WO2016121033A1 - フレアカット部材、レンズ装置、及び光学装置 - Google Patents
フレアカット部材、レンズ装置、及び光学装置 Download PDFInfo
- Publication number
- WO2016121033A1 WO2016121033A1 PCT/JP2015/052373 JP2015052373W WO2016121033A1 WO 2016121033 A1 WO2016121033 A1 WO 2016121033A1 JP 2015052373 W JP2015052373 W JP 2015052373W WO 2016121033 A1 WO2016121033 A1 WO 2016121033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- flare
- shape
- opening
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
Definitions
- the present invention relates to a lens device or an optical device having a flare cut member.
- optical systems such as lenses for digital cameras and optical systems such as projection apparatuses have been demanded to have high optical performance and to be small and light. For this reason, a lens having a large diameter lens or a lens ball having a lens surface with a small radius of curvature has been increasingly used.
- Example 2 of Patent Document 1 discloses a flare cut in which a light beam that forms an image height corresponding to the imaging range passes and blocks the other light beam.
- the resolution performance deteriorates.
- the decentering / falling direction of each lens ball constituting the imaging lens is a direction parallel to the short side of the rectangular effective range of the imaging element, the degradation of resolution performance is reduced. This is because the image height in the long side direction is larger than that in the short side direction even with the same amount of decentering / falling, and the influence of the eccentricity / falling becomes larger in the long side direction.
- Patent Document 1 since the shape of the flare cut opening is formed in a rectangular shape and disposed in the optical system, if the group lens with the flare cut is rotated, the flare cut The position at which the light beam that has passed through the opening is incident on the image sensor changes and does not necessarily enter the effective range of the image sensor. Therefore, there is a problem that it is not possible to adjust the eccentricity / falling by rotating the group lens. Strictly speaking, the rotation adjustment of 180 degrees is possible, but since the relationship with the effective range of the image sensor does not change, the rotation adjustment is not substantially performed.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique capable of adjusting the rotation even with a combined lens in which a flare cut is arranged.
- the lens is formed on a light beam incident side of a lens ball constituting a combined lens of an optical device, the light shielding surface that shields the incidence of the light beam on the peripheral portion of the lens, and the light shielding surface.
- a flare-cut member having a rotationally symmetric opening through which a light beam incident on the ball passes is arranged.
- FIG. 1 is a configuration diagram of a flare cut 100 according to the first embodiment
- FIG. 2 is a configuration diagram of a projection optical system 1 incorporating the flare cut 100 of FIG.
- FIG. 3 is a diagram showing an optical path of a light beam passing through the projection optical system 1 in the YZ plane.
- a flare cut member 100 (hereinafter abbreviated as “flare cut”) is formed of a circular plate-like member, and includes a light shielding surface 101 that shields harmful light, and an opening provided at a substantially central portion thereof. Part 102.
- the shape of the opening 102 is a regular hexagonal shape which is an example of a rotationally symmetric shape.
- Projection optical system 1 of the oblique projection shown in FIG. 2 has a lens configuration of oblique projection in the YZ plane, in order from the reduction side (light incident side), rotationally symmetrical first coaxial lens system L 1 and the second coaxial lens and L 2, the non-rotationally symmetrical lens L 3, a non-rotationally symmetrical mirror M 4, a magnifying optical system lens apparatus constructed by arranging.
- Projection optical system 1 a first coaxial lens system L 1 and the second coaxial lens L 2 is arranged on the same optical axis in the YZ plane, a non-rotationally symmetrical lens L 3 and the non-rotationally symmetric mirror M 4 first coaxial the optical axis a 1 of the lens system L 1 and the second coaxial lens L 2 formed by arranging upward in the Y-axis direction. Accordingly, as shown in FIG. 3, in the YZ plane, the light beam rather than the whole of the second coaxial lens system L 2, passes through substantially the upper half portion.
- the first coaxial lens system L 1 and the second coaxial lens L 2 have a common optical axis A 1 , and the optical axis A 1 connects the center of the object and the center of the virtual image plane S. it is different from the straight line a 2.
