WO2016121010A1 - 作業機械の操作システム - Google Patents

作業機械の操作システム Download PDF

Info

Publication number
WO2016121010A1
WO2016121010A1 PCT/JP2015/052251 JP2015052251W WO2016121010A1 WO 2016121010 A1 WO2016121010 A1 WO 2016121010A1 JP 2015052251 W JP2015052251 W JP 2015052251W WO 2016121010 A1 WO2016121010 A1 WO 2016121010A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
controller
automatic control
work progress
remote operation
Prior art date
Application number
PCT/JP2015/052251
Other languages
English (en)
French (fr)
Inventor
弘幸 山田
柄川 索
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/525,155 priority Critical patent/US10214877B2/en
Priority to PCT/JP2015/052251 priority patent/WO2016121010A1/ja
Priority to JP2016571560A priority patent/JP6424238B2/ja
Publication of WO2016121010A1 publication Critical patent/WO2016121010A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Definitions

  • the present invention relates to a work machine operation system.
  • a technology that takes this into consideration is a system that combines automatic control and remote operation.
  • a moving object that is being operated automatically or a moving object that cannot be automatically operated is manually operated using a planned operation signal that is an automatic operation enable signal and a manual operation signal that is a manually operable signal.
  • a semi-automated system is described in which construction work can be performed by switching to operation and simultaneous remote operation can be performed by one operator.
  • Patent Document 1 does not describe a reference for determining which mobile body to remotely control from among a plurality of construction mobile bodies, a mobile body that may stop work from a plurality of mobile bodies. It is difficult to always select and switch to remote control. Therefore, the work efficiency of the entire system that operates a plurality of moving bodies does not increase.
  • An object of the present invention is to increase the working efficiency of the entire system that operates a plurality of work machines.
  • a work progress calculating unit 80 that calculates the work progress of a plurality of work machines, or a scheduled end time calculating unit 81 that calculates a scheduled work end time using the work progress calculated by the work progress calculating unit 80.
  • Semi-automatic control including a centralized operation controller 43 that determines a work machine to be switched from automatic control to remote operation among a plurality of work machines using the work progress or scheduled end time, and sends an operation instruction to the determined work machine system.
  • FIG. 1 is an overall view of a work machine operating system according to a first embodiment; System configuration diagram of the first embodiment Operation interface of the first embodiment Operation processing flow in the first embodiment Excavation loading automatic control processing flow in the first embodiment State monitoring process flow in the first embodiment Operation processing flow in the second embodiment State monitoring processing flow in the second embodiment Operation interface of the second embodiment Operation processing flow in the third embodiment State monitoring processing flow in the third embodiment Graph of work progress and estimated end time
  • FIG. 1 shows an overall image of a hydraulic excavator operating system according to the first embodiment.
  • FIG. 2 shows a system configuration in the operation system of FIG.
  • FIG. 3 shows an operation interface in the operation system of FIG. The configuration of the hydraulic excavator operating system according to the first embodiment will be described below with reference to FIGS. 1 to 3.
  • the hydraulic excavator operating system mainly includes three hydraulic excavators 1 to be operated, and a centralized unit that is provided at a remote place and is necessary for an operator to operate. It has the operating device 3 as a component.
  • three hydraulic excavators 1 operated by one operator are used.
  • the number is not limited to this, and in practice, one operator operates as many as possible. This makes it possible to effectively use the human resources of the operator.
  • only one hydraulic excavator 1 is shown, but the other two are omitted because they are exactly the same.
  • the hydraulic excavator 1 includes an upper swing body 11, a lower traveling body 12 including a crawler, a boom 13, an arm 14, a bucket 15, and a swing motor 16a that constitute a front portion that performs operations such as excavation.
  • the boom cylinder 16b that drives the boom 13, the arm cylinder 16c that drives the arm 14, the bucket cylinder 16d that drives the bucket 15, and a travel motor 16e that drives the left and right crawlers.
  • the upper swing body 11 is rotatably supported by the lower travel body 12, and the upper swing body 11 is driven to rotate relative to the lower travel body 12 by the swing motor 16 a.
  • One end of the boom 13 is rotatably supported by the upper swing body 11, and the boom 13 is driven to rotate relative to the upper swing body 11 in accordance with the expansion and contraction of the boom cylinder 16b.
  • One end of the arm 14 is rotatably supported by the boom 13, and the arm 14 is driven to rotate relative to the boom 13 in accordance with the expansion and contraction of the arm cylinder 16 c.
  • the bucket 15 is rotatably supported by the arm 14, and the bucket 15 is rotationally driven relative to the arm 14 according to the expansion and contraction of the bucket cylinder 16 d.
  • the hydraulic excavator 1 having such a configuration controls the bucket 15 to an arbitrary position and posture by driving the swing motor 16a, the boom cylinder 16b, the arm cylinder 16c, the bucket cylinder 16d, and the swing motor 16e to appropriate positions. , Can perform the desired work.
  • Each actuator (swing motor 16a, boom cylinder 16b, arm cylinder 16c, bucket cylinder 16d, travel motor 16e) 16 is controlled by the vehicle body controller 24. By giving the vehicle body controller 24 an operation signal for instructing operation of each part.
  • Each actuator 16 can be driven.
  • the excavator 1 is provided on the upper swing body 11 and is provided on the upper swing body 11.
  • the excavation object and the loading object are disposed on the upper swing body 11.
  • a stereo camera 21 that acquires the shape of the camera
  • an automatic controller 22 that generates an operation signal for automatically operating the hydraulic excavator 1
  • a remote operation controller 23 that exchanges images, remote operation signals, and the like of the camera 20 with the centralized operation device 3.
  • a GNSS (Global Navigation Satellite System) system 25 for acquiring the position of the vehicle body, an angle sensor 26a for acquiring a relative angle of the upper swing body 11 with respect to the lower traveling body 12, and a relative angle of the boom 13 with respect to the upper swing body 11
  • the angle sensor 26b for acquiring the boom 13
  • An angle sensor 26c for acquiring a relative angle of the arm 14 to the arm 14, an angle sensor 26d for acquiring a relative angle of the bucket 15 with respect to the arm 14, a remote operation object switching device 27 for switching between a remote operation signal and an automatic control operation signal, and a wireless communication antenna 28.
  • the automatic controller 22 obtains the shape of the excavation object by the stereo camera 21 after grasping its own position in the work site by the GNSS system 25. Thereby, the shape of the excavation target in the coordinate system of the work site can be acquired.
  • the stereo camera 21 can be replaced with a laser sensor, a TOF (Time of Flight) range image camera, or the like.
  • the position to be excavated is determined from the difference between the current work target shape and the target shape acquired within the work range, and each joint such as a boom or a turn is determined.
  • An operation signal for operating each joint according to the trajectory determined by acquiring each joint angle from the angle sensor 26 and performing feedback control can be generated.
  • the automatic controller 22 includes a work progress calculation unit 80 that calculates the work progress of the work based on information obtained from the stereo camera 21 and the camera 20, and a scheduled end time calculation unit 81 that calculates the scheduled end time of the work. I have.
  • the work end calculation unit 80 and the scheduled end time calculation unit 81 may be provided in the remote operation controller 23 or the centralized operation controller 43.
  • the automatic controller 22 and the remote operation controller 23 may be provided in the centralized operation device 3 instead of the hydraulic excavator 1.
  • an image that can be seen from the machine body can be transmitted from the remote operation controller 23 to the centralized operation device 3 via the wireless communication antenna 28, and a remote operation signal sent from the centralized operation device 3 can be transmitted to the wireless communication antenna 28.
  • the hydraulic excavator 1 can be remotely operated by receiving the remote operation signal via the remote controller 23 and sending the remote operation signal to the vehicle body controller 24. It is also possible to automatically control the hydraulic excavator 1 by sending an automatic control operation signal generated by the automatic controller 22 to the vehicle body controller 24.
  • the operation signal to be sent to the vehicle body controller 24 can be switched by the remote operation object switching unit 27 in accordance with an instruction from the remote operation controller 23.
  • the hydraulic excavator 1 of this configuration can be operated remotely from the centralized operation device 3 by using the remote operation target switching device 27 that switches the excavator 1 from automatic control to remote operation or from automatic control to remote operation. It is also possible to work by automatic control.
  • information is exchanged between the remote operation target machine and the operation device using wireless communication.
  • wireless communication may be used. Good. In that case, since the amount of information that can be transmitted increases, it is possible to transmit and receive video with less time delay and video with higher resolution.
  • the central operation device 3 includes a seat 31 on which an operator is seated, an operation lever 32 for inputting movements of the actuators 16, an operation lever 33 for inputting movements of a traveling motor, a monitor 34 for displaying an image obtained by the camera 20, and automatic control.
  • a central operation controller 43 is provided in the control box 40 and exchanges signals with the remote operation controller 23 via a wireless communication antenna 42.
  • the work progress switching controller 44 is provided in the centralized operation controller 43.
  • the work progress switching controller 44 may be provided in the automatic controller 22 or the remote operation controller 23.
  • the centralized operation device 3 can receive an image transmitted from the excavator 1 by the centralized operation controller 43 via the wireless communication antenna 42, information on the automatic control state, and the like. The received information and the like are output to the monitors 34 and 35, so that the information on the excavator 1 at a remote location can be displayed to the operator. In addition, operation signals obtained from the operation levers 32 and 33 can be acquired by the centralized operation controller 43 and transmitted to the excavator 1 via the wireless communication antenna 42.
  • the central operation controller 43 may be provided in the hydraulic excavator 1 instead of the central operation device 3.
  • Each of the three controllers, that is, the automatic controller 22 (100), the remote controller 23 (100), and the central controller 43 (100) may be referred to as a work machine controller 100. That is, the work machine controller 100 includes the work end calculation unit 80 and the scheduled end time calculation unit 81.
  • the operator sits on the seat 31 in the centralized operation device 3 and operates the operation levers 32 and 33 while viewing various information such as images displayed on the monitors 34 and 35, so that the operator can be remotely located.
