WO2023282203A1 - 作業機械の制御システム、作業機械、及び作業機械の制御方法 - Google Patents

作業機械の制御システム、作業機械、及び作業機械の制御方法 Download PDF

Info

Publication number
WO2023282203A1
WO2023282203A1 PCT/JP2022/026479 JP2022026479W WO2023282203A1 WO 2023282203 A1 WO2023282203 A1 WO 2023282203A1 JP 2022026479 W JP2022026479 W JP 2022026479W WO 2023282203 A1 WO2023282203 A1 WO 2023282203A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
revolving body
revolving
azimuth angle
dimensional position
Prior art date
Application number
PCT/JP2022/026479
Other languages
English (en)
French (fr)
Inventor
彰吾 厚見
昌司 園山
俊秀 峯後
大樹 菅原
豊久 松田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020237039543A priority Critical patent/KR20230171035A/ko
Priority to CN202280039151.0A priority patent/CN117396653A/zh
Priority to DE112022002116.0T priority patent/DE112022002116T5/de
Publication of WO2023282203A1 publication Critical patent/WO2023282203A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators

Definitions

  • the present disclosure relates to a work machine control system, a work machine, and a work machine control method.
  • Patent Document 1 In the technical field related to work machines, there is known a technique for excavating an excavation target based on a target construction surface, as disclosed in Patent Document 1.
  • a technology for excavating an excavation target based on a target construction plane there is a machine guidance technology that presents a guidance image showing the relative position of the target construction plane and the work machine to the operator of the work machine, and a work machine that operates according to the target construction plane.
  • Machine control technology for assisting operator operations is known.
  • GNSS Global Navigation Satellite System
  • the purpose of the present disclosure is to calculate the position and azimuth angle of the work machine when GNSS positioning failure occurs.
  • a control system for a work machine including a traveling body and a revolving body, wherein the revolving body is controlled based on images of a plurality of targets installed outside the work machine and the inclination angle of the revolving body.
  • a work machine control system includes a position/orientation calculator that calculates a position and an azimuth angle.
  • the position and azimuth angle of the work machine are calculated when GNSS positioning failure occurs.
  • FIG. 1 is a perspective view showing a work machine according to the embodiment.
  • FIG. 2 is a schematic diagram showing the working machine according to the embodiment.
  • FIG. 3 is a diagram showing a cab of the work machine according to the embodiment.
  • FIG. 4 is a block diagram showing the control system of the work machine according to the embodiment.
  • FIG. 5 is a schematic diagram for explaining a calculation mode of the position and azimuth angle of the revolving body according to the embodiment.
  • FIG. 6 is a diagram illustrating a plurality of targets installed at a work site according to the embodiment;
  • FIG. 7 is a diagram showing a target according to the embodiment.
  • FIG. 8 is a flowchart showing a method of calculating the position and azimuth angle of the revolving body according to the embodiment.
  • FIG. 1 is a perspective view showing a work machine according to the embodiment.
  • FIG. 2 is a schematic diagram showing the working machine according to the embodiment.
  • FIG. 3 is a diagram showing a
  • FIG. 9 is a schematic diagram for explaining a method of calculating the position and azimuth angle of the revolving body according to the embodiment.
  • FIG. 10 is a schematic diagram for explaining a method of calculating the position and azimuth angle of the revolving body according to the embodiment.
  • FIG. 11 is a flowchart showing a method of calculating the position and azimuth angle of the revolving body after the revolving body performs a revolving motion according to the embodiment.
  • FIG. 12 is a flowchart showing a method of correcting calculation results of the position and azimuth angle of the revolving body according to the embodiment.
  • FIG. 13 is a block diagram of a computer system according to the embodiment.
  • FIG. 1 is a perspective view showing a work machine 1 according to an embodiment.
  • FIG. 2 is a schematic diagram showing the working machine 1 according to the embodiment.
  • FIG. 3 is a diagram showing the cab 2 of the work machine 1 according to the embodiment.
  • the work machine 1 operates at the work site.
  • work machine 1 is a hydraulic excavator.
  • the work machine 1 is appropriately called the hydraulic excavator 1 .
  • the hydraulic excavator 1 includes a traveling body 3, a revolving body 4, a working machine 5, a hydraulic cylinder 6, an operating device 7, an on-vehicle monitor 8, a position sensor 9, an inclination sensor 10, an imaging device 11, and a controller 12 .
  • a three-dimensional site coordinate system (Xg, Yg, Zg) is defined at the work site.
  • a three-dimensional vehicle body coordinate system (Xm, Ym, Zm) is defined for the revolving body 4 .
  • a three-dimensional camera coordinate system (Xc, Yc, Zc) is defined in the imaging device 11 .
  • the site coordinate system is composed of the Xg axis extending north and south from the site reference point Og defined for the work site, the Yg axis extending east and west from the site reference point Og, and the Zg axis extending vertically from the site reference point Og.
  • the vehicle body coordinate system includes an Xm axis extending in the longitudinal direction of the revolving structure 4 from a representative point Om defined on the revolving structure 4, a Ym axis extending in the lateral direction of the revolving structure 4 from the representative point Om, and a Ym axis extending in the lateral direction of the revolving structure 4 from the representative point Om. Zm axis extending in the vertical direction.
  • the +Xm direction is the front of the revolving structure 4
  • the -Xm direction is the rear of the revolving structure 4
  • the +Ym direction is the left of the revolving structure 4
  • the -Ym direction is It is to the right of the revolving body 4
  • the +Zm direction is above the revolving body 4
  • the ⁇ Zm direction is below the revolving body 4 .
  • the camera coordinate system includes an Xc axis extending in the width direction of the camera 13 from the optical center Oc of one camera 13 constituting the imaging device 11, a Yc axis extending in the vertical direction of the camera 13 from the optical center Oc, and a camera It is composed of the Zc axis extending in the direction parallel to the optical axis of the 13 optical system.
  • the traveling body 3 travels while supporting the revolving body 4 .
  • the running body 3 has a pair of crawler belts 3A. Rotation of crawler belt 3A causes traveling body 3 to travel.
  • the running motion of the running body 3 includes forward motion and backward motion.
  • the hydraulic excavator 1 can move around the work site by means of the traveling body 3 .
  • the revolving body 4 is supported by the traveling body 3.
  • the revolving body 4 is arranged above the running body 3 .
  • the revolving body 4 revolves around the revolving axis RX while being supported by the traveling body 3 .
  • the pivot axis RX is parallel to the Zm axis.
  • the turning motion of the turning body 4 includes a left turning motion and a right turning motion.
  • the cab 2 is provided in the revolving body 4 .
  • the working machine 5 is supported by the revolving body 4 .
  • the work machine 5 performs work.
  • the work performed by the work machine 5 includes an excavation work of excavating an excavation target and a loading work of loading the excavated material onto a loading target.
  • the work implement 5 includes a boom 5A, an arm 5B, and a bucket 5C.
  • a base end portion of the boom 5A is rotatably connected to a front portion of the revolving body 4 .
  • the base end of the arm 5B is rotatably connected to the tip of the boom 5A.
  • the base end of the bucket 5C is rotatably connected to the tip of the arm 5B.
  • the hydraulic cylinder 6 operates the working machine 5 .
  • the hydraulic cylinders 6 include a boom cylinder 6A, an arm cylinder 6B, and a bucket cylinder 6C.
  • the boom cylinder 6A raises and lowers the boom 5A.
  • the arm cylinder 6B causes the arm 5B to excavate and dump.
  • the bucket cylinder 6C causes the bucket 5C to excavate and dump.
  • a base end portion of the boom cylinder 6A is connected to the revolving body 4 .
  • a tip portion of the boom cylinder 6A is connected to the boom 5A.
  • a base end of the arm cylinder 6B is connected to the boom 5A.
  • a tip of the arm cylinder 6B is connected to the arm 5B.
  • a base end of the bucket cylinder 6C is connected to the arm 5B.
  • a tip of the bucket cylinder 6C is connected to the bucket 5C.
  • the operating device 7 is arranged in the driver's cab 2 .
  • the operation device 7 is operated to operate at least one of the traveling body 3, the revolving body 4, and the working machine 5.
  • the operating device 7 is operated by an operator in the operator's cab 2 .
  • the operator can operate the operating device 7 while seated on the operator's seat 14 arranged in the operator's cab 2 .
  • the operating device 7 includes a left working lever 7A and a right working lever 7B operated to operate the revolving body 4 and the working machine 5, and a left traveling lever 7C and a right traveling lever operated to operate the traveling body 3. 7D, a left foot pedal 7E and a right foot pedal 7F.
  • the arm 5B By operating the left working lever 7A in the front-rear direction, the arm 5B performs a dump operation or an excavation operation.
  • the revolving body 4 By operating the left working lever 7A in the left-right direction, the revolving body 4 is operated to turn left or right.
  • the bucket 5C By operating the right working lever 7B in the left-right direction, the bucket 5C performs an excavation operation or a dump operation.
  • the boom 5A is lowered or raised.
  • the revolving body 4 rotates to the right or left. You may
  • the crawler belt 3A on the left side of the traveling body 3 moves forward or backward.
  • the crawler belt 3A on the right side of the traveling body 3 moves forward or backward.
  • the left foot pedal 7E is interlocked with the left travel lever 7C.
  • the right foot pedal 7F is interlocked with the right traveling lever 7D.
  • the traveling body 3 may be moved forward or backward by operating the left foot pedal 7E and the right foot pedal 7F.
  • the in-vehicle monitor 8 is arranged in the driver's cab 2.
  • the in-vehicle monitor 8 is arranged on the front right side of the driver's seat 14 .
  • the in-vehicle monitor 8 has a display device 8A and an input device 8B.
  • the display device 8A displays prescribed display data.
  • the display device 8A is exemplified by a flat panel display such as a liquid crystal display (LCD) or an organic electroluminescence display (OELD).
  • LCD liquid crystal display
  • OELD organic electroluminescence display
  • the input device 8B generates input data by being operated by an operator.
  • a button switch, a computer keyboard, and a touch panel are exemplified as the input device 8B.
  • the position sensor 9 detects the position in the field coordinate system.
  • the position sensor 9 detects the position in the field coordinate system using the global navigation satellite system (GNSS).
  • the Global Navigation Satellite System includes the Global Positioning System (GPS). Global navigation satellite systems detect positions defined by latitude, longitude, and altitude coordinate data.
  • the position sensor 9 includes a GNSS receiver that receives GNSS radio waves from GNSS satellites.
  • a position sensor 9 is arranged on the revolving body 4 . In an embodiment the position sensor 9 is arranged in the counterweight of the rotating bed 4 .
  • the position sensor 9 includes a first position sensor 9A and a second position sensor 9B.
  • the first position sensor 9A and the second position sensor 9B are arranged at different positions on the revolving body 4 .
  • the first position sensor 9A and the second position sensor 9B are arranged in the revolving body 4 with an interval in the left-right direction.
  • the first position sensor 9A detects a first positioning position indicating the position where the first position sensor 9A is arranged.
  • the second position sensor 9B detects a second positioning position indicating the position where the second position sensor 9B is arranged.
  • the tilt sensor 10 detects the acceleration and angular velocity of the revolving body 4 .
  • the tilt sensor 10 includes an inertial measurement unit (IMU: Inertial Measurement Unit).
  • IMU Inertial Measurement Unit
  • the tilt sensor 10 is arranged on the revolving body 4 . In the embodiment, the tilt sensor 10 is installed below the driver's cab 2 .
  • the imaging device 11 images the front of the revolving body 4 .
  • the imaging device 11 is arranged on the revolving body 4 .
  • the imaging device 11 is arranged above the driver's cab 2 .
  • the imaging device 11 includes multiple cameras 13 .
  • Camera 13 includes an optical system and an image sensor that receives light via the optical system.
  • a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor is exemplified.
  • Camera 13 includes camera 13A, camera 13B, camera 13C, and camera 13D.
  • a pair of cameras 13 constitute a stereo camera 15 .
  • a pair of cameras 13A and 13C constitute a first stereo camera 15A.
  • a pair of cameras 13B and 13D constitute a second stereo camera 15B.
  • the cameras 13A and 13C of the stereo camera 15A are arranged with an interval in the horizontal direction of the revolving body 4.
  • the cameras 13B and 13D of the stereo camera 15B are arranged with an interval in the horizontal direction of the revolving body 4 .
  • the optical axes of the optical systems of cameras 13A and 13C are substantially parallel to the Xg axis.
  • the optical axes of the optical systems of cameras 13B and 13D are inclined downward toward the front of revolving body 4 .
  • FIG. 4 is a block diagram showing the control system 30 of the work machine 1 according to the embodiment.
  • the hydraulic excavator 1 has a control system 30 .
  • the control system 30 has an in-vehicle monitor 8 , a position sensor 9 , an inclination sensor 10 , an imaging device 11 and a control device 12 .
  • the control device 12 controls the hydraulic excavator 1 .
  • Controller 12 includes a computer system.
  • the control device 12 includes a storage unit 16, a first position/orientation calculation unit 17, a second position/orientation calculation unit 18, an inclination angle calculation unit 19, a switching unit 20, a three-dimensional data calculation unit 21, and a display control unit. It has a section 22 and a correction section 23 .
  • the storage unit 16 stores prescribed storage data.
  • the storage unit 16 stores target data relating to a target 24, which will be described later.
  • a plurality of targets 24 are installed outside the hydraulic excavator 1 .
  • the target data includes three-dimensional positions of each of the multiple targets 24 .
  • the target data includes correlation data indicating the relationship between identification data defined by identification marks 27 of target 24 and the three-dimensional position of target 24 .
  • the first position/azimuth calculator 17 calculates the position and azimuth angle of the revolving structure 4 in the field coordinate system based on the detection data of the position sensor 9 .
  • the position sensor 9 includes a GNSS receiver for receiving GNSS radio waves.
  • the first position/azimuth calculator 17 calculates the position and azimuth angle of the revolving body 4 based on the GNSS radio waves.
  • the azimuth angle of the revolving body 4 is, for example, the azimuth angle of the revolving body 4 based on the Xg axis.
  • the first position/orientation calculator 17 calculates the position of the revolving structure 4 based on at least one of the first measured position detected by the first position sensor 9A and the second measured position detected by the second position sensor 9B. do.
  • the first position/orientation calculator 17 calculates the azimuth angle of the revolving structure 4 based on the relative position between the first measured position detected by the first position sensor 9A and the second measured position detected by the second position sensor 9B. Calculate
  • the second position/azimuth calculation unit 18 calculates the position and azimuth angle of the revolving body 4 in the field coordinate system based on the image acquired by the imaging device 11 .
  • multiple targets 24 are installed outside the excavator 1 .
  • the imaging device 11 images the target 24 .
  • the second position/orientation calculator 18 acquires images of a plurality of targets 24 from the imaging device 11 .
  • the second position/orientation calculator 18 calculates the position and azimuth angle of the revolving superstructure 4 based on images of a plurality of targets 24 installed outside the hydraulic excavator 1 .
  • the tilt angle calculator 19 calculates the tilt angle of the revolving body 4 based on the detection data of the tilt sensor 10 .
  • the inclination angle of the revolving body 4 includes the roll angle and pitch angle of the revolving body 4 .
  • the roll angle is the tilt angle of the revolving body 4 in the tilt direction about the Xg axis.
  • the pitch angle is the tilt angle of the revolving body 4 in the tilt direction about the Yg axis.
  • the tilt angle calculator 19 calculates the roll angle and pitch angle of the revolving structure 4 based on the detection data of the tilt sensor 10 .
  • the switching unit 20 has a first calculation mode in which the first position/orientation calculation unit 17 calculates the position and azimuth angle of the revolving structure 4 , and a second calculation mode in which the second position/orientation calculation unit 18 calculates the position and azimuth angle of the revolving structure 4 . 2 to switch between calculation modes.
