WO2016117067A1 - 交流回転機の制御装置および電動パワーステアリングの制御装置 - Google Patents

交流回転機の制御装置および電動パワーステアリングの制御装置 Download PDF

Info

Publication number
WO2016117067A1
WO2016117067A1 PCT/JP2015/051626 JP2015051626W WO2016117067A1 WO 2016117067 A1 WO2016117067 A1 WO 2016117067A1 JP 2015051626 W JP2015051626 W JP 2015051626W WO 2016117067 A1 WO2016117067 A1 WO 2016117067A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
winding
voltage
sum
detected
Prior art date
Application number
PCT/JP2015/051626
Other languages
English (en)
French (fr)
Inventor
古川 晃
辰也 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016570410A priority Critical patent/JP6230731B2/ja
Priority to US15/526,611 priority patent/US10158315B2/en
Priority to CN201580073931.7A priority patent/CN107210699B/zh
Priority to PCT/JP2015/051626 priority patent/WO2016117067A1/ja
Priority to EP15878761.4A priority patent/EP3249805B1/en
Publication of WO2016117067A1 publication Critical patent/WO2016117067A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Definitions

  • the present invention relates to a control device for an AC rotary machine and a control device for an electric power steering capable of improving the output of the AC rotary machine without changing the control cycle.
  • the control cycle Tsw changes in length according to the phase command value ⁇ * and the voltage command value V *.
  • the switching mode holding time (t1 or t2) corresponding to any basic voltage vector other than the zero vector determined according to the phase command value ⁇ * and the voltage command value V * is the dead time tdd of the inverter main circuit.
  • the conventional techniques have the following problems.
  • the PWM cycle (equal to the control cycle Tsw) output from the three-phase PWM inverter device is lengthened, and the PWM frequency given by the reciprocal of the PWM cycle is lowered.
  • the current flowing through the AC rotating machine includes a PWM frequency component. For this reason, when the PWM frequency is lowered, the frequency of the component included in the current is also lowered, thereby causing a problem that noise is generated from the AC rotating machine.
  • an AC rotating machine used for electric power steering is required to be quiet, and the PWM frequency is set to, for example, 20 kHz or more (frequency band exceeding the audible range).
  • the PWM frequency is less than 20 kHz.
  • the present invention has been made to solve the above-described problems, and it is possible to improve the output of the AC rotating machine and to control the electric power steering without having to change the control cycle.
  • the purpose is to provide.
  • An AC rotating machine control device includes an AC rotating machine including a first winding and a second winding having a phase difference, a first current detector that detects a current of the first winding, A second current detector for detecting the current of the two windings, a controller for calculating the first voltage command and the second voltage command based on the current command and the current detection value of the AC rotating machine, A first voltage applicator that applies a voltage to the first winding based on a voltage command of 1, and a second voltage applicator that applies a voltage to the second winding based on a second voltage command; A first detectability determiner for determining whether the first current detector can detect the current of the first winding based on at least one of the first voltage command and the second voltage command; An estimated sum current calculator that calculates an estimated sum current that is the sum of the current of the winding and the current of the second winding, and the control unit determines whether or not the first detection is possible.
  • the second current detector detects the second current detected from the estimated sum current output from the estimated sum current calculator.
  • the first voltage command is calculated based on the estimated current value of the first winding calculated by subtracting the winding current.
  • control device for the electric power steering according to the present invention includes the control device for the AC rotating machine according to the present invention, and the control unit generates torque for assisting the steering torque of the steering system so that the AC rotating machine generates the torque.
  • the first voltage command and the second voltage command are calculated.
  • the current of the first winding detected by the first current detector and the first current detected by the second current detector are detected.
  • an estimated sum current calculator that maintains the estimated sum current output as the previous value is provided.
  • the current of the second winding detected by the second current detector from the estimated sum current output from the estimated sum current calculator is determined.
  • the first voltage command for the first winding is calculated based on the estimated current value of the first winding calculated by drawing.
  • FIG. 7 is a diagram showing a relationship between first voltage vectors V0 (1) to V7 (1) and Idc1 corresponding to on / off states of semiconductor switches Sup1 to Swn1 in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a relationship between second voltage vectors V0 (2) to V7 (2) corresponding to on / off states of semiconductor switches Sup2 to Swn2 and a current equal to Idc2 in the first embodiment of the present invention.
  • the first voltage command vector V1 * based on the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′ and the first voltage commands Vu2 ′, Vv2 ′, Vw2 ′ based on the second voltage commands Vu2 ′, Vw2 ′.
  • FIG. 10 is an operation explanatory diagram different from FIG. 9 regarding the on / off pattern of the semiconductor switch and the current detection timing in the current detector according to the first embodiment of the present invention; It is operation
  • FIG. 1 The relationship between the first voltage vectors V0 (1) to V7 (1) corresponding to the on / off states of the semiconductor switches Sup1 to Swn1 and the currents Iu1, Iv1, and Iw1 of the first winding according to the fifth embodiment of the present invention.
  • FIG. 1 The relationship between the second voltage vectors V0 (2) to V7 (2) corresponding to the on / off states of the semiconductor switches Sup2 to Swn2 and the currents Iu2, Iv2, and Iw2 of the second winding according to the fifth embodiment of the present invention.
  • Embodiment 8 of this invention It is the flowchart which showed the series of processes by the estimation sum electric current calculator in Embodiment 8 of this invention. It is an example of the block diagram which shows the internal structure of the estimation sum electric current calculator in Embodiment 8 of this invention. It is a figure which shows the whole structure of the control apparatus of the AC rotary machine in Embodiment 9 of this invention. In Embodiment 9 of this invention, it is the figure which showed the state which fluctuates a difference current gain based on a 1st voltage command. In Embodiment 9 of this invention, it is the figure which showed the state which fluctuates a sum current gain based on a 1st voltage command. It is a figure which shows the whole structure of the control apparatus of the alternating current rotating machine in Embodiment 10 of this invention.
  • FIG. 1 is a diagram showing an overall configuration of a control device for an AC rotating machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a figure for demonstrating the structure of the three-phase alternating current generator used as an alternating current rotating machine in Embodiment 1 of this invention.
  • the AC rotating machine 1a shown in FIG. 1 includes the first three-phase windings U1, V1, W1 connected at the neutral point N1, and the second connected at the neutral point N2.
  • the three-phase windings U2, V2, and W2 are three-phase AC rotating machines that are housed in the stator of the rotating machine without being electrically connected.
  • the U1 winding and U2 winding, the V1 winding and V2 winding, and the W1 winding and W2 winding each have a phase difference of 30 degrees.
  • FIG. 2 the case where both the first three-phase winding and the second three-phase winding are Y-connected is illustrated as the AC rotating machine 1a, but the present invention is also applicable to the case of ⁇ -connection. It is.
  • DC power supply 2a outputs DC voltage Vdc1 to first voltage applicator 3a
  • DC power supply 2b outputs DC voltage Vdc2 to second voltage applicator 3b.
  • These DC power supplies 2a and 2b include all devices that output a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • a configuration in which a DC voltage is output to the first voltage applicator 3a and the second voltage applicator 3b using any one of the DC power supplies 2a and 2b is also included in the scope of the present invention.
  • the first voltage applicator 3a PWM modulates the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′ using an inverse conversion circuit (inverter), and semiconductor switches Sup1, Sun1, Svp1, Svn1, Swp1, Swn1 (In the following description, these six semiconductor switches are expressed as semiconductor switches Sup1 to Swn1).
  • the first voltage applicator 3a converts the DC voltage Vdc1 input from the DC power supply 2a into AC power, and supplies the AC voltage to the first three-phase windings U1, V1, and W1 of the AC rotating machine 1a. Apply.
  • semiconductor switches Sup1 to Swn1 semiconductor switches such as IGBTs, bipolar transistors, and MOS power transistors and diodes connected in antiparallel are used.
  • the second voltage applicator 3b uses the inverse conversion circuit (inverter) to PWM modulate the second voltage commands Vu2 ′, Vv2 ′, Vw2 ′, and semiconductor switches Sup2, Sun2, Svp2, Svn2, Swp2, Swn2 (In the following description, these six semiconductor switches are expressed as semiconductor switches Sup2 to Swn2). Accordingly, the second voltage applicator 3b converts the DC voltage Vdc2 input from the DC power supply 2b into AC power, and supplies the AC voltage to the second three-phase windings U2, V2, and W2 of the AC rotating machine 1a. Apply.
  • semiconductor switches Sup2 to Swn2 semiconductor switches such as IGBTs, bipolar transistors, and MOS power transistors and diodes connected in antiparallel are used.
  • the first current detector 4a detects the current Idc1 flowing through the first DC bus of the first power converter 3a using a current sensor such as a shunt resistor or a current transformer (CT).
  • FIG. 3 is a diagram showing the relationship between the first voltage vectors V0 (1) to V7 (1) and Idc1 corresponding to the on / off states of the semiconductor switches Sup1 to Swn1 in the first embodiment of the present invention. Note that, for Sup1 to Swn1 shown in FIG. 3, “1” indicates a switch-on state and “0” indicates a switch-off state.
  • the first current detector 4a detects the first three-phase currents Iu1, Iv1, and Iw1 based on the relationship shown in FIG.
  • the first current detector 4a detects two phases of the first three-phase currents Iu1, Iv1, and Iw1 from Idc1, and the remaining one phase has the sum of the three-phase currents being zero. You may obtain
  • the second current detector 4b detects a current Idc2 flowing through the second DC bus of the second power converter 3b using a current sensor such as a shunt resistor or a current transformer (CT).
  • FIG. 4 is a diagram showing the relationship between the second voltage vectors V0 (2) to V7 (2) corresponding to the on / off states of the semiconductor switches Sup2 to Swn2 and the current equal to Idc2 in the first embodiment of the present invention. is there. Note that, for Sup2 to Swn2 shown in FIG. 4, “1” indicates a switch-on state and “0” indicates a switch-off state.
  • the second current detector 4b detects the second three-phase currents Iu2, Iv2, and Iw2 based on the relationship shown in FIG.
  • the second current detector 4b detects two phases of the second three-phase currents Iu2, Iv2, and Iw2 from Idc2, and the sum of the three-phase currents is zero for the remaining one phase. You may obtain
  • the number (1) in parentheses in the first voltage vector shown in FIG. 3 and the number (2) in parentheses in the second voltage vector shown in FIG. (1) is attached to the first voltage vector based on the first voltage command, and the second voltage vector based on the second voltage command is ( 2) is attached.
  • the first detectability determiner 12a determines whether or not the first three-phase current can be detected based on the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′, and the first detectability is determined.
  • the determination signal flag_1 is output.
  • the coordinate converter 6a converts the first three-phase currents Iu1, Iv1, Iw1 detected by the first current detector 4a into currents on rotational coordinates based on the rotational position ⁇ of the AC rotating machine 1a.
  • the currents Id1 and Iq1 of the first winding on the two rotation axes are calculated.
  • the coordinate converter 6b is based on a position ⁇ -30 obtained by subtracting the second three-phase currents Iu2, Iv2, Iw2 detected by the second current detector 4b from the rotational position ⁇ of the AC rotating machine 1a by 30 degrees.
  • the current is converted into a current on the rotation coordinate, and the currents Id2 and Iq2 of the second winding on the two rotation axes are calculated.
  • the estimated sum current calculator 14 calculates estimated sum currents Idsum_cal and Iqsum_cal from the first detectability determination signal flag_1, the currents Id1 and Iq1 of the first winding, and the currents Id2 and Iq2 of the second winding.
  • the switch 7a converts the currents Id1 and Iq1 of the first winding to the rotation biaxial coordinates, respectively.
  • the currents Id1 ′ and Iq1 ′ are output.
  • the switch 7a outputs the currents Id2 and Iq2 of the second winding as currents Id2 'and Iq2' on the rotating biaxial coordinates, respectively.
  • the currents Id1 ′ and Iq1 ′ on the rotating biaxial coordinates and the currents Id2 ′ and Iq2 ′ on the rotating biaxial coordinates are respectively represented by voltage commands Vd1 and Vq1 on the rotating biaxial coordinates, and This corresponds to the detected current value used to calculate the voltage commands Vd1 and Vq1 on the axis coordinates.
  • the subtractor 8a calculates a deviation dId1 between the d-axis current command Id * of the AC rotating machine 1a and the current Id1 ′ on the rotating biaxial coordinates output from the switch 7a.
  • the subtractor 8b calculates a deviation dIq1 between the q-axis current command Iq * of the AC rotating machine 1a and the current Iq1 ′ on the rotating biaxial coordinates output from the switch 7a.
  • the subtractor 8c calculates a deviation dId2 between the d-axis current command Id * of the AC rotating machine 1a and the current Id2 ′ on the rotating biaxial coordinates output from the switch 7a.
  • the subtractor 8d calculates a deviation dIq2 between the q-axis current command Iq * of the AC rotating machine 1a and the current Iq2 ′ on the rotating biaxial coordinates output from the switch 7a.
  • the controller 9a calculates the voltage command Vd1 on the rotating biaxial coordinates so that the deviation dId1 is controlled to zero using the P controller or the PI controller.
  • the controller 9b calculates the voltage command Vq1 on the rotating biaxial coordinates so as to control the deviation dIq1 to zero using a P controller or a PI controller.
  • the controller 9c calculates the voltage command Vd2 on the rotating biaxial coordinates so as to control the deviation dId2 to zero using a P controller or a PI controller.
  • the controller 9d calculates the voltage command Vq2 on the rotating biaxial coordinates so as to control the deviation dIq2 to zero using a P controller or a PI controller.
  • the coordinate converter 10a converts the voltage commands Vd1 and Vq1 on the rotating biaxial coordinates into three-phase AC coordinates based on the rotational position ⁇ of the AC rotating machine 1a, and the first voltage commands Vu1, Vv1, and Vw1. Is calculated.
  • the coordinate converter 10b performs coordinate conversion to three-phase AC coordinates based on a position ⁇ -30 obtained by subtracting the voltage commands Vd2 and Vq2 on the rotating biaxial coordinates by 30 degrees from the rotation position ⁇ of the AC rotating machine 1a. 2 voltage commands Vu2, Vv2, and Vw2.
  • the offset calculator 11a adds the offset voltage Voffset1 to the first voltage commands Vu1, Vv1, and Vw1, as shown in the following equations (3) to (5), and the first voltage commands Vu1 ′, Vv1. Output as ', Vw1'.
  • Vu1 ′ Vu1 + Voffset1
  • Vv1 ′ Vv1 + Voffset1
  • Vw1 ′ Vw1 + Voffset1 (5)
  • the offset calculator 11b adds the offset voltage Voffset2 to the second voltage commands Vu2, Vv2, and Vw2, as shown in the following equations (6) to (8), and the second voltage commands Vu2 ′, Vv2 Output as ', Vw2'.
  • Vu2 ′ Vu2 + Voffset2 (6)
  • Vv2 ′ Vv2 + Voffset2 (7)
  • Vw2 ′ Vw2 + Voffset2 (8)
  • the first detectability determiner 12a determines whether or not the first three-phase current can be detected based on the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′, and the first detectability is determined.
  • the determination signal flag_1 is output.
  • FIG. 5 shows the first voltage command vector V1 * based on the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′ and the second voltage commands Vu2 ′, Vv2 ′, Vw2 in the first embodiment of the sound of the present invention. It is explanatory drawing which showed 2nd voltage command vector V2 * based on '. As shown in FIG. 5, each of the first voltage command vector V1 * and the second voltage command vector V2 * is represented by the U (1) -V (1) -W (1) axis, U (2) -V (2) A vector that rotates the -W (2) axis.
  • the numbers in parentheses shown in FIG. 5 are for separately indicating the axis corresponding to the first winding and the axis corresponding to the second winding.
  • U (1), V (1), and W (1) with (1) indicate axes corresponding to the U-phase, V-phase, and W-phase of the first winding, respectively.
  • U (2), V (2), and W (2) marked with (2) indicate axes corresponding to the U-phase, V-phase, and W-phase of the second winding, respectively.
  • the phase angle between the first voltage command vector V1 * and the second voltage command vector V2 * with respect to the U (1) axis is ⁇ v, and there is no phase difference.
  • FIG. 6 is a waveform diagram of the first voltage commands Vu1, Vv1, Vw1 and the second voltage commands Vu2, Vv2, Vw2 in the first embodiment of the present invention.
  • the U (2), V (2), and W (2) axes shown in FIG. 5 are delayed by 30 degrees with respect to the U (1), V (1), and W (1) axes, respectively. Therefore, as shown in FIG. 6, the second voltage commands Vu2, Vv2, and Vw2 are delayed in phase by 30 degrees compared to the first voltage commands Vu1, Vv1, and Vw1.
  • the horizontal axis represents the voltage phase angle ⁇ v with respect to the U (1) axis. Therefore, for the AC rotating machine 1a having a phase difference of 30 degrees between the first winding and the second winding, the first voltage command and the second voltage command have a phase difference of 30 degrees. Similarly, for an AC rotating machine having a phase difference of 30 + 60 ⁇ N (N: integer) degrees in the first winding and the second winding, the first voltage command and the second voltage command are: It has a phase difference of 30 + 60 ⁇ N degrees.
  • FIG. 7 is a diagram for explaining the relationship between the voltage command and the rate at which each phase upper arm element is turned on with respect to the first voltage applicator 3a according to the first embodiment of the present invention.
  • FIG. 7A shows the first voltage commands Vu1, Vv1, and Vw1 shown in FIG. 6, and is the output of the coordinate converter 10a.
  • FIG. 7B shows the first voltage commands Vu1 ', Vv1' and Vw1 'which are the outputs of the offset calculator 11a, which are calculated by the above equations (3) to (5).
  • Voffset1 in the above equations (3) to (5) is given by the following equation (9) using the maximum value Vmax1 and the minimum value Vmin1 of the first voltage commands Vu1, Vv1, and Vw1.
  • Voffset1 ⁇ 0.5 (Vmin1 + Vmax1) (9)
  • the voltage output range of the phase voltage that can be output by the first voltage applicator 3a is 0 to the bus voltage Vdc1. Therefore, the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′ are less than ⁇ 0.5 Vdc1 and 0.5 Vdc1 so that the width of the voltage output range is within Vdc1 that can be output by the first voltage applicator 3a. In the case of exceeding, it is limited to -0.5Vdc1 and 0.5Vdc1, respectively.
  • Voffset1 other than the above equation (9), another offset voltage calculation method known as a two-phase modulation method or a third-order harmonic superposition method may be used.
  • FIG. 7C shows on-duty Dsup1, Dsvp1, and Dswp1 that indicate the ratios at which the upper arm elements (Sup1, Svp1, and Swp1) are turned on in the first voltage applicator 3a.
  • These on-duty Dsup1, Dsvp1, and Dswp1 are respectively calculated by using Vu1 ′, Vv1 ′, and Vw1 ′.
  • Dsxp1 0.5 + Vx1 ′ / Vdc1 Ask more.
  • x U, V, W.
  • the first voltage applicator 3a sets the ON ratio of Sup1 to 0.6 in the switching period Tsw.
  • FIG. 8 is a diagram for explaining the relationship between the voltage command and the rate at which each phase upper arm element is turned on with respect to the second voltage applicator 3b in the first embodiment of the present invention.
  • FIG. 8A shows the second voltage commands Vu2, Vv2, and Vw2 shown in FIG. 6, and is an output of the coordinate converter 10b.
  • FIG. 8B shows the second voltage commands Vu2 ', Vv2', and Vw2 'that are the outputs of the offset calculator 11b, which are calculated by the above equations (6) to (8).
  • the voltage output range of the phase voltage that can be output by the second voltage applicator 3b is 0 to the bus voltage Vdc2. Accordingly, the second voltage commands Vu2 ′, Vv2 ′, and Vw2 ′ are less than ⁇ 0.5 Vdc2 and 0.5 Vdc2 so that the width of the voltage output range is within Vdc2 that can be output by the second voltage applicator 3b. In the case of exceeding, it is limited to -0.5Vdc2 and 0.5Vdc2, respectively.
  • Voffset2 in addition to the above equation (13), another offset voltage calculation method known as a two-phase modulation method or a third harmonic superposition method may be used.
  • FIG. 8C shows on-duty Dsup2, Dsvp2, and Dswp2 indicating the ratios of the upper arm elements (Sup2, Svp2, and Swp2) that are turned on in the second voltage applicator 3b.
  • These on-duty Dsup2, Dsvp2, and Dswp2 are respectively calculated by using Vu2 ′, Vv2 ′, and Vw2 ′.
  • Dsxp2 0.5 + Vx2 ′ / Vdc2 Ask more.
  • FIG. 9 is an operation explanatory diagram regarding the on / off pattern of the semiconductor switch and the current detection timing in the current detectors 4a and 4b in the first embodiment of the present invention.
  • the on / off pattern of the semiconductor switches Sup1, Svp1, Swp1 of the first voltage applicator 3a and the semiconductor switches Sup2, Svp2, Swp2 of the second voltage applicator 3b, and the current detectors 4a, 4b It is the figure which showed the relationship with the electric current detection timing within the period (PWM period) Tsw of a switching signal.
  • Sup1 and Sup2 are set to 1, and Svp1, Swp1, Svp2, and Swp2 are set to 0, and continues from time t1 (n) to time t2 (n) after ⁇ t1 has elapsed. 3 and 4, from time t1 (n) to t2 (n), the first voltage vector is V1 (1) and the second voltage vector is V1 (2).
  • the current detectors 4a and 4b detect Idc1 and Idc2 at time ts1-1 (n) from time t1 (n) to t2 (n).
  • the first voltage vector is V1 (1), and Idc1 detected at time ts1-1 (n) is equal to Iu1.
  • the second voltage vector is V1 (2), and Idc2 detected at time ts1-1 (n) is equal to Iu2.
  • Svp1 and Svp2 are set to 1, and the switching pattern is continued until time t3 (n). 3 and 4, from time t2 (n) to t3 (n), the first voltage vector is V2 (1) and the second voltage vector is V2 (2).
  • the current detectors 4a and 4b detect Idc1 and Idc2 again at time ts1-2 (n) from time t2 (n) to t3 (n).
  • the first voltage vector is V2 (1), and Idc1 detected at time ts1-2 (n) is equal to ⁇ Iw1.
  • the second voltage vector is V2 (2), and Idc2 detected at time ts1-2 (n) is ⁇ Iw2. equal.
  • Swp1 and Swp2 are set to 1 at time t3 (n).
  • the pulse widths of Sup1 to Swp2 are determined by the multiplied value of the on-duty Dsup1, Dswp2 and the switching period Tsw corresponding to each switch.
  • the switch of the upper arm element of the phase corresponding to the first maximum phase voltage Emax1 the switch of the upper arm element of the phase corresponding to the first intermediate phase voltage Emid1, the first minimum phase voltage Emin1.
  • the switch of the upper arm element of the phase corresponding to the first maximum phase voltage Emax1 the switch of the upper arm element of the phase corresponding to the first intermediate phase voltage Emid1, the first minimum phase voltage Emin1.
  • two types of first voltage vectors capable of detecting two phases of the first three-phase currents Iu1, Iv1, and Iw1 are formed from Idc1 shown in FIG.
  • two types of second voltage vectors that can detect two phases of the second three-phase currents Iu2, Iv2, and Iw2 are formed from Idc2.
  • FIG. 10 is an operation explanatory diagram different from FIG. 9 regarding the on / off pattern of the semiconductor switch and the current detection timing in the current detectors 4a and 4b in the first embodiment of the present invention, and the first three-phase. The case where the currents Iu1, Iv1, and Iw1 cannot be detected is illustrated.
  • FIG. 10 shows a state where Vv1 ′ is small and Dsvp1 ⁇ Tsw is smaller than ⁇ t2.
  • Svp1 is turned on at time t2 (n)
  • it is turned off before time t3 (n)
  • the first voltage vector V2 (1) cannot be formed over the section of the shift time ⁇ t2.
  • FIG. 11 is an operation explanatory diagram different from FIGS. 9 and 10 regarding the on / off pattern of the semiconductor switch and the current detection timing in the current detectors 4a and 4b according to the first embodiment of the present invention. In the same manner as in FIG. 3, the case where the first three-phase currents Iu1, Iv1, and Iw1 cannot be detected is illustrated.
  • FIG. 11 shows a state where Vv1 ′ is large and Dsvp1 ⁇ Tsw is larger than Tsw ⁇ t1.
  • Vv1 ′ is large and Dsvp1 ⁇ Tsw is larger than Tsw ⁇ t1.
  • Svp1 is turned off at time t4 (n) when the switching cycle Tsw ends, if Svp1 is not turned on before time t2 (n), a pulse width corresponding to Dsvp1 ⁇ Tsw can be output. Absent.
  • V1 (1) cannot be formed over the section of the shift time ⁇ t1.
  • Vv2 'is small V2 (2) cannot be formed over the section of the shift time ⁇ t2.
  • Vv2 'is large V1 (2) cannot be formed over the section of the shift time ⁇ t1.
  • the switching frequency when Tsw is increased, the switching frequency given by the reciprocal of Tsw decreases, and when the frequency enters the audible range, there arises a problem that noise of the switching frequency component increases.
  • the switching frequency when the AC rotating machine 1a is an electric power steering motor, the switching frequency is set to 20 kHz or more (out of the audible band).
  • the human audible range is 20 Hz to 20 kHz, and by setting the frequency to 20 kHz or higher (out of the audible range), the sound of the switching frequency component cannot be heard by the human ear. However, if the switching frequency is lowered below 20 kHz in order to ensure the shift time ⁇ t1 and the shift time ⁇ t2, the sound of the switching frequency component is heard by human ears, resulting in noise.
  • the amplitude of the first voltage command is limited so that the first intermediate phase voltage Emid1 is within a range in which the shift time ⁇ t1 or ⁇ t2 can be secured, the AC rotating machine 1a Another problem arises that the high voltage cannot be generated by the AC rotating machine 1a.
  • FIG. 12 is an explanatory diagram regarding the functions of the first detectability determiner 12a and the second detectability determiner 12b according to Embodiment 1 of the present invention.
  • the first detectability determiner 12a determines whether or not the voltage command value of the phase corresponding to the first intermediate phase voltage Emid1 is in the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more. It is determined whether the first current detector 4a can detect the first three-phase current.
  • the second detectability determination unit 12b determines whether or not the voltage command value of the phase corresponding to the second intermediate phase voltage Emid2 is in the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more. The second current detector 4b determines whether the second three-phase current can be detected.
  • the first predetermined value Vs1 corresponds to an upper limit value that can secure the shift time ⁇ t1.
  • the second predetermined value Vs2 is a lower limit value that can ensure the shift time ⁇ t2.
  • FIG. 12A shows the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′ shown in FIG. 7B as dotted lines, the first intermediate phase voltage Emid1 as a solid line, the first predetermined value Vs1 and the second predetermined value Vs1.
  • FIG. 12B shows the output of the first detectability determiner 12a.
