JP2022173478A - 建設機械の自動制御システム - Google Patents

建設機械の自動制御システム Download PDF

Info

Publication number
JP2022173478A
JP2022173478A JP2022157531A JP2022157531A JP2022173478A JP 2022173478 A JP2022173478 A JP 2022173478A JP 2022157531 A JP2022157531 A JP 2022157531A JP 2022157531 A JP2022157531 A JP 2022157531A JP 2022173478 A JP2022173478 A JP 2022173478A
Authority
JP
Japan
Prior art keywords
construction machine
dimensional data
dimensional
control system
automatic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022157531A
Other languages
English (en)
Inventor
光男 渋谷
Mitsuo Shibuya
広行 上原
Hiroyuki Uehara
廉樹 浅沼
Yasuki Asanuma
晃 野末
Akira Nozue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Leica Geosystems Co Ltd
Original Assignee
Fujita Corp
Leica Geosystems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Leica Geosystems Co Ltd filed Critical Fujita Corp
Priority to JP2022157531A priority Critical patent/JP2022173478A/ja
Publication of JP2022173478A publication Critical patent/JP2022173478A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 低コストで作業対象物の3次元形状を把握することができる建設機械の自動制御システムを提供する。【解決手段】 建設機械の自動制御システム30は、バックホウ10を地盤Gに対して水平方向に旋回させる旋回機構13と、バックホウ10に取り付けられ、地盤Gと垂直方向にレーザ光Lを走査し、計測対象物Tの垂直方向に沿った部分までの距離を計測する2次元レーザスキャナ302と、旋回機構13によりバックホウ10を旋回させ、2次元レーザスキャナ302の検出値を連続的に得ることにより、計測対象物Tの表面形状の3次元データを算出する表面形状算出部404と、計測対象物Tの目標形状の3次元データと現在の計測対象物Tの3次元データとの差分量に基づいて、バックホウ10の駆動状態を制御する駆動制御部410とを備える。【選択図】 図5

