WO2016115749A1 - 像素结构及具有该像素结构的液晶显示器 - Google Patents

像素结构及具有该像素结构的液晶显示器 Download PDF

Info

Publication number
WO2016115749A1
WO2016115749A1 PCT/CN2015/071817 CN2015071817W WO2016115749A1 WO 2016115749 A1 WO2016115749 A1 WO 2016115749A1 CN 2015071817 W CN2015071817 W CN 2015071817W WO 2016115749 A1 WO2016115749 A1 WO 2016115749A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pixel electrode
pixel
protruding
convex structure
Prior art date
Application number
PCT/CN2015/071817
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/435,526 priority Critical patent/US10416505B2/en
Publication of WO2016115749A1 publication Critical patent/WO2016115749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a pixel structure and a liquid crystal display having the pixel structure.
  • liquid crystal display devices such as a liquid crystal display panel (Light emitting diode panel) have been widely used as display components in electronic products such as mobile phones, digital cameras, and personal digital assistants (PDAs).
  • the liquid crystal display device mostly has a substrate through which two light rays pass through, that is, an upper substrate and a lower substrate.
  • the electrode array formed on the lower substrate includes a gate line and a data line perpendicular to the gate line, and the gate line At the intersection of the data lines, there is a thin film transistor (TFT) device that transmits the signal of the gate line to the pixel electrode.
  • TFT thin film transistor
  • the pixel region of the lower substrate includes a common electrode and a pixel electrode, and the common electrode is located on the same surface as the pixel electrode.
  • a liquid crystal is injected between the upper substrate and the lower substrate, and moves in the pixel electrode region in response to an electric field.
  • liquid crystal displays have problems such as slow response speed and small viewing angle.
  • IPS In-Plane Switching
  • FFS Ringe Field
  • the liquid crystal display device of the IPS mode and the FFS mode generates a vertical electric field component while generating a horizontal electric field, and the electric field component of the vertical direction is larger as the potential difference between the pixel electrode and the common electrode is larger. It will also increase, which will greatly reduce the penetration rate or response time of IPS mode and FFS mode, and can not meet the user's use requirements.
  • the present invention provides a pixel structure and a liquid crystal display having the same, which can reduce the electric field component in the vertical direction while increasing the electric field in the horizontal direction, and improve the transmittance or response time of the IPS mode and the FFS mode, satisfying User's use requirements.
  • An aspect of the present invention provides a pixel structure disposed on an array substrate and controlled by one or two thin film transistor devices, the pixel structure including a plurality of protruding structures, a plurality of protruding electrodes, and a bottom electrode.
  • a protruding electrode is formed on the convex structure
  • the bottom electrode is located below the convex structure, and a horizontal electric field is generated between the protruding electrodes formed on the convex structure, and the bottom electrode is fabricated in the same
  • a lateral horizontal electric field is generated between the protruding electrodes on the raised structure.
  • each of the pixel structures is controlled by two thin film transistor devices, each of the protruding electrodes includes a first pixel electrode and a second pixel electrode, and the first pixel electrode and the second pixel electrode are provided with relative And the first pixel electrode and the second pixel electrode are respectively formed on different convex structures to form corresponding protruding electrodes, or the first pixel
  • the electrode and the second pixel electrode are formed on the same convex structure, and the first pixel electrode and the second pixel electrode are separated by a predetermined distance.
  • Each of the protruding electrodes includes a pixel electrode and/or a common electrode, the position of the pixel electrode corresponds to a position of the protruding structure, and the pixel electrode is formed on an outer surface of the protruding structure Upper, the position of the common electrode corresponds to the position of the convex structure, and the common electrode is formed on the outer surface of the corresponding convex structure.
  • the pixel electrode and the common electrode and the protruding structure are both made of indium tin oxide or an electrically conductive substance of the IXO series, and the same pixel electrode is formed on the same convex structure to form a protruding electrode, and the same A common electrode is formed on the same raised structure to form a protruding electrode.
  • the convex structure is made of any one of a resin polymer, an overcoat and a SiNx series, and the pixel electrode and the common electrode are made of indium tin oxide or an electrically conductive substance of the IXO series, and the pixel The electrode and the common electrode are simultaneously fabricated on the outer surface of the corresponding same convex structure, and the pixel electrode and the common electrode are spaced apart by a predetermined distance.
  • the pixel electrode and the common electrode are simultaneously fabricated on the outer surface of the corresponding same convex structure, the pixel electrode and the common electrode are spaced apart by a predetermined distance, and the common electrode and the location are located
  • the common electrode under the bump structure is electrically connected, or the pixel electrode and the
  • the common electrode is simultaneously formed on the outer surface of the corresponding same convex structure, and the pixel electrode and the common electrode are spaced apart by a predetermined distance, and the pixel electrode and the pixel located under the convex structure
  • the electrodes are electrically connected.
  • the convex structure is generally in the shape of a truncated cone, the cross section of which is trapezoidal, the bottom surface of the convex structure is located on the array substrate, or the convex structure as a whole is a straight triangular prism having an isosceles triangle in cross section, and One side of the raised structure is on the array substrate.
  • the shape of the convex structure is any one of a straight triangular prism shape, a straight triangular prism having an isosceles triangle shape, a semi-elliptical shape, a semi-circular shape and a parallelogram shape.
  • the height of the convex structure is greater than or equal to 1 micrometer and less than or equal to 5 micrometers, and the convex structure has an inclination angle of 15 degrees or more and 80 degrees or less.
  • a liquid crystal display including an array substrate and a color filter, the color filter being located at one side of the array substrate and aligned with the array substrate, wherein the liquid crystal
  • the display further includes a pixel structure between the array substrate and the color filter substrate, the pixel structure is disposed on the array substrate, and is controlled by one or two thin film transistor devices, wherein the The pixel structure includes a plurality of convex structures, a plurality of protruding electrodes and a bottom electrode, wherein the protruding electrodes are formed on the protruding structure, and the bottom electrode is located below the protruding structure, and the protruding structure is formed on the protruding structure A horizontal electric field is generated between the raised electrodes, and a lateral horizontal electric field is generated between the bottom electrode and the protruding electrodes fabricated on the raised structure.
  • each of the pixel structures is controlled by two thin film transistor devices, each of the protruding electrodes includes a first pixel electrode and a second pixel electrode, and the first pixel electrode and the second pixel electrode are provided with relative And the first pixel electrode and the second pixel electrode are respectively formed on different convex structures to form corresponding protruding electrodes, or the first pixel
  • the electrode and the second pixel electrode are formed on the same convex structure, and the first pixel electrode and the second pixel electrode are separated by a predetermined distance.
  • Each of the protruding electrodes includes a pixel electrode and/or a common electrode, the position of the pixel electrode corresponds to a position of the protruding structure, and the pixel electrode is formed on an outer surface of the protruding structure Upper, the position of the common electrode corresponds to the position of the convex structure, and the common electrode is formed on the outer surface of the corresponding convex structure.
  • the pixel electrode and the common electrode and the protruding structure are both made of indium tin oxide or IXO
  • the series of conductive materials are made, the same pixel electrode is formed on the same convex structure to form a protruding electrode, and the same common electrode is formed on the same convex structure to form a protruding electrode.
  • the convex structure is made of any one of a resin polymer, an overcoat and a SiNx series, and the pixel electrode and the common electrode are made of indium tin oxide or an electrically conductive substance of the IXO series, and the pixel The electrode and the common electrode are simultaneously fabricated on the outer surface of the corresponding same convex structure, and the pixel electrode and the common electrode are spaced apart by a predetermined distance.
  • the pixel electrode and the common electrode are simultaneously fabricated on the outer surface of the corresponding same convex structure, the pixel electrode and the common electrode are spaced apart by a predetermined distance, and the common electrode and the location are located