  • the first detectability determiner 12a determines whether the first intermediate phase voltage Emid1 is within the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more. It is determined whether or not the phase current can be detected.
  • the first detectability determiner 12a is set to 1 if the first intermediate phase voltage Emid1 is within the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more, and 0 if it is out of the range.
  • the first detection availability determination signal flag_1 is output.
  • FIG. 12C shows the second voltage commands Vu2 ′, Vv2 ′ and Vw2 ′ shown in FIG. 8B as dotted lines, the second intermediate phase voltage Emid2 as a solid line, the first predetermined value Vs1 and the second The predetermined value Vs2 is indicated by a one-dot chain line.
  • FIG. 12D shows the output of the second detectability determiner 12b, which will be described in detail later.
  • the second detectability determiner 12b determines whether the second intermediate phase voltage Emid2 is within the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more. It is determined whether or not the phase current can be detected.
  • the second detectability determiner 12b is 1 when the second intermediate phase voltage Emid2 is within the range of the first predetermined value Vs1 or less and the second predetermined value Vs2 or more, and 0 when out of the range.
  • the second detection propriety determination signal flag_2 is output.
  • the voltage phase angle ⁇ v becomes 0 in the vicinity of 60 ⁇ x (x: 0, 1, 2, 3, 4, 5, 6) degrees.
  • the voltage phase angle ⁇ v becomes 0 near 30 + 60 ⁇ x (x: 0, 1, 2, 3, 4, 5) degrees.
  • the voltage phase angle ⁇ v that becomes 0 is shifted from each other by 30 degrees, and when the flag_1 is 0, the flag_2 is 1 and vice versa.
  • flag_1 is 1. Therefore, it can be seen that flag_1 and flag_2 are not 0 simultaneously, and at least one is 1.
  • FIG. 13 is a flowchart showing a series of operations of the first detectability determiner 12a in the first embodiment of the present invention.
  • the first detectability determiner 12a calculates the first intermediate phase voltage Emid1 based on the first voltage commands Vu1 ', Vv1', Vw1 '.
  • step S1000b the first detectability determiner 12a determines whether or not the first intermediate phase voltage Emid1 is equal to or lower than the first predetermined value Vs1, and if “YES”, the process proceeds to step S1000c. If “NO”, the process proceeds to step S1000e.
  • the first detectability determiner 12a determines whether or not the first intermediate phase voltage Emid1 is equal to or higher than the second predetermined value Vs2, and if “YES”, the step The process proceeds to S1000d, and if “NO”, the process proceeds to Step S1000e.
  • the first detectability determination unit 12a substitutes 1 for the first detectability determination signal flag_1.
  • the first detection availability determination unit 12a substitutes 0 for the first detection availability determination signal flag_1.
  • the switch 7a determines that the first three-phase current can be detected, and the current on the two rotation axes obtained from the first three-phase current. Id1 and Iq1 are output as Id ′ and Iq ′, respectively. Further, when the switch 7a tooth and the first detectability determination signal flag_1 are 0, it is determined that the first three-phase current cannot be detected, and the rotation on two axes obtained from the second three-phase current is determined. Currents Id and Iq are output as Id ′ and Iq ′, respectively.
  • the present invention is technically characterized by including an estimated sum current calculator 14 that calculates the current of the winding that cannot be detected from the estimated sum current. Therefore, the function of the estimated sum current calculator 14 will be described below.
  • FIG. 14 is a diagram showing the relationship between the current of the first winding and the current of the second winding in the first embodiment of the present invention.
  • the torque ripple generated by the magnet torque can be offset by having the relationship as shown in FIG. However, in the electrical angle region where a desired voltage vector cannot be output due to voltage saturation, the current of the first winding and the current of the second winding have different values.
  • the torque ripple generated by this component cannot be canceled out by the currents of the second windings having different phase differences, and therefore appears in the output torque as an electric angle sixth-order torque ripple. Therefore, in the estimated sum current calculator 14 in the first embodiment, in order to suppress a current ripple that becomes uselessly large when the current of the second winding is simply used as the current of the first winding, The estimation is performed using the estimated sum current.
  • FIG. 15 is a flowchart showing a series of processes by the estimated sum current calculator 14 in the first embodiment of the present invention.
  • step S1100 the estimated sum current calculator 14 determines whether or not the first detectability determination signal flag_1 is equal to 1.
  • the estimated sum current calculator 14 proceeds to step S1101 when flag_1 is equal to 1 and “YES” in step S1100.
  • step S1101 the estimated sum current calculator 14 sets the sum of the first winding current Id1 and the second winding current Id2 to Idsum_cal, and the first winding current Iq1 and the second winding current Id1. The sum of the winding current Iq2 is substituted into Iqsum_cal.
  • step S1100 the estimated sum current calculator 14 returns to the beginning of the process and holds the previous values as estimated sum currents Idsum_cal and Iqsum_cal.
  • FIG. 16 is an example of a block diagram showing an internal configuration of the estimated sum current calculator 14 in Embodiment 1 of the present invention.
  • the estimated sum current calculator 14 outputs Idsum_cal and Iqsum_cal for the inputs Id1, Id2, Iq1, Iq2, and flag_1.
  • the adder 1200 adds Id1 and Id2 and outputs Idsum_tmp.
  • the switcher 1202 selects and outputs either Idsum_tmp calculated this time by the adder 1200 or Idsum_cal which is the previous output value in accordance with flag_1.
  • the switcher 1202 outputs the previous value of Idsum_cal when flag_1 is 0, that is, when it is determined that the current of the first winding cannot be detected, and when flag_1 is 1, that is, the first If it is determined that the winding current can be detected, Idsum_tmp is output.
  • the adder 1201 adds Iq1 and Iq2 and outputs Iqsum_tmp.
  • the switcher 1203 selectively switches either Iqsum_tmp calculated this time by the adder 1201 or Iqsum_cal which is the previous output value according to flag_1 and outputs the result.
  • the switcher 1203 when flag_1 is 0, that is, when it is determined that the current of the first winding cannot be detected, the switcher 1203 outputs the previous value of Iqsum_cal, and when flag_1 is 1, that is, the first If it is determined that the winding current can be detected, Iqsum_tmp is output.
  • the estimated sum current calculator 14 and the switch 7a are separated, and after the estimated sum current is calculated, switching is performed by flag_1 output from the detectability determiner.
  • the switch 7b may be used so that the processes of the estimated sum current calculator 14 and the switch 7a are performed at once, that is, the estimated sum current calculator 14 is included.
  • the current of each winding is used to calculate the estimated sum currents Idsum_cal and Iqsum_cal, the present invention is not limited to this.
  • the estimated sum current calculator 14a that calculates the estimated sum current as twice the current command as shown in the following equations (23) and (24):
  • the estimated sum current calculator 14 may be used instead.
  • the current command may be used.
  • the first current detector 4a it is determined whether the first current detector 4a can detect the current of the first winding based on the first voltage command.
  • the first voltage command is calculated based on the current of the first winding.
  • the current of the second winding and the estimated sum current are calculated. Based on this, the first voltage command is calculated.
  • the amplitude of the first voltage command is set so that the first intermediate phase voltage is within a range in which the shift time can be secured without increasing the switching cycle Tsw as in Patent Document 1. It is possible to increase the amplitudes of the first voltage command and the second voltage command without having to limit them. As a result, it is possible to obtain an effect of enabling high output while maintaining the low noise of the AC rotating machine 1a.
  • Embodiment 2 In the control device for an AC rotating machine in the second embodiment, the calculation process in the first detectability detector 12b is different from the first detectability determiner 12a in the first embodiment. Therefore, the following description will focus on the arithmetic processing of the first detectability determiner 12b in the second embodiment.
  • FIG. 17 is a flowchart showing a series of operations of the first detectability determiner 12b in the second embodiment of the present invention.
  • the first detectability determiner 12b determines the first maximum phase voltage Emax1, the first intermediate phase voltage Emid1, the first minimum phase voltage based on the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′. Emin1 is calculated.
  • step S2000b the first detectability determiner 12b determines whether or not the difference (Emax1 ⁇ Emid1) between the first maximum phase voltage and the first intermediate phase voltage is equal to or greater than a third predetermined value Vs3. If “YES”, the process proceeds to step S2000c, and if “NO”, the process proceeds to step S2000e.
  • the first detectability determiner 12b determines whether the difference (Emid1 ⁇ Emin1) between the first intermediate phase voltage and the first minimum phase voltage is equal to or greater than the third predetermined value Vs3. If “YES”, the process proceeds to step S2000d, and if “NO”, the process proceeds to step S2000e.
  • the first detection availability determination unit 12b substitutes 1 for the first detection availability determination signal flag_1.
  • the first detection availability determination unit 12b substitutes 0 for the first detection availability determination signal flag_1.
  • FIG. 18 is a diagram showing waveforms corresponding to the respective steps in FIG. 17 when the third predetermined value Vs3 in the second embodiment of the present invention is set to 0.1 Vdc.
  • FIG. 18A shows waveforms of the first voltage commands Vu1 ', Vv1', and Vw1 '.
  • FIG. 18B shows waveforms of the first maximum phase voltage Emax1, the first intermediate phase voltage Emid1, and the first minimum phase voltage Emin1 corresponding to step S2000a.
  • FIG. 18C shows a difference Emax1-Emid1 between the first maximum phase voltage and the first intermediate phase voltage corresponding to step S2000b, and a difference between the first intermediate phase voltage and the first minimum phase voltage corresponding to step S2000c.
  • FIG. 18D shows the waveform of the first detection possibility determination signal flag_1 corresponding to steps S2000d and S2000e.
  • the difference between the first maximum phase voltage and the first intermediate phase voltage and the difference between the first intermediate phase voltage and the first minimum phase voltage are calculated, and these values are the third values. Even when it is determined that the current of the first winding cannot be detected when the current value is less than the predetermined value, an effect equivalent to that of the first embodiment can be obtained.
  • the first detectability determiner 12b determines the current of the first winding. Judgment was made on whether or not detection was possible. However, even if the first voltage commands Vu1, Vv1, and Vw1 that are the inputs of the offset calculator 11a are substituted for the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′ and calculated, Emax1 ⁇ Emid1 and The calculation result of Emid1-Emin1 is the same.
  • the configuration is the same as the case of calculating based on the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′. The effect is obtained.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • Embodiment 3 In the control device for an AC rotating machine according to the third embodiment, the calculation process in the first detectability determiner 12c is different from the first detectability determiner 12a in the first embodiment. Therefore, the following description will focus on the arithmetic processing of the first detectability determiner 12c in the third embodiment.
  • the first detectability detector 12c calculates the voltage phase angle ⁇ v by the following equation (25) based on the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′, and the voltage phase Whether or not the current of the first winding can be detected is determined according to the region of the angle ⁇ v.
  • the current of the first winding cannot be detected when the voltage phase angle ⁇ v is around 60 ⁇ x (x: 0, 1, 2, 3, 4, 5, 6) degrees. Indicated. Therefore, the first detectability determiner 12c determines that ⁇ v obtained by the calculation based on the first voltage command is in the range of 60 ⁇ x ⁇ to 60 ⁇ x + ⁇ (where ⁇ is a margin). Is determined to be undetectable, and 0 is output as flag_1. If it is out of the range, it is determined to be detectable and 1 is output as flag_1.
  • the margin ⁇ is determined by the shift times ⁇ t1, ⁇ t2, the maximum value of the first voltage command, etc., but is within 30 degrees.
  • the present third embodiment it is equivalent to the first embodiment by determining whether or not the current detection of the first winding can be detected according to the voltage phase angle of the first voltage command. An effect can be obtained.
  • the first detectability determiner 12c determines the current of the first winding. Judgment was made on whether or not detection was possible. However, even if the first voltage commands Vu1, Vv1, and Vw1 that are the inputs of the offset calculator 11a are substituted for the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′ and calculated, the above formula (26 ) Result is the same.
  • the configuration is the same as the case of calculating based on the first voltage commands Vu1 ′, Vv1 ′, and Vw1 ′. The effect is obtained.
  • the first winding of the first winding is determined based on the voltage phase angle ⁇ v. All methods for determining whether or not current can be detected are included in the present invention.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • Embodiment 4 In the control device for an AC rotating machine according to the fourth embodiment, the calculation process in the first detection possibility determination unit 12d is different from the first detection possibility determination units 12a, 12b, and 12c in the first to third embodiments. ing. Therefore, the following description will focus on the arithmetic processing performed by the first detectability determiner 12d in the fourth embodiment.
  • FIG. 19 is a diagram showing an overall configuration of an AC rotating machine control apparatus according to Embodiment 4 of the present invention.
  • the first detectability detector 12d is based on the second voltage commands Vu2 ′, Vv2 ′, Vw2 ′ instead of the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′.
  • the voltage phase angle ⁇ v is calculated from the following equation (26), and whether or not the current of the first winding can be detected is determined according to the region of the voltage phase angle ⁇ v.
  • the current of the first winding cannot be detected when the voltage phase angle ⁇ v is in the vicinity of 60 ⁇ x (x: 0, 1, 2, 3, 4, 5, 6) degrees. Indicated. Therefore, the first detectability determination unit 12d determines that the first winding is obtained when ⁇ v obtained by the calculation based on the second voltage command is in the range of 60 ⁇ x ⁇ to 60 ⁇ x + ⁇ . Is detected as undetectable, and 0 is output as flag_1. On the other hand, when ⁇ v is out of the range, the first detectability determiner 12d determines that the current of the first winding can be detected, and outputs 1 as flag_1.
  • the margin ⁇ is determined by the shift times ⁇ t1 and ⁇ t2, the maximum value of the first voltage command, etc., but is within 30 degrees.
  • the voltage phase angle of the second voltage command is calculated, and whether or not the current detection of the first winding can be detected is determined according to the calculated voltage phase angle region. It has a configuration to do. By using such a configuration, the same effect as in the first to third embodiments can be obtained.
  • the first detectability determiner 12d determines the current of the first winding. Judgment was made on whether or not detection was possible.
  • the calculation is performed by substituting the second voltage commands Vu2, Vv2, and Vw2 that are the inputs of the offset calculator 11b. Even so, the calculation result of the above equation (26) is the same.
  • the average of the voltage phase angle ⁇ v based on the first voltage command obtained from the third embodiment and the voltage phase angle ⁇ v based on the second voltage command obtained from the fourth embodiment is calculated, and Whether or not the current of the first winding can be detected may be determined based on the averaged voltage phase angle ⁇ v.
  • the effect of suppressing the noise component included in the voltage phase angle ⁇ v can be obtained by averaging.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • FIG. FIG. 20 is a diagram showing an overall configuration of an AC rotating machine control apparatus according to Embodiment 5 of the present invention.
  • the difference from the first to fourth embodiments is that, in the fifth embodiment, the first current detector 4a, the second current detector 4b, and the first detectability detector 12a are replaced with the first current detector 4a.
  • Current detector 4c, second current detector 4d, and first detectability detector 12e Therefore, this difference will be mainly described below.
  • the first current detector 4c in the fifth embodiment is configured such that a current sensor such as a shunt resistor or a current transformer (CT) is connected to each lower arm element (Sun1, Svn1) of the first voltage applicator 3a. , Swn1) are connected in series.
  • a current sensor such as a shunt resistor or a current transformer (CT) is connected to each lower arm element (Sun1, Svn1) of the first voltage applicator 3a. , Swn1) are connected in series.
  • FIG. 21 shows the first voltage vectors V0 (1) to V7 (1) corresponding to the on / off states of the semiconductor switches Sup1 to Swn1 and the currents Iu1, Iv1, Iw1 of the first winding according to the fifth embodiment of the present invention. It is the figure which showed the relationship. Based on the relationship shown in FIG. 21, the first current detector 4c generates the first winding from the first voltage vectors V0 (1) to V7 (1) corresponding to the on / off states of the semiconductor switches Sup1 to Swn1. Currents Iu1, Iv1, and Iw1 are individually detected.
  • the current sensor since the current sensor is provided in series with the lower arm element of each phase, only the phase in which the lower arm element is turned on can detect the current.
  • the switches that are turned on are Sup1, Svn1, and Swn1. Therefore, since the upper arm element is on for the U1 phase and the lower arm element is on for the V1 and W1 phases, only the current Iv1 flowing through the V1 phase and the current Iw1 flowing through the W1 phase can be detected. The current Iu1 flowing through the U1 phase cannot be detected. For this reason, Iu1 is detected using the fact that the sum of the three-phase currents becomes zero using Iv1 and Iw1.
  • the second current detector 4d includes a current sensor such as a shunt resistor or a current transformer (CT) for the second voltage applicator 3b.
  • CT current transformer
  • the lower arm elements (Sun2, Svn2, Swn2) are connected in series.
  • FIG. 22 shows second voltage vectors V0 (2) to V7 (2) corresponding to the on / off states of the semiconductor switches Sup2 to Swn2 and the currents Iu2, Iv2, Iw2 of the second winding according to the fifth embodiment of the present invention. It is the figure which showed the relationship.
  • the second current detector 4d obtains the second winding from the second voltage vectors V0 (2) to V7 (2) corresponding to the on / off states of the semiconductor switches Sup2 to Swn2.
  • the currents Iu2, Iv2, and Iw2 are detected individually.
  • the current sensor since the current sensor is provided in series with the lower arm element of each phase, only the phase in which the lower arm element is turned on can detect the current.
  • the switches that are turned on are Sup2, Svn2, and Swn2. Therefore, since the upper arm element is on for the U2 phase and the lower arm element is on for the V2 and W2 phases, only the current Iv2 flowing through the V2 phase and the current Iw2 flowing through the W2 phase can be detected. The current Iu2 flowing through the U2 phase cannot be detected. Therefore, Iu2 is detected by using the fact that the sum of the three-phase currents becomes zero using Iv2 and Iw2.
  • FIG. 23 is an operation explanatory diagram regarding the on / off pattern of the semiconductor switch and the current detection timing in the current detectors 4c and 4d according to the fifth embodiment of the present invention.
  • Iv1_s and Iw1_s are equal to Iv1 and Iw1, respectively, and that Iu1 is zero from Iv1 and Iw1. Use and seek.
  • Iv2_s and Iw2_s are Iv2 and Iw2 respectively.
  • Iu2 is obtained from Iv2 and Iw2 using the fact that the sum of the three-phase currents becomes zero.
  • Svp1, Svp2, Swp1, and Swp2 are set to 1 at time t2 (n).
  • the pulse widths of Sup1 to Swp2 are determined by the product of the on-duty Dsup1 to Dswp2 corresponding to each switch and the switching period Tsw.
  • the switch corresponding to the first maximum phase voltage Emax1 is first turned on, and then the phase corresponding to the first intermediate phase voltage Emid1 is shifted by ⁇ t1.
  • the first minimum phase voltage Emin1 is turned on.
  • Vv1 is larger than the first predetermined value Vs1
  • Dsvp1 ⁇ Tsw becomes larger than Tsw ⁇ t1
  • time t4 (n) when the switching cycle Tsw ends it is earlier than time t2 (n). If it is not turned on before, the pulse width corresponding to Dsvp1 ⁇ Tsw does not appear.
  • V1 (1) cannot be formed in the section ⁇ t1, and the current of the first winding cannot be detected.
  • Vv2 ′ is larger than the first predetermined value Vs1, V1 (2) cannot be formed in the section of the shift time ⁇ t1 in the second voltage applicator 3b, The current of 2 windings cannot be detected.
  • FIG. 24 is an explanatory diagram relating to the function of the first detectability determiner 12e in the fifth embodiment of the present invention.
  • the first detectability determiner 12e is configured such that the voltage command value of the phase corresponding to the first intermediate phase voltage Emid1 and the voltage command value of the phase corresponding to the second intermediate phase voltage Emid2 are the first predetermined value. It is determined whether or not the range is equal to or lower than Vs1.
  • FIG. 24B shows the output of the first detectability determiner 12e.
  • the first detectability determiner 12e determines whether or not the current of the first winding can be detected by determining whether the first intermediate phase voltage Emid1 is within the range of the first predetermined value Vs1 or less.
  • the first detection possibility determination signal flag_1 that is 1 when the range is equal to or less than the first predetermined value Vs1 and is 0 when the range is out of the range is output.
  • FIG. 24C shows the second voltage commands Vu2 ', Vv2', and Vw2 'shown in FIG. 8B by dotted lines, the second intermediate phase voltage Emid2 by a solid line, and Vs1 by a one-dot chain line.
  • FIG. 24D shows a second detectability determination signal flag_2 for determining whether the second intermediate phase voltage Emid2 is within the range of the first predetermined value Vs1 or less, or less than the first predetermined value Vs1. 1 if within range, 0 if out of range.
  • this second detectability determination signal flag_2 is used in a later embodiment and is not used in this embodiment, but is shown for explanation in FIG.
  • the voltage phase angle ⁇ v becomes 0 in the vicinity of 60 + 120 ⁇ x (x: 0, 1, 2) degrees.
  • the voltage phase angle ⁇ v becomes 0 in the vicinity of 90 + 120 ⁇ x (x: 0, 1, 2) degrees. Therefore, in the first detection possibility determination signal flag_1 and the second detection possibility determination signal flag_2, the voltage phase angle ⁇ v that becomes 0 is shifted from each other by 30 degrees.
  • flag_1 is 0, flag_2 is 1 and vice versa.
  • flag_1 is 1, flag_2 is 0.
  • FIG. 25 is a flowchart showing a series of operations of the first detectability determiner 12e in the fifth embodiment of the present invention.
  • the first detectability determiner 12e calculates the first intermediate phase voltage Emid1 based on the first voltage commands Vu1 ', Vv1', Vw1 '.
  • the first detectability determiner 12e determines whether or not the first intermediate phase voltage Emid1 is equal to or lower than the first predetermined value Vs1, and if “YES”, the process proceeds to step S4000c. If “NO”, the process proceeds to step S4000d.
  • the first detection availability determination unit 12e substitutes 1 for the first detection availability determination signal flag_1.
  • the first detection availability determination unit 12e substitutes 0 for the first detection availability determination signal flag_1.
  • the current of the first winding is detected based on the current flowing through the lower arm element of each phase of the first voltage applicator, and each of the second voltage applicators is detected.
  • a configuration is provided in which the current of the second winding is detected based on the current flowing through the lower arm element. Even with such a configuration, an effect equivalent to that of the first embodiment can be obtained.
  • flag_1 is 0 near the voltage phase angle ⁇ v of 60 + 120 ⁇ x (x: 0, 1, 2) degrees. Therefore, by referring to the change from the first embodiment to the third embodiment, the first current detector is based on the current flowing through the lower arm element of each phase of the first voltage applicator. Also for the configuration for detecting the current of the winding, whether or not the first winding can be detected can be determined based on the voltage phase angle ⁇ v calculated from the first voltage command.
  • the first current detector is based on the current flowing through the lower arm element of each phase of the first voltage applicator. Even in the configuration for detecting the current of the winding, it is possible to determine whether or not the first winding can be detected based on the voltage phase angle ⁇ v calculated from the second voltage command.
  • the first current detector detects the current of the first winding based on the current flowing through the lower arm element of each phase of the first voltage applicator, and performs the second current detection.
  • the detector is configured to detect the current of the second winding based on the current flowing through the lower arm element of each phase of the second voltage applicator.
  • the first current detector detects the current of the first winding based on the current flowing through the lower arm element in any two phases of the three phases of the first voltage applicator, and performs the second current detection. It goes without saying that the device can be implemented in the same manner even if the current of the second winding is detected based on the current flowing through the lower arm element of any two phases of the three phases of the second voltage applicator.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • FIG. FIG. 26 is a diagram showing an overall configuration of an AC rotating machine control device according to Embodiment 6 of the present invention.
  • the first current detector 4a is used to detect the current of the first winding, and the current of the second winding is detected.
  • the second current detector 4d is used. Therefore, this difference will be mainly described below.
  • the first voltage applicator 3a generates the on-off pattern shown in Sup1, Svp1, and Swp1 in FIG. 9 described in the first embodiment
  • the second voltage applicator 3b The on / off patterns shown in Sup2, Svp2, and Swp2 in FIG. 23 described in the fifth embodiment are generated.
  • the currents Iu1 and Iv1 of the first winding are detected based on the current detected by the first current detector 4a and flowing through the DC bus of the first voltage applicator 3a.
  • Iw1 is detected, flag_1 becomes 0 in the vicinity of 60 ⁇ x (x: 0, 1, 2, 3, 4, 5, 6) degrees at the voltage phase angle ⁇ v, and the current of the first winding cannot be detected. Showed that.
  • the current of the second winding is based on the current flowing through the lower arm element of the second voltage applicator 3b detected by the second current detector 4d.
  • flag_2 becomes 0 in the vicinity of 90 + 120 ⁇ x (x: 0, 1, 2) degrees at the voltage phase angle ⁇ v, indicating that the current of the second winding cannot be detected.