  • the three-dimensional data calculation unit 21 calculates the distance between the stereo camera 15 and the imaging target based on a set of images captured by the stereo camera 15 .
  • An excavation target to be excavated by the work machine 5 is exemplified as an imaging target.
  • the three-dimensional data calculation unit 21 calculates three-dimensional data of the imaging target by stereo-processing images of the same imaging target captured by the set of cameras 13 of the stereo camera 15 .
  • the three-dimensional data calculator 21 calculates three-dimensional data in the camera coordinate system.
  • the display control unit 22 controls the display device 8A of the in-vehicle monitor 8.
  • the display control unit 22 causes the display device 8A to display prescribed display data.
  • the correction unit 23 corrects the error of the tilt sensor 10.
  • FIG. 5 is a schematic diagram for explaining a calculation mode of the position and azimuth angle of the revolving body 4 according to the embodiment.
  • the position and azimuth angle of the revolving superstructure 4 are calculated by at least one of the first calculation mode and the second calculation mode.
  • the position of the revolving superstructure 4 includes the position of the representative point Om of the revolving superstructure 4 in the site coordinate system.
  • the azimuth angle of the revolving structure 4 includes the azimuth angle of the vehicle body coordinate system based on the representative point Om of the revolving structure 4 in the field coordinate system.
  • the first calculation mode is a calculation mode for calculating the position and azimuth angle of the revolving body 4 based on GNSS radio waves.
  • the first position/orientation calculator 17 calculates the position and azimuth angle of the revolving body 4 based on the detection data of the position sensor 9 .
  • the second calculation mode is a calculation mode for calculating the position and azimuth angle of the revolving body 4 based on the images of the multiple targets 24 .
  • the second position/azimuth calculator 18 calculates the position and azimuth angle of the revolving body 4 based on the image of the target 24 captured by the imaging device 11 .
  • Poor GNSS positioning includes degraded GNSS positioning accuracy and no positioning. Poor GNSS positioning is exemplified by insufficient strength of GNSS radio waves received by the position sensor 9 or multipath of GNSS radio waves.
  • the multipath of GNSS radio waves means that GNSS radio waves transmitted from GNSS satellites are reflected by the ground, buildings, etc., or reflected or refracted in the ionosphere, and the position sensor 9 receives GNSS radio waves from multiple transmission paths. A phenomenon in which an error occurs in the detected position due to reception.
  • the position and azimuth angle of the revolving body 4 are calculated in the first calculation mode.
  • the position and azimuth angle of the revolving superstructure 4 are calculated in the second calculation mode.
  • the switching unit 20 switches between the first calculation mode and the second calculation mode based on the reception status of GNSS radio waves.
  • the first position/orientation calculation unit 17 can determine whether the reception status of GNSS radio waves is good or bad.
  • the first position/orientation calculator 17 can determine, for example, the strength of the GNSS radio waves.
  • the switching unit 20 switches between the first calculation mode and the second calculation mode based on the reception status of GNSS radio waves by the position sensor 9 .
  • the switching unit 20 switches between the first calculation mode and the second calculation mode based on whether the first position/orientation calculation unit 17 can calculate the position and the azimuth angle of the revolving structure 4 .
  • the first position/azimuth calculator 17 when the GNSS radio wave intensity is insufficient and the GNSS radio wave reception condition is poor, there is a high possibility that the first position/azimuth calculator 17 will be unable to calculate the position and azimuth angle of the revolving body 4 .
  • the first position/orientation calculator 17 when the GNSS radio wave intensity is sufficient and the GNSS radio wave reception condition is good, the first position/orientation calculator 17 is likely to be able to calculate the position and azimuth angle of the revolving body 4 .
  • the switching unit 20 switches from the first calculation mode to the second calculation mode when the GNSS radio wave reception condition changes from a good state to a poor state. Further, when the first position/orientation calculation section 17 changes from a state in which the position and azimuth angle of the revolving structure 4 can be calculated to a state in which the calculation is not possible, the switching section 20 switches from the first calculation mode to the second calculation mode. .
  • the switching unit 20 switches from the second calculation mode to the first calculation mode when the GNSS radio wave reception condition changes from poor to good. Further, when the first position/orientation calculation section 17 changes from a state in which the position and azimuth angle of the revolving structure 4 cannot be calculated to a state in which the calculation is possible, the switching section 20 switches from the second calculation mode to the first calculation mode. .
  • the display control unit 22 causes the display device 8A to display the reception status of GNSS radio waves. As shown in FIG. 5, when the GNSS radio wave reception condition changes from a good state to a poor state, the display control unit 22 causes the display device 8A to display that the GNSS radio wave reception condition is poor. good. Based on the display data displayed on the display device 8A, the operator can recognize that the GNSS radio wave reception condition is poor. In the embodiment, switching from the first calculation mode to the second calculation mode may be performed based on the operation of the input device 8B by the operator. The operator who recognizes that the GNSS radio wave reception condition is poor operates the input device 8B to generate input data for switching from the first calculation mode to the second calculation mode. The switching unit 20 switches from the first calculation mode to the second calculation mode based on the input data from the input device 8B.
  • the display control unit 22 may cause the display device 8A to display that the first calculation mode has been switched to the second calculation mode. This allows the operator to recognize that the first calculation mode has been switched to the second calculation mode.
  • the display control unit 22 causes the display device 8A to display that the reception status of GNSS radio waves is good.
  • the operator can recognize that the GNSS radio wave reception condition is good based on the display data displayed on the display device 8A.
  • Switching from the second calculation mode to the first calculation mode may be performed based on the operation of the input device 8B by the operator.
  • the operator who recognizes that the GNSS radio wave reception condition is good operates the input device 8B to generate input data for switching from the second calculation mode to the first calculation mode.
  • the switching unit 20 switches from the second calculation mode to the first calculation mode based on the input data from the input device 8B.
  • the display control unit 22 may cause the display device 8A to display that the second calculation mode has been switched to the first calculation mode. This allows the operator to recognize that the second calculation mode has been switched to the first calculation mode.
  • FIG. 6 is a diagram showing the target 24 installed at the work site according to the embodiment.
  • the target 24 is arranged outside the hydraulic excavator 1 at the work site.
  • a plurality of targets 24 are arranged around the hydraulic excavator 1 at the work site.
  • Target 24 includes a mark drawn on display board 25 .
  • a ground plate 26 is fixed to the bottom end of the display plate 25 .
  • the display plate 25 is placed on the work site ground via the ground plate 26 .
  • the display board 25 should just be fixed to the work site.
  • Targets 24 may be affixed, for example, to structures at a work site.
  • the target 24 may be erected at the work site using members such as stakes.
  • FIG. 7 is a diagram showing the target 24 according to the embodiment.
  • Target 24 includes an identification mark 27 and a radiation mark 28 arranged around identification mark 27 .
  • Identification mark 27 includes identification data for identifying target 24 .
  • identification mark 27 includes a two-dimensional barcode that identifies target 24 .
  • a reference point Ot is defined on the target 24 .
  • a radial mark 28 extends radially from a reference point Ot of the target 24 .
  • Radial mark 28 has a plurality of lines 28A extending radially from reference point Ot of target 24 .
  • Line 28A includes the edge of radial mark 28.
  • FIG. A reference point Ot of the target 24 is defined at the intersection of the multiple lines 28A.
  • the position of the target 24 is surveyed by a surveying instrument.
  • the survey instrument measures the three-dimensional position of the target 24 in the field coordinate system.
  • the three-dimensional position of target 24 includes the three-dimensional position of reference point Ot.
  • the surveying instrument measures the three-dimensional position of the reference point Ot.
  • the three-dimensional positions of each of the multiple targets 24 measured by the surveying instrument are stored in the storage unit 16 .
  • the storage unit 16 stores correlation data indicating the relationship between the identification data of the target 24 defined by the identification mark 27 and the three-dimensional position of the target 24 measured by the surveying instrument.
  • FIG. 8 is a flowchart showing a method of calculating the position and azimuth angle of the revolving body 4 according to the embodiment.
  • FIG. 9 is a schematic diagram for explaining a method of calculating the position and azimuth angle of the revolving body 4 according to the embodiment.
  • the second position/orientation calculator 18 calculates the position and azimuth angle of the revolving superstructure 4 based on the images of the plurality of targets 24 and the tilt angle of the revolving superstructure 4 .
  • the second position/orientation calculator 18 acquires images of a plurality of targets 24 from the imaging device 11 .
  • the second position/orientation calculator 18 acquires the tilt angle of the revolving body 4 from the tilt angle calculator 19 .
  • the inclination angle of the revolving superstructure 4 includes the roll angle and pitch angle of the revolving superstructure 4 .
  • a plurality of targets 24 are imaged by the imaging device 11 .
  • the imaging device 11 simultaneously images a plurality of targets 24 .
  • three targets 24 are imaged simultaneously by the imaging device 11 .
  • the second position/orientation calculator 18 acquires the images 29 of the three targets 24 captured by the imaging device 11 (step SA1).
  • three targets 24 are arranged in one image 29.
  • the second position/orientation calculator 18 identifies the target 24 based on the identification data defined by the identification mark 27 of the target 24 (step SA2).
  • the second position/orientation calculator 18 identifies the target 24 based on the identification mark 27 in the image 29 .
  • the second position/orientation calculation unit 18 acquires the three-dimensional position of the target 24 from the storage unit 16 based on the identification mark 27 in the image 29 and the correlation data stored in the storage unit 16 (step SA3).
  • the three-dimensional position of the target 24 is measured in advance by a surveying instrument and stored in the storage unit 16.
  • the storage unit 16 also pre-stores correlation data indicating the relationship between the identification data defined by the identification mark 27 of the target 24 and the three-dimensional position of the target 24 . Therefore, the second position/orientation calculator 18 can acquire the three-dimensional position of the target 24 based on the identification mark 27 in the image 29 and the correlation data stored in the storage unit 16 .
  • the second position/orientation calculator 18 acquires the two-dimensional position of the target 24 in the image 29 (step SA4).
  • the two-dimensional position of the target 24 in the image 29 includes the two-dimensional position of the reference point Ot defined on the target 24.
  • target 24 has radial marks 28 that include lines 28A.
  • the second position/orientation calculator 18 calculates the two-dimensional position of the reference point Ot in the image 29 based on the radiation mark 28 in the image 29 .
  • the second position/orientation calculator 18 can calculate the two-dimensional position of the reference point Ot in the image 29 with high accuracy based on the radiation mark 28 .
  • the reference point Ot in the image 29 is appropriately called the reference point Oti.
  • the tilt angle calculation unit 19 acquires the detection data of the tilt sensor 10 when the target 24 is being imaged, and calculates the pitch angle and roll angle of the revolving body 4 when the target 24 is being imaged.
  • the second position/orientation calculator 18 acquires the roll angle and pitch angle of the revolving body 4 when the target 24 is being imaged from the tilt angle calculator 19 (step SA5).
  • the second position/orientation calculator 18 calculates the three-dimensional positions of the three targets 24 acquired in step SA3, the two-dimensional positions of the targets 24 in the image 29 acquired in step SA4, and the roll of the revolving structure 4 acquired in step SA5. Based on the angle and pitch angle, the position and azimuth angle of the camera 13 in the field coordinate system are calculated (step SA6).
  • the second position/azimuth calculator 18 calculates the position and azimuth angle of the camera 13 in the field coordinate system based on the bundle method, which is a kind of block adjustment method in aerial triangulation.
  • Aerial triangulation refers to the use of collinear conditions that indicate the straightness of light and the geometrical properties of aerial photography, based on the coordinates of a known reference point Ot, to measure multiple is a method of calculating the imaging position and imaging direction of each of the images 29 of .
  • the second position/orientation calculation unit 18 calculates the three-dimensional positions of the three reference points Ot, the two-dimensional position of the reference point Oti in the image 29, The roll angle and pitch angle of the revolving body 4 are acquired.
  • the three-dimensional position of the reference point Ot is the three-dimensional position in the field coordinate system.
  • a two-dimensional position of the reference point Oti is a two-dimensional position in the image coordinate system defined in the image 29 .
  • the image coordinate system is represented by a uv coordinate system with the upper left corner of the image 29 as the origin, the u axis in the horizontal direction, and the v axis in the vertical direction.
  • the two-dimensional position of reference point Oti serves as a pass point for joining overlapping portions of multiple images 29 .
  • the three-dimensional position of the reference point Ot in the field coordinate system is P (X, Y, Z)
  • the three-dimensional position of the reference point Ot in the camera coordinate system is Pc (Xc, Yc, Zc)
  • the reference point in the image coordinate system The two-dimensional position of Oti is p (x, y)
  • the position of the optical center Oc in the field coordinate system is O (Xo, Yo, Zo)
  • the rotation matrix indicating the orientation of the camera 13 in the field coordinate system is R
  • the internal parameter matrix is k
  • the second position/orientation calculator 18 converges the three-dimensional positions of the three reference points Ot, the two-dimensional position of the reference point Oti in the image 29, and the roll angle and pitch angle of the revolving body 4 based on the bundle method. By calculating, the position and azimuth angle of the camera 13 in the field coordinate system can be calculated.
  • the second position/azimuth calculator 18 calculates the position and azimuth angle of the revolving body 4 in the field coordinate system based on the position and azimuth angle of the camera 13 calculated in step SA6 (step SA7).
  • the relative position between the optical center Oc of the camera 13 and the representative point Om of the revolving body 4 is known.
  • a transformation matrix for transforming the vehicle body coordinate system based on the representative point Om defined on the revolving body 4 and the camera coordinate system based on the optical center Oc of the camera 13 is known. Therefore, the second position/azimuth calculator 18 calculates the position and azimuth of the camera 13 in the field coordinate system based on the bundle method using the image 29 of the target 24, and calculates the position and azimuth of the camera 13 based on the transformation matrix. and the azimuth angle, the position and azimuth angle of the revolving superstructure 4 in the field coordinate system can be calculated.
  • step SA1 to step SA7 The processing from step SA1 to step SA7 described above is performed when the target 24 is imaged.
  • the position and azimuth angle of the revolving structure 4 are to be calculated after the traveling structure 3 has traveled, the above-described steps SA1 to SA7 are executed again.
  • step SA1 to step SA7 may not be imaged, and at least two targets 24 may be imaged.
  • the second position/orientation calculation unit 18 can calculate the position and azimuth angle of the rotating body 4 based on the image 29 of at least one target 24 without using at least two targets 24 .
