zinc oxide and titanium oxide are used in cosmetics such as sunscreens and foundations.
  • surface treatment of the metal oxide particles is performed in order to adjust the surface state of the metal oxide particles to the properties of the cosmetic or to suppress the catalytic activity of the metal oxide particles.
  • the surface treatment agent for such metal oxide particles include metal soaps such as magnesium stearate, silicone oils such as dimethicone and hydrogen dimethicone, and silane coupling agents having an alkoxy group such as octyltriethoxysilane. (For example, see Patent Documents 1 and 2).
  • the metal oxide particles surface-treated with the silane coupling agent have high stability because the silane coupling agent, which is a surface treatment agent, is chemically bonded to the surface of the metal oxide particles. Furthermore, the properties of the metal oxide particles as described above can be easily changed by using surface treatment agents having different substituents. In the following description, metal oxide particles surface-treated with a silane coupling agent are referred to as surface-treated metal oxide particles.
  • Such surface-treated metal oxide particles are blended into cosmetics as they are, or blended into cosmetics in the form of a dispersion dispersed in a dispersion medium.
  • the above-mentioned surface-treated metal oxide particles sometimes have poor ultraviolet shielding properties when blended in cosmetics, and have a problem that the quality relating to ultraviolet shielding properties is difficult to stabilize.
  • the ultraviolet shielding properties of the surface treated metal oxide particles are significantly reduced. was there.
  • the present invention has been made in view of the above circumstances, and has as its object to provide surface-treated metal oxide particles exhibiting a stable and high ultraviolet shielding property. Another object of the present invention is to provide a dispersion, a composition, and a cosmetic containing such surface-treated metal oxide particles. Another object of the present invention is to provide a method for producing such surface-treated metal oxide particles.
  • a first aspect of the present invention is a metal oxide particle surface-treated with a silane coupling agent, wherein the metal oxide particle has an ultraviolet shielding property, and a solid of the surface-treated metal oxide particle is provided.
  • a second aspect of the present invention is a metal oxide particle surface-treated with a silane coupling agent, wherein the metal oxide particle has an ultraviolet shielding property, and the surface-treated metal oxide particle has a thickness of 105%.
  • the loss on drying at 3 ° C. for 3 hours is 0.15% by mass or less, and the spectrum of the surface-treated metal oxide particles is ⁇ 30 ppm in a spectrum measured by solid 29 Si CP / MAS-nuclear magnetic resonance (NMR) spectroscopy.
  • a third aspect of the present invention is a metal oxide particle surface-treated with a silane coupling agent, wherein the metal oxide particle has an ultraviolet ray shielding property, and the surface-treated metal oxide particle is 10%.
  • the surface-treated metal oxide particles of the first to third aspects may preferably have each other's characteristics.
  • surface-treated metal oxide particles that simultaneously satisfy both features of the first and second embodiments, and surface-treated metal oxide particles that simultaneously satisfy both features of the second and third embodiments Surface-treated metal oxide particles satisfying all the features of the first, second, and third aspects are preferably included in the scope of the present invention. Further, the surface-treated metal oxide particles of the first to third aspects may share preferred examples of each other as long as there is no problem.
  • the surface-treated metal oxide particles of the first aspect of the present invention may have a loss on drying at 105 ° C. for 3 hours of 0.15% by mass or less.
  • the silane coupling agent may be an alkylalkoxysilane, an allylalkoxysilane, a polysiloxane having an alkyl group in a side chain, and an allyl group in a side chain. May be at least one selected from the group consisting of polysiloxanes.
  • the silane coupling agent comprises octyltriethoxysilane, octyltrimethoxysilane, and dimethoxydiphenylsilane-triethoxycaprylylsilane crosspolymer. At least one selected from the group may be used.
  • a fourth aspect of the present invention provides a dispersion containing the surface-treated metal oxide particles according to at least one of the first to third aspects, and a dispersion medium, in order to solve the above-mentioned problems. I do.
  • a surface-treated metal oxide particle according to at least one of the first to third aspects, and a polymer, in order to solve the above problems.
  • a composition is provided.
  • a surface-treated metal oxide particle according to at least one of a dispersion medium and a polymer, and at least one of the first to third aspects, in order to solve the above problems.
  • a seventh aspect of the present invention is a method for producing metal oxide particles surface-treated with a silane coupling agent in order to solve the above-described problems, wherein the surface treatment is performed using a silane coupling agent having an ultraviolet shielding property.
  • the prepared metal oxide particles were prepared, and the surface-treated metal oxide particles were measured by solid 29 Si CP / MAS-nuclear magnetic resonance (NMR) spectroscopy.
  • a surface-treated metal oxide including a first step of determining whether a ratio of an integrated value from ⁇ 20 ppm to ⁇ 50 ppm satisfies 60% or less, when an integrated value of a spectrum in a measurement range is 100%.
  • a method for producing particles is provided.
  • the first step it is confirmed whether the ratio exceeds 60%, and when it is confirmed that the ratio exceeds 60%, the ratio is 60% or less.
  • the method may further include a second step of heating the surface-treated metal oxide particles until the above step is satisfied.
  • the present invention it is possible to provide surface-treated metal oxide particles that exhibit high ultraviolet shielding properties stably. Further, according to the present invention, a dispersion, a composition, and a cosmetic containing such surface-treated metal oxide particles can be provided. According to the present invention, a method for producing such surface-treated metal oxide particles can be provided.
  • FIG. 3 is a diagram showing NMR spectra of surface-treated zinc oxide particles of Examples 1 to 3 and Comparative Example 1.
  • 2 is a graph showing an integrated value of FIG.
  • FIG. 9 is a view showing an NMR spectrum of the surface-treated zinc oxide particles of Example 4.
  • FIG. 9 is a view showing an NMR spectrum of the surface-treated zinc oxide particles of Comparative Example 2.
  • FIG. 9 is a view showing an optical microscope image of surface-treated zinc oxide particles of Example 4.
  • FIG. 9 is a view showing an optical microscope image of surface-treated zinc oxide particles of Comparative Example 3.
  • FIG. 9 is a view showing the results of FT-IR measurement of surface-treated zinc oxide particles and octyltriethoxysilane of Example 4 and Comparative Example 2.
  • the surface-treated acid metal oxide particles may be abbreviated as “surface-treated particles”.
  • the surface-treated metal oxide particles of the first embodiment are UV-shielding metal oxide particles surface-treated with a silane coupling agent.
  • the metal oxide particles have an ultraviolet shielding property, and the surface-treated metal oxide particles are measured by solid-state 29 Si CP / MAS-nuclear magnetic resonance (NMR) spectroscopy (hereinafter, referred to as “Si CP / MAS-
  • Si CP / MAS- solid-state 29 Si CP / MAS-nuclear magnetic resonance
  • the surface-treated metal oxide particles of the present embodiment preferably have a loss on drying at 105 ° C. for 3 hours of 0.15% by mass or less.
  • the surface-treated metal oxide particles of the second embodiment are UV-shielding metal oxide particles surface-treated with a silane coupling agent.
  • the metal oxide particles have an ultraviolet shielding property, a loss on drying of the surface-treated metal oxide particles at 105 ° C. for 3 hours is 0.15% by mass or less, and a solid of the surface-treated metal oxide particles.
  • the surface-treated metal oxide particles of the third embodiment are metal oxide particles having an ultraviolet shielding property, which are surface-treated with a silane coupling agent.
  • the metal oxide particles have an ultraviolet shielding property.
  • the surface-treated metal oxide particles are 10% by mass, PEG-9 polydimethylsiloxyethyl dimethicone is 2% by mass, and decamethylcyclopentasiloxane is 88% by mass. 10 parts by mass of a dispersion liquid consisting of the following and 90 parts by mass of decamethylcyclopentasiloxane, and the mixture was sandwiched between glass slides and observed with an optical microscope. Is 15 ⁇ m or less.
  • the surface-treated metal oxide particles of the first to third embodiments can preferably have each other's characteristics.
  • the features of both the first and second embodiments, the features of both the second and third embodiments, the features of both the first and third embodiments, or the first to third features Surface-treated metal oxide particles having all the features of the three embodiments may be used. These metal oxide particles can be preferably used as an ultraviolet shielding agent.
  • having an ultraviolet shielding property means having an effect of shielding at least any range in an ultraviolet (10 to 400 nm) region.
  • An example of a method for evaluating the presence or absence of the ultraviolet shielding property is to measure a transmission spectrum in a wavelength region of 250 to 450 nm of a coating film containing 10% by mass of metal oxide particles.
  • the surface-treated metal oxide particles of the above embodiment are preferably primary particles.
  • the primary particles may aggregate to form secondary particles.
  • Si CP / MAS-NMR spectrum of surface-treated metal oxide particles As a result of various studies, the present inventors have found that in the evaluation using the Si CP / MAS-NMR spectrum, the ultraviolet shielding properties of the surface-treated metal oxide particles change depending on the conditions described below. .
  • the Si CP / MAS-NMR spectrum of the surface-treated metal oxide particles can be obtained by the CP / MAS method.
  • the CP / MAS method cross polarization / magic angle spinning is a method in which the magnetization of a 29 Si nucleus having a long relaxation time is moved to 1 H having a short relaxation time and observed.
  • the CP / MAS method has an advantage that the integration efficiency is improved by shortening the pulse delay and the sensitivity is improved. For this reason, even when the relaxation time is long and the abundance is small like 29 Si nuclei caused by the silane coupling agent in the surface-treated metal oxide particles, a Si CP / MAS-NMR spectrum can be obtained.
  • the CP / MAS method has a disadvantage that it is difficult to observe a signal of Si having no proton in the vicinity.
  • the silane coupling agent has almost no effect because a 1 H nucleus caused by an unreacted OH group or an organo group is in the vicinity.
  • Si CP / MAS-NMR spectra of metal oxide particles surface-treated with a silane coupling agent are classified into T 0 , T 1 , T 2 , and T 3 depending on the state of crosslinking of the silane coupling agent.
  • T 0 , T 1 , T 2 , and T 3 mean a chemical structure determined according to the number of oxygen atoms bonded to two Sis. Specifically, as shown in the following formulas (1) and (2), T 1 indicates a cross-linked state in which one silicon atom participates in one siloxane bond (Si—O—Si). ing. T 2 are, shows a crosslinked state in which one silicon atom is involved in two siloxane bonds.
  • T 3 represents a cross-linked state in which one silicon atom is involved in the three siloxane bonds.
  • T 0 is a single silicon atom indicates a state having no siloxane bonds.
  • H of the OH group may be R.
  • R represents an alkyl group.
  • the alkyl group can be arbitrarily selected, and includes, for example, groups containing a silane coupling agent described later, such as a methyl group, an ethyl group, a propyl group, and a butyl group. However, it is not limited only to these.
  • a hydrolysis / polycondensation reaction is performed on the surface.
  • the integrated value from ⁇ 20 ppm to ⁇ 80 ppm of the Si CP / MAS-NMR spectrum is approximately the area of T 0 , T 1 , T 2 , and T 3 . It is considered to be the sum. Further, the integrated value from -20 ppm to -50 ppm is considered to be a ratio occupied by the area of approximately T 0 and T 1 . Integral values from -40ppm to -50ppm may be considered as ratio of the area of approximately T 1. Integral values from -50ppm to -60ppm may be considered as ratio of the area of approximately T 2.
  • An integrated value exceeding ⁇ 60 ppm may be considered to be a ratio occupied by the area of about T 3 .
  • the integral value from -20ppm to -40ppm may be considered to be the ratio of the area of the approximately T 0, but the integral value from -20ppm to -30ppm is the integral value of from -30ppm to -40ppm Smaller than. Note that the peaks of T 0 , T 1 , T 2 , and T 3 are included in the range of ⁇ 20 ppm to ⁇ 80 ppm, and these peaks may not be interrupted at both ends of ⁇ 20 ppm and ⁇ 80 ppm.
  • the ratio of the integrated value from -20 ppm to -50 ppm is 60%. % Is preferable, because the ultraviolet shielding properties of the surface-treated metal oxide particles do not decrease.
  • the cosmetic is generally used in an oil-in-water (W / O type) or water-in-oil (O / W type) dosage form.
  • W / O type oil-in-water
  • O / W type water-in-oil
  • the metal oxide particles are surface-treated with a silane coupling agent, it is possible to obtain surface-treated metal oxide particles that stably exhibit high ultraviolet shielding properties.
  • the integrated value from ⁇ 30 ppm to ⁇ 60 ppm may be considered to be approximately the sum of the areas of T 0 , T 1 , and T 2 .
  • Integral values from -40ppm to -50ppm is the percentage occupied area of approximately T 1
  • the integral value from -50ppm to -60ppm may be considered to be the ratio of the area of approximately T 2.
  • the integrated value from -20 ppm to -50 ppm may be considered to be a ratio occupied by the area of approximately T 0 and T 1 .
  • the integration ratio of the spectrum in the measurement range of ⁇ 50 ppm to ⁇ 60 ppm when the value divided by the integral ratio of the spectrum in the measurement range of -40 ppm to -50 ppm satisfies 0.5 or more and 5.0 or less, it is preferable because the ultraviolet shielding properties of the surface-treated metal oxide particles do not decrease.
  • the surface-treated metal oxide particles whose value obtained by dividing the integral ratio by another integral ratio does not satisfy 0.5 or more and 5.0 or less as described above are oil phase. OH group in the surface-treated metal oxide particles is large. For this reason, during the process of being applied to the skin and dried, it is presumed that the surface-treated metal oxide particles are likely to aggregate in the oil phase, making it difficult to impart a desired ultraviolet shielding property to the skin.
  • the integral ratio of the spectrum in the measurement range of -50 ppm to -60 ppm is -40 ppm to --40 ppm.
  • the surface-treated metal oxide particles of the present embodiment have a maximum intensity in the range of ⁇ 40 ppm to ⁇ 50 ppm (T 1 ) of A, and a maximum intensity in the range of ⁇ 50 ppm to ⁇ 60 ppm (T 2 ).
  • the maximum strength is defined as B
  • the value obtained by dividing A by B (A / B) is preferably 1.0 or less.
  • the lower limit of A / B is not particularly limited and can be arbitrarily selected, and may be, for example, 0.3 or more, 0.4 or more, 0.5 or more, and 0.1 or more. It may be 6 or more, or 0.7 or more.
  • the surface-treated metal oxide particles have a maximum intensity in the range of ⁇ 40 ppm to ⁇ 50 ppm (T 1 ), and a maximum intensity in the range of ⁇ 50 ppm to ⁇ 60 ppm (T 2 ).
  • B and the maximum intensity in the range of ⁇ 20 ppm to ⁇ 40 ppm (T 0 ) is defined as C, and the maximum intensity in the range of ⁇ 60 ppm to ⁇ 80 ppm (T 3 ) is D
  • B>A> C > D is preferable.
  • Surface-treated metal oxide particles satisfying such a relationship have excellent dispersion stability in a composition containing a water-based volatile component and an oil-based component, such as cosmetics, and have an object (in the case of cosmetics, ) Can exhibit high ultraviolet shielding properties.
  • the present inventors have found that, when a specific mixture having the above composition of the surface-treated metal oxide particles is sandwiched between glass slides and observed with an optical microscope, the particle size of the observed aggregate satisfies 15 ⁇ m or less. It was found that when there was no such a material, the ultraviolet shielding properties of the surface-treated metal oxide particles tended to decrease. The above reason is presumed as follows.
  • surface-treated metal oxide particles are generally blended in an oil phase. Decamethylcyclopentasiloxane is one of the oil phase components of cosmetics.
  • this decamethylcyclopentasiloxane and the surface-treated metal oxide particles are mixed, when the aggregated diameter of the surface-treated metal oxide particles increases, the surface-treated metal oxide particles, which are an ultraviolet ray shielding component, are exposed to the skin. It is presumed that when applied to the skin, it is difficult to apply the skin uniformly because of the formation of large agglomerates. On the other hand, when the surface-treated metal oxide particles having a coagulated diameter of 15 ⁇ m or less under the above conditions are blended into the cosmetic and the cosmetic is applied to the skin, the surface-treated metal oxide is contained in the cosmetic. Aggregation of the oxide particles is suppressed.
  • the surface-treated metal oxide particles which are ultraviolet shielding components, are easily applied uniformly to the skin, and the ultraviolet shielding properties are improved.
  • PEG-9 polydimethylsiloxyethyl dimethicone was added to the mixture as a dispersant for dispersing the surface-treated metal oxide particles in decamethylcyclopentasiloxane.
  • the particle size of the observed agglomerate is 500 ⁇ m ⁇ 750 ⁇ m obtained by 500 times the optical microscope. Inside, the major axis of the largest aggregate is measured.
  • the above-mentioned dispersion liquid containing decamethylcyclopentasiloxane is further mixed with decamethylcyclopentasiloxane.
  • the reason for this is that if aggregates are formed under the conditions for mixing the above dispersion and decamethylcyclopentasiloxane, it is considered that aggregation is highly likely to occur even during actual use. For example, even when the surface-treated metal oxide particles showing a bad result in the above evaluation are mixed with the oil phase of the cosmetic, aggregates are formed in the cosmetic, and the desired ultraviolet shielding performance (SPF) cannot be obtained. It is expected that there may be cases.
  • SPF ultraviolet shielding performance
  • the conditions and method for bringing the metal oxide particles into a state where aggregation of the particles is suppressed even when mixed with decamethylcyclopentasiloxane are not particularly limited.
  • a method of selecting metal oxide particles preferably subjected to a surface treatment can be mentioned.
  • the loss on drying of the surface-treated metal oxide particles at 105 ° C. for 3 hours is 0.15% by mass or less, and the Si CP / MAS of the surface-treated metal oxide particles is used.
  • the integral ratio of the spectrum in the measurement range of -50 ppm to -60 ppm is defined as the spectrum in the measurement range of -40 ppm to -50 ppm.
  • the method of selecting the surface-treated metal oxide particles whose value divided by the integral ratio is 0.5 or more and 5.0 or less is preferably exemplified.
  • the loss on drying obtained at 105 ° C. for 3 hours is preferably 0.15% by mass or less, and more preferably 0.10% by mass or less. Is more preferable.
  • a peak derived from the alkoxy group, a silane coupling agent having an alkoxy group with FT-IR, as measured by the ATR method generally, the peak detected in the range of 900cm -1 ⁇ 1300cm -1
  • the peak of the alkoxy group is identified by using the “identification method by the spectrum of the organic compound, sixth edition”. I just need.
  • peaks derived from the alkoxy group and preferably not detected are 1170 cm ⁇ 1 , 1100 cm ⁇ 1 , 1080 cm ⁇ 1 , and 950 cm ⁇ 1 .
  • at least one of these peaks is not detected, more preferably not all peaks are detected.
  • octyltriethoxysilane is a silane coupling agent having an alkoxy group as measured by FT-IR, a peak detected in the range of 900cm -1 ⁇ 1300cm -1.
  • the first to third surface-treated metal oxide particles have no peak detected at the position of the wavelength in the reflection spectrum measured by a Fourier transform infrared spectrophotometer.
  • peak is not detected means that the reflectance at the peak top is 1% or less (-1% or more and 0% or less) in absolute value when the reflectance of the baseline is 0%.
  • the peak at 950 cm -1 is not detected, it means that the peak that contains the 950 cm -1 in the range is not detected. That is, this does not mean that a peak having a peak top at 950 cm ⁇ 1 is not detected.
  • 1170cm -1, 1100cm -1 The same applies to the 1080 cm -1.
  • “Fourier transform infrared spectrophotometer” may be abbreviated as “FT-IR”.
  • the surface treatment of the metal oxide particles is performed by a hydrolysis reaction of the silane coupling agent containing an alkoxy group. Therefore, the fact that the alkoxy group does not remain indicates that almost all of the alkoxy group in the silane coupling agent undergoes a hydrolysis reaction and reacts with the OH group on the surface of the metal oxide particle. As a result, it is inferred that the number of OH groups remaining in the surface-treated metal oxide particles is reduced or not remaining.
  • the alkoxy groups remaining in the particles are hydrolyzed by atmospheric moisture, and as a result, the OH groups in the surface metal oxide particles may increase. , Can be prevented. For this reason, it is presumed that surface-treated metal oxide particles exhibiting high ultraviolet shielding stably can be obtained.
  • the specific surface area of the surface-treated metal oxide particles can be arbitrarily selected, but is preferably 1.5 m 2 / g or more, more preferably 2.5 m 2 / g or more, and more preferably 4 m 2 / g or more. It is more preferred that there be.
  • the specific surface area of the surface-treated metal oxide particles is preferably 65 m 2 / g or less, more preferably 60 m 2 / g or less. If necessary, it may be 50 m 2 / g or less, 30 m 2 / g or less, or 10 m 2 / g or less.
  • the upper and lower limits of the specific surface area of the surface-treated metal oxide particles can be arbitrarily combined.
  • the specific surface area of the surface-treated metal oxide particles is 1.5 m 2 / g or more and 65 m 2 / g or less, transparency and ultraviolet shielding properties are excellent when blended in cosmetics.
  • the specific surface area of the surface-treated metal oxide particles is preferably 8 m 2 / g or more, more preferably 15 m 2 / g or more, More preferably, it is 20 m 2 / g or more.