Description

本発明は、建設機械を自動制御する自動制御システムに関する。
従来、操作者による建設機械の操作補助や無人での建設機械の遠隔操作補助などを目的として、作業対象となる地盤等の形状を3次元レーザスキャナによって計測し、表示等を行う技術が開発でされている。
例えば、下記特許文献1には、建設機械に搭載され、作業対象範囲の画像を取得する撮像部と、建設機械に搭載され、光線を対象物に投射して、点群データの集合である3次元距離データを取得する3次元スキャナーと、建設機械を無線により遠隔操作する操作入力部と、操作入力部の近傍に設置され、撮像部で取得された画像を表示する撮像画像表示部と、操作入力部の近傍に設置され、3次元スキャナーで取得された3次元距離データを表示するスキャナー画像表示部と、からなる遠隔操作装置が開示されている。
特開2015-043488号公報
しかしながら、3次元レーザスキャナは高価であることに加えて、振動や砂ぼこり、風雨などの影響が大きい土木現場での使用に耐え得るような耐久性を備えていない物がほとんどであるという課題がある。
本発明は、このような事情に鑑みなされたものであり、その目的は、低コストで作業対象物の3次元形状を把握することができる建設機械の自動制御システムを提供することにある。
上述の目的を達成するため、請求項1の発明にかかる建設機械の自動制御システムは、下部走行体と上部旋回体とを備え、前記上部旋回体に計測対象物を所定の目標形状へと変形させる作業部材が設けられた建設機械の自動制御システムであって、前記上部旋回体を第1の方向に旋回させる旋回部と、前記上部旋回体に取り付けられ、前記第1の方向と直交する第2の方向にレーザ光を走査し、前記計測対象物の前記第2の方向に沿った部分までの距離を計測する2次元レーザスキャナと、前記旋回部により前記上部旋回体を旋回させ、前記2次元レーザスキャナの検出値を連続的に得ることにより、前記計測対象物の表面形状の3次元データを算出する表面形状算出部と、前記目標形状の3次元データを取得する目標形状取得部と、前記目標形状の3次元データと前記表面形状の3次元データとの差分量を算出する差分算出部と、前記差分量に基づいて、前記建設機械の駆動状態を制御する駆動制御部と、を備え、前記計測対象物は、前記下部走行体が走行する地盤上で、前記作業部材が位置する側の前記建設機械の前方に位置している、ことを特徴とする。
請求項2の発明にかかる建設機械の自動制御システムは、前記目標形状の3次元データには、各点の基準座標における座標データが含まれており、前記建設機械の前記基準座標における位置情報を算出する機械位置情報算出部を更に備え、前記表面形状算出部は、前記建設機械の前記位置情報に基づいて、前記表面形状の3次元データの各点について前記基準座標における座標データを算出し、前記差分算出部は、前記表面形状の3次元データの座標データと、前記目標形状の3次元データの座標データとを用いて、前記表面形状の3次元データと前記目標形状の3次元データとの差分を算出する、ことを特徴とする。
請求項3の発明にかかる建設機械の自動制御システムは、前記機械位置情報算出部は、前記建設機械に取り付けられた2つの衛星測位システム受信器で受信した信号に基づいて前記建設機械の前記基準座標における位置情報を算出する、ことを特徴とする。
請求項4の発明にかかる建設機械の自動制御システムは、前記機械位置情報算出部は、前記建設機械に取り付けられた単一の衛星測位システム受信器で受信した信号と、前記建設機械を中心とした方位情報とに基づいて前記建設機械の前記基準座標における位置情報を算出する、ことを特徴とする。
請求項1の発明によれば、2次元レーザスキャナを搭載した建設機械を旋回させることにより計測対象物の表面形状の3次元データを得るので、3次元レーザスキャナを用いる場合と比較して低コストで計測対象物の3次元形状を把握することができる。また、2次元レーザスキャナは3次元レーザスキャナと比較して耐久性が高いため、振動などの影響が大きい土木現場での使用に耐えうる建設機械の自動制御システムを構築することができる。
請求項2の発明によれば、計測対象物の表面形状の3次元データの座標データと、目標形状の3次元データの座標データとを用いて3次元データを重畳するので、より精度よく3次元データの位置合わせをすることができる。