  • FIG. 10 is a schematic diagram for explaining a method of calculating the position and azimuth angle of the revolving body 4 according to the embodiment.
  • the second position/azimuth calculation unit 18 moves the revolving superstructure 4 from the first direction D1 to the second direction D2.
  • the position and azimuth angle of the revolving body 4 can be calculated based on the image 29 of at least one target 24 captured by the imaging device 11 .
  • the second position/azimuth calculation unit 18 calculates the azimuth angle of the revolving body 4 before the revolving movement calculated using at least two targets 24 existing in the first direction D1, and one target 24 existing in the second direction D2.
  • a turning angle ⁇ is calculated based on the image 29 of the target 24, the roll angle and pitch angle of the turning body 4 before turning, and the roll angle and pitch angle of the turning body 4 after turning.
  • the second position/orientation calculator 18 calculates the turning angle ⁇ , based on the azimuth angle and turning angle ⁇ of the turning body 4 calculated using at least two targets 24 . 4 can be calculated. Further, when the traveling body 3 is not running, the position of the turning axis RX does not change. can be done.
  • the second position/orientation calculator 18 also calculates at least two images 29 of the target 24 captured by the imaging device 11 before the revolving body 4 performs the revolving motion, and images of the revolving body 4 before the revolving body 4 performs the revolving motion.
  • the position of the turning axis RX, the azimuth angle of the turning body 4 before the turning movement of the turning body 4, and the azimuth angle of the turning body 4 after the turning movement of the turning body 4 are calculated simultaneously.
  • the second position/orientation calculator 18 can calculate the turning angle ⁇ based on the data detected by the tilt sensor 10 .
  • tilt sensor 10 includes an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • An inertial measurement unit (IMU) functions as a turning sensor that detects turning of the turning body 4 .
  • the second position/orientation calculator 18 can calculate the turning angle ⁇ based on the detection data of an inertial measurement unit (IMU).
  • the second position/orientation calculation unit 18 when the revolving superstructure 4 does not travel but makes a revolving motion, Based on the detection data of the tilt sensor 10 that detects the turning of the turning body 4, the position and azimuth angle of the turning body 4 after turning operation can be calculated.
  • FIG. 11 is a flow chart showing a method of calculating the position and azimuth angle of the revolving body 4 after the revolving body 4 performs a revolving motion according to the embodiment.
  • the second position/orientation calculation unit 18 determines whether or not the imaging device 11 has captured an image of the target 24 . That is, the second position/orientation calculator 18 determines whether or not an image of at least one target 24 has been acquired after the swinging body 4 has swung (step SB1).
  • step SB1 When it is determined in step SB1 that at least one image of the target 24 has been acquired (step SB1: Yes), the second position/orientation calculation unit 18 calculates the image 29 of the at least one target 24 and the turning motion before the turning motion. Based on the roll angle and pitch angle of the revolving body 4 and the roll angle and pitch angle of the revolving body 4 after revolving motion, the azimuth angle of the revolving body 4 after revolving motion is calculated (step SB2).
  • step SB3 If it is determined in step SB1 that an image of at least one target 24 cannot be acquired (step SB1: No), the second position/orientation calculation unit 18 calculates a to calculate the position and azimuth angle of the revolving body 4 after the revolving motion (step SB3).
  • the first position/orientation calculation unit 17 cannot calculate the position and azimuth angle of the revolving body 4, and the imaging device 11 images at least two targets 24 before the revolving body 4 performs a revolving motion.
  • the second position/orientation calculator 18 calculates the position and azimuth angle of the revolving superstructure 4 based on the images 29 of at least two targets 24 and the tilt angle of the revolving superstructure 4 .
  • the second position/orientation calculation unit 18 is an image sensor 18 of the revolving superstructure 4 based on at least one image 29 of the target 24 acquired by the imaging device 11 after the revolving superstructure 4 performs a revolving motion or detection data of the tilt sensor 10 after the revolving superstructure 4 performs a revolving motion.
  • Position and azimuth can be calculated.
  • the corrector 23 corrects the error of the tilt sensor 10 .
  • the position and azimuth angle of the revolving superstructure 4 cannot be calculated based on the detection data of the position sensor 9 after the revolving superstructure 4 turns without the traveling superstructure 3 running, and at least one If the position and azimuth angle of the revolving body 4 cannot be calculated based on the images 29 of the two targets 24, the second position and azimuth calculation unit 18 calculates, based on the detection data of the tilt sensor 10 including the IMU, the revolving motion after the revolving motion.
  • the position and azimuth of body 4 can be calculated.
  • the acceleration detected by the tilt sensor 10 is double-integrated over time.
  • the azimuth angle of the revolving superstructure 4 is calculated by calculating the position and integrating the angular velocity detected by the tilt sensor 10 over time.
  • the data detected by the tilt sensor 10 is integrated, there is a possibility that cumulative errors will occur in the calculation results of the position and azimuth angle of the revolving superstructure 4 due to integration and addition. That is, there is a possibility that errors due to integration of acceleration or angular velocity accumulate and the accuracy of calculation of the position and azimuth angle of the revolving structure 4 decreases.
  • the correction unit 23 calculates the can be used to correct errors in the position and azimuth angle of the revolving body 4 .
  • the correction unit 23 causes the second position/orientation calculator 18 to calculate Based on the results, errors in the position and azimuth of the pivot 4 can be corrected.
  • FIG. 12 is a flowchart showing a method for correcting the calculation results of the position and azimuth angle of the revolving body 4 according to the embodiment.
  • the switching unit 20 determines whether or not the first position/orientation calculation unit 17 is in a state capable of calculating the azimuth angle of the revolving body 4 (step SC1).
  • step SC1 When it is determined in step SC1 that the first position/orientation calculation unit 17 is in a state capable of calculating the azimuth angle of the revolving structure 4 (step SC1: Yes), the correction unit 23 causes the first position/orientation calculation unit 17 to Based on the calculated azimuth angle of the revolving structure 4, errors in the position and azimuth angle of the revolving structure 4 are corrected (step SC2).
  • step SC1 When it is determined in step SC1 that the first position/orientation calculation section 17 is unable to calculate the azimuth angle of the revolving structure 4 (step SC1: No), the correction section 23 causes the second position/orientation calculation section 18 to Based on the azimuth angle of the revolving body 4 calculated by , the errors in the position and azimuth angle of the revolving body 4 are corrected (step SC3).
  • FIG. 13 is a block diagram showing a computer system 1000 according to an embodiment.
  • the controller 12 described above includes a computer system 1000 .
  • a computer system 1000 includes a processor 1001 such as a CPU (Central Processing Unit), a main memory 1002 including non-volatile memory such as ROM (Read Only Memory) and volatile memory such as RAM (Random Access Memory), It has a storage 1003 and an interface 1004 including an input/output circuit.
  • the functions of the control device 12 described above are stored in the storage 1003 as computer programs.
  • the processor 1001 reads a computer program from the storage 1003, develops it in the main memory 1002, and executes the above-described processing according to the program. Note that the computer program may be distributed to the computer system 1000 via a network.
  • a computer program or computer system 1000 acquires images of a plurality of targets 24 installed outside a hydraulic excavator 1 having a traveling structure 3 and a revolving structure 4, and calculates an inclination angle of the revolving structure 4 according to the above-described embodiment. and calculating the position and azimuth angle of the rotating bed 4 based on the images of the plurality of targets 24 and the tilt angle of the rotating bed 4 .
  • the three-dimensional position of the target 24 is acquired by the surveying instrument and stored in the storage unit 16 in advance. Based on the image 29 of the target 24 , the two-dimensional position of the target 24 in the image 29 is calculated by the second position/orientation calculator 18 . As a result, the second position/orientation calculator 18 calculates the position and azimuth angle of the revolving superstructure 4 based on the three-dimensional position of the target 24 , the two-dimensional position of the target 24 , and the tilt angle of the revolving superstructure 4 . be able to.
  • the position and azimuth angle of the camera 13 in the field coordinate system are calculated based on the three-dimensional position of the target 24, the two-dimensional position of the target 24, and the tilt angle of the revolving body 4.
  • the position and azimuth angle of the revolving body 4 are calculated by subjecting the position and azimuth angle of the camera 13 to coordinate transformation. Accordingly, after the position and azimuth angle of the camera 13 are calculated, the second position/azimuth calculator 18 can properly calculate the position and azimuth angle of the revolving body 4 based on the position and azimuth angle of the camera 13. can be done.
  • the three-dimensional position of the target 24 is the three-dimensional position of the reference point Ot defined on the target 24.
  • the two-dimensional position of target 24 in image 29 is the two-dimensional position of reference point Oti in image 29 defined on target 24 .
  • the target 24 includes radial marks 28 extending radially from a reference point Ot of the target 24 .
  • the radiation mark 28 suppresses deterioration in calculation accuracy of the two-dimensional position of the reference point Oti.
  • the target 24 includes identification marks 27 that identify the target 24 .
  • Correlation data indicating the relationship between the identification data of the target 24 defined by the identification mark 27 and the three-dimensional position of the target 24 measured by the surveying instrument is pre-stored in the storage unit 16 .
  • the second position/orientation calculation unit 18 refers to the correlation data stored in the storage unit 16 based on the identification mark 27 in the image 29, thereby calculating the three-dimensional position of the target 24 appearing in the image 29. can be obtained.
  • the tilt angle of the revolving superstructure 4 is calculated based on the detection data of the tilt sensor 10 arranged on the revolving superstructure 4 . As a result, the tilt angle of the revolving body 4 can be calculated with high accuracy.
  • the second position/orientation calculator 18 can efficiently calculate the position and azimuth angle of the revolving body 4 .
  • the second position/orientation calculating unit 18 can efficiently calculate the position and azimuth angle of the revolving structure 4 based on the detection data of the tilt sensor 10 capable of detecting the turning angle ⁇ without using the target 24 .
  • the second position/orientation calculator 18 calculates the position and azimuth angle of the camera 13 in the field coordinate system based on the three reference points Ot.
  • the second position/orientation calculator 18 may calculate the position and azimuth angle of the camera 13 in the field coordinate system based on at least two reference points Ot. That is, the second position/orientation calculation unit 18 converges to calculate the three-dimensional positions of at least two reference points Ot, the two-dimensional position of the reference point Oti in the image 29, and the roll angle and pitch angle of the revolving body 4.
  • the position and azimuth angle of the camera 13 in the field coordinate system may be calculated by .
  • the second position/orientation calculator 18 calculates the position and azimuth angle of the camera 13 in the field coordinate system, and calculates the position and azimuth angle of the revolving body 4 in the field coordinate system.
  • the second position/orientation calculator 18 may calculate the position and azimuth angle of the camera 13 in the vehicle body coordinate system, or may calculate the position and azimuth angle of the camera 13 in the camera coordinate system.
  • the second position/orientation calculator 18 may also calculate the position and azimuth angle of the revolving superstructure 4 in the vehicle body coordinate system, or may calculate the position and azimuth angle of the revolving superstructure 4 in the camera coordinate system.
  • the target 24 is imaged by the stereo camera 15.
  • Target 24 may be imaged by a monocular camera.
  • the in-vehicle monitor 8 has the display device 8A and the input device 8B.
  • a tablet terminal may have a display device 8A and an input device 8B. That is, the display device 8A and the input device 8B may be separated from the hydraulic excavator 1 .
  • the display device 8A and the input device 8B are arranged in the driver's cab 2 . Either or both of the display device 8A and the input device 8B may be arranged outside the cab 2 .
  • the reception status of GNSS radio waves is displayed on the display device 8A.
  • the display control unit 22 may cause the display device 8A to display recommendation display data that recommends switching between the first calculation mode and the second calculation mode, for example.
  • the display control unit 22 displays character data such as "It is recommended to switch from the first calculation mode to the second calculation mode.” may be displayed on the display device 8A.
  • the display control unit 22 displays character data such as "It is recommended to switch from the second calculation mode to the first calculation mode.” It may be displayed on the device 8A.
  • switching between the first calculation mode and the second calculation mode is performed based on the operator's operation of the input device 8B.
  • the reception status of GNSS radio waves may not be displayed on the display device 8A.
  • Switching between the first calculation mode and the second calculation mode may be automatically performed by the control device 12 .
  • the control device 12 For example, when the reception condition of GNSS radio waves changes from a good state to a bad state, the switching unit 20 automatically switches from the first calculation mode to the second calculation mode regardless of the input data from the input device 8B. You can switch. Further, when the reception condition of GNSS radio waves changes from a poor state to a favorable state, the switching unit 20 automatically switches from the second calculation mode to the first calculation mode regardless of the input data from the input device 8B. You can switch.
  • the display control unit 22 may cause the display device 8A to display that the first calculation mode and the second calculation mode have been switched. .
  • the storage unit 16 the first position/orientation calculation unit 17, the second position/orientation calculation unit 18, the tilt angle calculation unit 19, the switching unit 20, the three-dimensional data calculation unit 21, the display control unit 22, and the correction unit
  • Each of the units 23 may be configured by separate hardware.
  • the work machine 1 is a hydraulic excavator having the traveling body 3 and the revolving body 4.
  • the working machine 1 does not have to have the traveling body 3 and the revolving body 4 .
  • the working machine 1 may have a working machine, such as a bulldozer or a wheel loader.
  • SYMBOLS 1 Hydraulic excavator (working machine), 2... Driver's cab, 3... Traveling body, 3A... Crawler, 4... Rotating body, 5... Working machine, 5A... Boom, 5B... Arm, 5C... Bucket, 6... Hydraulic cylinder, 6A... boom cylinder, 6B... arm cylinder, 6C... bucket cylinder, 7... operating device, 7A... left working lever, 7B... right working lever, 7C... left travel lever, 7D... right travel lever, 7E... left foot pedal, 7F... right foot pedal, 8... in-vehicle monitor, 8A... display device, 8B... input device, 9... position sensor, 9A... first position sensor, 9B... second position sensor, 10...
  • tilt sensor 11... imaging device, DESCRIPTION OF SYMBOLS 12... Control apparatus, 13... Camera, 13A... Camera, 13B... Camera, 13C... Camera, 13D... Camera, 14... Driver's seat, 15... Stereo camera, 15A... Stereo camera, 15B... Stereo camera, 16... Storage part, 17 First position/orientation calculation unit 18 Second position/orientation calculation unit 19 Inclination angle calculation unit 20 Switching unit 21 Three-dimensional data calculation unit 22 Display control unit 23 Correction unit 24 Target 25 Display plate 26 Ground plate 27 Identification mark 28 Radiation mark 28A Line 29 Image 30 Control system 1000 Computer system 1001 Processor 1002 Main memory 1003... Storage, 1004... Interface, D1... First direction, D2... Second direction, Oc... Optical center, Ot... Reference point, Og... Field reference point, Om... Representative point, Oti... Reference point, RX... Pivot axis , ⁇ ... turning angle.