  • the specific surface area of the surface-treated metal oxide particles is preferably less than 8 m 2 / g, and is preferably 7.5 m 2 / g or less. More preferably, it is more preferably 7.0 m 2 / g or less.
  • the specific surface area of the surface-treated metal oxide particles means a value measured by a BET method using a fully automatic specific surface area measuring device (trade name: Macsorb HM Model-1201, manufactured by Mountech Corporation).
  • the average primary particle diameter of the surface-treated metal oxide particles of the present embodiment can be arbitrarily selected, but is preferably 15 nm or more, and more preferably 20 nm or more.
  • the average primary particle diameter of the surface-treated metal oxide particles is preferably 715 nm or less, and more preferably 650 nm or less.
  • the average primary particle diameter of the surface-treated metal oxide particles is 15 nm or more and 715 nm or less, when blended in a cosmetic, transparency and ultraviolet shielding properties are excellent.
  • the average primary particle diameter of the surface-treated metal oxide particles is preferably 135 nm or less, more preferably 100 nm or less, and more preferably 50 nm or less.
  • the primary particle diameter of the surface-treated metal oxide particles is preferably more than 135 nm, more preferably 140 nm or more, and more preferably 150 nm or more. Is more preferable.
  • the average primary particle diameter of the surface-treated metal oxide particles can be calculated by the formula (3) using the specific surface area of the surface-treated metal oxide particles.
  • Average primary particle diameter (nm) 6000 / (specific surface area (m 2 / g) ⁇ ⁇ (g / cm 3 )) (3) (Where ⁇ is the density of the metal oxide particles.)
  • ⁇ of zinc oxide is 5.61 g / cm 3
  • ⁇ of titanium oxide is 4.23 g / cm 3 .
  • the average primary particle diameter of the surface-treated metal oxide particles may be determined by the following method.
  • TEM transmission electron microscope
  • a predetermined number of the surface-treated metal oxide particles for example, 200 or 100 are selected. Then, the longest linear portion (maximum major axis) of each of the surface-treated metal oxide particles is measured, and the measured values are arithmetically averaged.
  • the surface-treated metal oxide particles are aggregated, the aggregated particle diameter of the aggregate is not measured.
  • a predetermined number of the surface-treated metal oxide particles (primary particles) constituting the aggregate are measured to obtain an average primary particle diameter.
  • the metal oxide particles used as a raw material in the present embodiment are not particularly limited as long as they have an ultraviolet shielding property.
  • the metal oxide particles for example, zinc oxide particles, titanium oxide particles, cerium oxide particles, and the like can be used. Zinc oxide particles and titanium oxide particles are more preferred because they are commonly used in cosmetics. Zinc oxide particles are more preferred in that they have excellent ultraviolet shielding properties in the UV-A region.
  • the specific surface area of the metal oxide particles can be arbitrarily selected, but is preferably 1.5 m 2 / g or more, more preferably 2.5 m 2 / g or more, and more preferably 4 m 2 / g or more. Is more preferred.
  • the specific surface area of the metal oxide particles is preferably 65 m 2 / g or less, more preferably 60 m 2 / g or less. If necessary, it may be 50 m 2 / g or less, 30 m 2 / g or less, or 10 m 2 / g or less.
  • the upper and lower limits of the specific surface area of the metal oxide particles can be arbitrarily combined.
  • the specific surface area of the metal oxide particles is 1.5 m 2 / g or more and 65 m 2 / g or less, transparency and ultraviolet shielding properties are excellent when blended in cosmetics. If it is desired to increase the transparency of when incorporated into cosmetics, it is preferable that the specific surface area of the metal oxide particles is 8m 2 / g or more, more preferably 15 m 2 / g or more, 20 m 2 / g or more is more preferable. On the other hand, when it is desired to increase the ultraviolet shielding property when blended in a cosmetic, the specific surface area of the metal oxide particles is preferably less than 8 m 2 / g, and is 7.5 m 2 / g or less. Is more preferable, and it is still more preferable that it is 7.0 m ⁇ 2 > / g or less.
  • the specific surface area of the metal oxide particles means a value measured by a BET method using a fully automatic specific surface area measuring device (trade name: Macsorb HM Model-1201, manufactured by Mountech Corporation).
  • the average primary particle diameter of the metal oxide particles of the present embodiment can be arbitrarily selected, but is preferably 15 nm or more, and more preferably 20 nm or more.
  • the average primary particle diameter of the surface-treated metal oxide particles is preferably 715 nm or less, and more preferably 650 nm or less.
  • the average primary particle diameter of the metal oxide particles is 15 nm or more and 715 nm or less, transparency and ultraviolet shielding properties are excellent when blended in cosmetics.
  • the average primary particle diameter of the metal oxide particles is preferably 135 nm or less, more preferably 100 nm or less, and more preferably 50 nm or less. More preferred.
  • the primary particle diameter of the metal oxide particles is preferably more than 135 nm, more preferably 140 nm or more, and more preferably 150 nm or more. Is more preferable.
  • the average primary particle diameter of the metal oxide particles can be calculated by the equation (3) using the specific surface area of the metal oxide particles in the same manner as the average primary particle diameter of the surface-treated metal oxide particles.
  • the average primary particle diameter of the metal oxide particles may be determined by the following method. That is, when the metal oxide particles are observed using a transmission electron microscope (TEM) or the like, a predetermined number of metal oxide particles, for example, 200 or 100 are selected. Then, the longest linear portion (maximum major axis) of each of the metal oxide particles is measured, and the measured values are arithmetically averaged. When the metal oxide particles are aggregated, the aggregate particle diameter of the aggregate is not measured. A predetermined number of metal oxide particles (primary particles) constituting this aggregate are measured and defined as an average primary particle diameter.
  • TEM transmission electron microscope
  • the surface treatment of the metal oxide particles tends to reduce the specific surface area of the surface-treated metal oxide particles, but they are substantially the same size.
  • the average primary particle diameter tends to increase when the metal oxide particles surface, but they are substantially the same size.
  • the silane coupling agent used in the present embodiment is not particularly limited as long as it is a silane coupling agent usable for cosmetics.
  • a silane coupling agent among the silane coupling agents represented by the general formula (4), those that can be used in cosmetics are listed.
  • R 1 Si (OR 2 ) 3 (4) R 1 represents an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group or a phenyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • silane coupling agent used for the surface treatment methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, Ethyl tributoxy silane, n-propyl trimethoxy silane, n-propyl triethoxy silane, n-propyl tripropoxy silane, n-propyl tributoxy silane, isopropyl trimethoxy silane, isopropyl triethoxy silane, isopropyl tripropoxy silane, isopropyl tri Butoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltributoxysilane, n-octy
  • silane coupling agent used for the surface treatment a siloxane skeleton such as dimethoxydiphenylsilane-triethoxycaprylylsilane crosspolymer, triethoxysilylethyl polydimethylsiloxyethyl dimethicone, triethoxysilylethyl polydimethylsiloxyethylhexyl dimethicone, etc. is used.
  • a polymer-type silane coupling agent having an alkoxy group and an acrylic group in the molecular structure.
  • silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • silane coupling agents a silane coupling agent having an octyl group in the molecule is preferable.
  • octyltriethoxysilane, octyltrimethoxysilane, and dimethoxydiphenylsilane-triol have a moderate polarity of the functional groups and can support a wide range of oil phases from natural oils and ester oils to silicone oils.
  • Ethoxycaprylylsilane crosspolymer can be used particularly preferably.
  • One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • the amount of surface treatment with the silane coupling agent may be appropriately adjusted according to desired characteristics.
  • the amount of the silane coupling agent is preferably 2 parts by mass or more and 15 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less. It is more preferably 4 parts by mass or more and 12 parts by mass or less.
  • the amount of the silane coupling agent may be an amount added and used at the time of production.
  • the surface treatment of the metal oxide particles with the silane coupling agent is performed in the above-mentioned range because surface-treated particles having excellent dispersibility and excellent ultraviolet shielding properties are easily obtained.
  • a surface treatment agent used in cosmetics other than the silane coupling agent may be used.
  • the metal oxide particles may be used for surface treatment.
  • a surface treatment agent other than the silane coupling agent for example, inorganic materials such as silica and alumina, and organic materials such as silicone compounds, fatty acids, fatty acid soaps, fatty acid esters, and organic titanate compounds can be used.
  • the surface-treated metal oxide particles of the first embodiment are metal oxide particles preferably surface-treated with a silane coupling agent, preferably a silane coupling agent under the above conditions, wherein the metal oxide particles are ultraviolet-shielded.
  • a silane coupling agent preferably a silane coupling agent under the above conditions
  • the metal oxide particles are ultraviolet-shielded.
  • the Si CP / MAS-NMR spectrum of metal oxide particles having surface properties and having properties from ⁇ 20 ppm to ⁇ 50 ppm, when the integrated value of the spectrum in the measurement range of ⁇ 20 ppm to ⁇ 80 ppm is 100%. Is 60% or less. For this reason, excellent surface-treated metal oxide particles exhibiting a stable high ultraviolet shielding property can be obtained.
  • the surface-treated metal oxide particles of the second embodiment are metal oxide particles preferably surface-treated with a silane coupling agent, preferably a silane coupling agent under the above conditions, and the metal oxide particles are Si CP / MAS-NMR spectrum of the surface-treated metal oxide particles having an ultraviolet shielding property, the loss on drying at 105 ° C. for 3 hours of the surface-treated metal oxide particles is 0.15% by mass or less.
  • the integrated value of the spectrum in the measurement range of ⁇ 30 ppm to ⁇ 60 ppm is 100
  • the integration ratio of the spectrum in the measurement range of ⁇ 50 ppm to ⁇ 60 ppm is the integration ratio of the spectrum in the measurement range of ⁇ 40 ppm to ⁇ 50 ppm. Is 0.5 or more and 5.0 or less. For this reason, excellent surface-treated metal oxide particles exhibiting a stable high ultraviolet shielding property can be obtained.
  • the method for producing the surface-treated metal oxide particles of the first to third embodiments is not particularly limited, and can be arbitrarily selected. Depending on the components used for the surface treatment, the production can be appropriately performed by a known method such as a dry treatment or a wet treatment.
  • a silane coupling agent is added under droplets or by spraying while a metal oxide particle as a raw material is stirred in a mixer such as a Henschel mixer or a super mixer, and thereafter, high-speed strong stirring is performed for a certain time. Thereafter, a heat treatment is performed at a temperature of 70 to 200 ° C. while stirring is continued.
  • the heating temperature and the stirring time can be selected as needed depending on the material used and the silane coupling agent.
  • a method of performing surface treatment by the following method may be mentioned.
  • the metal oxide particles, the silane coupling agent, and the solvent are mixed at 25 ° C. to 100 ° C. for several hours while stirring. Thereafter, solid-liquid separation and washing are performed, and the obtained washed product is heated at 70 ° C. to 200 ° C.
  • the water for hydrolysis of the silane coupling agent may use water attached to the metal oxide particles, together with the silane coupling agent as necessary, or separately. May be added.
  • the silane coupling agent may be diluted with a solvent that can be mixed with the silane coupling agent before use.
  • a solvent examples include alcohols such as methanol, ethanol, and isopropanol, n-hexane, toluene, xylene, and the like.
  • One or more solvents can be used.
  • a polar solvent such as alcohol having high compatibility with water is preferably used among these solvents.
  • metal oxide particles surface-treated with a silane coupling agent are manufactured or prepared, and the particles are measured.
  • Si @ CP / MAS-NMR spectrum the spectrum in the measurement range of -20 ppm to -80 ppm is obtained.
  • a method including a step (first step) of judging whether or not the ratio of the integral value from -20 ppm to -50 ppm satisfies 60% or less when the integral value is 100% is preferably exemplified.
  • the method for producing surface-treated metal oxide particles of the present embodiment preferably includes the first step. For this reason, the measured amount of OH groups of the surface-treated particles can be quantitatively confirmed, and whether or not surface-treated metal oxide particles having excellent ultraviolet shielding properties have been obtained can be confirmed in advance.
  • the metal oxide particles surface-treated with the silane coupling agent that is, the surface-treated metal oxide particles
  • the heating conditions in the second step can be arbitrarily selected.
  • the temperature may be the same as that at the time of producing the particles, for example, a temperature of 70 ° C to 200 ° C.
  • the method for producing surface-treated metal oxide particles of the present embodiment includes a third step of determining that the loss on drying of the surface-treated metal oxide particles at 105 ° C. for 3 hours is 0.15% by mass or less. It may be performed at an arbitrary timing, for example, before the first step or before the second step. It may be performed after the second step. Of these, it may be performed at a plurality of timings.
  • the third step can be performed by the same method as the method for measuring the loss on drying of the above-mentioned surface-treated metal oxide particles at 105 ° C. for 3 hours.
  • metal oxide particles surface-treated with a silane coupling agent were measured, and the obtained Si CP / MAS-NMR spectrum was measured.
  • a step of determining (first 'step) may be included.
  • the second 'step a step of heating the surface-treated metal oxide particles that do not satisfy 0.5 or more and 5.0 or less (the second 'step) after the first' step.
  • the ratio of the integrated value from ⁇ 20 ppm to ⁇ 50 ppm is 60% or less until the value obtained by the division falls within the range of 0.5 or more and 5.0 or less. It is preferable to heat until the temperature becomes.
  • the heating conditions in the second 'step can be arbitrarily selected, and may be the same temperature as that used for producing the particles, for example, a temperature of 70 ° C to 200 ° C.
  • the third step may be performed at an arbitrary timing, for example, before the first ′ step, before the second ′ step, or after the second ′ step.
  • the loss on drying is more than 0.15% by mass; in the first step, the ratio of the integrated value from -20 ppm to -50 ppm is more than 60%. And / or in the first step, when at least one of the conditions of the above-mentioned divided value is out of the range of 0.5 or more and 5.0 or less; Is preferred. That is, the method may further include a step (second or second 'step) of further heating the surface-treated metal oxide particles until at least one, preferably two, and more preferably all of the above conditions are satisfied. ,preferable. By including such a step, the amount of OH groups of the surface-treated particles can be quantitatively controlled. For this reason, surface-treated metal oxide particles having excellent ultraviolet shielding properties can be stably produced.
  • the method for producing surface-treated metal oxide particles according to the present embodiment preferably includes a first and / or first 'step. Therefore, the amount of OH groups in the surface-treated particles can be quantitatively confirmed, and it can be confirmed whether or not surface-treated metal oxide particles having excellent ultraviolet shielding properties have been obtained.
  • the method for producing surface-treated metal oxide particles of the present embodiment preferably includes the second and / or second 'steps. This makes it possible to quantitatively control the amount of OH groups in the surface-treated particles. Therefore, it is possible to stably produce surface-treated metal oxide particles having excellent ultraviolet shielding properties.
  • the dispersion of this embodiment contains surface-treated metal oxide particles having at least one feature of the first to third embodiments, and a dispersion medium.
  • the dispersion of the present embodiment also includes a paste-like dispersion having a high viscosity.
  • the dispersion medium is not particularly limited as long as it can be formulated into cosmetics and can disperse the surface-treated particles.
  • the dispersion medium include water; alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, octanol and glycerin; ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate; Esters such as propylene glycol monoethyl ether acetate and ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol Ethers such as monoethyl ether; natural oil, ester
  • Other dispersion media include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; cyclic hydrocarbons such as cyclohexane; dimethylformamide; Amides such as N, N-dimethylacetoacetamide and N-methylpyrrolidone; and linear polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane and diphenylpolysiloxane.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • dispersion media include cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexanesiloxane; amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified Modified polysiloxanes such as polysiloxane are used.
  • cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexanesiloxane
  • amino-modified polysiloxane polyether-modified polysiloxane
  • alkyl-modified polysiloxane alkyl-modified polysiloxane
  • fluorine-modified Modified polysiloxanes such as polysiloxane
  • dispersing media include hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin; and ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
  • hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin
  • ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
  • Silicone oils such as decamethylcyclopentasiloxane, dimethylpolysiloxane and methylphenylpolysiloxane; higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid; lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyl decanol, iso-
  • a hydrophobic dispersion medium such as a higher alcohol such as stearyl alcohol may be used.
  • One of the above various dispersion media may be used alone, or two or more thereof may be used in combination.
  • the dispersion of the present embodiment may contain a commonly used additive as long as its properties are not impaired.
  • additives for example, preservatives, dispersants, dispersing aids, stabilizers, water-soluble binders, thickeners, oil-soluble drugs, oil-soluble pigments, oil-soluble proteins, UV absorbers and the like are preferably used.
  • preservatives for example, preservatives, dispersants, dispersing aids, stabilizers, water-soluble binders, thickeners, oil-soluble drugs, oil-soluble pigments, oil-soluble proteins, UV absorbers and the like are preferably used.
  • the particle size (d50) of the surface-treated metal oxide particles can be arbitrarily selected, but is preferably 300 nm or less, and preferably 250 nm. It is more preferably at most 200 nm, more preferably at most 200 nm.
  • the lower limit value of d50 is not particularly limited, and may be, for example, 50 nm or more, 100 nm or more, or 150 nm or more.
  • the upper limit and the lower limit of d50 can be arbitrarily combined.
  • the particle size (d90) when the cumulative volume percentage of the particle size distribution in the dispersion of this embodiment is 90% can be arbitrarily selected, but is preferably 400 nm or less, more preferably 350 nm or less. , And 300 nm or less.
  • the lower limit of d90 is not particularly limited, and may be, for example, 100 nm or more, 150 nm or more, or 200 nm or more.
  • the upper limit and the lower limit of d90 can be arbitrarily combined.
  • the dispersion has a d50 of 300 nm or less, when the cosmetic prepared using the dispersion is applied to the skin, the surface-treated particles are easily distributed uniformly and the ultraviolet shielding effect is improved, which is preferable.
  • the d90 of the dispersion is 400 nm or less, the transparency of the dispersion is high, and the transparency of the cosmetic prepared using this dispersion is also high, which is preferable.
  • a dispersion having excellent transparency and excellent ultraviolet shielding properties can be obtained.
  • cosmetics produced using this dispersion are also excellent in transparency and ultraviolet shielding properties.
  • the cumulative volume percentage of the particle size distribution in the dispersion can be measured using a dynamic light scattering type particle size distribution measuring device.
  • the content of the surface-treated metal oxide particles in the dispersion of the present embodiment may be appropriately adjusted according to desired characteristics.
  • the content of the surface-treated metal oxide particles in the dispersion can be arbitrarily selected, but is preferably 10% by mass or more, and more preferably 20% by mass or more. More preferably, the content is more preferably 30% by mass or more. Further, the content of the surface-treated metal oxide particles in the dispersion is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less. The upper and lower limits of the content of the surface-treated metal oxide particles in the dispersion can be arbitrarily combined.
  • the content of the surface-treated metal oxide particles in the dispersion is within the above range, the surface-treated metal oxide particles are contained at a high concentration. For this reason, the degree of freedom of formulation can be improved, and the viscosity of the dispersion can be reduced to a level that facilitates handling.
  • the viscosity of the dispersion of the present embodiment can be arbitrarily selected, but is preferably 5 Pa ⁇ s or more, more preferably 8 Pa ⁇ s or more, still more preferably 10 Pa ⁇ s or more, and more preferably 15 Pa ⁇ s or more. It is most preferred that it is s or more. Further, the viscosity of the dispersion is preferably 300 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, further preferably 80 Pa ⁇ s or less, and most preferably 60 Pa ⁇ s or less. . The upper and lower limits of the viscosity of the dispersion can be arbitrarily combined.