  • the common electrode under the bump structure is electrically connected, or the pixel electrode and the common electrode are simultaneously formed on the outer surface of the corresponding same convex structure, and the pixel electrode and the common electrode are spaced apart from each other.
  • the convex structure is generally in the shape of a truncated cone, the cross section of which is trapezoidal, the bottom surface of the convex structure is located on the array substrate, or the convex structure as a whole is a straight triangular prism having an isosceles triangle in cross section, and One side of the raised structure is on the array substrate.
  • the shape of the convex structure is any one of a straight triangular prism shape, a straight triangular prism having an isosceles triangle shape, a semi-elliptical shape, a semi-circular shape and a parallelogram shape.
  • the height of the convex structure is greater than or equal to 1 micrometer and less than or equal to 5 micrometers, and the convex structure has an inclination angle of 15 degrees or more and 80 degrees or less.
  • the protruding electrodes such as the pixel electrode and the common electrode and the protruding structure are arranged, because the pixel electrode and the common electrode are separately fabricated.
  • the bottom electrode is disposed under the convex structure, based on the design and layout, the horizontal direction of the pixel electrode and the common electrode is reduced, and the oblique direction or the vertical direction is increased.
  • the area, and the signal of the protruding electrode and the bottom electrode fabricated on the convex structure are differently defined, so that the horizontal electric field of the IPS/FIS mode exists between the electrodes on the convex structure, and the convex structure
  • There is a lateral horizontal electric field of the FFS mode between the protruding electrode and the bottom electrode thereby achieving the purpose of reducing the component of the vertical electric field and increasing the horizontal electric field, thereby improving the transmittance or liquid crystal of the FFS and IPS/FIS modes.
  • the response speed further weakens the standing tendency of the positive liquid crystal.
  • FIG. 1 is a schematic view showing a pixel structure of a liquid crystal display of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a liquid crystal display according to an embodiment of the present invention along line I-I.
  • FIG 3 is another schematic view showing the shape of the convex structure of the pixel structure of the present invention.
  • FIG. 4 is a schematic view showing an IPS display formed between the protruding electrodes of the convex structure of the liquid crystal display of the invention and an FFS display formed between the protruding electrodes and the bottom electrode.
  • FIG. 5 is a schematic diagram of another pixel structure of a liquid crystal display of the present invention.
  • FIG. 6 is a schematic view showing still another pixel structure of the liquid crystal display of the present invention.
  • FIG. 7 is a schematic diagram of a pixel structure of a liquid crystal display according to another embodiment of the present invention.
  • FIG. 8 is another schematic view showing the convex structure of the pixel structure shown in FIG.
  • FIG. 9 is a schematic view showing another pixel structure of the liquid crystal display shown in FIG.
  • FIG. 1 is a schematic diagram of a pixel structure of a liquid crystal display according to the present invention
  • FIG. 2 is a cross-sectional structural view of the liquid crystal display according to an embodiment of the present invention along line I-I.
  • the liquid crystal display 100 includes a backlight module 10 , an array substrate 30 , a CF (color filter) substrate 50 , and the array substrate 30 and the CF substrate 50 .
  • the liquid crystal 70 is between a plurality of pixel structures 80.
  • the liquid crystal display 100 and the pixel structure 80 can be applied to any product or component having a display function such as an electronic paper, a liquid crystal television, a mobile phone, a digital photo frame, a tablet computer, or the like.
  • the backlight module 10 is one of the key components of the touch panel 100 for providing sufficient brightness and a uniformly distributed light source, so that the touch panel 100 can display images normally.
  • the array substrate 30 is a TFT (thin film transistor) array substrate disposed on the backlight module 10.
  • the array substrate 30 can generate a moving electric field that controls the liquid crystal 70.
  • the array substrate 30 includes a first surface 31 and a second surface 33 parallel to the first surface 31. The first surface 31 faces and contacts the backlight module 10.
  • the CF substrate 50 is aligned with a side of the array substrate 30 relative to the backlight module 10 (ie, the second surface 33 of the array substrate 30), and the CF substrate 50 is a color-developing optical filter. It can precisely select the light waves in the pre-passing band range and reflect the light waves in other band ranges that are not desired to pass.
  • the CF substrate 50 includes a first surface 51 and a second surface 53 parallel to the first surface 51.
  • the first surface 51 is a front surface of the CF substrate 50. It faces the second surface 33 of the array substrate 30.
  • the second surface 53 is the back surface of the CF substrate 30.
  • the liquid crystal 70 is located between the array substrate 30 and the CF substrate 50 . Specifically, the liquid crystal is located between the second surface 33 of the array substrate 30 and the first surface 51 of the CF substrate 50 .
  • the liquid crystal 70 can be moved between the array substrate 30 and the CF substrate 50 by an electric field, and the light emitted by the backlight module 10 can be irradiated onto the CF substrate 50 through the liquid crystal layer. .
  • each pixel structure 80 includes two data lines 81.
  • Two scan lines 82, a bump structure 83, a pixel electrode 84, and a common electrode 85, and each thin film transistor (TFT) device (not shown) Take control.
  • two of the data lines 81 are located on the second surface 33 of the array substrate 30, and are parallel to each other and separated by a certain distance (the direction of the data line 81 can be set to be horizontal)
  • the two scanning lines 82 are located on the second surface 33 of the array substrate 30, which are parallel to each other and spaced apart by a certain distance (the scanning line 82 can be set in a vertical direction), and the data Line 81 is vertical.
  • the data line 81 intersects the scan line 82 perpendicularly to form an electrode array, and a cross-point location of the two is provided with a TFT device, and the TFT device can transmit the signal on the scan line 82 to the On the pixel electrode 84, specifically, the data line 81 is for transmitting a gray scale signal, and the scan line 82 is for transmitting a scan signal.
  • the protruding structure 83 is arranged on the second surface 33 of the array substrate 30.
  • the protruding structure 83 is substantially in the shape of a truncated cone and has a trapezoidal cross section, and the protruding structure 83 The bottom surface is located on the second surface 33 of the array substrate 30.
  • the raised structure 83 may be made of a transparent insulator.
  • the raised structure 83 may be a resin polymer such as an aromatic polymer or an aliphatic, OC (overcoat, which is a photosensitive resin film), and a SiNx series. Made of other materials.
  • the height of the convex structure 83 is 1 to 5 micrometers ( ⁇ m) (that is, 1 micrometer or more and 5 micrometers or less), and the inclination angle ⁇ of the convex structure 83 (ie, the truncated convex structure 83)
  • the base angle of the trapezoidal section is 15 to 80 degrees (that is, 15 degrees or more and 80 degrees or less).
  • FIG. 3 is another schematic diagram of the shape of the protruding structure of the pixel structure of the present invention.
  • the protruding structure 83 has a substantially triangular prism shape as a whole.
  • the convex structure 83 has a straight triangular prism whose cross section is an isosceles triangle, and one side of the convex structure 83.
  • the convex structure 83 may have a shape of a semi-elliptical shape, a semicircular shape, a parallelogram shape, or the like.
  • the height of the convex structure 83 is 1 to 5 micrometers ( ⁇ m), and the inclination angle ⁇ of the convex structure 83 (that is, the inner angle of the equilateral triangle of the truncated convex structure 83) is 15 to 80 degrees.
  • the position of the pixel electrode 84 corresponds to the position of the convex structure 83, and the pixel electrode 84 is formed on the outer surface of the convex structure 83.
  • the pixel electrode 84 is for driving a pixel based on a gradation signal.
  • the pixel electrode 84 can be made of a conductive material having good transparency.
  • the pixel electrode 84 can be an ITO (Indium tin oxide) or an OXO series conductive material. It can be prepared by methods such as sputtering and chemical vapor deposition.
  • the pixel electrode 84 and the protruding structure 83 are made of different materials, and the same pixel electrode 84 is formed on the same convex structure 83 to form a protruding electrode.
  • the convex structure 83 can also be made of the same material as the pixel electrode 84, that is, the convex structure 83 can be made of conductive materials of ITO or IXO series, at this time, the convex The structure 83 is formed integrally with the protruding electrodes.
  • the position of the common electrode 85 corresponds to the position of the raised structure 83, and the common electrode 85 is formed on the outer surface of the corresponding raised structure 83.
  • the common electrode 85 is used to provide a common electrode voltage to the pixel.