Abstract

走行体及び旋回体を備える作業機械の制御システムは、作業機械の外部に設置された複数のターゲットの画像と、旋回体の傾斜角とに基づいて、旋回体の位置及び方位角を算出する位置方位算出部を備える。

Description

作業機械の制御システム、作業機械、及び作業機械の制御方法
 本開示は、作業機械の制御システム、作業機械、及び作業機械の制御方法に関する。
 作業機械に係る技術分野において、特許文献1に開示されているような、目標施工面に基づいて掘削対象を掘削する技術が知られている。目標施工面に基づいて掘削対象を掘削する技術として、目標施工面と作業機との相対位置を示すガイダンス画像を作業機械のオペレータに提示するマシンガイダンス技術と、目標施工面に従って作業機が動作するようにオペレータの操作をアシスト制御するマシンコントロール技術とが知られている。
国際公開第2015/167022号
 目標施工面に基づいて掘削対象を掘削する場合、作業機械の位置及び方位角を算出する必要がある。作業機械の位置及び方位角は、全球測位衛星システム(GNSS:Global Navigation Satellite System)を利用して算出される。GNSSの測位不良が発生すると、作業機械の位置及び方位角を算出することが困難となる。
 本開示は、GNSSの測位不良が発生した場合において、作業機械の位置及び方位角を算出することを目的とする。
 本開示に従えば、走行体及び旋回体を備える作業機械の制御システムであって、作業機械の外部に設置された複数のターゲットの画像と、旋回体の傾斜角とに基づいて、旋回体の位置及び方位角を算出する位置方位算出部を備える、作業機械の制御システムが提供される。
 本開示によれば、GNSSの測位不良が発生した場合において、作業機械の位置及び方位角が算出される。
図1は、実施形態に係る作業機械を示す斜視図である。 図2は、実施形態に係る作業機械を示す模式図である。 図3は、実施形態に係る作業機械の運転室を示す図である。 図4は、実施形態に係る作業機械の制御システムを示すブロック図である。 図5は、実施形態に係る旋回体の位置及び方位角の算出モードを説明するための模式図である。 図6は、実施形態に係る作業現場に設置された複数のターゲットを示す図である。 図7は、実施形態に係るターゲットを示す図である。 図8は、実施形態に係る旋回体の位置及び方位角の算出方法を示すフローチャートである。 図9は、実施形態に係る旋回体の位置及び方位角の算出方法を説明するための模式図である。 図10は、実施形態に係る旋回体の位置及び方位角の算出方法を説明するための模式図である。 図11は、実施形態に係る旋回体が旋回動作した後の旋回体の位置及び方位角の算出方法を示すフローチャートである。 図12は、実施形態に係る旋回体の位置及び方位角の算出結果の補正方法を示すフローチャートである。 図13は、実施形態に係るコンピュータシステムを示すブロック図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[作業機械]
 図1は、実施形態に係る作業機械1を示す斜視図である。図2は、実施形態に係る作業機械1を示す模式図である。図3は、実施形態に係る作業機械1の運転室2を示す図である。
 作業機械1は、作業現場において稼働する。実施形態において、作業機械1は、油圧ショベルである。以下の説明において、作業機械1を適宜、油圧ショベル1、と称する。
 油圧ショベル1は、走行体3と、旋回体4と、作業機5と、油圧シリンダ6と、操作装置7と、車載モニタ8と、位置センサ9と、傾斜センサ10と、撮像装置11と、制御装置12とを備える。
 図2に示すように、作業現場に3次元の現場座標系(Xg,Yg,Zg)が規定される。旋回体4に3次元の車体座標系(Xm,Ym,Zm)が規定される。撮像装置11に3次元のカメラ座標系(Xc,Yc,Zc)が規定される。
 現場座標系は、作業現場に規定された現場基準点Ogから南北に伸びるXg軸、現場基準点Ogから東西に伸びるYg軸、及び現場基準点Ogから上下に伸びるZg軸により構成される。
 車体座標系は、旋回体4に規定された代表点Omから旋回体4の前後方向に伸びるXm軸、代表点Omから旋回体4の左右方向に伸びるYm軸、及び代表点Omから旋回体4の上下方向に伸びるZm軸により構成される。旋回体4の代表点Omを基準として、+Xm方向は旋回体4の前方であり、-Xm方向は旋回体4の後方であり、+Ym方向は旋回体4の左方であり、-Ym方向は旋回体4の右方であり、+Zm方向は旋回体4の上方であり、-Zm方向は旋回体4の下方である。
 カメラ座標系は、撮像装置11を構成する1つのカメラ13の光学中心Ocからカメラ13の幅方向に伸びるXc軸、光学中心Ocからカメラ13の上下方向に伸びるYc軸、及び光学中心Ocからカメラ13の光学系の光軸に平行な方向に伸びるZc軸により構成される。
 走行体3は、旋回体4を支持した状態で走行する。走行体3は、一対の履帯3Aを有する。履帯3Aの回転により、走行体3は、走行動作する。走行体3の走行動作は、前進動作及び後進動作を含む。油圧ショベル1は、走行体3により作業現場を移動することができる。
 旋回体4は、走行体3に支持される。旋回体4は、走行体3よりも上方に配置される。旋回体4は、走行体3に支持された状態で旋回軸RXを中心に旋回動作する。旋回軸RXは、Zm軸に平行である。旋回体4の旋回動作は、左旋回動作及び右旋回動作を含む。運転室2は、旋回体4に設けられる。
 作業機5は、旋回体4に支持される。作業機5は、作業を実施する。実施形態において、作業機5により実施される作業は、掘削対象を掘削する掘削作業及び掘削物を積込対象に積み込む積込作業を含む。
 作業機5は、ブーム5Aと、アーム5Bと、バケット5Cとを含む。ブーム5Aの基端部は、旋回体4の前部に回動可能に連結される。アーム5Bの基端部は、ブーム5Aの先端部に回動可能に連結される。バケット5Cの基端部は、アーム5Bの先端部に回動可能に連結される。
 油圧シリンダ6は、作業機5を動作させる。油圧シリンダ6は、ブームシリンダ6Aと、アームシリンダ6Bと、バケットシリンダ6Cとを含む。ブームシリンダ6Aは、ブーム5Aを上げ動作及び下げ動作させる。アームシリンダ6Bは、アーム5Bを掘削動作及びダンプ動作させる。バケットシリンダ6Cは、バケット5Cを掘削動作及びダンプ動作させる。ブームシリンダ6Aの基端部は、旋回体4に連結される。ブームシリンダ6Aの先端部は、ブーム5Aに連結される。アームシリンダ6Bの基端部は、ブーム5Aに連結される。アームシリンダ6Bの先端部は、アーム5Bに連結される。バケットシリンダ6Cの基端部は、アーム5Bに連結される。バケットシリンダ6Cの先端部は、バケット5Cに連結される。
 図3に示すように、操作装置7は、運転室2に配置される。操作装置7は、走行体3、旋回体4、及び作業機5の少なくとも一つを動作させるために操作される。操作装置7は、運転室2に搭乗したオペレータに操作される。オペレータは、運転室2に配置された運転シート14に着座した状態で、操作装置7を操作することができる。
 操作装置7は、旋回体4及び作業機5の動作のために操作される左作業レバー7A及び右作業レバー7Bと、走行体3の動作のために操作される左走行レバー7C及び右走行レバー7Dと、左フットペダル7E及び右フットペダル7Fとを含む。
 左作業レバー7Aが前後方向に操作されることにより、アーム5Bがダンプ動作又は掘削動作する。左作業レバー7Aが左右方向に操作されることにより、旋回体4が左旋回動作又は右旋回操作する。右作業レバー7Bが左右方向に操作されることにより、バケット5Cが掘削動作又はダンプ動作する。右作業レバー7Bが前後方向に操作されることにより、ブーム5Aが下げ動作又は上げ動作する。なお、左作業レバー7Aが前後方向に操作されたときに旋回体4が右旋回動作又は左旋回動作し、左作業レバー7Aが左右方向に操作されたときにアーム5Bがダンプ動作又は掘削動作してもよい。
 左走行レバー7Cが前後方向に操作されることにより、走行体3の左側の履帯3Aが前進動作又は後進動作する。右走行レバー7Dが前後方向に操作されることにより、走行体3の右側の履帯3Aが前進動作又は後進動作する。
 左フットペダル7Eは、左走行レバー7Cと連動する。右フットペダル7Fは、右走行レバー7D連動する。左フットペダル7E及び右フットペダル7Fが操作されることにより、走行体3が前進動作又は後進動作されてもよい。
 車載モニタ8は、運転室2に配置される。車載モニタ8は、運転シート14の右前方に配置される。車載モニタ8は、表示装置8Aと、入力装置8Bとを有する。
 表示装置8Aは、規定の表示データを表示する。表示装置8Aとして、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイが例示される。
 入力装置8Bは、オペレータに操作されることにより入力データを生成する。入力装置8Bとして、ボタンスイッチ、コンピュータ用キーボード、及びタッチパネルが例示される。
 位置センサ9は、現場座標系における位置を検出する。位置センサ9は、全球測位衛星システム(GNSS:Global Navigation Satellite System)を利用して現場座標系における位置を検出する。全地球航法衛星システムは、全地球測位システム(GPS:Global Positioning System)を含む。全地球航法衛星システムは、緯度、経度、及び高度の座標データで規定される位置を検出する。位置センサ9は、GNSS衛星からGNSS電波を受信するGNSS受信機を含む。位置センサ9は、旋回体4に配置される。実施形態において、位置センサ9は、旋回体4のカウンタウエイトに配置される。
 位置センサ9は、第1位置センサ9Aと、第2位置センサ9Bとを含む。第1位置センサ9Aと第2位置センサ9Bとは、旋回体4の異なる位置に配置される。実施形態において、第1位置センサ9Aと第2位置センサ9Bとは、旋回体4において左右方向に間隔をあけて配置される。第1位置センサ9Aは、第1位置センサ9Aが配置されている位置を示す第1測位位置を検出する。第2位置センサ9Bは、第2位置センサ9Bが配置されている位置を示す第2測位位置を検出する。
 傾斜センサ10は、旋回体4の加速度及び角速度を検出する。傾斜センサ10は、慣性計測装置(IMU:Inertial Measurement Unit)を含む。傾斜センサ10は、旋回体4に配置される。実施形態において、傾斜センサ10は、運転室2の下方に設置される。
 撮像装置11は、旋回体4の前方を撮像する。撮像装置11は、旋回体4に配置される。実施形態において、撮像装置11は、運転室2の上部に配置される。撮像装置11は、複数のカメラ13を含む。カメラ13は、光学系と、光学系を介して光を受光するイメージセンサとを含む。イメージセンサとして、CCD(Charge Coupled Device)センサ又はCMOS(Complementary Metal Oxide Semiconductor)センサが例示される。
 実施形態において、カメラ13は、4つ設けられる。カメラ13は、カメラ13Aと、カメラ13Bと、カメラ13Cと、カメラ13Dとを含む。1組のカメラ13によりステレオカメラ15が構成される。実施形態において、1組のカメラ13A,13Cにより第1のステレオカメラ15Aが構成される。1組のカメラ13B,13Dにより第2のステレオカメラ15Bが構成される。
 ステレオカメラ15Aのカメラ13Aとカメラ13Cとは、旋回体4の左右方向に間隔をあけて配置される。ステレオカメラ15Bのカメラ13Bとカメラ13Dとは、旋回体4の左右方向に間隔をあけて配置される。カメラ13A,13Cの光学系の光軸は、Xg軸に実質的に平行である。カメラ13B,13Dの光学系の光軸は、旋回体4の前方に向かって下方に傾斜する。
[制御システム]
 図4は、実施形態に係る作業機械1の制御システム30を示すブロック図である。油圧ショベル1は、制御システム30を備える。制御システム30は、車載モニタ8と、位置センサ9と、傾斜センサ10と、撮像装置11と、制御装置12とを有する。制御装置12は、油圧ショベル1を制御する。制御装置12は、コンピュータシステムを含む。