  • the dispersion liquid of the present embodiment is obtained by applying a dispersion liquid containing 10% by mass of the surface-treated particles onto a predetermined substrate so that the thickness after drying becomes 12 ⁇ m, and naturally drying the dispersion for 15 minutes.
  • the physical property value measured for the coating film is preferably in the following range. That is, the transmittance of the coating film at 450 nm is preferably 40% or more, more preferably 45% or more, and even more preferably 50% or more.
  • the upper limit of the transmittance is not particularly limited, and may be 100% or less, 90% or less, or 80% or less. The upper limit and the lower limit of the transmittance at 450 nm of the coating film can be arbitrarily combined.
  • the transmittance at 450 nm is preferably higher.
  • the average transmittance of the coating film at 290 nm to 320 nm is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the lower limit is not particularly limited, and may be 0% or more, 0.5% or more, or 1% or more.
  • the upper limit and the lower limit of the average transmittance of the coating film at 290 nm to 320 nm can be arbitrarily combined.
  • the SPF value of the coating film is preferably 30 or more, more preferably 35 or more, and even more preferably 40 or more.
  • the upper limit is not particularly limited, and may be 150 or less, 100 or less, or 80 or less.
  • the upper and lower limits of the SPF value of the coating film can be arbitrarily combined.
  • the critical wavelength (Critical Wavelength) of the coating film is preferably 370 nm or more.
  • the coating film can shield a wide range of ultraviolet light including long wavelength ultraviolet light (UVA) and short wavelength ultraviolet light (UVB).
  • UVA long wavelength ultraviolet light
  • UVB short wavelength ultraviolet light
  • the cosmetic containing the dispersion of the present embodiment has a critical wavelength of 370 nm or more, and the film formed on the skin by the cosmetic has a wide range of ultraviolet light of long wavelength ultraviolet (UVA) and short wavelength ultraviolet (UVB). Can be shielded.
  • the “critical wavelength” is a value obtained by measuring the coating film coated with the dispersion. Specifically, the absorption spectrum of the coating film in the ultraviolet region of 290 nm or more and 400 nm or less is measured, and the obtained absorption spectrum is integrated from 290 nm to the longer wavelength side. At this time, the wavelength at which the integrated area is 90% of the integrated area in the entire region of 290 nm or more and 400 nm or less is defined as the “critical wavelength”.
  • the method for producing the dispersion of the present embodiment is not particularly limited. For example, there is a method of mechanically dispersing the surface-treated particles having at least one feature of the first to third embodiments and a dispersion medium using a known dispersion apparatus.
  • the dispersion device can be selected as required, and examples thereof include a stirrer, a self-revolving mixer, a homomixer, an ultrasonic homogenizer, a sand mill, a ball mill, and a roll mill.
  • the dispersion of the present embodiment can be used for paints having an ultraviolet shielding function, a gas permeation suppression function, and the like, in addition to cosmetics.
  • the dispersion of the present embodiment since it contains the surface-treated metal oxide particles of the present embodiment, it exhibits a stable and high ultraviolet shielding property.
  • composition of the present embodiment contains surface-treated particles having at least one feature of the first to third embodiments, and a polymer.
  • the content of the surface-treated particles in the composition of the present embodiment may be appropriately adjusted according to desired characteristics.
  • the content is, for example, preferably 10% by mass or more and 40% by mass or less, and more preferably 20% by mass or more and 30% by mass or less.
  • the content of the surface-treated particles in the composition is in the above range, the solid content (surface-treated metal oxide particles) is contained at a high concentration. For this reason, the properties of the surface-treated particles are sufficiently obtained, and a composition in which the surface-treated particles are uniformly dispersed can be obtained.
  • the polymer in the composition of the present embodiment is not particularly limited and can be arbitrarily selected.
  • a water-soluble polymer for example, gelatin, casein, collagen, hyaluronic acid, albumin, starch and the like can be used.
  • the semi-synthetic polymer for example, methyl cellulose, ethyl cellulose, methyl hydroxypropyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose, propylene glycol alginate and the like can be used.
  • the synthetic polymer for example, polyvinyl alcohol, polyvinylpyrrolidone, carbomer (carboxyvinyl polymer), polyacrylate, polyethylene oxide and the like can be used.
  • the resin is not particularly limited as long as it is generally used in industrial applications, and examples thereof include an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and a silicone resin. When used for cosmetics, it is preferable to use a silicone resin.
  • the content of the resin in the composition of the present embodiment is not particularly limited, and is appropriately adjusted according to the characteristics of the target composition.
  • composition of the present embodiment may contain a commonly used additive as long as its properties are not impaired.
  • additives include a polymerization initiator, a dispersant, a preservative, a thickener, a higher fatty acid, and the like.
  • the composition of the present embodiment may include a dispersion medium.
  • the dispersion medium is not particularly limited as long as it is generally used in industrial applications.
  • examples include water, alcohols such as methanol, ethanol, and propanol, methyl acetate, ethyl acetate, toluene, methyl ethyl ketone, and methyl isobutyl ketone. Is mentioned.
  • the dispersion medium may include one kind or a combination of two or more kinds.
  • the content of the dispersion medium in the composition of the present embodiment is not particularly limited, and is appropriately adjusted according to the characteristics of the target composition.
  • the method for producing the composition of the present embodiment is not particularly limited and can be arbitrarily selected.
  • Examples of the mixing device include a stirrer, a self-revolving mixer, a homomixer, and an ultrasonic homogenizer.
  • composition of the present embodiment a roll coating method, a flow coating method, a spray coating method, a screen printing method, a brush coating method, and a dipping method, etc., by a normal coating method, a substrate arbitrarily selected, for example, By applying to a plastic substrate such as a polyester film or the like, a coating film can be formed. These coating films can be used as arbitrarily selected applications, for example, as an ultraviolet shielding film or a gas barrier film.
  • the composition of the present embodiment since the composition contains the surface-treated metal oxide particles of the present embodiment, the composition exhibits a stable and high ultraviolet shielding property.
  • the cosmetic of one embodiment of the present embodiment is at least selected from the group consisting of surface-treated metal oxide particles having at least one feature of the first to third embodiments, and the dispersion of the above embodiment. Contains one type.
  • the cosmetic is selected from the group consisting of a cosmetic base material, surface-treated particles having at least one feature of the first to third embodiments, and the dispersion of the above embodiment. And at least one kind.
  • the cosmetic base material refers to various materials that form the main body of the cosmetic.
  • an oily raw material an aqueous raw material, a surfactant, a powder raw material and the like can be mentioned as examples.
  • the oily raw material can be arbitrarily selected, and examples thereof include oils and fats, higher fatty acids, higher alcohols, and ester oils.
  • the aqueous raw material can be arbitrarily selected and includes purified water, alcohol, and a thickener.
  • the powder raw material can be arbitrarily selected and includes colored pigments, white pigments, pearlescent agents, extender pigments, and the like.
  • the cosmetic of the present embodiment for example, by mixing the dispersion of the above embodiment with a cosmetic base material such as an emulsion, cream, foundation, lipstick, blush, eye shadow, etc. can get.
  • a cosmetic base material such as an emulsion, cream, foundation, lipstick, blush, eye shadow, etc.
  • the cosmetic of the present embodiment is obtained, for example, by blending the surface-treated particles of the above embodiment with an oil phase or an aqueous phase to form an O / W or W / O emulsion, and It is obtained by blending.
  • the content of the surface-treated metal oxide particles in the cosmetic of the present embodiment may be appropriately adjusted according to desired characteristics.
  • the lower limit of the content of the surface-treated particles may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more.
  • the upper limit of the content of the surface-treated particles may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the upper limit and the lower limit of the content of the surface-treated particles in the cosmetic can be arbitrarily combined.
  • the sunscreen cosmetics In a sunscreen cosmetic, in order to effectively shield ultraviolet rays, particularly long-wavelength ultraviolet rays (UVA), and to obtain a good feeling of use with less dustiness and squeaking, it is necessary to use surface-treated metal oxide particles. It is also preferable to adjust the content.
  • the lower limit of the content of the surface-treated metal oxide particles in the sunscreen cosmetic is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and more preferably 1% by mass or more. It is more preferred that there be.
  • the upper limit of the content of the surface-treated particles in the sunscreen cosmetic may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the upper limit and the lower limit of the content of the surface-treated particles in the sunscreen cosmetics can be arbitrarily combined. In the above range, a preferable range such as 5 to 15% by mass or 10 to 20% by mass can be selected.
  • Sunscreen cosmetics include hydrophobic dispersion media, inorganic fine particles and inorganic pigments other than surface-treated metal oxide particles, hydrophilic dispersion media, oils and fats, surfactants, humectants, thickeners, and pH adjustment. Agents, nutrients, antioxidants, fragrances and the like.
  • hydrophobic dispersion medium examples include liquid oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin; and ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
  • liquid oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin
  • ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
  • Silicone oils such as decamethylcyclopentasiloxane, dimethylpolysiloxane and methylphenylpolysiloxane, higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyl decanol, And higher alcohols such as stearyl alcohol.
  • inorganic fine particles and inorganic pigments other than the surface-treated metal oxide particles contained in the cosmetic for example, calcium carbonate, calcium phosphate (apatite), magnesium carbonate, calcium silicate, magnesium silicate, aluminum silicate, kaolin, talc,
  • examples include titanium oxide, aluminum oxide, yellow iron oxide, ⁇ -iron oxide, cobalt titanate, cobalt violet, and silicon oxide.
  • Sunscreen cosmetics may further contain at least one organic ultraviolet absorber.
  • organic UV absorbers examples include benzotriazole UV absorbers, benzoylmethane UV absorbers, benzoic UV absorbers, anthranilic UV absorbers, salicylic UV absorbers, and cinnamic UV absorbers. Agents, silicone-based cinnamate UV absorbers, and other organic-based UV absorbers.
  • benzotriazole-based ultraviolet absorber examples include, for example, 2,2′-hydroxy-5-methylphenylbenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′- Hydroxy-5'-methylphenylbenzotriazole and the like.
  • benzoylmethane-based ultraviolet absorber examples include dibenzalazine, dianisylmethane, 4-tert-butyl-4′-methoxydibenzoylmethane, 1- (4′-isopropylphenyl) -3-phenylpropane-1,3- Dione and 5- (3,3′-dimethyl-2-norbornylidene) -3-pentan-2-one.
  • benzoic acid-based ultraviolet absorber examples include para-aminobenzoic acid (PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl PABA ethyl ester, N, N-dimethyl PABA butyl ester, N, N-dimethyl PABA methyl ester and the like can be mentioned.
  • PABA para-aminobenzoic acid
  • anthranilic acid-based ultraviolet absorber examples include homomenthyl-N-acetylanthranilate and the like.
  • salicylic acid-based ultraviolet absorber examples include amyl salicylate, menthyl salicylate, homomenthyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, and p-2-propanol phenyl salicylate.
  • cinnamic acid-based ultraviolet absorbers examples include octyl methoxycinnamate (ethylhexyl methoxycinnamate), glyceryl di-paramethoxycinnamate-mono-2-ethylhexanoate, octyl cinnamate, and ethyl-4-isopropyl cinnamate Mate, methyl-2,5-diisopropylcinnamate, ethyl-2,4-diisopropylcinnamate, methyl-2,4-diisopropylcinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl- p-methoxycinnamate, octyl-p-methoxycinnamate (2-ethylhexyl-p-methoxycinnamate), 2-ethoxyethy
  • silicone-based cinnamic acid ultraviolet absorber examples include [3-bis (trimethylsiloxy) methylsilyl-1-methylpropyl] -3,4,5-trimethoxycinnamate and [3-bis (trimethylsiloxy) methylsilyl- 3-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methyl [Silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silyl-1-methyl Propyl] -3,4-dimethoxycinnamate.
  • organic ultraviolet absorbers other than those described above include, for example, 3- (4′-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl Examples thereof include -5-methylbenzoxazole, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one, a silicone-modified ultraviolet absorber, and a fluorine-modified ultraviolet absorber.
  • the ultraviolet absorber may be used alone or in combination of two or more.
  • the critical wavelength of the cosmetic of the present embodiment is preferably 370 nm or more.
  • a wide range of long-wave ultraviolet (UVA) and short-wave ultraviolet (UVB) ultraviolet can be blocked.
  • the cosmetic contains at least one selected from the group consisting of the surface-treated metal oxide particles of the present embodiment and the dispersion of the present embodiment. For this reason, it is possible to stably exhibit high ultraviolet shielding properties.
  • Example 1 "Production of surface-treated metal oxide particles" 100 parts by mass of zinc oxide particles (specific surface area S: 30 m 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.), 8 parts by mass of octyltriethoxysilane (trade name: KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.), and 0. A mixture of 375 parts by mass and 7.125 parts by mass of isopropyl alcohol was mixed in a Henschel mixer and stirred for 1 hour.
  • Example 1 The obtained mixture was pulverized with a jet mill, and the pulverized powder was dried at 110 ° C. for 3 hours to obtain surface-treated zinc oxide particles of Example 1.
  • Preparation of dispersion liquid 10 parts by mass of the surface-treated zinc oxide particles of Example 1, 2 parts by mass of a dispersant (PEG-9 polydimethylsiloxyethyl dimethicone, trade name: KF-6028, manufactured by Shin-Etsu Chemical Co., Ltd.), and decamethylcyclopentasiloxane 88 parts by mass (trade name: SH245, manufactured by Dow Corning Toray Co., Ltd.) were stirred at 4000 rpm using a stirrer to obtain a dispersion of Example 1.
  • a dispersant PEG-9 polydimethylsiloxyethyl dimethicone, trade name: KF-6028, manufactured by Shin-Etsu Chemical Co., Ltd.
  • decamethylcyclopentasiloxane 88 parts by mass trade name: SH245, manufactured by Dow Corning Toray Co., Ltd.
  • Example 2 Surface-treated zinc oxide particles of Example 2 were obtained in the same manner as in Example 1 except that drying was performed at 110 ° C. for 3 hours instead of drying at 110 ° C. for 3 hours.
  • a dispersion liquid of Example 2 was obtained in the same manner as in Example 1 except that the surface-treated zinc oxide particles of Example 2 were used instead of using the surface-treated zinc oxide particles obtained in Example 1.
  • Example 3 The surface-treated zinc oxide particles obtained in Example 2 were allowed to stand at 85 ° C. and 90% RH for 72 hours to allow the surface-treated zinc oxide particles to absorb water. Next, the surface-treated zinc oxide particles that had absorbed water were heat-treated at 120 ° C. for 3 hours to obtain surface-treated zinc oxide particles of Example 3. A dispersion liquid of Example 3 was obtained in the same manner as in Example 1 except that the surface-treated zinc oxide particles of Example 3 were used instead of using the surface-treated zinc oxide particles obtained in Example 1.
  • Comparative Example 1 Surface-treated zinc oxide particles of Comparative Example 1 were obtained in the same manner as in Example 1, except that drying was performed at 100 ° C. for 1 hour instead of drying at 110 ° C. for 3 hours. A dispersion liquid of Comparative Example 1 was obtained in the same manner as in Example 1 except that the surface-treated zinc oxide particles of Comparative Example 1 were used instead of using the surface-treated zinc oxide particles obtained in Example 1.
  • Table 1 shows the maximum intensity A in the range of ⁇ 40 ppm to ⁇ 50 ppm, the maximum intensity B in the range of ⁇ 50 ppm to ⁇ 60 ppm, and the ratio (A / B) between the maximum intensity A and the maximum intensity B in the above spectrum. .
  • the ratio E of the integrated value from -20 ppm to -50 ppm, and the ratio of the integrated value from -50 ppm to -80 ppm F is shown in Table 1.
  • the obtained coating film was measured using an SPF analyzer UV-2000S (manufactured by Labsphere) to determine the transmittance at 450 nm, the SPF value, and the critical wavelength.
  • Table 2 shows the evaluation results of the SPF value, the critical wavelength, and the transmittance of Examples 1 to 3 and Comparative Example 1.
  • Example 4 "Production of surface-treated metal oxide particles" 100 parts by mass of the same zinc oxide particles (specific surface area S: 30 m 2 / g, manufactured by Sumitomo Osaka Cement) and 8 parts by mass of octyltriethoxysilane (trade name: KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.) as in Example 1. , A mixed solution of pure water 0.6 parts by mass and isopropyl alcohol 34.2 parts by mass were mixed in a Henschel mixer. Then, the mixture was dried at 80 ° C. until isopropyl alcohol was removed.
  • Example 4 the obtained dried product was crushed by a jet mill, and the crushed powder was dried at 120 ° C. for 3 hours to obtain surface-treated zinc oxide particles of Example 4.
  • Preparation of dispersion liquid 10 parts by mass of the surface-treated zinc oxide particles of Example 4, 2 parts by mass of a dispersant (PEG-9 polydimethylsiloxyethyl dimethicone, trade name: KF-6028, manufactured by Shin-Etsu Chemical Co., Ltd.), and decamethylcyclopentasiloxane (Trade name: SH245, manufactured by Dow Corning Toray Co., Ltd.) and 88 parts by mass were stirred at 4000 rpm using a stirrer to obtain a dispersion of Example 4.
  • a dispersant PEG-9 polydimethylsiloxyethyl dimethicone, trade name: KF-6028, manufactured by Shin-Etsu Chemical Co., Ltd.
  • decamethylcyclopentasiloxane (Trade name: SH245, manufactured by Dow Corning Toray Co., Ltd.) and 88 parts by mass were stirred at 4000 rpm using a stirrer to obtain a dispersion
  • Example 5 Surface-treated zinc oxide particles of Example 5 were obtained in the same manner as in Example 4, except that drying was performed at 120 ° C. for 3 hours instead of drying at 120 ° C. for 3 hours. A dispersion liquid of Example 5 was obtained in the same manner as in Example 4 except that the surface-treated zinc oxide particles of Example 5 were used instead of using the surface-treated zinc oxide particles obtained in Example 4.
  • Comparative Example 2 Surface-treated zinc oxide particles of Comparative Example 2 were obtained in the same manner as in Example 4 except that drying was performed at 100 ° C. for 1 hour instead of drying at 120 ° C. for 3 hours. A dispersion of Comparative Example 2 was obtained in the same manner as in Example 4, except that the surface-treated zinc oxide particles obtained in Example 4 were used instead of the surface-treated zinc oxide particles obtained in Example 4.
  • Example 4 surface-treated zinc oxide particles of Comparative Example 3 were obtained in the same manner as in Example 4, except that drying was not performed at 120 ° C. for 3 hours and air drying was performed. A dispersion liquid of Comparative Example 3 was obtained in the same manner as in Example 4 except that the surface-treated zinc oxide particles of Comparative Example 3 were used instead of using the surface-treated zinc oxide particles obtained in Example 4.
  • Comparative Example 4 The surface-treated zinc oxide particles of Comparative Example 4 were obtained by allowing the surface-treated zinc oxide particles obtained in Example 4 to stand at 85 ° C. and 90% RH for 72 hours to absorb water. .
  • a dispersion liquid of Comparative Example 4 was obtained in the same manner as in Example 1 except that the surface-treated zinc oxide particles of Comparative Example 4 were used instead of using the surface-treated zinc oxide particles obtained in Example 4.
  • Example 6 The surface-treated zinc oxide particles of Example 6 were obtained by drying the surface-treated zinc oxide particles obtained in Comparative Example 4 at 120 ° C. for 3 hours. A dispersion of Example 6 was obtained in the same manner as in Example 4 except that the surface-treated zinc oxide particles obtained in Example 4 were used instead of the surface-treated zinc oxide particles obtained in Example 4.
  • E is the integral ratio of the spectrum in the measurement range of -30 ppm to -40 ppm
  • A is the integral ratio of the spectrum in the measurement range of -40 ppm to -50 ppm
  • B is the integral ratio of the spectrum in the measurement range of -50 ppm to -60 ppm.
  • those with a B / A of 0.5 or more and 5.0 or less were evaluated as “ ⁇ ” (good), and those with a B / A of less than 0.5 were evaluated as “x” (impossible).
  • Table 3 shows the results.
  • FIG. 7 shows the FT-IR measurement results of the surface-modified zinc oxide particles obtained in Example 4 and Comparative Example 2 and octyltriethoxysilane itself.
  • Example 4 to 6 the loss on drying at 105 ° C. for 3 hours was 0.15% by mass or less. In Examples 4 to 6, it was confirmed that the maximum aggregation diameter was smaller and the SPF value was higher than Comparative Examples 2 to 4 in which the loss on drying was more than 0.15% by mass.
  • the surface-treated metal oxide particles of the present invention exhibit a stable and high ultraviolet shielding property. Therefore, the surface-treated metal oxide particles of the present invention can easily ensure design quality when applied to dispersions, compositions, paints, and cosmetics, and have large industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Cosmetics (AREA)