請求項3の発明によれば、2つの衛星測位システム受信器で受信した信号に基づいて建設機械の位置情報を算出するので、旋回により位置の変化に追従して精度よく建設機械の位置を算出する上で有利となる。
請求項4の発明によれば、衛星測位システム受信器で受信した信号および方位情報に基づいて建設機械の位置情報を算出するので、旋回により位置の変化に追従して精度よく建設機械の位置を算出する上で有利となる。
自動制御システム30が搭載されたバックホウ10の側面図である。 バックホウ10の平面図である。 2次元レーザスキャナ302の走査方向を示す説明図である。 2次元レーザスキャナ302の旋回方向を示す説明図である。 3次元データの重畳表示の一例を示す図である。 自動制御システム30の構成を示すブロック図である。
以下に添付図面を参照して、本発明にかかる建設機械の自動制御システム(以下「自動制御システム」という)の好適な実施の形態を詳細に説明する。
まず、本発明にかかる自動制御システムが搭載される建設機械について説明する。本実施の形態では、建設機械がバックホウである場合について説明する。
まず、バックホウの構成について説明する。
図1、図2に示すように、バックホウ10は、下部走行体12と、上部旋回体14と、ブーム16と、アーム18と、バケット20を含んで構成される。
下部走行体12は、クローラ1202の回転により地盤G上を走行する。
上部旋回体14は、下部走行体12の上部に旋回軸を中心に水平旋回可能に設けられている。すなわち、上部旋回体14は、旋回機構(旋回部)13(図2参照)により、下部走行体12および地盤Gに対して水平方向Hに旋回可能である。
上部旋回体14には操作室1402が設けられ、操作室1402には、下部走行体12の走行、上部旋回体14の旋回、ブーム16の揺動、アーム18の揺動、バケット20の揺動などを操作するためのいずれも不図示の操作レバーや操作ペダルなどの複数の操作装置が設置されている。なお、本実施の形態では後述する自動制御システム30にバックホウ10を自動運転制御するため、操作室1402に操作者は搭乗しない。
また、操作室1402の天面には、後述する2次元レーザスキャナ302およびGNSS受信器304が載置されている。なお、2次元レーザスキャナ302およびGNSS受信器304の配置位置は操作室1402の天面に限らず、各機器における測定や受信に支障がない位置であればよい。
ブーム16は、その基端が水平方向に延在する支軸を介して上部旋回体14に揺動可能に支持されている。
アーム18は、その基端が水平方向に延在する支軸を介してブーム16の先端に揺動可能に支持されている。
バケット20は、その基端が水平方向に延在する支軸を介してアーム18の先端に揺動可能に支持されている。バケット20は、本実施の形態における計測対象物である土壌の掘削、すなわち変形作業を行う作業部材に対応する。
上部旋回体14とブーム16との間には、ブーム16を揺動させるブームシリンダ1602が設けられている。
ブーム16とアーム18との間には、アーム18を揺動させるアームシリンダ1802が設けられている。
アーム18とバケット20との間には、バケット20を揺動させるバケットシリンダ2002が設けられている。
これらブームシリンダ1602、アームシリンダ1802、バケットシリンダ2002は油圧シリンダである。
したがって、ブームシリンダ1602が伸縮することにより上部旋回体14に対してブーム16が揺動される。
また、アームシリンダ1802が伸縮することによりブーム16に対してアーム18が揺動される。
また、バケットシリンダ2002が伸縮することによりアーム18に対してバケット20が揺動される。
本実施の形態では、後述する駆動制御部410によりバックホウ10の各部を自動制御して、バックホウ10の前方(バケット20)が位置する側に位置する作業対象土壌の掘削作業(変形作業)を行う。後述する自動制御システム30では、作業対象土壌を計測対象物Tとしてその表面形状を算出する。
つぎに、バックホウ10の操作を補助する自動制御システム30について説明する。
図5は、自動制御システム30の構成を示すブロック図である。
自動制御システム30は、主に建設機械であるバックホウ10に取り付けられるセンサ類およびコンピュータ40によって構成される。