  • the common electrode 85 may be made of a conductive material having good transparency.
  • the common electrode 85 may be a conductive material of the ITO or IXO series, which may use sputtering, chemical vapor deposition, or the like. The method is prepared. Therefore, the common electrode 85 and the convex structure 83 are made of different materials, and the same common electrode 85 is formed on the same convex structure 83 to form a protruding electrode.
  • the convex structure 83 can also be made of the same material as the common electrode 85, that is, the convex structure 83 can be made of conductive materials of ITO or IXO series, at this time, the convex The structure 83 is formed integrally with the protruding electrodes.
  • FIG. 4 is a schematic diagram showing the formation of an IPS display between the protruding electrodes of the convex structure of the liquid crystal display of the invention and the FFS display between the protruding electrodes and the bottom electrode.
  • the arrangement of the electrode 84 and the common electrode 85 and the protrusion structure 83 is known. Since the pixel electrode 84 and the common electrode 85 are respectively formed on the corresponding protrusion structure 83, and the bottom electrode is disposed under the protrusion structure 83, The bottom electrode can be disposed as the common electrode 85 in the present invention.
  • the area of the pixel electrode 84 and the common electrode 85 in the horizontal direction is reduced, and the area in the oblique direction or the vertical direction is increased, and
  • the signals of the pixel electrode 54 and the common electrode 85 formed on the bump structure 83 and the bottom electrode are differently defined such that there is a horizontal electric field of the IPS mode between the electrodes on the bump structure 83, and the bump structure 83
  • There is a lateral horizontal electric field of the FFS mode between the electrode and the bottom electrode thereby achieving the purpose of reducing the component of the vertical electric field and increasing the horizontal electric field, thereby improving the transmittance or response time of the FFS and IPS modes.
  • FIG. 5 is a schematic diagram of another pixel structure of the liquid crystal display of the present invention.
  • the configuration of the pixel structure 810 constituting the embodiment is the same as the configuration of the pixel structure 80 shown in FIG. 1 to FIG.
  • the pixel structure 810 of the example includes two data lines 81, two scan lines 82, a bump structure 83, a pixel electrode 84, and a common electrode 85, and one pixel structure 80 A thin film transistor (TFT) device (not shown) is controlled.
  • TFT thin film transistor
  • the truncated-shaped convex structure 83 is taken as an example, but it is not limited to the truncated cone shape. For example, it may be a straight triangular prism having an isosceles triangle in cross section.
  • the pixel structure 810 of this embodiment is different from the pixel structure 100 shown in FIG. 1 to FIG. 4 in that different protruding electrodes are formed on the same protruding structure 83, and different types of protruding electrodes are formed.
  • the pixel electrode 84 and the common electrode 85 are simultaneously formed on the outer surface of the corresponding same convex structure 83, and the pixel electrode 84 is spaced apart from the common electrode 85.
  • the projection structure 83 is made of a material different from the pixel electrode 84 and the common electrode 85 by a predetermined distance.
  • FIG. 6 is a schematic diagram of still another pixel structure of the liquid crystal display of the present invention.
  • the configuration of the pixel structure 820 constituting the embodiment is the same as the configuration of the pixel structures 80 and 810 shown in FIGS. 1 to 5.
  • the pixel structure 820 of this embodiment includes two data lines 81 and two scan lines 82.
  • the bump structure 83, the pixel electrode 84 and the common electrode 85 are controlled by a thin film transistor (TFT) device (not shown) in each pixel structure 80.
  • TFT thin film transistor
  • the truncated-shaped convex structure 83 is taken as an example, but is not limited to the truncated cone shape.
  • the convex structure 83 may also be a straight triangular prism having an isosceles triangle cross section.
  • the pixel structure 820 of the present embodiment is different from the pixel structures 80 and 810 shown in FIG. 1 to FIG. 5 in that different protrusions are formed on the same protrusion structure 83, and different types of protrusions are formed.
  • the electrodes are spaced apart by a predetermined distance, that is, the pixel electrode 84 and the common electrode 85 are simultaneously formed on the outer surface of the corresponding same protruding structure 83, and the pixel electrode 84 and the common electrode 85 are The intermediate electrode has a predetermined distance, and the common electrode 85 is electrically connected to the bottom electrode (the common electrode 85 under the protruding structure 83 as shown in FIG. 6), and the protruding structure 83 adopts
  • the pixel electrode 84 and the common electrode 85 are made of different materials.
  • FIG. 7 is a schematic diagram of a pixel structure of a liquid crystal display according to another embodiment of the present invention
  • FIG. 8 is another schematic diagram of a convex structure of the pixel structure shown in FIG.
  • the structure of the pixel structure 830 constituting the embodiment and the pixel structures 80 and 810 shown in FIG. 1 to FIG. 6 and The structure of the 820 is substantially the same.
  • the pixel structure 830 of the embodiment includes two data lines 81, two scan lines 82, a convex structure 83, a first pixel electrode 84a, and a second pixel. Electrode 84b and common electrode 85.
  • the pixel structure 830 of the present embodiment is different from the pixel structures 80, 810 and 820 shown in FIG. 1 to FIG. 6 described above in that each pixel structure 80 is composed of two thin film transistor (TFT) devices (
  • the first pixel electrode 84a and the second pixel electrode 84b are loaded or provided with voltages having opposite polarities with respect to the voltage of the common electrode 85, and are respectively formed on different convex structures 83.
  • the protruding electrode, that is, the first pixel electrode 84a is formed on a convex structure 83
  • the second pixel electrode 84b is formed on the other convex structure 83.
  • the truncated-shaped convex structure 83 is taken as an example, but is not limited to the truncated cone shape.
  • the convex structure 83 may also be a straight triangular prism having an isosceles triangle cross section.
  • FIG. 9 is a schematic diagram of another pixel structure of the liquid crystal display shown in FIG.
  • the same raised structure 83 has two pixel electrodes of opposite polarities to form a protruding electrode, and the pixel electrodes of opposite polarities are separated by a predetermined distance, that is, the first The one pixel electrode 84a and the second pixel electrode 84b are formed on the same convex structure 83, and the first pixel electrode 84a and the second pixel electrode 84b are spaced apart by a predetermined distance.
  • the description, description, and the relationship between the protrusion structure 83 of the above-described embodiments in FIGS. 1 to 6 and the protruding electrodes (i.e., the pixel electrode 84 and/or the common electrode 85) formed on the protrusion structure 83 are both Applicable to the pixel structures 830 and 840 shown in FIGS. 7 to 9.
  • the first pixel electrode 84a and the second pixel electrode 84b since the voltages of the opposite polarity of the voltage with respect to the common electrode 85 are loaded or supplied on the first pixel electrode 84a and the second pixel electrode 84b, the first pixel electrode 84a and the second When the pixel electrode 84b is formed on the same convex structure 83 or a different convex structure 83, the electric field of the FIS mode exists before the convex structure 83, and the convex structure 83 and the bottom electrode (ie, the common electrode 85) There is an electric field between the FFS modes, which in turn can achieve the purpose of reducing the component of the vertical electric field and increasing the horizontal electric field.
  • the arrangement of the protruding electrodes such as the pixel electrode 84 and the common electrode 85 and the protruding structure 83 can be known, because the pixel electrode 84 and the common electrode 85 is respectively formed on the corresponding convex structure 83, and a bottom electrode is disposed under the convex structure 83. Based on the design and layout, the horizontal area of the pixel electrode 84 and the common electrode 85 is reduced, and the area is increased.
  • the area in the oblique or vertical direction is differently defined for the signals of the protruding electrodes and the bottom electrodes formed on the convex structure 83, so that the IPS/FIS mode exists between the electrodes on the convex structure 83.
  • the horizontal electric field, the lateral horizontal electric field of the FFS mode exists between the protruding electrode on the convex structure 83 and the bottom electrode, thereby achieving the purpose of reducing the component of the vertical electric field and increasing the horizontal electric field, thereby improving the FFS and
  • the penetration rate of the IPS/FIS mode or the response speed of the liquid crystal further weakens the standing tendency of the positive liquid crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种像素结构及具有该像素结构的液晶显示器,该像素结构(80)设置于一阵列基板(30)上,且由一个或两个薄膜晶体管器件控制,所述像素结构(80)包括若干凸起结构(83)、若干突起状电极(84/85)及一底部电极,所述突起状电极(84/85)制作于所述凸起结构(83)上,所述底部电极位于所述凸起结构(83)下方,制作于所述凸起结构(83)上的突起状电极(84/85)之间产生水平电场,所述底部电极与制作于所述凸起结构(83)上的突起状电极(84/85)之间产生侧向水平电场。该像素结构及具有该像素结构的液晶显示器可以减小竖直电场的分量和增大水平电场的目的,从而提升FFS和IPS模式的穿透率或者液晶的响应速度,更减弱了正性液晶的站立趋势。

Description

像素结构及具有该像素结构的液晶显示器
本发明要求2015年1月20日递交的发明名称为“像素结构及具有该像素结构的液晶显示器”的申请号为201510029233.9的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及液晶显示领域,尤其是涉及一种像素结构及一种具有该像素结构的液晶显示器。
背景技术
随着液晶显示技术的不断发展,液晶显示装置如液晶显示面板(Light emitting diode panel)作为显示部件已经广泛应用于移动电话、数码相机、个人数字助理(Personal Digital Assistant,PDA)等电子产品中。所述液晶显示装置大多具有上下两个光线透过的基板,即一上基板和一下基板,在该下基板上形成的电极阵列包括栅线及与该栅线垂直的数据线,所述栅线与数据线的交叉点位置有一薄膜晶体管(thin film transistor,TFT)装置,其可将栅线的信号传输至像素电极上。下基板的像素区域包括公共电极和像素电极,该公共电极与像素电极位于同一面上。该上基板与下基板之间注有液晶,其在像素电极区域随电场的作用而移动。
现有的液晶显示器大多存在响应速度慢,可视角度小等问题,为了解决扭转向列型的窄视角问题,大多采用IPS(In-Plane Switching,平面转换)模式的液晶显示器及FFS(Fringe Field Switching,边缘场开关)模式的液晶显示器,二者具有广视角等优点。然而,IPS模式和FFS模式的液晶显示装置在产生水平电场的同时,也会产生一个竖直方向的电场分量,而且像素电极与公共电极之间的电位差越大,该竖直方向的电场分量也会随之增大,如此会大大降低IPS模式和FFS模式的穿透率或响应时间,不能满足用户的使用要求。
发明内容
本发明提供一种像素结构及具有该像素结构的液晶显示器,其可减小竖直方向的电场分量同时增大水平方向的电场,提升IPS模式和FFS模式的穿透率或响应时间,满足了用户的使用要求。
本发明一方面提供了一种像素结构,设置于一阵列基板上,且由一个或两个薄膜晶体管器件控制,所述像素结构包括若干凸起结构、若干突起状电极及一底部电极,所述突起状电极制作于所述凸起结构上,所述底部电极位于所述凸起结构下方,制作于所述凸起结构上的突起状电极之间产生水平电场,所述底部电极与制作于所述凸起结构上的突起状电极之间产生侧向水平电场。
其中,每个所述像素结构由两个薄膜晶体管器件控制,每个突起状电极包括一第一像素电极及一第二像素电极,所述第一像素电极及所述第二像素电极提供有相对于所述底部电极电压极性相反的电压,且所述第一像素电极及所述第二像素电极分别制作于不同的凸起结构上形成了对应的突起状电极,或者,所述第一像素电极与第二像素电极制作于同一个凸起结构上,且该第一像素电极与所述第二像素电极之间间隔一预定的距离。
其中,每一所述突起状电极包括一像素电极和/或一公共电极,所述像素电极的位置对应于所述凸起结构的位置,且该像素电极制作于所述凸起结构的外表面上,所述公共电极的位置对应于所述凸起结构的位置,且该公共电极制作于对应的所述凸起结构的外表面上。
其中,所述像素电极与公共电极以及所述凸起结构均由氧化铟锡或者IXO系列的导电性物质制成,同一个像素电极制作于同一个凸起结构上形成一突起状电极,且同一个公共电极制作于同一个凸起结构上形成一突起状电极。
其中,所述凸起结构由树脂类聚合物、overcoat和SiNx系列中的任意一种制成,所述像素电极与所述公共电极由氧化铟锡或者IXO系列的导电性物质,且所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离。
其中,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,该像素电极与所述公共电极之间间隔有一预定的距离,且所述公共电极与位于所述凸起结构下方的公共电极电性连接,或者,所述像素电极及所 述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离,且所述像素电极与位于所述凸起结构下方的像素电极电性连接。
其中,所述凸起结构整体呈圆台状,其截面为梯形,该凸起结构的底面位于所述阵列基板上,或者,所述凸起结构整体为截面呈等腰三角形的直三棱柱,且该凸起结构的一个侧面位于所述阵列基板上。
其中,所述凸起结构的形状为圆台状、截面呈等腰三角形的直三棱柱、半椭圆形、半圆形及平行四边形中的任意一种。
其中,所述凸起结构的高度为大于等于1微米且小于等于5微米,所述凸起结构的倾斜角为大于等于15度且小于等于80度。
本发明另一方面提供了一种液晶显示器,其包括阵列基板及彩色滤光片,所述彩色滤光片位于所述阵列基板的一侧,并对准所述阵列基板,其中,所述液晶显示器还包括位于所述阵列基板与所述彩色滤光片基板之间的一像素结构,所述像素结构设置于所述阵列基板上,且由一个或两个薄膜晶体管器件控制,其中,所述像素结构包括若干凸起结构、若干突起状电极及一底部电极,所述突起状电极制作于所述凸起结构上,所述底部电极位于所述凸起结构下方,制作于所述凸起结构上的突起状电极之间产生水平电场,所述底部电极与制作于所述凸起结构上的突起状电极之间产生侧向水平电场。
其中,每个所述像素结构由两个薄膜晶体管器件控制,每个突起状电极包括一第一像素电极及一第二像素电极,所述第一像素电极及所述第二像素电极提供有相对于所述底部电极电压极性相反的电压,且所述第一像素电极及所述第二像素电极分别制作于不同的凸起结构上形成了对应的突起状电极,或者,所述第一像素电极与第二像素电极制作于同一个凸起结构上,且该第一像素电极与所述第二像素电极之间间隔一预定的距离。
其中,每一所述突起状电极包括一像素电极和/或一公共电极,所述像素电极的位置对应于所述凸起结构的位置,且该像素电极制作于所述凸起结构的外表面上,所述公共电极的位置对应于所述凸起结构的位置,且该公共电极制作于对应的所述凸起结构的外表面上。
其中,所述像素电极与公共电极以及所述凸起结构均由氧化铟锡或者IXO 系列的导电性物质制成,同一个像素电极制作于同一个凸起结构上形成一突起状电极,且同一个公共电极制作于同一个凸起结构上形成一突起状电极。
其中,所述凸起结构由树脂类聚合物、overcoat和SiNx系列中的任意一种制成,所述像素电极与所述公共电极由氧化铟锡或者IXO系列的导电性物质,且所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离。
其中,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,该像素电极与所述公共电极之间间隔有一预定的距离,且所述公共电极与位于所述凸起结构下方的公共电极电性连接,或者,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离,且所述像素电极与位于所述凸起结构下方的像素电极电性连接。
其中,所述凸起结构整体呈圆台状,其截面为梯形,该凸起结构的底面位于所述阵列基板上,或者,所述凸起结构整体为截面呈等腰三角形的直三棱柱,且该凸起结构的一个侧面位于所述阵列基板上。
其中,所述凸起结构的形状为圆台状、截面呈等腰三角形的直三棱柱、半椭圆形、半圆形及平行四边形中的任意一种。
其中,所述凸起结构的高度为大于等于1微米且小于等于5微米,所述凸起结构的倾斜角为大于等于15度且小于等于80度。
相较于现有技术,在本发明实施例的像素结构及液晶显示器中,由上述像素电极及公共电极等突起状电极与所述凸起结构设置布局可知,由于该像素电极及公共电极分别制作于对应的凸起结构上,且该凸起结构下方设有底部电极,基于此设计和布局,不但减小了该像素电极及公共电极的水平方向的面积,增大了斜向或者竖直方向的面积,而且对制作于凸起结构上的突起状电极与所述底部电极的信号进行不同定义,使得该凸起结构上的电极之间存在IPS/FIS模式的水平电场,凸起结构上的突起状电极与所述底部电极之间存在FFS模式的侧向水平电场,从而实现减小竖直电场的分量和增大水平电场的目的,从而提升FFS和IPS/FIS模式的穿透率或者液晶的响应速度,更减弱了正性液晶的站立趋势。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的液晶显示器的一种像素结构的示意图。
图2为本发明的实施例的液晶显示器的沿线I-I的截面结构示意图。
图3为本发明的像素结构的凸起结构的另一形状示意图。
图4为发明的液晶显示器的凸起结构的突起状电极之间形成IPS显示以及突起状电极与底部电极之间形成FFS显示的示意图。
图5为本发明的液晶显示器的另一种像素结构的示意图。
图6为本发明的液晶显示器的又一种像素结构的示意图。
图7为本发明另一实施例的液晶显示器一种像素结构的示意图。
图8为图7所示的像素结构的凸起结构的另一形状示意图。
图9为图7所示的液晶显示器的另一种像素结构的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其它工序无法明确区别时,只要能实现该工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的单元用相同的标号表示。
请参阅图1及图2,图1为本发明的液晶显示器的一种像素结构的示意图,图2为本发明的实施例的液晶显示器的沿线I-I的截面结构示意图。如图1及图2所示,所述液晶显示器100包括背光模组10、阵列基板30、CF(color filter,即彩色滤光片)基板50及位于所述阵列基板30与所述CF基板50之间的液晶70与若干像素结构80。在本发明的实施例中,所述液晶显示器100及所述像素结构80可以应用于电子纸、液晶电视、移动电话、数码相框、平板电脑等任何具有显示功能的产品或部件。
在本发明的实施例中,所述背光模组10为该触摸面板100的关键零组件之一,其用于提供充足的亮度与分布均匀的光源,以使得所述触摸面板100可以正常显示影像。所述阵列基板30为TFT(thin film transistor,薄膜晶体管)阵列基板,其设置所述背光模组10上。该阵列基板30可产生控制所述液晶70的移动电场。在本发明的实施例中,所述阵列基板30包括第一表面31及与该第一表面31平行的第二表面33,该第一表面31正对并贴紧所述背光模组10。
所述CF基板50对准所述阵列基板30相对于所述背光模组10的一侧(即该阵列基板30的第二表面33),该CF基板50是一种表现颜色的光学滤光片,其可通过精确选择预通过波段范围的光波,并反射掉其他不希望通过的波段范围的光波。在本发明的实施例中,所述CF基板50包括第一表面51及与该第一表面51平行的第二表面53,所述第一表面51为所述CF基板50的正面, 其正对所述阵列基板30的第二表面33。所述第二表面53为该CF基板30的背面。
所述液晶70位于所述阵列基板30与所述CF基板50之间,具体地,该液晶位于所述阵列基板30的第二表面33与所述CF基板50的第一表面51之间。所述液晶70可在所述阵列基板30与所述CF基板50之间随着电场的作用而移动,所述背光模组10发出的光线可透过该液晶层照射到所述CF基板50上。
若干所述像素结构80排列设置于所述阵列基板30的第二表面33上,如图2所示,在本发明的实施例中,每一像素结构80包括两个数据线(Data)81、两个扫描线(Gate)82、凸起结构83、像素电极(pixel electrode)84及共用电极85,且每个像素结构80中由一个薄膜晶体管(thin film transistor,TFT)器件(图未示)进行控制。
在本发明的实施例中,两个所述数据线81位于所述阵列基板30的第二表面33上,二者相互平行且间隔一定的距离(可设定该数据线81的方向为水平方向),两个所述扫描线82位于所述阵列基板30的第二表面33上,二者相互平行且间隔一定的距离(可设定该扫描线82的为垂直方向),并与所述数据线81垂直。所述数据线81与所述扫描线82垂直相交,从而形成了一电极阵列,且二者的交叉点位置设有一个TFT器件,该TFT器件可将该扫描线82上的信号传输至所述像素电极84上,具体为,该数据线81用于传送灰度信号,所述扫描线82用于传输扫描信号。
所述凸起结构83排列于所述阵列基板30的第二表面33上,在本发明的实施例中,所述凸起结构83整体大致呈圆台状,其截面为梯形,该凸起结构83的底面位于所述阵列基板30的第二表面33上。该凸起结构83可由透明绝缘体制作而成,具体地,该凸起结构83可由芳香族聚合物和脂肪族等树脂类聚合物、OC(overcoat,其为一种感光性树脂薄膜)、SiNx系列等材料制成。较佳地,所述凸起结构83的高度为1~5微米(μm)(即大于等于1微米且小于等于5微米),该凸起结构83的倾斜角α(即圆台状凸起结构83的梯形截面的底角)为15~80度(即大于等于15度且小于等于80度)。
可以理解,该凸起结构83的形状并不局限于圆台状,在本发明的其他实 施例中,该凸起结构83还可为其他形状。请参阅图3,图3为本发明的像素结构的凸起结构的另一形状示意图。如图3所示,所述凸起结构83整体大致呈三棱柱状,较佳地,该凸起结构83的形状为截面为等腰三角形的直三棱柱,且该凸起结构83的一个侧面位于所述阵列基板30的第二表面33上。此外,该凸起结构83的该可为半椭圆形、半圆形、平行四边形等形状。
较佳地,所述凸起结构83的高度为1~5微米(μm),该凸起结构83的倾斜角α(即圆台状凸起结构83的正三角形的内角)为15~80度。
在本发明的实施例中,所述像素电极84的位置对应于所述凸起结构83的位置,且该像素电极84制作于所述凸起结构83的外表面上。该像素电极84用于根据灰度信号驱动像素。较佳地,所述像素电极84可由具有良好透明性的导电性物质制成,较佳地,该像素电极84可为ITO(Indium tin oxide,氧化铟锡)或者IXO系列的导电性物质,其可以使用溅射和化学气相沉积等方法制备而成。因此,所述像素电极84与所述凸起结构83由不同的材料制成,同一个像素电极84制作于同一个凸起结构83上形成一突起状电极。可以理解,所述凸起结构83也可以采用与所述像素电极84相同的材料制成,即,该凸起结构83可由ITO或者IXO系列的导电性物质制成,则此时,所述凸起结构83与突起状电极构成一个整体。
在本发明的实施例中,所述公共电极85的位置对应于所述凸起结构83的位置,且该公共电极85制作于对应的所述凸起结构83的外表面上。该公共电极85用于向像素提供共电极电压。较佳地,所述公共电极85可由具有良好透明性的导电性物质制成,较佳地,该公共电极85可为ITO或者IXO系列的导电性物质,其可以使用溅射和化学气相沉积等方法制备而成。因此,所述公共电极85与所述凸起结构83由不同的材料制成,且同一个公共电极85制作于同一个凸起结构83上形成一突起状电极。可以理解,所述凸起结构83也可以采用与所述公共电极85相同的材料制成,即,该凸起结构83可由ITO或者IXO系列的导电性物质制成,则此时,所述凸起结构83与突起状电极构成一个整体。
请参阅图4,图4为发明的液晶显示器的凸起结构的突起状电极之间形成IPS显示以及突起状电极与底部电极之间形成FFS显示的示意图。由上述像素 电极84及公共电极85与所述凸起结构83设置布局可知,由于该像素电极84及公共电极85分别制作于对应的凸起结构83上,且该凸起结构83下方设有底部电极,该底部电极在本发明中可设置为公共电极85,基于此设计布局,不但减小了该像素电极84及公共电极85的水平方向的面积,增大了斜向或者竖直方向的面积,而且对制作于凸起结构83上的像素电极54及公共电极85与所述底部电极的信号进行不同定义,使得该凸起结构83上的电极之间存在IPS模式的水平电场,凸起结构83上的电极与所述底部电极之间存在FFS模式的侧向水平电场,从而实现减小竖直电场的分量和增大水平电场的目的,从而提升FFS和IPS模式的穿透率或者响应时间。
请参阅图5,图5为本发明的液晶显示器的另一种像素结构的示意图。如图5所示,为了便于说明和描述,在本发明的实施例中,组成该实施例的像素结构810的构成与所述图1至图4所示的像素结构80的构成相同,本实施例的像素结构810包括两个数据线(Data)81、两个扫描线(Gate)82、凸起结构83、像素电极(pixel electrode)84及共用电极85,且每个像素结构80中由一个薄膜晶体管(thin film transistor,TFT)器件(图未示)进行控制。本实施例中以圆台状的凸起结构83为例加以说明,但并不局限于该圆台状,例如,还可为截面为等腰三角形的直三棱柱。
本实施例的像素结构810与上述图1至图4所示的像素结构100的不同之处在于:同一个凸起结构83上制作有不同种类的突起状电极,且不同种类的突起状电极之间间隔一预定的距离,即,所述像素电极84及所述公共电极85同时制作于对应的同一个凸起结构83的外表面上,且该像素电极84与所述公共电极85之间间隔有一预定的距离,则该凸起结构83采用与所述像素电极84及公共电极85不同的材料制成。
请参阅图6,图6为本发明的液晶显示器的又一种像素结构的示意图。如图6所示,为了便于说明和描述,在本发明的实施例中,组成该实施例的像素结构820的构成与所述图1至图5所示的像素结构80及810的构成相同,本实施例的像素结构820包括两个数据线(Data)81、两个扫描线(Gate)82、 凸起结构83、像素电极(pixel electrode)84及共用电极85,且每个像素结构80中由一个薄膜晶体管(thin film transistor,TFT)器件(图未示)进行控制。本实施例中以圆台状的凸起结构83为例加以说明,但并不局限于该圆台状,例如,该凸起结构83还可为截面为等腰三角形的直三棱柱。
本实施例的像素结构820与上述图1至图5所示的像素结构80及810的不同之处在于:同一个凸起结构83上制作有不同种类的突起状电极,且不同种类的突起状电极之间间隔一预定的距离,即,所述像素电极84及所述公共电极85同时制作于对应的同一个凸起结构83的外表面上,且该像素电极84与所述公共电极85之间间隔有一预定的距离,且所述公共电极85与所述底部电极(如图6所示的位于所述凸起结构83下的公共电极85)电性连接,而且该凸起结构83采用与所述像素电极84及公共电极85不同的材料制成。
请参阅图7及图8,图7为本发明另一实施例的液晶显示器一种像素结构的示意图,图8为图7所示的像素结构的凸起结构的另一形状示意图。如图7及图8所示,为了便于说明和描述,在本发明的实施例中,组成该实施例的像素结构830的构成与所述图1至图6所示的像素结构80、810及820的构成基本相同,本实施例的像素结构830包括两个数据线(Data)81、两个扫描线(Gate)82、凸起结构83、第一像素电极(pixel electrode)84a、第二像素电极84b及共用电极85。本实施例的像素结构830与上述图1至图6所示的像素结构80、810及820的不同之处在于:每个像素结构80中由两个薄膜晶体管(thin film transistor,TFT)器件(图未示)进行控制,所述第一像素电极84a及第二像素电极84b加载或提供有相对于公共电极85电压极性相反的电压,且二者分别制作于不同的凸起结构83上形成了突起状电极,即所述第一像素电极84a制作于一凸起结构83上,所述第二像素电极84b制作于另一个凸起结构83。本实施例中以圆台状的凸起结构83为例加以说明,但并不局限于该圆台状,例如,该凸起结构83还可为截面为等腰三角形的直三棱柱。
请参阅图9,图9为图7所示的液晶显示器的另一种像素结构的示意图。图9所示的像素结构840的构成与所述图7及图8所示的像素结构830的构成 相同。其不同之处在于:同一个凸起结构83上具有两个极性相反的像素电极,以形成了突起状电极,且极性相反的像素电极之间间隔一预定的距离,即,所述第一像素电极84a与第二像素电极84b制作于同一个凸起结构83上,且该第一像素电极84a与所述第二像素电极84b之间间隔一预定的距离。
上述图1至图6中的各个实施例中的说明、描述以及所述凸起结构83与制作于该凸起结构83上的突起状电极(即像素电极84和/或公共电极85)关系均适用于图7至图9所示的像素结构830及840。在上述实施例的像素电极830及840中,由于第一像素电极84a和第二像素电极84b上加载或提供有相对于公共电极85电压极性相反的电压,当第一像素电极84a和第二像素电极84b制作于同一个凸起结构83或不同的凸起结构83上时,则该凸起结构83之前存在FIS模式的电场,而且凸起结构83与所述底部电极(即公共电极85)之间存在FFS模式的电场,进而可实现减小竖直电场的分量和增大水平电场的目的。
可以理解,本发明的上述各个实施例中,所述像素电极84及所述公共电极85的位置及定义可以互换。
综上所述,在本发明实施例的像素结构及液晶显示器中,由上述像素电极84及公共电极85等突起状电极与所述凸起结构83设置布局可知,由于该像素电极84及公共电极85分别制作于对应的凸起结构83上,且该凸起结构83下方设有底部电极,基于此设计和布局,不但减小了该像素电极84及公共电极85的水平方向的面积,增大了斜向或者竖直方向的面积,而且对制作于凸起结构83上的突起状电极与所述底部电极的信号进行不同定义,使得该凸起结构83上的电极之间存在IPS/FIS模式的水平电场,凸起结构83上的突起状电极与所述底部电极之间存在FFS模式的侧向水平电场,从而实现减小竖直电场的分量和增大水平电场的目的,从而提升FFS和IPS/FIS模式的穿透率或者液晶的响应速度,更减弱了正性液晶的站立趋势。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明 书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (18)

  1. 一种像素结构,设置于一阵列基板上,且由一个或两个薄膜晶体管器件控制,其中,所述像素结构包括若干凸起结构、若干突起状电极及一底部电极,所述突起状电极制作于所述凸起结构上,所述底部电极位于所述凸起结构下方,制作于所述凸起结构上的突起状电极之间产生水平电场,所述底部电极与制作于所述凸起结构上的突起状电极之间产生侧向水平电场。
  2. 如权利要求1所述的像素结构,其中,每个所述像素结构由两个薄膜晶体管器件控制,每个突起状电极包括一第一像素电极及一第二像素电极,所述第一像素电极及所述第二像素电极提供有相对于所述底部电极电压极性相反的电压,且所述第一像素电极及所述第二像素电极分别制作于不同的凸起结构上形成了对应的突起状电极,或者,所述第一像素电极与第二像素电极制作于同一个凸起结构上,且该第一像素电极与所述第二像素电极之间间隔一预定的距离。
  3. 如权利要求1所述的像素结构,其中,每一所述突起状电极包括一像素电极和/或一公共电极,所述像素电极的位置对应于所述凸起结构的位置,且该像素电极制作于所述凸起结构的外表面上,所述公共电极的位置对应于所述凸起结构的位置,且该公共电极制作于对应的所述凸起结构的外表面上。
  4. 如权利要求3所述的像素结构,其中,所述像素电极与公共电极以及所述凸起结构均由氧化铟锡或者IXO系列的导电性物质制成,同一个像素电极制作于同一个凸起结构上形成一突起状电极,且同一个公共电极制作于同一个凸起结构上形成一突起状电极。
  5. 如权利要求3所述的像素结构,其中,所述凸起结构由树脂类聚合物、overcoat和SiNx系列中的任意一种制成,所述像素电极与所述公共电极由氧化铟锡或者IXO系列的导电性物质,且所述像素电极及所述公共电极同时制 作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离。
  6. 如权利要求3所述的像素结构,其中,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,该像素电极与所述公共电极之间间隔有一预定的距离,且所述公共电极与位于所述凸起结构下方的公共电极电性连接,或者,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离,且所述像素电极与位于所述凸起结构下方的像素电极电性连接。
  7. 如权利要求1所述的像素结构,其中,所述凸起结构整体呈圆台状,其截面为梯形,该凸起结构的底面位于所述阵列基板上,或者,所述凸起结构整体为截面呈等腰三角形的直三棱柱,且该凸起结构的一个侧面位于所述阵列基板上。
  8. 如权利要求1所述的像素结构,其中,所述凸起结构的形状为圆台状、截面呈等腰三角形的直三棱柱、半椭圆形、半圆形及平行四边形中的任意一种。
  9. 如权利要求1所述的像素结构,其中,所述凸起结构的高度为大于等于1微米且小于等于5微米,所述凸起结构的倾斜角为大于等于15度且小于等于80度。
  10. 一种液晶显示器,其包括阵列基板及彩色滤光片,所述彩色滤光片位于所述阵列基板的一侧,并对准所述阵列基板,其中,所述液晶显示器还包括位于所述阵列基板与所述彩色滤光片基板之间的一像素结构,所述像素结构设置于所述阵列基板上,且由一个或两个薄膜晶体管器件控制,其中,所述像素结构包括若干凸起结构、若干突起状电极及一底部电极,所述突起状电极制作于所述凸起结构上,所述底部电极位于所述凸起结构下方,制作于所述凸起结构上的突起状电极之间产生水平电场,所述底部电极与制作于所述凸起结构上 的突起状电极之间产生侧向水平电场。
  11. 如权利要求10所述的液晶显示器,其中,每个所述像素结构由两个薄膜晶体管器件控制,每个突起状电极包括一第一像素电极及一第二像素电极,所述第一像素电极及所述第二像素电极提供有相对于所述底部电极电压极性相反的电压,且所述第一像素电极及所述第二像素电极分别制作于不同的凸起结构上形成了对应的突起状电极,或者,所述第一像素电极与第二像素电极制作于同一个凸起结构上,且该第一像素电极与所述第二像素电极之间间隔一预定的距离。
  12. 如权利要求10所述的液晶显示器,其中,每一所述突起状电极包括一像素电极和/或一公共电极,所述像素电极的位置对应于所述凸起结构的位置,且该像素电极制作于所述凸起结构的外表面上,所述公共电极的位置对应于所述凸起结构的位置,且该公共电极制作于对应的所述凸起结构的外表面上。
  13. 如权利要求12所述的液晶显示器,其中,所述像素电极与公共电极以及所述凸起结构均由氧化铟锡或者IXO系列的导电性物质制成,同一个像素电极制作于同一个凸起结构上形成一突起状电极,且同一个公共电极制作于同一个凸起结构上形成一突起状电极。
  14. 如权利要求12所述的液晶显示器,其中,所述凸起结构由树脂类聚合物、overcoat和SiNx系列中的任意一种制成,所述像素电极与所述公共电极由氧化铟锡或者IXO系列的导电性物质,且所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离。
  15. 如权利要求12所述的液晶显示器,其中,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,该像素电极与所述公共电 极之间间隔有一预定的距离,且所述公共电极与位于所述凸起结构下方的公共电极电性连接,或者,所述像素电极及所述公共电极同时制作于对应的同一个凸起结构的外表面上,且该像素电极与所述公共电极之间间隔有一预定的距离,且所述像素电极与位于所述凸起结构下方的像素电极电性连接。
  16. 如权利要求10所述的液晶显示器,其中,所述凸起结构整体呈圆台状,其截面为梯形,该凸起结构的底面位于所述阵列基板上,或者,所述凸起结构整体为截面呈等腰三角形的直三棱柱,且该凸起结构的一个侧面位于所述阵列基板上。
  17. 如权利要求10所述的液晶显示器,其中,所述凸起结构的形状为圆台状、截面呈等腰三角形的直三棱柱、半椭圆形、半圆形及平行四边形中的任意一种。
  18. 如权利要求10所述的液晶显示器,其中,所述凸起结构的高度为大于等于1微米且小于等于5微米,所述凸起结构的倾斜角为大于等于15度且小于等于80度。
PCT/CN2015/071817 2015-01-20 2015-01-29 像素结构及具有该像素结构的液晶显示器 WO2016115749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/435,526 US10416505B2 (en) 2015-01-20 2015-01-29 Pixel structure and liquid crystal display device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510029233.9A CN104765207B (zh) 2015-01-20 2015-01-20 像素结构及具有该像素结构的液晶显示器
CN201510029233.9 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016115749A1 true WO2016115749A1 (zh) 2016-07-28

Family

ID=53647137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071817 WO2016115749A1 (zh) 2015-01-20 2015-01-29 像素结构及具有该像素结构的液晶显示器

Country Status (3)

Country Link
US (1) US10416505B2 (zh)
CN (1) CN104765207B (zh)
WO (1) WO2016115749A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977769B (zh) * 2015-08-04 2019-03-15 武汉华星光电技术有限公司 蓝相液晶面板和蓝相液晶显示器
CN105607326A (zh) * 2016-03-15 2016-05-25 武汉华星光电技术有限公司 一种ffs型液晶显示面板及液晶显示装置
CN105977263A (zh) * 2016-05-31 2016-09-28 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
US10151953B2 (en) * 2017-02-22 2018-12-11 A. U. Vista, Inc. In-plane switching display having protrusion electrodes with metal enhanced adhesion
CN109239989B (zh) 2017-07-11 2020-08-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN109581759A (zh) * 2017-09-29 2019-04-05 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
TWI657299B (zh) * 2018-05-31 2019-04-21 友達光電股份有限公司 畫素結構與顯示裝置
TWI669557B (zh) * 2018-05-31 2019-08-21 友達光電股份有限公司 畫素結構與顯示裝置
CN109254466A (zh) * 2018-11-16 2019-01-22 合肥京东方光电科技有限公司 液晶显示面板及其制作方法、显示装置
CN110609423B (zh) * 2019-09-04 2021-06-22 苏州华星光电技术有限公司 阵列基板、液晶面板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2743872Y (zh) * 2004-09-27 2005-11-30 鸿富锦精密工业(深圳)有限公司 横向电场液晶显示器
US20070188690A1 (en) * 2006-02-10 2007-08-16 Takahiro Ochiai Liquid crystal display device
US20090153761A1 (en) * 2007-12-14 2009-06-18 Hong-Jo Park Display device
CN202210200U (zh) * 2011-08-25 2012-05-02 京东方科技集团股份有限公司 一种阵列基板及液晶面板
CN102854672A (zh) * 2012-08-21 2013-01-02 深圳市华星光电技术有限公司 一种液晶面板及液晶显示器
US20130044145A1 (en) * 2011-08-15 2013-02-21 Chimei Innolux Corporation Blue phase liquid crystal display apparatus and driving method thereof
CN103869557A (zh) * 2014-03-25 2014-06-18 昆山龙腾光电有限公司 蓝相液晶显示装置
CN103959158A (zh) * 2011-11-28 2014-07-30 株式会社半导体能源研究所 液晶显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034162B2 (ja) * 2005-03-23 2012-09-26 日本電気株式会社 アクティブマトリクス型液晶表示装置
KR101286544B1 (ko) * 2008-07-11 2013-07-17 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101499242B1 (ko) * 2008-08-29 2015-03-06 삼성디스플레이 주식회사 액정 표시 장치의 제조 방법
US8654292B2 (en) * 2009-05-29 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
KR20130004238A (ko) * 2009-11-27 2013-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치
KR101291716B1 (ko) * 2009-12-11 2013-07-31 엘지디스플레이 주식회사 높은 구동전압을 요구되는 액정 모드를 위한 액정표시장치
TWI456316B (zh) * 2010-04-22 2014-10-11 Au Optronics Corp 藍相液晶顯示裝置及其製作方法
WO2012111581A1 (en) * 2011-02-18 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8736800B2 (en) * 2011-06-24 2014-05-27 Industrial Technology Research Institute Display device
TWI443431B (zh) * 2011-06-24 2014-07-01 Au Optronics Corp 液晶顯示面板
US9116397B2 (en) * 2011-11-23 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
CN102621757B (zh) * 2012-04-06 2014-07-02 友达光电(苏州)有限公司 像素结构及显示面板
CN103018976B (zh) * 2012-12-12 2015-06-10 河北工业大学 一种蓝相液晶显示器装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2743872Y (zh) * 2004-09-27 2005-11-30 鸿富锦精密工业(深圳)有限公司 横向电场液晶显示器
US20070188690A1 (en) * 2006-02-10 2007-08-16 Takahiro Ochiai Liquid crystal display device
US20090153761A1 (en) * 2007-12-14 2009-06-18 Hong-Jo Park Display device
US20130044145A1 (en) * 2011-08-15 2013-02-21 Chimei Innolux Corporation Blue phase liquid crystal display apparatus and driving method thereof
CN202210200U (zh) * 2011-08-25 2012-05-02 京东方科技集团股份有限公司 一种阵列基板及液晶面板
CN103959158A (zh) * 2011-11-28 2014-07-30 株式会社半导体能源研究所 液晶显示装置
CN102854672A (zh) * 2012-08-21 2013-01-02 深圳市华星光电技术有限公司 一种液晶面板及液晶显示器
CN103869557A (zh) * 2014-03-25 2014-06-18 昆山龙腾光电有限公司 蓝相液晶显示装置

Also Published As

Publication number Publication date
CN104765207A (zh) 2015-07-08
US20160342045A1 (en) 2016-11-24
US10416505B2 (en) 2019-09-17
CN104765207B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
WO2016115749A1 (zh) 像素结构及具有该像素结构的液晶显示器
US10452221B2 (en) Liquid crystal display device
CN110824740B (zh) 显示面板、显示面板的视角控制方法及显示装置
US10274793B2 (en) COA array substrate and display device
US8502793B2 (en) Touch screen display device and method of manufacturing the same
WO2017124810A1 (zh) 阵列基板、液晶显示面板及显示装置
CN105807511B (zh) 显示面板、显示装置及其驱动方法
US8208098B2 (en) Organic light emitting diode display and driving method thereof
KR20190031532A (ko) 시야각 전환이 가능한 액정 디스플레이 장치 및 시야각 전환 방법
JP3194108U (ja) 表示パネル及び表示装置
US9658497B2 (en) Liquid crystal display and display device
US20170300152A1 (en) Touch control display module and display device
WO2019085700A1 (zh) 阵列基板及其制造方法和显示装置及其制造方法
CN110673380A (zh) 显示面板及其制作方法、显示装置
US7956970B2 (en) Liquid crystal display device
US8373827B2 (en) System for displaying images having a conductive layer formed on the inner surface of a color filter substrate
JP5151408B2 (ja) 半透過型液晶表示装置
JP2019168596A (ja) 表示装置
JP2005338553A (ja) 液晶表示装置および電子機器
WO2019184986A1 (zh) 显示面板及其制造方法、显示装置
US10416488B2 (en) Liquid crystal display having a plurality of pixel electrodes in one pixel region
WO2019218539A1 (zh) 面内转换型显示面板和显示装置
KR101652997B1 (ko) 터치스크린 표시장치
JP2016114779A (ja) 液晶表示装置
TWI551928B (zh) 顯示面板及顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14435526

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878426

Country of ref document: EP

Kind code of ref document: A1