WO2016120997A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2016120997A1
WO2016120997A1 PCT/JP2015/052190 JP2015052190W WO2016120997A1 WO 2016120997 A1 WO2016120997 A1 WO 2016120997A1 JP 2015052190 W JP2015052190 W JP 2015052190W WO 2016120997 A1 WO2016120997 A1 WO 2016120997A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing gel
sealing
semiconductor module
gel
expansion
Prior art date
Application number
PCT/JP2015/052190
Other languages
English (en)
French (fr)
Inventor
伍▲郎▼ 安冨
和博 森下
龍太郎 伊達
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016571547A priority Critical patent/JP6338697B2/ja
Priority to DE112015006064.2T priority patent/DE112015006064T5/de
Priority to CN201580074778.XA priority patent/CN107210270B/zh
Priority to PCT/JP2015/052190 priority patent/WO2016120997A1/ja
Priority to US15/533,327 priority patent/US10224257B2/en
Publication of WO2016120997A1 publication Critical patent/WO2016120997A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage

Definitions

  • the present invention relates to semiconductor modules, and more particularly to semiconductor modules for power applications.
  • a sealing gel In a semiconductor module for power application, semiconductor elements disposed on an insulating substrate and mutually connected by wires or the like are sealed in a case by a sealing gel. Due to the moisture absorption of the sealing gel and the temperature change during operation of the semiconductor module, the sealing gel may expand and contract, and the wire may be broken, which may damage the object to be sealed. In addition, there is also a problem that the sealing gel peels off from the insulating substrate or the like to lower the insulating property.
  • Patent Document 1 After filling a gel-like filler in a case, a plate is disposed so as to be in close contact with the surface of the filler. Swing of the gel-like filler is suppressed by this plate, and disconnection of a wire or the like is suppressed.
  • the present invention has been made to solve the problems as described above, and a semiconductor module with improved reliability by reducing excessive stress on an object due to expansion and contraction of the sealing gel.
  • the purpose is to provide.
  • a first semiconductor module comprises a semiconductor element joined to a metal pattern on an insulating substrate enclosed in a case, a sealing gel for sealing the insulating substrate and the semiconductor element in the case, and sealing
  • a sealing gel expansion suppression plate disposed at least partially in contact with the sealing gel on the top of the gel, and the surface of the sealing gel expansion suppression plate facing the sealing gel is the upper surface of the sealing gel It is inclined against.
  • a second semiconductor module comprises a semiconductor element joined to a metal pattern on an insulating substrate enclosed in a case, and a sealing gel for sealing the insulating substrate and the semiconductor element in the case;
  • a sealing gel expansion suppression plate disposed at least partially in contact with the sealing gel on the upper side of the sealing gel, and sealing is performed in a region where the sealing gel expansion suppression plate and the sealing gel overlap in plan view The height of the top surface of the gel is partially different.
  • a third semiconductor module according to the present invention is a semiconductor element joined to a metal pattern on an insulating substrate contained in a case, and a sealing gel for sealing the insulating substrate and the semiconductor element in the case,
  • the sealing gel expansion suppression board arrange
  • a fourth semiconductor module according to the present invention is a semiconductor element joined to a metal pattern on an insulating substrate contained in a case, and a sealing gel for sealing the insulating substrate and the semiconductor element in the case, And a sealing gel expansion suppression plate disposed to be in contact with the top surface of the sealing gel, and the plurality of holes are provided on the top surface of the sealing gel.
  • the sealing gel when the sealing gel is expanded by arranging the sealing gel expansion suppressing plate to be inclined with respect to the upper surface of the sealing gel, the sealing gel is expanded within the sealing gel.
  • the occurrence of excessive pressure can be suppressed. That is, it is possible to suppress the application of excessive stress to the object to be sealed.
  • peeling of the sealing gel from the object to be sealed can also be prevented by arranging the sealing gel expansion suppression plate. Therefore, it is possible to improve the reliability of the semiconductor module.
  • the sealing gel can expand upward between the sealing gel expansion suppression plate and the region where the height of the upper surface of the sealing gel is relatively lowered. Space is provided. Therefore, even when the sealing gel is expanded, it is possible to reduce excessive stress on the object to be sealed.
  • the sealing gel expansion suppression plate suppresses the expansion of the sealing gel, so peeling of the sealing gel from the insulating substrate or the like It is possible to prevent. Therefore, it is possible to improve the reliability of the semiconductor module.
  • the sealing gel when the sealing gel starts to expand, the expansion is lightly suppressed by the buffer material first. Thereby, it is possible to suppress excessive stress on the object to be sealed.
  • the sealing gel expansion suppression plate suppresses the expansion of the sealing gel. Thereby, it is possible to prevent peeling of the sealing gel from the object to be sealed. Therefore, it is possible to improve the reliability of the semiconductor module.
  • the fourth semiconductor module of the present invention even if the sealing gel expands, the expansion can be absorbed by the spaces of the plurality of holes. Therefore, it is possible to suppress excessive stress on the object to be sealed.
  • the sealing gel expansion suppression plate suppresses the expansion of the sealing gel. Thereby, it is possible to prevent peeling of the sealing gel from the object to be sealed. Therefore, it is possible to improve the reliability of the semiconductor module.
  • FIG. 1 is a cross-sectional view of a semiconductor module according to Embodiment 1; 5 is a plan view of a sealing gel expansion suppression plate according to Embodiment 1.
  • FIG. FIG. 7 is a cross-sectional view of a semiconductor module according to Embodiment 2; It is a top view of the sealing gel expansion suppression board which concerns on Embodiment 2.
  • FIG. FIG. 7 is a cross-sectional view of a semiconductor module according to Embodiment 3; It is a top view of the sealing gel expansion suppression board which concerns on Embodiment 3.
  • FIG. FIG. 16 is a cross-sectional view of a semiconductor module according to Fourth Embodiment;
  • FIG. 20 is a cross-sectional view of the semiconductor module of the fifth embodiment.
  • FIG. 20 is a cross-sectional view of a semiconductor module according to Embodiment 6; It is a top view of the sealing gel expansion suppression board which concerns on Embodiment 6.
  • FIG. FIG. 18 is a cross-sectional view of the semiconductor module of the seventh embodiment. It is a top view of the sealing gel expansion suppression board which concerns on Embodiment 7.
  • FIG. It is a top view of the semiconductor module concerning the premise technology. It is sectional drawing of the semiconductor module which concerns on a premise technology.
  • FIG. 14 is a plan view of the semiconductor module in the base technology.
  • FIG. 15 is a cross-sectional view taken along line AA of FIG. In FIG. 14, the lid 1 a of the case 1 and the sealing gel 2 are not shown for easy viewing of the drawing.
  • the insulating substrate 3 is bonded onto the metal base plate 9 via the metal material 4 such as solder.
  • a metal pattern 5 of copper is formed on the surface of the insulating substrate 3.
  • a plurality of semiconductor elements 6 a and 6 b are bonded onto the metal pattern 5.
  • the semiconductor elements 6a and 6b and the semiconductor elements 6a and 6b and the external electrodes 10a, 10b and 10c are electrically connected by wires 7 or a metal plate 14 or the like.
  • the insulating substrate 3, the semiconductor elements 6 a and 6 b and the wires 7 are housed in the case 1 whose base plate 9 is the bottom.
  • the inside of the case 1 is filled with a sealing gel 2. That is, the insulating substrate 3, the semiconductor elements 6 a and 6 b and the wires 7 are sealed by the sealing gel 2.
  • a sealing gel expansion suppression plate 8 is integrally formed on the inner wall of the case 1, and the sealing gel expansion suppression plate 8 is also sealed by the sealing gel 2.
  • the sealing gel expansion suppression plate 8 is provided to suppress the expansion of the sealing gel 2.
  • the sealing gel expansion suppression plate 8 always suppresses the expansion of the sealing gel 2 regardless of the degree of the expansion of the sealing gel 2. Therefore, even when the sealing gel 2 slightly expands so as not to affect the object to be sealed (such as the wire 7), the sealing gel expansion suppression plate 8 suppresses the expansion, Stress is generated on the object to be sealed, which may lead to breakage of the object such as disconnection of the wire 7.