  • flag_1 and flag_2 are not 0 at the same time, and at least one of flag_1 and flag_2 is 1. Therefore, also in the configuration of the sixth embodiment, as in the first to fifth embodiments, when flag_1 is 1, that is, when the current of the first winding can be detected, the first winding When the first voltage command and the second voltage command are calculated based on the line currents Iu1, Iv1, Iw and flag_1 is 0, that is, when the current of the first winding cannot be detected, Based on the currents Iu2, Iv2, and Iw2 of the second winding, it is possible to calculate the first voltage command and the second voltage command.
  • the first current detector detects the current of the first winding based on the current flowing through the DC bus of the first voltage applicator
  • the second current The detector has a configuration for detecting the current of the second winding based on the current flowing through the lower arm element of each phase of the second voltage applicator. Even with such a configuration, the same effects as those of the first to fifth embodiments can be obtained.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • FIG. FIG. 27 is a diagram illustrating an overall configuration of an AC rotating machine control device according to Embodiment 7 of the present invention.
  • the difference from the first to sixth embodiments is that, in the seventh embodiment, the first current detector 4c is used to detect the current of the first winding, and the current of the second winding is detected.
  • the second current detector 4b is used. Therefore, this difference will be mainly described below.
  • the first voltage applicator 3a generates the on / off pattern shown in Sup1, Svp1, and Swp1 in FIG. 23 described in the fifth embodiment, and the second voltage applicator 3b
  • the on / off patterns shown in Sup2, Svp2, and Swp2 in FIG. 9 described in the first embodiment are generated.
  • the current of the first winding is based on the current flowing through the lower arm element of each phase of the first voltage applicator 3a detected by the first current detector 4c.
  • flag_1 becomes 0 in the vicinity of 60 + 120 ⁇ x (x: 0, 1, 2) degrees at the voltage phase angle ⁇ v, indicating that the current of the first winding cannot be detected.
  • the current Iu2 of the second winding is detected based on the current detected by the second current detector 4b and flowing through the DC bus of the second voltage applicator 3b.
  • Iv2, and Iw2 are detected, flag_2 becomes 0 in the vicinity of 30 + 60 ⁇ x (x: 0, 1, 2, 3, 4, 5) degrees at the voltage phase angle ⁇ v, and the current of the second winding cannot be detected. Showed that.
  • flag_1 and flag_2 do not become 0 simultaneously, and at least one of flag_1 and flag_2 is 1. Therefore, also in the configuration of the seventh embodiment, as in the first to fifth embodiments, when flag_1 is 1, that is, when the current of the first winding can be detected, the first winding When the first voltage command and the second voltage command are calculated based on the line currents Iu1, Iv1, Iw1, and flag_1 is 0, that is, when the current of the first winding cannot be detected, Based on the currents Iu2, Iv2, and Iw2 of the second winding, it is possible to calculate the first voltage command and the second voltage command.
  • the first current detector detects the current of the first winding based on the current flowing through the lower arm element of each phase of the first voltage applicator
  • the second current detector has a configuration for detecting the current of the second winding based on the current flowing through the DC bus of the second voltage applicator. Even with such a configuration, the same effects as those of the first to sixth embodiments can be obtained.
  • the same effect can be obtained by using the estimated sum current calculator 14 a instead of the estimated sum current calculator 14.
  • FIG. 28 is a diagram showing an overall configuration of an AC rotating machine control device according to Embodiment 8 of the present invention.
  • the configuration of the eighth embodiment further includes a second detectability determiner 13a and the internal configuration of the control unit 5b is different. Therefore, this difference will be mainly described below.
  • the second detectability determination unit 13a determines whether or not the current of the second winding can be detected based on the second voltage commands Vu2 ′, Vv2 ′, and Vw2 ′.
  • the signal flag_2 is output.
  • the second current detector 4b detects the current of the second winding based on the current flowing through the DC bus of the second voltage applicator 3b
  • the second intermediate phase voltage When Emid2 is equal to or less than the first threshold value Vs1 and equal to or greater than the second threshold value Vs2, the current of the second winding can be detected, and the second intermediate phase voltage Emid2 exceeds the first threshold value Vs1 or It has been explained that the current of the second winding cannot be detected if it is less than the threshold value Vs1.
  • FIG. 29 is a flowchart showing a series of operations of the second detectability determiner 13a in the eighth embodiment of the present invention.
  • the second detectability determiner 13a calculates the second intermediate phase voltage Emid2 based on the second voltage commands Vu2 ', Vv2', and Vw2 '.
  • step S7000b the second detectability determiner 13a determines whether or not the second intermediate phase voltage Emid2 is equal to or lower than the first predetermined value Vs1, and if “YES”, the process proceeds to step S7000c. If "NO”, the process proceeds to step S7000e.
  • step S7000c the second detectability determiner 13a determines whether the second intermediate phase voltage Emid2 is equal to or higher than the second predetermined value Vs2, and if “YES”, the step S7000d If "NO”, the process proceeds to step S7000e.
  • step S7000d the second detectability determination unit 13a substitutes 1 for the second detectability determination signal flag_2.
  • step S7000e the second detectability determiner 13a substitutes 0 for the second detectability determination signal flag_2.
  • the estimated sum current calculator 14b in the control unit 5b is configured to calculate the estimated sum based on the currents Iu1, Iv1, Iw1, and flag_1 of the first winding, and the currents Iu2, Iv2, Iw2, and flag_2 of the second winding. Calculate the current.
  • FIG. 30 is a flowchart showing a series of processes by the estimated sum current calculator 14b in the eighth embodiment of the present invention.
  • the estimated sum current calculator 14b determines whether or not the first detectability determination signal flag_1 is equal to 1.
  • the estimated sum current calculator 14b proceeds to step S7101 if flag_1 is equal to 1 and "YES" in step S7100.
  • the estimated sum current calculator 14b determines whether or not the second detectability determination signal flag_2 is equal to 1. The estimated sum current calculator 14b proceeds to step S7102 if flag_2 is equal to 1 and “YES” in step S7101.
  • step S7102 the estimated sum current calculator 14b sets the sum of the current Id1 of the first winding and the current Id2 of the second winding to Idsum_cal, and sets the current Iq1 of the first winding and the second The sum of the winding current Iq2 is substituted into Iqsum_cal.
  • the estimated sum current calculator 14b Returning to the beginning of the process, the previous values are held as the estimated sum currents Idsum_cal and Iqsum_cal.
  • FIG. 31 is an example of a block diagram showing an internal configuration of the estimated sum current calculator 14b according to the eighth embodiment of the present invention.
  • the logical product operator 7206 calculates the logical product of flag_1 and flag_2, and outputs flag_all.
  • the estimated sum current calculator 14b outputs Idsum_cal and Iqsum_cal with respect to the inputs Id1, Id2, Iq1, Iq2, and flag_all.
  • the adder 7200 adds Id1 and Id2 and outputs Idsum_tmp.
  • the switcher 7202 selects and outputs either Idsum_tmp calculated this time by the adder 7200 or Idsum_cal which is the previous output value in accordance with flag_all.
  • the adder 7200 outputs the previous value of Idsum_cal, and flag_all is In the case of 1, that is, when it is determined that the current of the first winding and the current of the second winding can be detected, Idsum_tmp is output.
  • the adder 7201 adds Iq1 and Iq2 and outputs Iqsum_tmp.
  • the switcher 7203 selects and outputs either Iqsum_tmp calculated this time by the adder 7201 or Iqsum_cal which is the previous output value in accordance with flag_all.
  • the adder 7201 outputs the previous value of Iqsum_cal, and flag_all is In the case of 1, that is, when it is determined that the current of the first winding and the current of the second winding can be detected, Iqsum_tmp is output.
  • the switch 7c is configured to rotate on two axes based on the first detection availability determination signal flag_1, the second detection availability determination signal flag_2, the currents Id1 and Iq1 of the first winding, and the currents Id2 and Iq2 of the second winding.
  • Currents Id1 ′ and Iq1 ′ and currents Id2 ′ and Iq2 ′ on two rotation axes are output.
  • the switch 7c sets the currents Id1 and Iq1 of the first winding as follows: The currents are output as currents Id1 ′ and Iq1 ′ on the rotating biaxial coordinates.
  • the switch 7c determines the current Id2 and Iq2 of the second winding and the estimated sum current. From Idsum_cal and Iqsum_cal, currents Id1 ′ and Iq1 ′ on the rotating biaxial coordinates are calculated and output by the above formulas (1) and (2), respectively.
  • the switch 7c supplies the currents Id2 and Iq2 of the second winding to the second rotation Output as currents Id2 ′ and Iq2 ′ on the axis coordinates.
  • the switch 7c determines the currents Id1 and Iq1 of the first winding and the estimated sum current. From Idsum_cal and Iqsum_cal, currents Id2 ′ and Iq2 ′ on the rotating biaxial coordinates are calculated and output by the following equations (27) and (28), respectively.
  • Id2 ′ Idsum_cal ⁇ Id1
  • Iq2 ′ Iqsum_cal ⁇ Iq1
  • the eighth embodiment there is provided a configuration for estimating the undetectable winding current based on the first detectability determination signal flag_1 and the second detectability determination signal flag_2. .
  • a configuration for estimating the undetectable winding current based on the first detectability determination signal flag_1 and the second detectability determination signal flag_2.
  • the first voltage command is calculated using the current of the second winding and the estimated sum current.
  • the current on the two rotation axes was obtained using the current of the second winding and the estimated sum current.
  • a second detectability determiner is provided in addition to the first detectability determiner.
  • the eighth embodiment in addition to the effects of the first to seventh embodiments, the control performance of the current of the second winding is improved, and the torque ripple and vibration generated from the AC rotating machine 1a are improved. Further effects such as noise reduction can be obtained.
  • the difference between the second maximum phase voltage and the second intermediate phase voltage is used as a method for determining whether or not the current of the second winding can be detected in the second detectability determiner.
  • the difference between the second intermediate phase voltage and the second minimum phase voltage is calculated, and when those values become less than the third predetermined value, it is possible to determine that the current of the second winding cannot be detected. .
  • the voltage phase angle ⁇ v is obtained from at least one of the first voltage command and the second voltage command, and whether or not the current detection determination of the second winding is possible is determined. By determining, the same effect as in the first embodiment can be obtained.
  • the same effect can be obtained by using an equivalent to the estimated sum current calculator 14a instead of the estimated sum current calculator 14b.
  • FIG. FIG. 32 is a diagram showing an overall configuration of an AC rotating machine control device according to Embodiment 9 of the present invention.
  • the configuration of the ninth embodiment is different from the configuration of the eighth embodiment in that a control unit 5c is used instead of the control unit 5b. Therefore, this difference will be mainly described below.
  • the adder 801a outputs an addition value (Id1 ′ + Id2 ′) of the current Id1 ′ on the two rotation axes and the current Id2 ′ on the two rotation axes.
  • the adder 801b outputs an addition value (Iq1 ′ + Iq2 ′) of the current Iq1 ′ on the two rotation axes and the current Iq2 ′ on the two rotation axes.
  • the subtractor 802a outputs a value (Id1′ ⁇ Id2 ′) obtained by subtracting the current Id1 ′ on the two rotation axes by the current Id2 ′ on the two rotation axes.
  • the subtractor 802b outputs a value (Iq1′ ⁇ Iq2 ′) obtained by subtracting the current Iq1 ′ on the two rotation axes by the current Iq2 ′ on the two rotation axes.
  • the multiplier 803a multiplies the addition value (Id1 ′ + Id2 ′) output from the adder 801a by K1, and outputs the sum as a sum current Id_sum.
  • K1 is 0.5.
  • the multiplier 803b multiplies the added value (Iq1 ′ + Iq2 ′) output from the adder 801b by K1, and outputs a sum current Iq_sum.
  • K1 is 0.5.
  • the multiplier 804a multiplies the subtraction value (Id1′ ⁇ Id2 ′) output from the subtractor 802a by K2, and outputs a difference current delta_Id.
  • K2 is 0.5.
  • the multiplier 804b multiplies the subtraction value (Iq1′ ⁇ Iq2 ′) output from the subtractor 802b by K2, and outputs a difference current delta_Iq.
  • K2 is 0.5.
  • the subtractor 805a calculates a deviation dId_sum between the d-axis current command Id * and the sum current Id_sum of the AC rotating machine 1a.
  • the subtractor 805b calculates a deviation dIq_sum between the q-axis current command Iq * of the AC rotating machine 1a and the sum current Iq_sum.
  • the controller 806a outputs a sum voltage Vd_sum so as to control the deviation dId_sum to zero based on the product of the proportional gain Kpd_sum and the deviation dId_sum of the controller using a P controller, a PI controller, or the like.
  • the controller 806b outputs the sum voltage Vd_sum using a P controller, a PI controller, or the like so as to control the deviation dIq_sum to zero based on the product of the proportional gain Kpq_sum and the deviation dIq_sum of those controllers. .
  • the controller 806c uses a P controller, a PI controller, or the like to output the difference voltage delta_Vd so as to control the difference current delta_Id to zero based on the multiplication value of the proportional gain Kpd_delta and the deviation delta_dId of the controllers.
  • the controller 806d uses a P controller, a PI controller, or the like to output the difference voltage delta_Vq so as to control the difference current delta_Iq to zero based on the multiplication value of the proportional gain Kpq_delta and the deviation delta_dIq of those controllers. To do.
  • the adder 807a outputs a value obtained by adding the sum voltage Vd_sum and the difference voltage delta_Vd as the first voltage command Vd1.
  • the adder 807b outputs a value obtained by adding the sum voltage Vq_sum and the difference voltage delta_Vq as the first voltage command Vq1.
  • the subtractor 808a outputs a value obtained by subtracting the sum voltage Vd_sum by the difference voltage delta_Vd as the second voltage command Vd2.
  • the subtractor 808b outputs a value obtained by subtracting the sum voltage Vq_sum by the difference voltage delta_Vq as the second voltage command Vq2.
  • both the first detectability determination signal flag_1 and the first detectability determination signal flag_2 are 1, that is, when it is determined that both the current of the first winding and the current of the second winding can be detected.
  • the currents Id1 ′ and Iq1 ′ on the two rotation axes are equal to the currents Id1 and Iq1 of the first winding, and the currents Id2 ′ and Iq2 ′ on the rotation two axes are equal to the currents Id2 and Iq2 of the second winding. .
  • the sum current is expressed as the sum of the current of the first winding detected by the first current detector 4a and the current of the second winding detected by the second current detector 4b.
  • the current is represented by the difference between the current of the first winding detected by the first current detector 4a and the current of the second winding detected by the second current detector 4b.
  • Sum voltages Vd_sum and Vq_sum are calculated based on the sum currents Id_sum and Iq_sum and the sum current gain, and difference voltages delta_Vd and delta_Vq are calculated based on the difference currents delta_Id and delta_Iq and the difference current gain. Further, the first voltage commands Vd1 and Vq1 and the second voltage commands Vd2 and Vq2 are calculated by the adders 807a and 807b and the subtracters 808a and 808b.
  • the first three-phase windings U1, V1, and W1 of the AC rotating machine 1a and the second three-phase windings U2, V2, and W2 are not electrically connected but are magnetically coupled to each other.
  • a voltage proportional to the product of the differential value of the current of the first winding and the mutual inductance between the first winding and the second winding is generated in the second three-phase winding.
  • a voltage proportional to the product of the differential value of the current of the second winding and the mutual inductance between the first winding and the second winding is generated in the first three-phase winding. That is, the first winding and the second winding are magnetically interfering with each other.
  • the first voltage commands Vd1 and Vq1 and the second voltage commands Vd2 and Vq2 are calculated based on the sum current and the difference current.
  • the voltage commands Vd1 and Vq1 of the first winding are the first detected by the first current detector 4a.
  • the calculation is performed in consideration of the current of the second winding detected by the second current detector 4b in addition to the current of the winding.
  • the second voltage commands Vd2 and Vq2 are applied to the first winding detected by the first current detector 4a in addition to the current of the second winding detected by the second current detector 4b.
  • the calculation is performed in consideration of the current. Therefore, by providing the configuration of the ninth embodiment, a more stable control system can be constructed against magnetic interference between the first winding and the second winding.
  • the current Id1 ′ on the two rotation axes is obtained by subtracting the current Id2 of the second winding from the estimated sum current Idsum_cal, and Iq1 ′ is the second winding from the estimated sum current Idsum_cal.
  • the currents Id2 ′ and Iq2 ′ on the two rotation axes are equal to the currents Id2 and Iq2 of the second winding.
  • the sum current is represented by the estimated sum current obtained by the estimated sum current calculator 14b, and the difference current is detected by the estimated current sum and the second current detector 4b. It is expressed by a difference from twice the current of the second winding.
  • the sum voltages Vd_sum and Vq_sum are calculated based on the sum currents Id_sum and Iq_sum represented by the estimated sum current and the sum current gain, and a difference represented by a difference twice the estimated sum current and the current of the second winding.
  • Difference voltages delta_Vd and delta_Vq are calculated based on the currents delta_Id and delta_Iq and the difference current gain.
  • the current of the first winding can be detected and the current of the second winding is detected.
  • the currents Id1 ′ and Iq1 ′ on the two rotating axes are equal to the currents Id1 and Iq1 of the first winding, and the current Id2 ′ on the rotating two axes is calculated from the estimated sum current Idsum_cal.
  • the value obtained by subtracting the current Id1 of the first winding, Iq2 ′ is equal to the value obtained by subtracting the current Iq1 of the second winding from the estimated sum current Iqsum_cal.
  • the sum current is represented by the estimated sum current obtained by the estimated sum current calculator 14b, and the difference current is the first volume detected by the first current detector 4a. It is represented by the difference between twice the line current and the estimated sum current.
  • the sum voltages Vd_sum and Vq_sum are calculated based on the sum currents Id_sum and Iq_sum represented by the estimated sum current and the sum current gain, and the difference represented by the difference between twice the current of the first winding and the estimated sum current.
  • Difference voltages delta_Vd and delta_Vq are calculated based on the currents delta_Id and delta_Iq and the difference current gain.
  • the current of the first winding and the current of the second winding have different phases.
  • a square sixth-order current ripple occurs.
  • the phase difference between the two windings is 30 deg, as shown in FIG. 14, the relationship is canceled out, and the sum current contributes to the direction in which fluctuation is suppressed, while the difference current is An electric angle sixth-order current fluctuation having a double amplitude with respect to the current ripple of each winding occurs. That is, the phase difference between the current ripple of the first winding and the current ripple of the second winding can be taken into consideration by controlling according to the method in the ninth embodiment. For this reason, it is possible to vibrate the difference current with the electrical angle of the sixth order while keeping the sum current stable.
  • the first detection possibility determination is made by changing the difference current gains Kpd_delta and Kpq_delta based on at least one of the first voltage command, the second voltage command, the sum voltage, or the rotational speed of the AC rotating machine 1a. It is possible to reduce the pulsation to the differential voltages delta_Vd and delta_Vq due to the pulsation of the difference currents delta_Id and delta_Iq when the signal flag_1 and the second detection possibility determination signal flag_2 are switched from 0 to 1 or 1 to 0.
  • FIG. 33 is a diagram showing a state in which the differential current gain is varied based on the first voltage command in the ninth embodiment of the present invention.
  • FIG. 33 illustrates a case where the differential current gains Kpd_delta and Kpq_delta are varied according to the amplitude V1 of the first voltage command.
  • the differential current gains Kpd_delta and Kpq_delta are set to constant values as Kpd_delta1 and Kpq_delta1, respectively.
  • the differential current gains Kpd_delta and Kpq_delta are respectively reduced on a straight line.
  • the threshold value Vsa1 and the slope of the straight line may be determined according to the generated pulsation level.
  • the amplitude V1 of the first voltage command may be obtained by the following equation (41).
  • the horizontal axis of FIG. 33 can be set to the square of the amplitude. Also, the horizontal axis of FIG. 33 is obtained by using the amplitude V2 of the second voltage command given by the following equation (42) or the amplitude V_sum of the sum voltage given by the following equation (43), or V1, V2, and V_sum. You may use it in combination.
  • the first detection possibility determination signal flag_1 and the second detection possibility determination signal flag_2. By varying the sum current gains Kpd_sum and Kpq_sum based on at least one of the first voltage command, the second voltage command, and the sum voltage, the first detection possibility determination signal flag_1 and the second detection possibility determination signal flag_2.
  • the pulsation to the sum voltages Vd_sum and Vq_sum due to the pulsation of the sum currents Id_sum and delta_sum at the time of switching can be reduced.
  • FIG. 34 is a diagram showing a state in which the sum current gain is varied based on the first voltage command in the ninth embodiment of the present invention.
  • FIG. 34 illustrates a case where the sum current gains Kpd_sum and Kpq_sum are changed according to the amplitude V1 of the first voltage command.
  • the amplitude V1 of the first voltage command is equal to or less than the threshold value Vsa1
  • the sum current gains Kpd_sum and Kpq_sum are set to constant values as Kpd_sum1 and Kpq_sum1, respectively.
  • the amplitude V1 of the first voltage command exceeds Vsa1
  • the sum current gains Kpd_sum and Kpq_sum are respectively reduced on a straight line.
  • the threshold value Vsa1 and the slope of the straight line may be determined according to the generated pulsation level.
  • the horizontal axis of FIG. 34 is obtained by combining the amplitude V2 of the second voltage command given by the above equation (42) and the amplitude V_sum of the sum voltage given by the equation (43) or V1, V2, and V_sum. It may be used. Moreover, you may switch according to an effective value not only in the amplitude of a 1st voltage command, a 2nd voltage command, and a sum voltage.
  • the horizontal axis of FIGS. 33 and 34 is set to the rotational speed of the AC rotating machine 1a, and the sum current gain and the difference current gain are constant below a predetermined threshold relating to speed, and the sum current exceeds the predetermined threshold.
  • the gain and the difference current gain may be configured to decrease according to the speed, and the same effect can be obtained.
  • FIG. FIG. 35 is a diagram showing an overall configuration of a control device for an AC rotary machine according to Embodiment 10 of the present invention.
  • the first current detector 4a is replaced with the first current detector 4c and the second current detector 4b is replaced with the second current with respect to the previous ninth embodiment.
  • the detector 4d is replaced. Therefore, this difference will be mainly described below.
  • the first current detector 4a and the second current detector 4b are used. For this reason, as shown in FIG. 12, the first current detector 4a makes the first voltage phase angle ⁇ v near 60 ⁇ x (x: 0, 1, 2, 3, 4, 5) degrees. The current of the winding cannot be detected, and the second winding by the second current detector 4b when the voltage phase angle ⁇ v is near 30 + 60 ⁇ x (x: 0, 1, 2, 3, 4, 5) degrees. Current cannot be detected.
  • the first current detector 4c and the first current detector 4d are used.
  • the first current detector 4c when the voltage phase angle ⁇ v is in the vicinity of 60 + 120 ⁇ x (x: 0, 1, 2,) degrees, the first current detector 4c does not detect the current in the first winding. It becomes possible, and when the voltage phase angle ⁇ v is in the vicinity of 90 + 120 ⁇ x (x: 0, 1, 2) degrees, the current of the second winding cannot be detected by the second current detector.
  • one of the first and second current detectors can reduce the voltage phase interval in which current detection is impossible. Can do.
  • the ratio that both the current of the first winding and the current of the second winding can be detected increases.
  • the voltage commands Vd1 and Vq1 for the first winding are applied to the second winding detected by the second current detector in addition to the current of the first winding detected by the first current detector.
  • the calculated ratio increases in consideration of the current.
  • the second voltage commands Vd2 and Vq2 also include the first winding current detected by the first current detector.
  • the ratio calculated in consideration increases.
  • the present invention is limited to such an AC rotating machine. It is not something.
  • the AC rotating machine having the Nth winding N: an integer of 3 or more
  • the control method according to the present invention can be applied as it is by replacing the first winding and the second winding with the first winding and the second to N windings, respectively.
  • the case where the AC rotating machine 1a having the first three-phase winding and the second three-phase winding having a phase difference of 30 degrees is controlled is described.
  • the present invention is not limited to such an AC rotating machine.
  • N integer
  • a phase difference is provided between the first voltage commands Vu1 ′, Vv1 ′, Vw1 ′ and the second voltage commands Vu2 ′, Vv2 ′, Vw2 ′.
  • the control method according to the present invention can be applied.
  • the first voltage commands Vu1 ', Vv1', Vw1 'and the second voltage commands Vu2', Vv2 ', Vw2' are the same as in FIG.
  • the first detectability determination signal flag_1 and the second detectability determination signal flag_2 do not become 0 at the same time, and the control method of the present invention is applicable.
  • the AC rotating machine control device described in the first to tenth embodiments can be applied to the power steering control provided with the AC rotating machine control device.
  • a control unit that calculates the first voltage command and the second voltage command is necessary so that the AC rotating machine generates torque that assists the steering torque of the steering system.
  • the voltage command can be calculated.