バックホウ10には、2次元レーザスキャナ302、GNSS(Global Navigation Satellite System)受信器304、傾斜センサ306が取り付けられている。
2次元レーザスキャナ302は、所定の方向にレーザ光Lを照射し、反射光を受光することによってレーザ照射位置までの距離を計測する。本実施の形態では、2次元レーザスキャナ302は、図3に示すように、地盤Gに対して垂直方向Vにレーザ光Lを走査して、この方向に沿った作業対象土壌(計測対象物T)の各点までの距離を計測する。すなわち、バックホウ10を静止させた状態では、計測対象物Tのうち垂直方向Vに沿った1ラインの距離を計測可能である。
ここで、バックホウ10の上部旋回体14は、地盤Gに対して水平方向Hに回転可能に設けられている。よって、図4に示すように、上部旋回体14を水平方向Hに旋回させながら2次元レーザスキャナ302を垂直方向Vに走査させることによって、計測対象物T全体の各点までの距離を計測することができる。
すなわち、2次元レーザスキャナ302は、建設機械であるバックホウ10に取り付けられ、バックホウ10の旋回方向である水平方向H(第1の方向)と直交する垂直方向V(第2の方向)にレーザ光Lを走査し、計測対象物Tの垂直方向Vに沿った部分までの距離を検出する。
GNSS受信器(衛星測位システム受信器)304は、バックホウ10の天面に設置され、GNSS衛星からの信号を受信する。後述する機械位置情報算出部402は、GNSS受信器304で受信した信号に基づいてバックホウ10のGNSS受信器304の位置座標を算出する。
本実施の形態では、図2に示すようにバックホウ10の天面にGNSS受信器304が2つ設置されている。これは、バックホウ10の旋回による位置変化を精度よく検出するためである。GNSS受信器304を2つ設置し、2か所の位置座標を算出することによって、バックホウ10の旋回状態(ヨー角)を精度よく検出することができる。
なお、GNSS受信器304を2つ設置するのではなく、後述するように1つのGNSS受信器304と1つの方位計を設置したり、方位計を内蔵したGNSS受信器304を設置してもよい。
傾斜センサ306は、バックホウ10の傾きを検出する。
本実施の形態では、バックホウ10のロール角およびピッチ角を検出する傾斜センサ306が取り付けられているものとする。
コンピュータ40は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。
コンピュータ40は、上記CPUが上記制御プログラムを実行することにより、機械位置情報算出部402、表面形状算出部404、目標形状取得部406、差分算出部408、駆動制御部410として機能する。
なお、以下の説明において、基準座標とはバックホウ10が位置する空間に任意に設定された座標である。これに対して、絶対座標とはGNSS受信器304で受信した信号に基づいて位置情報を算出する際に使用する座標であり、例えば緯度、経度、高さで表される。基準座標と絶対座標とのずれ量は既知であり、一方の座標における位置情報は他方の座標における位置情報に相互に変換可能である。
また、バックホウ10の位置情報は、例えば2次元レーザスキャナ302のレーザ受光部(基準位置)Oの位置情報とする。
機械位置情報算出部402は、バックホウ10(建設機械)の基準座標における位置情報を算出する。
本実施の形態では、機械位置情報算出部402は、バックホウ10に取り付けられた2つのGNSS受信器304で受信した信号に基づいて、バックホウ10の基準座標における位置情報を算出する。まず、2つのGNSS受信器304で受信した信号に基づいて、それぞれのGNSS受信器304の絶対座標における位置情報を算出し、さらに基準座標上の位置情報に変換する。
つぎに、2つのGNSS受信器304の位置情報からレーザ受光部Oの基準座標における位置情報を算出する。GNSS受信器304の取り付け位置は既知であることから、レーザ受光部OとGNSS受信器304との位置のずれ量をオフセット値として設定することにより、GNSS受信器304の位置情報からレーザ受光部Oの位置情報を算出することができる。
また、機械位置情報算出部402は、傾斜センサ306の検出結果からバックホウ10の傾きを検知して各位置情報を補正する。
本実施の形態では、2つのGNSS受信器304を搭載しており、これら2つのGNSS受信器304の位置情報の相対変化量からバックホウ10の旋回状態(ヨー角)を精度よく算出することができる。
なお、2つのGNSS受信器304を搭載するのではなく、単一のGNSS受信器304と、バックホウ10を中心とした方位を計測する方位計とを搭載することにより、バックホウ10の旋回状態を算出してもよい。この場合、GNSS受信器304内に方位計が内蔵されているタイプであってもよいし、GNSS受信器304と方位計とをそれぞれ単独で設置してもよい。
表面形状算出部404は、旋回機構13によりバックホウ10を旋回させ、2次元レーザスキャナ302の検出値を連続的に得ることにより、計測対象物Tの表面形状の3次元データを算出する。上述のように、2次元レーザスキャナ302は、バックホウ10の旋回方向(水平方向H)と直交する垂直方向Vにレーザ光Lを走査し、計測対象物Tの垂直方向Vに沿った部分までの距離(本実施の形態では、レーザ受光部Oからの距離)を検出する。表面形状算出部404は、バックホウ10の旋回に伴って水平方向Hにも連続的に計測対象物Tの各点までの距離を検出可能である。そして、計測対象物Tの各点までの距離、および機械位置情報算出部402によって算出されたレーザ受光部Oの位置情報(基準座標における座標データ)に基づいて、計測対象物Tの各点の基準座標における座標データ(現時点における実座標データ)を算出する。
また、表面形状算出部404は、バックホウ10を用いた作業中、逐次2次元レーザスキャナ302によりスキャンを行い、計測対象物Tの表面形状の3次元データを更新する。
表面形状算出部404で算出した3次元データは、スキャンを行った時刻の情報とともに、図示しないハードディスク装置等に記録される。これにより、例えば作業前の計測対象物Tの表面形状の3次元データを算出しておき、一定時間(例えば一作業単位日)作業した後の表面形状と比較したり、一定期間内の作業量(3次元データの差分)を算出したりすることが可能となる。
目標形状取得部406は、計測対象物Tの目標形状の3次元データを取得する。
本実施の形態では、計測対象物T(作業対象土壌)を所定の目標形状へと変形させるためにバックホウ10を使用している。目標形状の3次元データとは、今回の作業の設計データに対応する。目標形状の3次元データ(設計データ)には、計測対象物Tの各点の基準座標における座標データ(目標座標データ)が含まれている。
目標形状取得部406は、例えば図示しないハードディスク装置から目標形状の3次元データを読み出したり、ネットワークを介して目標形状の3次元データを受信したりする。
差分算出部408は、目標形状の3次元データと計測対象物Tの表面形状の3次元データとの差分量を算出する。すなわち、差分算出部408は、設計データにおける土壌の形状と、現時点における土壌の形状との差分を算出する。差分は、3次元データの各点について算出され、例えば〇cm△mm、などの形で算出される。この差分は、バックホウ10で作業すべき作業量(掘削量)となる。
駆動制御部410は、差分算出部408で算出された差分量に基づいて、バックホウ10の駆動状態を制御する。
より詳細には、駆動制御部410は、クローラ1202の回転量や、ブームシリンダ1602、アームシリンダ1802、バケットシリンダ2002の伸縮量を制御することにより、バケット20を所望の位置に移動させ、土壌を掘削する。このとき、目標形状の3次元データ(設計データ)と計測対象物Tの表面形状の3次元データとの差分がゼロになるように、掘削位置および掘削する土壌量を制御する。
図6は、3次元データの重畳状態の一例を示す図であり、図6Aは、3つの3次元データD1~D3を重畳して表示した状態、図6Bは3つの3次元データD1~D3を個別に表示した状態である。
3次元データD1は作業前の計測対象物Tの形状、3次元データD2は現時点の計測対象物Tの形状、3次元データD3は設計データにおける計測対象物Tの形状を示す。
これらを重畳して表示することによって、現時点までの作業量や目標形状までの作業量、作業すべき箇所などを算出することができる。
なお、3つの3次元データD1~D3を全て重畳するのではなく、例えば現時点の形状を示す3次元データD2と、設計データの形状を示す3次元データD3を重畳するなど、組み合わせは自在である。
また、計測対象物Tの形状を3次元データで算出しているため、表示画像の視点についても任意に切り替え可能である。
以上説明したように、実施の形態にかかる自動制御システム30は、2次元レーザスキャナ302を搭載したバックホウ10を旋回させることにより計測対象物Tの表面形状の3次元データを得るので、3次元レーザスキャナを用いる場合と比較して低コストで計測対象物の3次元形状を把握することができる。また、2次元レーザスキャナ302は3次元レーザスキャナと比較して耐久性が高いため、振動などの影響が大きい土木現場での使用に耐えうる建設機械の自動制御システムを構築することができる。
また、自動制御システム30は、計測対象物Tの表面形状の3次元データの座標データと、目標形状の3次元データの座標データとを用いて3次元データを重畳するので、より精度よく3次元データの位置合わせをすることができる。
また、自動制御システム30は、2つのGNSS受信器304で受信した信号に基づいてバックホウ10の位置情報を算出するので、旋回により位置の変化に追従して精度よくバックホウ10の位置を算出する上で有利となる。
なお、本実施の形態では、建設機械として旋回機構13が設けられ上部旋回体14が下部走行体12に対して旋回可能なバックホウ10を例にして説明したが、これに限らず、例えば建設機械を旋回台上に載置して、旋回台により旋回させることにより水平方向のスキャン位置を変更するようにしてもよい。このようにすることで、旋回機構13が設けられていない建設機械にも本発明が適用可能となる。
10 バックホウ
12 下部走行体
13 旋回機構
14 上部旋回体
16 ブーム
18 アーム
20 バケット
28 モニタ
30 自動制御システム
302 3次元レーザスキャナ
304 GNSS受信器
306 傾斜センサ
40 コンピュータ
402 機械位置情報算出部
404 表面形状算出部
406 目標形状取得部
408 差分算出部
410 駆動制御部
G 地盤
L レーザ光
O レーザ受光部
T 計測対象物
H 水平方向
V 垂直方向
上述の目的を達成するため、請求項1の発明にかかる建設機械の自動制御システムは、測対象物を所定の目標形状へと変形させるために用いられる建設機械の自動制御システムであって、前記建設機械を第1の方向に旋回させる旋回部と、前記建設機械に取り付けられ、前記第1の方向と直交する第2の方向にレーザ光を走査し、前記計測対象物の前記第2の方向に沿った部分までの距離を計測する2次元レーザスキャナと、前記旋回部により前記建設機械を旋回させ、前記2次元レーザスキャナの検出値を連続的に得ることにより、前記計測対象物の表面形状の3次元データを算出する表面形状算出部と、前記目標形状の3次元データを取得する目標形状取得部と、前記目標形状の3次元データと前記表面形状の3次元データとの差分量を算出する差分算出部と、前記差分量に基づいて、前記建設機械の駆動状態を制御する駆動制御部と、前記表面形状算出部で算出された前記計測対象物の表面形状の3次元データを、前記2次元レーザスキャナによるレーザ光の走査がなされた時刻情報と共に記録する記録部と、を備えたことを特徴とする。
請求項2の発明にかかる建設機械の自動制御システムは、前記目標形状の3次元データには、各点の基準座標における座標データが含まれており、前記建設機械の前記基準座標における位置情報を算出する機械位置情報算出部を更に備え、前記表面形状算出部は、前記建設機械の前記位置情報に基づいて、前記表面形状の3次元データの各点について前記基準座標における座標データを算出し、前記差分算出部は、前記表面形状の3次元データの座標データと、前記目標形状の3次元データの座標データとを用いて、前記表面形状の3次元データと前記目標形状の3次元データとの差分を算出する、ことを特徴とする。
請求項3の発明にかかる建設機械の自動制御システムは、前記機械位置情報算出部は、前記建設機械に取り付けられた2つの衛星測位システム受信器で受信した信号に基づいて前記建設機械の前記基準座標における位置情報を算出する、ことを特徴とする。
請求項4の発明にかかる建設機械の自動制御システムは、前記機械位置情報算出部は、前記建設機械に取り付けられた単一の衛星測位システム受信器で受信した信号と、前記建設機械を中心とした方位情報とに基づいて前記建設機械の前記基準座標における位置情報を算出する、ことを特徴とする。