  • FIG. 1 is a cross-sectional view of the semiconductor module 100 in the first embodiment.
  • FIG. 2 is a plan view of the sealing gel expansion suppression plate 81 in the first embodiment.
  • the configuration other than the sealing gel expansion suppression plate 81 is the same as that of the base technology (FIG. 15), and thus the description thereof is omitted.
  • FIG. 1 is a cross-sectional view corresponding to the line segment AA of the plan view (FIG. 14) used in the base technology.
  • the cross section in the line segment BB of FIG. 2 corresponds to the cross section of the sealing gel expansion suppression plate 81 of FIG.
  • the sealing gel 2 is, for example, a silicone gel.
  • the sealing gel expansion suppression plate 81 is configured of a lattice-like frame portion 81 a and an arch portion 81 b which is an inner portion of the frame portion 81 a. As shown in FIG. 1, the sealing gel expansion suppression plate 81 is adhered and fixed to the upper surface of the sealing gel 2 so that a space 12 is formed between the arch portion 81 b and the upper surface of the sealing gel 2.
  • the expansion is not suppressed until the space 12 is filled with the sealing gel 2. After the sealing gel 2 is further expanded and the space 12 is filled with the sealing gel 2, the expansion is suppressed by the sealing gel expansion suppression plate 81.
  • the semiconductor elements 6a and 6b are, for example, insulated gate bipolar transistors (IGBTs) and reflux diodes connected in parallel.
  • the semiconductor devices 6a and 6b are, for example, Si (silicon) semiconductor devices, but may be SiC (silicon carbide) semiconductor devices capable of high temperature operation.
  • the sealing gel expansion suppression plate 81 may be fixed or in contact with a member other than the sealing gel 2.
  • one side of the sealing gel expansion suppressing plate 81 i.e., the side surface of the frame portion 81 a
  • the upper end of the frame portion 81 a of the sealing gel expansion suppression plate 81 may extend toward the lid 1 a of the case 1 and be in contact with or fixed to the lid 1 a of the case 1.
  • the semiconductor module 100 includes the semiconductor elements 6a and 6b joined to the metal pattern 5 on the insulating substrate 3 contained in the case 1, and the insulating substrate 3 and the semiconductor elements 6a and 6b in the case 1. And a sealing gel expansion suppression plate 81 disposed at least a part of the sealing gel 2 in contact with the sealing gel 2, and the sealing gel expansion suppression plate The surface facing the sealing gel 2 of 81 is inclined with respect to the upper surface of the sealing gel 2.
  • the sealing gel expansion suppression plate 81 by arranging the sealing gel expansion suppression plate 81 at an angle with respect to the upper surface of the sealing gel 2, when the sealing gel is expanded, generation of excessive pressure inside the sealing gel 2 is suppressed. can do. That is, it is possible to suppress the application of excessive stress to the semiconductor elements 6a and 6b, the wire 7 and the like sealed in the sealing gel 2. Further, by arranging the sealing gel expansion suppression plate 81, peeling of the sealing gel 2 from the insulating substrate 3 or the like can also be prevented. From the above, in the first embodiment, it is possible to suppress both the damage to the object to be sealed such as the wire 7 and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 100 under high temperature.
  • the sealing gel expansion suppression plate 81 provided in the semiconductor module 100 in the first embodiment has an arched cross-sectional shape.
  • the sealing gel expansion suppressing plate 81 suppresses the expansion.
  • the sealing gel 2 undergoes a slight expansion that does not affect the object to be sealed (semiconductor elements 6a and 6b, wires 7 and the like), the expansion is absorbed by the space 12, so sealing is performed.
  • the anti-gel expansion suppression plate 81 does not suppress the expansion. Thereby, it is possible to suppress that an excessive stress arises in a thing to be sealed by suppressing expansion.
  • the sealing gel 2 causes expansion to fill the space 12, the expansion is suppressed by the sealing gel expansion suppression plate 81. Therefore, it can suppress that the sealing gel 2 causes excessive expansion
  • the first embodiment it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 100 under high temperature.
  • the material of the metal pattern 5 is copper, and the surface of the metal pattern 5 is not covered with a material other than copper.
  • the unplated copper metal pattern 5 can obtain good bonding with copper electrodes and copper wires.
  • the metal pattern 5 of copper which is not plated is likely to peel off the sealing gel 2.
  • peeling of the sealing gel 2 from the sealing material can be suppressed, peeling is caused even when a copper pattern not plated is provided as the metal pattern 5. hard.
  • the semiconductor elements 6a and 6b are SiC semiconductor elements. Therefore, since the SiC semiconductor device can operate at a high temperature, it is more effective to apply the SiC semiconductor device to the first embodiment in which the reliability with respect to the expansion of the sealing gel 2 is improved.
  • FIG. 3 is a cross-sectional view of the semiconductor module 200 in the second embodiment.
  • FIG. 4 is a plan view of the sealing gel expansion suppression plate 82 in the second embodiment.
  • the configuration of the semiconductor module 200 other than the sealing gel expansion suppression plate 82 is the same as that of the first embodiment (FIG. 1), and thus the description thereof is omitted.
  • FIG. 3 is a cross-sectional view corresponding to the line segment AA of the plan view (FIG. 14) used in the base technology. Moreover, the cross section in the line segment CC of FIG. 4 corresponds to the cross section of the sealing gel expansion suppression plate 82 of FIG. 3.
  • the sealing gel expansion suppression plate 82 is configured of first and second sealing gel expansion suppression plates 82a and 82b. As shown in FIG. 3, the first and second sealing gel expansion suppressing plates 82 a and 82 b are arranged such that the inclined portions 822 a and 822 b are inclined with respect to the upper surface of the sealing gel 2. The first and second sealing gel expansion suppressing plates 82a and 82b are arranged to face each other in an inverted V shape.
  • the end portions 821 a and 821 b of the first and second sealing gel expansion suppressing plates 82 a and 82 b may be fixed to the case 1.
  • the end portions 821a and 821b of the first and second sealing gel expansion suppressing plates 82a and 82b respectively extend toward the lid 1a of the case 1 and are contacted or fixed to the lid 1a of the case 1 It is also good.
  • the sealing gel expansion suppression plate 82 has an inverted V-shaped cross-sectional shape.
  • the sealing gel expansion suppression plate 8 is sealed gel 2 as in the base technology. It is possible to more gently suppress the expansion of the sealing gel 2 as compared to the case where the sealing gel 2 is arranged horizontally to the upper surface. Therefore, generation of excessive pressure inside the sealing gel 2 can be suppressed. That is, it is possible to suppress the application of excessive stress to the semiconductor elements 6a and 6b, the wire 7 and the like sealed in the sealing gel 2. Further, by arranging the sealing gel expansion suppression plate 82, peeling of the sealing gel 2 from the insulating substrate 3 or the like can also be prevented. As described above, in the second embodiment, it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 200 under high temperature.
  • FIG. 5 is a cross-sectional view of the semiconductor module 300 in the third embodiment.
  • FIG. 6 is a plan view of the sealing gel expansion suppression plate 83 in the third embodiment.
  • the configuration of the semiconductor module 300 other than the sealing gel expansion suppression plate 83 is the same as that of the first embodiment (FIG. 1), and thus the description thereof is omitted.
  • FIG. 5 is a cross-sectional view corresponding to the line segment AA of the plan view (FIG. 14) used in the base technology. Moreover, the cross section in the line segment DD of FIG. 6 corresponds to the cross section of the sealing gel expansion suppression plate 83 of FIG.
  • the sealing gel expansion suppression plate 83 is configured of first and second sealing gel expansion suppression plates 83a and 83b. As shown in FIG. 5, the first and second sealing gel expansion suppressing plates 83a and 83b are arranged such that the inclined portions 832a and 832b are inclined with respect to the top surface of the sealing gel 2. The first and second sealing gel expansion suppressing plates 83a and 83b are arranged to be V-shaped to face each other.
  • the end portions 831 a and 831 b of the first and second sealing gel expansion suppressing plates 83 a and 83 b may be fixed to the case 1.
  • the end portions 831a and 831b of the first and second sealing gel expansion suppressing plates 83a and 83b extend toward the lid 1a of the case 1 and are contacted or fixed to the lid 1a of the case 1 It is also good.
  • the sealing gel expansion suppression plate 83 has a V-shaped cross-sectional shape.
  • the sealing gel expansion suppression plate 8 is sealed gel 2 as in the base technology. It is possible to more gently suppress the expansion of the sealing gel 2 as compared to the case where the sealing gel 2 is arranged horizontally to the upper surface. Therefore, generation of excessive pressure inside the sealing gel 2 can be suppressed. That is, it is possible to suppress the application of excessive stress to the semiconductor elements 6a and 6b, the wire 7 and the like sealed in the sealing gel 2. Further, by arranging the sealing gel expansion suppression plate 83, it is possible to prevent peeling of the sealing gel 2 from the insulating substrate 3 and the like. From the above, in the third embodiment, it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 300 under high temperature.
  • FIG. 7 is a cross-sectional view of the semiconductor module 400 in the fourth embodiment.
  • FIG. 7 is a cross-sectional view corresponding to line segment AA of the plan view (FIG. 14) used in the base technology.
  • the height of the upper surface of the sealing gel 2 is changed in a region overlapping with the sealing gel expansion suppression plate 8 in a plan view.
  • the height of the upper surface of the sealing gel 2 is lowered, and the sealing gel 2 acts as a sealing gel expansion suppression plate 8. Avoid contact.
  • the height of the upper surface of the sealing gel 2 is increased so that the sealing gel 2 contacts the sealing gel expansion suppressing plate 8.
  • the other configuration is the same as that of the base technology (FIG. 15), and hence the description is omitted.
  • the semiconductor module 400 includes the semiconductor elements 6a and 6b joined to the metal pattern 5 on the insulating substrate 3 contained in the case 1, and the insulating substrate 3 and the semiconductor elements 6a and 6b in the case 1. And a sealing gel expansion suppression plate 8 disposed at least a part of the sealing gel 2 in contact with the sealing gel 2, and the sealing gel expansion suppression plate The height of the upper surface of the sealing gel 2 is partially different in the region where 8 and the sealing gel 2 overlap in plan view.
  • a space 13 in which the sealing gel 2 can expand upward is provided in the region 2 b in which the height of the upper surface of the sealing gel 2 is lowered. Therefore, even when the sealing gel 2 expands in the region 2 b, it is possible to reduce excessive stress on the object to be sealed (semiconductor elements 6 a and 6 b, wires and the like). In addition, when the sealing gel 2 further expands in the region 2 b and reaches the sealing gel expansion suppression plate 8, the sealing gel expansion suppression plate 8 suppresses the expansion of the sealing gel 2. Peeling from the insulating substrate 3 or the like can be prevented.
  • the fourth embodiment it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 400 under high temperature.
  • FIG. 8 is a cross-sectional view of the semiconductor module 500 in the fifth embodiment.
  • FIG. 9 is a plan view showing the relationship between the sealing gel expansion suppression plate 8 and the case 1 in the fifth embodiment.
  • FIG. 8 is a cross-sectional view corresponding to line segment AA of the plan view (FIG. 14) used in the base technology.
  • the cushioning material 11 is disposed between the upper surface of the sealing gel 2 and the lower surface of the sealing gel expansion suppression plate 8.
  • One side of the sealing gel expansion suppression plate 8 is formed integrally with the case 1.
  • the sealing gel expansion suppression plate 8 and the case 1 may be separate members, and the sealing gel expansion suppression plate 8 may be fixed by adhesion or the like.
  • the cushioning material 11 is assumed to be a material having a smaller Young's modulus than the sealing gel expansion suppression plate 8.
  • silicone rubber is used as the buffer material 11.
  • the other configuration is the same as that of the base technology (FIG. 15), and hence the description is omitted.
  • the sealing gel 2 starts to expand, first, the sealing gel 2 is slightly suppressed from expanding by the buffer material 11. Then, when the sealing gel 2 continues to expand further, the sealing gel 2 is strongly suppressed to expand by the sealing gel expansion suppressing plate 8 having a larger Young's modulus than the buffer material 11.
  • the semiconductor module 500 includes the semiconductor elements 6a and 6b joined to the metal pattern 5 on the insulating substrate 3 contained in the case 1, and the insulating substrate 3 and the semiconductor elements 6a and 6b in the case 1.
  • the sealing gel 2 for sealing the sealing gel, the sealing gel expansion suppression plate 8 disposed on the upper portion of the sealing gel 2, and the buffer in which the lower surface is in contact with the sealing gel 2 and the upper surface is in contact with the sealing gel expansion suppression plate 8 And 11 are provided.
  • the buffer 11 slightly suppresses the expansion. Thereby, it is possible to suppress excessive stress on the object to be sealed (semiconductor elements 6a and 6b, wires and the like).
  • the sealing gel expansion suppression plate 8 suppresses the expansion of the sealing gel 2. Thereby, it is possible to prevent peeling of the sealing gel 2 from the insulating substrate 3 or the like. From the above, in the fifth embodiment, it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 500 under high temperature.
  • FIG. 10 is a cross-sectional view of a semiconductor module 600 in the sixth embodiment.
  • FIG. 11 is a plan view of the sealing gel 2 according to the sixth embodiment.
  • the configuration other than the sealing gel 2 is the same as that of the base technology (FIG. 15), and thus the description thereof is omitted.
  • FIG. 10 is a cross-sectional view corresponding to the line segment AA of the plan view (FIG. 14) used in the base technology. Moreover, the cross section in the line segment EE of FIG. 11 corresponds to the cross section of the sealing gel 2 of FIG.
  • a plurality of holes 2c are provided on the top surface of the sealing gel 2 in the semiconductor module 600.
  • the hole 2c is, for example, a cylindrical hole.
  • a sealing gel expansion suppression plate 8 is disposed on the top surface of the sealing gel 2. The upper surface of the sealing gel 2 is in contact with the lower surface of the sealing gel expansion suppression plate 8.
  • the semiconductor module 600 includes the semiconductor elements 6a and 6b joined to the metal pattern 5 on the insulating substrate 3 enclosed in the case 1, and the insulating substrate 3 and the semiconductor elements 6a and 6b in the case 1. And a sealing gel expansion suppression plate 8 disposed to be in contact with the upper surface of the sealing gel 2, and a plurality of holes 2 c are provided on the upper surface of the sealing gel 2. It is done.
  • the sealing gel expansion suppression plate 8 suppresses the expansion of the sealing gel 2. Thereby, it is possible to prevent peeling of the sealing gel 2 from the insulating substrate 3 or the like.
  • the sixth embodiment it is possible to suppress both the damage to the object to be sealed and the peeling of the sealing gel 2. Therefore, it is possible to improve the reliability of the semiconductor module 500 under high temperature.
  • the hole 2c is a cylindrical hole.
  • the holes 2c cylindrical, it is possible to uniformly absorb pressure from any direction in plan view when the sealing gel 2 expands. Therefore, it is possible to further suppress excessive stress on the object to be sealed (semiconductor elements 6a and 6b, wires and the like). Therefore, it is possible to improve the reliability of the semiconductor module 600 under high temperature.
  • FIG. 12 is a cross-sectional view of a semiconductor module 700 in the seventh embodiment.
  • FIG. 13 is a plan view of the sealing gel 2 in the seventh embodiment.
  • the configuration other than the sealing gel 2 is the same as that of the base technology (FIG. 15), and thus the description thereof is omitted.
  • FIG. 12 is a cross-sectional view corresponding to line segment AA of the plan view (FIG. 14) used in the base technology. Moreover, the cross section in line segment FF of FIG. 13 corresponds to the cross section of the sealing gel 2 of FIG.
  • a plurality of cut holes 2 d are provided on the top surface of the sealing gel 2.
  • a sealing gel expansion suppression plate 8 is disposed on the top surface of the sealing gel 2. The upper surface of the sealing gel 2 is in contact with the lower surface of the sealing gel expansion suppression plate 8.
  • the plurality of cut holes 2 d are provided in parallel to one another.
  • the holes are notches 2 d. Therefore, by providing a plurality of cut holes 2 d on the upper surface of the sealing gel 2, the pressure inside the sealing gel 2 can be increased to the upper surface side of the sealing gel 2 by expanding the cutting holes 2 d when the sealing gel 2 expands. You can escape to Therefore, it is possible to further suppress excessive stress on the object to be sealed (semiconductor elements 6a and 6b, wires and the like). Therefore, it is possible to improve the reliability of the semiconductor module 700 under high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は、封止ゲルの膨張収縮による被封止物への過度な応力を低減することにより、信頼性を向上させた半導体モジュールの提供を目的とする。本発明に係る半導体モジュール100は、ケース1に内包された絶縁基板3上の金属パターン5に接合された半導体素子6a,6bと、ケース1内で、絶縁基板3および半導体素子6a,6bを封止する封止ゲル2と、封止ゲル2の上部に、封止ゲル2に少なくとも一部が接して配置された封止ゲル膨張抑制板81と、を備え、封止ゲル膨張抑制板81の封止ゲル2に対向する面は、封止ゲル2の上面に対して傾斜している。