Abstract

 位相差を有する第1巻線と第2巻線を含む交流回転機の制御装置において、第1巻線の電流を検出可能と判定した場合には、第1の電流検出器によって検出された第1巻線の電流と第2の電流検出器によって検出された第2巻線の電流との和を推定和電流として出力し、第1巻線の電流を検出不可能と判定した場合には、前回値として出力した推定和電流を維持する推定和電流演算器を有し、第1巻線の電流を検出不可能と判定した場合には、推定和電流演算器から出力された推定和電流から第2の電流検出器によって検出された第2巻線の電流を引くことで算出した第1巻線の推定電流値に基づいて第1巻線に対する第1の電圧指令を演算する。

Description

交流回転機の制御装置および電動パワーステアリングの制御装置
 本発明は、制御周期を変更する必要なく、交流回転機の出力を向上できる交流回転機の制御装置および電動パワーステアリングの制御装置に関するものである。
 従来の三相PWMインバータ装置における相電流検出装置においては、制御周期Tswは、位相指令値θ*および電圧指令値V*に応じて長短変化するようになっている。そして、位相指令値θ*および電圧指令値V*に応じて定まるゼロベクトル以外のいずれかの基本電圧ベクトルに対応するスイッチングモードの保持時間(t1またはt2)が、インバータ主回路のデッドタイムtddとホールCT9による電流検出に要する時間tswとの和(tdd+tsw)よりも長いときには、一定の短い制御周期Tswが選択される。一方、スイッチングモードの保持時間が時間(tdd+tsw)よりも短くなるときには、保持時間が時間(tdd+tsw)よりも長くなるように、制御周期Tswが長くされる例が開示されている(例えば、特許文献1参照)。
特開平3―230767号公報
 しかしながら、従来技術には、以下のような課題がある。制御周期Tswを長くすると、三相PWMインバータ装置から出力されるPWMの周期(制御周期Tswに等しい)が長くなり、PWM周期の逆数で与えられるPWM周波数が低下する。
 三相PWMインバータの出力に交流回転機を接続すると、交流回転機に流れる電流には、PWM周波数の成分が含まれる。このため、PWM周波数が低下することにより電流に含まれるその成分の周波数も低下することによって、交流回転機から騒音が発生するいった課題が生じる。
 特に、電動パワーステアリング用に用いられる交流回転機は、静音性が求められ、PWM周波数は、例えば、20kHz以上(可聴域超の周波数帯域)に設定される。ここで、電動パワーステアリング用に用いられる交流回転機に、特許文献1にあるような制御周期Tswを長くする(PWM周波数を下げる)方式を適用すると、PWM周波数が20kHz未満となってしまう。この結果、交流回転機より騒音が発生し、電動パワーステアリングが搭載された車に乗車している人に、不快感を与えてしまうといった課題が生じる。
 本発明は、上記のような問題点を解決するためになされたものであり、制御周期を変更する必要なく、交流回転機の出力を向上できる交流回転機の制御装置および電動パワーステアリングの制御装置を提供することを目的とする。
 本発明に係る交流回転機の制御装置は、位相差を有する第1巻線と第2巻線を含む交流回転機と、第1巻線の電流を検出する第1の電流検出器と、第2巻線の電流を検出する第2の電流検出器と、交流回転機の電流指令と電流検出値とに基づいて、第1の電圧指令と第2の電圧指令を演算する制御部と、第1の電圧指令に基づいて、第1巻線に電圧を印加する第1の電圧印加器と、第2の電圧指令に基づいて、第2巻線に電圧を印加する第2の電圧印加器と、第1の電圧指令と第2の電圧指令の少なくとも1つに基づいて、第1の電流検出器による第1巻線の電流の検出可否を判定する第1の検出可否判定器と、第1巻線の電流と第2巻線の電流の和である推定和電流を演算する推定和電流演算器とを有し、制御部は、第1の検出可否判定器が第1の電流検出器により第1巻線の電流を検出不可能と判定した場合には、推定和電流演算器から出力された推定和電流から第2の電流検出器によって検出された第2巻線の電流を引くことで算出した第1巻線の推定電流値に基づいて第1の電圧指令を演算するものである。
 また、本発明に係る電動パワーステアリングの制御装置は、本発明の交流回転機の制御装置を備え、制御部は、ステアリング系の操舵トルクを補助するトルクを、交流回転機が発生するように、第1の電圧指令および第2の電圧指令を演算するものである。
 本発明によれば、第1巻線の電流を検出可能と判定した場合には、第1の電流検出器によって検出された第1巻線の電流と第2の電流検出器によって検出された第2巻線の電流との和を推定和電流として出力し、第1巻線の電流を検出不可能と判定した場合には、前回値として出力した推定和電流を維持する推定和電流演算器を有し、第1巻線の電流を検出不可能と判定した場合には、推定和電流演算器から出力された推定和電流から第2の電流検出器によって検出された第2巻線の電流を引くことで算出した第1巻線の推定電流値に基づいて第1巻線に対する第1の電圧指令を演算する構成を備えている。この結果、制御周期を変更する必要なく、交流回転機の騒音を低減した状態で交流回転機の出力を向上できる、といった従来にない顕著な効果を奏する。
本発明の実施の形態1における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態1における交流回転機として用いられる3相交流発電機の構成を説明するための図である。 本発明の実施の形態1における半導体スイッチSup1~Swn1のオンオフ状態に応じた第1の電圧ベクトルV0(1)~V7(1)とIdc1との関係を示した図である。 本発明の実施の形態1における半導体スイッチSup2~Swn2のオンオフ状態に応じた第2の電圧ベクトルV0(2)~V7(2)とIdc2に等しい電流との関係を示した図である。 本発明の実施音形態1において、第1の電圧指令Vu1’、Vv1’、Vw1’に基づく第1の電圧指令ベクトルV1*と、第2の電圧指令Vu2’、Vv2’、Vw2’に基づく第2の電圧指令ベクトルV2*を示した説明図である。 本発明の実施の形態1における第1の電圧指令Vu1、Vv1、Vw1、および第2の電圧指令Vu2、Vv2、Vw2の波形図である。 本発明の実施の形態1における第1の電圧印加器に関して、電圧指令と、各相上側アーム素子がオンする割合との関係を説明するための図である。 本発明の実施の形態1における第2の電圧印加器に関して、電圧指令と、各相上側アーム素子がオンする割合との関係を説明するための図である。 本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器における電流検出タイミングに関する動作説明図である。 本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器における電流検出タイミングに関する、図9とは別の動作説明図である。 本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器における電流検出タイミングに関する、図9、図10とは別の動作説明図である。 本発明の実施の形態1における第1の検出可否判定器および第2の検出可否判定器の機能に関する説明図である。 本発明の実施の形態1における第1の検出可否判定器の一連動作を示したフローチャートである。 本発明の実施の形態1における第1巻線の電流と第2巻線の電流との関係を示した図である。 本発明の実施の形態1における推定和電流演算器による一連処理を示したフローチャートである。 本発明の実施の形態1における推定和電流演算器の内部構成を示すブロック図の一例である。 本発明の実施の形態2における第1の検出可否判定器の一連動作を示したフローチャートである。 本発明の実施の形態2における第3の所定値Vs3を0.1Vdcに設定した場合の、先の図17の各ステップに対応する波形を示した図である。 本発明の実施の形態4における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態5における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態5における半導体スイッチSup1~Swn1のオンオフ状態に応じた第1の電圧ベクトルV0(1)~V7(1)と、第1巻線の電流Iu1、Iv1、Iw1との関係を示した図である。 本発明の実施の形態5における半導体スイッチSup2~Swn2のオンオフ状態に応じた第2の電圧ベクトルV0(2)~V7(2)と、第2巻線の電流Iu2、Iv2、Iw2との関係を示した図である。 本発明の実施の形態5における半導体スイッチのオンオフパターン、および電流検出器における電流検出タイミングに関する動作説明図である。 本発明の実施の形態5における第1の検出可否判定器の機能に関する説明図である。 本発明の実施の形態5における第1の検出可否判定器の一連動作を示したフローチャートである。 本発明の実施の形態6における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態7における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態8における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態8における第2の検出可否判定器の一連動作を示したフローチャートである。 本発明の実施の形態8における推定和電流演算器による一連処理を示したフローチャートである。 本発明の実施の形態8における推定和電流演算器の内部構成を示すブロック図の一例である。 本発明の実施の形態9における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態9において、差電流ゲインを、第1の電圧指令に基づいて変動させる状態を示した図である。 本発明の実施の形態9において、和電流ゲインを、第1の電圧指令に基づいて変動させる状態を示した図である。 本発明の実施の形態10における交流回転機の制御装置の全体構成を示す図である。
 以下、本発明の交流回転機の制御装置および電動パワーステアリングの制御装置の好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における交流回転機の制御装置の全体構成を示す図である。また、図2は、本発明の実施の形態1における交流回転機として用いられる3相交流発電機の構成を説明するための図である。図1に示した交流回転機1aは、図2のように、中性点N1で接続された第1の3相巻線U1、V1、W1、および中性点N2で接続された第2の3相巻線U2、V2、W2が、電気的に接続されることなく回転機の固定子に納められている3相交流回転機である。
 なお、U1巻線とU2巻線、V1巻線とV2巻線、W1巻線とW2巻線のそれぞれには、30度の位相差がある。図2では、交流回転機1aとして、第1の3相巻線と第2の3相巻線がともにY結線の場合を例示しているが、本発明は、Δ結線の場合にも適用可能である。
 直流電源2aは、第1の電圧印加器3aに直流電圧Vdc1を出力し、直流電源2bは、第2の電圧印加器3bに直流電圧Vdc2を出力する。これらの直流電源2a、2bとしては、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する全ての機器が含まれる。また、直流電源2a、2bのいずれか1つを用いて、第1の電圧印加器3aおよび第2の電圧印加器3bに直流電圧を出力する構成も、本発明の範囲に含まれる。
 第1の電圧印加器3aは、逆変換回路(インバータ)を用いて、第1の電圧指令Vu1’、Vv1’、Vw1’をPWM変調し、半導体スイッチSup1、Sun1、Svp1、Svn1、Swp1、Swn1(以下の説明では、これら6つの半導体スイッチを、半導体スイッチSup1~Swn1と表現する)をオンオフする。これにより、第1の電圧印加器3aは、直流電源2aから入力した直流電圧Vdc1を交流に電力変換して、交流回転機1aの第1の3相巻線U1、V1、W1に、交流電圧を印加する。
 ここで、半導体スイッチSup1~Swn1としては、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチと、ダイオードを逆並列に接続したものを用いる。
 第2の電圧印加器3bは、逆変換回路(インバータ)を用いて、第2の電圧指令Vu2’、Vv2’、Vw2’をPWM変調し、半導体スイッチSup2、Sun2、Svp2、Svn2、Swp2、Swn2(以下の説明では、これら6つの半導体スイッチを、半導体スイッチSup2~Swn2と表現する)をオンオフする。これにより、第2の電圧印加器3bは、直流電源2bから入力した直流電圧Vdc2を交流に電力変換して、交流回転機1aの第2の3相巻線U2、V2、W2に、交流電圧を印加する。
 ここで、半導体スイッチSup2~Swn2としては、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチと、ダイオードを逆並列に接続したものを用いる。
 第1の電流検出器4aは、シャント抵抗や計器用変流器(CT)等の電流センサを用いて、第1の電力変換器3aの第1の直流母線を流れる電流Idc1を検出する。図3は、本発明の実施の形態1における半導体スイッチSup1~Swn1のオンオフ状態に応じた第1の電圧ベクトルV0(1)~V7(1)とIdc1との関係を示した図である。なお、図3に示したSup1~Swn1は、「1」がスイッチオン、「0」がスイッチオフの状態をそれぞれ示すものとする。
 第1の電流検出器4aは、図3に示した関係に基づいて、第1の3相電流Iu1、Iv1、Iw1を検出する。なお、第1の電流検出器4aは、Idc1より、第1の3相電流Iu1、Iv1、Iw1のうち2相分を検出し、残りの1相は、三相電流の和が零になることを利用して、演算によって求めてもよい。
 第2の電流検出器4bは、シャント抵抗や計器用変流器(CT)等の電流センサを用いて、第2の電力変換器3bの第2の直流母線を流れる電流Idc2を検出する。図4は、本発明の実施の形態1における半導体スイッチSup2~Swn2のオンオフ状態に応じた第2の電圧ベクトルV0(2)~V7(2)とIdc2に等しい電流との関係を示した図である。なお、図4に示したSup2~Swn2は、「1」がスイッチオン、「0」がスイッチオフの状態をそれぞれ示すものとする。
 第2の電流検出器4bは、図4に示した関係に基づいて、第2の3相電流Iu2、Iv2、Iw2を検出する。なお、第2の電流検出器4bは、、Idc2より、第2の3相電流Iu2、Iv2、Iw2のうち2相分を検出し、残りの1相は、三相電流の和が零になることを利用して、演算によって求めてもよい。
 また、図3に示した第1の電圧ベクトルにおけるかっこ内の数字(1)、および図4に示した第2の電圧ベクトルにおけるかっこ内の数字(2)は、第1の電圧ベクトルと第2の電圧ベクトルを判別するためのものであり、第1の電圧指令に基づく第1の電圧ベクトルには、(1)が付され、第2の電圧指令に基づく第2の電圧ベクトルには、(2)が付されている。
 第1の検出可否判定器12aは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1の3相電流が検出可能であるか否かを判定し、第1の検出可否判定信号flag_1を出力する。
 続いて、制御部5aについて説明する。座標変換器6aは、第1の電流検出器4aより検出された第1の3相電流Iu1、Iv1、Iw1を、交流回転機1aの回転位置θに基づいて回転座標上の電流に変換し、回転二軸上における第1巻線の電流Id1、Iq1を演算する。
 座標変換器6bは、第2の電流検出器4bで検出された第2の3相電流Iu2、Iv2、Iw2を、交流回転機1aの回転位置θから30度減算した位置θ-30に基づいて回転座標上の電流に変換し、回転二軸上における第2巻線の電流Id2、Iq2を演算する。
 推定和電流演算器14は、第1の検出可否判定信号flag_1と、第1巻線の電流Id1、Iq1、第2巻線の電流Id2、Iq2から、推定和電流Idsum_cal、Iqsum_calを演算する。
 切替器7aは、第1の検出可否判定信号flag_1に基づいて、第1の3相電流が検出可能と判定された場合には、第1巻線の電流Id1、Iq1を、それぞれ回転二軸座標上の電流Id1’、Iq1’として出力する。
 また、切替器7aは、第1の検出可否判定信号flag_1に基づいて、第1の3相電流が検出不可能と判定された場合には、第2巻線の電流Id2、Iq2と推定和電流Idsum_cal、Iqsum_calから、それぞれ回転二軸座標上の電流Id1’、Iq1’を、下式(1)、(2)で算出して出力する。
  Id1’=Idsum_cal-Id2           (1)
  Iq1’=Iqsum_cal-Iq2           (2)
 また、切替器7aは、第2巻線の電流Id2、Iq2をそれぞれ回転二軸座標上の電流Id2’、Iq2’として出力する。
 ここで、回転二軸座標上の電流Id1’、Iq1’、および回転二軸座標上の電流Id2’、Iq2’のそれぞれは、後述する回転二軸座標上の電圧指令Vd1、Vq1、および回転二軸座標上の電圧指令Vd1、Vq1を演算するために用いられる電流検出値に相当する。
 減算器8aは、交流回転機1aのd軸電流指令Id*と切替器7aから出力された回転二軸座標上の電流Id1’との偏差dId1を演算する。
 減算器8bは、交流回転機1aのq軸電流指令Iq*と切替器7aから出力された回転二軸座標上の電流Iq1’との偏差dIq1を演算する。
 減算器8cは、交流回転機1aのd軸電流指令Id*と切替器7aから出力された回転二軸座標上の電流Id2’との偏差dId2を演算する。
 減算器8dは、交流回転機1aのq軸電流指令Iq*と切替器7aから出力された回転二軸座標上の電流Iq2’との偏差dIq2を演算する。
 制御器9aは、P制御器やPI制御器を用いて、偏差dId1を零に制御するように、回転二軸座標上の電圧指令Vd1を演算する。
 制御器9bは、P制御器やPI制御器を用いて、偏差dIq1を零に制御するように、回転二軸座標上の電圧指令Vq1を演算する。
 制御器9cは、P制御器やPI制御器を用いて、偏差dId2を零に制御するように、回転二軸座標上の電圧指令Vd2を演算する。
 制御器9dは、P制御器やPI制御器を用いて、偏差dIq2を零に制御するように、回転二軸座標上の電圧指令Vq2を演算する。
 座標変換器10aは、回転二軸座標上の電圧指令Vd1、Vq1を、交流回転機1aの回転位置θに基づいて、3相交流座標へ座標変換し、第1の電圧指令Vu1、Vv1、Vw1を演算する。
 座標変換器10bは、回転二軸座標上の電圧指令Vd2、Vq2を、交流回転機1aの回転位置θから30度減算した位置θ-30に基づいて、3相交流座標へ座標変換し、第2の電圧指令Vu2、Vv2、Vw2を演算する。
 オフセット演算器11aは、第1の電圧指令Vu1、Vv1、Vw1に対して、下式(3)~(5)に示すように、オフセット電圧Voffset1を加算し、第1の電圧指令Vu1’、Vv1’、Vw1’として出力する。
  Vu1’=Vu1+Voffset1            (3)
  Vv1’=Vv1+Voffset1            (4)
  Vw1’=Vw1+Voffset1            (5)
 オフセット演算器11bは、第2の電圧指令Vu2、Vv2、Vw2に対して、下式(6)~(8)に示すように、オフセット電圧Voffset2を加算し、第2の電圧指令Vu2’、Vv2’、Vw2’として出力する。
  Vu2’=Vu2+Voffset2            (6)
  Vv2’=Vv2+Voffset2            (7)
  Vw2’=Vw2+Voffset2            (8)
 第1の検出可否判定器12aは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1の3相電流が検出可能であるか否かを判定し、第1の検出可否判定信号flag_1を出力する。
 続いて、第1の電圧指令、第2の電圧指令と、第1の検出可否判定器12aの動作について、詳細に説明する。図5は、本発明の実施音形態1において、第1の電圧指令Vu1’、Vv1’、Vw1’に基づく第1の電圧指令ベクトルV1*と、第2の電圧指令Vu2’、Vv2’、Vw2’に基づく第2の電圧指令ベクトルV2*を示した説明図である。図5に示すように、第1の電圧指令ベクトルV1*および第2の電圧指令ベクトルV2*のそれぞれは、U(1)-V(1)-W(1)軸、U(2)-V(2)-W(2)軸を回転するベクトルとなる。
 なお、図5に示したかっこ内の数字は、第1巻線に対応した軸と第2巻線に対応した軸を分けて示すためのものである。具体的には、(1)がついているU(1)、V(1)、W(1)は、それぞれ第1巻線のU相、V相、W相に対応した軸を示しており、(2)がついているU(2)、V(2)、W(2)は、それぞれ第2巻線のU相、V相、W相に対応した軸を示している。ここで、U(1)軸を基準とした場合の第1の電圧指令ベクトルV1*と第2の電圧指令ベクトルV2*との位相角は、ともにθvであり、位相差はない。
 図6は、本発明の実施の形態1における第1の電圧指令Vu1、Vv1、Vw1、および第2の電圧指令Vu2、Vv2、Vw2の波形図である。先の図5に示したU(2)、V(2)、W(2)軸は、それぞれU(1)、V(1)、W(1)軸に対し30度位相が遅れている。従って、図6に示すように、第2の電圧指令Vu2、Vv2、Vw2は、第1の電圧指令Vu1、Vv1、Vw1に比べて30度位相が遅れる。
 図6において、横軸は、U(1)軸を基準とした電圧位相角θvである。よって、第1巻線と第2巻線に30度の位相差を有する交流回転機1aに対して、第1の電圧指令と第2の電圧指令は、30度の位相差を有する。また、第1巻線と第2巻線に30+60×N(N:整数)度の位相差を有する交流回転機に対しても、同様に、第1の電圧指令と第2の電圧指令は、30+60×N度の位相差を有する。
 図7は、本発明の実施の形態1における第1の電圧印加器3aに関して、電圧指令と、各相上側アーム素子がオンする割合との関係を説明するための図である。図7(a)は、図6に示した第1の電圧指令Vu1、Vv1、Vw1であり、座標変換器10aの出力である。また、図7(b)は、オフセット演算器11aの出力である第1の電圧指令Vu1’、Vv1’、Vw1’であり、上式(3)~(5)によって演算される。
 なお、上式(3)~(5)におけるオフセット電圧Voffset1は、第1の電圧指令Vu1、Vv1、Vw1の最大値Vmax1、最小値Vmin1を用いて、下式(9)で与えている。
  Voffset1=-0.5(Vmin1+Vmax1)   (9)
 ただし、第1の電圧印加器3aが出力できる相電圧の電圧出力範囲は、0~母線電圧Vdc1である。従って、電圧出力範囲の幅を、第1の電圧印加器3aが出力可能なVdc1以内とすべく、第1の電圧指令Vu1’、Vv1’、Vw1’は、-0.5Vdc1未満、0.5Vdc1超となる場合には、それぞれ-0.5Vdc1、0.5Vdc1で制限されている。
 また、Voffset1として、上式(9)以外に、2相変調方式や3次高調波重畳方式として知られるような、他のオフセット電圧演算方法を用いてもよい。
 図7(c)は、第1の電圧印加器3aにおける、各相上側アーム素子(Sup1、Svp1、Swp1)がオンする割合を示すオンデューティDsup1、Dsvp1、Dswp1である。これらのオンデューティDsup1、Dsvp1、Dswp1は、それぞれVu1’、Vv1’、Vw1’を用いて
  Dsxp1=0.5+Vx1’/Vdc1
より求める。ただし、x=U、V、Wである。例えば、Dsup1が0.6のとき、第1の電圧印加器3aは、スイッチング周期TswにおいてSup1のオン割合0.6とする。
 ここで、第1の電圧印加器3aにおいては、各相毎に、常時、上側アーム素子(Sup1、Svp1、Swp1)と下側アーム素子(Sup1、Svp1、Swp1)のいずれか一方がオンする。従って、各相上側アーム素子のオンデューティ(Dsup1、Dsvp1、Dswp1)と、下側アーム素子のオンデューティ(Dsun1、Dsvn1、Dswn1)との間には、下式(10)~(12)の関係がある。
  Dsup1+Dsun1=1               (10)
  Dsvp1+Dsvn1=1               (11)
  Dswp1+Dswn1=1               (12)
 よって、例えば、Dsup1が0.6の場合、上式(10)より、Dsun1は0.4となる。以上より、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいた第1の電圧印加器3aにおける各スイッチング素子のオンデューティが定まる。
 図8は、本発明の実施の形態1における第2の電圧印加器3bに関して、電圧指令と、各相上側アーム素子がオンする割合との関係を説明するための図である。図8(a)は、図6に示した第2の電圧指令Vu2、Vv2、Vw2であり、座標変換器10bの出力である。また、図8(b)は、オフセット演算器11bの出力である第2の電圧指令Vu2’、Vv2’、Vw2’であり、上式(6)~(8)によって演算される。
 なお、上式(4)~(6)におけるオフセット電圧Voffset2は、第2の電圧指令Vu2、Vv2、Vw2の最大値Vmax2、最小値Vmin2を用いて、下式(13)で与えている。
  Voffset2=-0.5(Vmin2+Vmax2)  (13)
 ただし、第2の電圧印加器3bが出力できる相電圧の電圧出力範囲は、0~母線電圧Vdc2である。従って、電圧出力範囲の幅を、第2の電圧印加器3bが出力可能なVdc2以内とすべく、第2の電圧指令Vu2’、Vv2’、Vw2’は、-0.5Vdc2未満、0.5Vdc2超となる場合には、それぞれ-0.5Vdc2、0.5Vdc2で制限されている。