- the lens ball when represented by a ray diagram up to the actual image plane (not shown), the lens ball becomes too small, so that the light reflected by the non-rotationally symmetric mirror M 4 is reflected immediately after the virtual image plane S. It represents a part up to. From FIG. 3, it is clear that the optical axis A 1 and the straight line connecting the object center and the center of the actual image plane (not shown) are different.
- first coaxial lens system L 1 In rotationally symmetric first coaxial lens system L 1, it is performed flange back adjustment to move adjustment in the optical axis direction.
- Flange back adjustment is back focus adjustment at the stage of the lens assembly of the production, there is a method of rearranging the spacer, the easiness of the work, inner barrel of the lens barrel that holds the first coaxial lens system L 1
- first coaxial lens system L 1 is rotated in the optical axis A 1 around.
- the second coaxial lens system L 2 is immobile in helicoid adjustment, it does not rotate the optical axis A 1 around.
- non-rotationally symmetric lens system L 3 is performing focusing action by moving each lens ball in the optical axis direction.
- Non-rotationally symmetrical mirror M 4 at the time of focusing action of the non-rotationally symmetrical lens system L 3, is stationary.
- the non-rotationally symmetric lens L 3 and the non-rotationally symmetric mirror M 4 correct trapezoidal distortion that occurs mainly in oblique projection.
- a flare cut 100 is disposed between the lens L 24 and the lens L 25 in the second coaxial lens system L 2 (see FIG. 2).
- the reason why the flare cut 100 is arranged in the projection optical system 1 is as follows.
- the light beams emitted from different positions of the object point overlap in the optical system are separated as they approach the image plane side, and are condensed at the corresponding positions on the image plane side. If the flare cut is disposed immediately before the image plane, only the light flux at the peripheral portion of the image is shielded, so that the ratio of the peripheral light amount to the image height rapidly decreases at the maximum image height. Even if the brightness of the peripheral part relative to the brightness of the central part of the image plane satisfies the target value, the darkness in the peripheral part is noticeable and the quality is poor if the light quantity in the peripheral part is rapidly deteriorated. It becomes an image.
- FIG. 4 is a diagram illustrating each light beam range on the incident surface of the lens L 25 of the light beam reaching the 17 image points of the rectangular region on the image surface when the flare cut 100 is not used.
- the same numbers are assigned to the luminous fluxes corresponding to the image points 51, 52, 53, and 54 on the image plane in the figure.
- the arc-shaped dotted line 25 corresponds to the effective diameter at the entrance surface of the lens L 25 , and with this effective diameter, a part of the light beam at the image point 52 at the upper end of the image surface is shielded. I understand.
- FIG. 5 is a diagram illustrating each light beam range on a plane in which the flare cut 100 is disposed between the lens L 24 and the lens L 25 in the second coaxial lens system L 2 . Since the position in the direction of the optical axis 2 differs in particular with respect to the light flux at the image points 53 and 54 with the light flux range at the entrance surface of the lens L 25 described above in FIG. However, since the position of the light beam at the image points 51 and 52 is close to the incident surface of the lens L 25 , a light beam range almost similar to that in FIG. 4 is obtained.
- the shape of the opening 102 (see FIG. 1) of the flare cut 100 of FIG. 4 a hexagonal shape, the flare of the light flux at the image point 51 is simultaneously cut while suppressing the amount of light shielding at the image point 52. Will be able to.
- the second coaxial lens system L 2 is essentially the optical axis 2 (Fig. 1, see FIG. 2) should no effect be rotated around.
- the direction in which the eccentricity and inclination of the built-in each lens ball occurs in relation to the passing range of the light beam in FIG. 5 described above the second coaxial lens system L 2 light A difference in the optical performance of the entire projection optical system 1 is caused by rotating around the axis 2. Therefore, even if the rotational adjustment of the second coaxial lens system L 2 having a built-in flare 100 on the optical axis 2 around, as the light-shielding effect of the flare is not changed, the rotation symmetrical shape of the opening 102 of the flare 100 Formed.
- the difference in the amount of peripheral light between each image point (for example, image points 51 and 52) located near the outer edge of the image is reduced, and the image periphery
- the amount of light in the part can be made more uniform. Therefore, in the peripheral part of the same rectangular image, for example, the difference between the light quantity at the center of the rectangular side and the light quantity at the corner can be further reduced.
- Figure 6 is an explanatory view of a rotational adjustment of the lens assembly incorporating a flare, an inner barrel 301 which incorporates the flare 100 is rotationally symmetrical about the second coaxial lens system L 2, it is arranged on the outside It is a figure showing the relationship with the outer side lens-barrel 302.
- FIG. 6 although the second coaxial lens system L 2 is not shown, the second coaxial lens system L 2 is held in the inner barrel 301.
- recesses 311 are provided in increments of 120 degrees. Further, on the inner peripheral portion of the outer barrel 302, convex portions 312 are provided in increments of 120 degrees.
- the inner lens barrel 301 is rotatably accommodated in the outer lens barrel 302, and the convex portion 312 is fitted into the concave portion 311 so that the inner lens barrel 301 and the outer lens barrel 302 can be assembled with being shifted by 120 degrees. It has become.
- the flare cut 100 having the hexagonal shape of the opening 102 the flare light-shielding action can be maintained even if the rotation is adjusted in steps of 120 degrees around the optical axis 2.
- the shape of the light shielding portion of the flare cut 100 is a regular hexagonal shape, it is rotationally symmetric even if it rotates around the optical axis 2 in increments of 60 degrees. Therefore, if the inner lens barrel 301 has a structure in which the angle can be changed in increments of 60 degrees with respect to the outer lens barrel 302, rotation adjustment in increments of 60 degrees can be made possible.
- the shape of the opening 102 of the light shielding surface 101 is a regular hexagonal shape, but it goes without saying that the effect of the present invention can be obtained even if the shape of the opening is formed by connecting the corner apex portions with curved surfaces.
- the shape of each side of the regular hexagon forming the opening shape of the light shielding surface may be connected by a curve instead of a straight line.
- the shape of the opening of the flare cut is a rotationally symmetric shape only at a certain angle around the optical axis. Since only the flare cut differs from the first embodiment in the second embodiment, only the function of the flare cut will be described, and the other description will be omitted.
- the flare cut 100a according to the second embodiment will be described with reference to FIG.
- FIG. 7 is a configuration diagram of the flare cut according to the second embodiment.
- the shape of the opening 102a of the flare cut 100a is a hexagonal shape that is not a regular hexagonal shape.
- the shape of the opening 102a of the flare cut 100a is a rotationally symmetric shape when rotated at an angle around the optical axis, that is, 120 degrees.
- the flare cut 100a since the flare cut 100a has the distance b smaller than the distance a, the light beam at the image point 52 in FIG.
- the flare cut 100a by shifting by 60 degrees, the light flux of the image point 52 can be largely shielded while the light shield of the image point 51 remains the same.
- FIG. 8 is a configuration diagram showing a modification of the flare cut according to the second embodiment.
- the shape of each side of the regular hexagon forming the shape of the opening of the light shielding surface may be connected by a curve instead of a straight line.
- the side of the opening 102b having a value a having a large distance from the optical axis 2 and a side having a large value a and a side having a small value b are alternately adjacent to each other. It is formed so as to form a part of an arc. Since the distance from the optical axis 2 is different between a and b, the flare at the image point 51 can also be shielded by this flare cut 100b.
- the opening shape of the flare cut has a rotationally symmetric shape before and after the rotation at a part of the rotation angle around the optical axis center (opening center), and is not before and after the rotation at the remaining rotation angle.
- Rotation adjustment is performed at a rotational angle that is rotationally symmetric if you want to make the peripheral light amount of the image more uniform by making it a rotationally symmetric shape, and at a rotational angle that is non-rotary symmetric if you want to provide a difference in the peripheral light amount Can do.
- the latter rotation adjustment is effective when there is a large left-right difference in the eccentric tilting of the assembled lens.
- FIG. 9 is a configuration diagram of the flare cut according to the third embodiment.
- FIG. 10 is an explanatory view of a rotary adjustment of the lens assembly incorporating a flare according to the third embodiment, the inner barrel incorporating a flare rotationally symmetric second coaxial lens system L 2 and the outer mirror It is a figure showing the relationship of a pipe
- the flare cut, the inner lens barrel, and the outer lens barrel are different from those in the first embodiment. Therefore, only the function of flare cutting, the inner lens barrel, and the outer lens barrel will be described. Is omitted.
- the shape of the opening 102c of the flare cut 100c in FIG. 9 is a regular octagon.
- the flare cut 100c has a symmetrical shape even if it rotates about the optical axis 2 in increments of 45 degrees.
- the inner barrel 301a and outer barrel 302a incorporating the second optical axis lens system L 2 has a structure that can be incorporated rotated in increments of 90 degrees.
- the outer periphery of the inner barrel 301a is provided with four recesses 311 in 90 degree increments.
- four convex portions 312 are provided in increments of 90 degrees on the inner peripheral portion of the outer barrel 302a.
- the convex portion 312 is fitted to the concave portion 311, and the inner lens barrel 301a and the outer lens barrel 302a can be incorporated while being shifted by 90 degrees.
- the shape of the opening 102c of the flare cut 100c is an octagonal shape, even if the rotation is adjusted by 90 degrees around the optical axis 2, the light shielding action of the flare can be maintained.
- the rotational symmetry of the flare cut can be ensured even at a finer rotation angle than in the first and second embodiments, so that the accuracy of fine adjustment of the eccentricity / tilt of the lens can be further improved.
- FIG. 11 is a configuration diagram of a front projector equipped with the projection optical system according to the embodiment.
- the front projector 400 of FIG. 11 performs an input signal processing unit 411 that converts the video input signal 430 into an internal video signal 431 by, for example, IP conversion, a scaler, and the like, and performs, for example, Keaton correction and resolution correction on the internal video signal 431.
- An image processing unit 412 that outputs a corrected video signal 432; a timing control unit 413 that generates a display control signal 433 by associating the corrected video signal 432 with a horizontal / vertical synchronization signal; an optical system device 420 that displays video; It is comprised including.
- the optical system device 420 receives a light source 421 that emits a light beam for projecting an image on the screen 440 and a display control signal 433, and adjusts the gradation of the light beam from the light source 421 for each pixel to create a projected image.
- a projection optical system 423 including a lens for enlarging and projecting the projected image on the screen.
- the projection optical system described in the first to third embodiments can be applied to the projection optical system 423.
- the shape of the opening of the flare cut member is formed in a shape that is different from the polygonal shape shown above, such as a rotationally symmetric shape, for example, a shape having a circular shape or a plurality of rotationally symmetric angles. May be.
- a rotationally symmetric shape for example, a shape having a circular shape or a plurality of rotationally symmetric angles.
- the lens device has an angle different from the hexagonal shape or octagonal shape.
- the inner lens barrel may be rotated so as to be adjustable.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
- Projection Apparatus (AREA)
- Lenses (AREA)
- Optical Elements Other Than Lenses (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
第一実施形態は、回転対称な多角形状の一例として六角形形状を採用したフレアカット部材に係る実施形態である。まず、図1乃至図3を参照して、第一実施形態に係るフレアカット及びそれを組み込んだ投写光学系の構成について説明する。図1は第一実施形態に係るフレアカット100の構成図であり、図2は図1のフレアカット100を組み込んだ投写光学系1の構成図である。図3は、YZ平面における投写光学系1を通過する光束の光路を示す図である。
第二実施形態は、フレアカットの開口部形状が光軸周りのある角度においてのみ回転対称な形状に形成する実施形態である。第二実施形態は、フレアカットのみが第一実施形態と異なるので、フレアカットの機能についてのみ説明し、他の説明は省略する。以下、図7を用いて第二実施形態に係るフレアカット100aについて説明する。ここで、図7は第二実施形態に係るフレアカットの構成図である。
フレアカットの開口部形状は、点対称な五角形以上の多角形形状であればよいが、第三実施形態では、第一、第二実施形態の六角形形状よりも辺の数が多い形状として八角形形状を採用する。以下、図9及び図10を用いて、第三実施形態について説明する。ここで、図9は第三実施形態に係るフレアカットの構成図である。また図10は、第三実施形態に係るフレアカットを組み込んだ組レンズの回転調整の説明図であって、フレアカットと回転対称な第2同軸レンズ系L2を内蔵する内側鏡筒と外側鏡筒の関係を表す図である。なお、本実施形態では、フレアカットと内側鏡筒と外側鏡筒とのみが、第一実施形態と異なるので、フレアカットの機能と内側鏡筒と外側鏡筒とについてのみ説明し、他の説明は省略する。
上記した投写光学系は、組レンズを搭載した光学装置、例えばフロントプロジェクタやリヤプロジェクションテレビといった拡大投影を行う光学装置に適用することができる。その一例として、第四実施形態では、上記フレアカットを用いたフロントプロジェクタについて図11を参照して説明する。図11は、上記実施形態にかかる投写光学系を搭載したフロントプロジェクタの構成図である。
Claims (8)
- レンズ周辺部に入射する光束を遮光する遮光面と、
前記遮光面に形成され、前記レンズ玉に入射する光束が通過する開口部と、を備え、
前記開口部の形状が回転対称な形状であること、
を特徴とするフレアカット部材。 - 前記開口部の形状は、回転対称な角度が複数存在する形状であること、
を特徴とする請求項1に記載のフレアカット部材。 - 前記開口部の形状が点対称な五角形以上の多角形形状であること、
を特徴する請求項2に記載のフレアカット部材。 - 前記開口部の形状が六角形形状であること、
を特徴とする請求項3に記載のフレアカット部材。 - 前記開口部の形状が正八角形形状であること、
を特徴とする請求項3に記載のフレアカット部材。 - 前記開口部の多角形形状は、前記開口部の開口中心から前記多角形形状を形成する各辺までの距離が相対的に大きな値を有する辺及び前記距離が相対的に小さい値を示す辺を含んで形成され、かつ、前記距離が相対的に長い辺と前記距離が相対的に短い辺とが交互に隣接して配置された形状である、
ことを特徴する請求項3に記載のフレアカット部材。 - 拡大光学系のレンズ装置であって、
外側鏡筒と
前記外側鏡筒内に、前記外側鏡筒に対して回転可能に収容される内側鏡筒と、
前記内側鏡筒内において、同軸光軸上に配置された回転対称な複数のレンズ玉と、
前記複数のレンズ玉のうちの一のレンズ玉における光束入射側に配置されるフレアカット部材と、を備え、
前記フレアカット部材は、前記一のレンズ玉の周辺部に入射する光束を遮光する遮光面及び前記遮光面に形成され前記レンズ玉に入射する光束が通過する回転対称な形状の開口部を備える、
ことを特徴とするレンズ装置。 - 拡大光学系の複数のレンズ装置を共通する光軸上に配置すると共に、前記複数の同軸レンズ装置に共通な光軸と、物中心及び像中心を結んだ直線と、が異なる光学装置において、
前記複数の同軸レンズ装置のうちの一つは、
外側鏡筒と、
前記外側鏡筒内に、前記外側鏡筒に対して回転可能に収容される内側鏡筒と、
前記内側鏡筒内において、同軸光軸上に配置された回転対称な複数のレンズ玉と、
前記複数のレンズ玉のうちの一のレンズ玉における光束入射側に配置されるフレアカット部材と、を含み、
前記フレアカット部材は、前記一のレンズ玉の周辺部に入射する光束を遮光する遮光面及び前記遮光面に形成され前記レンズ玉に入射する光束が通過する回転対称な形状の開口部を備える、
ことを特徴とする光学装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/052373 WO2016121033A1 (ja) | 2015-01-28 | 2015-01-28 | フレアカット部材、レンズ装置、及び光学装置 |
CN201580061498.5A CN107003434B (zh) | 2015-01-28 | 2015-01-28 | 防眩光部件、透镜装置和光学装置 |
JP2016571579A JP6416292B2 (ja) | 2015-01-28 | 2015-01-28 | フレアカット部材、レンズ装置、及び光学装置 |
US15/520,080 US10545334B2 (en) | 2015-01-28 | 2015-01-28 | Flare-cut member, lens device, and optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/052373 WO2016121033A1 (ja) | 2015-01-28 | 2015-01-28 | フレアカット部材、レンズ装置、及び光学装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121033A1 true WO2016121033A1 (ja) | 2016-08-04 |
Family
ID=56542687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052373 WO2016121033A1 (ja) | 2015-01-28 | 2015-01-28 | フレアカット部材、レンズ装置、及び光学装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10545334B2 (ja) |
JP (1) | JP6416292B2 (ja) |
CN (1) | CN107003434B (ja) |
WO (1) | WO2016121033A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017047518A1 (ja) * | 2015-09-17 | 2018-06-14 | 富士フイルム株式会社 | プロジェクタ及びその画像劣化防止方法 |
JP2020038402A (ja) * | 2017-08-02 | 2020-03-12 | 信泰光學(深セン)有限公司 | カメラ装置 |
TWI705276B (zh) * | 2019-08-21 | 2020-09-21 | 大陸商玉晶光電(廈門)有限公司 | 支撐元件與可攜式光學成像鏡頭 |
JP2020181103A (ja) * | 2019-04-25 | 2020-11-05 | キヤノン株式会社 | 電子ビューファインダおよび撮像装置 |
US11852849B2 (en) | 2017-08-02 | 2023-12-26 | Sintai Optical (Shenzhen) Co., Ltd. | Camera device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI665474B (zh) * | 2018-04-20 | 2019-07-11 | 大立光電股份有限公司 | 環形光學元件、成像鏡頭模組與電子裝置 |
CN115145091A (zh) * | 2021-03-31 | 2022-10-04 | 玉晶光电(厦门)有限公司 | 遮光组件及应用该遮光组件之光学成像镜头 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07261106A (ja) * | 1994-03-24 | 1995-10-13 | Toshiba Corp | 光走査装置 |
JPH07311359A (ja) * | 1994-05-17 | 1995-11-28 | Olympus Optical Co Ltd | 撮像光学系 |
JPH1010396A (ja) * | 1996-06-25 | 1998-01-16 | Canon Inc | レンズ鏡筒およびこれを備えた光学機器 |
JP2010186120A (ja) * | 2009-02-13 | 2010-08-26 | Seiko Epson Corp | 投射光学系及び投射型画像表示装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040310A (ja) * | 2000-07-28 | 2002-02-06 | Tomoharu Ogura | 撮影レンズ用取り付け式フレアーカットマスク |
JP2006072151A (ja) | 2004-09-03 | 2006-03-16 | Fujinon Corp | 絞り板 |
JP2006133442A (ja) * | 2004-11-05 | 2006-05-25 | Nikon Corp | レンズ鏡筒およびこれを備えるカメラ |
JP4462354B2 (ja) * | 2008-01-22 | 2010-05-12 | ソニー株式会社 | 撮像装置 |
JP5641718B2 (ja) * | 2008-09-16 | 2014-12-17 | キヤノン株式会社 | 撮影レンズ |
JP2011081185A (ja) * | 2009-10-07 | 2011-04-21 | Olympus Imaging Corp | ズームレンズおよびそれを用いた撮像装置 |
JP5173979B2 (ja) * | 2009-10-20 | 2013-04-03 | キヤノン株式会社 | 絞り装置およびそれを有するレンズ鏡筒並びに撮像装置 |
JP2012078556A (ja) * | 2010-10-01 | 2012-04-19 | Nisca Corp | 光量調節装置及びこの光量調節装置を用いた光学機器 |
JP2012137605A (ja) * | 2010-12-27 | 2012-07-19 | Seiko Epson Corp | プロジェクター |
JP5874263B2 (ja) * | 2011-09-15 | 2016-03-02 | 株式会社リコー | 投射光学系及び画像投射装置 |
JP6064535B2 (ja) * | 2012-11-14 | 2017-01-25 | 株式会社リコー | 投射光学系及びそれを備えた画像表示装置 |
-
2015
- 2015-01-28 WO PCT/JP2015/052373 patent/WO2016121033A1/ja active Application Filing