Claims (4)

  1. 下部走行体と上部旋回体とを備え、前記上部旋回体に計測対象物を所定の目標形状へと変形させる作業部材が設けられた建設機械の自動制御システムであって、
    前記上部旋回体を第1の方向に旋回させる旋回部と、
    前記上部旋回体に取り付けられ、前記第1の方向と直交する第2の方向にレーザ光を走査し、前記計測対象物の前記第2の方向に沿った部分までの距離を計測する2次元レーザスキャナと、
    前記旋回部により前記上部旋回体を旋回させ、前記2次元レーザスキャナの検出値を連続的に得ることにより、前記計測対象物の表面形状の3次元データを算出する表面形状算出部と、
    前記目標形状の3次元データを取得する目標形状取得部と、
    前記目標形状の3次元データと前記表面形状の3次元データとの差分量を算出する差分算出部と、
    前記差分量に基づいて、前記建設機械の駆動状態を制御する駆動制御部と、を備え、
    前記計測対象物は、前記下部走行体が走行する地盤上で、前記作業部材が位置する側の前記建設機械の前方に位置している、
    ことを特徴とする建設機械の自動制御システム。
  2. 前記目標形状の3次元データには、各点の基準座標における座標データが含まれており、
    前記建設機械の前記基準座標における位置情報を算出する機械位置情報算出部を更に備え、
    前記表面形状算出部は、前記建設機械の前記位置情報に基づいて、前記表面形状の3次元データの各点について前記基準座標における座標データを算出し、
    前記差分算出部は、前記表面形状の3次元データの座標データと、前記目標形状の3次元データの座標データとを用いて、前記表面形状の3次元データと前記目標形状の3次元データとの差分を算出する、
    ことを特徴とする請求項 記載の建設機械の自動制御システム。
  3. 前記機械位置情報算出部は、前記建設機械に取り付けられた2つの衛星測位システム受信器で受信した信号に基づいて前記建設機械の前記基準座標における位置情報を算出する、
    ことを特徴とする請求項2記載の建設機械の自動制御システム。
  4. 前記機械位置情報算出部は、前記建設機械に取り付けられた単一の衛星測位システム受信器で受信した信号と、前記建設機械を中心とした方位情報とに基づいて前記建設機械の前記基準座標における位置情報を算出する、
    ことを特徴とする請求項2記載の建設機械の自動制御システム。
JP2022157531A 2018-03-22 2022-09-30 建設機械の自動制御システム Pending JP2022173478A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022157531A JP2022173478A (ja) 2018-03-22 2022-09-30 建設機械の自動制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055291A JP2019167720A (ja) 2018-03-22 2018-03-22 建設機械の自動制御システム
JP2022157531A JP2022173478A (ja) 2018-03-22 2022-09-30 建設機械の自動制御システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018055291A Division JP2019167720A (ja) 2018-03-22 2018-03-22 建設機械の自動制御システム

Publications (1)

Publication Number Publication Date
JP2022173478A true JP2022173478A (ja) 2022-11-18

Family

ID=68107183

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018055291A Pending JP2019167720A (ja) 2018-03-22 2018-03-22 建設機械の自動制御システム
JP2022157531A Pending JP2022173478A (ja) 2018-03-22 2022-09-30 建設機械の自動制御システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018055291A Pending JP2019167720A (ja) 2018-03-22 2018-03-22 建設機械の自動制御システム

Country Status (1)

Country Link
JP (2) JP2019167720A (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790879A (ja) * 1993-09-28 1995-04-04 Komatsu Esuto:Kk モータグレーダの自動ブレード昇降制御装置
JP2002328022A (ja) * 2001-05-02 2002-11-15 Komatsu Ltd 地形形状計測装置およびガイダンス装置
US20060279727A1 (en) * 2004-07-23 2006-12-14 Nichols Mark E Combination laser detector and global navigation satellite receiver system
JP2012172428A (ja) * 2011-02-22 2012-09-10 Komatsu Ltd 油圧ショベルの位置誘導システム及びその制御方法
US20130230212A1 (en) * 2012-03-01 2013-09-05 Herzog Railroad Services, Inc. Automated track surveying and ditching
US20150225923A1 (en) * 2014-02-13 2015-08-13 Trimble Navigation Limited Non-contact location and orientation determination of an implement coupled with a mobile machine
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
US20160060820A1 (en) * 2014-08-28 2016-03-03 Wirtgen Gmbh Self-Propelled Construction Machine And Method For Controlling A Self-Propelled Construction Machine
WO2016121010A1 (ja) * 2015-01-28 2016-08-04 株式会社日立製作所 作業機械の操作システム
JP2017193913A (ja) * 2016-04-22 2017-10-26 五洋建設株式会社 作業船
CN107419698A (zh) * 2017-07-27 2017-12-01 中交四航局第三工程有限公司 一种用于深水防波堤的可视化坡度控制系统及其应用技术
JP2017227014A (ja) * 2016-06-21 2017-12-28 株式会社小松製作所 施工システム及び施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154016A (ja) * 1997-11-21 1999-06-08 Takahashi Works:Kk 車両の自動走行指令装置
US6191732B1 (en) * 1999-05-25 2001-02-20 Carlson Software Real-time surveying/earth moving system
DE60140440D1 (de) * 2000-05-05 2009-12-24 Robert A Hasara Lasergesteuerte baumaschine
US9945095B2 (en) * 2014-06-03 2018-04-17 Komatsu Ltd. Control system of excavating machine and excavating machine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790879A (ja) * 1993-09-28 1995-04-04 Komatsu Esuto:Kk モータグレーダの自動ブレード昇降制御装置
JP2002328022A (ja) * 2001-05-02 2002-11-15 Komatsu Ltd 地形形状計測装置およびガイダンス装置
US20060279727A1 (en) * 2004-07-23 2006-12-14 Nichols Mark E Combination laser detector and global navigation satellite receiver system
JP2012172428A (ja) * 2011-02-22 2012-09-10 Komatsu Ltd 油圧ショベルの位置誘導システム及びその制御方法
US20130230212A1 (en) * 2012-03-01 2013-09-05 Herzog Railroad Services, Inc. Automated track surveying and ditching
US20150225923A1 (en) * 2014-02-13 2015-08-13 Trimble Navigation Limited Non-contact location and orientation determination of an implement coupled with a mobile machine
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
US20160060820A1 (en) * 2014-08-28 2016-03-03 Wirtgen Gmbh Self-Propelled Construction Machine And Method For Controlling A Self-Propelled Construction Machine
WO2016121010A1 (ja) * 2015-01-28 2016-08-04 株式会社日立製作所 作業機械の操作システム
JP2017193913A (ja) * 2016-04-22 2017-10-26 五洋建設株式会社 作業船
JP2017227014A (ja) * 2016-06-21 2017-12-28 株式会社小松製作所 施工システム及び施工方法
CN107419698A (zh) * 2017-07-27 2017-12-01 中交四航局第三工程有限公司 一种用于深水防波堤的可视化坡度控制系统及其应用技术

Also Published As

Publication number Publication date
JP2019167720A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6987186B2 (ja) 表示システム、建設機械、及び表示方法
JP5802476B2 (ja) 建設機械制御システム
JP7386592B2 (ja) 建設機械の操作補助システム
JP5759798B2 (ja) 建設機械制御システム
JP6995767B2 (ja) 計測システム、作業機械及び計測方法
JP2008144379A (ja) 遠隔操縦作業機の画像処理システム
JP7285051B2 (ja) 表示制御装置、および表示制御方法
JP7080750B2 (ja) 表示制御システム、遠隔操作システム、表示制御装置、および表示制御方法
WO2020059220A1 (ja) 座標変換システム及び作業機械
JP6918716B2 (ja) 建設機械
JP7372029B2 (ja) 表示制御装置、表示制御システムおよび表示制御方法
JPWO2020003497A1 (ja) 撮像装置の校正装置、監視装置、作業機械および校正方法
JP2024028464A (ja) 表示制御システムおよび表示制御方法
JP2020033704A (ja) 作業機械
JP2022173478A (ja) 建設機械の自動制御システム
WO2023002796A1 (ja) 掘削機械の稼働範囲設定システムおよびその制御方法
JP7436339B2 (ja) 表示制御装置及び表示方法
JP6746651B2 (ja) 地盤改良工事の合成画像表示方法
WO2023282203A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
WO2023282204A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
WO2022254826A1 (ja) 土質情報取得システムおよびこれを備える作業機械
KR20230006651A (ko) 교정 장치 및 교정 방법
JP2023068408A (ja) 位置情報設定システム
JP2019152098A (ja) ショベル

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017