 また、Voffset2として、上式(13)以外に、2相変調方式や3次高調波重畳方式として知られるような、他のオフセット電圧演算方法を用いてもよい。
 図8(c)は、第2の電圧印加器3bにおける、各相上側アーム素子(Sup2、Svp2、Swp2)がオンする割合を示すオンデューティDsup2、Dsvp2、Dswp2である。これらのオンデューティDsup2、Dsvp2、Dswp2は、それぞれVu2’、Vv2’、Vw2’を用いて
  Dsxp2=0.5+Vx2’/Vdc2
より求める。
 ここで、第2の電圧印加器3bにおいては、各相毎に、常時、上側アーム素子(Sup2、Svp2、Swp2)と下側アーム素子(Sun2、Svn2、Swn2)のいずれか一方がオンする。従って、各相上側アーム素子のオンデューティ(Dsup2、Dsvp2、Dswp2)と、下側アーム素子のオンデューティ(Dsun2、Dsvn2、Dswn2)との間には、下式(14)~(16)の関係がある。
  Dsup2+Dsun2=1               (14)
  Dsvp2+Dsvn2=1               (15)
  Dswp2+Dswn2=1               (16)
 よって、例えば、Dsup2が0.6の場合、上式(14)より、Dsun2は0.4となる。以上より、第2の電圧指令Vu2’、Vv2’、Vw2’に基づいた第2の電圧印加器3bにおける各スイッチング素子のオンデューティが定まる。
 図9は、本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器4a、4bにおける電流検出タイミングに関する動作説明図である。具体的には、第1の電圧印加器3aの半導体スイッチSup1、Svp1、Swp1、および第2の電圧印加器3bの半導体スイッチSup2、Svp2、Swp2のオンオフパターンと、電流検出器4a、4bにおける、スイッチング信号の周期(PWM周期)Tsw内での電流検出タイミングとの関係を示した図である。
 なお、Sun1、Svn1、Swn1、およびSun2、Svn2、Swn2は、それぞれSup1、Svp1、Swp1、およびSup2、Svp2、Swp2と反転(1ならば0、0ならば1、ただしデッドタイム期間を除く)の関係にあるため、図示を省略している。
 図9においては、第1の電圧指令Vu1’、Vv1’、Vw1’に関して、大きい順に第1最大相電圧Emax1、第1中間相電圧Emid1、第1最小相電圧Emin1としたとき、下式(17)~(19)の関係があるものとする。
  Emax=Vu1’                   (17)
  Emid=Vv1’                   (18)
  Emin=Vw1’                   (19)
 同様に、第2の電圧指令Vu2’、Vv2’、Vw2’に関して、大きい順に第2最大相電圧Emax2、第2中間相電圧Emid2、第2最小相電圧Emin2としたとき、下式(20)~(22)の関係があるものとする。
  Emax=Vu2’                   (20)
  Emid=Vv2’                   (21)
  Emin=Vw2’                   (22)
 時刻t1(n)において、Sup1、Sup2を1、かつSvp1、Swp1、Svp2、Swp2を0とし、時刻t1(n)からΔt1経過後の時刻t2(n)まで継続する。図3、図4より、時刻t1(n)~t2(n)において、第1の電圧ベクトルは、V1(1)、第2の電圧ベクトルは、V1(2)である。電流検出器4a、4bは、時刻t1(n)~t2(n)における、時刻ts1-1(n)にて、Idc1、Idc2を検出する。
 第1の電圧印加器3aや第2の電圧印加器3bのデッドタイム時間と、第1の電流検出器がIdc1を検出する、あるいは第2の電流検出器がIdc2を検出するのに要する時間(例えば、検出波形に含まれるリンギングが収束するのに要する時間やサンプルホールドに要する時間)の和を「第1の所定値」とした場合、ずらし時間Δt1は、その「第1の所定値」以上に設定される。例えば、Δt1=5μsである。
 図3より、時刻t1(n)~t2(n)においては、第1の電圧ベクトルは、V1(1)であり、時刻ts1-1(n)で検出されたIdc1は、Iu1に等しい。また、図4より、時刻t1(n)~t2(n)においては、第2の電圧ベクトルは、V1(2)であり、時刻ts1-1(n)で検出されたIdc2は、Iu2に等しい。
 次に、時刻t2(n)において、Svp1、Svp2を1とし、そのスイッチングパターンを時刻t3(n)まで継続する。図3、図4より、時刻t2(n)~t3(n)において、第1の電圧ベクトルは、V2(1)、第2の電圧ベクトルは、V2(2)である。電流検出器4a、4bは、時刻t2(n)~t3(n)における、時刻ts1-2(n)にて、再度、Idc1、Idc2を検出する。ずらし時間Δt2は、ずらし時間Δt1と同様に「第1の所定値」以上に設定される。一般的には、Δt1=Δt2に設定される。
 図3より、時刻t2(n)~t3(n)においては、第1の電圧ベクトルは、V2(1)であり、時刻ts1-2(n)で検出されたIdc1は、-Iw1に等しい。また、図4より、時刻t2(n)~t3(n)においては、第2の電圧ベクトルは、V2(2)であり、時刻ts1-2(n)で検出されたIdc2は、-Iw2に等しい。
 以上より、第1巻線の電流Iu1、Iw1、第2巻線の電流Iu2、Iw2が検出できたので、三相電流の和が零なることを利用すると、第1の3相電流Iu1、Iv1(=-Iu1-Iw1)、Iw1、第2の3相電流Iu2、Iv2(=-Iu2-Iw2)、Iw2を検出できる。
 そして、時刻t3(n)にて、Swp1、Swp2を1とする。Sup1~Swp2のパルス幅(「1」を継続する時間)は、各スイッチに対応するオンデューティDsup1、Dswp2とスイッチング周期Tswとの乗算値によって定まる。
 以上より、本実施の形態1では、第1最大相電圧Emax1に対応する相の上側アーム素子のスイッチ、第1中間相電圧Emid1に対応する相の上側アーム素子のスイッチ、第1最小相電圧Emin1に対応する相の上側アーム素子のスイッチの順に、第1の所定値以上に設定されたΔt1やΔt2だけ時刻をずらしてオンしている。
 そして、このようなスイッチングにより、図3に示す、Idc1から、第1の3相電流Iu1、Iv1、Iw1のうち、2相を検出できる2種類の第1の電圧ベクトルを形成し、図4に示す、Idc2から、第2の3相電流Iu2、Iv2、Iw2のうち、2相を検出できる2種類の第2の電圧ベクトルを形成する。
 しかしながら、第1中間相電圧Emid1に対応する相の電圧指令値によっては、Idc1から第1の3相電流Iu1、Iv1、Iw1のうち、2相を検出できる2種類の第1の電圧ベクトルを形成することができず、結果として、第1の3相電流Iu1、Iv1、Iw1を検出することができない場合がある。
 例えば、図10は、本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器4a、4bにおける電流検出タイミングに関する、図9とは別の動作説明図であり、第1の3相電流Iu1、Iv1、Iw1を検出することができない場合を例示している。
 図10では、Vv1’が小さく、Dsvp1・TswがΔt2より小さくなった状態を示している。この状態では、時刻t2(n)でSvp1をオンすると、時刻t3(n)よりも前にオフしてしまい、第1の電圧ベクトルV2(1)がずらし時間Δt2の区間に渡って形成できない。
 また、図11は、本発明の実施の形態1における半導体スイッチのオンオフパターン、および電流検出器4a、4bにおける電流検出タイミングに関する、図9、図10とは別の動作説明図であり、図10と同様に、第1の3相電流Iu1、Iv1、Iw1を検出することができない場合を例示している。
 図11では、Vv1’が大きく、Dsvp1・TswがTsw-Δt1より大きくなった状態を示している。この状態では、スイッチング周期Tswが終了する時刻t4(n)でSvp1をオフした場合においても、時刻t2(n)よりも前でSvp1をオンしなければ、Dsvp1・Tswに対応したパルス幅が出せない。この結果として、V1(1)がずらし時間Δt1の区間に渡って形成できない。
 第2の電圧印加器3bについても同様であり、先の図9において、Vv2’が小さい場合には、V2(2)がずらし時間Δt2の区間に渡って形成できない。また、Vv2’が大きい場合には、V1(2)がずらし時間Δt1の区間に渡って形成できない。
 この課題は、特許文献1に記載されたスイッチング周期(特許文献1における制御周期)Tswを増大させることで解決できる。ずらし時間Δt1やずらし時間Δt2を固定時間とすると、Tswを増大させることで、Tswに占めるずらし時間Δt1やずらし時間Δt2の割合が低下する。このため、先に述べた中間相電圧が小さくDsvp1が小さい場合や、中間相電圧が大きくDsvp1が大きい場合にも、電流検出が可能となる。
 しかしながら、Tswを増大させると、Tswの逆数で与えられるスイッチング周波数が低下し、その周波数が可聴域に入ると、スイッチング周波数成分の騒音が増大する課題が生じる。例えば、交流回転機1aが電動パワーステアリング用モータの場合、スイッチング周波数が20kHz以上(可聴域の帯域外)に設定される。
 これは、人間の可聴域が20Hz~20kHzであり、20kHz以上(可聴域の帯域外)に設定することで、スイッチング周波数成分の音が人間の耳には聞えないからである。しかしながら、ずらし時間Δt1やずらし時間Δt2を確保するためにスイッチング周波数を20kHzより低下させると、スイッチング周波数成分の音が人間の耳に聞こえてしまい、結果として騒音となってしまう。
 また、このような騒音を避けるために、第1中間相電圧Emid1がずらし時間Δt1やΔt2を確保できる範囲になるように、第1の電圧指令の振幅を制限してしまうと、交流回転機1aに印加される電圧が制限され、交流回転機1aにより、高い出力が発生できないといった別の課題が生じる。
 続いて、第1の検出可否判定器12aおよび第2の検出可否判定器12bについて説明する。図12は、本発明の実施の形態1における第1の検出可否判定器12aおよび第2の検出可否判定器12bの機能に関する説明図である。
 具体的には、第1の検出可否判定器12aは、第1中間相電圧Emid1に対応する相の電圧指令値が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲か否かを判別し、第1の電流検出器4aが第1の3相電流を検出可能か判別する。同様に、第2の検出可否判定器12bは、第2中間相電圧Emid2に対応する相の電圧指令値が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲か否かを判別し、第2の電流検出器4bが第2の3相電流を検出可能か判別する。
 ここで、第1の中間相電圧Emid1や第2の中間相電圧Emid2が第1の所定値Vs1と等しければ、中間相電圧における上側アーム素子のTswにおけるオン時間が、Tsw-Δt1に等しいことを意味している。従って、第1の所定値Vs1は、ずらし時間Δt1を確保できる上限値に相当する。
 一方、第1の中間相電圧Emid1や第2の中間相電圧Emid2が第2の所定値Vs2と等しければ、中間相電圧における上側アーム素子のTswにおけるオン時間が、Δt2を確保できることを意味している。従って、第2の所定値Vs2は、ずらし時間Δt2を確保できる下限値である。
 図12(a)は、図7(b)に示した第1の電圧指令Vu1’、Vv1’、Vw1’を点線、第1中間相電圧Emid1を実線、第1の所定値Vs1および第2の所定値Vs2を一点鎖線で示す。ここでは、
  Vs1=0.4Vdc1
  Vs2=-0.4Vdc1
に設定する。
 図12(b)は、第1の検出可否判定器12aの出力である。第1の検出可否判定器12aは、第1中間相電圧Emid1が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲内か範囲外かを判別することで、第1の3相電流が検出可能か否かを判別する。そして、第1の検出可否判定器12aは、第1中間相電圧Emid1が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲内であれば1、範囲外であれば0となる第1の検出可否判定信号flag_1を出力する。
 図12(c)は、図8(b)に示した第2の電圧指令Vu2’、Vv2’、Vw2’を点線、第2中間相電圧Emid2を実線、第1の所定値Vs1および第2の所定値Vs2を一点鎖線で示す。
 図12(d)は、後の実施の形態で詳述する第2の検出可否判定器12bの出力である。第2の検出可否判定器12bは、第2中間相電圧Emid2が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲内か範囲外かを判別することで、第2の3相電流が検出可能か否かを判別する。そして、第2の検出可否判定器12bは、第2中間相電圧Emid2が第1の所定値Vs1以下、かつ第2の所定値Vs2以上の範囲内であれば1、範囲外であれば0となる第2の検出可否判定信号flag_2を出力する。
 第1の検出可否判定信号flag_1に着目すると、電圧位相角θvで60×x(x:0、1、2、3、4、5、6)度近傍で0となる。第2の検出可否判定信号flag_2に着目すると、電圧位相角θvで30+60×x(x:0、1、2、3、4、5)度近傍で0となる。
 よって、第1の検出可否判定信号flag_1と第2の検出可否判定信号flag_2とでは、0となる電圧位相角θvが互いに30度ずれており、flag_1が0のとき、flag_2は1であり、逆に、flag_2が0のとき、flag_1は1である。よって、flag_1とflag_2が同時に0になることはなく、少なくとも一方は、1であることがわかる。
 図13は、本発明の実施の形態1における第1の検出可否判定器12aの一連動作を示したフローチャートである。ステップS1000aにおいて、第1の検出可否判定器12aは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1中間相電圧Emid1を演算する。
 ステップS1000bにおいて、第1の検出可否判定器12aは、第1中間相電圧Emid1が第1の所定値Vs1以下であるか否かを判定し、第「YES」であれば、ステップS1000cへ進み、「NO」であれば、ステップS1000eへ進む。
 ステップS1000cに進んだ場合には、第1の検出可否判定器12aは、第1中間相電圧Emid1が第2の所定値Vs2以上であるか否かを判定し、「YES」であれば、ステップS1000dへ進み、「NO」であれば、ステップS1000eへ進む。
 ステップS1000dに進んだ場合には、第1の検出可否判定器12aは、第1の検出可否判定信号flag_1に1を代入する。一方、ステップS1000eに進んだ場合には、第1の検出可否判定器12aは、第1の検出可否判定信号flag_1に0を代入する。
 切替器7aは、第1の検出可否判定信号flag_1が1の場合には、第1の3相電流を検出可能であると判定し、第1の3相電流から求めた回転二軸上の電流Id1、Iq1を、それぞれId’、Iq’として出力する。また、切替器7a歯、第1の検出可否判定信号flag_1が0の場合には、第1の3相電流を検出不可能と判定し、第2の3相電流から求めた回転二軸上の電流Id、Iqを、それぞれId’、Iq’として出力する。
 本発明では、検出不可となっている巻線の電流を、推定和電流から算出する推定和電流演算器14を備えていることで技術的特徴としている。そこで、以下では、推定和電流演算器14の機能について説明する。
 変調率が100%を超える領域での使用時には、第1巻線の電流と第2巻線の電流には電気角周波数の6倍の周波数(以下電気角6次という)の電流リプルが発生する。ただし、両巻線の位相差が30degあるため、位相が180deg異なる信号となっている。図14は、本発明の実施の形態1における第1巻線の電流と第2巻線の電流との関係を示した図である。
 図14のような関係を有することで、磁石トルクで発生するトルクリプルは相殺できる。しかしながら、電圧飽和により所望の電圧ベクトルが出力できない電気角領域では、第1巻線の電流と第2巻線の電流は、異なる値となることになる。
 第1巻線の電流が検出不可となった場合に第2巻線の電流をそのまま用いると、第1巻線の電圧指令に逆位相の電気角6次の信号が重畳されることになる。したがって、本来持っていた電気角6次の振幅よりも大きな振幅の電気角6次のリプルを生じることになる。
 この成分で生じたトルクリプルは、位相差の異なる第2巻線の電流により相殺できないため、出力トルクに電気角6次のトルクリプルとして表れる。そこで、本実施の形態1における推定和電流演算器14では、単に第2巻線の電流を第1巻線の電流として用いた場合に、無駄に大きくなってしまう電流リプルを抑制するために、推定和電流を用いた推定を行っている。
 図14を見てわかるように、第1巻線の電流と第2巻線の電流の和は一定となっている。そこで、推定和電流演算器14は、この関係を利用して、推定和電流を算出する。図15は、本発明の実施の形態1における推定和電流演算器14による一連処理を示したフローチャートである。
 ステップS1100において、推定和電流演算器14は、第1の検出可否判定信号flag_1が1と等しいか否かを判定する。そして、推定和電流演算器14は、ステップS1100においてflag_1が1に等しく、「YES」である場合には、ステップS1101へ進む。そして、ステップS1101に進んだ場合には、推定和電流演算器14は、第1巻線の電流Id1と第2巻線の電流Id2の和をIdsum_calに、第1巻線の電流Iq1と第2巻線の電流Iq2の和をIqsum_calに代入する。
 一方、推定和電流演算器14は、ステップS1100においてflag_1が1に等しくなく、「NO」である場合には、処理の初めに戻り、推定和電流Idsum_calおよびIqsum_calとして、前回値を保持する。
 図16は、本発明の実施の形態1における推定和電流演算器14の内部構成を示すブロック図の一例である。推定和電流演算器14は、入力Id1、Id2、Iq1、Iq2、flag_1に対して、Idsum_cal、Iqsum_calを出力する。
 加算器1200は、Id1とId2を加算して、Idsum_tmpを出力する。切換器1202は、flag_1に従い、加算器1200により今回算出されたIdsum_tmp、または前回の出力値であるIdsum_calのいずれかを選択切り替えして出力する。
 すなわち、切換器1202は、flag_1が0の場合、つまり第1巻線の電流を検出不可能と判定している場合には、Idsum_calの前回値を出力し、flag_1が1の場合、つまり第1巻線の電流を検出可能と判定している場合には、Idsum_tmpを出力する。
 一方、加算器1201は、Iq1とIq2をで加算して、Iqsum_tmpを出力する。切換器1203は、flag_1に従い、加算器1201により今回算出されたIqsum_tmp、または前回の出力値であるIqsum_calのいずれかを選択切り替えして出力する。
 すなわち、切換器1203は、flag_1が0の場合、つまり第1巻線の電流を検出不可能と判定している場合には、Iqsum_calの前回値を出力し、flag_1が1の場合、つまり第1巻線の電流を検出可能と判定している場合には、Iqsum_tmpを出力する。
 なお、本実施の形態1では、推定和電流演算器14と切換器7aを分け、推定和電流を演算した後に、検出可否判定器から出力されたflag_1により切り換える構成となっている。しかしながら、推定和電流を一旦演算するということは必須ではない。すなわち、推定和電流演算器14と切換器7aの処理を一気に行うような、つまり推定和電流演算器14を包含するような切換器7bを用いる構成としてもよいことは、いうまでもない。
 また、推定和電流Idsum_calおよびIqsum_calを演算するのに各巻線の電流を用いたが、本発明は、これに限定されるものではない。例えば、制御器806によって検出電流は電流指令にほぼ追従するため、下式(23)、(24)のように、電流指令の2倍として推定和電流を算出する推定和電流演算器14aを、推定和電流演算器14の代わりに採用してもよい。なお、電流指令を用いて推定和電流を算出する場合には、今回の電流指令を用いてもよいことはいうまでもない。
  Idsum_cal=2×Id*             (23)
  Iqsum_cal=2×Iq*             (24)
 以上のように、実施の形態1によれば、第1の電圧指令に基づいて第1の電流検出器4aが第1巻線の電流を検出可能か判定している。そして、検出可能と判定した場合には、第1巻線の電流に基づいて第1の電圧指令を演算し、検出不可能と判定した場合には、第2巻線の電流と推定和電流に基づいて第1の電圧指令を演算している。
 このような構成を備えることで、特許文献1のようにスイッチング周期Tswを長くすることなく、また、第1中間相電圧がずらし時間を確保できる範囲になるように第1の電圧指令の振幅を制限する必要もなしに、第1の電圧指令および第2の電圧指令の振幅を大きくすることが可能となる。この結果、交流回転機1aの低騒音を維持した状態で、高出力化が可能となる効果を得ることができる。
 実施の形態2.
 本実施の形態2における交流回転機の制御装置は、第1の検出可否検出器12bにおける演算処理が、先の実施の形態1における第1の検出可否判定器12aと異なっている。そこで、本実施の形態2における第1の検出可否判定器12bの演算処理を中心に、以下に説明する。
 図17は、本発明の実施の形態2における第1の検出可否判定器12bの一連動作を示したフローチャートである。ステップS2000aにおいて、第1の検出可否判定器12bは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1最大相電圧Emax1、第1中間相電圧Emid1、第1最小相電圧Emin1を演算する。
 ステップS2000bにおいて、第1の検出可否判定器12bは、第1最大相電圧と第1中間相電圧との差(Emax1-Emid1)が、第3の所定値Vs3以上であるか否かを判定し、「YES」であれば、ステップS2000cへ進み、「NO」であれば、ステップS2000eへ進む。
 ステップS2000cに進んだ場合には、第1の検出可否判定器12bは、第1中間相電圧と第1最小相電圧との差(Emid1-Emin1)が、第3の所定値Vs3以上であるか否かを判定し、「YES」であれば、ステップS2000dへ進み、「NO」であれば、ステップS2000eへ進む。
 ステップS2000dに進んだ場合には、第1の検出可否判定器12bは、第1の検出可否判定信号flag_1に1を代入する。一方、ステップS2000eに進んだ場合には、第1の検出可否判定器12bは、第1の検出可否判定信号flag_1に0を代入する。
 ここで、第3の所定値Vs3は、ずらし時間Δt1またはずらし時間Δt2と、スイッチング周期Tswとの比に基づいて決めればよい。例えば、ずらし時間Δt1=Δt2=5μs、スイッチング周期Tswとすると、第3の所定値Vs3は、Δt1/Tsw・Vdc=0.1Vdcとなる。
 図18は、本発明の実施の形態2における第3の所定値Vs3を0.1Vdcに設定した場合の、先の図17の各ステップに対応する波形を示した図である。図18(a)は、第1の電圧指令Vu1’、Vv1’、Vw1’の波形である。図18(b)は、ステップS2000aに対応する第1最大相電圧Emax1、第1中間相電圧Emid1、第1最小相電圧Emin1の各波形である。
 図18(c)は、ステップS2000bに対応する第1最大相電圧と第1中間相電圧との差Emax1-Emid1、およびステップS2000cに対応する第1中間相電圧と第1最小相電圧との差Emid1-Emin1の各波形である。さらに、図18(d)は、ステップS2000dおよびステップS2000eに対応する第1の検出可否判定信号flag_1の波形である。
 本実施の形態2に示すように、第1最大相電圧と第1中間相電圧との差、第1中間相電圧と第1最小相電圧との差、を演算し、それらの値が第3の所定値未満となった場合に、第1巻線の電流を検出不可と判定することによっても、先の実施の形態1と同等の効果を得ることができる。
 また、本実施の形態2では、オフセット演算器11aの出力である第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1の検出可否判定器12bが第1巻線の電流の検出可否を判定した。しかしながら、オフセット演算器11aの入力である第1の電圧指令Vu1、Vv1、Vw1を、第1の電圧指令Vu1’、Vv1’、Vw1’の代わりに代入して演算しても、Emax1-Emid1やEmid1-Emin1の演算結果は同じとなる。
 従って、第1の電圧指令Vu1、Vv1、Vw1を、第1の検出可否判定器12bに入力する構成としても、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて演算する場合と同等の効果が得られる。
 また、本実施の形態2においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態3.
 本実施の形態3における交流回転機の制御装置は、第1の検出可否判定器12cにおける演算処理が、先の実施の形態1における第1の検出可否判定器12aと異なっている。そこで、本実施の形態3における第1の検出可否判定器12cの演算処理を中心に、以下に説明する。