Description

半導体モジュール
 本発明は半導体モジュールに関し、特に電力用途の半導体モジュールに関する。
 一般的に、電力用途の半導体モジュールにおいては、絶縁基板上に配置され、ワイヤ等で相互に接続された半導体素子がケース内に封止ゲルにより封止されている。封止ゲルの吸湿および半導体モジュールの動作時の温度変化により、封止ゲルが膨張収縮し、ワイヤが断線するなど、被封止物に損傷を与えることがあった。また、封止ゲルが絶縁基板等から剥離して絶縁性が低下する問題もあった。
 この課題を解決するために、例えば特許文献1においては、ゲル状の充填剤をケースに充填した後、充填剤の表面に密着するように板を配置している。この板により、ゲル状の充填剤の揺動が抑制され、ワイヤ等の断線が抑えられる。
特開2000-311970号公報
 近年、電力用途への適用において半導体モジュールのより高温下での動作が求められている。半導体モジュールが高温で動作を行うと、封止ゲルの膨張がより大きくなる。そのため、封止ゲルの膨張によって被封止物へ過度な応力がかかることを抑制する対策が必要となる。
 本発明は上記のような課題を解決するためになされたものであり、封止ゲルの膨張収縮による被封止物への過度な応力を低減することにより、信頼性を向上させた半導体モジュールの提供を目的とする。
 本発明に係る第1の半導体モジュールは、ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、ケース内で、絶縁基板および半導体素子を封止する封止ゲルと、封止ゲルの上部に、封止ゲルに少なくとも一部が接して配置された封止ゲル膨張抑制板と、を備え、封止ゲル膨張抑制板の封止ゲルに対向する面は、封止ゲルの上面に対して傾斜している。
 また、本発明に係る第2の半導体モジュールは、ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、ケース内で、絶縁基板および半導体素子を封止する封止ゲルと、封止ゲルの上部に、封止ゲルに少なくとも一部が接して配置された封止ゲル膨張抑制板と、を備え、封止ゲル膨張抑制板と封止ゲルが平面視で重なる領域において、封止ゲルの上面の高さが部分的に異なる。
 また、本発明に係る第3の半導体モジュールは、ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、ケース内で、絶縁基板および半導体素子を封止する封止ゲルと、封止ゲルの上部に配置された封止ゲル膨張抑制板と、下面が封止ゲルと接し、上面が封止ゲル膨張抑制板と接する緩衝材と、を備える。
 また、本発明に係る第4の半導体モジュールは、ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、ケース内で、絶縁基板および半導体素子を封止する封止ゲルと、封止ゲルの上面に接するように配置された封止ゲル膨張抑制板と、を備え、封止ゲルの上面には、複数の穴が設けられている。
 本発明に係る第1の半導体モジュールによれば、封止ゲル膨張抑制板を封止ゲルの上面に対して傾斜させて配置することにより、封止ゲルが膨張した際に、封止ゲル内部に過度な圧力が生じることを抑制することができる。つまり、被封止物に過度の応力が加わることを抑制可能である。また、封止ゲル膨張抑制板を配置することにより、封止ゲルの被封止物からの剥離も防止することができる。よって、半導体モジュールの信頼性を向上させることが可能である。
 本発明に係る第2の半導体モジュールによれば、封止ゲルの上面の高さを相対的に低くした領域においては、封止ゲル膨張抑制板との間において封止ゲルが上方向に膨張できる空間が設けられる。よって、封止ゲルが膨張した場合であっても、被封止物に対する過度な応力を低減することが可能である。また、封止ゲルがさらに膨張して封止ゲル膨張抑制板に達した場合は、封止ゲル膨張抑制板が封止ゲルの膨張を抑制するため、封止ゲルの絶縁基板等からの剥離を防止することが可能である。よって、半導体モジュールの信頼性を向上させることが可能である。
 本発明に係る第3の半導体モジュールによれば、封止ゲルが膨張を始めると、まず、緩衝材により軽度に膨張が抑制される。これにより、被封止物に対する過度な応力を抑制することが可能である。封止ゲルがさらに膨張した場合は、封止ゲル膨張抑制板が封止ゲルの膨張を抑制する。これにより、封止ゲルの被封止物からの剥離を防止することが可能である。よって、半導体モジュールの信頼性を向上させることが可能である。
 本発明に係る第4の半導体モジュールによれば、封止ゲルが膨張しても、複数の穴の空間により膨張を吸収することが可能である。よって、被封止物に対する過度な応力を抑制することが可能である。封止ゲルがさらに膨張した場合は、封止ゲル膨張抑制板が封止ゲルの膨張を抑制する。これにより、封止ゲルの被封止物からの剥離を防止することが可能である。よって、半導体モジュールの信頼性を向上させることが可能である。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによってより明白となる。
実施の形態1に係る半導体モジュールの断面図である。 実施の形態1に係る封止ゲル膨張抑制板の平面図である。 実施の形態2に係る半導体モジュールの断面図である。 実施の形態2に係る封止ゲル膨張抑制板の平面図である。 実施の形態3に係る半導体モジュールの断面図である。 実施の形態3に係る封止ゲル膨張抑制板の平面図である。 実施の形態4に係る半導体モジュールの断面図である。 実施の形態5に係る半導体モジュールの断面図である。 実施の形態5に係る封止ゲル膨張抑制板の平面図である。 実施の形態6に係る半導体モジュールの断面図である。 実施の形態6に係る封止ゲル膨張抑制板の平面図である。 実施の形態7に係る半導体モジュールの断面図である。 実施の形態7に係る封止ゲル膨張抑制板の平面図である。 前提技術に係る半導体モジュールの平面図である。 前提技術に係る半導体モジュールの断面図である。
 <前提技術>
 本発明の実施形態を説明する前に、本発明の前提となる技術について説明する。図14は前提技術における半導体モジュールの平面図である。図15は、図14の線分AAにおける断面図である。なお、図14において図の見易さのため、ケース1の蓋1aおよび封止ゲル2は図示していない。
 図14および図15に示すように、金属のベース板9上に絶縁基板3がはんだ等の金属材料4を介して接合されている。絶縁基板3の表面には例えば銅の金属パターン5が形成されている。金属パターン5上には複数の半導体素子6a,6bが接合されている。半導体素子6a,6bの間および半導体素子6a,6bと外部電極10a,10b,10cの間は、ワイヤ7や金属板14などで電気的に接合されている。
 絶縁基板3、半導体素子6a,6bおよびワイヤ7は、ベース板9を底面とするケース1に収納されている。ケース1内部には封止ゲル2が充填されている。つまり、封止ゲル2により、絶縁基板3、半導体素子6a,6bおよびワイヤ7が封止されている。図15に示すように、ケース1の内壁には封止ゲル膨張抑制板8が一体に形成され、封止ゲル膨張抑制板8も封止ゲル2で封止されている。
 前提技術において、封止ゲル膨張抑制板8は、封止ゲル2の膨張を抑制するために設けられる。封止ゲル膨張抑制板8は、封止ゲル2の膨張の程度に関わらず、封止ゲル2の膨張を常に抑制する。従って、封止ゲル2が被封止物(ワイヤ7等)に影響を与えない程度の軽度な膨張を起こした場合であっても、封止ゲル膨張抑制板8によって膨張を抑制されるため、被封止物に対して応力が発生し、ワイヤ7の断線等、被封止物の損傷につながる恐れがあった。本発明は以上で述べた課題を解決するものである。
 <実施の形態1>
 図1は、本実施の形態1における半導体モジュール100の断面図である。図2は、本実施の形態1における封止ゲル膨張抑制板81の平面図である。本実施の形態1の半導体モジュール100において、封止ゲル膨張抑制板81以外の構成は前提技術(図15)と同様のため説明を省略する。なお、図1は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。また、図2の線分BBにおける断面が図1の封止ゲル膨張抑制板81の断面に対応する。
 本実施の形態1において封止ゲル2とは、例えばシリコーンゲルである。本実施の形態1において封止ゲル膨張抑制板81は、格子状の枠部81aと、枠部81aの内側の部分であるアーチ部81bから構成される。図1に示すように、封止ゲル膨張抑制板81は、アーチ部81bと封止ゲル2の上面との間に空間12ができるように、封止ゲル2の上面に接着固定される。
 アーチ部81bと封止ゲル2との間に空間12ができることによって、封止ゲル2が膨張を始めても、空間12が封止ゲル2で埋まるまでは膨張が抑制されない。封止ゲル2がさらに膨張して、空間12が封止ゲル2で埋まった後は、封止ゲル膨張抑制板81により膨張が抑制される。
 本実施の形態1では、半導体素子6a,6bは例えば並列接続された絶縁ゲートバイポーラトランジスタ(IGBT)と還流ダイオードである。半導体素子6a,6bは例えばSi(シリコン)半導体素子であるが、高温動作が可能なSiC(シリコンカーバイド)半導体素子であってもよい。
 なお、本実施の形態1において、封止ゲル膨張抑制板81は封止ゲル2以外の部材に固定または接触していてもよい。例えば、封止ゲル膨張抑制板81の一辺(即ち枠部81aの側面)をケース1に固定してもよい。あるいは、封止ゲル膨張抑制板81の枠部81aの上端がケース1の蓋1aに向かって延在して、ケース1の蓋1aに接触又は固定されてもよい。
 <効果>
 本実施の形態1における半導体モジュール100は、ケース1に内包された絶縁基板3上の金属パターン5に接合された半導体素子6a,6bと、ケース1内で、絶縁基板3および半導体素子6a,6bを封止する封止ゲル2と、封止ゲル2の上部に、封止ゲル2に少なくとも一部が接して配置された封止ゲル膨張抑制板81と、を備え、封止ゲル膨張抑制板81の封止ゲル2に対向する面は、封止ゲル2の上面に対して傾斜している。
 従って、封止ゲル膨張抑制板81を封止ゲル2の上面に対して傾斜させて配置することにより、封止ゲルが膨張した際に、封止ゲル2内部に過度な圧力が生じることを抑制することができる。つまり、封止ゲル2に封止された半導体素子6a,6b、ワイヤ7などに過度の応力が加わることを抑制可能である。また、封止ゲル膨張抑制板81を配置することにより、封止ゲル2の絶縁基板3等からの剥離も防止することができる。以上から、本実施の形態1では、ワイヤ7等の被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール100の信頼性を向上させることが可能である。
 本実施の形態1における半導体モジュール100に備わる封止ゲル膨張抑制板81は、アーチ形の断面形状を有する。
 本実施の形態1では、封止ゲル2がアーチ部81bの空間12を埋める程度まで膨張すると、封止ゲル膨張抑制板81により膨張が抑制される。つまり、封止ゲル2が被封止物(半導体素子6a,6b、ワイヤ7等)に影響を与えない程度の軽度な膨張を起こした場合は、膨張分は空間12により吸収されるため、封止ゲル膨張抑制板81は膨張を抑制しない。これにより、膨張を抑制することによって被封止物に過度な応力が生じることを抑制することが可能である。また、封止ゲル2が空間12を埋めるほどの膨張を起こした場合は、封止ゲル膨張抑制板81によって膨張が抑制される。よって、封止ゲル2が過度の膨張を起こして、封止ゲル2が絶縁基板3等から剥離することを抑制することができる。
 以上から、本実施の形態1では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール100の信頼性を向上させることが可能である。
 また、本実施の形態1における半導体モジュール100において、金属パターン5の素材は銅であり、金属パターン5の表面は銅以外の素材で覆われていない。一般に、めっきを施していない銅の金属パターン5は、銅製の電極、銅製のワイヤとの良好な接合性を得ることができる。一方で、めっきを施していない銅の金属パターン5は、封止ゲル2との剥離を起こし易い。本実施の形態1では、封止ゲル2の封止物からの剥離を抑制することができるため、金属パターン5として、めっきを施していない銅パターンを設けた場合であっても、剥離を起こし難い。
 また、本実施の形態1における半導体モジュール100において、半導体素子6a,6bはSiC半導体素子である。従って、SiC半導体素子は高温動作が可能であるため、封止ゲル2の膨張に対する信頼性を向上させた本実施の形態1へSiC半導体素子を適用するのがより効果的である。
 <実施の形態2>
 図3は、本実施の形態2における半導体モジュール200の断面図である。図4は、本実施の形態2における封止ゲル膨張抑制板82の平面図である。半導体モジュール200において、封止ゲル膨張抑制板82以外の構成は実施の形態1(図1)と同様のため説明を省略する。
 なお、図3は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。また、図4の線分CCにおける断面が図3の封止ゲル膨張抑制板82の断面に対応する。
 封止ゲル膨張抑制板82は第1、第2の封止ゲル膨張抑制板82a,82bから構成される。図3に示すように、第1、第2の封止ゲル膨張抑制板82a,82bは、傾斜部822a,822bのそれぞれが封止ゲル2上面に対して傾斜するように配置される。第1、第2の封止ゲル膨張抑制板82a,82bは、互いに向かい合って逆V字形になるように配置される。
 なお、本実施の形態2において、第1、第2の封止ゲル膨張抑制板82a,82bの端部821a,821bのそれぞれをケース1に固定してもよい。あるいは、第1、第2の封止ゲル膨張抑制板82a,82bの端部821a,821bのそれぞれがケース1の蓋1aに向かって延在して、ケース1の蓋1aに接触又は固定されてもよい。
 <効果>
 本実施の形態2における半導体モジュール200において、封止ゲル膨張抑制板82は逆V字形の断面形状を有する。
 従って、前提技術と比較して、封止ゲル膨張抑制板82を封止ゲル2上面に対して傾斜をつけて配置するため、前提技術のように封止ゲル膨張抑制板8を封止ゲル2上面に対して水平に配置した場合と比較して、封止ゲル2の膨張をより緩やかに抑制することが可能である。よって、封止ゲル2内部に過度な圧力が生じることを抑制することができる。つまり、封止ゲル2に封止された半導体素子6a,6b、ワイヤ7などに過度の応力が加わることを抑制可能である。また、封止ゲル膨張抑制板82を配置することにより、封止ゲル2の絶縁基板3等からの剥離も防止することができる。以上から、本実施の形態2では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール200の信頼性を向上させることが可能である。
 <実施の形態3>
 図5は、本実施の形態3における半導体モジュール300の断面図である。図6は、本実施の形態3における封止ゲル膨張抑制板83の平面図である。半導体モジュール300において、封止ゲル膨張抑制板83以外の構成は実施の形態1(図1)と同様のため説明を省略する。
 なお、図5は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。また、図6の線分DDにおける断面が図5の封止ゲル膨張抑制板83の断面に対応する。
 封止ゲル膨張抑制板83は第1、第2の封止ゲル膨張抑制板83a,83bから構成される。図5に示すように、第1、第2の封止ゲル膨張抑制板83a,83bは、傾斜部832a,832bのそれぞれが封止ゲル2上面に対して傾斜するように配置される。第1、第2の封止ゲル膨張抑制板83a,83bは、互いに向かい合ってV字形になるように配置される。
 なお、本実施の形態3において、第1、第2の封止ゲル膨張抑制板83a,83bの端部831a,831bのそれぞれをケース1に固定してもよい。あるいは、第1、第2の封止ゲル膨張抑制板83a,83bの端部831a,831bのそれぞれがケース1の蓋1aに向かって延在して、ケース1の蓋1aに接触又は固定されてもよい。
 <効果>
 本実施の形態3における半導体モジュール300において、封止ゲル膨張抑制板83はV字形の断面形状を有する。
 従って、前提技術と比較して、封止ゲル膨張抑制板83を封止ゲル2上面に対して傾斜をつけて配置するため、前提技術のように封止ゲル膨張抑制板8を封止ゲル2上面に対して水平に配置した場合と比較して、封止ゲル2の膨張をより緩やかに抑制することが可能である。よって、封止ゲル2内部に過度な圧力が生じることを抑制することができる。つまり、封止ゲル2に封止された半導体素子6a,6b、ワイヤ7などに過度の応力が加わることを抑制可能である。また、封止ゲル膨張抑制板83を配置することにより、封止ゲル2の絶縁基板3等からの剥離も防止することができる。以上から、本実施の形態3では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール300の信頼性を向上させることが可能である。
 <実施の形態4>
 図7は、本実施の形態4における半導体モジュール400の断面図である。図7は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。
 本実施の形態4の半導体モジュール400においては、封止ゲル膨張抑制板8と平面視で重なる領域において、封止ゲル2の上面の高さを変化させる。
 例えば、封止ゲル2の膨張による応力を受けて断線等を起こし易い領域2bにおいては、封止ゲル2の上面の高さを低くして、封止ゲル2が封止ゲル膨張抑制板8に接触しないようにする。一方、領域2b以外の領域2aにおいては、封止ゲル2の上面の高さを高くして、封止ゲル2が封止ゲル膨張抑制板8に接触するようにする。その他の構成は前提技術(図15)と同様なため説明を省略する。
 <効果>
 本実施の形態4における半導体モジュール400は、ケース1に内包された絶縁基板3上の金属パターン5に接合された半導体素子6a,6bと、ケース1内で、絶縁基板3および半導体素子6a,6bを封止する封止ゲル2と、封止ゲル2の上部に、封止ゲル2に少なくとも一部が接して配置された封止ゲル膨張抑制板8と、を備え、封止ゲル膨張抑制板8と封止ゲル2が平面視で重なる領域において、封止ゲル2の上面の高さが部分的に異なる。
 従って、封止ゲル2の上面の高さを低くした領域2bにおいては、封止ゲル2が上方向に膨張できる空間13が設けられる。よって、領域2bにおいて封止ゲル2が膨張した場合であっても、被封止物(半導体素子6a,6b、ワイヤ等)に対する過度な応力を低減することが可能である。また、領域2bにおいて封止ゲル2がさらに膨張して封止ゲル膨張抑制板8に達した場合は、封止ゲル膨張抑制板8が封止ゲル2の膨張を抑制するため、封止ゲル2の絶縁基板3等からの剥離を防止することが可能である。
 以上から、本実施の形態4では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール400の信頼性を向上させることが可能である。
 <実施の形態5>
 図8は、本実施の形態5における半導体モジュール500の断面図である。図9は、本実施の形態5における封止ゲル膨張抑制板8とケース1の関係を示す平面図である。なお、図8は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。
 本実施の形態5においては、封止ゲル2の上面と、封止ゲル膨張抑制板8の下面との間に緩衝材11を配置する。封止ゲル膨張抑制板8の一辺は、ケース1と一体に形成されている。また、封止ゲル膨張抑制板8とケース1とは別部材で、封止ゲル膨張抑制板8とが接着等により固定されていてもよい。
 緩衝材11は、封止ゲル膨張抑制板8よりもヤング率の小さい素材であるとする。緩衝材11としては、例えばシリコーンゴムを用いる。その他の構成は前提技術(図15)と同じため説明を省略する。
 封止ゲル2が膨張を開始すると、まず、封止ゲル2は緩衝材11によって膨張を軽度に抑制される。そして、封止ゲル2がさらに膨張を続けると、封止ゲル2は緩衝材11よりもヤング率の大きい封止ゲル膨張抑制板8によって、膨張を強度に抑制される。
 <効果>
 本実施の形態5における半導体モジュール500は、ケース1に内包された絶縁基板3上の金属パターン5に接合された半導体素子6a,6bと、ケース1内で、絶縁基板3および半導体素子6a,6bを封止する封止ゲル2と、封止ゲル2の上部に配置された封止ゲル膨張抑制板8と、下面が封止ゲル2と接し、上面が封止ゲル膨張抑制板8と接する緩衝材11と、を備える。
 従って、封止ゲル2が膨張を始めると、まず、緩衝材11により軽度に膨張が抑制される。これにより、被封止物(半導体素子6a,6b、ワイヤ等)に対する過度な応力を抑制することが可能である。封止ゲル2がさらに膨張した場合は、封止ゲル膨張抑制板8が封止ゲル2の膨張を抑制する。これにより、封止ゲル2の絶縁基板3等からの剥離を防止することが可能である。以上から、本実施の形態5では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール500の信頼性を向上させることが可能である。
 <実施の形態6>
 図10は、本実施の形態6における半導体モジュール600の断面図である。図11は、本実施の形態6における封止ゲル2の平面図である。半導体モジュール600において、封止ゲル2以外の構成は前提技術(図15)と同様のため説明を省略する。
 なお、図10は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。また、図11の線分EEにおける断面が図10の封止ゲル2の断面に対応する。
 図10、図11に示すように、半導体モジュール600において封止ゲル2の上面には複数の穴2cが設けられている。穴2cは、例えば円柱状の穴である。封止ゲル2の上面には、封止ゲル膨張抑制板8が配置されている。封止ゲル2の上面と封止ゲル膨張抑制板8の下面とが接している。
 <効果>
 本実施の形態6における半導体モジュール600は、ケース1に内包された絶縁基板3上の金属パターン5に接合された半導体素子6a,6bと、ケース1内で、絶縁基板3および半導体素子6a,6bを封止する封止ゲル2と、封止ゲル2の上面に接するように配置された封止ゲル膨張抑制板8と、を備え、封止ゲル2の上面には、複数の穴2cが設けられている。
 従って、封止ゲル2が膨張しても、穴2cの空間により膨張を吸収することが可能である。よって、被封止物(半導体素子6a,6b、ワイヤ等)に対する過度な応力を抑制することが可能である。封止ゲル2がさらに膨張した場合は、封止ゲル膨張抑制板8が封止ゲル2の膨張を抑制する。これにより、封止ゲル2の絶縁基板3等からの剥離を防止することが可能である。
 以上から、本実施の形態6では、被封止物の損傷と、封止ゲル2の剥離の両方を抑制することが可能となる。よって、高温下における半導体モジュール500の信頼性を向上させることが可能である。
 また、本実施の形態6における半導体モジュール600において、穴2cは円柱状の穴である。
 従って、穴2cを円柱状とすることにより、封止ゲル2が膨張したときに、平面視であらゆる方向からの圧力を均等に吸収することが可能である。よって、被封止物(半導体素子6a,6b、ワイヤ等)に対する過度な応力をより抑制することが可能となる。従って、高温下における半導体モジュール600の信頼性を向上させることが可能である。
 <実施の形態7>
 図12は、本実施の形態7における半導体モジュール700の断面図である。図13は、本実施の形態7における封止ゲル2の平面図である。半導体モジュール700において、封止ゲル2以外の構成は前提技術(図15)と同様のため説明を省略する。
 なお、図12は、前提技術において使用した平面図(図14)の線分AAに対応した断面図である。また、図13の線分FFにおける断面が図12の封止ゲル2の断面に対応する。
 図12、図13に示すように、半導体モジュール700において封止ゲル2の上面には複数の切り込み穴2dが設けられている。封止ゲル2の上面には、封止ゲル膨張抑制板8が配置されている。封止ゲル2の上面と封止ゲル膨張抑制板8の下面とが接している。
 図13に示すように、複数の切り込み穴2dは互いに平行に設けられる。
 <効果>
 本実施の形態7における半導体モジュール700において、穴は、切り込み穴2dである。従って、封止ゲル2の上面に複数の切り込み穴2dを設けることにより、封止ゲル2が膨張したとき切り込み穴2dが広がることにより、封止ゲル2内部の圧力を封止ゲル2の上面側に逃がすことができる。よって、被封止物(半導体素子6a,6b、ワイヤ等)に対する過度な応力をより抑制することが可能である。従って、高温下における半導体モジュール700の信頼性を向上させることが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 ケース、2 封止ゲル、2a、2b 領域、2c 穴、2d 切り込み穴、3 絶縁基板、4 金属材料、5 金属パターン、6a,6b 半導体素子、7 ワイヤ、8,81,82,83 封止ゲル膨張抑制板、82a,83a 第1の封止ゲル膨張抑制板、82b,83b 第2の封止ゲル膨張抑制板、9 ベース板、10a,10b,10c 外部電極、11 緩衝材、12,13 空間、14 金属板、100,200,300,400,500,600,700 半導体モジュール、821a,821b,831a,831b 端部、822a,822b,832a,832b 傾斜部。

Claims (11)

  1.  ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、
     前記ケース内で、前記絶縁基板および前記半導体素子を封止する封止ゲルと、
     前記封止ゲルの上部に、当該封止ゲルに少なくとも一部が接して配置された封止ゲル膨張抑制板と、
     を備え、
     前記封止ゲル膨張抑制板の前記封止ゲルに対向する面は、前記封止ゲルの上面に対して傾斜している、
     半導体モジュール。
  2.  前記封止ゲル膨張抑制板はアーチ形の断面形状を有する、
    請求項1に記載の半導体モジュール。
  3.  前記封止ゲル膨張抑制板は逆V字形の断面形状を有する、
    請求項1に記載の半導体モジュール。
  4.  前記封止ゲル膨張抑制板はV字形の断面形状を有する、
    請求項1に記載の半導体モジュール。
  5.  ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、
     前記ケース内で、前記絶縁基板および前記半導体素子を封止する封止ゲルと、
     前記封止ゲルの上部に、当該封止ゲルに少なくとも一部が接して配置された封止ゲル膨張抑制板と、
     を備え、
     前記封止ゲル膨張抑制板と前記封止ゲルが平面視で重なる領域において、当該封止ゲルの上面の高さが部分的に異なる、
     半導体モジュール。
  6.  ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、
     前記ケース内で、前記絶縁基板および前記半導体素子を封止する封止ゲルと、
     前記封止ゲルの上部に配置された封止ゲル膨張抑制板と、
     下面が前記封止ゲルと接し、上面が前記封止ゲル膨張抑制板と接する緩衝材と、
     を備える、
     半導体モジュール。
  7.  ケースに内包された絶縁基板上の金属パターンに接合された半導体素子と、
     前記ケース内で、前記絶縁基板および前記半導体素子を封止する封止ゲルと、
     前記封止ゲルの上面に接するように配置された封止ゲル膨張抑制板と、
     を備え、
     前記封止ゲルの上面には、複数の穴が設けられている、
     半導体モジュール。
  8.  前記穴は円柱状の穴である、
    請求項7に記載の半導体モジュール。
  9.  前記穴は、切り込み穴である、
    請求項7に記載の半導体モジュール。
  10.  前記金属パターンの素材は銅であり、当該金属パターンの表面は銅以外の素材で覆われていない、
    請求項1から請求項9のいずれか一項に記載の半導体モジュール。
  11.  前記半導体素子はSiC半導体素子である、
    請求項1から請求項9のいずれか一項に記載の半導体モジュール。
PCT/JP2015/052190 2015-01-27 2015-01-27 半導体モジュール WO2016120997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016571547A JP6338697B2 (ja) 2015-01-27 2015-01-27 半導体モジュール
DE112015006064.2T DE112015006064T5 (de) 2015-01-27 2015-01-27 Halbleitermodul
CN201580074778.XA CN107210270B (zh) 2015-01-27 2015-01-27 半导体模块
PCT/JP2015/052190 WO2016120997A1 (ja) 2015-01-27 2015-01-27 半導体モジュール
US15/533,327 US10224257B2 (en) 2015-01-27 2015-01-27 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052190 WO2016120997A1 (ja) 2015-01-27 2015-01-27 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2016120997A1 true WO2016120997A1 (ja) 2016-08-04

Family

ID=56542654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052190 WO2016120997A1 (ja) 2015-01-27 2015-01-27 半導体モジュール

Country Status (5)

Country Link
US (1) US10224257B2 (ja)
JP (1) JP6338697B2 (ja)
CN (1) CN107210270B (ja)
DE (1) DE112015006064T5 (ja)
WO (1) WO2016120997A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567241B1 (ja) * 2018-06-12 2019-08-28 三菱電機株式会社 パワー半導体モジュール及び電力変換装置
WO2019239615A1 (ja) * 2018-06-12 2019-12-19 三菱電機株式会社 パワー半導体モジュール及び電力変換装置
WO2022259684A1 (ja) * 2021-06-11 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638410B (zh) * 2017-11-14 2018-10-11 蔡宜興 降低封裝基板翹曲的方法及半成品結構
US11848243B2 (en) 2021-03-05 2023-12-19 Infineon Technologies Austria Ag Molded semiconductor package having a substrate with bevelled edge
EP4273918A1 (en) * 2022-05-05 2023-11-08 Infineon Technologies AG A semiconductor package comprising structures configured to withstand a change of the volume of an potting compound

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157241A (ja) * 1984-01-26 1985-08-17 Mitsubishi Electric Corp 半導体装置
JPS61145851A (ja) * 1984-12-20 1986-07-03 Toshiba Corp 半導体モジユ−ル
JPH0258357A (ja) * 1988-08-24 1990-02-27 Hitachi Ltd ピングリッドアレイ型半導体装置
JPH02222565A (ja) * 1989-02-23 1990-09-05 Mitsubishi Electric Corp 半導体装置
US5744860A (en) * 1996-02-06 1998-04-28 Asea Brown Boveri Ag Power semiconductor module
JPH11177006A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 半導体装置
JP2003152136A (ja) * 2001-11-09 2003-05-23 Mitsubishi Electric Corp 半導体装置
JP2011082383A (ja) * 2009-10-08 2011-04-21 Mitsubishi Electric Corp 電力用半導体装置、電力用半導体装置の製造方および電力用半導体装置の製造装置
JP2014130875A (ja) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588899B2 (ja) * 1996-03-12 2004-11-17 株式会社デンソー 半導体装置
CA2255441C (en) * 1997-12-08 2003-08-05 Hiroki Sekiya Package for semiconductor power device and method for assembling the same
JP3518407B2 (ja) * 1999-02-25 2004-04-12 株式会社デンソー 半導体装置およびその製造方法
KR101174278B1 (ko) * 2012-03-21 2012-08-16 주식회사콘스탄텍 교육 기능을 제공하는 엘이디 블록 디스플레이 장치 및 그 제어 방법
JP6057748B2 (ja) * 2013-02-04 2017-01-11 三菱電機株式会社 パワーモジュールおよびパワーモジュールの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157241A (ja) * 1984-01-26 1985-08-17 Mitsubishi Electric Corp 半導体装置
JPS61145851A (ja) * 1984-12-20 1986-07-03 Toshiba Corp 半導体モジユ−ル
JPH0258357A (ja) * 1988-08-24 1990-02-27 Hitachi Ltd ピングリッドアレイ型半導体装置
JPH02222565A (ja) * 1989-02-23 1990-09-05 Mitsubishi Electric Corp 半導体装置
US5744860A (en) * 1996-02-06 1998-04-28 Asea Brown Boveri Ag Power semiconductor module
JPH11177006A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 半導体装置
JP2003152136A (ja) * 2001-11-09 2003-05-23 Mitsubishi Electric Corp 半導体装置
JP2011082383A (ja) * 2009-10-08 2011-04-21 Mitsubishi Electric Corp 電力用半導体装置、電力用半導体装置の製造方および電力用半導体装置の製造装置
JP2014130875A (ja) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567241B1 (ja) * 2018-06-12 2019-08-28 三菱電機株式会社 パワー半導体モジュール及び電力変換装置
WO2019239615A1 (ja) * 2018-06-12 2019-12-19 三菱電機株式会社 パワー半導体モジュール及び電力変換装置
US11476170B2 (en) 2018-06-12 2022-10-18 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus
WO2022259684A1 (ja) * 2021-06-11 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器

Also Published As

Publication number Publication date
CN107210270A (zh) 2017-09-26
JP6338697B2 (ja) 2018-06-06
JPWO2016120997A1 (ja) 2017-04-27
CN107210270B (zh) 2019-12-13
US10224257B2 (en) 2019-03-05
DE112015006064T5 (de) 2017-10-12
US20170345729A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016120997A1 (ja) 半導体モジュール
JP5339800B2 (ja) 半導体装置の製造方法
JP5987719B2 (ja) 半導体装置
JP6398270B2 (ja) 半導体装置
JP6705394B2 (ja) 半導体モジュールおよびインバータ装置
JP2012507157A5 (ja)
JP6526229B2 (ja) パワーモジュール
JP2013055150A (ja) 半導体装置及びその製造方法
JP2014053344A (ja) 電子装置及び半導体装置
JP3972821B2 (ja) 電力用半導体装置
JP2002222826A (ja) 半導体装置およびその製造方法
JP2020013923A (ja) 半導体装置
JP5962365B2 (ja) パワー半導体モジュール
JP2007281201A (ja) 半導体装置
JP2005251905A (ja) 半導体装置
JP2010056244A (ja) 半導体装置
JP4994025B2 (ja) 樹脂封止型電子機器
WO2020241239A1 (ja) 半導体装置
JP2022019556A (ja) ピンフィン型パワーモジュールを封止する型、およびパワーモジュールを製造する方法
JP2017135144A (ja) 半導体モジュール
CN107204292B (zh) 半导体装置及半导体装置的制造方法
JP3838369B2 (ja) 半導体装置
CN219658693U (zh) 一种功率半导体模块
JP5674537B2 (ja) 電気部品モジュール
US11616024B2 (en) Storage device including semiconductor chips sealed with resin on metal plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571547

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15533327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006064

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879894

Country of ref document: EP

Kind code of ref document: A1