- 2015-01-28 JP JP2016571579A patent/JP6416292B2/ja active Active
- 2015-01-28 CN CN201580061498.5A patent/CN107003434B/zh active Active
- 2015-01-28 US US15/520,080 patent/US10545334B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07261106A (ja) * | 1994-03-24 | 1995-10-13 | Toshiba Corp | 光走査装置 |
JPH07311359A (ja) * | 1994-05-17 | 1995-11-28 | Olympus Optical Co Ltd | 撮像光学系 |
JPH1010396A (ja) * | 1996-06-25 | 1998-01-16 | Canon Inc | レンズ鏡筒およびこれを備えた光学機器 |
JP2010186120A (ja) * | 2009-02-13 | 2010-08-26 | Seiko Epson Corp | 投射光学系及び投射型画像表示装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017047518A1 (ja) * | 2015-09-17 | 2018-06-14 | 富士フイルム株式会社 | プロジェクタ及びその画像劣化防止方法 |
JP2020038402A (ja) * | 2017-08-02 | 2020-03-12 | 信泰光學(深セン)有限公司 | カメラ装置 |
JP2022132654A (ja) * | 2017-08-02 | 2022-09-08 | 信泰光學(深セン)有限公司 | カメラ装置 |
US11852849B2 (en) | 2017-08-02 | 2023-12-26 | Sintai Optical (Shenzhen) Co., Ltd. | Camera device |
JP2020181103A (ja) * | 2019-04-25 | 2020-11-05 | キヤノン株式会社 | 電子ビューファインダおよび撮像装置 |
JP7324041B2 (ja) | 2019-04-25 | 2023-08-09 | キヤノン株式会社 | 表示装置および撮像装置 |
TWI705276B (zh) * | 2019-08-21 | 2020-09-21 | 大陸商玉晶光電(廈門)有限公司 | 支撐元件與可攜式光學成像鏡頭 |
Also Published As
Publication number | Publication date |
---|---|
US10545334B2 (en) | 2020-01-28 |
JP6416292B2 (ja) | 2018-10-31 |
US20170307878A1 (en) | 2017-10-26 |
CN107003434B (zh) | 2020-08-07 |
CN107003434A (zh) | 2017-08-01 |
JPWO2016121033A1 (ja) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6416292B2 (ja) | フレアカット部材、レンズ装置、及び光学装置 | |
JP5605211B2 (ja) | 投射光学系及び画像投射装置 | |
JP5571512B2 (ja) | 投射結像光学系およびプロジェクタ装置 | |
JP4904741B2 (ja) | 投射型映像表示装置および遮光方法 | |
EP1720050B1 (en) | Chromatic aberration correction imaging optical system | |
WO1998029773A1 (fr) | Dispositif d'affichage d'image | |
JP3904597B2 (ja) | 投写型表示装置 | |
WO2011108077A1 (ja) | 投写型表示装置 | |
JPWO2008132831A1 (ja) | 投写型表示装置 | |
JP6496994B2 (ja) | 投射光学系及び投射型画像表示装置 | |
CN114174888A (zh) | 用于手机的小型反折射光学系统 | |
JP2021117317A (ja) | 投写光学系およびプロジェクター | |
JP2010072374A (ja) | 投射光学系 | |
JP3130127U (ja) | ドーム用ビデオプロジェクターアダプター | |
US20070002450A1 (en) | Chromatic aberration compensating image optics | |
JP5975012B2 (ja) | 画像投射装置 | |
JP2011138086A (ja) | 投写光学系およびプロジェクター | |
JP2009086474A (ja) | 光学装置 | |
JP4019076B2 (ja) | 投写型表示装置 | |
TWM566342U (zh) | Projector and its projection lens | |
US7815318B2 (en) | Projector capable of adjusting brightness and brightness uniformity | |
TWI636292B (zh) | Projector and its projection lens | |
JP6422015B2 (ja) | 画像表示装置 | |
JP2009153217A (ja) | 全方位視覚カメラ | |
JP2896744B2 (ja) | 投写型表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15879930 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016571579 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15520080 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15879930 Country of ref document: EP Kind code of ref document: A1 |