 本実施の形態3における第1の検出可否検出器12cは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、下式(25)により、電圧位相角θvを演算し、電圧位相角θvの領域に応じて、第1巻線の電流の検出可否を判定する。
Figure JPOXMLDOC01-appb-M000001
 先の実施の形態1においては、電圧位相角θvが60×x(x:0、1、2、3、4、5、6)度近傍で、第1巻線の電流の検出ができないことを示した。そこで、第1の検出可否判定器12cは、第1の電圧指令に基づく演算によって得たθvが、60×x-α以上、60×x+α以下(ただし、α:マージン)の範囲内にある場合には、検出不可と判定し、flag_1として0を出力し、範囲外にある場合には、検出可と判定し、flag_1として1を出力する。
 ここで、マージンαは、ずらし時間Δt1、Δt2や第1の電圧指令の最大値等によって決定するが、30度以内の大きさである。
 本実施の形態3に示すように、第1の電圧指令の電圧位相角に応じて、第1巻線の電流の検出判定の可否を判定することによっても、先の実施の形態1と同等の効果を得ることができる。
 なお、本実施の形態3では、オフセット演算器11aの出力である第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1の検出可否判定器12cが第1巻線の電流の検出可否を判定した。しかしながら、オフセット演算器11aの入力である第1の電圧指令Vu1、Vv1、Vw1を、第1の電圧指令Vu1’、Vv1’、Vw1’の代わりに代入して演算しても、上式(26)の演算結果は同じとなる。
 従って、第1の電圧指令Vu1、Vv1、Vw1を、第1の検出可否判定器12cに入力する構成としても、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて演算する場合と同等の効果が得られる。
 その他、回転二軸の電圧指令Vd、Vqに基づいて電圧位相角θvを求める方式など、電圧指令に基づいて電圧位相角θvを求めた上で、電圧位相角θvに基づいて第1巻線の電流の検出可否を判定する方法は、すべて本発明に含まれる。
 また、本実施の形態3においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態4.
 本実施の形態4における交流回転機の制御装置は、第1の検出可否判定器12dにおける演算処理が、先の実施の形態1~3における第1の検出可否判定器12a、12b、12cと異なっている。そこで、本実施の形態4における第1の検出可否判定器12dによる演算処理を中心に、以下に説明する。
 図19は、本発明の実施の形態4における交流回転機の制御装置の全体構成を示す図である。本実施の形態4では、第1の検出可否検出器12dが、第1の電圧指令Vu1’、Vv1’、Vw1’の代わりに、第2の電圧指令Vu2’、Vv2’、Vw2’に基づいて、電圧位相角θvを下式(26)より演算し、電圧位相角θvの領域に応じて、第1巻線の電流の検出可否を判定している。
Figure JPOXMLDOC01-appb-M000002
 先の実施の形態1では、電圧位相角θvが、60×x(x:0、1、2、3、4、5、6)度近傍で、第1巻線の電流の検出ができないことを示した。そこで、第1の検出可否判定器12dは、第2の電圧指令に基づく演算によって得たθvが、60×x-α以上、60×x+α以下の範囲内にある場合には、第1巻線の電流を検出不可と判定し、flag_1として0を出力する。一方、第1の検出可否判定器12dは、θvが範囲外にある場合には、第1巻線の電流を検出可能と判定し、flag_1として1を出力する。
 なお、マージンαは、ずらし時間Δt1、Δt2や、第1の電圧指令の最大値等によって決定するが、30度以内の大きさである。
 以上のように、実施の形態4によれば、第2の電圧指令の電圧位相角を演算し、演算した電圧位相角の領域に応じて、第1巻線の電流の検出判定の可否を判定する構成を備えている。このような構成を用いることによっても、先の実施の形態1~3と同等の効果を得ることができる。
 なお、本実施の形態4では、オフセット演算器11bの出力である第2の電圧指令Vu2’、Vv2’、Vw2’に基づいて、第1の検出可否判定器12dが第1巻線の電流の検出可否を判定した。しかしながら、オフセット演算器11bの出力である第2の電圧指令Vu2’、Vv2’、Vw2’の代わりに、オフセット演算器11bの入力である第2の電圧指令Vu2、Vv2、Vw2を代入して演算しても、上式(26)の演算結果は同じとなる。
 従って、第2の電圧指令Vu2、Vv2、Vw2を第1の検出可否判定器12dに入力する構成とした場合にも、第2の電圧指令Vu2’、Vv2’、Vw2’に基づいて演算する場合と同等の効果が得られる。
 また、先の実施の形態3から得た第1の電圧指令に基づく電圧位相角θvと、実施の形態4から得た第2の電圧指令に基づく電圧位相角θvとの平均を演算し、その平均化された電圧位相角θvに基づいて、第1巻線の電流の検出可否を判定してもよい。この場合には、平均化されることによって、電圧位相角θvに含まれるノイズ成分が抑制される効果を得ることができる。
 また、本実施の形態4においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態5.
 図20は、本発明の実施の形態5における交流回転機の制御装置の全体構成を示す図である。先の実施の形態1~4と異なるのは、本実施の形態5では、第1の電流検出器4a、第2の電流検出器4b、第1の検出可否検出器12aの代わりに、第1の電流検出器4c、第2の電流検出器4d、第1の検出可否検出器12eを備えて構成されている点である。そこで、この相違点を中心に、以下に説明する。
 本実施の形態5における第1の電流検出器4cは、シャント抵抗や計器用変流器(CT)等の電流センサを、第1の電圧印加器3aの各相下側アーム素子(Sun1、Svn1、Swn1)に対して直列に接続するように設けられている。
 図21は、本発明の実施の形態5における半導体スイッチSup1~Swn1のオンオフ状態に応じた第1の電圧ベクトルV0(1)~V7(1)と、第1巻線の電流Iu1、Iv1、Iw1との関係を示した図である。第1の電流検出器4cは、図21に示した関係に基づいて、半導体スイッチSup1~Swn1のオンオフ状態に応じた第1の電圧ベクトルV0(1)~V7(1)から、第1巻線の電流Iu1、Iv1、Iw1を個別に検出する。
 本実施の形態5では、各相下アーム素子に直列に電流センサを設ける構成としたので、下側アーム素子がオンしている相のみ、電流検出が可能である。例えば、第1の電圧ベクトルV1(1)の場合、オンしているスイッチは、Sup1、Svn1、Swn1である。従って、U1相は、上側アーム素子がオン、V1相およびW1相は、下側アーム素子がオンしているため、V1相を流れる電流Iv1、およびW1相を流れる電流Iw1のみが検出可能であり、U1相を流れる電流Iu1は、検出不可能である。このため、Iu1は、Iv1とIw1を用いて、3相電流の和が零となることを利用して検出される。
 よって、第1の電圧ベクトルV1(1)のとき、U1、V1、W1相に設けられた電流センサに流れる電流Iu1_s、Iv1_s、Iw1_sは、それぞれ0、-Iv1、-Iw1となる(図21参照)。同様に、第1の電圧ベクトルがV3(1)、V5(1)における電流センサに流れる電流Iu_s、Iv_s、Iw_sは、図21に示すとおりである。
 第1の電圧ベクトルがV2(1)、V4(1)、V6(1)の場合には、第1巻線の電流Iu1、Iv1、Iw1のうち、1相しか検出できない。このため、3相分の電流を得ることはできない。
 第1の電流検出器4cと同様に、本実施の形態5における第2の電流検出器4dは、シャント抵抗や計器用変流器(CT)等の電流センサを、第2の電圧印加器3bの各相下側アーム素子(Sun2、Svn2、Swn2)に対して直列に接続するように設けられている。
 図22は、本発明の実施の形態5における半導体スイッチSup2~Swn2のオンオフ状態に応じた第2の電圧ベクトルV0(2)~V7(2)と、第2巻線の電流Iu2、Iv2、Iw2との関係を示した図である。第2の電流検出器4dは、図22にした関係に基づいて、半導体スイッチSup2~Swn2のオンオフ状態に応じた第2の電圧ベクトルV0(2)~V7(2)から、第2巻線の電流Iu2、Iv2、Iw2を個別に検出する。
 本実施の形態5では、各相下アーム素子に直列に電流センサを設ける構成としたので、下側アーム素子がオンしている相のみ、電流検出が可能である。例えば、第2の電圧ベクトルV1(2)の場合、オンしているスイッチは、Sup2、Svn2、Swn2である。従って、U2相は、上側アーム素子がオン、V2相およびW2相は、下側アーム素子がオンしているため、V2相を流れる電流Iv2、およびW2相を流れる電流Iw2のみが検出可能であり、U2相を流れる電流Iu2は、検出不可能である。このため、Iu2は、Iv2とIw2を用いて、3相電流の和が零となることを利用して検出される。
 よって、第2の電圧ベクトルV1(2)のとき、U2、V2、W2相に設けられた電流センサに流れる電流Iu2_s、Iv2_s、Iw2_sは、それぞれ0、-Iv2、-Iw2となる(図22参照)。同様に、第2の電圧ベクトルがV3(2)、V5(2)における電流センサに流れる電流Iu2_s、Iv2_s、Iw2_sは、図22に示すとおりである。
 第2の電圧ベクトルがV2(2)、V4(2)、V6(2)の場合には、第1巻線の電流Iu2、Iv2、Iw2のうち、1相しか検出できない。このため、3相分の電流を得ることはできない。
 図23は、本発明の実施の形態5における半導体スイッチのオンオフパターン、および電流検出器4c、4dにおける電流検出タイミングに関する動作説明図である。具体的には、第1の電圧印加器3aの半導体スイッチSup1、Svp1、Swp1、および第2の電圧印加器3bの半導体スイッチSup2、Svp2、Swp2のオンオフパターンと、第1の電流検出器4cおよび第2の電流検出器4dにおける、スイッチング周期Tsw内での電流検出タイミングとの関係を示した図である。
 図23においては、先の図9と同様に、第1の電圧指令Vu1’、Vv1’、Vw1’に関して、大きい順に第1最大相電圧Emax1、第1中間相電圧Emid1、第1最小相電圧Emin1としたとき、上式(17)~(19)の関係があるものとする。
 同様に、第2の電圧指令Vu2’、Vv2’、Vw2’に関して、大きい順に第2最大相電圧Emax2、第2中間相電圧Emid2、第2最小相電圧Emin2としたとき、上式(20)~(22)の関係があるものとする。
 時刻t1(n)において、Sup1、Sup2を1、かつSvp1、Swp1、Svp2、Swp2を0とし、Δt1経過後の時刻t2(n)まで継続する。図21、図22より、時刻t1(n)~t2(n)において、第1の電圧ベクトルは、V1(1)、第2の電圧ベクトルは、V1(2)である。時刻t1(n)~t2(n)における、時刻ts1-1(n)にて、第1巻線の電流を検出する。
 第1の電圧ベクトルは、V1(1)であるから、図21より、Iv1_s、Iw1_sは、それぞれIv1、Iw1に等しく、Iu1は、Iv1とIw1から、3相電流の和が零となることを利用して求める。
 また、時刻ts1-1(n)にて、第2巻線の電流を検出し、第2の電圧ベクトルは、V1(2)であるから、図22より、Iv2_s、Iw2_sは、それぞれIv2、Iw2に等しく、Iu2は、Iv2とIw2から、3相電流の和が零となることを利用して求める。
 次に、時刻t2(n)において、Svp1、Svp2、Swp1、Swp2を1とする。Sup1~Swp2のパルス幅(「1」を継続する時間)は、各スイッチに対応するオンデューティDsup1~Dswp2とスイッチング周期Tswとの乗算値によって定まる。
 以上より、本実施の形態5では、上側アーム素子のスイッチを、第1最大相電圧Emax1に対応する相をまずオンし、それからΔt1だけ時刻をずらして第1中間相電圧Emid1に対応する相および第1最小相電圧Emin1をオンしている。そして、このようなスイッチングにより、図21に示す、第1巻線の電流Iu1、Iv1、Iw1のうち、2相を検出できる第1の電圧ベクトル(V1(1)またはV3(1)またはV5(1))を形成し、図22に示す、第2巻線の電流Iu2、Iv2、Iw2のうち、2相を検出できる第2の電圧ベクトル(V1(2)またはV3(2)またはV5(2))を形成する。
 しかしながら、第1中間相電圧Emid1に対応する相の電圧指令値によっては、第1巻線の電流Iu1、Iv1、Iw1のうち、1相しか検出できない場合が生じる。このような場合を、図23の例で説明する。
 Vv1が第1の所定値Vs1より大きい場合には、Dsvp1・TswがTsw-Δt1より大きくなると、スイッチング周期Tswが終了する時刻t4(n)でオフした場合においても、時刻t2(n)よりも前でオンしなければ、Dsvp1・Tswに対応したパルス幅が出ない。この結果として、Δt1の区間においてV1(1)を形成できず、第1巻線の電流が検出できない。
 さらに、第2の電圧印加器3bについても、同様に、図23において、Vv2’が第1の所定値Vs1より大きい場合には、ずらし時間Δt1の区間でV1(2)を形成できず、第2巻線の電流が検出できない。
 図24は、本発明の実施の形態5における第1の検出可否判定器12eの機能に関する説明図である。具体的には、第1の検出可否判定器12eは、第1中間相電圧Emid1に対応する相の電圧指令値および第2中間相電圧Emid2に対応する相の電圧指令値が第1の所定値Vs1以下の範囲か否かを判別している。図24(a)は、図7(b)に示した第1の電圧指令Vu1’、Vv1’、Vw1’を点線、第1中間相電圧Emid1を実線、第1の所定値Vs1を一点鎖線で示す。先の実施の形態1の図12と同様に、Vs1=0.4Vdc1に設定する。
 図24(b)は、第1の検出可否判定器12eの出力である。第1の検出可否判定器12eは、第1中間相電圧Emid1が第1の所定値Vs1以下の範囲内か範囲外かを判別することで、第1巻線の電流が検出可能か否かを判定し、第1の所定値Vs1以下の範囲内であれば1、範囲外であれば0となる第1の検出可否判定信号flag_1を出力する。
 図24(c)は、図8(b)に示した第2の電圧指令Vu2’、Vv2’、Vw2’を点線、第2中間相電圧Emid2を実線、Vs1を一点鎖線で示している。図24(d)は、第2中間相電圧Emid2が第1の所定値Vs1以下の範囲内か範囲外かを判別する第2の検出可否判定信号flag_2であり、第1の所定値Vs1以下の範囲内であれば1、範囲外であれば0となる。
 なお、この第2の検出可否判定信号flag_2は、後の実施の形態で用い、本実施の形態では用いないが、図24では、説明用として記載している。
 第1の検出可否判定信号flag_1に着目すると、電圧位相角θvで60+120×x(x:0、1、2)度近傍で0となる。第2の検出可否判定信号flag_2に着目すると、電圧位相角θvで90+120×x(x:0、1、2)度近傍で0となる。よって、第1の検出可否判定信号flag_1と第2の検出可否判定信号flag_2とでは、0となる電圧位相角θvは互いに30度ずれており、flag_1が0のとき、flag_2は1であり、逆に、flag_1が1のとき、flag_2は0である。
 図25は、本発明の実施の形態5における第1の検出可否判定器12eの一連動作を示したフローチャートである。ステップS4000aにおいて、第1の検出可否判定器12eは、第1の電圧指令Vu1’、Vv1’、Vw1’に基づいて、第1中間相電圧Emid1を演算する。ステップS4000bにおいて、第1の検出可否判定器12eは、第1中間相電圧Emid1が第1の所定値Vs1以下であるか否かを判定し、「YES」であれば、ステップS4000cへ進み、「NO」であれば、ステップS4000dへ進む。
 ステップS4000cに進んだ場合には、第1の検出可否判定器12eは、第1の検出可否判定信号flag_1に1を代入する。一方、ステップS4000eに進んだ場合には、第1の検出可否判定器12eは、第1の検出可否判定信号flag_1に0を代入する。
 以上のように、実施の形態5によれば、第1の電圧印加器の各相下側アーム素子を流れる電流に基づいて第1巻線の電流を検出し、第2の電圧印加器の各相下側アーム素子を流れる電流に基づいて第2巻線の電流を検出する構成を備えている。このような構成によっても、先の実施の形態1と同等の効果を得ることができる。
 なお、flag_1は、電圧位相角θvで60+120×x(x:0、1、2)度近傍で0となることを示した。そこで、実施の形態1から実施の形態3への変更点を参照することによって、第1の電流検出器が第1の電圧印加器の各相下側アーム素子を流れる電流に基づいて、第1巻線の電流を検出する構成に対しても、第1の電圧指令から演算した電圧位相角θvに基づいて、第1巻線の検出可否を判定することもできる。
 また、実施の形態1から実施の形態4への変更点を参照することによって、第1の電流検出器が第1の電圧印加器の各相下側アーム素子を流れる電流に基づいて、第1巻線の電流を検出する構成に対しても、第2の電圧指令から演算した電圧位相角θvに基づいて、第1巻線の検出可否を判定することもできる。
 また、実施の形態5では、第1の電流検出器は、第1の電圧印加器の各相下側アーム素子を流れる電流に基づいて第1巻線の電流を検出し、第2の電流検出器は、第2の電圧印加器の各相下側アーム素子を流れる電流に基づいて第2巻線の電流を検出する構成とした。しかしながら、第1の電流検出器は、第1の電圧印加器の3相中何れか2相の下側アーム素子を流れる電流に基づいて第1巻線の電流を検出し、第2の電流検出器は、第2の電圧印加器の3相中何れか2相の下側アーム素子を流れる電流に基づいて第2巻線の電流を検出する構成としても、同様に実施できるのは言うまでもない。
 さらに、本実施の形態5においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態6.
 図26は、本発明の実施の形態6における交流回転機の制御装置の全体構成を示す図である。先の実施の形態1~5と異なるのは、本実施の形態6では、第1巻線の電流を検出するのに第1の電流検出器4aを用い、第2巻線の電流を検出するのに第2の電流検出器4dを用いている点である。そこで、この相違点を中心に、以下に説明する。
 本実施の形態6では、第1の電圧印加器3aは、先の実施の形態1で述べた、図9のSup1、Svp1、Swp1に示すオンオフパターンを発生し、第2の電圧印加器3bは、先の実施の形態5で述べた、図23のSup2、Svp2、Swp2に示すオンオフパターンを発生する。
 先の実施の形態1の図12においては、第1の電流検出器4aにより検出された、第1の電圧印加器3aの直流母線を流れる電流に基づいて、第1巻線の電流Iu1、Iv1、Iw1を検出する場合に、電圧位相角θvで60×x(x:0、1、2、3、4、5、6)度近傍でflag_1が0となり、第1巻線の電流を検出できないことを示した。
 また、先の実施の形態5の図24においては、第2の電流検出器4dによって検出された、第2の電圧印加器3bの下アーム素子を流れる電流に基づいて、第2巻線の電流Iu2、Iv2、Iw2を検出する場合に、電圧位相角θvで90+120×x(x:0、1、2)度近傍でflag_2が0となり、第2巻線の電流を検出できないことを示した。
 よって、図26のような構成を採用した場合にも、flag_1とflag_2は、同時に0となることはなく、flag_1とflag_2の少なくとも一方は、1である。このため、本実施の形態6の構成においても、先の実施の形態1~5と同様に、flag_1が1の場合、すなわち、第1巻線の電流が検出可能な場合には、第1巻線の電流Iu1、Iv1、Iwに基づいて、第1の電圧指令および第2の電圧指令を演算し、flag_1が0の場合、すなわち、第1巻線の電流が検出不可能な場合には、第2巻線の電流Iu2、Iv2、Iw2に基づいて、第1の電圧指令および第2の電圧指令を演算することが可能である。
 以上のように、実施の形態6によれば、第1の電流検出器は、第1の電圧印加器の直流母線を流れる電流に基づいて第1巻線の電流を検出し、第2の電流検出器は、第2の電圧印加器の各相下アーム素子を流れる電流に基づいて第2巻線の電流を検出する構成を備えている。このような構成によっても、先の実施の形態1~5と同等の効果を得ることができる。
 なお、本実施の形態6においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態7.
 図27は、本発明の実施の形態7における交流回転機の制御装置の全体構成を示す図である。先の実施の形態1~6と異なるのは、本実施の形態7では、第1巻線の電流を検出するのに第1の電流検出器4cを用い、第2巻線の電流を検出するのに第2の電流検出器4bを用いている点である。そこで、この相違点を中心に、以下に説明する。
 実施の形態7では、第1の電圧印加器3aは、先の実施の形態5で述べた、図23のSup1、Svp1、Swp1に示すオンオフパターンを発生し、第2の電圧印加器3bは、先の実施の形態1で述べた、図9のSup2、Svp2、Swp2に示すオンオフパターンを発生する。
 先の実施の形態5の図24においては、第1の電流検出器4cによって検出された、第1の電圧印加器3aの各相下アーム素子を流れる電流に基づいて、第1巻線の電流Iu1、Iv1、Iw1を検出する場合に、電圧位相角θvで60+120×x(x:0、1、2)度近傍でflag_1が0となり、第1巻線の電流を検出できないことを示した。
 また、先の実施の形態1の図12においては、第2の電流検出器4bによって検出された、第2の電圧印加器3bの直流母線を流れる電流に基づいて、第2巻線の電流Iu2、Iv2、Iw2を検出する場合に、電圧位相角θvで30+60×x(x:0、1、2、3、4、5)度近傍でflag_2が0となり、第2巻線の電流を検出できないことを示した。
 よって、図27のような構成を採用した場合にも、flag_1とflag_2は、同時に0となることはなく、flag_1とflag_2の少なくとも一方は、1である。このため、本実施の形態7の構成においても、先の実施の形態1~5と同様に、flag_1が1の場合、すなわち、第1巻線の電流が検出可能な場合には、第1巻線の電流Iu1、Iv1、Iw1に基づいて、第1の電圧指令および第2の電圧指令を演算し、flag_1が0の場合、すなわち、第1巻線の電流が検出不可能な場合には、第2巻線の電流Iu2、Iv2、Iw2に基づいて、第1の電圧指令および第2の電圧指令を演算することが可能である。
 以上のように、実施の形態7によれば、第1の電流検出器は、第1の電圧印加器の各相下アーム素子を流れる電流に基づいて第1巻線の電流を検出し、第2の電流検出器は、第2の電圧印加器の直流母線を流れる電流に基づいて第2巻線の電流を検出する構成を備えている。このような構成によっても、先の実施の形態1~6と同等の効果を得ることができる。
 また、本実施の形態7においても、推定和電流演算器14の代わりに、推定和電流演算器14aを用いても、同様の効果が得られる。
 実施の形態8.
 図28は、本発明の実施の形態8における交流回転機の制御装置の全体構成を示す図である。先の実施の形態1の構成と比較すると、本実施の形態8の構成は、第2の検出可否判定器13aをさらに備えるとともに、制御部5bの内部構成が異なっている。そこで、この相違点を中心に、以下に説明する。
 第2の検出可否判定器13aは、第2の電圧指令Vu2’、Vv2’、Vw2’に基づいて、第2巻線の電流が検出可能であるか否かを判定する第2の検出可否判定信号flag_2を出力する。
 先の実施の形態1において、第2の電流検出器4bが第2の電圧印加器3bの直流母線を流れる電流に基づいて第2巻線の電流を検出する場合に、第2の中間相電圧Emid2が第1の閾値Vs1以下、かつ第2の閾値Vs2以上であるとき、第2巻線の電流を検出可能であり、第2の中間相電圧Emid2が第1の閾値Vs1超、または第2の閾値Vs1未満ならば、第2巻線の電流を検出不可能であることを説明した。
 以上の説明に基づいて、本実施の形態8において新たに追加された第2の検出可否判定器13aの機能について説明する。図29は、本発明の実施の形態8における第2の検出可否判定器13aの一連動作を示したフローチャートである。ステップS7000aにおいて、第2の検出可否判定器13aは、第2の電圧指令Vu2’、Vv2’、Vw2’に基づいて、第2中間相電圧Emid2を演算する。
 ステップS7000bにおいて、第2の検出可否判定器13aは、第2中間相電圧Emid2が第1の所定値Vs1以下であるか否かを判定し、「YES」であれば、ステップS7000cへ進み、「NO」であれば、ステップS7000eへ進む。
 ステップS7000cに進んだ場合には、第2の検出可否判定器13aは、第2中間相電圧Emid2が第2の所定値Vs2以上であるか否かを判定し、「YES」であればステップS7000dへ進み、「NO」であればステップS7000eへ進む。
 ステップS7000dに進んだ場合には、第2の検出可否判定器13aは、第2の検出可否判定信号flag_2に1を代入する。一方、ステップS7000eに進んだ場合には、第2の検出可否判定器13aは、第2の検出可否判定信号flag_2に0を代入する。
 続いて、本実施の形態8における制御部5bについて、制御部5aからの変更点を中心に、説明する。制御部5b内の推定和電流演算器14bは、第1巻線の電流Iu1、Iv1、Iw1と、flag_1と、第2巻線の電流Iu2、Iv2、Iw2と、flag_2とに基づいて、推定和電流を算出する。