 制御装置12は、記憶部16と、第1位置方位算出部17と、第2位置方位算出部18と、傾斜角算出部19と、切換部20と、3次元データ算出部21と、表示制御部22と、補正部23とを有する。
 記憶部16は、規定の記憶データを記憶する。記憶部16は、後述するターゲット24に係るターゲットデータを記憶する。ターゲット24は、油圧ショベル1の外部に複数設置される。ターゲットデータは、複数のターゲット24のそれぞれの3次元位置を含む。ターゲットデータは、ターゲット24の識別マーク27により規定される識別データとターゲット24の3次元位置との関係を示す相関データを含む。
 第1位置方位算出部17は、位置センサ9の検出データに基づいて、現場座標系における旋回体4の位置及び方位角を算出する。上述のように、位置センサ9は、GNSS電波を受信するGNSS受信機を含む。第1位置方位算出部17は、GNSS電波に基づいて、旋回体4の位置及び方位角を算出する。旋回体4の方位角は、例えばXg軸を基準とする旋回体4の方位角である。
 第1位置方位算出部17は、第1位置センサ9Aにより検出される第1測位位置及び第2位置センサ9Bにより検出される第2測位位置の少なくとも一方に基づいて、旋回体4の位置を算出する。第1位置方位算出部17は、第1位置センサ9Aにより検出される第1測位位置と第2位置センサ9Bにより検出される第2測位位置との相対位置に基づいて、旋回体4の方位角を算出する。
 第2位置方位算出部18は、撮像装置11により取得された画像に基づいて、現場座標系における旋回体4の位置及び方位角を算出する。上述のように、油圧ショベル1の外部に複数のターゲット24が設置される。撮像装置11は、ターゲット24を撮像する。第2位置方位算出部18は、撮像装置11から複数のターゲット24の画像を取得する。第2位置方位算出部18は、油圧ショベル1の外部に設置された複数のターゲット24の画像に基づいて、旋回体4の位置及び方位角を算出する。
 傾斜角算出部19は、傾斜センサ10の検出データに基づいて、旋回体4の傾斜角を算出する。旋回体4の傾斜角は、旋回体4のロール角及びピッチ角を含む。ロール角とは、Xg軸を中心とする傾斜方向における旋回体4の傾斜角をいう。ピッチ角とは、Yg軸を中心とする傾斜方向における旋回体4の傾斜角をいう。傾斜角算出部19は、傾斜センサ10の検出データに基づいて、旋回体4のロール角及びピッチ角を算出する。
 切換部20は、第1位置方位算出部17により旋回体4の位置及び方位角を算出する第1算出モードと、第2位置方位算出部18により旋回体4の位置及び方位角を算出する第2算出モードとを切り換える。
 3次元データ算出部21は、ステレオカメラ15により撮像された1組の画像に基づいて、ステレオカメラ15と撮像対象との距離を算出する。撮像対象として、作業機5により掘削される掘削対象が例示される。3次元データ算出部21は、ステレオカメラ15の1組のカメラ13が撮像した同一の撮像対象の画像をステレオ処理することにより、撮像対象の3次元データを算出する。3次元データ算出部21は、カメラ座標系における3次元データを算出する。
 表示制御部22は、車載モニタ8の表示装置8Aを制御する。表示制御部22は、規定の表示データを表示装置8Aに表示させる。
 補正部23は、傾斜センサ10の誤差を補正する。
[算出モード]
 図5は、実施形態に係る旋回体4の位置及び方位角の算出モードを説明するための模式図である。実施形態において、旋回体4の位置及び方位角は、第1算出モード及び第2算出モードの少なくとも一方により算出される。旋回体4の位置は、現場座標系における旋回体4の代表点Omの位置を含む。旋回体4の方位角は、現場座標系における旋回体4の代表点Omを基準とする車体座標系の方位角を含む。
 第1算出モードは、GNSS電波に基づいて、旋回体4の位置及び方位角を算出する算出モードである。第1算出モードにおいて、第1位置方位算出部17は、位置センサ9の検出データに基づいて、旋回体4の位置及び方位角を算出する。
 第2算出モードは、複数のターゲット24の画像に基づいて、旋回体4の位置及び方位角を算出する算出モードである。第2算出モードにおいて、第2位置方位算出部18は、撮像装置11により撮像されたターゲット24の画像に基づいて、旋回体4の位置及び方位角を算出する。
 GNSSの測位不良が発生すると、第1位置方位算出部17による旋回体4の位置及び方位角の算出が困難になる可能性がある。GNSSの測位不良は、GNSSの測位精度の低下及び測位不能を含む。GNSSの測位不良として、位置センサ9が受信するGNSS電波の強度不足又はGNSS電波のマルチパスが例示される。GNSS電波のマルチパスとは、GNSS衛星から送信されたGNSS電波が、地面や建造物などで反射したり、電離層において反射又は屈折したりして、位置センサ9が複数の伝送経路からGNSS電波を受信することにより、検出される位置に誤差が発生する現象をいう。
 GNSSの測位不良が発生していない場合、旋回体4の位置及び方位角は、第1算出モードで算出される。GNSSの測位不良が発生した場合、旋回体4の位置及び方位角は、第2算出モードで算出される。
 切換部20は、GNSS電波の受信状況に基づいて、第1算出モードと第2算出モードとを切り換える。第1位置方位算出部17は、GNSS電波の受信状況の良否を判定することができる。第1位置方位算出部17は、例えばGNSS電波の強度を判定することができる。切換部20は、位置センサ9によるGNSS電波の受信状況に基づいて、第1算出モードと第2算出モードとを切り換える。また、切換部20は、第1位置方位算出部17による旋回体4の位置及び方位角の算出の可否に基づいて、第1算出モードと第2算出モードとを切り換える。例えばGNSS電波の強度が不足し、GNSS電波の受信状況が不良である場合、第1位置方位算出部17は、旋回体4の位置及び方位角を算出不可能な状態になる可能性が高い。一方、GNSS電波の強度が充足し、GNSS電波の受信状況が良好である場合、第1位置方位算出部17は、旋回体4の位置及び方位角を算出可能な状態になる可能性が高い。
 切換部20は、GNSS電波の受信状況が良好な状態から不良な状態に変化した場合、第1算出モードから第2算出モードに切り換える。また、切換部20は、第1位置方位算出部17が旋回体4の位置及び方位角を算出可能な状態から算出不可能な状態に変化した場合、第1算出モードから第2算出モードに切り換える。
 切換部20は、GNSS電波の受信状況が不良な状態から良好な状態に変化した場合、第2算出モードから第1算出モードに切り換える。また、切換部20は、第1位置方位算出部17が旋回体4の位置及び方位角を算出不可能な状態から算出可能な状態に変化した場合、第2算出モードから第1算出モードに切り換える。
 実施形態において、表示制御部22は、GNSS電波の受信状況を表示装置8Aに表示させる。図5に示すように、GNSS電波の受信状況が良好な状態から不良な状態に変化した場合、表示制御部22は、GNSS電波の受信状況が不良であることを表示装置8Aに表示させてもよい。オペレータは、表示装置8Aに表示された表示データに基づいて、GNSS電波の受信状況が不良であることを認識することができる。実施形態において、第1算出モードから第2算出モードへの切り換えは、オペレータによる入力装置8Bの操作に基づいて実施されてもよい。GNSS電波の受信状況が不良であることを認識したオペレータは、入力装置8Bを操作して、第1算出モードから第2算出モードへの切り換えを実施するための入力データを生成する。切換部20は、入力装置8Bからの入力データに基づいて、第1算出モードから第2算出モードに切り換える。
 第1算出モードから第2算出モードに切り換えられた場合、表示制御部22は、第1算出モードから第2算出モードに切り換えられたことを表示装置8Aに表示させてもよい。これにより、オペレータは、第1算出モードから第2算出モードに切り換えられたことを認識することができる。
 一方、GNSS電波の受信状況が不良な状態から良好な状態に変化した場合、表示制御部22は、GNSS電波の受信状況が良好であることを表示装置8Aに表示させる。オペレータは、表示装置8Aに表示された表示データに基づいて、GNSS電波の受信状況が良好であることを認識することができる。第2算出モードから第1算出モードへの切り換えは、オペレータによる入力装置8Bの操作に基づいて実施されてもよい。GNSS電波の受信状況が良好であることを認識したオペレータは、入力装置8Bを操作して、第2算出モードから第1算出モードへの切り換えを実施するための入力データを生成する。切換部20は、入力装置8Bからの入力データに基づいて、第2算出モードから第1算出モードに切り換える。
 第2算出モードから第1算出モードに切り換えられた場合、表示制御部22は、第2算出モードから第1算出モードに切り換えられたことを表示装置8Aに表示させてもよい。これにより、オペレータは、第2算出モードから第1算出モードに切り換えられたことを認識することができる。
[ターゲット]
 図6は、実施形態に係る作業現場に設置されたターゲット24を示す図である。図6に示すように、ターゲット24は、作業現場において油圧ショベル1の外部に配置される。ターゲット24は、作業現場において油圧ショベル1の周囲に複数配置される。ターゲット24は、表示板25に描かれたマークを含む。実施形態において、表示板25の下端部に接地板26が固定される。表示板25は、接地板26を介して作業現場の地面に置かれる。なお、表示板25は、作業現場に固定されていればよい。ターゲット24は、例えば作業現場の構造物に貼り付けられてもよい。ターゲット24は、杭のような部材を用いて作業現場に立てられてもよい。
 図7は、実施形態に係るターゲット24を示す図である。ターゲット24は、識別マーク27と、識別マーク27の周囲に配置される放射マーク28とを含む。識別マーク27は、ターゲット24を識別するための識別データを含む。実施形態において、識別マーク27は、ターゲット24を識別する2次元バーコードを含む。ターゲット24に基準点Otが規定される。放射マーク28は、ターゲット24の基準点Otから放射方向に伸びる。放射マーク28は、ターゲット24の基準点Otから放射方向に伸びる複数のライン28Aを有する。ライン28Aは、放射マーク28のエッジを含む。複数のライン28Aの交点にターゲット24の基準点Otが規定される。
 ターゲット24が作業現場に設置された後、ターゲット24の位置が測量機により測量される。測量機は、現場座標系におけるターゲット24の3次元位置を測定する。ターゲット24の3次元位置は、基準点Otの3次元位置を含む。測量機は、基準点Otの3次元位置を測定する。測量機により測定された複数のターゲット24のそれぞれの3次元位置は、記憶部16に記憶される。記憶部16は、識別マーク27により規定されるターゲット24の識別データと、測量機により測定されたターゲット24の3次元位置との関係を示す相関データを記憶する。識別マーク27に基づいてターゲット24が特定されることにより、特定されたターゲット24の3次元位置が特定される。
[第2算出モード]
 次に、第2算出モードによる旋回体4の位置及び方位角の算出方法について説明する。図8は、実施形態に係る旋回体4の位置及び方位角の算出方法を示すフローチャートである。図9は、実施形態に係る旋回体4の位置及び方位角の算出方法を説明するための模式図である。
 旋回体4の位置及び方位角を第1算出モードで算出できなくなった場合、旋回体4の位置及び方位角は、第2算出モードで算出される。実施形態において、第2位置方位算出部18は、複数のターゲット24の画像と、旋回体4の傾斜角とに基づいて、旋回体4の位置及び方位角を算出する。第2位置方位算出部18は、撮像装置11から複数のターゲット24の画像を取得する。第2位置方位算出部18は、傾斜角算出部19から旋回体4の傾斜角を取得する。上述のように、旋回体4の傾斜角は、旋回体4のロール角及びピッチ角を含む。