Abstract

シランカップリング剤で表面処理された金属酸化物粒子であって、金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下である表面処理金属酸化物粒子。

Description

表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
 本発明は、表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法に関する。
 本願は、2018年9月28日に日本に出願された特願2018-183485号、2018年9月28日に日本に出願された特願2018-183486号、2018年9月28日に日本に出願された特願2018-183487号、及び、2019年7月5日に日本に出願された特願2019-126291号、に基づき優先権を主張し、その内容をここに援用する。  
 酸化亜鉛や酸化チタン等の紫外線遮蔽性を有する金属酸化物粒子は、日焼け止め、ファンデーション等の化粧料に使用されている。
 これらの金属酸化物粒子を化粧料に適用する場合、金属酸化物粒子の表面状態を化粧品の性状に合わせたり、金属酸化物粒子の触媒活性を抑えたりするために、金属酸化物粒子の表面処理が行われている。このような金属酸化物粒子の表面処理剤としては、例えば、ステアリン酸マグネシウム等の金属石鹸、ジメチコンやハイドロゲンジメチコン等のシリコーンオイル、オクチルトリエトキシシラン等のアルコキシ基を有するシランカップリング剤等が用いられている(例えば、特許文献1,2参照)。
 中でも、上記シランカップリング剤で表面処理した金属酸化物粒子は、表面処理剤であるシランカップリング剤が金属酸化物粒子の表面に化学的に結合しているため安定性が高い。
 さらに、上記のような金属酸化物粒子は、置換基が異なる表面処理剤を用いることにより、粒子表面の性質を容易に変更可能である。以下の説明では、シランカップリング剤で表面処理した金属酸化物粒子を表面処理金属酸化物粒子と称する。
 このような表面処理金属酸化物粒子は、そのまま化粧料に配合されたり、分散媒に分散させた分散液の状態で化粧料に配合されたりしている。
特開2002-362925号公報 特開2001-181136号公報
 しかしながら、上記表面処理金属酸化物粒子は、化粧料に配合したときの紫外線遮蔽性が悪い場合があり、紫外線遮蔽性に関する品質が安定し難いという課題があった。特に、比表面積が大きい金属酸化物粒子を用いた場合や、表面処理剤の量を増やした場合や、長期保管した場合には、表面処理金属酸化物粒子の紫外線遮蔽性が大きく低下するという課題があった。
 本発明は上記事情に鑑みてなされたものであって、安定的に高い紫外線遮蔽性を示す表面処理金属酸化物粒子を提供することを目的とする。また、このような表面処理金属酸化物粒子を含む分散液、組成物、化粧料を提供することをあわせて目的とする。また、このような表面処理金属酸化物粒子の製造方法を提供することをあわせて目的とする。
 上記の課題を解決するため、本発明は、以下の表面処理金属酸化物粒子、表面処理金属酸化物粒子を含む分散液、組成物、及び化粧料を提供する。
 本発明の第一の態様は、シランカップリング剤で表面処理された金属酸化物粒子であって、前記金属酸化物粒子は紫外線遮蔽性を有し、前記表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下である表面処理金属酸化物粒子を提供する。
 本発明の第二の態様は、シランカップリング剤で表面処理された金属酸化物粒子であって、前記金属酸化物粒子は紫外線遮蔽性を有し、前記表面処理された金属酸化物粒子の105℃、3時間における乾燥減量が0.15質量%以下であり、前記表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下である、表面処理金属酸化物粒子を提供する。
 本発明の第三の態様は、シランカップリング剤で表面処理された金属酸化物粒子であって、前記金属酸化物粒子は紫外線遮蔽性を有し、前記表面処理された金属酸化物粒子を10質量%と、PEG-9ポリジメチルシロキシエチルジメチコンを2質量%と、デカメチルシクロペンタシロキサンを88質量%とからなる分散液を10質量部と、デカメチルシクロペンタシロキサン90質量部と、を混合し、その混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径が15μm以下である、表面処理金属酸化物粒子を提供する。
 なお第一から第三の態様の表面処理金属酸化物粒子は、互いの特徴を好ましく有してよい。例えば、第一の態様と第二の態様の両方の特徴を同時に満足する表面処理金属酸化物粒子や、第二の態様と第三の態様の両方の特徴を同時に満足する表面処理金属酸化物粒子や、第一、第二、及び第三の態様の全ての特徴を満足する表面処理金属酸化物粒子は、本発明の範囲に好ましく含まれる。また第一から第三の態様の表面処理金属酸化物粒子は、問題のないかぎり、互いの好ましい例を共有してよい。
 本発明の第一の態様の表面処理金属酸化物粒子は、105℃、3時間における乾燥減量が0.15質量%以下であってよい。
 本発明の第一から第三の態様の表面処理金属酸化物粒子は、フーリエ変換式赤外分光光度計で測定した900cm-1~1300cm-1における反射スペクトルにおいて、前記シランカップリング剤のアルコキシ基に由来するピークが検出されなくてもよい。
 本発明の第一から第三の態様の表面処理金属酸化物粒子は、前記シランカップリング剤が、アルキルアルコキシシラン、アリルアルコキシシラン、アルキル基を側鎖に有するポリシロキサン、およびアリル基を側鎖に有するポリシロキサンからなる群から選ばれる少なくとも1種であってもよい。
 本発明の第一から第三の態様の表面処理金属酸化物粒子は、前記シランカップリング剤が、オクチルトリエトキシシラン、オクチルトリメトキシシラン、およびジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマーからなる群から選ばれる少なくとも1種であってもよい。
 本発明の第四の態様は、上記の課題を解決するため、第一から第三の態様の少なくとも1つに記載の表面処理金属酸化物粒子と、分散媒と、を含有する分散液を提供する。
 本発明の第五の態様は、上記の課題を解決するため、第一から第三の態様の少なくとも1つに記載の表面処理金属酸化物粒子と、高分子と、を含有することを特徴とする組成物を提供する。
 本発明の第六の態様は、上記の課題を解決するため、分散媒と高分子の少なくとも1つ、及び、第一から第三の態様の少なくとも1つに記載の表面処理金属酸化物粒子を含有する、化粧料を提供する。
 本発明の第七の態様は、上記の課題を解決するため、シランカップリング剤で表面処理された金属酸化物粒子の製造方法であって、紫外線遮蔽性を有するシランカップリング剤で表面処理された金属酸化物粒子を用意し、前記表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定し、得られたスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下を満たしているかを判定する、第1の工程を含む、表面処理金属酸化物粒子の製造方法を提供する。
 本発明の第七の態様の前記方法は、前記第1の工程において、前記割合が60%を超えているかどうかを確認し、超えていることが確認された場合は、前記割合が60%以下となるまで、前記表面処理金属酸化物粒子を加熱する第2の工程を含んでもよい。
 本発明によれば、安定的に高い紫外線遮蔽性を示す表面処理金属酸化物粒子を提供することができる。また、本発明によれば、このような表面処理金属酸化物粒子を含む分散液、組成物、化粧料を提供することができる。また、本発明によれば、このような表面処理金属酸化物粒子を製造する方法を提供することができる。
実施例1~実施例3および比較例1の表面処理酸化亜鉛粒子のNMRスペクトルを示す図である。 図1の積分値を示すグラフである。 実施例4の表面処理酸化亜鉛粒子のNMRスペクトルを示す図である。 比較例2の表面処理酸化亜鉛粒子のNMRスペクトルを示す図である。 実施例4の表面処理酸化亜鉛粒子の光学顕微鏡像を示す図である。 比較例3の表面処理酸化亜鉛粒子の光学顕微鏡像を示す図である。 実施例4と比較例2の表面処理酸化亜鉛粒子とオクチルトリエトキシシランのFT-IRの測定結果を示す図である。
 以下に、本発明の表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法の好ましい実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。例えば、特に制限の無い限り、材料、量、種類、数、サイズ、比率、温度などの条件などを、必要に応じて変更、追加、及び省略してもよい。以下に述べる実施形態間において、互いの好ましい例を交換したり、共有しても良い。
 以下の説明においては、表面処理酸金属酸化物粒子を「表面処理粒子」と略称することがある。
[表面処理酸金属酸化物粒子]
 第一の実施形態の表面処理金属酸化物粒子は、シランカップリング剤で表面処理された、紫外線遮蔽性を有する金属酸化物粒子である。前記金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトル(以下、「Si CP/MAS-NMRスペクトル」と略記する場合がある。)において、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下である。
 本実施形態の表面処理金属酸化物粒子は、105℃、3時間における乾燥減量が0.15質量%以下であることが好ましい。
 第二の実施形態の表面処理金属酸化物粒子は、シランカップリング剤で表面処理された、紫外線遮蔽性を有する金属酸化物粒子である。前記金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子の105℃、3時間における乾燥減量が0.15質量%以下であり、表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下である。
 また、第三の実施形態の表面処理金属酸化物粒子は、シランカップリング剤で表面処理された、紫外線遮蔽性を有する金属酸化物粒子である。前記金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子を10質量%と、PEG-9ポリジメチルシロキシエチルジメチコンを2質量%と、デカメチルシクロペンタシロキサンを88質量%とからなる分散液を10質量部と、デカメチルシクロペンタシロキサン90質量部と、を混合し、その混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径が15μm以下である。
 第一から第三の実施形態の表面処理金属酸化物粒子は、互いの特徴を好ましく有することができる。例えば、第一と第二の実施形態の両方の特徴や、第二と第三の実施形態の両方の特徴や、第一と第三の実施形態の両方の特徴や、あるいは、第一~第三の実施形態の全特徴を有する、表面処理金属酸化物粒子であってもよい。これら金属酸化物粒子は、紫外線遮蔽剤として好ましく使用できる。
 なお本発明において、紫外線遮蔽性を有するとは、紫外線(10~400nm)領域中の、少なくとも何れかの範囲を、遮蔽する効果を有することを意味する。 紫外線遮蔽性の有無を評価する方法の例を挙げると、金属酸化物粒子を10質量%含む塗膜の250~450nmの波長領域における透過スペクトルを測定することが挙げられる。紫外線遮蔽性を有する場合、250~400nmの波長領域における透過率が、450nmにおける透過率よりも低くなる領域がある。
 なお上記実施形態の表面処理金属酸化物粒子は、一次粒子であることが好ましい。ただし、これのみに限定されない。例えば、一次粒子同士が凝集して二次粒子を形成していてもよい。
 上記実施形態の好ましい例について、及び/又は、更に詳細な説明について、以下に述べる。
 [表面処理金属酸化物粒子のSi CP/MAS-NMRスペクトル]
 本発明者等は、様々な検討の結果、Si CP/MAS-NMRスペクトルを用いた評価において、以下に述べる条件に応じて、表面処理金属酸化物粒子の紫外線遮蔽性が変化することを見出した。
 表面処理金属酸化物粒子のSi CP/MAS-NMRスペクトルは、CP/MAS法によって得ることができる。CP/MAS法(Cross Polarization/Magic angle spinning)は、緩和時間の長い29Si核の磁化を、緩和時間の短いHに移動して観測する方法である。CP/MAS法は、パルスディレイの短縮により積算効率が向上し、感度が向上する利点がある。このため、表面処理金属酸化物粒子中のシランカップリング剤に起因する29Si核のように緩和時間が長く、存在量が少ない場合でも、Si CP/MAS-NMRスペクトルを得ることができる。CP/MAS法には、プロトンが近傍にないSiのシグナルが観測され難くなる欠点がある。しかし、シランカップリング剤は、未反応のOH基やオルガノ基に起因するH核が近傍にいるため、影響はほとんどない。
 シランカップリング剤によって表面処理された金属酸化物粒子のSi CP/MAS-NMRスペクトルは、シランカップリング剤の架橋の状態によって、T、T、T、Tに分類される。T、T、T、Tとは、2つのSiと結合している酸素原子の数に応じて決まる化学的構造を意味する。具体的には、下記の式(1)および式(2)に示すように、Tは、1つのケイ素原子が1つのシロキサン結合(Si-O-Si)に関与している架橋状態を示している。Tは、1つのケイ素原子が2つのシロキサン結合に関与している架橋状態を示している。Tは、1つのケイ素原子が3つのシロキサン結合に関与している架橋状態を示している。Tは、1つのケイ素原子がシロキサン結合を有していない状態を示している。下記の式(1)および式(2)において、OH基のHはRであってもよい。なお、Rはアルキル基を示す。前記アルキル基は任意に選択でき、例えば、後述するシランカップリング剤の含まれる基、例えば、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。ただし、これらのみに限定されない。なお、シランカップリング剤で金属酸化物粒子の表面処理を行った場合、表面で加水分解・縮重合反応が行われる。得られた金属酸化物粒子の表面においては、加水分解・縮重合反応後であるため、基本的にOR基は存在せず全てOH基となっている。このため、T、T、T、Tの順に、Tに示される数字が小さいほど、反応残基OH基の数が多くなる。すなわち、Tに示す数字が小さい架橋構造が多いほど、粒子の表面の親水性が高くなる。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
 Si CP/MAS-NMRスペクトルにより測定した前記粒子のスペクトルにおいて、Si CP/MAS-NMRスペクトルの-20ppmから-80ppmまでの積分値は、およそT、T、T、Tの面積の総和になっていると考えられる。また、-20ppmから-50ppmまでの積分値は、およそT、Tの面積が占める割合であると考えられる。
 -40ppmから-50ppmまでの積分値はおよそTの面積が占める割合と考えても良い。-50ppmから-60ppmまでの積分値はおよそTの面積が占める割合と考えても良い。-60ppmを超える積分値はおよそTの面積が占める割合であると考えてもよい。
 また-20ppmから-40ppmまでの積分値は、およそTの面積が占める割合であると考えても良いが、-20ppmから-30ppmまでの積分値は、-30ppmから-40ppmまでの積分値に比べて小さい。
 なおT、T、T、Tのピークは、-20ppmから-80ppmの範囲に含まれ、-20ppmと-80ppmの両端で、これらのピークが中断されなくてもよい。
 表面処理金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%を超えないと、表面処理金属酸化物粒子の紫外線遮蔽性が低下しないので好ましい。
 上記理由は次のように推測される。
 化粧料は、一般に水中油型(oil in water:W/O型)または油中水型(water in oil:O/W型)の剤型で用いられる。上記-20ppmから-50ppmまでの積分値の割合が60%を超える表面処理金属酸化物粒子が、油相に配合された化粧料においては、表面処理金属酸化物粒子中のOH基数が多い。このため、肌に塗布されて乾燥される過程で、油相中で表面処理金属酸化物粒子同士が凝集しやすく、肌に所望の紫外線遮蔽性を付与することが難しくなると推測される。
 一方、Si CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下となるように、シランカップリング剤で金属酸化物粒子を表面処理した場合、高い紫外線遮蔽性を安定的に示す表面処理金属酸化物粒子を得ることができる。
 表面処理金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmまでの積分値は、およそT、T、Tの面積の総和になっていると考えてもよい。-40ppmから-50ppmまでの積分値はおよそTの面積が占める割合であり、-50ppmから-60ppmまでの積分値はおよそTの面積が占める割合であると考えてもよい。また-20ppmから-50ppmまでの積分値は、およそT、Tの面積が占める割合であると考えてもよい。
 表面処理金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下を満たす場合、表面処理金属酸化物粒子の紫外線遮蔽性が低下しないので好ましい。
 その理由は次のように推測される。
 水中油型又は油中水型の化粧料において、上記のように積分割合を別の積分割合で除した値が0.5以上かつ5.0以下を満たさない表面処理金属酸化物粒子が油相に配合された場合、表面処理金属酸化物粒子中のOH基数が多い。このため、肌に塗布されて乾燥される過程で、油相中で表面処理金属酸化物粒子同士が凝集しやすく、肌に所望の紫外線遮蔽性を付与することが難しくなると推測される。
 すなわち、Si CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下を満たすように、シランカップリング剤で金属酸化物粒子を表面処理することにより、高い紫外線遮蔽性を安定的に示す表面処理金属酸化物粒子が得られるので好ましい。
 本実施形態の表面処理金属酸化物粒子は、Si CP/MAS-NMRスペクトルにおいて、-40ppm~-50ppm(T)の範囲における最大強度をA、-50ppm~-60ppm(T)の範囲における最大強度をBと定義した場合に、AをBで除した値(A/B)が1.0以下となることが好ましい。A/Bの下限値は特に限定されず任意に選択でき、例えば、0.3以上であってもよく、0.4以上であってもよく、0.5以上であってもよく、0.6以上であってもよく、0.7以上であってもよい。
 前記表面処理金属酸化物粒子は、Si CP/MAS-NMRスペクトルにおいて、-40ppm~-50ppm(T)の範囲における最大強度をA、-50ppm~-60ppm(T)の範囲における最大強度をBとし、さらに、-20ppm~-40ppm(T)の範囲における最大強度をC、-60ppm~-80ppm(T)の範囲における最大強度をD、と定義した場合に、B>A>C>Dとなることが好ましい。このような関係を満たす表面処理金属酸化物粒子は、化粧料のように、水系の揮発成分と油系の成分を含む組成物中の分散安定性に優れ、対象物(化粧料の場合、肌)に塗布されても高い紫外線遮蔽性を示すことができる。
 [表面処理金属酸化物粒子の所定の条件による評価]
 本実施形態の表面処理金属酸化物粒子を10質量%と、PEG-9ポリジメチルシロキシエチルジメチコンを2質量%と、デカメチルシクロペンタシロキサンを88質量%とからなる分散液を10質量部と、デカメチルシクロペンタシロキサン90質量部と、を混合し、混合液を形成して、その混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径が15μm以下であることが好ましい。
 本発明者等は、表面処理金属酸化物粒子の、上記の配合を有する特定の混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径が15μm以下を満たさない場合、表面処理金属酸化物粒子の紫外線遮蔽性が低下する傾向があることを見出した。
 上記の理由は次のように推測される。
 化粧料において、表面処理金属酸化物粒子は、油相に配合されるのが一般的である。デカメチルシクロペンタシロキサンは、化粧料の油相成分の1つである。このデカメチルシクロペンタシロキサンと、表面処理金属酸化物粒子と、が混合された組成物において、表面処理金属酸化物粒子の凝集径が大きくなると、紫外線遮蔽成分である表面処理金属酸化物粒子が肌に塗布された場合、大きな凝集が形成された為に肌は均一に塗布され難い、と推測される。一方、上記条件における凝集物の凝集径が15μm以下となるような表面処理金属酸化物粒子を化粧料に配合し、この化粧料を肌に塗布した場合には、化粧料中において、表面処理金属酸化物粒子の凝集は抑制されている。このため、紫外線遮蔽成分である表面処理金属酸化物粒子が肌に均一に塗布され易くなり、紫外線遮蔽性が向上する、と考えられる。なおPEG-9ポリジメチルシロキシエチルジメチコンは、表面処理金属酸化物粒子をデカメチルシクロペンタシロキサンに分散させるための分散剤として混合物に加えられている。
 前記凝集径としては、上記の混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径は、光学顕微鏡の500倍で得られた500μm×750μmの3視野の中で、最大凝集物の長径を測定する。
 凝集物の粒子径を測定する場合には、デカメチルシクロペンタシロキサンを含む上記の分散液と、デカメチルシクロペンタシロキサンとが更に混合される。この理由は、上記の分散液と、デカメチルシクロペンタシロキサンとを混合する条件時に凝集物が生成する場合、実際の使用時にも、凝集が発生する可能性が高い、と考えられるからである。例えば、上記評価において悪い結果を示した表面処理金属酸化物粒子を化粧料の油相に配合した時にも、化粧料中で凝集物が生成し、所望の紫外線遮蔽性能(SPF)が得られない場合があると予想される。
 以上に説明したように、上記の混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の最大粒子径が15μmを超える場合には、化粧料の油相中でも、表面処理金属酸化物粒子が凝集しやすいと考えられる。また、そのような結果を示した表面処理金属酸化物粒子が、化粧料の油相に配合された場合には、表面処理金属酸化物粒子が肌に均一に塗布されることが難しくなる、と予想される。その結果、所望の紫外線遮蔽性能(SPF)が得られない可能性が高いため、望ましくない。
 金属酸化物粒子を、デカメチルシクロペンタシロキサンと混合しても、粒子の凝集が抑制されるような状態にするための、条件や方法は、特に限定されない。例えば、好ましく表面処理された金属酸化物粒子を選択する方法が挙げられる。具体例を挙げると、表面処理された金属酸化物粒子の105℃、3時間における乾燥減量が0.15質量%以下であって、かつ、この表面処理された金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下となる表面処理された金属酸化物粒子を、選択する方法が、好ましく挙げられる。
 [表面処理金属酸化物粒子の乾燥減量]
 第一~三の実施形態の表面処理金属酸化物粒子は、105℃、及び3時間の条件で得られる乾燥減量が0.15質量%以下であることが好ましく、0.10質量%以下であることがより好ましい。
 105℃、3時間における乾燥減量が0.15質量%を超えない場合、水系の揮発成分と油系の成分を含む組成物への、前記表面処理金属酸化物粒子の好ましい分散安定性が維持される。その結果、表面処理金属酸化物粒子を含む組成物が対象物(化粧料の場合、肌)に塗布された場合、好ましい紫外線遮蔽性を維持できる。
 表面処理金属酸化物粒子の105℃、3時間における乾燥減量は、以下の方法により得ることができる。まず、表面処理金属酸化物粒子2gを用意する。この表面処理金属酸化物粒子は、乾燥条件下で保管されている粒子であることが好ましい。この粒子を105℃に設定した乾燥機で3時間加熱し、加熱後の質量を測定し、その質量減少率を乾燥減量(質量%)とすることができる。
 すなわち、乾燥減量は、表面処理金属酸化物粒子の乾燥減量(質量%)=(加熱前の表面処理金属酸化物粒子の質量-加熱後の表面処理金属酸化物粒子の質量)/加熱前の表面処理金属酸化物粒子の質量×100、の式より得ることができる。
 [表面処理金属酸化物粒子の反射スペクトル]
 第一~第三の実施形態の表面処理金属酸化物粒子は、フーリエ変換式赤外分光光度計で測定した900cm-1~1300cm-1の範囲における反射スペクトルにおいて、前記シランカップリング剤のアルコキシ基に由来するピークが検出されないことが好ましい。
 前記アルコキシ基に由来するピークとは、アルコキシ基を有するシランカップリング剤をFT-IRで、ATR法で測定した場合に、一般的に、900cm-1~1300cm-1の範囲で検出されるピークを意味する。
 ピークの有無の検出については、詳細には、アルコキシ基を有するシランカップリング剤の構造を考慮し、「有機化合物のスペクトルによる同定法、第6版」を用いて、アルコキシ基のピークを同定すればよい。
 前記アルコキシ基に由来するピークであって、検出されないことが好ましいピークは、1170cm-1、1100cm-1、1080cm-1、および950cm-1である。これらのピークの少なくとも1つが検出されないことが好ましく、全てのピークが検出されないことがより好ましい。
 これらのピークは、アルコキシ基を有するシランカップリング剤であるオクチルトリエトキシシランをFT-IRで測定したときに、900cm-1~1300cm-1の範囲で検出されるピークである。
 すなわち、第一~第三の表面処理金属酸化物粒子は、フーリエ変換式赤外分光光度計で測定された反射スペクトルにおいて、前記波長の位置で、ピークが検出されないことが好ましい。
 本明細書において「ピークが検出されない」とは、ベースラインの反射率を0%としたときに、ピークトップの反射率が絶対値で1%以下(-1%以上0%以下)であることを意味する。
 また、本明細書において、950cm-1においてピークが検出されないとは、950cm-1を範囲に含むピークが検出されないことを意味する。すなわち、950cm-1をピークトップとするピークが検出されない、という意味ではない。
 1170cm-1、1100cm-1、1080cm-1についても同様である。
 なお、「フーリエ変換式赤外分光光度計」を「FT-IR」と略記する場合がある。
 フーリエ変換式赤外分光光度計で測定したスペクトルにおいて、アルコキシ基由来のピークが検出されないことの技術的意義について以下に説明する。
 アルコキシ基を有するシランカップリング剤で表面処理された金属酸化物粒子をFT-IRを測定した時に、このアルコキシ基に由来するピークが観察されないということは、シランカップリング剤のアルコキシ基が残留していないことを意味する。
 アルコキシ基を含むシランカップリング剤を使用する時、本実施形態の例では、アルコキシ基を含むシランカップリング剤を加水分解反応させることにより、金属酸化物粒子の表面処理をしている。そのため、アルコキシ基が残留していないということは、シランカップリング剤中のアルコキシ基のほぼ全てが加水分解反応して、金属酸化物粒子表面にあるOH基と反応していると推測される。その結果、表面処理金属酸化物粒子に残存するOH基の数は少なくなっている、又は残存していない、と推測される。さらに、表面金属酸化物粒子を保管した場合に、前記粒子中に残留したアルコキシ基が大気中の水分により加水分解されて、その結果、表面金属酸化物粒子中のOH基が増えてしまうことも、防止することができる。このため、安定的に高い紫外線遮蔽を示す表面処理金属酸化物粒子が得られる、と推測される。
 [表面処理金属酸化物粒子の比表面積]
 前記表面処理金属酸化物粒子の比表面積は任意に選択できるが、1.5m/g以上であることが好ましく、2.5m/g以上であることがより好ましく、4m/g以上であることがさらに好ましい。また、表面処理金属酸化物粒子の比表面積は、65m/g以下であることが好ましく、60m/g以下であることがより好ましい。必要に応じて、50m/g以下や、30m/g以下や、10m/g以下であってもよい。表面処理金属酸化物粒子の比表面積の上限値および下限値は、任意に組み合わせることができる。
 表面処理金属酸化物粒子の比表面積が1.5m/g以上65m/g以下であれば、化粧料に配合した場合に透明性と紫外線遮蔽性に優れる。
 化粧料に配合した場合の透明性を高くしたい場合には、前記表面処理金属酸化物粒子の比表面積は8m/g以上であることが好ましく、15m/g以上であることがより好ましく、20m/g以上であることがさらに好ましい。一方で、化粧料に配合した場合の紫外線遮蔽性を大きくしたい場合には、前記表面処理金属酸化物粒子の比表面積は8m/g未満であることが好ましく、7.5m/g以下であることがより好ましく、7.0m/g以下であることがさらに好ましい。
 前記表面処理金属酸化物粒子の比表面積とは、全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用い、BET法により測定された値を意味する。
 本実施形態の表面処理金属酸化物粒子の平均一次粒子径は任意に選択できるが、15nm以上であることが好ましく、20nm以上であることがより好ましい。また、前記表面処理金属酸化物粒子の平均一次粒子径は715nm以下であることが好ましく、650nm以下であることがより好ましい。
 表面処理金属酸化物粒子の平均一次粒子径が15nm以上715nm以下であれば、化粧料に配合した場合に透明性と紫外線遮蔽性に優れる。
 化粧料に配合した場合の透明性を高くしたい場合には、前記表面処理金属酸化物粒子の平均一次粒子径は135nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。一方で、化粧料に配合した場合の紫外線遮蔽性を大きくしたい場合には、前記表面処理金属酸化物粒子の一次粒子径は135nmを超えることが好ましく、140nm以上であることがより好ましく、150nm以上であることがさらに好ましい。
 前記表面処理金属酸化物粒子の平均一次粒子径は、前記表面処理金属酸化物粒子の比表面積を用いて(3)式によって算出することができる。
 平均一次粒子径(nm)=6000/(比表面積(m/g)×ρ(g/cm))・・・(3)
  (式中、ρは金属酸化物粒子の密度である。)
 例えば、酸化亜鉛のρは5.61g/cmであり、酸化チタンのρは4.23g/cmである。
 または、前記表面処理金属酸化物粒子の平均一次粒子径は、以下の方法で求めてもよい。すなわち、前記表面処理金属酸化物粒子を、透過型電子顕微鏡(TEM)等を用いて観察した場合に、表面処理金属酸化物粒子を所定数、例えば、200個、あるいは100個を選び出す。そして、これら表面処理金属酸化物粒子各々の最長の直線部分(最大長径)を測定し、これらの測定値を算術平均する。
  なお、表面処理金属酸化物粒子同士が凝集している場合には、この凝集体の凝集粒子径を測定するのではない。この凝集体を構成している表面処理金属酸化物粒子(一次粒子)を所定数測定し、平均一次粒子径とする。
[金属酸化物粒子]
 本実施形態における、原料として使用される金属酸化物粒子は、紫外線遮蔽性を有していれば特に限定されない。金属酸化物粒子としては、例えば、酸化亜鉛粒子、酸化チタン粒子、酸化セリウム粒子等を用いることができる。化粧料に一般的に使用されているため、酸化亜鉛粒子と酸化チタン粒子がより好ましい。UV-A領域の紫外線遮蔽性に優れる点において、酸化亜鉛粒子がさらに好ましい。
 前記金属酸化物粒子の比表面積は任意に選択できるが、1.5m/g以上であることが好ましく、2.5m/g以上であることがより好ましく、4m/g以上であることがさらに好ましい。また、金属酸化物粒子の比表面積は、65m/g以下であることが好ましく、60m/g以下であることがより好ましい。必要に応じて、50m/g以下や、30m/g以下や、10m/g以下であってもよい。金属酸化物粒子の比表面積の上記上限値および下限値は、任意に組み合わせることができる。
 前記金属酸化物粒子の比表面積が1.5m/g以上65m/g以下であれば、化粧料に配合した場合に透明性と紫外線遮蔽性に優れる。
 化粧料に配合した場合の透明性を高くしたい場合には、金属酸化物粒子の比表面積は8m/g以上であることが好ましく、15m/g以上であることがより好ましく、20m/g以上であることがさらに好ましい。一方で、化粧料に配合した場合の紫外線遮蔽性を大きくしたい場合には、前記金属酸化物粒子の比表面積は8m/g未満であることが好ましく、7.5m/g以下であることがより好ましく、7.0m/g以下であることがさらに好ましい。
 前記金属酸化物粒子の比表面積とは、全自動比表面積測定装置(商品名:Macsorb HM Model-1201、マウンテック社製)を用い、BET法により測定された値を意味する。
 本実施形態の金属酸化物粒子の平均一次粒子径は任意に選択できるが、15nm以上であることが好ましく、20nm以上であることがより好ましい。また、前記表面処理金属酸化物粒子の平均一次粒子径は715nm以下であることが好ましく、650nm以下であることがより好ましい。
 金属酸化物粒子の平均一次粒子径が15nm以上715nm以下であれば、化粧料に配合した場合に透明性と紫外線遮蔽性に優れる。
 化粧料に配合した場合の透明性を高くしたい場合には、前記金属酸化物粒子の平均一次粒子径は135nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。一方で、化粧料に配合した場合の紫外線遮蔽性を大きくしたい場合には、前記金属酸化物粒子の一次粒子径は135nmを超えることが好ましく、140nm以上であることがより好ましく、150nm以上であることがさらに好ましい。
 前記金属酸化物粒子の平均一次粒子径は、上記表面処理金属酸化物粒子の平均一次粒子径と同様に、前記金属酸化物粒子の比表面積を用いて(3)式によって算出することができる。
 または、前記金属酸化物粒子の平均一次粒子径は、以下の方法で求めてもよい。すなわち、前記金属酸化物粒子を、透過型電子顕微鏡(TEM)等を用いて観察した場合に、金属酸化物粒子を所定数、例えば、200個、あるいは100個を選び出す。そして、これら金属酸化物粒子各々の最長の直線部分(最大長径)を測定し、これらの測定値を算術平均する。
 なお、金属酸化物粒子同士が凝集している場合には、この凝集体の凝集粒子径を測定するのではない。この凝集体を構成している金属酸化物粒子(一次粒子)を所定数測定し、平均一次粒子径とする。
 本実施形態では、金属酸化物粒子に表面処理することにより、表面処理金属酸化物粒子の比表面積が小さくなる傾向はあるが、実質的には同程度の大きさである。同様に、金属酸化物粒子に表面することにより、平均一次粒子径は大きくなる傾向はあるが、実質的には同程度の大きさである。
 前記金属酸化物粒子は、化粧料中での分散安定性を向上させる観点において、高純度の金属酸化物粒子を用いることが好ましい。
[シランカップリング剤]
 本実施形態において使用されるシランカップリング剤は、化粧料に使用可能なシランカップリング剤であれば特に限定されない。
 例えば、シランカップリング剤としては、一般式(4)で表されるシランカップリング剤のうち、化粧料に使用可能なものが挙げられる。
 RSi(OR  …(4)
(Rは、炭素数1~18のアルキル基、フルオロアルキル基またはフェニル基、Rは、炭素数1~4のアルキル基を示す。)
 具体的には、表面処理に用いるシランカップリング剤として、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン(トリエトキシカプリリルシラン)、n-オクタデシルトリメトキシシラン等のアルキルアルコキシシラン;トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリエトキシシラン等のフルオロアルコキシシラン、フルオロアルキルアルコキシシラン;が挙げられる。
 また、表面処理に用いるシランカップリング剤として、ジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマー、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン等、シロキサン骨格を主鎖とし、分子構造内にアルコキシ基とアクリル基とを有する、ポリマー型シランカップリング剤等が挙げられる。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記シランカップリング剤の中でも、分子内にオクチル基を有するシランカップリング剤が好ましい。具体的には、官能基の極性が中程度であり、ナチュラルオイルやエステル油からシリコーンオイルまでの幅広い極性の油相に対応可能な、オクチルトリエトキシシラン、オクチルトリメトキシシラン、ジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマーを、特に好適に用いることができる。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記シランカップリング剤による表面処理量は、所望の特性に応じて適宜調整すればよい。例えば、金属酸化物粒子100質量部に対して、シランカップリング剤の量は、2質量部以上かつ15質量部以下であることが好ましく、3質量部以上かつ15質量部以下であることがより好ましく、4質量部以上かつ12質量部以下であることがさらに好ましい。上記シランカップリング剤の量は、製造時に加えられて使用される量であっても良い。
 上記範囲の量で、金属酸化物粒子をシランカップリング剤で表面処理すると、分散性に優れ、紫外線遮蔽性に優れる表面処理粒子が得られやすいため好ましい。
 なお、第一~三の実施形態の表面処理粒子の特性を阻害しない範囲であれば、シランカップリング剤に加え、化粧料に用いられる表面処理剤であって、シランカップリング剤以外のものを用いて、金属酸化物粒子を表面処理してもよい。
 シランカップリング剤以外の表面処理剤としては、例えば、シリカ、アルミナ等の無機材料や、シリコーン化合物、脂肪酸、脂肪酸石鹸、脂肪酸エステルおよび有機チタネート化合物等の有機材料を用いることができる。
 第一の実施形態の表面処理金属酸化物粒子は、シランカップリング剤、好ましくは上記条件のシランカップリング剤、で好ましく表面処理された金属酸化物粒子であって、金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下である。このため、安定的に高い紫外線遮蔽性を示す、優れた表面処理金属酸化物粒子が得られる。
 また、第二の実施形態の表面処理金属酸化物粒子は、シランカップリング剤、好ましくは上記条件のシランカップリング剤、で好ましく表面処理された金属酸化物粒子であって、金属酸化物粒子は紫外線遮蔽性を有し、表面処理された金属酸化物粒子の105℃、3時間における乾燥減量が0.15質量%以下であり、表面処理された金属酸化物粒子のSi CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下である。このため、安定的に高い紫外線遮蔽性を示す、優れた表面処理金属酸化物粒子が得られる。
[表面処理金属酸化物粒子の製造方法]
 第一~第三の実施形態の表面処理金属酸化物粒子の製造方法は、特に限定されず、任意に選択できる。表面処理に用いる成分に応じて、乾式処理や湿式処理等の公知の方法で製造を適宜実施することができる。
 乾式処理の場合は、例えば、以下のような作業によって、表面処理を行う方法が挙げられる。まず、原料としての金属酸化物粒子をヘンシェルミキサーやスーパーミキサー等のミキサー中で撹拌しながら、シランカップリング剤を液滴下あるいはスプレー噴霧にて加え、その後、一定時間、高速強撹拌する。その後、撹拌を続けながら、70℃から200℃の温度にて、加熱処理する。なお加熱温度や攪拌時間は、用いる材料やシランカップリング剤によって、必要に応じて選択できる。
 湿式処理の場合は、例えば、以下の方法によって表面処理を行う方法が挙げられる。まず、金属酸化物粒子とシランカップリング剤と溶媒とを撹拌しながら、25℃から100℃で数時間混合する。この後、固液分離し、洗浄し、得られたこの洗浄物を、70℃から200℃で加熱処理する。
 前記乾式処理や湿式処理等の方法においては、シランカップリング剤の加水分解用の水分は、金属酸化物粒子の付着水を用いてもよく、必要に応じてシランカップリング剤と共に、または別々に、添加してもよい。
 前記乾式処理や湿式処理等の方法においては、シランカップリング剤は、シランカップリング剤と混合可能な溶媒で希釈して用いてもよい。このような溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコールや、n-ヘキサン、トルエン、キシレン等が挙げられる。溶媒は、1種又は2種以上を用いることができる。加水分解用の水分を添加して表面処理する場合には、これらの溶媒の中でも、水との相溶性が高いアルコール等の極性溶媒が好適に用いられる。
 第一~第三の実施形態の表面処理金属酸化物粒子の製造方法の好ましい例を以下に説明する。例えば、シランカップリング剤で表面処理された金属酸化物粒子を製造又は用意し、この粒子を測定し、得られたSi CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下を満たしているかどうかを判定する、工程(第1の工程)を含む方法が、好ましく挙げられる。
 物の製造方法においては、同一条件で製造した物であっても、全く同一の物を製造することはなかなか困難である。原料ロットの変更、製造日の温湿度、製造量、等、様々な条件により、表面処理金属酸化物粒子の特性は変化する傾向がある。しかし、本実施形態の表面処理金属酸化物粒子の製造方法は、前記第1工程を好ましく有する。このため、測定した表面処理粒子のOH基の量を定量的に確認することができ、紫外線遮蔽性に優れる表面処理金属酸化物粒子が得られているか否かを、予め確認することができる。
 上記第1の工程において、上記割合が60%を超えていることが確認された場合、さらに次の工程を含むことも好ましい。具体的には、上記60%を超えている割合が60%以下となるまで、シランカップリング剤で表面処理された金属酸化物粒子、すなわち表面処理金属酸化物粒子、を加熱する、第2の工程を含むことが好ましい。第2の工程の加熱条件は任意に選択できる。例えば、前記粒子の製造時と同じ温度、例えば70℃から200℃の温度、であってもよい。第2の工程を含むことにより、表面処理粒子のOH基の量が好ましい範囲にあるように、定量的に管理することができる。このため、紫外線遮蔽性に優れる表面処理金属酸化物粒子を安定的に製造することができる。
 本実施形態の表面処理金属酸化物粒子の製造方法は、表面処理された金属酸化物粒子の105℃、3時間における乾燥減量が0.15質量%以下であることを判定する第3の工程を、任意のタイミングで、例えば上記第1工程の前か、上記第2の工程の前に、行ってもよい。上記第2の工程の後に行ってもよい。これらのうちの、複数のタイミングで行っても良い。
 第3の工程は、上述の表面処理金属酸化物粒子の105℃、3時間における乾燥減量の測定方法と同様の方法で、行うことができる。
 なお、上記の第1工程の替わりに、或は上記の第1工程の前か後に、シランカップリング剤で表面処理された金属酸化物粒子を測定し、得られたSi CP/MAS-NMRスペクトルにおいて、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下を満たしているかを判定する工程(第1’の工程)を、含んでも良い。
 この場合、第1’の工程より後に、0.5以上かつ5.0以下を満たしていない表面処理金属酸化物粒子を、更に加熱する工程(第2’の工程)を含むことが好ましい。上記第2’の工程は、上記除した値が0.5以上かつ5.0以下の範囲内となるまで、及び/又は、上述した-20ppmから-50ppmまでの積分値の割合が60%以下になるまで、加熱することが好ましい。第2’の工程の加熱条件は任意に選択でき、前記粒子の製造時と同じ温度、例えば70℃から200℃の温度であってもよい。
 前記第3の工程を、任意のタイミングで、例えば、第1’工程の前や、第2’の工程の前や、第2’の工程の後に行ってもよい。
 また、上記第3の工程においては、上記乾燥減量が0.15質量%を超えていること;第1の工程において前記-20ppmから-50ppmまでの積分値の割合が60%を超えていること;および/又は、上記第1’の工程において、上記除した値が0.5以上かつ5.0以下の範囲外であること;の条件の少なくとも一つが確認された場合、以下の工程を含むことが好ましい。すなわち、前記条件の少なくとも一つ、好ましくは二つ、より好ましくは全て、を満たすまで、前記表面処理金属酸化物粒子をさらに加熱する、工程(第2や第2’の工程)を含むことが、好ましい。このような工程を含むことにより、表面処理粒子のOH基の量を、定量的に管理することができる。このため、紫外線遮蔽性に優れる表面処理金属酸化物粒子を安定的に製造することができる。
 本実施形態の表面処理金属酸化物粒子の製造方法は、第1の、及び/又は、第1’の工程を好ましく有する。このため、表面処理粒子のOH基の量を定量的に確認することができ、紫外線遮蔽性に優れる表面処理金属酸化物粒子が得られているか否かを確認することができる。また、本実施形態の表面処理金属酸化物粒子の製造方法によれば、第2、及び/又は第2’の工程を好ましく含む。このことにより、表面処理粒子のOH基の量を定量的に管理することができる。そのため、紫外線遮蔽性に優れる表面処理金属酸化物粒子を安定的に製造することができる。
[分散液]
 本実施形態の分散液は、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理金属酸化物粒子と、分散媒と、を含有する。
 なお、本実施形態の分散液は、粘度が高いペースト状の分散体も含む。
 分散媒は、化粧料に処方することが可能で、表面処理粒子が分散できるものであれば、特に限定されない。
 分散媒としては、例えば、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;ナチュラルオイル、エステル油、シリコーンオイル等が好適に用いられる。
 また、他の分散媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;シクロヘキサン等の環状炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類;ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類等が用いられる。
 また、他の分散媒としては、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類;アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類等が用いられる。
 また、他の分散媒としては、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油;イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油;デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸;ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等の疎水性の分散媒を用いてもよい。
 上記に挙げた様々な分散媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 本実施形態の分散液は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
 添加剤としては、例えば、防腐剤、分散剤、分散助剤、安定剤、水溶性バインダー、増粘剤、油溶性薬剤、油溶性色素類、油溶性蛋白質類、UV吸収剤等が好適に用いられる。
 本実施形態の分散液における、粒度分布の累積体積百分率が50%のときの、表面処理金属酸化物粒子の粒径(d50)は、任意に選択できるが、300nm以下であることが好ましく、250nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
 d50の下限値は特に限定されず、例えば、50nm以上であってもよく、100nm以上であってもよく、150nm以上であってもよい。d50の上限値および下限値は、任意に組み合わせることができる。
 また、本実施形態の分散液における粒度分布の累積体積百分率が90%のときの粒径(d90)は、任意に選択できるが、400nm以下であることが好ましく、350nm以下であることがより好ましく、300nm以下であることがさらに好ましい。
 d90の下限値は特に限定されず、例えば、100nm以上であってもよく、150nm以上であってもよく、200nm以上であってもよい。d90の上限値および下限値は、任意に組み合わせることができる。
 分散液のd50が300nm以下の場合には、この分散液を用いて作製した化粧料を皮膚に塗布した場合に、表面処理粒子が均一に分布しやすく、紫外線遮蔽効果が向上するため好ましい。また、分散液のd90が400nm以下の場合には、分散液の透明性が高く、この分散液を用いて作製された化粧料の透明性も高くなるため好ましい。
 すなわち、本実施形態における分散液のd50とd90が上記範囲であることにより、透明性に優れ、紫外線遮蔽性に優れる分散液を得ることができる。また、この分散液を用いて作製した化粧料も、透明性と紫外線遮蔽性に優れる。
 分散液における粒度分布の累積体積百分率は、動的光散乱式粒径分布測定装置を用いて測定することができる。
 本実施形態の分散液における表面処理金属酸化物粒子の含有量は、所望の特性に合わせて適宜調整すればよい。
 本実施形態の分散液を化粧料に用いる場合には、分散液における表面処理金属酸化物粒子の含有量は、任意に選択できるが、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。また、分散液における表面処理金属酸化物粒子の含有量は、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。分散液における表面処理金属酸化物粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
 分散液における表面処理金属酸化物粒子の含有量が上記範囲であることにより、表面処理金属酸化物粒子が高濃度で含有される。このため、処方の自由度を向上することができるとともに、分散液の粘度を取り扱いが容易な程度とすることができる。
 本実施形態の分散液の粘度は、任意に選択できるが、5Pa・s以上であることが好ましく、8Pa・s以上であることがより好ましく、10Pa・s以上であることがさらに好ましく、15Pa・s以上であることが最も好ましい。また、分散液の粘度は、300Pa・s以下であることが好ましく、100Pa・s以下であることがより好ましく、80Pa・s以下であることがさらに好ましく、60Pa・s以下であることが最も好ましい。分散液の粘度の上限値および下限値は、任意に組み合わせることができる。
 分散液の粘度が上記の範囲であることにより、固形分(表面処理金属酸化物粒子)を高濃度に含んでいても、取り扱いが容易な分散液を得ることができる。
 本実施形態の分散液は、表面処理粒子を10質量%含有させた分散液を、所定の基板の上に、乾燥後の厚さが12μmとなるように塗布して、15分間自然乾燥させて、塗膜を形成した場合、当該塗膜について測定される物性値が、次の範囲であることが好ましい。
 すなわち、上記塗膜の450nmにおける透過率は、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることがさらに好ましい。透過率の上限値は特に限定されず、100%以下であってもよく、90%以下であってもよく、80%以下であってもよい。塗膜の450nmにおける透過率の上限値および下限値は、任意に組み合わせることができる。
 上記塗膜の450nmにおける透過率が大きいほど透明性に優れる。このため、450nmにおける透過率は高いほうが好ましい。
 また、上記塗膜の290nm~320nmにおける平均透過率は、10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。下限値は特に限定されず、0%以上であってもよく、0.5%以上であってもよく、1%以上であってもよい。塗膜の290nm~320nmにおける平均透過率の上限値および下限値は、任意に組み合わせることができる。
 上記塗膜の290nm~320nmにおける平均透過率が小さいほど紫外線遮蔽性に優れる。このため、290nm~320nmにおける平均透過率は小さいほうが好ましい。
 また、上記塗膜のSPF値は、30以上であることが好ましく、35以上であることがより好ましく、40以上であることがさらに好ましい。上限値は特に限定されず、150以下であってもよく、100以下であってもよく、80以下であってもよい。上記塗膜のSPF値の上限値および下限値は、任意に組み合わせることができる。
 上記塗膜のSPF値が大きいほど、紫外線B波を防ぐ効果が大きい。このため、SPF値は大きいほうが好ましい。
 上記塗膜の臨界波長(Critical Wavelength)は、370nm以上であることが好ましい。塗膜の臨界波長が370nm以上であることにより、塗膜は長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。したがって、本実施形態の分散液を含有する化粧料は、臨界波長が370nm以上となり、化粧料によって皮膚上に形成された膜は長波長紫外線(UVA)および短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
 なお、本明細書において上記「臨界波長」とは、分散液を塗布した前記塗膜を測定することで求められる値である。具体的には、上記塗膜について、290nm以上かつ400nm以下の紫外線領域の吸収スペクトルを測定し、得られた吸収スペクトルにおいて290nmから長波長側に積分する。このとき、積分面積が290nm以上かつ400nm以下の全領域での積分面積の、90%となる波長を、求める「臨界波長」とする。
 本実施形態の分散液の製造方法は、特に限定されない。例えば、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理粒子と、分散媒とを、公知の分散装置で、機械的に分散する方法が挙げられる。
 分散装置は、必要に応じて選択でき、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
 本実施形態の分散液は、化粧料の他、紫外線遮蔽機能やガス透過抑制機能等を有する塗料等に用いることができる。
 本実施形態の分散液によれば、本実施形態の表面処理金属酸化物粒子を含むため、安定的に高い紫外線遮蔽性を示すものとなる。
[組成物]
 本実施形態の組成物は、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理粒子と、高分子と、を含有する。
 本実施形態の組成物における表面処理粒子の含有量は、所望の特性に合わせて適宜調整すればよい。前記含有量は、例えば、10質量%以上かつ40質量%以下であることが好ましく、20質量%以上かつ30質量%以下であることが好ましい。
 組成物における表面処理粒子の含有量が上記範囲であることにより、固形分(表面処理金属酸化物粒子)を高濃度に含む。このため、表面処理粒子の特性が充分に得られ、かつ、表面処理粒子を均一に分散した組成物を得ることができる。
 本実施形態の組成物における高分子としては、特に限定されず、任意に選択でき、例えば、水溶性高分子、半合成高分子、合成高分子、樹脂等を用いることができる。
 水溶性高分子としては、例えば、ゼラチン、カゼイン、コラーゲン、ヒアルロン酸、アルブミン、デンプン等を用いることができる。
 半合成高分子としては、例えば、メチルセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アルギン酸プロピレングリコールエステル等を用いることができる。
 合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、カルボマー(カルボキシビニルポリマー)、ポリアクリル酸塩、ポリエチレンオキシド等を用いることができる。
 樹脂としては、工業用途で一般的に用いられるものであれば特に限定されないが、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。化粧料用途で用いる場合には、シリコーン樹脂を用いることが好ましい。
 本実施形態の組成物における樹脂の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整される。
 本実施形態の組成物は、その特性を損なわない範囲において、一般的に用いられる添加剤を含んでいてもよい。
 添加剤としては、例えば、重合開始剤、分散剤、防腐剤、増粘剤、高級脂肪酸等が挙げられる。
 本実施形態の組成物は、分散媒を含んでもよい。
 分散媒としては、工業用途で一般的に用いられるものであれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール等のアルコール類、酢酸メチル、酢酸エチル、トルエン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。分散媒としては、1種を、または2種以上を組み合わせて、含んでも良い。
 本実施形態の組成物における分散媒の含有量は、特に限定されず、目的とする組成物の特性に応じて適宜調整される。
 本実施形態の組成物の製造方法は、特に限定されず、任意に選択できる。例えば、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理粒子と、高分子とを、公知の混合装置で、機械的に混合する方法が挙げられる。
 また、上述した分散液と、高分子とを、公知の混合装置で、機械的に混合する方法が挙げられる。
 混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー等が挙げられる。
 本実施形態の組成物を、ロールコート法、フローコート法、スプレーコート法、スクリーン印刷法、はけ塗り法、及び浸漬法等の、通常の塗布方法により、任意に選択される基材、例えば、ポリエステルフィルム等のプラスチック基材に、塗布することにより、塗膜を形成することができる。これらの塗膜は、任意に選択される用途、例えば、紫外線遮蔽膜やガスバリア膜として活用することができる。
 本実施形態の組成物によれば、本実施形態の表面処理金属酸化物粒子を含むため、安定的に高い紫外線遮蔽性を示すものとなる。
[化粧料]
 本実施形態の一実施形態の化粧料は、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理金属酸化物粒子、および上記実施形態の分散液からなる群から選択される、少なくとも1種を含有してなる。
 別の一実施形態の化粧料は、化粧品基剤原料と、第一~第三の実施形態の少なくとも1つの特徴を有する表面処理粒子、および上記実施形態の分散液からなる群から選択される、少なくとも1種と、を含有してなる。
 ここで、化粧品基剤原料とは、化粧品の本体を形成する諸原料のことを指す。例えば、油性原料、水性原料、界面活性剤、粉体原料等が例として挙げられる。
 油性原料としては、任意に選択でき、例えば、油脂、高級脂肪酸、高級アルコール、及びエステル油類等が挙げられる。
 水性原料としては、任意に選択でき、精製水、アルコール、及び増粘剤等が挙げられる。
 粉末原料としては、任意に選択でき、有色顔料、白色顔料、パール剤、及び体質顔料等が挙げられる。
 本実施形態の化粧料を得る方法としては、例えば、上記実施形態の分散液を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の化粧品基剤原料に、従来通りに配合することにより、得られる。
 また、本実施形態の化粧料は、例えば、上記実施形態の表面処理粒子を、油相または水相に配合して、O/W型またはW/O型のエマルションとしてから、化粧品基剤原料と配合することにより得られる。
 本実施形態の化粧料における表面処理金属酸化物粒子の含有量は所望の特性に応じて適宜調整すればよい。例えば、前記表面処理粒子の含有量の下限は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、1質量%以上であってもよい。また、表面処理粒子の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。化粧料における表面処理粒子の含有量の上限値および下限値は、任意に組み合わせることができる。
 以下、日焼け止め化粧料について具体的に説明する。
 日焼け止め化粧料において、紫外線を、特に長波長紫外線(UVA)を、効果的に遮蔽し、かつ、粉っぽさやきしみの少ない良好な使用感を得るためには、表面処理金属酸化物粒子の含有量を調整することも好ましい。例えば、日焼け止め化粧料における表面処理金属酸化物粒子の含有量の下限は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、日焼け止め化粧料における表面処理粒子の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。日焼け止め化粧料における表面処理粒子の含有量の上限値および下限値は、任意に組み合わせることができる。また上記範囲の中で、5~15質量%や、10~20質量%など、好ましい範囲を選択することができる。
 日焼け止め化粧料は、必要に応じて、疎水性分散媒、表面処理金属酸化物粒子以外の無機微粒子や無機顔料、親水性分散媒、油脂、界面活性剤、保湿剤、増粘剤、pH調整剤、栄養剤、酸化防止剤、香料等を含んでいてもよい。
 疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
 化粧料に含まれる表面処理金属酸化物粒子以外の無機微粒子や無機顔料としては、例えば、炭酸カルシウム、リン酸カルシウム(アパタイト)、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、カオリン、タルク、酸化チタン、酸化アルミニウム、黄酸化鉄、γ-酸化鉄、チタン酸コバルト、コバルトバイオレット、酸化ケイ素等が挙げられる。
 日焼け止め化粧料は、さらに有機系紫外線吸収剤を、少なくとも1種含有していてもよい。
 有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤、これら以外の有機系紫外線吸収剤等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール等が挙げられる。
 ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
 安息香酸系紫外線吸収剤としては、例えば、パラアミノ安息香酸(PABA)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル、N,N-ジメチルPABAメチルエステル等が挙げられる。
 アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
 サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
 ケイ皮酸系紫外線吸収剤としては、例えば、オクチルメトキシシンナメート(メトキシケイヒ酸エチルヘキシル)、ジ-パラメトキシケイ皮酸-モノ-2-エチルヘキサン酸グリセリル、オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、オクチル-p-メトキシシンナメート(2-エチルヘキシル-p-メトキシシンナメート)、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等が挙げられる。
 シリコーン系ケイ皮酸紫外線吸収剤としては、例えば、[3-ビス(トリメチルシロキシ)メチルシリル-1-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリル-3-メチルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルプロピル]-3,4,5-トリメトキシシンナメート、[3-ビス(トリメチルシロキシ)メチルシリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリルブチル]-3,4,5-トリメトキシシンナメート、[3-トリス(トリメチルシロキシ)シリル-1-メチルプロピル]-3,4-ジメトキシシンナメート等が挙げられる。
 上記以外の有機系紫外線吸収剤としては、例えば、3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン、シリコーン変性紫外線吸収剤、フッ素変性紫外線吸収剤等が挙げられる。
 上記紫外線吸収剤は1種を用いても良く、2種以上を組み合わせて使用してもよい。
 本実施形態の化粧料の臨界波長は、370nm以上であることが好ましい。化粧料の臨界波長が370nm以上であることにより、長波長紫外線(UVA)及び短波長紫外線(UVB)の広範囲の紫外線を遮蔽することができる。
 本実施形態の化粧料によれば、本実施形態の表面処理金属酸化物粒子および本実施形態の分散液からなる群から選択される少なくとも1種を含む。このため、安定的に高い紫外線遮蔽性を示すものとなる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
「表面処理金属酸化物粒子の作製」
 酸化亜鉛粒子(比表面積S:30m/g、住友大阪セメント社製)100質量部と、オクチルトリエトキシシラン(商品名:KBE-3083、信越化学社製)8質量部と、純水0.375質量部と、イソプロピルアルコール7.125質量部と、の混合液をヘンシェルミキサー内で混合し、1時間撹拌した。
 次いで、得られた混合物をジェットミルにて粉砕し、この粉砕粉を110℃で3時間乾燥することで、実施例1の表面処理酸化亜鉛粒子を得た。
「分散液の作製」
 実施例1の表面処理酸化亜鉛粒子を10質量部と、分散剤(PEG-9ポリジメチルシロキシエチルジメチコン、商品名:KF-6028、信越化学社製)を2質量部と、デカメチルシクロペンタシロキサン(商品名:SH245、東レ・ダウコーニング社製)88質量部とを、攪拌機を用いて4000rpmで撹拌し、実施例1の分散液を得た。
[実施例2]
 実施例1において、110℃で3時間乾燥する替わりに、110℃で2時間乾燥した以外は、実施例1と同様にして、実施例2の表面処理酸化亜鉛粒子を得た。
 実施例1で得られた表面処理酸化亜鉛粒子を用いる替わりに、実施例2の表面処理酸化亜鉛粒子を用いた以外は実施例1と同様にして、実施例2の分散液を得た。
[実施例3]
 実施例2で得られた表面処理酸化亜鉛粒子を、85℃、90%RHの条件下に72時間静置し、表面処理酸化亜鉛粒子に水を吸湿させた。
 次いで、この水を吸湿させた表面処理酸化亜鉛粒子を、120℃で3時間熱処理することで、実施例3の表面処理酸化亜鉛粒子を得た。
 実施例1で得られた表面処理酸化亜鉛粒子を用いる替わりに、実施例3の表面処理酸化亜鉛粒子を用いた以外は実施例1と同様にして、実施例3の分散液を得た。
[比較例1]
 実施例1において、110℃で3時間乾燥する替わりに、100℃で1時間乾燥した以外は、実施例1と同様にして、比較例1の表面処理酸化亜鉛粒子を得た。
 実施例1で得られた表面処理酸化亜鉛粒子を用いる替わりに、比較例1の表面処理酸化亜鉛粒子を用いた以外は実施例1と同様にして、比較例1の分散液を得た。
「評価」
(NMRの測定)
 実施例1~実施例3および比較例1で得られた表面処理酸化亜鉛粒子について、固体29Si CP/MAS-核磁気共鳴(NMR)分光法で、-20ppm~-80ppmの範囲のスペクトルを測定した(測定条件:CPMAS法、観測周波数:79.42MHz、観測幅:23.83KHz、コンタクトタイム:5ms、試料回転数:5KHz、測定温度:27℃、パルスディレイ:5s、積算回数:16000)。測定結果を図1に示す。また、図1のうち、実施例1および比較例1を積分した結果を図2に示す。
 上記スペクトルに関して、-40ppmから-50ppmの範囲における最大強度Aと、-50ppmから-60ppmの範囲における最大強度Bと、最大強度Aと最大強度Bの比(A/B)を、表1に示す。
 上記スペクトルに関して、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合Eと、-50ppmから-80ppmまでの積分値の割合Fを、表1に示す。
Figure JPOXMLDOC01-appb-T000003
 
(粒度分布の測定)
 実施例1~実施例3および比較例1で得られた分散液について、動的光散乱式粒径分布測定装置(型番:LB-550、堀場製作所製)を用いて測定を行い、累積体積百分率が50%のときの粒径(d50)と、累積体積百分率が90%のときの粒径(d90)とを求めた。結果を表2に示す。
(SPF値、臨界波長、透過率の測定)
 実施例1~実施例3および比較例1で得られた分散液を、それぞれ石英ガラス板上に分散液の厚さが12μmとなるように塗布し、15分間自然乾燥させて塗膜を形成した。
 得られた塗膜について、SPFアナライザーUV-2000S(Labsphere社製)を用いて測定を行い、450nmにおける透過率、SPF値、臨界波長を求めた。
 実施例1~実施例3および比較例1のSPF値、臨界波長、及び透過率の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 
(乾燥減量の測定)
 実施例1、実施例2で得られた表面処理酸化亜鉛粒子について、それぞれ2gを、105℃に設定した乾燥機で3時間加熱した。前記粒子の加熱前後の質量を測定し、それらの質量から質量減少率を得て、乾燥減量(質量%)とした。すなわち、乾燥減量は、表面処理金属酸化物粒子の乾燥減量(質量%)=(加熱前の表面処理金属酸化物粒子の質量-加熱後の表面処理金属酸化物粒子の質量)/加熱前の表面処理金属酸化物粒子の質量×100で得られる値とした。測定の結果、実施例1と実施例2の表面処理酸化亜鉛粒子の105℃、3時間における乾燥減量は、両方とも0.15質量%以下であった。
(FT-IRの測定)
 実施例1~実施例2で得られた表面処理酸化亜鉛粒子について、フーリエ変換式赤外分光光度計(日本分光株式会社製、型番:FT/IR-670 Plus)で、600cm-1~1500cm-1の反射スペクトルをATR法で測定した。
 その結果、実施例1~実施例2で得られた表面改質酸化亜鉛粒子については、1170cm-1、1100cm-1、1080cm-1、および950cm-1にピークが検出されなかった。
 Si CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下である、実施例1~実施例3は、前記の積分値の割合が65.8%である比較例1よりも、SPF値が高いことが確認された。
 また、実施例3において、吸湿後の表面処理酸化亜鉛粒子であっても、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下となるまで加熱すれば、吸湿前の表面処理酸化亜鉛粒子と、同等の紫外線遮蔽性が得られることが確認された。
[実施例4]
「表面処理金属酸化物粒子の作製」
 実施例1と同じ酸化亜鉛粒子(比表面積S:30m/g、住友大阪セメント社製)100質量部と、オクチルトリエトキシシラン(商品名:KBE-3083、信越化学社製)8質量部と、純水0.6質量部と、イソプロピルアルコール34.2質量部と、の混合液をヘンシェルミキサー内で混合した。
 次いで、その混合液を80℃でイソプロピルアルコールが除去されるまで乾燥した。
 次いで、得られた乾燥物をジェットミルにて解砕し、この解砕粉を120℃で3時間乾燥することで、実施例4の表面処理酸化亜鉛粒子を得た。
「分散液の作製」
 実施例4の表面処理酸化亜鉛粒子を10質量部と、分散剤(PEG-9ポリジメチルシロキシエチルジメチコン、商品名:KF-6028、信越化学社製)を2質量部と、デカメチルシクロペンタシロキサン(商品名:SH245、東レ・ダウコーニング社製)88質量部とを、攪拌機を用いて4000rpmで撹拌し、実施例4の分散液を得た。
[実施例5]
 実施例4において、120℃で3時間乾燥する替わりに、120℃で2時間乾燥した以外は、実施例4と同様にして、実施例5の表面処理酸化亜鉛粒子を得た。
 実施例4で得られた表面処理酸化亜鉛粒子を用いる替わりに、実施例5の表面処理酸化亜鉛粒子を用いた以外は実施例4と同様にして、実施例5の分散液を得た。
[比較例2]
 実施例4において、120℃で3時間乾燥する替わりに、100℃で1時間乾燥した以外は、実施例4と同様にして、比較例2の表面処理酸化亜鉛粒子を得た。
 実施例4で得られた表面処理酸化亜鉛粒子を用いる替わりに、比較例2の表面処理酸化亜鉛粒子を用いた以外は実施例4と同様にして、比較例2の分散液を得た。
[比較例3]
 実施例4において、120℃で3時間の乾燥を行わず、自然乾燥をした以外は、実施例4と同様にして、比較例3の表面処理酸化亜鉛粒子を得た。
 実施例4で得られた表面処理酸化亜鉛粒子を用いる替わりに、比較例3の表面処理酸化亜鉛粒子を用いた以外は実施例4と同様にして、比較例3の分散液を得た。
[比較例4]
 実施例4で得られた表面処理酸化亜鉛粒子を、85℃、90%RHの条件下に72時間静置することで、水を吸収させて、比較例4の表面処理酸化亜鉛粒子を得た。
 実施例4で得られた表面処理酸化亜鉛粒子を用いる替わりに、比較例4の表面処理酸化亜鉛粒子を用いた以外は実施例1と同様にして、比較例4の分散液を得た。
[実施例6]
 比較例4で得られた表面処理酸化亜鉛粒子を、120℃で3時間乾燥することで、実施例6の表面処理酸化亜鉛粒子を得た。
 実施例4で得られた表面処理酸化亜鉛粒子を用いる替わりに、実施例6の表面処理酸化亜鉛粒子を用いた以外は実施例4と同様にして、実施例6の分散液を得た。
「評価」
(NMRの測定)
 実施例4~実施例6および比較例2~比較例4で得られた表面処理酸化亜鉛粒子について、実施例1の時と同じ測定条件で、固体29Si CP/MAS-核磁気共鳴(NMR)分光法で、スペクトルを測定した。実施例4の測定結果を図3に示す。比較例2の測定結果を図4に示す。なお図3と4の横軸は化学シフト(ppm)を示す。
 -30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、積分割合を以下のように表した。
-30ppmから-40ppmの測定範囲におけるスペクトルの積分割合をE;
-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合をA;
-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合をB。
 またB/Aが0.5以上かつ5.0以下であるものを「〇」(可)、B/Aが0.5未満であるものを「×」(不可)とした。結果を表3に示す。
また、実施例4~実施例6の表面処理酸化亜鉛粒子のSi CP/MAS-NMRスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、これら粒子の-20ppmから-50ppmまでの積分値の割合は、60%以下であった。
(乾燥減量の測定)
 実施例4~実施例6および比較例2~比較例4で得られた表面処理酸化亜鉛粒子について、実施例1や2での乾燥減量の測定方法と同様にして、乾燥減量(質量%)を求めた。結果を表3に示す。
(SPF値の測定)
 実施例4~実施例6および比較例2~比較例4で得られた分散液を、実施例1~3及び比較例1でのSPF値の評価方法と同様にして、SPF値を求めた。結果を表3に示す。
(凝集径の測定)
 実施例4~実施例6および比較例2~比較例4で得られた分散液3質量部と、デカメチルシクロペンタシロキサン(商品名:SH245、東レ・ダウコーニング社製)27質量部とを混合した。混合条件としては目視で均一となるまで手振りで混合した。
 この液状の混合物を2枚のスライドガラスで挟み、光学顕微鏡で観察した。
 その結果、観察された表面処理酸化亜鉛粒子の凝集物のうち、最大の粒子径を表3に示す。
 また、実施例4の表面処理酸化亜鉛粒子の光学顕微鏡像を図5に、比較例3の表面処理酸化亜鉛粒子の光学顕微鏡像を図6に示す。
Figure JPOXMLDOC01-appb-T000005
(FT-IRの測定)
 実施例4~実施例6および比較例2、比較例3で得られた表面処理酸化亜鉛粒子について、フーリエ変換式赤外分光光度計(日本分光株式会社製、型番:FT/IR-670 Plus)で、600cm-1~1500cm-1の反射スペクトルをATR法で測定した。
 その結果、実施例4~実施例6で得られた表面改質酸化亜鉛粒子については、1170cm-1、1100cm-1、1080cm-1、および950cm-1にピークが検出されなかった。それに対して、比較例2、比較例3の表面処理酸化亜鉛粒子は、1170cm-1、1100cm-1、1080cm-1、および950cm-1にピークが検出された。
 実施例4と比較例2で得た表面改質酸化亜鉛粒子と、オクチルトリエトキシシランそのものについての、FT-IRの測定結果を図7に示す。
 Si CP/MAS-NMRスペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値(B/A)が、実施例4~実施例6は、0.5以上かつ5.0以下であった。実施例4~実施例6は、前記の除した値(B/A)が、0.5未満または5.0を超える比較例2~比較例4よりも、最大凝集径が小さく、SPF値が高いことが確認された。
 また、実施例4~実施例6は、105℃、3時間における乾燥減量が0.15質量%以下であった。実施例4~実施例6は、乾燥減量が0.15質量%を超える比較例2~比較例4よりも、最大凝集径が小さく、SPF値が高いことが確認された。
 本発明の表面処理金属酸化物粒子は、安定的に高い紫外線遮蔽性を示す。従って、本発明の表面処理金属酸化物粒子は、分散液、組成物、塗料および化粧料へ適用した場合の設計品質を担保し易く、その工業的価値は大きい。

Claims (12)

  1.  シランカップリング剤で表面処理された金属酸化物粒子であって、
     前記金属酸化物粒子は紫外線遮蔽性を有し、
     前記表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下であることを特徴とする表面処理金属酸化物粒子。
  2.  105℃、3時間における乾燥減量が0.15質量%以下であることを特徴とする請求項1に記載の表面処理金属酸化物粒子。
  3.  前記表面処理金属酸化物粒子をフーリエ変換式赤外分光光度計で測定した900cm-1~1300cm-1における反射スペクトルにおいて、前記シランカップリング剤のアルコキシ基に由来するピークが検出されないことを特徴とする請求項1または2に記載の表面処理金属酸化物粒子。
  4.  前記シランカップリング剤が、アルキルアルコキシシラン、アリルアルコキシシラン、アルキル基を側鎖に有するポリシロキサン、およびアリル基を側鎖に有するポリシロキサンからなる群から選ばれる少なくとも1種であることを特徴とする請求項1から3のいずれか1項に記載の表面処理金属酸化物粒子。
  5.  前記シランカップリング剤が、オクチルトリエトキシシラン、オクチルトリメトキシシラン、およびジメトキシジフェニルシラン-トリエトキシカプリリルシランクロスポリマーからなる群から選ばれる少なくとも1種であることを特徴とする請求項1から3のいずれか1項に記載の表面処理金属酸化物粒子。
  6.  請求項1から5のいずれか1項に記載の表面処理金属酸化物粒子と、分散媒と、を含有することを特徴とする分散液。
  7.  請求項1から5のいずれか1項に記載の表面処理金属酸化物粒子と、高分子と、を含有することを特徴とする組成物。
  8.  請求項1から5のいずれか1項に記載の表面処理金属酸化物粒子および請求項6に記載の分散液および請求項7に記載の組成物からなる群から選ばれる少なくとも1種を含有することを特徴とする化粧料。
  9.  シランカップリング剤で表面処理された金属酸化物粒子の製造方法であって、
     前記金属酸化物粒子は紫外線遮蔽性を有し、
     前記表面処理された金属酸化物粒子の固体29Si CP/MAS-核磁気共鳴(NMR)分光法で測定したスペクトルにおいて、-20ppmから-80ppmの測定範囲におけるスペクトルの積分値を100%としたときに、-20ppmから-50ppmまでの積分値の割合が60%以下を満たしているかを判定する第1の工程を含むことを特徴とする表面処理金属酸化物粒子の製造方法。
  10.  前記第1の工程において、前記割合が60%を超えていることが確認された場合、前記割合が60%以下となるまで、前記表面処理金属酸化物粒子を加熱する第2の工程を含むことを特徴とする請求項9に記載の表面処理金属酸化物粒子の製造方法。
  11.  前記スペクトルにおいて、-30ppmから-60ppmの測定範囲におけるスペクトルの積分値を100としたときに、-50ppmから-60ppmの測定範囲におけるスペクトルの積分割合を、-40ppmから-50ppmの測定範囲におけるスペクトルの積分割合で除した値が、0.5以上かつ5.0以下であることを特徴とする請求項1に記載の表面処理金属酸化物粒子。
  12. 前記表面処理された金属酸化物粒子を10質量%と、PEG-9ポリジメチルシロキシエチルジメチコンを2質量%と、デカメチルシクロペンタシロキサンを88質量%とからなる分散液を10質量部と、デカメチルシクロペンタシロキサン90質量部と、を混合し、その混合物をスライドガラスに挟んで、光学顕微鏡で観察したときに、観察される凝集物の粒子径が15μm以下であることを特徴とする請求項1に記載の表面処理金属酸化物粒子。
PCT/JP2019/038100 2018-09-28 2019-09-27 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法 WO2020067406A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018183487A JP7414390B2 (ja) 2018-09-28 2018-09-28 表面処理金属酸化物粒子、分散液、組成物および化粧料
JP2018183485A JP7095534B2 (ja) 2018-09-28 2018-09-28 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
JP2018183486 2018-09-28
JP2018-183487 2018-09-28
JP2018-183485 2018-09-28
JP2018-183486 2018-09-28
JP2019-126291 2019-07-05
JP2019126291A JP7275939B2 (ja) 2018-09-28 2019-07-05 表面処理金属酸化物粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2020067406A1 true WO2020067406A1 (ja) 2020-04-02

Family

ID=69950630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038100 WO2020067406A1 (ja) 2018-09-28 2019-09-27 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法

Country Status (1)

Country Link
WO (1) WO2020067406A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177004A1 (ja) * 2021-02-22 2022-08-25 住友大阪セメント株式会社 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法
CN115485241A (zh) * 2020-04-30 2022-12-16 住友大阪水泥股份有限公司 表面改性氧化锌粒子、分散液、化妆料
JP7552426B2 (ja) 2021-02-22 2024-09-18 住友大阪セメント株式会社 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181136A (ja) * 1999-12-27 2001-07-03 Daito Kasei Kogyo Kk 化粧料用顔料およびその顔料を含む化粧料
JP2009208988A (ja) * 2008-03-03 2009-09-17 Hyogo Prefecture 酸化チタンナノチューブを用いた機能性材料
JP2010532742A (ja) * 2007-07-06 2010-10-14 キャボット コーポレイション 表面処理された金属酸化物粒子
JP2013082609A (ja) * 2011-09-30 2013-05-09 Jgc Catalysts & Chemicals Ltd 改質ジルコニア微粒子粉末、改質ジルコニア微粒子分散ゾルおよびその製造方法
WO2017221940A1 (ja) * 2016-06-24 2017-12-28 東レ・ダウコーニング株式会社 化粧料用粉体の処理剤、化粧料用粉体、およびこれを配合した化粧料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181136A (ja) * 1999-12-27 2001-07-03 Daito Kasei Kogyo Kk 化粧料用顔料およびその顔料を含む化粧料
JP2010532742A (ja) * 2007-07-06 2010-10-14 キャボット コーポレイション 表面処理された金属酸化物粒子
JP2009208988A (ja) * 2008-03-03 2009-09-17 Hyogo Prefecture 酸化チタンナノチューブを用いた機能性材料
JP2013082609A (ja) * 2011-09-30 2013-05-09 Jgc Catalysts & Chemicals Ltd 改質ジルコニア微粒子粉末、改質ジルコニア微粒子分散ゾルおよびその製造方法
WO2017221940A1 (ja) * 2016-06-24 2017-12-28 東レ・ダウコーニング株式会社 化粧料用粉体の処理剤、化粧料用粉体、およびこれを配合した化粧料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485241A (zh) * 2020-04-30 2022-12-16 住友大阪水泥股份有限公司 表面改性氧化锌粒子、分散液、化妆料
WO2022177004A1 (ja) * 2021-02-22 2022-08-25 住友大阪セメント株式会社 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法
JP7552426B2 (ja) 2021-02-22 2024-09-18 住友大阪セメント株式会社 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法

Similar Documents

Publication Publication Date Title
WO2017130632A1 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
WO2020067406A1 (ja) 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
JP5850189B1 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
WO2021220454A1 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料
JP7414390B2 (ja) 表面処理金属酸化物粒子、分散液、組成物および化粧料
JP7275939B2 (ja) 表面処理金属酸化物粒子の製造方法
WO2020067417A1 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
JP6551482B2 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
JP6682950B2 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
WO2021200541A1 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
JP6922529B2 (ja) 表面処理酸化亜鉛粒子の製造方法
JP6314898B2 (ja) 酸化亜鉛粉体、分散液、塗料、化粧料
JP7367587B2 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
JP7095534B2 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
WO2021220453A1 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料
KR20230147093A (ko) 표면 개질 산화 아연 입자, 분산액, 화장료, 표면 개질 산화 아연 입자의 제조 방법
JP7367589B2 (ja) 表面処理金属酸化物粒子、分散液、化粧料および表面処理金属酸化物粒子の製造方法
CN115362131B (en) Surface-treated metal oxide particles, dispersion, cosmetic, and method for producing surface-treated metal oxide particles
JP7552426B2 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法
KR20240134165A (ko) 표면 처리 산화 아연 입자, 분산액, 화장료, 표면 처리 산화 아연 입자의 제조 방법
WO2024080367A1 (ja) ポリシロキサン被覆金属酸化物粒子、分散液、組成物、化粧料、ポリシロキサン被覆金属酸化物粒子の製造方法
JP2024092128A (ja) 表面改質酸化チタン、表面改質酸化チタンの製造方法、分散液、組成物、化粧料
JP2024051646A (ja) 分散液、化粧料、分散液の製造方法
WO2023190487A1 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料
KR20240117602A (ko) 산화 아연 분체, 분산액, 도료, 화장료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864194

Country of ref document: EP

Kind code of ref document: A1