 図30は、本発明の実施の形態8における推定和電流演算器14bによる一連処理を示したフローチャートである。ステップS7100において、推定和電流演算器14bは、第1の検出可否判定信号flag_1が1と等しいか否かを判定する。そして、推定和電流演算器14bは、ステップS7100においてflag_1が1に等しく、「YES」である場合には、ステップS7101へ進む。
 そして、ステップS7101に進んだ場合には、推定和電流演算器14bは、第2の検出可否判定信号flag_2が1と等しいか否かを判定する。そして、推定和電流演算器14bは、ステップS7101においてflag_2が1に等しく、「YES」である場合には、ステップS7102へ進む。
 そして、ステップS7102に進んだ場合には、推定和電流演算器14bは、第1巻線の電流Id1と第2巻線の電流Id2の和をIdsum_calに、第1巻線の電流Iq1と第2巻線の電流Iq2の和をIqsum_calに代入する。
 一方、推定和電流演算器14bは、ステップS7100において、flag_1が1に等しくなく、「NO」である場合、または、ステップS7101において、flag_2が1に等しくなく、「NO」である場合には、処理の初めに戻り、推定和電流Idsum_calおよびIqsum_calとして、前回値を保持する。
 図31は、本発明の実施の形態8における推定和電流演算器14bの内部構成を示すブロック図の一例である。論理積演算器7206は、flag_1とflag_2の論理積をとり、flag_allを出力する。推定和電流演算器14bは、入力Id1、Id2、Iq1、Iq2、flag_allに対して、Idsum_cal、Iqsum_calを出力する。
 加算器7200は、Id1とId2を加算して、Idsum_tmpを出力する。切換器7202は、flag_allに従い、加算器7200により今回算出されたIdsum_tmp、または前回の出力値であるIdsum_calのいずれかを選択切り替えして出力する。
 すなわち、加算器7200は、flag_allが0の場合、つまり第1巻線の電流または第2巻線の電流を検出不可能と判定している場合には、Idsum_calの前回値を出力し、flag_allが1の場合、つまり第1巻線の電流と第2巻線の電流を検出可能と判定している場合には、Idsum_tmpを出力する。
 同様に、加算器7201は、Iq1とIq2を加算して、Iqsum_tmpを出力する。切換器7203は、flag_allに従い、加算器7201により今回算出されたIqsum_tmp、または前回の出力値であるIqsum_calのいずれかを選択切り替えして出力する。
 すなわち、加算器7201は、flag_allが0の場合、つまり第1巻線の電流または第2巻線の電流を検出不可能と判定している場合には、Iqsum_calの前回値を出力し、flag_allが1の場合、つまり第1巻線の電流と第2巻線の電流を検出可能と判定している場合には、Iqsum_tmpを出力する。
 切替器7cは、第1の検出可否判定信号flag_1、第2の検出可否判定信号flag_2、第1巻線の電流Id1、Iq1、第2巻線の電流Id2、Iq2に基づいて、回転二軸上の電流Id1’、Iq1’および回転二軸上の電流Id2’、Iq2’を出力する。
 具体的には、切替器7cは、第1の検出可否判定信号flag_1に基づいて、第1巻線の電流が検出可能と判定された場合には、第1巻線の電流Id1、Iq1を、それぞれ回転二軸座標上の電流Id1’、Iq1’として出力する。
 また、切替器7cは、第1の検出可否判定信号flag_1に基づいて、第1巻線の電流が検出不可能と判定された場合には、第2巻線の電流Id2、Iq2と推定和電流Idsum_cal、Iqsum_calから、それぞれ回転二軸座標上の電流Id1’、Iq1’を、上式(1)、(2)で算出して出力する。
 また、切替器7cは、第2の検出可否判定信号flag_2に基づいて、第2巻線の電流が検出可能と判定された場合には、第2巻線の電流Id2、Iq2を、それぞれ回転二軸座標上の電流Id2’、Iq2’として出力する。
 また、切替器7cは、第2の検出可否判定信号flag_2に基づいて、第2巻線の電流が検出不可能と判定された場合には、第1巻線の電流Id1、Iq1と推定和電流Idsum_cal、Iqsum_calから、それぞれ回転二軸座標上の電流Id2’、Iq2’を、下式(27)、(28)で算出して出力する。
  Id2’=Idsum_cal-Id1          (27)
  Iq2’=Iqsum_cal-Iq1          (28)
 以上のように、実施の形態8によれば、第1の検出可否判定信号flag_1および第2の検出可否判定信号flag_2に基づいて、検出不可能な巻線の電流を推定する構成を備えている。このような構成により、反対の巻線の電流に含まれる電気角6次の電流リプル成分を検出電流に重畳することなく、第1の電圧指令および第2の電圧指令を得ることができる。
 先の実施の形態1~7では、第1巻線の電流が検出不可能な場合に、第2巻線の電流および推定和電流を用いて、第1の電圧指令を演算していた。この場合、先の図12(b)に示したように、第1巻線の電流が検出不可能な(flag_1=0)場合に相当する、電圧位相角θvで60×x(x:0、1、2、3、4、5)度近傍では、第2巻線の電流と推定和電流を用いて、回転二軸上の電流を得ていた。
 これに対して、本実施の形態8では、第1の検出可否判定器に加えて、第2の検出可否判定器を設けた構成を備えている。このような構成により、先の図12(d)において、第2巻線の電流が検出不可能な場合に、第1巻線の電流および推定和電流を用いて第2の電圧指令を演算できる。
 この結果、本実施の形態8によれば、先の実施の形態1~7の効果に加えて、第2巻線の電流の制御性能を向上させ、交流回転機1aより発生するトルクリップルや振動、騒音を低減できるといったさらなる効果を得ることができる。
 また、先の実施の形態2を参照することによって、第2の検出可否判定器における、第2巻線の電流の検出可否判定方法として、第2最大相電圧と第2中間相電圧との差、第2中間相電圧と第2最小相電圧との差を演算し、それらの値が第3の所定値未満となった場合に、第2巻線の電流を検出不可と判定することもできる。
 また、先の実施の形態3、4を参照することによって、第1の電圧指令と第2の電圧指令の少なくとも一方から電圧位相角θvを求め、第2巻線の電流の検出判定の可否を判定することによっても、先の実施の形態1と同等の効果を得ることができる。
 また、本実施の形態8においても、推定和電流演算器14bの代わりに、推定和電流演算器14aに相当するものを用いても、同様の効果が得られる。
 実施の形態9.
 図32は、本発明の実施の形態9における交流回転機の制御装置の全体構成を示す図である。本実施の形態9の構成は、先の実施の形態8の構成と比較すると、制御部5bの代わりに制御部5cを用いている点が異なっている。そこで、この相違点を中心に、以下に説明する。
 加算器801aは、回転二軸上の電流Id1’と回転二軸上の電流Id2’との加算値(Id1’+Id2’)を出力する。
 加算器801bは、回転二軸上の電流Iq1’と回転二軸上の電流Iq2’との加算値(Iq1’+Iq2’)を出力する。
 減算器802aは、回転二軸上の電流Id1’を回転二軸上の電流Id2’で減算した値(Id1’-Id2’)を出力する。
 減算器802bは、回転二軸上の電流Iq1’を回転二軸上の電流Iq2’で減算した値(Iq1’-Iq2’)を出力する。
 乗算器803aは、加算器801aから出力された加算値(Id1’+Id2’)をK1倍し、和電流Id_sumとして出力する。ここで、K1は、0.5である。
 乗算器803bは、加算器801bから出力された加算値(Iq1’+Iq2’)をK1倍し、和電流Iq_sumを出力する。ここで、K1は、0.5である。
 乗算器804aは、減算器802aから出力された減算値(Id1’-Id2’)をK2倍し、差電流delta_Idを出力する。ここで、K2は、0.5である。
 乗算器804bは、減算器802bから出力された減算値(Iq1’-Iq2’)をK2倍し、差電流delta_Iqを出力する。ここで、K2は、0.5である。
 減算器805aは、交流回転機1aのd軸電流指令Id*と和電流Id_sumとの偏差dId_sumを演算する。
 減算器805bは、交流回転機1aのq軸電流指令Iq*と和電流Iq_sumとの偏差dIq_sumを演算する。
 制御器806aは、P制御器やPI制御器などを用いて、それら制御器の比例ゲインKpd_sumと偏差dId_sumの乗算値に基づいて、偏差dId_sumを零に制御するように、和電圧Vd_sumを出力する。
 制御器806bは、P制御器やPI制御器などを用いて、それら制御器の比例ゲインKpq_sumと偏差dIq_sumの乗算値に基づいて、偏差dIq_sumを零に制御するように、和電圧Vd_sumを出力する。
 制御器806cは、P制御器やPI制御器などを用いて、それら制御器の比例ゲインKpd_deltaと偏差delta_dIdの乗算値に基づいて、差電流delta_Idを零に制御するように、差電圧delta_Vdを出力する。
 制御器806dは、P制御器やPI制御器などを用いて、それら制御器の比例ゲインKpq_deltaと偏差delta_dIqの乗算値に基づいて、差電流delta_Iqを零に制御するように、差電圧delta_Vqを出力する。
 加算器807aは、和電圧Vd_sumと差電圧delta_Vdとを加算した値を第1の電圧指令Vd1として出力する。
 加算器807bは、和電圧Vq_sumと差電圧delta_Vqとを加算した値を第1の電圧指令Vq1として出力する。
 減算器808aは、和電圧Vd_sumを差電圧delta_Vdで減算した値を第2の電圧指令Vd2として出力する。
 減算器808bは、和電圧Vq_sumを差電圧delta_Vqで減算した値を第2の電圧指令Vq2として出力する。
 続いて、本実施の形態9における制御部5cの動作を詳細に説明する。第1の検出可否判定信号flag_1、第1の検出可否判定信号flag_2がともに1である場合、すなわち、第1巻線の電流、第2巻線の電流がともに検出可能と判定された場合には、回転二軸上の電流Id1’、Iq1’は、第1巻線の電流Id1、Iq1に等しく、回転二軸上の電流Id2’、Iq2’は、第2巻線の電流Id2、Iq2に等しい。
 よって、和電流Id_sum、Iq_sum、および差電流delta_Id、delta_Iqは、それぞれ下式(29)~(32)のようになる。
  Id_sum=K1×(Id1’+Id2’)
        =K1×(Id1+Id2)         (29)
  Iq_sum=K1×(Iq1’+Iq2’)
        =K1×(Iq1+Iq2)         (30)
  delta_Id=K2×(Id1’-Id2’)
          =K2×(Id1-Id2)       (31)
  delta_Iq=K2×(Iq1’-Iq2’)
          =K2×(Iq1-Iq2)       (32)
 よって、和電流は、第1の電流検出器4aによって検出された第1巻線の電流と、第2の電流検出器4bによって検出された第2巻線の電流との和で表され、差電流は、第1の電流検出器4aによって検出された第1巻線の電流と、第2の電流検出器4bによって検出された第2巻線の電流との差で表される。
 和電流Id_sum、Iq_sumと、和電流ゲインに基づいて、和電圧Vd_sum、Vq_sumが演算され、差電流delta_Id、delta_Iqと、差電流ゲインに基づいて、差電圧delta_Vd、delta_Vqが演算される。さらに、加算器807a、807bおよび減算器808a、808bによって、第1の電圧指令Vd1、Vq1、第2の電圧指令Vd2、Vq2が演算される。
 ここで、交流回転機1aの第1の3相巻線U1、V1、W1と、第2の3相巻線U2、V2、W2は、電気的に接続されていないが、磁気的に互いに結合されている。従って、第2の3相巻線には、第1巻線の電流の微分値と、第1巻線と第2巻線間の相互インダクタンスとの積に比例する電圧が発生する。一方、第1の3相巻線には、第2巻線の電流の微分値と、第1巻線と第2巻線間の相互インダクタンスとの積に比例する電圧が発生する。すなわち、第1巻線と第2巻線は、磁気的に干渉している。
 これに対し、本実施の形態9においては、和電流、差電流に基づいて、第1の電圧指令Vd1、Vq1、および第2の電圧指令Vd2、Vq2が演算されている。この結果、第1巻線の電流と第2巻線の電流がともに検出可能な場合には、第1巻線の電圧指令Vd1、Vq1は、第1の電流検出器4aによって検出された第1巻線の電流に加えて、第2の電流検出器4bによって検出された第2巻線の電流も考慮して演算される。
 同様に、第2の電圧指令Vd2、Vq2は、第2の電流検出器4bによって検出された第2巻線の電流に加えて、第1の電流検出器4aによって検出された第1巻線の電流も考慮して演算される。従って、本実施の形態9の構成を備えることで、第1巻線と第2巻線の磁気的な干渉に対して、より安定な制御系を構築できる。
 次に、第1の検出可否判定信号flag_1が0、かつ第2の検出可否判定信号flag_2が1である場合、すなわち、第1巻線の電流が検出不可能、かつ第2巻線の電流が検出可能と判定された場合には、回転二軸上の電流Id1’は、推定和電流Idsum_calから第2巻線の電流Id2を減じたもの、Iq1’は、推定和電流Idsum_calから第2巻線の電流Iq2を減じたものに等しく、また、回転二軸上の電流Id2’、Iq2’は、第2巻線の電流Id2、Iq2に等しい。
 よって、和電流Id_sum、Iq_sum、および差電流delta_Id、delta_Iqは、それぞれ下式(33)~(36)のようになる。
  Id_sum=K1×(Id1’+Id2’)
        =K1×Idsum_cal         (33)
  Iq_sum=K1×(Iq1’+Iq2’)
        =K1×Iqsum_cal         (34)
  delta_Id=K2×(Id1’-Id2’)
        =K2×(Idsum_cal-2×Id2) (35)
  delta_Iq=K2×(Iq1’-Iq2’)
        =K2×(Iqsum_cal-2×Iq2) (36)
 上式(33)~(36)より、和電流は、推定和電流演算器14bによって得られた推定和電流で表され、差電流は、推定和電流と第2の電流検出器4bによって検出された第2巻線の電流の2倍との差で表される。
 よって、推定和電流で表される和電流Id_sum、Iq_sumと和電流ゲインに基づいて和電圧Vd_sum、Vq_sumが演算され、推定和電流と第2巻線の電流の2倍の差で表される差電流delta_Id、delta_Iqと差電流ゲインに基づいて差電圧delta_Vd、delta_Vqが演算される。
 次に、第1の検出可否判定信号flag_1が1、かつ第2の検出可否判定信号flag_2が0である場合、すなわち、第1巻線の電流が検出可能、かつ第2巻線の電流が検出不可能と判定された場合には、回転二軸上の電流Id1’、Iq1’は、第1巻線の電流Id1、Iq1に等しく、回転二軸上の電流Id2’は、推定和電流Idsum_calから第1巻線の電流Id1を減じたもの、Iq2’は、推定和電流Iqsum_calから第2巻線の電流Iq1を減じたものに等しい。
 よって、和電流Id_sum、Iq_sum、および差電流delta_Id、delta_Iqは、それぞれ下式(37)~(40)のようになる。
  Id_sum=K1×(Id1’+Id2’)
        =K1×Idsum_cal         (37)
  Iq_sum=K1×(Iq1’+Iq2’)
        =K1×Iqsum_cal         (38)
  delta_Id=K2×(Id1’-Id2’)
        =K2×(2×Id1-Idsum_cal) (39)
  delta_Iq=K2×(Iq1’-Iq2’)
        =K2×(2×Iq1-Iqsum_cal) (40)
 上式(37)~(40)より、和電流は、推定和電流演算器14bによって得られた推定和電流で表され、差電流は、第1の電流検出器4aによって検出された第1巻線の電流の2倍と推定和電流の差で表される。
 よって、推定和電流で表される和電流Id_sum、Iq_sumと和電流ゲインに基づいて和電圧Vd_sum、Vq_sumが演算され、第1巻線の電流の2倍と推定和電流の差で表される差電流delta_Id、delta_Iqと差電流ゲインに基づいて差電圧delta_Vd、delta_Vqが演算される。
 先の実施の形態1で説明したように、高出力を得るために100%より大きい変調率としている場合には、第1巻線の電流と第2巻線の電流には、位相が異なる電気角6次の電流リプルが発生する。
 両巻線の位相差が30degの場合には、先の図14に示したように、相殺される関係となり、和電流としては、変動が抑制される方向に寄与する一方、差電流としては、各巻線の電流リプルに対して倍の振幅の電気角6次の電流変動が生じる。つまり、本実施の形態9における方式によって制御することにより、第1巻線の電流リプルと第2巻線の電流リプルの位相差を考慮できる。このため、和電流を安定的に保った上で、差電流を電気角6次で振動させることが可能となる。
 差電流を0とした場合には、位相が反転した電流を用いて電圧指令を生成するので、不要な電流リプルが重畳され、両巻線の電流リプルが大きくなる。しかしながら、本方式では、それぞれの巻線の電気角6次の電流リプルにおいて、所望の位相が得られる。このため、位相差巻線によるトルクリプル低減効果を発揮することができる。
 なお、本実施の形態9では、位相差30degとしたときの電気角6次の電流リプルを説明したが、他の位相差の場合についても、同様の効果を得られる。
 また、高変調率の場合に発生する電気角6次の電流リプルについて説明したが、誘起電圧に高調波成分を含む場合など、各巻線の電流に高調波成分が含まれる場合においても、同様の効果を得られる。
 また、差電流ゲインKpd_delta、Kpq_deltaを第1の電圧指令、第2の電圧指令、和電圧、または交流回転機1aの回転速度の少なくとも1つに基づいて変動させることによって、第1の検出可否判定信号flag_1、第2の検出可否判定信号flag_2の0から1、または1から0への切替時における差電流delta_Id、delta_Iqの脈動による差電圧delta_Vd、delta_Vqへの脈動を低減させることができる。
 図33は、本発明の実施の形態9において、差電流ゲインを、第1の電圧指令に基づいて変動させる状態を示した図である。図33では、差電流ゲインKpd_delta、Kpq_deltaを、第1の電圧指令の振幅V1に応じて変動させる場合を例示している。
 第1の電圧指令の振幅V1が、閾値Vsa1以下の場合には、差電流ゲインKpd_delta、Kpq_deltaを、それぞれKpd_delta1、Kpq_delta1として一定値としている。一方、第1の電圧指令の振幅V1が、Vsa1超の場合には、差電流ゲインKpd_delta、Kpq_deltaを、それぞれ直線上に低減させている。
 閾値Vsa1および直線の傾きは、発生する脈動レベルに応じて決定すればよい。ここで、第1の電圧指令の振幅V1は、下式(41)によって求めればよい。
Figure JPOXMLDOC01-appb-M000003
 また、上式(41)の平方根の演算によって、制御部5cを演算するCPUの演算負荷が大きくなる場合には、図33の横軸を、振幅の2乗に設定することもできる。また、図33の横軸を、下式(42)で与えられる第2の電圧指令の振幅V2や、下式(43)で与えられる和電圧の振幅V_sumを用いる、あるいはV1、V2、V_sumを組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-M000004
 和電流ゲインKpd_sum、Kpq_sumを第1の電圧指令、第2の電圧指令、和電圧の少なくとも1つに基づいて変動させることによって、第1の検出可否判定信号flag_1、第2の検出可否判定信号flag_2の切替時における和電流Id_sum、delta_sumの脈動による和電圧Vd_sum、Vq_sumへの脈動を低減させることができる。
 図34は、本発明の実施の形態9において、和電流ゲインを、第1の電圧指令に基づいて変動させる状態を示した図である。図34では、和電流ゲインKpd_sum、Kpq_sumを、第1の電圧指令の振幅V1に応じて変動させる場合を例示している。第1の電圧指令の振幅V1が、閾値Vsa1以下の場合には、和電流ゲインKpd_sum、Kpq_sumを、それぞれKpd_sum1、Kpq_sum1として一定値としている。一方、第1の電圧指令の振幅V1が、Vsa1超の場合には、和電流ゲインKpd_sum、Kpq_sumを、それぞれ直線上に低減させている。閾値Vsa1および直線の傾きは、発生する脈動レベルに応じて決定すればよい。
 また、図34の横軸を、上式(42)で与えられる第2の電圧指令の振幅V2や式(43)で与えられる和電圧の振幅V_sum、またはV1、V2、V_sumを組み合わせたものを用いてもよい。また、第1の電圧指令、第2の電圧指令、和電圧の振幅に限らず、実効値に応じて切り替えてもよい。
 また、図33、図34の横軸を、交流回転機1aの回転速度に設定し、速度に関する所定の閾値以下では、和電流ゲインや差電流ゲインを一定とし、所定の閾値超では、和電流ゲインや差電流ゲインを速度に応じて下げるように構成してもよく、同様の効果を得られる。
 実施の形態10.
 図35は、本発明の実施の形態10における交流回転機の制御装置の全体構成を示す図である。本実施の形態10の構成では、先の実施の形態9に対して、第1の電流検出器4aを第1の電流検出器4cに置き換え、かつ第2の電流検出器4bを第2の電流検出器4dに置き換えている。そこで、この相違点を中心に、以下に説明する。
 先の実施の形態9における図32の構成では、第1の電流検出器4a、第2の電流検出器4bを用いていた。このため、先の図12に示したように、電圧位相角θvが60×x(x:0、1、2、3、4、5)度近傍で、第1の電流検出器4aによる第1巻線の電流の検出が不可能となり、電圧位相角θvが30+60×x(x:0、1、2、3、4、5)度近傍で、第2の電流検出器4bによる第2巻線の電流の検出が不可能となる。
 これに対して、本実施の形態10では、第1の電流検出器4c、第1の電流検出器4dを用いている。これにより、図24に示したように、電圧位相角θvが60+120×x(x:0、1、2)度近傍で、第1の電流検出器4cによる第1巻線の電流の検出が不可能となり、電圧位相角θvが90+120×x(x:0、1、2)度近傍で、第2の電流検出器による第2巻線の電流の検出が不可能となる。この結果、本実施の形態10によれば、先の実施の形態9に比べて、第1、第2の電流検出器のうちの一方で電流検出が不可能となる電圧位相区間を少なくすることができる。
 よって、第1巻線の電流と第2巻線の電流がともに検出可能な割合が増える。この結果、第1巻線の電圧指令Vd1、Vq1は、第1の電流検出器によって検出された第1巻線の電流に加えて、第2の電流検出器によって検出された第2巻線の電流も考慮して演算される割合が増える。同様に、第2の電圧指令Vd2、Vq2は、第2の電流検出器によって検出された第2巻線の電流に加えて、第1の電流検出器によって検出された第1巻線の電流も考慮して演算される割合が増える。これにより、先の実施の形態9の構成に比べ、第1巻線と第2巻線の磁気的な干渉に対して、より安定な制御系を構築できるとという効果を得ることができる。
 なお、上述した実施の形態1~10では、第1巻線と第2巻線を有する交流回転機を制御対象とする場合ついて説明したが、本発明は、このような交流回転機に限定されるものではない。第1巻線、第2巻線に加えて、さらに第3巻線以上の第N巻線(N:3以上の整数)を有する交流回転機に対しても、実施の形態1~10で述べた第1巻線、第2巻線を、それぞれ第1巻線、第2~N巻線と置き換えることで、本発明による制御方法をそのまま適用できる。
 また、上述した実施の形態1~10では、30度の位相差を持つ第1の3相巻線と第2の3相巻線を有する交流回転機1aを制御対象とする場合ついて説明したが、本発明は、このような交流回転機に限定されるものではない。位相差が30+60×N(N:整数)を持つ第1の3相巻線と第2の3相巻線を有する交流回転機、あるいは第1の3相巻線と第2の3相巻線に位相差を有しない交流回転機に対しても、第1の電圧指令Vu1’、Vv1’、Vw1’と第2の電圧指令Vu2’、Vv2’、Vw2’とに位相差を設けることで、本発明による制御方法が適用できる。
 例えば、位相差30度のとき、第1の電圧指令Vu1’、Vv1’、Vw1’と第2の電圧指令Vu2’、Vv2’、Vw2’は、先の図12と同様となる。この結果、第1の検出可否判定信号flag_1と第2の検出可否判定信号flag_2が同時に0となることはなく、本発明における制御方法が適用可能である。
 また、交流回転機の制御装置を備えたでんでおパワーステアリングの制御に対して、実施の形態1~10で述べた交流回転機の制御装置を適用することが可能である。電動パワーステアリング装置では、ステアリング系の操舵トルクを補助するトルクを、交流回転機が発生するように、第1の電圧指令および第2の電圧指令を演算する制御部が必要である。
 そして、このような電動パワーステアリング装置の制御部として、本発明による交流回転機の制御装置を適用することで、スイッチング周期Tswを維持した状態で、振幅の高い第1の電圧指令および第2の電圧指令を演算することが可能となる。この結果、スイッチング周期の逆数で与えられるスイッチング周波数を可聴域から外し、静音性を維持した状態で、同一体積比で、より高出力なステアリング系を構築することが可能となる。換言すると、同一出力比を得るために、装置をより小型化することが可能となり、搭載性の良いステアリング系が実現できる効果を得ることができる。