 複数のターゲット24が撮像装置11により撮像される。撮像装置11は、複数のターゲット24を同時に撮像する。図9に示すように、3つのターゲット24が撮像装置11により同時に撮像される。第2位置方位算出部18は、撮像装置11により撮像された3つのターゲット24の画像29を取得する(ステップSA1)。
 図9に示すように、1つの画像29に3つのターゲット24が配置される。
 第2位置方位算出部18は、ターゲット24の識別マーク27により規定される識別データに基づいて、ターゲット24を識別する(ステップSA2)。
 第2位置方位算出部18は、画像29における識別マーク27に基づいて、ターゲット24を特定する。第2位置方位算出部18は、画像29における識別マーク27と、記憶部16に記憶されている相関データとに基づいて、記憶部16からターゲット24の3次元位置を取得する(ステップSA3)。
 上述のように、ターゲット24の3次元位置は、測量機により事前に測定され、記憶部16に記憶されている。また、記憶部16には、ターゲット24の識別マーク27により規定される識別データとターゲット24の3次元位置との関係を示す相関データが予め記憶されている。したがって、第2位置方位算出部18は、画像29における識別マーク27と、記憶部16に記憶されている相関データとに基づいて、ターゲット24の3次元位置を取得することができる。
 第2位置方位算出部18は、画像29におけるターゲット24の2次元位置を取得する(ステップSA4)。
 画像29におけるターゲット24の2次元位置は、ターゲット24に規定された基準点Otの2次元位置を含む。上述のように、ターゲット24は、ライン28Aを含む放射マーク28を有する。第2位置方位算出部18は、画像29における放射マーク28に基づいて、画像29における基準点Otの2次元位置を算出する。第2位置方位算出部18は、ターゲット24の画像29を画像処理することにより、放射マーク28に基づいて、画像29における基準点Otの2次元位置を高精度に算出することができる。以下の説明において、画像29における基準点Otを適宜、基準点Oti、と称する。
 傾斜角算出部19は、ターゲット24が撮像されているときの傾斜センサ10の検出データを取得して、ターゲット24が撮像されているときの旋回体4のピッチ角及びロール角を算出する。第2位置方位算出部18は、ターゲット24が撮像されているときの旋回体4のロール角及びピッチ角を傾斜角算出部19から取得する(ステップSA5)。
 第2位置方位算出部18は、ステップSA3において取得した3つのターゲット24の3次元位置と、ステップSA4において取得した画像29におけるターゲット24の2次元位置と、ステップSA5において取得した旋回体4のロール角及びピッチ角とに基づいて、現場座標系におけるカメラ13の位置及び方位角を算出する(ステップSA6)。
 実施形態において、第2位置方位算出部18は、空中三角測量におけるブロック調整法の一種であるバンドル法に基づいて、現場座標系におけるカメラ13の位置及び方位角を算出する。空中三角測量(Aerial Triangulation)とは、光の直進性を示す共線条件及び空中写真の幾何学的性質及びを利用して、既知の基準点Otの座標に基づいて、複数のカメラ13による複数の画像29のそれぞれの撮像位置及び撮像方向を算出する方法をいう。
 第2位置方位算出部18は、バンドル法に基づいてカメラ13の位置及び方位角を算出するために、3つの基準点Otの3次元位置と、画像29における基準点Otiの2次元位置と、旋回体4のロール角及びピッチ角とを取得する。基準点Otの3次元位置は、現場座標系における3次元位置である。基準点Otiの2次元位置は、画像29に規定される画像座標系における2次元位置である。画像座標系は、画像29の左上のコーナーを原点とし横方向をu軸とし縦方向をv軸とするuv座標系で表される。基準点Otiの2次元位置は、複数の画像29の重複部分を結合するためのパスポイントとして機能する。
 例えば、現場座標系における基準点Otの3次元位置をP(X,Y,Z)、カメラ座標系における基準点Otの3次元位置をPc(Xc,Yc,Zc)、画像座標系における基準点Otiの2次元位置をp(x、y)、現場座標系における光学中心Ocの位置をO(Xo,Yo,Zo)、現場座標系におけるカメラ13の姿勢を示す回転行列をR、内部パラメータ行列をkとした場合、以下の(1)式、2(式)、及び(3)式の条件が成立する。
 p = k・Pc   …(1)
 P = R・PC+O   …(2)
 P = R・(k-1・p)   …(3)
 第2位置方位算出部18は、バンドル法に基づいて、3つの基準点Otの3次元位置と、画像29における基準点Otiの2次元位置と、旋回体4のロール角及びピッチ角とを収束計算することにより、現場座標系におけるカメラ13の位置及び方位角を算出することができる。
 第2位置方位算出部18は、ステップSA6において算出したカメラ13の位置及び方位角に基づいて、現場座標系における旋回体4の位置及び方位角を算出する(ステップSA7)。
 カメラ13の光学中心Ocと旋回体4の代表点Omとの相対位置は、既知である。また、旋回体4に規定された代表点Omを基準とする車体座標系とカメラ13の光学中心Ocを基準とするカメラ座標系とを変換する変換行列は、既知である。したがって、第2位置方位算出部18は、ターゲット24を撮像した画像29を用いてバンドル法に基づいて現場座標系におけるカメラ13の位置及び方位角を算出し、変換行列に基づいてカメラ13の位置及び方位角を座標変換することにより、現場座標系における旋回体4の位置及び方位角を算出することができる。
 上述のステップSA1からステップSA7の処理は、ターゲット24が撮像された場合に実施される。走行体3が走行動作した後に、旋回体4の位置及び方位角を算出する場合、上述のステップSA1からステップSA7の処理が再度実行される。
 なお、上述のステップSA1からステップSA7の処理において、3つのターゲット24が撮像されなくてもよく、少なくとも2つのターゲット24が撮像されればよい。
[旋回動作後の位置及び方位の算出]
 旋回体4の位置及び方位角が算出された後、走行体3が走行動作した場合、旋回体4の位置及び方位角を算出するために、ターゲット24が撮像される。ターゲット24が撮像された場合、上述のステップSA1からステップSA7の処理が再度実行される。
 一方、上述のステップSA1からステップSA7の処理により旋回体4の位置及び方位角を算出した後において、走行体3が走行動作せずに旋回体4が旋回動作した場合、第2位置方位算出部18は、少なくとも2つのターゲット24を用いること無く、少なくとも1つのターゲット24の画像29に基づいて、旋回体4の位置及び方位角を算出することができる。
 図10は、実施形態に係る旋回体4の位置及び方位角の算出方法を説明するための模式図である。旋回体4が第1方向D1を向いている状態において、少なくとも2つのターゲット24が撮像されることにより、上述のステップSA1からステップSA7の処理に従って、旋回体4の位置及び方位が算出される。
 旋回体4の位置及び方位角が算出された後、旋回体4が第1方向D1から第2方向D2を向くように旋回して、撮像装置11により少なくとも1つのターゲット24が撮像された場合、旋回体4が第2方向D2を向いているときの旋回体4の方位角は、少なくとも1つのターゲット24の画像29に基づいて算出される。第2位置方位算出部18は、少なくとも2つのターゲット24を用いて旋回体4の位置及び方位角を算出した後において、旋回体4が第1方向D1から第2方向D2を向くように旋回軸RXを中心に旋回動作した場合、撮像装置11により撮像された少なくとも1つのターゲット24の画像29に基づいて、旋回体4の位置及び方位角を算出することができる。
 すなわち、第2位置方位算出部18は、第1方向D1に存在する少なくとも2つのターゲット24を用いて算出した旋回動作する前の旋回体4の方位角と、第2方向D2に存在する1つのターゲット24の画像29と、旋回動作する前の旋回体4のロール角及びピッチ角と、旋回動作した後の旋回体4のロール角及びピッチ角とに基づいて、旋回角θを算出する。第2位置方位算出部18は、旋回角θを算出することにより、少なくとも2つのターゲット24を用いて算出した旋回体4の方位角と旋回角θとに基づいて、旋回動作した後の旋回体4の方位角を算出することができる。また、走行体3が走行動作していない場合、旋回軸RXの位置は変化しないので、第2位置方位算出部18は、算出した旋回角θに基づいて、旋回体4の位置を算出することができる。
 また、第2位置方位算出部18は、旋回体4が旋回動作する前に撮像装置11により撮像された少なくとも2つのターゲット24の画像29と、旋回体4が旋回動作する前の旋回体4のロール角及びピッチ角と、旋回体4が旋回動作した後に撮像装置11により撮像された少なくとも1つのターゲット24の画像29と、旋回体4が旋回動作した後の旋回体4のロール角及びピッチ角とに基づいて、旋回軸RXの位置と、旋回体4が旋回動作する前の旋回体4の方位角と、旋回体4が旋回動作した後の旋回体4の方位角とを、同時に算出してもよい。
 なお、第2位置方位算出部18は、傾斜センサ10の検出データに基づいて、旋回角θを算出することができる。上述のように、傾斜センサ10は、慣性計測装置(IMU)を含む。慣性計測装置(IMU)は、旋回体4の旋回を検出する旋回センサとして機能する。第2位置方位算出部18は、慣性計測装置(IMU)の検出データに基づいて、旋回角θを算出することができる。したがって、第2位置方位算出部18は、3つのターゲット24を用いて旋回体4の位置及び方位角を算出した後において、走行体3が走行動作せずに旋回体4が旋回動作した場合、旋回体4の旋回を検出する傾斜センサ10の検出データに基づいて、旋回動作した後の旋回体4の位置及び方位角を算出することができる。
 図11は、実施形態に係る旋回体4が旋回動作した後の旋回体4の位置及び方位角の算出方法を示すフローチャートである。旋回体4が旋回動作した後、第2位置方位算出部18は、撮像装置11がターゲット24を撮像できたか否かを判定する。すなわち、第2位置方位算出部18は、旋回体4が旋回動作した後に、少なくとも1つのターゲット24の画像を取得できたか否かを判定する(ステップSB1)。
 ステップSB1において、少なくとも1つのターゲット24の画像を取得できたと判定した場合(ステップSB1:Yes)、第2位置方位算出部18は、少なくとも1つのターゲット24の画像29と、旋回動作する前の旋回体4のロール角及びピッチ角と、旋回動作した後の旋回体4のロール角及びピッチ角とに基づいて、旋回動作した後の旋回体4の方位角を算出する(ステップSB2)。
 ステップSB1において、少なくとも1つのターゲット24の画像を取得できないと判定した場合(ステップSB1:No)、第2位置方位算出部18は、旋回体4の旋回を検出する傾斜センサ10の検出データに基づいて、旋回動作した後の旋回体4の位置及び方位角を算出する(ステップSB3)。
 このように、第1位置方位算出部17が旋回体4の位置及び方位角を算出不可能な状態、且つ、旋回体4が旋回動作する前に撮像装置11が少なくとも2つのターゲット24を撮像した場合において、第2位置方位算出部18は、少なくとも2つのターゲット24の画像29と旋回体4の傾斜角とに基づいて、旋回体4の位置及び方位角を算出する。第1位置方位算出部17が旋回体4の位置及び方位角を算出不可能な状態、且つ、走行体3が走行動作せずに旋回体4が旋回動作した場合において、第2位置方位算出部18は、旋回体4が旋回動作した後に撮像装置11により取得された少なくとも1つのターゲット24の画像29又は旋回体4が旋回動作した後の傾斜センサ10の検出データに基づいて、旋回体4の位置及び方位角を算出することができる。
[補正部の処理]
 次に、補正部23の処理について説明する。補正部23は、傾斜センサ10の誤差を補正する。上述のように、走行体3が走行動作せずに旋回体4が旋回動作した後において、位置センサ9の検出データに基づいて旋回体4の位置及び方位角を算出できず、且つ、少なくとも1つのターゲット24の画像29に基づいて旋回体4の位置及び方位角を算出できない場合、第2位置方位算出部18は、IMUを含む傾斜センサ10の検出データに基づいて、旋回動作した後の旋回体4の位置及び方位角を算出することができる。傾斜センサ10の検出データを用いて旋回動作した後の旋回体4の位置及び方位角を算出する場合、傾斜センサ10により検出された加速度が時間で2重積分されることにより、旋回体4の位置が算出され、傾斜センサ10により検出された角速度が時間で積分されることにより、旋回体4の方位角が算出される。傾斜センサ10の検出データが積分されると、積分加算により旋回体4の位置及び方位角の算出結果に累積誤差が発生する可能性がある。すなわち、加速度又は角速度の積分による誤差が蓄積して、旋回体4の位置及び方位角の算出精度が低下する可能性がある。
 GNSS電波の受信状況が良好であり、第1位置方位算出部17が旋回体4の位置及び方位角を算出可能な状態において、補正部23は、第1位置方位算出部17の算出結果に基づいて、旋回体4の位置及び方位角の誤差を補正することができる。
 一方、GNSS電波の受信状況が不良であり、第1位置方位算出部17が旋回体4の位置及び方位角を算出不可能な状態において、補正部23は、第2位置方位算出部18の算出結果に基づいて、旋回体4の位置及び方位角の誤差を補正することができる。
 図12は、実施形態に係る旋回体4の位置及び方位角の算出結果の補正方法を示すフローチャートである。切換部20は、第1位置方位算出部17が旋回体4の方位角を算出可能な状態か否かを判定する(ステップSC1)。
 ステップSC1において、第1位置方位算出部17が旋回体4の方位角を算出可能な状態であると判定された場合(ステップSC1:Yes)、補正部23は、第1位置方位算出部17により算出された旋回体4の方位角に基づいて、旋回体4の位置及び方位角の誤差を補正する(ステップSC2)。
 ステップSC1において、第1位置方位算出部17が旋回体4の方位角を算出不可能な状態であると判定された場合(ステップSC1:No)、補正部23は、第2位置方位算出部18により算出された旋回体4の方位角に基づいて、旋回体4の位置及び方位角の誤差を補正する(ステップSC3)。
[コンピュータシステム]
 図13は、実施形態に係るコンピュータシステム1000を示すブロック図である。上述の制御装置12は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の制御装置12の機能は、コンピュータプログラムとしてストレージ1003に記憶されている。プロセッサ1001は、コンピュータプログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、コンピュータプログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
 コンピュータプログラム又はコンピュータシステム1000は、上述の実施形態に従って、走行体3及び旋回体4を備える油圧ショベル1の外部に設置された複数のターゲット24の画像を取得することと、旋回体4の傾斜角を取得することと、複数のターゲット24の画像と旋回体4の傾斜角とに基づいて、旋回体4の位置及び方位角を算出することと、を実行することができる。
[効果]
 以上説明したように、実施形態によれば、油圧ショベル1の外部に設置された複数のターゲット24の画像が取得される。また、旋回体4の傾斜角であるロール角及びピッチ角が取得される。複数のターゲット24の画像と旋回体4の傾斜角とに基づいて、旋回体4の位置及び方位角が算出される。GNSSの測位不良が発生した場合においても、ターゲット24の画像に基づいて、油圧ショベル1の位置及び方位角が算出される。したがって、GNSSの測位不良が発生した場合においても、油圧ショベル1は、マシンガイダンス技術又はマシンコントロール技術に基づいて、作業を実施することができる。
 ターゲット24の3次元位置が測量機により取得され、記憶部16に予め記憶される。ターゲット24の画像29に基づいて、画像29におけるターゲット24の2次元位置が第2位置方位算出部18により算出される。これにより、第2位置方位算出部18は、ターゲット24の3次元位置と、ターゲット24の2次元位置と、旋回体4の傾斜角とに基づいて、旋回体4の位置及び方位角を算出することができる。
 実施形態において、ターゲット24の3次元位置と、ターゲット24の2次元位置と、旋回体4の傾斜角とに基づいて、現場座標系におけるカメラ13の位置及び方位角が算出される。現場座標系におけるカメラ13の位置及び方位角が算出された後、カメラ13の位置及び方位角が座標変換されることにより、旋回体4の位置及び方位角が算出される。これにより、第2位置方位算出部18は、カメラ13の位置及び方位角が算出された後、カメラ13の位置及び方位角に基づいて、旋回体4の位置及び方位角を適正に算出することができる。
 ターゲット24の3次元位置は、ターゲット24に規定された基準点Otの3次元位置である。画像29におけるターゲット24の2次元位置は、ターゲット24に規定された画像29における基準点Otiの2次元位置である。基準点Ot及び基準点Otiが用いられることにより、旋回体4の位置及び方位角の算出精度の低下が抑制される。
 ターゲット24は、ターゲット24の基準点Otから放射方向に伸びる放射マーク28を含む。放射マーク28により、基準点Otiの2次元位置の算出精度の低下が抑制される。
 ターゲット24は、ターゲット24を識別する識別マーク27を含む。識別マーク27により規定されるターゲット24の識別データと測量機により測定されたターゲット24の3次元位置との関係を示す相関データが記憶部16に予め記憶される。これにより、第2位置方位算出部18は、画像29における識別マーク27に基づいて、記憶部16に記憶されている相関データを参照することにより、画像29に写っているターゲット24の3次元位置を取得することができる。
 旋回体4の傾斜角は、旋回体4に配置された傾斜センサ10の検出データに基づいて算出される。これにより、旋回体4の傾斜角が高精度に算出される。
 3つのターゲット24を用いて第2位置方位算出部18により旋回体4の位置及び方位角が算出された後、走行体3が走行動作せずに旋回体4が旋回動作した場合、少なくとも1つのターゲット24の画像を取得すれば、第2位置方位算出部18は、旋回体4の位置及び方位角を効率良く算出することができる。
 3つのターゲット24を用いて第2位置方位算出部18により旋回体4の位置及び方位角が算出された後、走行体3が走行動作せずに旋回体4が旋回動作した場合、第2位置方位算出部18は、ターゲット24を用いずに、旋回角θを検出可能な傾斜センサ10の検出データに基づいて、旋回体4の位置及び方位角を効率良く算出することができる。
[その他の実施形態]
 上述の実施形態において、第2位置方位算出部18は、3つの基準点Otに基づいて、現場座標系におけるカメラ13の位置及び方位角を算出することとした。第2位置方位算出部18は、少なくとも2つの基準点Otに基づいて、現場座標系におけるカメラ13の位置及び方位角を算出してもよい。すなわち、第2位置方位算出部18は、少なくとも2つの基準点Otの3次元位置と、画像29における基準点Otiの2次元位置と、旋回体4のロール角及びピッチ角とを収束計算することにより、現場座標系におけるカメラ13の位置及び方位角を算出してもよい。
 上述の実施形態において、第2位置方位算出部18は、現場座標系におけるカメラ13の位置及び方位角を算出し、現場座標系における旋回体4の位置及び方位角を算出することとした。第2位置方位算出部18は、車体座標系におけるカメラ13の位置及び方位角を算出してもよいし、カメラ座標系におけるカメラ13の位置及び方位角を算出してもよい。また、第2位置方位算出部18は、車体座標系における旋回体4の位置及び方位角を算出してもよいし、カメラ座標系における旋回体4の位置及び方位角を算出してもよい。
 上述の実施形態において、ターゲット24は、ステレオカメラ15により撮像されることとした。ターゲット24は、単眼カメラにより撮像されてもよい。
 上述の実施形態において、車載モニタ8が表示装置8A及び入力装置8Bを有することとした。例えばタブレット端末が表示装置8A及び入力装置8Bを有してもよい。すなわち、表示装置8A及び入力装置8Bは、油圧ショベル1から分離されてもよい。また、上述の実施形態において、表示装置8A及び入力装置8Bは、運転室2に配置されることとした。表示装置8A及び入力装置8Bの一方又は両方が運転室2の外部に配置されてもよい。
 上述の実施形態において、GNSS電波の受信状況が表示装置8Aに表示されることとした。表示制御部22は、例えば第1算出モードと第2算出モードとの切り換えを推奨するリコメンド表示データを表示装置8Aに表示させてもよい。例えば、GNSS電波の受信状況が良好な状態から不良な状態に変化した場合、表示制御部22は、例えば「第1算出モードから第2算出モードに切り換えることを推奨します」のような文字データを表示装置8Aに表示させてもよい。GNSS電波の受信状況が不良な状態から良好な状態に変化した場合、表示制御部22は、例えば「第2算出モードから第1算出モードに切り換えることを推奨します」のような文字データを表示装置8Aに表示させてもよい。
 上述の実施形態において、第1算出モードと第2算出モードとの切換が、オペレータによる入力装置8Bの操作に基づいて実施されることとした。GNSS電波の受信状況が表示装置8Aに表示されなくてもよい。また、第1算出モードと第2算出モードとの切換は、制御装置12により自動的に実施されてもよい。例えば、GNSS電波の受信状況が良好な状態から不良な状態に変化した場合、切換部20は、入力装置8Bからの入力データによらずに、第1算出モードから第2算出モードに自動的に切り換えてもよい。また、GNSS電波の受信状況が不良な状態から良好な状態に変化した場合、切換部20は、入力装置8Bからの入力データによらずに、第2算出モードから第1算出モードに自動的に切り換えてもよい。第1算出モードと第2算出モードとが自動的に切り換えられた場合、表示制御部22は、第1算出モードと第2算出モードとが切り換えられたことを表示装置8Aに表示させてもよい。
 上述の実施形態において、記憶部16、第1位置方位算出部17、第2位置方位算出部18、傾斜角算出部19、切換部20、3次元データ算出部21、表示制御部22、及び補正部23のそれぞれが、別々のハードウエアにより構成されてもよい。
 上述の実施形態において、作業機械1が走行体3及び旋回体4を有する油圧ショベルであることとした。作業機械1は走行体3及び旋回体4を有しなくてもよい。作業機械1は、作業機を有していればよく、例えばブルドーザでもよいしホイールローダでもよい。
 1…油圧ショベル(作業機械)、2…運転室、3…走行体、3A…履帯、4…旋回体、5…作業機、5A…ブーム、5B…アーム、5C…バケット、6…油圧シリンダ、6A…ブームシリンダ、6B…アームシリンダ、6C…バケットシリンダ、7…操作装置、7A…左作業レバー、7B…右作業レバー、7C…左走行レバー、7D…右走行レバー、7E…左フットペダル、7F…右フットペダル、8…車載モニタ、8A…表示装置、8B…入力装置、9…位置センサ、9A…第1位置センサ、9B…第2位置センサ、10…傾斜センサ、11…撮像装置、12…制御装置、13…カメラ、13A…カメラ、13B…カメラ、13C…カメラ、13D…カメラ、14…運転シート、15…ステレオカメラ、15A…ステレオカメラ、15B…ステレオカメラ、16…記憶部、17…第1位置方位算出部、18…第2位置方位算出部、19…傾斜角算出部、20…切換部、21…3次元データ算出部、22…表示制御部、23…補正部、24…ターゲット、25…表示板、26…接地板、27…識別マーク、28…放射マーク、28A…ライン、29…画像、30…制御システム、1000…コンピュータシステム、1001…プロセッサ、1002…メインメモリ、1003…ストレージ、1004…インターフェース、D1…第1方向、D2…第2方向、Oc…光学中心、Ot…基準点、Og…現場基準点、Om…代表点、Oti…基準点、RX…旋回軸、θ…旋回角。

Claims (20)

  1.  走行体及び旋回体を備える作業機械の制御システムであって、
     前記作業機械の外部に設置された複数のターゲットの画像と、前記旋回体の傾斜角とに基づいて、前記旋回体の位置及び方位角を算出する位置方位算出部を備える、
     作業機械の制御システム。
  2.  複数の前記ターゲットのそれぞれの3次元位置を記憶する記憶部を備え、
     前記位置方位算出部は、前記ターゲットの3次元位置と、前記画像における前記ターゲットの2次元位置と、前記旋回体の傾斜角とに基づいて、前記旋回体の位置及び方位角を算出する、
     請求項1に記載の作業機械の制御システム。
  3.  前記旋回体に配置され前記ターゲットを撮像する撮像装置を備え、
     前記位置方位算出部は、前記撮像装置から前記画像を取得する、
     請求項2に記載の作業機械の制御システム。
  4.  前記位置方位算出部は、前記ターゲットの3次元位置と、前記ターゲットの2次元位置と、前記旋回体の傾斜角とに基づいて、現場座標系における前記撮像装置の位置及び方位角を算出し、前記撮像装置の位置及び方位角に基づいて、前記旋回体の位置及び方位角を算出する、
     請求項3に記載の作業機械の制御システム。
  5.  前記ターゲットの3次元位置及び2次元位置のそれぞれは、前記ターゲットに規定された基準点の3次元位置及び2次元位置を含む、
     請求項2から請求項4のいずれか一項に記載の作業機械の制御システム。
  6.  前記ターゲットは、前記ターゲットの基準点から放射方向に伸びる放射マークを含み、
     前記位置方位算出部は、前記放射マークに基づいて、前記基準点の2次元位置を算出する、
     請求項5に記載の作業機械の制御システム。
  7.  前記ターゲットは、識別マークを含み、
     前記記憶部は、前記識別マークにより規定される識別データと前記ターゲットの3次元位置との関係を示す相関データを記憶し、
     前記位置方位算出部は、前記画像における前記識別マークに基づいて、前記記憶部から前記ターゲットの3次元位置を取得する、
     請求項2から請求項6のいずれか一項に記載の作業機械の制御システム。
  8.  前記旋回体に配置された傾斜センサと、
     前記傾斜センサの検出データに基づいて前記旋回体の傾斜角を算出する傾斜角算出部と、を備え、
     前記位置方位算出部は、前記傾斜角算出部から前記旋回体の傾斜角を取得する、
     請求項1から請求項7のいずれか一項に記載の作業機械の制御システム。
  9.  前記位置方位算出部は、前記旋回体の位置及び方位角を算出した後において、前記旋回体が旋回動作した場合、少なくとも1つのターゲットの画像に基づいて、前記旋回体の位置及び方位角を算出する、
     請求項1から請求項8のいずれか一項に記載の作業機械の制御システム。
  10.  前記位置方位算出部は、前記旋回体の位置及び方位角を算出した後において、前記旋回体が旋回動作した場合、前記旋回体の旋回を検出する旋回センサの検出データに基づいて、前記旋回体の位置及び方位角を算出する、
     請求項1から請求項8のいずれか一項に記載の作業機械の制御システム。
  11.  請求項1から請求項10のいずれか一項に記載の作業機械の制御システムを備える、
     作業機械。
  12.  走行体及び旋回体を備える作業機械の制御方法であって、
     前記作業機械の外部に設置された複数のターゲットの画像を取得することと、
     前記旋回体の傾斜角を取得することと、
     複数の前記ターゲットの画像と前記旋回体の傾斜角とに基づいて、前記旋回体の位置及び方位角を算出することと、を含む、
     作業機械の制御方法。
  13.  前記ターゲットの3次元位置を取得することと、
     前記画像に基づいて前記画像における前記ターゲットの2次元位置を算出することと、を含み、
     前記旋回体の位置及び方位角は、前記ターゲットの3次元位置と、前記ターゲットの2次元位置と、前記旋回体の傾斜角とに基づいて、算出される、
     請求項12に記載の作業機械の制御方法。
  14.  複数の前記ターゲットの画像は、前記旋回体に配置された撮像装置により取得され、
     前記ターゲットの3次元位置と、前記ターゲットの2次元位置と、前記旋回体の傾斜角とに基づいて、現場座標系における前記撮像装置の位置及び方位角を算出することを含み、
     前記旋回体の位置及び方位角は、前記撮像装置の位置及び方位角に基づいて、算出される、
     請求項13に記載の作業機械の制御方法。
  15.  前記ターゲットの3次元位置及び2次元位置のそれぞれは、前記ターゲットに規定された基準点の3次元位置及び2次元位置を含む、
     請求項12から請求項14のいずれか一項に記載の作業機械の制御方法。
  16.  前記ターゲットは、前記ターゲットの基準点から放射方向に伸びる放射マークを含み、
     前記放射マークに基づいて、前記基準点の2次元位置が算出される、
     請求項15に記載の作業機械の制御方法。
  17.  前記ターゲットは、識別マークを含み、
     前記画像における前記識別マークと、前記識別マークにより規定される識別データと前記ターゲットの3次元位置との関係を示す相関データとに基づいて、前記ターゲットの3次元位置が取得される、
     請求項12から請求項16のいずれか一項に記載の作業機械の制御方法。
  18.  前記旋回体の傾斜角は、前記旋回体に配置された傾斜センサの検出データに基づいて算出される、
     請求項12から請求項16のいずれか一項に記載の作業機械の制御方法。
  19.  前記旋回体の位置及び方位角を算出した後において、前記旋回体が旋回動作した場合、少なくとも1つのターゲットの画像に基づいて、前記旋回体の位置及び方位角が算出される、
     請求項12から請求項18のいずれか一項に記載の作業機械の制御方法。
  20.  前記旋回体の位置及び方位角を算出した後において、前記旋回体が旋回動作した場合、前記旋回体の旋回を検出する旋回センサの検出データに基づいて、前記旋回体の位置及び方位角が算出される、
     請求項12から請求項18のいずれか一項に記載の作業機械の制御方法。
PCT/JP2022/026479 2021-07-08 2022-07-01 作業機械の制御システム、作業機械、及び作業機械の制御方法 WO2023282203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237039543A KR20230171035A (ko) 2021-07-08 2022-07-01 작업 기계의 제어 시스템, 작업 기계, 및 작업 기계의 제어 방법
CN202280039151.0A CN117396653A (zh) 2021-07-08 2022-07-01 作业机械的控制系统、作业机械、以及作业机械的控制方法
DE112022002116.0T DE112022002116T5 (de) 2021-07-08 2022-07-01 Steuersystem für arbeitsmaschine, arbeitsmaschine und verfahren zur steuerung einer arbeitsmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113849 2021-07-08
JP2021113849A JP2023010052A (ja) 2021-07-08 2021-07-08 作業機械の制御システム、作業機械、及び作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2023282203A1 true WO2023282203A1 (ja) 2023-01-12

Family

ID=84801682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026479 WO2023282203A1 (ja) 2021-07-08 2022-07-01 作業機械の制御システム、作業機械、及び作業機械の制御方法

Country Status (5)

Country Link
JP (1) JP2023010052A (ja)
KR (1) KR20230171035A (ja)
CN (1) CN117396653A (ja)
DE (1) DE112022002116T5 (ja)
WO (1) WO2023282203A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107717A (ja) * 1995-10-24 1997-04-28 Kubota Corp 作業機械の姿勢制御装置
JP2003064725A (ja) * 2001-08-28 2003-03-05 Maeda Corp 無人化機械土工システム
JP2005003445A (ja) * 2003-06-10 2005-01-06 Shimizu Corp 移動体装置の位置同定システムおよびその位置同定方法
CN106886037A (zh) * 2017-02-27 2017-06-23 立得空间信息技术股份有限公司 适用于弱gnss信号条件的pos数据纠偏方法
WO2018143151A1 (ja) * 2017-01-31 2018-08-09 三井住友建設株式会社 測量用マーカ、及び測量システム
JP2021050544A (ja) * 2019-09-25 2021-04-01 日立建機株式会社 作業機械

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833603B1 (ko) 2015-05-29 2018-02-28 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 제어 시스템 및 작업 기계

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107717A (ja) * 1995-10-24 1997-04-28 Kubota Corp 作業機械の姿勢制御装置
JP2003064725A (ja) * 2001-08-28 2003-03-05 Maeda Corp 無人化機械土工システム
JP2005003445A (ja) * 2003-06-10 2005-01-06 Shimizu Corp 移動体装置の位置同定システムおよびその位置同定方法
WO2018143151A1 (ja) * 2017-01-31 2018-08-09 三井住友建設株式会社 測量用マーカ、及び測量システム
CN106886037A (zh) * 2017-02-27 2017-06-23 立得空间信息技术股份有限公司 适用于弱gnss信号条件的pos数据纠偏方法
JP2021050544A (ja) * 2019-09-25 2021-04-01 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JP2023010052A (ja) 2023-01-20
CN117396653A (zh) 2024-01-12
KR20230171035A (ko) 2023-12-19
DE112022002116T5 (de) 2024-04-11

Similar Documents

Publication Publication Date Title
US7831362B2 (en) Position measuring system for working machine
US11120577B2 (en) Position measurement system, work machine, and position measurement method
US9976286B2 (en) Work machine and correction method of working equipment parameter for work machine
CN110249203B (zh) 作业机械的测量系统、作业机械以及作业机械的测量方法
JP2008144379A (ja) 遠隔操縦作業機の画像処理システム
JP6867132B2 (ja) 作業機械の検出処理装置及び作業機械の検出処理方法
JP6918716B2 (ja) 建設機械
JP2003064725A (ja) 無人化機械土工システム
JP2002310652A (ja) 走行式建設機械の位置計測システム
JP7386592B2 (ja) 建設機械の操作補助システム
JP7016297B2 (ja) 作業機械
JP2021038649A (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム、作業機械、及び作業機械の画像表示方法
WO2023282203A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
CN114787456A (zh) 工程机械的作业辅助装置及作业现场的施工面识别方法
WO2023282204A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
AU2020320149B2 (en) Display system, remote operation system, and display method
CN115698434A (zh) 信息取得系统及信息取得方法
JP2009042175A (ja) 施工位置測定システム及び丁張りレスシステム
JP2020197044A (ja) マップ生成システム及びマップ生成方法
JP7065002B2 (ja) 作業機械
JP2022173478A (ja) 建設機械の自動制御システム
JP2020197045A (ja) 表示システムおよび表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039543

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039543

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112022002116

Country of ref document: DE