  • a certain hydraulic excavator 1 can be operated.
  • one arbitrary hydraulic excavator 1 can be selected from the plurality of hydraulic excavators 1 and remotely operated.
  • the monitor 34 includes three monitors, a right monitor 34a, a left monitor 34b, and a front monitor 34c, and can display images of the three hydraulic excavators 1 respectively. Similarly, there are also three monitors 35a to 35c for the monitor 35, each of which can display information on the automatic control state of each hydraulic excavator 1 (whether automatic control is being performed, the excavation target shape, the current shape, etc.).
  • the monitors 34 and 35 include a work information display unit 90.
  • the centralized operation controller 43, the remote operation controller 23, and the automatic control controller 22 each have an operation task and a state monitoring task.
  • the operation task is mainly operated by the operator on the hydraulic excavator 1 side to drive the hydraulic excavator 1.
  • a signal is transmitted, and the state monitoring task displays the operation state of the excavator 1 to the operator.
  • FIG. 4 is an operation processing flow.
  • the central operation controller 43 processes three operation tasks simultaneously in parallel, and each task communicates with each hydraulic excavator 1. This time, only one unit is illustrated and the flow of processing will be described.
  • the solid line of the flow represents the flow of processing, and the broken line represents the flow of signal.
  • the centralized operation controller 43 reads the value of the remote operation target changeover switch 36 to determine whether or not the own task is a remote operation target. If it is not a remote operation target, nothing is done. If it is a remote operation target, a remote operation start signal is transmitted to the remote operation controller 23 in the excavator 1. Upon receiving the remote operation start signal, the remote operation controller 23 transmits an automatic control stop signal to the automatic control controller 22, waits until the automatic control stops, confirms the automatic control stop signal, and sends the remote operation acceptance signal to the central operation controller. 43. At this time, the remote operation target switch 27 is used to switch to remote operation.
  • the centralized operation controller 43 After confirming the remote operation acceptance signal, the centralized operation controller 43 transmits a remote operation signal, a work range designation signal, an automatic control start signal, etc. to the remote operation controller 23, so that the work machine is remotely controlled or remotely operated from automatic control. Can be switched to automatic control. That is, the centralized operation device 3 includes a centralized operation controller 43 that sends operation instructions such as a remote operation signal and a work range designation signal to the work machine.
  • the reason for this processing flow is that it is dangerous and inefficient to stop the automatic control halfway, and it is better for the operator to start the operation every time one cycle of the automatic control ends. This is because it is easy to start remote operation.
  • the centralized operation controller 43 receives the remote operation acceptance signal, enters the remote operation acceptance state, acquires the values of the operation levers 32 and 33, and transmits the values to the remote operation controller 23 if the levers are operated. To do. If the lever is not operated, the output of the work range input interface 37 is checked next. When the operator finishes inputting the work range, the work range input interface 37 transmits a work range designation signal to the centralized operation controller 43, and the centralized operation controller 43 transmits a work range designation signal to the remote operation controller 23. Further, the state of the automatic control start button 38 is acquired, and if the button is pressed, an automatic control start signal is transmitted to the remote operation controller 23 and the remote operation acceptance state is terminated.
  • the operator can directly operate the hydraulic excavator 1 using the operation levers 32 and 33.
  • the hydraulic excavator 1 is remotely operated as necessary, for example, moved to a position where excavation is easy, and moved to a position and posture easy to perform automatic control before starting automatic control.
  • a hydraulic excavator 1 different from the hydraulic excavator 1 that has started automatic control is switched to remote operation by a remote operation target changeover switch 36.
  • the remote operation controller 23 When the remote operation controller 23 receives the remote operation signal sent from the centralized operation controller 43, the remote operation controller 23 transmits the remote operation signal to the vehicle body controller 24. At this time, if the hydraulic excavator 1 is under automatic control, the remote operation target switching device 27 is connected to the automatic control operation side and does not reach the vehicle body controller 24, but if the automatic control is stopped, The remote operation object switch 27 is switched to remote operation, and a remote operation signal transmitted from the remote operation controller 23 is sent to the vehicle body controller 24. The vehicle body controller 24 operates each actuator according to the received remote operation signal. Thereby, the operator can drive the hydraulic excavator 1 by remote operation using the operation levers 32 and 33.
  • the remote operation controller 23 When the remote operation controller 23 receives the work range designation signal sent from the centralized operation controller 43, the remote operation controller 23 transmits the work range designation signal to the automatic control controller 22. When automatic control is not in progress, the automatic controller 22 waits for an automatic control start signal after receiving a work range designation signal and setting a work range and a target shape.
  • the remote operation controller 23 When the remote operation controller 23 receives the automatic control start signal sent from the centralized operation controller 43, the remote operation controller 23 transmits an automatic control start signal to the automatic control controller 22.
  • the automatic control controller 22 When the automatic control controller 22 is in an automatic control start signal waiting state, automatic control is started by this signal.
  • the content of the automatic control is one cycle from excavation of the excavation target to loading. For this reason, when automatic control is started, the shape of the excavation object within the work range is first acquired by the stereo camera 21, and the work completed range and the work incomplete range are estimated from the difference from the target shape. If there is a work incomplete range, an operation signal is transmitted to the vehicle body controller 24 in order to execute automatic excavation and loading control.
  • Fig. 5 shows the processing flow of automatic excavation and loading control.
  • the excavation location is determined from the unfinished work area, and the motion trajectory of each joint is excavated.
  • an operation signal is generated so as to operate according to the track while feeding back each joint angle obtained from the angle sensor 26, and the operation signal is transmitted to the vehicle body controller 24.
  • the automatic controller 22 creates a transportation motion trajectory that turns around, generates an operation signal in accordance with the trajectory, and transmits the operation signal to the vehicle body controller 24 to perform the turning motion. While turning, the shape information obtained from the stereo camera 21 is matched with the shape of the object to be loaded, and the object to be loaded is searched. If an equivalent shape is found by matching, the transport operation is stopped there and the operation moves to the loading operation.
  • the loading object location can be identified immediately, A transportation trajectory up to the target location can be created. If the loading target location cannot be specified, the surrounding area will be searched, but it may be longer than the shortest distance depending on which direction the left or right is searched, and you must turn while matching the shape information. In other words, the turning speed must be reduced depending on the matching processing speed. On the other hand, if the place to be loaded can be specified in advance, the shortest transportation route can be generated, and the transportation time can be minimized.
  • the operation proceeds to the loading operation in which the excavation object in the bucket is loaded onto the loading object.
  • An operation trajectory is created by returning the bucket, and an operation signal is generated and transmitted to the vehicle body controller 24.
  • an automatic control stop signal is transmitted from the automatic control controller 22 to the centralized operation controller 43 via the remote operation controller 23 and displayed on the monitor 35 to transmit an automatic control error to the operator.
  • the automatic controller 22 transmits the automatic operation state to the remote operation controller 23.
  • the automatic operation state includes whether automatic control is being performed or stopped, whether an error has occurred, current excavation target shape information, and the like.
  • the remote operation controller 23 transmits the received automatic operation state 43 to the central operation controller, acquires a camera image from the camera 20, and transmits this to the central operation controller 43.
  • the centralized operation controller 43 displays the received camera image on the monitor 34 and the automatic operation state on the monitor 35. Thereby, the operator can acquire visual information of the excavator 1 by looking at the monitor 34, and can perform remote operation while viewing this information. Further, the operation of the hydraulic excavator 1 during automatic control can be monitored and used as a judgment material for switching from automatic control to remote operation.
  • FIG. 7 is an operation processing flow using work progress.
  • the processing flow of the remote operation controller 23 is the same as the processing described in FIG.
  • the process flow of the automatic controller 22 is the same except that the work progress calculation process is added after the work range update process described with reference to FIG.
  • This work progress calculation process is performed by a work progress calculation unit 80 that calculates the work progress of the plurality of hydraulic excavators 1.
  • the processing of the multi-unit operation task of the centralized operation controller 43 includes work progress acquisition processing, remote operation target machine determination processing, and remote operation target machine switching processing.
  • the operation task in the central operation controller 43 is the same as the operation task of the central operation controller 43 in FIG.
  • FIG. 8 is a state monitoring process flow using work progress.
  • the process flow of the state monitoring task of the remote operation controller 23 includes a process of receiving work progress from the automatic control controller 22 and transmitting it to the centralized processing controller 43.
  • a work progress transmission process is added to the state monitoring task process flow of the automatic controller 22.
  • the processing flow of the state monitoring task of the centralized operation controller 43 is the same as the state monitoring processing flow described with reference to FIG. 6 except that processing for receiving work progress from the remote operation controller 23 and displaying it on the monitors 34 and 35 is added. Yes. Since the monitors 34 and 35 include a work information display unit 90 that displays work progress, the centralized operation device 3 includes a work information display unit 90 that displays work progress.
  • the work progress is displayed to the operator, and the excavator 1 determined by the operator using the remote operation changeover switch 36 based on the displayed work progress is switched from automatic control to remote operation.
  • the work controller 100 calculates work progress based on the object information of the work object.
  • the calculation method of the work progress is based on the object information of the work object such as the ratio between the work area and the completed work area or the unfinished work area, and the ratio between the current work object shape and the target shape in the work area. There is a method for calculating the work progress.
  • the operator can remotely operate the work machine while in the operation facility installed at a remote place, and can also instruct automatic control.
  • the operator operates the work machine with automatic control, and when the automatic control cannot be performed such as the work machine breaks down, or when the progress of the automatic control work is slowed down due to the hard excavation, etc., the operator performs remote operation. Act on behalf of. Then, work is performed to facilitate work by automatic control, and new automatic control is started.
  • the time required for the operator to operate on one work machine is shortened, and other work machines can be remotely operated in the same time, allowing one operator to work on a plurality of work machines simultaneously. Will be able to.
  • the operation system of the hydraulic excavator 1 can switch the appropriate hydraulic excavator 1 to remote operation by using work progress as a reference for selecting a remote operation target body. .
  • work progress as a reference for selecting a remote operation target body.
  • FIG. 9 shows the configuration of the operation interface of the hydraulic excavator 1 according to the second embodiment.
  • the configuration of the second embodiment is provided with a remote operation target switching button 39 instead of the remote operation target switching switch 36, and the other configuration is the same.
  • the operation processing flow of the second embodiment uses the flow of FIG. 7 as in the first embodiment.
  • the state monitoring process flow uses the flow of FIG. 8 as in the first embodiment.
  • the work progress is obtained by the work progress calculation process of the operation task of the automatic controller 22 shown in FIG.
  • the work progress calculated by the work progress calculation unit 80 of the automatic controller 22 is transmitted to the centralized operation controller 43 by the state monitoring task shown in FIG. Then, by displaying the work progress on the work information display unit 90, the work progress is displayed to the operator.
  • the work progress of a plurality of hydraulic excavators 1 is acquired, and these are compared by the work progress switching controller 44.
  • the hydraulic excavator 1 that is running, or that is stopped due to an error for example, the hydraulic excavator 1 that is most delayed in work progress is determined as the remote operation target body.
  • the communication target body information is transmitted to the operation task of the centralized operation controller 43 corresponding to each hydraulic excavator 1 by simply pressing the remote operation target switching button 39. The operation is switched to the remote operation of one hydraulic excavator 1 selected in the operation task.
  • the hydraulic excavator 1 determined based on the comparison result obtained by the work progress switching controller 44 using the work progress calculated by the work progress calculating unit 80 is switched from automatic control to remote operation.
  • the work progress comparison is performed by the work progress switching controller 44, so that the work progress may not be displayed on the work information display unit 90.
  • the optimal hydraulic excavator 1 is automatically selected at the optimal timing, and can be operated with a simple operation. Since it is possible to shift to the next remote operation of the hydraulic excavator 1, the time until switching is shortened, and at the same time, the risk that a plurality of hydraulic excavators 1 finish automatic control and stop at the same time can be reduced.
  • Example 3 As a third embodiment, an example of performing a remote operation by determining a work machine to be switched to a remote operation among a plurality of work machines using a scheduled end time obtained from the work progress in addition to the work progress will be described.
  • FIG. 10 is an operation processing flow.
  • the processing flow of the remote operation controller 23 is the same as the processing flow described in FIG.
  • the process flow of the automatic control controller 22 is the same as that of FIG. 4 except that a work progress calculation process and a scheduled end time calculation process are added after the work completed range update process.
  • This scheduled completion time calculation process is performed by a scheduled completion time calculation unit 81 that calculates a scheduled work completion time using the work progress calculated by the work progress calculation unit 80.
  • the multi-unit operation task process of the centralized operation controller 43 includes a work progress acquisition process, a scheduled end time acquisition process, a remote operation target machine determination process, and a remote operation target machine switching process.
  • the operation task in the central operation controller 43 is the same as the operation task of the central operation controller 43 in FIG.
  • FIG. 11 is a state monitoring process flow.
  • the processing flow of the state monitoring task of the remote operation controller 23 receives work progress and scheduled end time from the automatic control controller 22 and transmits them to the centralized processing controller 43. Processing has been added.
  • the process flow of the state monitoring task of the automatic controller 22 includes a work progress transmission process and a scheduled end time transmission process in addition to the state monitoring process flow described with reference to FIG.
  • the processing flow of the state monitoring task of the centralized operation controller 43 is the processing of receiving the work progress and the scheduled end time from the remote operation controller 23 and displaying them on the monitors 34 and 35 in the state monitoring processing flow described in FIG. Has been added.
  • the monitors 34 and 35 serve as a work information display unit 90 that displays work progress and scheduled end time.
  • the work progress and the scheduled end time are obtained by the work progress calculation process and the scheduled end time calculation process of the operation task of the automatic controller 22 shown in FIG.
  • the work progress and the scheduled end time calculated by the work progress calculating unit 80 and the scheduled end time calculating unit 81 of the automatic controller 22 are transmitted to the centralized operation controller 43 by the state monitoring task shown in FIG. Then, the work progress and the scheduled end time are displayed on the work information display unit 90, so that the work progress and the scheduled end time are displayed to the operator.
  • each hydraulic excavator 1 calculated by the work progress calculating unit 80 and the scheduled end time calculating unit 81 are acquired, and these are obtained by the work progress switching controller 44.
  • a hydraulic excavator 1 in which the work progress has progressed the most for example, a hydraulic excavator 1 in which the work progress has progressed the most, or a hydraulic excavator 1 having the shortest scheduled end time, for example, in an error.
  • the hydraulic excavator 1 that is stopped for example, the work progress is delayed the most, or the hydraulic excavator 1 that is stopped due to an error, such as the longest scheduled end time, is determined as the remote operation target body.
  • the operator wants to switch the operation to the next hydraulic excavator 1
  • the operator uses the remote operation changeover switch 36 to set one hydraulic excavator 1 based on the work progress and the scheduled end time displayed on the work information display unit 90. Select to switch to remote operation.
  • the communication target machine information is transmitted to the operation task of the centralized operation controller 43 corresponding to each hydraulic excavator 1 simply by pressing the remote operation target switching button 39, and one hydraulic excavator 1 selected in the plural operation task is selected. Is switched to remote control.
  • the work progress switching controller 44 performs a comparison between the work progress and the scheduled end time, the work progress and the scheduled end time may not be displayed on the work information display unit 90.
  • the hydraulic excavator 1 to be switched from automatic control to remote operation is determined among the plurality of hydraulic excavators 1.
  • FIG. 12 is a diagram showing the work progress and the scheduled end time obtained from the work progress.
  • the scheduled end time is also the time when the work progress obtained based on the average rate of increase in work progress up to the current time, the rate of increase in work progress at the current time is 100%, or the time obtained by other methods Good.
  • the progress rate of work is higher in (b) than in (a) at the current time.
  • the expected end time is greater than (a) than (b) Is shorter. That is, it can be seen that the work is completed earlier in (a) than in (b). Thus, it may be more appropriate to select the remote operation target machine using the scheduled end time than the work progress.
  • the scheduled end time is the time when the work progress becomes 100% Therefore, the scheduled end time is extended with the passage of time. In this case, it is difficult for the operator to select the remote operation target machine based on the scheduled end time displayed on the monitor. In contrast, the value of work progress does not decrease with time. In other words, since the work progress does not move away from the target of 100%, the operator selecting the remote operation target machine based on the work progress displayed on the monitor is more preferable than judging based on the scheduled end time. It may be easy. As described above, it may be more appropriate to select the remote operation target machine using the work progress than the scheduled end time.
  • the operation system of the hydraulic excavator 1 can remotely operate the hydraulic excavator 1 more appropriately by using the work progress and the scheduled end time as a reference for selecting the remote operation target body. Can be switched to. As a result, the time until switching is shortened, and at the same time, the risk that the plurality of hydraulic excavators 1 finish automatic control and stop at the same time can be reduced. Stopping the hydraulic excavator 1 lowers the work efficiency, that is, lowers the work efficiency of the entire system including the plurality of hydraulic excavators 1. Therefore, by switching the appropriate hydraulic excavator 1 to remote control, the plurality of hydraulic excavators 1 Can improve the work efficiency of the entire system.
  • the work completed range is determined by comparing the shape of the excavation object with the stereo camera 21 and the target shape.
  • a work machine such as a bulldozer or a dump truck, which is mainly a type of work machine
  • the work progress is calculated on the basis of the work machine position history and movement path information obtained by the GNSS system. That is, the work controller 100 can calculate the work progress by setting the range that has passed once (or a plurality of times) based on the movement route information of the plurality of work machines as the work completed range.
  • a plurality of work machines can be switched from automatic control to remote operation using the work progress and the work end time obtained from the work progress.
  • the operating system for the work machine is configured by the hydraulic excavator 1 and the centralized operating device 3.
  • the operation system for the work machine may be configured only by the centralized operation device 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Selective Calling Equipment (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 本発明は、複数の作業機械を操作するシステム全体の作業効率を上げることを目的とする。 本発明は、複数の作業機械の作業進捗を演算する作業進捗演算部(80)、または、作業進捗演算部(80)により演算された作業進捗を用いて作業の終了予定時間を演算する終了予定時間演算部(81)と、を備え、作業進捗または終了予定時間を用いて、複数の作業機械のうち自動制御から遠隔操作に切替える作業機械が決定され、決定された作業機械に対して操作指示を送る集中操作コントローラ(43)を備える作業機械の操作システムである。

Description

作業機械の操作システム
 本発明は、作業機械の操作システムに関する。
 鉱山などの作業現場では、人件費削減のために作業機械の自動制御化が進められていることから、自動制御化された作業機械が止まった場合の対応が求められる。そこで、作業機械が止まった場合に自動制御から遠隔操作に切替え、自動制御が可能になるまで遠隔操作で作業を行い、その後自動制御に切替えることができれば、作業機械を長時間止めることなく動かすことができる。
 この点を鑑みた技術としては、自動制御と遠隔操作とを組み合わせたシステムがある。例えば、特許文献1には、自動操作可の信号である計画操作信号と手動操作可の信号である手動操作信号とを用いて、自動操作中の移動体または自動操作が出来ない移動体を手動操作に切替えて施工作業を行い、1名の操作員による同時遠隔操作の実施が可能な半自動化システムが記載されている。
特開平10-63338号公報
 特許文献1では複数台の施工用移動体の中からどの移動体を遠隔操作するかを判断するための基準は記載されていないことから、複数の移動体から作業が停止する恐れのある移動体を常に選択して遠隔操作に切替えることは難しい。よって、複数の移動体を操作するシステム全体の作業効率は上がらない。本発明は、複数の作業機械を操作するシステム全体の作業効率を上げることを目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 複数の作業機械の作業進捗を演算する作業進捗演算部80、または、作業進捗演算部80により演算された作業進捗を用いて作業の終了予定時間を演算する終了予定時間演算部81と、を備え、作業進捗または終了予定時間を用いて、複数の作業機械のうち自動制御から遠隔操作に切替える作業機械が決定され、決定された作業機械に対して操作指示を送る集中操作コントローラ43を備える半自動制御システム。
 本発明によれば、複数の作業機械を操作するシステム全体の作業効率を上げることができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
第1の実施の形態である作業機械の操作システムの全体図 第1の実施の形態のシステム構成図 第1の実施の形態の操作インタフェース 第1の実施の形態における操作処理フロー 第1の実施の形態における掘削積込自動制御処理フロー 第1の実施の形態における状態監視処理フロー 第2の実施の形態における操作処理フロー 第2の実施の形態における状態監視処理フロー 第2の実施の形態の操作インタフェース 第3の実施の形態における操作処理フロー 第3の実施の形態における状態監視処理フロー 作業進捗と終了予定時間のグラフ
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本実施の形態では、作業機械として油圧ショベルを例に説明するが、本発明における作業機械は油圧ショベルに限定するものではなく、例えばホイールローダやダンプトラックなどあらゆる作業機械や運搬車両に適用可能である。
<実施例1>
 図1は第1の実施の形態である油圧ショベルの操作システムの全体像を示している。図2は図1の操作システムにおけるシステム構成を示している。図3は図1の操作システムにおける操作インタフェースを示している。以下、図1から図3までを用いて第1の実施の形態である油圧ショベルの操作システムの構成について説明する。
 第1の実施の形態である油圧ショベルの操作システムは、主に、操作の対象である油圧ショベル1が3台と、遠隔地に設けられオペレータが操作するために必要な各構成部品を備える集中操作装置3とを構成要素として持つ。本実施の形態では説明の都合上1人のオペレータが操作する油圧ショベル1を3台としているが、この台数に限るわけではなく、実際には可能な限り多い台数を1人のオペレータが操作するほうが、オペレータの人的資源を有効活用できる。なお、図面や以下の説明では油圧ショベル1は1台分しか記していないが、他の2台分は全く同様のものであるため省略している。
 油圧ショベル1は、一般的な油圧ショベルと同様に、上部旋回体11、クローラを含む下部走行体12、掘削などの作業を行うフロント部を構成するブーム13、アーム14、バケット15、旋回モータ16a、ブーム13を駆動するブームシリンダ16b、アーム14を駆動するアームシリンダ16c、バケット15を駆動するバケットシリンダ16d、左右のクローラを駆動する走行モータ16eから構成されている。上部旋回体11は下部走行体12に回転可能に支持されており、旋回モータ16aによって上部旋回体11は下部走行体12に対して相対的に回転駆動される。ブーム13の一端は上部旋回体11に回転可能に支持されており、ブームシリンダ16bの伸縮に応じてブーム13が上部旋回体11に対して相対的に回転駆動される。アーム14の一端はブーム13へ回転可能に支持されており、アームシリンダ16cの伸縮に応じてアーム14がブーム13に対して相対的に回転駆動される。バケット15はアーム14へ回転可能に支持されており、バケットシリンダ16dの伸縮に応じてバケット15がアーム14に対して相対的に回転駆動される。このような構成である油圧ショベル1は旋回モータ16aやブームシリンダ16b、アームシリンダ16c、バケットシリンダ16d、旋回モータ16eを適切な位置に駆動することにより、バケット15を任意の位置、姿勢に制御し、所望の作業を行うことができる。各アクチュエータ(旋回モータ16a、ブームシリンダ16b、アームシリンダ16c、バケットシリンダ16d、走行モータ16e)16は車体コントローラ24によって制御されており、車体コントローラ24に各部の操作を指示する操作信号を与えることにより、各アクチュエータ16を駆動することができる。
 本実施の形態における油圧ショベル1は、これらの構成以外に、上部旋回体11に配設され機体から見える映像を取得するカメラ20、上部旋回体11に配設され掘削対象物及び積込対象物の形状を取得するステレオカメラ21、油圧ショベル1を自動で動作させるための操作信号を生成する自動制御コントローラ22、カメラ20の映像や遠隔操作信号などを集中操作装置3とやり取りする遠隔操作コントローラ23、車体の位置を取得するGNSS(Global Navigation Satellite System、衛星航法システム)システム25、下部走行体12に対する上部旋回体11の相対角度を取得する角度センサ26a、上部旋回体11に対するブーム13の相対角度を取得する角度センサ26b、ブーム13に対するアーム14の相対角度を取得する角度センサ26c、アーム14に対するバケット15の相対角度を取得する角度センサ26d、遠隔操作信号と自動制御操作信号を切替える遠隔操作対象切替器27、無線通信アンテナ28を備えている。
 自動制御コントローラ22は、GNSSシステム25により作業現場内の自身の位置を把握した上で、ステレオカメラ21により掘削対象の形状を取得する。これにより、作業現場の座標系での掘削対象形状を取得することができる。なお、ステレオカメラ21は、レーザセンサやTOF(Time of Flight)方式の距離画像カメラなどで代替することも可能である。自動制御コントローラ22に、作業範囲と目標形状を入力することにより、作業範囲内において取得した現在の作業対象形状と目標形状の差分から、掘削すべき位置を決定し、ブームや旋回などの各関節の掘削動作軌道を決定する。角度センサ26から各関節角度を取得し、フィードバック制御を行うことで決定した軌道通りに各関節を動作させる操作信号を生成できる。そして自動制御コントローラ22は、ステレオカメラ21やカメラ20などから得た情報を元に作業の作業進捗を演算する作業進捗演算部80や、作業の終了予定時間を演算する終了予定時間演算部81を備えている。なお、作業終了演算部80と終了予定時間演算部81は、遠隔操作コントローラ23や集中操作コントローラ43に備わっていてもよい。そして自動制御コントローラ22や遠隔操作コントローラ23は、油圧ショベル1ではなく集中操作装置3に備わっていてもよい。
 本構成により、機体から見える映像を遠隔操作コントローラ23から無線通信アンテナ28を介して集中操作装置3へ送信することができると共に、集中操作装置3から送られる遠隔操作信号を、無線通信アンテナ28を介して遠隔操作コントローラ23で受信し、この遠隔操作信号を車体コントローラ24に送ることで油圧ショベル1を遠隔操作できる。また、自動制御コントローラ22によって生成された自動制御操作信号を車体コントローラ24に送ることで、油圧ショベル1を自動制御することも可能である。車体コントローラ24に送る操作信号は、遠隔操作コントローラ23からの指示に従って遠隔操作対象切替器27で切替えることができる。つまり、本構成の油圧ショベル1は、油圧ショベル1を自動制御から遠隔操作または自動制御から遠隔操作に切替える遠隔操作対象切替器27を用いて、集中操作装置3から遠隔操作で作業することが可能であり、自動制御により作業することも可能となっている。
 なお、本実施の形態では遠隔操作対象機体と操作装置との間を、無線通信を用いて情報のやり取りを行う構成としているが、機体と操作装置との距離が近ければ有線通信を用いてもよい。その場合、伝送可能な情報量が増えるため、より時間遅れの少ない映像や、より高解像度の映像などの送受信が可能となる。
 集中操作装置3は、オペレータが着座する座席31、各アクチュエータ16の動きを入力する操作レバー32、走行モータの動きを入力する操作レバー33、カメラ20によって得られた映像を映し出すモニタ34、自動制御の状態を表示するモニタ35、遠隔操作対象機体を切替える遠隔操作対象切替スイッチ36、自動制御の作業範囲を入力する作業範囲入力インタフェース37、自動制御開始ボタン38、コントロールボックス40、無線通信アンテナ42、コントロールボックス40内にあり、無線通信アンテナ42を介して遠隔操作コントローラ23と各信号のやり取りを行う集中操作コントローラ43を備えている。そして、作業進捗切替コントローラ44は集中操作コントローラ43に備わっている。なお、作業進捗切替コントローラ44は、自動制御コントローラ22や遠隔操作コントローラ23に備わっていてもよい。
 集中操作装置3は無線通信アンテナ42を介して集中操作コントローラ43で油圧ショベル1から伝送される映像や自動制御状態の情報等を受信することができる。受信した情報等は、モニタ34、35に出力することで、オペレータへ遠隔地にある油圧ショベル1の情報を表示することが可能となっている。また、操作レバー32、33から得られる操作信号を集中操作コントローラ43で取得し、無線通信アンテナ42を介して油圧ショベル1へ送信することもできる。なお、集中操作コントローラ43は、集中操作装置3ではなく油圧ショベル1に備わっていてもよい。自動制御コントローラ22(100)、遠隔操作コントローラ23(100)、集中操作コントローラ43(100)の3つのコントローラそれぞれ、作業機械コントローラ100と称する場合が有る。つまり、作業終了演算部80と終了予定時間演算部81は作業機械コントローラ100に備わっている。
 このような構成により、オペレータは集中操作装置3内の座席31に着座し、モニタ34、35に映し出される映像などの各種情報を見ながら、操作レバー32、33を操作することで、遠隔地にある油圧ショベル1を操作することが可能となっている。また、遠隔操作対象切替スイッチ36で切替えることにより、複数の油圧ショベル1から任意の油圧ショベル1を1台選んで遠隔操作することができる。また、作業範囲入力インタフェース37により油圧ショベル1の自動制御作業範囲及び目標形状を指示し、自動制御開始ボタン38を押すことにより油圧ショベル1に指定した作業範囲内で自動制御を実行させることが可能な構成となっている。
 モニタ34は、右側モニタ34a、左側モニタ34b、正面モニタ34cの3つのモニタから構成されており、3つの油圧ショベル1のそれぞれの映像を表示可能である。同様にモニタ35についても35a~35cの3つのモニタがあり、それぞれに各油圧ショベル1の自動制御状態の情報(自動制御中かどうか、掘削目標形状、現在形状等)を表示可能である。モニタ34、35は、作業情報表示部90を含んでいる。
 次に、本実施の形態で行われる操作システム全体の処理の流れについて、図4から図6を用いて説明する。
 集中操作コントローラ43、遠隔操作コントローラ23、自動制御コントローラ22はそれぞれ操作タスクと状態監視タスクを有しており、操作タスクは主に油圧ショベル1を駆動するためにオペレータが油圧ショベル1側に各操作信号を送信するものであり、状態監視タスクは油圧ショベル1の動作状態をオペレータへ表示するものである。
 まず、図4と図5を用いて操作タスク側の処理の流れを説明する。図4は操作処理フローである。集中操作コントローラ43には3台分の操作タスクが同時並行的に処理されており、各タスクがそれぞれの油圧ショベル1と通信を行う。今回は1台分のみ図示し、処理の流れの説明を行う。フローの実線は処理の流れを表しており、破線は信号の流れを表している。
 まず、集中操作コントローラ43は遠隔操作対象切替スイッチ36の値を読み込むことで、自タスクが遠隔操作対象かどうかを判断する。遠隔操作対象でなければ何もせず、遠隔操作対象である場合は油圧ショベル1内の遠隔操作コントローラ23へ遠隔操作開始信号を送信する。遠隔操作コントローラ23は遠隔操作開始信号を受信すると、自動制御コントローラ22へ自動制御停止信号を送信し、自動制御が停止するまで待ち、自動制御停止信号を確認して遠隔操作受付信号を集中操作コントローラ43へ送信する。また、この時、遠隔操作対象切替器27を用いて遠隔操作へ切替える。集中操作コントローラ43は遠隔操作受付信号を確認した後、遠隔操作信号あるいは作業範囲指定信号、自動制御開始信号などを遠隔操作コントローラ23へ送信することで、作業機械を自動制御から遠隔操作または遠隔操作から自動制御に切替えることができる。つまり、集中操作装置3は作業機械に対して遠隔操作信号や作業範囲指定信号などといった操作指示を送る集中操作コントローラ43を備える。このような処理の流れにしている理由は、自動制御を途中で止めることが危険かつ非効率的であり、自動制御の一つのサイクルが終了した時点で毎回オペレータの操作が始まるほうが、オペレータとしても遠隔操作を開始しやすいためである。
 集中操作コントローラ43は、遠隔操作受付信号を受信し、遠隔操作受付状態となった後、操作レバー32、33の値を取得し、レバーが操作されていればその値を遠隔操作コントローラ23へ送信する。また、レバーが操作されていない場合、次に作業範囲入力インタフェース37の出力を確認する。作業範囲入力インタフェース37は、オペレータが作業範囲を入力し終わったとき、作業範囲指定信号を集中操作コントローラ43に送信し、集中操作コントローラ43は作業範囲指定信号を遠隔操作コントローラ23へ送信する。また、自動制御開始ボタン38の状態を取得し、ボタンが押されていれば自動制御開始信号を遠隔操作コントローラ23へ送信して遠隔操作受付状態を終了する。
 このような処理の流れにより、集中操作コントローラ43が遠隔操作受付状態となった後、オペレータは操作レバー32、33を用いて直接油圧ショベル1を操作することが可能である。加えて、作業範囲入力インタフェース37を用いて作業範囲を指示することで自動制御の準備をし、自動制御開始ボタン38を押すことで油圧ショベル1に自動制御をさせることも可能である。これは、例えば掘削しやすい位置に移動させる等、必要に応じて油圧ショベル1を遠隔操作し、自動制御しやすい位置姿勢に動かしてから自動制御を開始させるという使い方を想定しているものである。自動制御を開始した油圧ショベル1とは別の油圧ショベル1を遠隔操作対象切替スイッチ36で遠隔操作に切替える。
 集中操作コントローラ43から送られた遠隔操作信号を遠隔操作コントローラ23が受信すると、遠隔操作コントローラ23はその遠隔操作信号を車体コントローラ24へ送信する。この時、油圧ショベル1が自動制御中であれば、遠隔操作対象切替器27は自動制御操作側へ接続されており、車体コントローラ24へは届かないが、自動制御が停止した後であれば、遠隔操作対象切替器27は遠隔操作へ切替わっており、遠隔操作コントローラ23の送信する遠隔操作信号は車体コントローラ24へ送られる。車体コントローラ24では、受信した遠隔操作信号通りに各アクチュエータを動作させる。これにより、オペレータが操作レバー32、33を用いて油圧ショベル1を遠隔操作により駆動することができる。
 集中操作コントローラ43から送られた作業範囲指定信号を遠隔操作コントローラ23が受信すると、遠隔操作コントローラ23は自動制御コントローラ22へ作業範囲指定信号を送信する。自動制御コントローラ22は、自動制御中でない場合、作業範囲指定信号を受信し作業範囲及び目標形状を設定した後、自動制御開始信号待ちとなる。
 集中操作コントローラ43から送られた自動制御開始信号を遠隔操作コントローラ23が受信すると、遠隔操作コントローラ23は自動制御コントローラ22へ自動制御開始信号を送信する。自動制御コントローラ22が自動制御開始信号待ち状態だった場合、この信号により自動制御を開始する。本実施の形態では、自動制御の内容は掘削対象物の掘削から積込対象物への積込の1サイクルである。このため、自動制御が開始されると、まずステレオカメラ21により作業範囲内の掘削対象物の形状を取得し、目標形状との差分から作業済範囲と作業未完了範囲を推定する。作業未完了範囲があれば、掘削積込自動制御を実行するために、操作信号を車体コントローラ24へ送信する。
 図5に掘削積込自動制御の処理フローを示す。まず、作業未完了範囲の中から掘削場所を決定し、その場所を掘削するような各関節の動作軌道を作る。軌道ができると、角度センサ26から得られる各関節角度をフィードバックしながら、その軌道通りに動作するよう操作信号を生成し、操作信号を車体コントローラ24へ送信する。
 掘削動作が終了すると、次に積込対象物までバケットを持っていく運搬動作へ移行する。積込対象物は、例えばダンプトラックの荷台等である。自動制御コントローラ22は周囲を旋回する運搬動作軌道を作り、軌道に合わせて操作信号を生成して車体コントローラ24へ送信することで、旋回動作を行う。旋回しながらステレオカメラ21から得られる形状情報と予め持っている積込対象物形状とをマッチングさせ、積込対象物を探索する。マッチングにより同等の形状が発見されれば、そこで運搬動作を停止し、積込動作へと移行する。なお、積込対象物にもGNSSシステムが搭載されており、積込対象物の位置情報を油圧ショベル1が取得可能な通信環境が整っていれば、積込対象場所はすぐに特定でき、積込対象場所までの運搬軌道を作成できる。積込対象場所が特定できない場合、周囲を探索することになるが、左右のどちら回りに探索するかで最短距離よりも長くなってしまう可能性があり、また形状情報をマッチングしながら旋回しなければならず、マッチングの処理速度によっては旋回速度を落とさざるをえなくなる。一方、事前に積込対象場所が特定できれば、最短の運搬経路を生成でき、運搬時間を最小化することが可能となる。
 運搬動作が終了すると、次に積込対象物へバケット内の掘削対象物を積込む積込動作へ移行する。バケットを返して積込む動作軌道を作り、操作信号を生成して車体コントローラ24へ送信する。
 自動制御中に何らかの事象により油圧ショベル1が動作不可となった場合に自動制御を停止するために、各動作に指定時間を設定しておき、各動作が指定時間を越えるとエラーとして自動制御を停止する。加えて、状態監視タスクにおいて自動制御コントローラ22から遠隔操作コントローラ23を介して集中操作コントローラ43へ自動制御停止信号が送信され、モニタ35に表示することでオペレータへ自動制御のエラーを伝達する。
 次に、図6を用いて状態監視タスク側の処理の流れを説明する。自動制御コントローラ22は、自動動作状態を遠隔操作コントローラ23へ送信する。自動動作状態とは、自動制御中か停止中か、エラーの発生の有無、現在の掘削対象形状情報等を含む。遠隔操作コントローラ23では、受信した自動動作状態を集中操作コントローラへ43送信すると共に、カメラ20からカメラ映像を取得し、これを集中操作コントローラ43へ送信する。集中操作コントローラ43では、受信したカメラ映像をモニタ34へ、自動動作状態をモニタ35へそれぞれ表示する。これにより、モニタ34を見ることでオペレータは油圧ショベル1の視覚情報を取得でき、これを見ながら遠隔操作を行うことができる。また、自動制御中の油圧ショベル1の動作を監視し、自動制御から遠隔操作に切替える判断材料とすることができる。
 次に、自動制御かつ遠隔操作可能な複数の作業機械を自動制御から遠隔操作に切替える判断材料として、演算された作業機械の作業進捗を用いて、複数の作業機械のうち遠隔操作に切替える作業機械を決定する例を示す。
 図7は、作業進捗を用いた操作処理フローである。遠隔操作コントローラ23の処理の流れは、図4で説明した処理と同一である。自動制御コントローラ22の処理の流れは、図4で説明した作業済範囲更新処理の後に作業進捗演算処理が追加され、それ以外は同一である。この作業進捗演算処理は、複数の油圧ショベル1の作業進捗を演算する作業進捗演算部80によって行われる。集中操作コントローラ43の複数台操作タスクの処理には、作業進捗取得処理と、遠隔操作対象機体決定処理と、遠隔操作対象機体切替処理がある。そして、集中操作コントローラ43の中の操作タスクは、図4の集中操作コントローラ43の操作タスクと同一である。
 図8は、作業進捗を用いた状態監視処理フローである。遠隔操作コントローラ23の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに加えて、作業進捗を自動制御コントローラ22から受信し、それを集中処理コントローラ43に送信する処理が追加されている。自動制御コントローラ22の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに加えて、作業進捗送信処理が追加されている。集中操作コントローラ43の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに、作業進捗を遠隔操作コントローラ23から受信し、それをモニタ34、35に表示する処理が追加されている。モニタ34、35は、作業進捗を表示する作業情報表示部90を含んでいることから、集中操作装置3は作業進捗を表示する作業情報表示部90を備えている。
 つまり、作業進捗をオペレータへ表示し、表示された作業進捗に基づいてオペレータが遠隔操作切替スイッチ36を用いて決定した油圧ショベル1が自動制御から遠隔操作に切替えられる。
 作業コントローラ100は作業対象物の対象物情報を基に作業進捗を演算する。作業進捗の演算方法として、作業範囲と作業済範囲もしくは作業未完了範囲との比や、作業範囲においての現在の作業対象物形状と目標形状との比といった、作業対象物の対象物情報を基に作業進捗を演算する方法が挙げられる。
 以上のような本実施の形態により、以下のことが実現できる。
 オペレータは遠隔地に設置された操作設備内にいながらにして、作業機械を遠隔操作できると共に、自動制御の指示も可能である。オペレータは、作業機械を自動制御によって作業させ、作業機械が故障するといった自動制御ができない場合、または掘削物が固いことなどにより自動制御の作業の進度が遅くなるといったなど場合に、オペレータが遠隔操作によって作業を代行する。そして、自動制御による作業を容易とするために作業を行い、新たな自動制御を開始させる。この結果、1台の作業機械に対してオペレータが行う操作の時間は短縮され、空いた時間で他の作業機械を同様に遠隔操作可能となり、1人のオペレータが複数の作業機械を同時に作業させることができるようになる。他には、自動制御の終了が近い作業機械を遠隔操作に切替え次の作業範囲を指示することにより、自動制御中の作業機械の作業が終了し停止することを防ぐことができる。
 さらに、自動制御から遠隔操作に切替える判断材料として作業進捗を用いることで、正確に作業機械の切替えタイミングを判断することができる。具体的には、第1の実施の形態である油圧ショベル1の操作システムは、遠隔操作対象機体を選択する基準として作業進捗を用いることで、適切な油圧ショベル1を遠隔操作に切替えることができる。これにより、切替えるまでの時間が短くなると同時に、複数の油圧ショベル1が同時に自動制御を終えて停止するリスクを削減することができる。油圧ショベル1の停止は作業効率の低下、つまり複数の油圧ショベル1が含まれるシステム全体の作業効率の低下となることから、適切な油圧ショベル1を遠隔操作に切替えることで、複数の油圧ショベル1が含まれるシステム全体の作業効率を上げることができる。
<実施例2>
 図9に第2の実施の形態である油圧ショベル1の操作インタフェースの構成を示す。第2の実施の形態の構成は第1の実施の形態と比べて、遠隔操作対象切替スイッチ36の代わりに遠隔操作対象切替ボタン39が搭載されており、それ以外の構成は同じである。
 第2の実施例の操作処理フローは、第1の実施例と同様に図7のフローを用いる。状態監視処理フローは、第1の実施例と同様に図8のフローを用いる。
 次に、図7から図9までを用いて第2の実施形態である油圧ショベル1の操作システムの処理の流れについて説明する。
 まず、図7に示した自動制御コントローラ22の操作タスクの作業進捗演算処理により、作業進捗を求める。
 そして、図8に示した状態監視タスクにより、自動制御コントローラ22の作業進捗演算部80で演算された作業進捗を、集中操作コントローラ43に送信する。そして、その作業進捗を作業情報表示部90に表示することで、オペレータへ作業進捗の表示を行う。
 集中操作コントローラ43の複数台操作タスクにおいて、複数の油圧ショベル1の作業進捗を取得し、これらを作業進捗切替コントローラ44により比較して、ある一定以上の作業進捗のものに関して例えば最も作業進捗が進んでいる油圧ショベル1、もしくはエラーで停止しているなど例えば最も作業進捗が遅れている油圧ショベル1を遠隔操作対象機体として決定する。オペレータは、次の油圧ショベル1へ操作を切替えたい場合、遠隔操作対象切替ボタン39を押すだけで各油圧ショベル1に対応した集中操作コントローラ43の操作タスクへ通信対象機体情報が送信され、複数台操作タスク内で選ばれた1台の油圧ショベル1の遠隔操作に切替わる。つまり、作業進捗演算部80で演算した作業進捗を用いて作業進捗切替コントローラ44により求めた比較結果に基づいて決定された油圧ショベル1が、自動制御から遠隔操作に切替えられる。なお、作業進捗の比較は作業進捗切替コントローラ44が行うことから、作業進捗を作業情報表示部90に表示しなくてもよい。
 以上の構成により、第2の実施の形態である油圧ショベル1の操作システムは、実施例1の効果に加えて、最適なタイミングで最適な油圧ショベル1が自動的に選択され、簡単な操作で次の油圧ショベル1の遠隔操作に移ることができることから、切替えるまでの時間が短くなると同時に、複数の油圧ショベル1が同時に自動制御を終えて停止するリスクを削減することができる。
<実施例3>
 第3の実施例として、作業進捗に加えて作業進捗から求めた終了予定時間を用いて、複数の作業機械のうち遠隔操作に切替える作業機械を決定し、遠隔操作を行う例を示す。
 図10は、操作処理フローである。遠隔操作コントローラ23の処理の流れは、図4で説明した処理の流れと同一である。自動制御コントローラ22の処理の流れは、図4の作業済範囲更新処理の後に、作業進捗演算処理と終了予定時間演算処理が追加され、それ以外は同一である。この終了予定時間演算処理は、作業進捗演算部80により演算された作業進捗を用いて作業の終了予定時間を演算する終了予定時間演算部81によって行われる。集中操作コントローラ43の複数台操作タスクの処理には、作業進捗取得処理と、終了予定時間取得処理と、遠隔操作対象機体決定処理と、遠隔操作対象機体切替処理がある。そして、集中操作コントローラ43の中の操作タスクは、図4の集中操作コントローラ43の操作タスクと同一である。
 図11は、状態監視処理フローである。遠隔操作コントローラ23の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに加えて、作業進捗と終了予定時間を自動制御コントローラ22から受信し、それらを集中処理コントローラ43に送信する処理が追加されている。自動制御コントローラ22の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに加えて、作業進捗送信処理と終了予定時間送信処理が追加されている。集中操作コントローラ43の状態監視タスクの処理の流れは、図6で説明した状態監視処理フローに、作業進捗と終了予定時間を遠隔操作コントローラ23から受信し、それらをモニタ34、35に表示する処理が追加されている。モニタ34、35は、作業進捗と終了予定時間を表示する作業情報表示部90となっている。
 次に、図10と図11までを用いて第3の実施形態である油圧ショベル1の操作システムの処理の流れについて説明する。
 まず、図10に示した自動制御コントローラ22の操作タスクの作業進捗演算処理と終了予定時間演算処理により、作業進捗と終了予定時間を求める。
 そして、図11に示した状態監視タスクにより、自動制御コントローラ22の作業進捗演算部80と終了予定時間演算部81で演算された作業進捗と終了予定時間を、集中操作コントローラ43に送信する。そして、その作業進捗と終了予定時間を作業情報表示部90に表示することで、オペレータへ作業進捗と終了予定時間の表示を行う。
 集中操作コントローラ43の複数台操作タスクにおいて、作業進捗演算部80と終了予定時間演算部81で演算された各油圧ショベル1の作業進捗と終了予定時間を取得し、これらを作業進捗切替コントローラ44により比較して、ある一定以上の作業進捗のものに関して例えば最も作業進捗が進んでいる油圧ショベル1、もしくはある一定以下の終了予定時間のものに関して例えば最も終了予定時間が短い油圧ショベル1、もしくはエラーで停止しているなど例えば最も作業進捗が遅れている油圧ショベル1、もしくはエラーで停止しているなど例えば最も終了予定時間が長い油圧ショベル1を遠隔操作対象機体として決定する。オペレータは、次の油圧ショベル1へ操作を切替えたい場合、作業情報表示部90に表示された作業進捗と終了予定時間に基づいて、オペレータが遠隔操作切替スイッチ36を用いて1台の油圧ショベル1を選択して遠隔操作に切替える。または、遠隔操作対象切替ボタン39を押すだけで各油圧ショベル1に対応した集中操作コントローラ43の操作タスクへ通信対象機体情報が送信され、複数台操作タスク内で選ばれた1台の油圧ショベル1が遠隔操作に切替わる。この場合、作業進捗と終了予定時間の比較は作業進捗切替コントローラ44が行うことから、作業進捗と終了予定時間を作業情報表示部90に表示しなくてもよい。作業進捗演算部80と終了予定時間演算部81で演算した作業進捗および終了予定時間を用いて、複数の油圧ショベル1のうち自動制御から遠隔操作に切替える油圧ショベル1が決定される。
 図12は、作業進捗と、作業進捗から求める終了予定時間を示した図である。終了予定時間は、現時間までの作業進捗の平均増加率や現時間での作業進捗の増加率に基づいて求めた作業進捗が100%となるときの時間や、その他の方法により求めた時間でもよい。図12の例では、現時間において(a)よりも(b)の方が作業の進捗割合は高い。しかし、現時間までの作業進捗の平均増加率を求め、その平均増加率を基に作業進捗が100%となるときの終了予定時間を求めると、終了予定時間は(b)よりも(a)の方が短い。すなわち、(b)よりも(a)の方が早く作業が終わることが分かる。このように、作業進捗よりも終了予定時間を用いて遠隔操作対象機体を選択する方が適切な場合がある。
 しかし、例えば掘削物が固いことなどにより自動制御されている作業機械の作業進度が遅くなる場合、或いは止まる状況が続くといった場合、終了予定時間は作業進捗が100%となるときの時間であることから、終了予定時間は時間の経過に伴い延長される。この場合、モニタに表示される終了予定時間を基にオペレータが遠隔操作対象機体を選択するのは難しい。それに比べて作業進捗の値は時間に伴い小さくなることはない。すなわち作業進捗が100%になるという目標から遠ざかることはないことから、モニタに表示される作業進捗を基にオペレータが遠隔操作対象機体を選択するのは、終了予定時間を基に判断するよりも容易な場合がある。このように、終了予定時間よりも作業進捗を用いて遠隔操作対象機体を選択する方が適切な場合がある。
 以上の構成により、第3の実施の形態である油圧ショベル1の操作システムは、遠隔操作対象機体を選択する基準として作業進捗かつ終了予定時間を用いることで、より適切な油圧ショベル1を遠隔操作に切替えることができる。これにより、切替えるまでの時間が短くなると同時に、複数の油圧ショベル1が同時に自動制御を終えて停止するリスクを削減することができる。油圧ショベル1の停止は作業効率の低下、つまり複数の油圧ショベル1が含まれるシステム全体の作業効率の低下となることから、適切な油圧ショベル1を遠隔操作に切替えることで、複数の油圧ショベル1が含まれるシステム全体の作業効率を上げることができる。
 なお、作業進捗と終了予定時間の両方を用いて自動制御から遠隔操作に切替える必要はなく、作業情報表示部90に表示された作業進捗または終了予定時間に基づいてオペレータが遠隔操作を行う油圧ショベル1を決定し、実施例1で説明した遠隔操作切替スイッチ36を用いて複数の油圧ショベル1のうち自動制御から遠隔操作に切替える油圧ショベル1が決定され、油圧ショベル1を自動制御から遠隔操作に切替えても良い。
 他には、作業進捗または終了予定時間を用いて作業進捗切替コントローラ44により求めた比較結果に基づいて、実施例2で説明した遠隔操作切替ボタン39を用いて複数の油圧ショベル1のうち自動制御から遠隔操作に切替える油圧ショベル1が決定され、油圧ショベル1を自動制御から遠隔操作に切替えても良い。
 第1の実施の形態から第3の実施の形態は作業機械を油圧ショベルとしたため、作業済範囲の判断にはステレオカメラ21を用いた掘削対象物形状と目標形状との比較で求めている。ブルドーザやダンプなどのような作業が主に機体の走行である種類の作業機械が対象の場合は、GNSSシステムによって得られる作業機械の位置の履歴、移動経路情報を基に作業進捗を演算する。つまり、複数の作業機械の移動経路情報を基に1度(あるいは複数回)通過した範囲を作業済範囲とすることで、作業コントローラ100が作業進捗を演算することができる。そして、その作業進捗や作業進捗から求めた作業終了時間を用いて、複数の作業機械を自動制御から遠隔操作へ切替えることができる。
 第1の実施の形態から第3の実施の形態は、作業機械の操作システムは油圧ショベル1と集中操作装置3により構成されていた。しかし、作業機械の操作システムは集中操作装置3のみで構成されていても良い。
 1 油圧ショベル、20 カメラ、21 ステレオカメラ、22 自動制御コントローラ、23 遠隔操作コントローラ、24 車体コントローラ、25 GNSSシステム、26 角度センサ、27 遠隔操作対象切替器、28 無線通信アンテナ、3 集中操作装置、31 座席、32 操作レバー、33 操作レバー、34 モニタ、35 モニタ、36 遠隔操作対象切替スイッチ、37 作業範囲入力インタフェース、38 自動制御開始ボタン、39 遠隔操作対象切替ボタン、40 コントロールボックス、42 無線通信アンテナ、43 集中操作コントローラ、44 作業進捗切替コントローラ、80 作業進捗演算部、81 終了予定時間演算部、90 作業情報表示部、100 作業機械コントローラ

Claims (6)

  1.  複数の作業機械の作業進捗を演算する作業進捗演算部、または、前記作業進捗演算部により演算された前記作業進捗を用いて作業の終了予定時間を演算する終了予定時間演算部と、を備え、
     前記作業進捗または前記終了予定時間を用いて、前記複数の作業機械のうち自動制御から遠隔操作に切替える作業機械が決定され、
     前記決定された作業機械に対して操作指示を送る集中操作コントローラを備える作業機械の操作システム
  2.  請求項1において、
     前記作業進捗を表示する作業情報表示部を備え、
     表示された前記作業進捗に基づいて操作者が決定した作業機械が自動制御から遠隔操作に切替えられる作業機械の操作システム。
  3.  請求項1において、
     前記作業進捗を比較する作業進捗切替コントローラを備え、
     前記作業進捗切替コントローラにより求めた比較結果に基づいて作業機械が自動制御から遠隔操作に切替えられる作業機械の操作システム。
  4.  請求項2または3において、
     作業対象物の対象物情報を基に前記作業進捗を演算する作業機械コントローラを備える作業機械の操作システム。
  5.  請求項2または3において、
     前記複数の作業機械の移動経路情報を基に前記作業進捗を演算する作業機械コントローラを備える作業機械の操作システム。
  6.  請求項4または5において、
     前記作業進捗および前記終了予定時間を用いて、前記複数の作業機械のうち自動制御から遠隔操作に切替える作業機械が決定される作業機械の操作システム。
PCT/JP2015/052251 2015-01-28 2015-01-28 作業機械の操作システム WO2016121010A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/525,155 US10214877B2 (en) 2015-01-28 2015-01-28 Operation system of working machine
PCT/JP2015/052251 WO2016121010A1 (ja) 2015-01-28 2015-01-28 作業機械の操作システム
JP2016571560A JP6424238B2 (ja) 2015-01-28 2015-01-28 作業機械の操作システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052251 WO2016121010A1 (ja) 2015-01-28 2015-01-28 作業機械の操作システム

Publications (1)

Publication Number Publication Date
WO2016121010A1 true WO2016121010A1 (ja) 2016-08-04

Family

ID=56542667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052251 WO2016121010A1 (ja) 2015-01-28 2015-01-28 作業機械の操作システム

Country Status (3)

Country Link
US (1) US10214877B2 (ja)
JP (1) JP6424238B2 (ja)
WO (1) WO2016121010A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034942A (zh) * 2017-05-24 2017-08-11 成都跟驰科技有限公司 用于挖掘机远程控制的虚拟现实系统
CN107119739A (zh) * 2017-05-24 2017-09-01 成都跟驰科技有限公司 基于vr设备的挖掘机远程控制方法
JP2018044415A (ja) * 2016-09-16 2018-03-22 日立建機株式会社 建設機械の施工時間予測システム
JP2019021200A (ja) * 2017-07-20 2019-02-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 制御装置、制御方法、制御プログラム及び制御システム
JP2019132062A (ja) * 2018-01-31 2019-08-08 ヤンマー株式会社 建設機械
WO2019151335A1 (ja) * 2018-01-30 2019-08-08 住友建機株式会社 ショベル及びショベルの管理システム
JP2019167720A (ja) * 2018-03-22 2019-10-03 株式会社フジタ 建設機械の自動制御システム
JP2019215672A (ja) * 2018-06-12 2019-12-19 コベルコ建機株式会社 施工管理システム
WO2020026504A1 (ja) * 2018-07-31 2020-02-06 株式会社小松製作所 作業機械を制御するためのシステム及び方法
WO2020255714A1 (ja) 2019-06-18 2020-12-24 日本電気株式会社 掘削システム、作業システム、制御装置、制御方法及びプログラムが格納された非一時的なコンピュータ可読媒体
WO2021024553A1 (ja) 2019-08-02 2021-02-11 コベルコ建機株式会社 作業機械
WO2023084996A1 (ja) * 2021-11-09 2023-05-19 コベルコ建機株式会社 管理システム
CN117032088A (zh) * 2023-09-01 2023-11-10 广东思豪内高压科技有限公司 基于高精密内高压成型系统的智能伺服控制方法
JP7508815B2 (ja) 2020-03-13 2024-07-02 コベルコ建機株式会社 作業支援サーバ、作業支援方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272947B1 (en) * 2015-03-19 2022-01-26 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
US10689830B2 (en) * 2018-08-06 2020-06-23 Deere & Company Container angle sensing using vision sensor for feedback loop control
KR102087132B1 (ko) * 2018-12-21 2020-04-20 엠텍비젼 주식회사 건설장비에서 서라운드 뷰를 이용한 작업 가이드 영상 표시 장치 및 방법
JP7083315B2 (ja) * 2019-02-22 2022-06-10 日立建機株式会社 施工管理システム
US11591776B2 (en) * 2019-04-15 2023-02-28 Deere & Company Earth-moving machine sensing and control system
US11808007B2 (en) * 2019-04-15 2023-11-07 Deere & Company Earth-moving machine sensing and control system
JP2021025268A (ja) * 2019-08-02 2021-02-22 住友重機械工業株式会社 ショベル及びショベルの支援装置
US11702819B2 (en) * 2019-11-25 2023-07-18 Deere & Company Electrohydraulic implement control system and method
US11693406B2 (en) 2020-03-05 2023-07-04 Caterpillar Paving Products Inc. Task completion time estimation for an autonomous machine
US11789458B2 (en) 2020-03-06 2023-10-17 Catepillar Paving Products, Inc. Automatic mode resume system for a mobile machine
JP2022054119A (ja) * 2020-09-25 2022-04-06 コベルコ建機株式会社 自動積込システム
JP7517224B2 (ja) * 2021-03-30 2024-07-17 コベルコ建機株式会社 遠隔操作装置
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
JP2024065876A (ja) * 2022-10-31 2024-05-15 住友重機械工業株式会社 ショベル、及びショベル制御システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937632A (ja) * 1995-08-01 1997-02-10 Hitachi Ltd 芝刈り機の管理方法及び装置
JP2001303620A (ja) * 2000-04-19 2001-10-31 Ohbayashi Corp 造成管理システム
JP2002304441A (ja) * 2001-04-05 2002-10-18 Shin Caterpillar Mitsubishi Ltd 工事進捗状況管理システム、工事進捗状況データ作成方法、工事進捗状況データおよび工事進捗状況データ提供方法
JP2003261928A (ja) * 2002-03-08 2003-09-19 Ohbayashi Corp 土工事における施工データ管理システム
JP2004108782A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd 保守点検システム及び保守点検方法
JP2005011058A (ja) * 2003-06-19 2005-01-13 Hitachi Constr Mach Co Ltd 作業機械の作業支援・管理システム
JP2006132132A (ja) * 2004-11-04 2006-05-25 Hitachi Constr Mach Co Ltd 作業管理装置及びこれを備えた作業機械
JP2010073031A (ja) * 2008-09-19 2010-04-02 Hitachi Constr Mach Co Ltd 施工管理システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378132A (en) * 1981-02-17 1983-03-29 Klaus Spies Mining method and apparatus
DE3207517C2 (de) * 1982-03-03 1985-09-05 Gebr. Eickhoff Maschinenfabrik U. Eisengiesserei Mbh, 4630 Bochum Steuerung für Ausbaugestelle des Untertagebergbaues
US6830120B1 (en) * 1996-01-25 2004-12-14 Penguin Wax Co., Ltd. Floor working machine with a working implement mounted on a self-propelled vehicle for acting on floor
JPH1063338A (ja) 1996-08-27 1998-03-06 Kajima Corp 施工用移動体の遠隔操作支援システム
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
JP3228209B2 (ja) * 1997-12-26 2001-11-12 株式会社デンソー 生産管理装置
US6351697B1 (en) * 1999-12-03 2002-02-26 Modular Mining Systems, Inc. Autonomous-dispatch system linked to mine development plan
FI111414B (fi) * 2001-05-14 2003-07-15 Sandvik Tamrock Oy Menetelmä ja laitteisto kaivoskoneen aseman määrittämiseksi sen pyörien luistaessa
US7832126B2 (en) * 2007-05-17 2010-11-16 Siemens Industry, Inc. Systems, devices, and/or methods regarding excavating
EP2739825A4 (en) * 2011-08-03 2016-07-27 Joy Mm Delaware Inc HAIR-MATERIAL HANDLING SYSTEM
JP6110242B2 (ja) * 2013-07-09 2017-04-05 日立建機株式会社 荷重検出装置及びこれを備えた作業機械

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937632A (ja) * 1995-08-01 1997-02-10 Hitachi Ltd 芝刈り機の管理方法及び装置
JP2001303620A (ja) * 2000-04-19 2001-10-31 Ohbayashi Corp 造成管理システム
JP2002304441A (ja) * 2001-04-05 2002-10-18 Shin Caterpillar Mitsubishi Ltd 工事進捗状況管理システム、工事進捗状況データ作成方法、工事進捗状況データおよび工事進捗状況データ提供方法
JP2003261928A (ja) * 2002-03-08 2003-09-19 Ohbayashi Corp 土工事における施工データ管理システム
JP2004108782A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd 保守点検システム及び保守点検方法
JP2005011058A (ja) * 2003-06-19 2005-01-13 Hitachi Constr Mach Co Ltd 作業機械の作業支援・管理システム
JP2006132132A (ja) * 2004-11-04 2006-05-25 Hitachi Constr Mach Co Ltd 作業管理装置及びこれを備えた作業機械
JP2010073031A (ja) * 2008-09-19 2010-04-02 Hitachi Constr Mach Co Ltd 施工管理システム

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094770B1 (ko) 2016-09-16 2020-03-30 히다찌 겐끼 가부시키가이샤 건설 기계
JP2018044415A (ja) * 2016-09-16 2018-03-22 日立建機株式会社 建設機械の施工時間予測システム
WO2018051536A1 (ja) * 2016-09-16 2018-03-22 日立建機株式会社 建設機械
KR20180104700A (ko) * 2016-09-16 2018-09-21 히다찌 겐끼 가부시키가이샤 건설 기계
US10975551B2 (en) 2016-09-16 2021-04-13 Hitachi Construction Machinery Co., Ltd. Construction machine
CN107119739A (zh) * 2017-05-24 2017-09-01 成都跟驰科技有限公司 基于vr设备的挖掘机远程控制方法
CN107034942A (zh) * 2017-05-24 2017-08-11 成都跟驰科技有限公司 用于挖掘机远程控制的虚拟现实系统
JP2019021200A (ja) * 2017-07-20 2019-02-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 制御装置、制御方法、制御プログラム及び制御システム
JP2021144732A (ja) * 2017-07-20 2021-09-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 制御装置、制御方法、制御プログラム及び制御システム
WO2019151335A1 (ja) * 2018-01-30 2019-08-08 住友建機株式会社 ショベル及びショベルの管理システム
JPWO2019151335A1 (ja) * 2018-01-30 2021-01-14 住友建機株式会社 ショベル及びショベルの管理システム
JP2019132062A (ja) * 2018-01-31 2019-08-08 ヤンマー株式会社 建設機械
JP2022173478A (ja) * 2018-03-22 2022-11-18 株式会社フジタ 建設機械の自動制御システム
JP2019167720A (ja) * 2018-03-22 2019-10-03 株式会社フジタ 建設機械の自動制御システム
WO2019239858A1 (ja) * 2018-06-12 2019-12-19 コベルコ建機株式会社 施工管理システム及び施工管理方法
JP2019215672A (ja) * 2018-06-12 2019-12-19 コベルコ建機株式会社 施工管理システム
US11423341B2 (en) 2018-06-12 2022-08-23 Kobelco Construction Machinery Co., Ltd. Construction management system and construction management method
JP7040304B2 (ja) 2018-06-12 2022-03-23 コベルコ建機株式会社 施工管理システム
JP7265323B2 (ja) 2018-07-31 2023-04-26 株式会社小松製作所 作業機械を制御するためのシステム及び方法
JP2020020152A (ja) * 2018-07-31 2020-02-06 株式会社小松製作所 作業機械を制御するためのシステム及び方法
WO2020026504A1 (ja) * 2018-07-31 2020-02-06 株式会社小松製作所 作業機械を制御するためのシステム及び方法
US11788254B2 (en) 2018-07-31 2023-10-17 Komatsu Ltd. System and method for controlling work machine
WO2020255714A1 (ja) 2019-06-18 2020-12-24 日本電気株式会社 掘削システム、作業システム、制御装置、制御方法及びプログラムが格納された非一時的なコンピュータ可読媒体
US12110661B2 (en) 2019-06-18 2024-10-08 Nec Corporation Excavation system, work system, control device, control method, and non-transitory computer-readable medium storing a program
WO2021024553A1 (ja) 2019-08-02 2021-02-11 コベルコ建機株式会社 作業機械
JP7508815B2 (ja) 2020-03-13 2024-07-02 コベルコ建機株式会社 作業支援サーバ、作業支援方法
WO2023084996A1 (ja) * 2021-11-09 2023-05-19 コベルコ建機株式会社 管理システム
CN117032088A (zh) * 2023-09-01 2023-11-10 广东思豪内高压科技有限公司 基于高精密内高压成型系统的智能伺服控制方法
CN117032088B (zh) * 2023-09-01 2024-04-09 广东思豪内高压科技有限公司 基于高精密内高压成型系统的智能伺服控制方法

Also Published As

Publication number Publication date
JP6424238B2 (ja) 2018-11-14
US10214877B2 (en) 2019-02-26
JPWO2016121010A1 (ja) 2017-09-28
US20170328030A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6424238B2 (ja) 作業機械の操作システム
US11873620B2 (en) Turning control apparatus for turning-type working machine
JP6373728B2 (ja) 建設機械
US6668157B1 (en) Data sharing equipment for mobile stations
CA2953477C (en) Work machine management apparatus
CN106906866B (zh) 绳索挖掘机的回转自动化
JP2006219894A (ja) 建設機械の遠隔操作におけるカメラ制御装置
WO2016047208A1 (ja) 運搬車両
US11732438B2 (en) System and method for controlling bulldozer
CN110054084A (zh) 一种多机械臂行吊系统及其控制方法和故障处理方法
JP2007016403A (ja) 作業機械のカメラ制御装置
JPH0874296A (ja) 建設機械におけるカメラ自動追尾制御装置
JP7453128B2 (ja) 施工支援システムおよび施工支援方法
CN113574227B (zh) 作业机械
US20210331307A1 (en) Controller, adjustment device, and adjustment system
JP2017199395A (ja) 作業機械の管理方法
JP2022152454A (ja) 作業機械の走行システムおよび作業機械の制御方法
JP3611394B2 (ja) 作業機械のカメラ方向制御装置
KR20150074340A (ko) 건설기계의 테일 제어 시스템 및 그 방법
WO2023038000A1 (ja) 制御装置、作業機械、制御方法および制御システム
CN114193034B (zh) 预制板钢筋多枪高效焊接控制方法和系统
JP7303027B2 (ja) 作業機械を制御するためのシステムおよび方法
WO2024204511A1 (ja) 制御装置、制御方法および作業機械
JPS63194030A (ja) パワ−シヨベルの作業機制御方法および装置
JP2023074395A (ja) 作業システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525155

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016571560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879907

Country of ref document: EP

Kind code of ref document: A1