Claims (25)

  1.  位相差を有する第1巻線と第2巻線を含む交流回転機と、
     前記第1巻線の電流を検出する第1の電流検出器と、
     前記第2巻線の電流を検出する第2の電流検出器と、
     前記交流回転機の電流指令と電流検出値とに基づいて、第1の電圧指令と第2の電圧指令を演算する制御部と、
     前記第1の電圧指令に基づいて、前記第1巻線に電圧を印加する第1の電圧印加器と、
     前記第2の電圧指令に基づいて、前記第2巻線に電圧を印加する第2の電圧印加器と、
     前記第1の電圧指令と前記第2の電圧指令の少なくとも1つに基づいて、前記第1の電流検出器による前記第1巻線の電流の検出可否を判定する第1の検出可否判定器と、
     前記第1巻線の電流と前記第2巻線の電流の和である推定和電流を演算する推定和電流演算器と
     を有し、
     前記制御部は、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出不可能と判定した場合には、前記推定和電流演算器から出力された前記推定和電流から前記第2の電流検出器によって検出された前記第2巻線の電流を引くことで算出した前記第1巻線の推定電流値に基づいて前記第1の電圧指令を演算する
     交流回転機の制御装置。
  2.  前記推定和電流演算器は、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出可能と判定した場合には、前記第1の電流検出器によって検出された前記第1巻線の電流と、前記第2の電流検出器によって検出された前記第2巻線の電流との和を前記推定和電流として出力し、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出不可能と判定した場合には、前回値として出力した前記推定和電流を維持する
     請求項1に記載の交流回転機の制御装置。
  3.  前記推定和電流演算器は、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出不可能と判定した場合には、それぞれの巻線に対する電流指令値を用いて、前記推定和電流を算出する
     請求項1に記載の交流回転機の制御装置。
  4.  前記第1の検出可否判定器は、前記第1の電圧指令を構成する3相の電圧を、大きい順に第1最大相電圧、第1中間相電圧、第1最小相電圧とした場合に、前記第1中間相電圧に基づいて、前記第1巻線の電流の検出可否を判定する
     請求項1から3のいずれか1項に記載の交流回転機の制御装置。
  5.  前記第1の検出可否判定器は、前記第1中間相電圧が第1の所定値を超えた場合に、前記第1巻線の電流を検出不可と判定する
     請求項4に記載の交流回転機の制御装置。
  6.  前記第1の検出可否判定器は、前記第1中間相電圧が第2の所定値未満となった場合に、前記第1巻線の電流を検出不可と判定する
     請求項4または5に記載の交流回転機の制御装置。
  7.  前記第1の検出可否判定器は、前記第1最大相電圧と前記第1中間相電圧との差と、前記第1中間相電圧と前記第1最小相電圧との差のうち、少なくとも1つが第3の所定値未満となった場合に、前記第1巻線の電流を検出不可と判定する
     請求項4に記載の交流回転機の制御装置。
  8.  前記第1の検出可否判定器は、前記第1の電圧指令の電圧位相角または前記第2の電圧指令の電圧位相角に応じて、前記第1の電流検出器による前記第1巻線の電流の検出可否を判定する
     請求項1から3のいずれか1項に記載の交流回転機の制御装置。
  9.  前記第1の電圧指令と前記第2の電圧指令の少なくとも1つに基づいて、前記第2の電流検出部による前記第2巻線の電流の検出可否を判定する第2の検出可否判定器
     をさらに有し、
     前記制御部は、
      前記第2の検出可否判定器が前記第2の電流検出器により前記第2巻線の電流を検出不可能と判定した場合には、前記推定和電流演算器から出力された前記推定和電流から前記第1の電流検出器によって検出された前記第1巻線の電流を引くことで算出した前記第2巻線の推定電流値に基づいて前記第2の電圧指令を演算する
     請求項1から8のいずれか1項に記載の交流回転機の制御装置。
  10.  前記推定和電流演算器は、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出可能と判定し、かつ前記第2の検出可否判定器が前記第2の電流検出器により前記第2巻線の電流を検出可能と判定した場合には、前記第1の電流検出器によって検出された前記第1巻線の電流と、前記第2の電流検出器によって検出された前記第2巻線の電流との和を前記推定和電流として出力し、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出不可能と判定した場合、または前記第2の検出可否判定器が前記第2の電流検出器により前記第2巻線の電流を検出不可能と判定した場合には、前回値として出力した前記推定和電流を維持する
     請求項9に記載の交流回転機の制御装置。
  11.  前記推定和電流演算器は、
      前記第1の検出可否判定器が前記第2の電流検出器により前記第2巻線の電流を検出不可能と判定した場合には、それぞれの巻線に対する電流指令値を用いて、前記推定和電流を算出する
     請求項9に記載の交流回転機の制御装置。
  12.  前記第2の検出可否判定器は、前記第2の電圧指令を構成する3相の電圧を、大きい順に第2最大相電圧、第2中間相電圧、第2最小相電圧とした場合に、前記第2中間相電圧に基づいて、前記第2巻線の電流の検出可否を判定する
     請求項9から11のいずれか1項に記載の交流回転機の制御装置。
  13.  前記第2の検出可否判定器は、前記第2中間相電圧が前記第1の所定値を超えた場合に、前記第2巻線の電流を検出不可と判定する
     請求項12に記載の交流回転機の制御装置。
  14.  前記第2の検出可否判定器は、前記第2中間相電圧が前記第2の所定値未満となった場合に、前記第2巻線の電流を検出不可と判定する
     請求項12または13に記載の交流回転機の制御装置。
  15.  前記第2の検出可否判定器は、前記第2最大相電圧と前記第2中間相電圧との差と、前記第2中間相電圧と前記第2最小相電圧との差のうち、少なくとも1つが前記第3の所定値未満となった場合に、前記第2巻線の電流を検出不可と判定する
     請求項12に記載の交流回転機の制御装置。
  16.  前記第2の検出可否判定器は、前記第1の電圧指令の電圧位相角または前記第2の電圧指令の電圧位相角に応じて、前記第2の電流検出器による前記第2巻線の電流の検出可否を判定する
     請求項9から11のいずれか1項に記載の交流回転機の制御装置。
  17.  前記制御部は、
      前記第1の検出可否判定器が前記第1の電流検出器により前記第1巻線の電流を検出可能と判定し、かつ前記第2の検出可否判定器が前記第2の電流検出器により前記第2巻線の電流を検出可能と判定した第1の場合には、前記第1の電流検出器によって検出された前記第1巻線の電流と、前記第2の電流検出器によって検出された前記第2巻線の電流の和である和電流と、前記電流指令と、和電流ゲインに基づいて、和電圧を演算し、かつ前記第1の電流検出器によって検出された前記第1巻線の電流と、前記第2の電流検出器によって検出された前記第2巻線の電流の差である差電流と、差電流ゲインに基づいて差電圧を演算し、
      前記第1の検出可否判定器が前記第1巻線の電流を検出不可能と判定した第2の場合には、前記推定和電流と前記電流指令と前記和電流ゲインとに基づいて前記和電圧を演算し、かつ前記第2の電流検出器によって検出された前記第2巻線の電流と前記推定和電流と前記差電流ゲインとに基づいて前記差電圧を演算し、
      前記第2の検出可否判定器が前記第2巻線の電流を検出不可能と判定した第3の場合には、前記推定和電流と前記電流指令と前記和電流ゲインとに基づいて前記和電圧を演算し、かつ前記第1の電流検出器によって検出された前記第1巻線の電流と前記推定和電流と前記差電流ゲインとに基づいて前記差電圧を演算し、
      前記第1の場合、前記第2の場合、および前記第3の場合のそれぞれにおいて、前記和電圧と前記差電圧に基づいて前記第1の電圧指令と前記第2の電圧指令を演算する
     請求項9から16のいずれか1項に記載の交流回転機の制御装置。
  18.  前記制御部は、前記第1の電圧指令、前記第2の電圧指令、前記和電圧、前記交流回転機の回転速度の少なくとも1つに応じて、前記差電流ゲインを変更する
     請求項17に記載の交流回転機の制御装置。
  19.  前記制御器は、前記第1の電圧指令、前記第2の電圧指令、前記和電圧、前記交流回転機の回転速度の少なくとも1つに応じて、前記和電流ゲインを変更する
     請求項17または18に記載の交流回転機の制御装置。
  20.  前記第1の電流検出器は、前記第1の電圧印加器の直流母線を流れる電流に基づいて前記第1巻線の電流を検出し、
     前記第2の電流検出器は、前記第2の電圧印加器の直流母線を流れる電流に基づいて前記第2巻線の電流を検出する
     請求項1から19のいずれか1項に記載の交流回転機の制御装置。
  21.  前記第1の電流検出器は、前記第1の電圧印加器の下側アーム素子を流れる電流に基づいて前記第1巻線の電流を検出し、
     前記第2の電流検出器は、前記第2の電圧印加器の下側アーム素子を流れる電流に基づいて前記第2巻線の電流を検出する
     請求項1から19のいずれか1項に記載の交流回転機の制御装置。
  22.  前記第1の電流検出器は、前記第1の電圧印加器の直流母線を流れる電流に基づいて前記第1巻線の電流を検出し、
     前記第2の電流検出器は、前記第2の電圧印加器の下側アーム素子を流れる電流に基づいて前記第2巻線の電流を検出する
     請求項1から19のいずれか1項に記載の交流回転機の制御装置。
  23.  前記第1の電流検出器は、前記第1の電圧印加器の下側アーム素子を流れる電流に基づいて前記第1巻線の電流を検出し、
     前記第2の電流検出器は、前記第2の電圧印加器の直流母線を流れる電流に基づいて前記第2巻線の電流を検出する
     請求項1から19のいずれか1項に記載の交流回転機の制御装置。
  24.  前記位相差は、30±60×n(n:整数)である
     請求項1から23のいずれか1項に記載の交流回転機の制御装置。
  25.  請求項1から24のいずれか1項に記載の交流回転機の制御装置を備え、
     前記制御部は、ステアリング系の操舵トルクを補助するトルクを、前記交流回転機が発生するように、前記第1の電圧指令および第2の電圧指令を演算する
     電動パワーステアリングの制御装置。
PCT/JP2015/051626 2015-01-22 2015-01-22 交流回転機の制御装置および電動パワーステアリングの制御装置 WO2016117067A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016570410A JP6230731B2 (ja) 2015-01-22 2015-01-22 交流回転機の制御装置および電動パワーステアリングの制御装置
US15/526,611 US10158315B2 (en) 2015-01-22 2015-01-22 Controller for AC rotating machine and controller for electric power steering
CN201580073931.7A CN107210699B (zh) 2015-01-22 2015-01-22 交流旋转电机的控制装置及电动助力转向的控制装置
PCT/JP2015/051626 WO2016117067A1 (ja) 2015-01-22 2015-01-22 交流回転機の制御装置および電動パワーステアリングの制御装置
EP15878761.4A EP3249805B1 (en) 2015-01-22 2015-01-22 Control device for ac rotary machine, and control device for electric power steering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051626 WO2016117067A1 (ja) 2015-01-22 2015-01-22 交流回転機の制御装置および電動パワーステアリングの制御装置

Publications (1)

Publication Number Publication Date
WO2016117067A1 true WO2016117067A1 (ja) 2016-07-28

Family

ID=56416633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051626 WO2016117067A1 (ja) 2015-01-22 2015-01-22 交流回転機の制御装置および電動パワーステアリングの制御装置

Country Status (5)

Country Link
US (1) US10158315B2 (ja)
EP (1) EP3249805B1 (ja)
JP (1) JP6230731B2 (ja)
CN (1) CN107210699B (ja)
WO (1) WO2016117067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019088094A (ja) * 2017-11-07 2019-06-06 株式会社デンソー 回転電動機
WO2021234802A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 電動機制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712096B2 (ja) * 2017-08-21 2020-06-17 三菱電機株式会社 電力変換装置および電動パワーステアリング装置
GB2554589B (en) * 2017-11-10 2019-08-21 Protean Electric Ltd A control device
JP7259574B2 (ja) * 2019-06-17 2023-04-18 株式会社ジェイテクト 制御装置、および転舵装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344773A (ja) * 1992-06-09 1993-12-24 Mitsubishi Electric Corp Pwmインバータの並列運転制御装置
JP2008219956A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2012178927A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd インバータ制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230767A (ja) 1990-02-01 1991-10-14 Toshiba Corp 三相pwmインバータ装置における相電流検出装置
US5656897A (en) * 1994-09-30 1997-08-12 Sgs-Thomson Microelectronics, Inc. Current sensing and control in brushless DC motors
JP5398861B2 (ja) 2012-03-07 2014-01-29 三菱電機株式会社 多重巻線モータの駆動装置
JP5556845B2 (ja) * 2012-04-26 2014-07-23 株式会社デンソー 3相回転機の制御装置
JP5652434B2 (ja) * 2012-06-15 2015-01-14 株式会社デンソー モータ制御装置、及び、これを用いた電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344773A (ja) * 1992-06-09 1993-12-24 Mitsubishi Electric Corp Pwmインバータの並列運転制御装置
JP2008219956A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2012178927A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd インバータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019088094A (ja) * 2017-11-07 2019-06-06 株式会社デンソー 回転電動機
WO2021234802A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 電動機制御装置
JP7351006B2 (ja) 2020-05-19 2023-09-26 三菱電機株式会社 電動機制御装置

Also Published As

Publication number Publication date
EP3249805A1 (en) 2017-11-29
EP3249805A4 (en) 2018-08-01
CN107210699A (zh) 2017-09-26
US10158315B2 (en) 2018-12-18
EP3249805B1 (en) 2021-12-29
US20170324363A1 (en) 2017-11-09
JP6230731B2 (ja) 2017-11-15
CN107210699B (zh) 2019-08-27
JPWO2016117067A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6165315B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP6227173B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
US7482777B2 (en) Motor control device
JP6230731B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP5161985B2 (ja) 電力変換装置および電動パワーステアリングの制御装置
JP6266161B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2016208668A (ja) 3相回転機の制御装置
AU2007353089A1 (en) Power conversion system
JPWO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
JP6369517B2 (ja) 電力変換器の制御装置
JP6644172B2 (ja) モータ制御装置
JP5556381B2 (ja) 誘導電動機の制御装置及び制御方法
JP6742393B2 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
JP6400231B2 (ja) 回転電機の制御装置
JP6729249B2 (ja) 電力変換器の制御装置
JP2008161027A (ja) 同期モータの駆動装置。
JP6729250B2 (ja) 電力変換器の制御装置
JP2018191433A (ja) 回転電機の制御装置
JP2007043796A (ja) インバータの出力電圧補正回路
JP2006211781A (ja) 交流電動機のベクトル制御装置とその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570410

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15526611

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015878761

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE