WO2016107239A1 - 一种混合型超级电容器 - Google Patents

一种混合型超级电容器 Download PDF

Info

Publication number
WO2016107239A1
WO2016107239A1 PCT/CN2015/091541 CN2015091541W WO2016107239A1 WO 2016107239 A1 WO2016107239 A1 WO 2016107239A1 CN 2015091541 W CN2015091541 W CN 2015091541W WO 2016107239 A1 WO2016107239 A1 WO 2016107239A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
hybrid supercapacitor
carbon nanotubes
mixing
solution
Prior art date
Application number
PCT/CN2015/091541
Other languages
English (en)
French (fr)
Inventor
阮殿波
杨斌
傅冠生
Original Assignee
宁波南车新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波南车新能源科技有限公司 filed Critical 宁波南车新能源科技有限公司
Publication of WO2016107239A1 publication Critical patent/WO2016107239A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a capacitor, and more particularly to a hybrid supercapacitor.
  • supercapacitor As a new type of energy storage device, supercapacitor has become one of the leading technologies in the country's major scientific and technological innovation and new energy fields due to its outstanding performance in power density, high current charge and discharge and long-term cycle life. It has been included in the Outline of the National Medium- and Long-Term Scientific Development and Technology Development Plan (2002-2020), which has very important strategic and practical significance.
  • the commercial supercapacitors are mainly based on the "electric double layer electric energy storage mechanism" carbon-carbon electric double layer capacitors, although the series of capacitors have outstanding performance in terms of power density and cycle life, but the disadvantage of low energy density It limits its wide application.
  • lithium-ion battery electrode materials to significantly increase the energy density of the product, such as lithium-ion capacitors, while maintaining power density.
  • spinel lithium titanate has become a new type of battery with excellent performance because of its "zero strain", large specific capacity, high charge and discharge efficiency, good overcharge resistance and high safety.
  • Capacitor materials have broad application prospects in the field of power lithium-ion batteries and supercapacitors.
  • the research and application of the new hybrid supercapacitor has been greatly limited.
  • the object of the present invention is to provide a hybrid supercapacitor which has the characteristics of rapid charge and discharge and high specific energy, and has higher capacity and longer cycle stability.
  • a hybrid supercapacitor comprising a positive aluminum foil, a negative aluminum foil, an electrolyte and a separator, wherein the positive and negative aluminum foils are coated with a positive electrode material on both sides, and the negative aluminum foil is coated with a negative electrode material on both sides
  • the cathode material is prepared by mixing the following mass percentage components: 85-92% activated carbon, 4-10% conductive agent, 1-2% dispersant, and 3-10% binder;
  • the negative electrode material is prepared by mixing the following mass percentage components: 80-92% lithium titanate/graphene composite material, 4-10% conductive agent, and 4-10% binder; the titanic acid
  • the amount of graphene added in the lithium/graphene composite is 5-25% of lithium titanate.
  • the amount of graphene added in the lithium titanate/graphene composite is 5-25% of lithium titanate, which can ensure the capacity of the anode material while improving the conductivity of the composite material. Excess graphene is not favorable for the lithium titanate electrode.
  • the preparation of materials, capacitors are prone to bubble impact performance, lithium titanate / graphene composites can reduce the generation of bubbles in the use of capacitors, overcoming the impact of bubbles on the performance of the product.
  • the activated carbon has a specific surface area of more than 1,500 m 2 /g, a surface functional group content of 0.5 meq/g or less, and an average particle diameter of 8 to 10 ⁇ m.
  • the purpose of controlling these parameters of activated carbon is to reduce the leakage current of the capacitor and increase the electrode density of the activated carbon material while ensuring the positive capacity of the capacitor.
  • the activated carbon is activated carbon with coconut shell or needle coke as a precursor, and the activated carbon is used after surface modification treatment, and the surface modification treatment method is: coupling silane with a mass concentration of 5-10%.
  • the anhydrous ethanol solution is mixed with activated carbon for 30-50min, then added with a concentration of 8-15% aluminate coupling agent in absolute ethanol solution for 30-50min, filtered, and the filter is dried at 70-80 ° C. 4-5h, and then activated at 100 ° C -105 ° C for 1-2 h, the amount of silane coupling agent is 0.5-1% of the weight of activated carbon, and the amount of aluminate coupling agent is 1-1.5% of the weight of activated carbon.
  • Activated carbon with coconut shell or needle coke as precursor has moderate pore size and better performance for positive electrode active materials.
  • the inventors discovered that the first surface treatment of activated carbon is first carried out by using a silane coupling agent. After the silane coupling agent is mixed into the activated carbon, it can effectively penetrate into the gap between the activated carbon particles, so that the activated carbon particles are relatively isolated. It can effectively improve the dispersibility of activated carbon, and then the second surface treatment of the treated activated carbon by adding an aluminate coupling agent, which can effectively solve the problem of agglomeration of activated carbon and make the aluminate coupling agent effective. The activated carbon is further prevented from agglomeration of the activated carbon.
  • the conductive agent is one or more of conductive carbon black, carbon nanotubes, and graphene.
  • the conductive agent is a modified carbon nanotube, and the steps of preparing the modified carbon nanotube are as follows:
  • the secondary modified carbon nanotubes and the perchloric acid having a mass concentration of 50-60% are uniformly mixed according to the ratio of material to liquid of 1g: 20-30mL, heated to 60-70 ° C for 24 hours, cooled, filtered, washed with water, The modified carbon nanotubes are obtained after vacuum drying.
  • the most preferred conductive agent of the present invention employs modified carbon nanotubes.
  • Typical multi-walled carbon nanotubes generally have a diameter of a few nanometers to several tens of nanometers and a length of several to several tens of micrometers.
  • the prepared samples are mostly disorderly distributed, and the carbon nanotubes are intertwined and difficult to disperse, and the agglomerated carbon nanotubes need to be dispersed into individual carbon nanotubes to exert their special properties.
  • Step (1) mixing the carbon nanotubes with a dimethylformamide solution having a mass concentration of 30-50% and an acid solution, and simultaneously stirring to enlarge the contact surface of the carbon nanotubes with the liquid, so that the carbon nanotubes are uniformly dispersed.
  • the specific solvent combination system of the dimethylformamide solution and the acid solution with a mass concentration of 30-50% can make the carbon nanotubes disperse more uniformly in the system and effectively avoid the agglomeration of the carbon nanotubes.
  • Step (1) firstly dispersing the carbon nanotubes uniformly, which facilitates the shearing of the step (2), and hydrothermally reacts the uniformly dispersed carbon nanotubes of the step (1) with the specific chemical shear liquid of the present invention, thereby effectively cutting the carbon.
  • uniform carbon nanotubes having a relatively uniform length (about 100-150 nm in length) are obtained, and such carbon nanotubes can exhibit more excellent electrical and thermal conduction effects in a smaller amount when used for an electrode material.
  • Step (3) The homogenized carbon nanotube obtained in the step (2) is hydrothermally reacted in perchloric acid, and the perchloric acid molecule can intercalate and swell the carbon nanotube bundle, so that the carbon nanotubes are separated from each other and the surface thereof is highly reacted.
  • the activated carbonaceous by-products are exposed to achieve selective functionalization of carbonaceous by-products. Similar to surfactants, these functionalized carbon by-products have amphiphilic properties, which can improve the interaction between carbon nanotubes and binders, assist in the dispersion of carbon nanotubes, and greatly improve the preparation of positive and negative materials for carbon nanotubes. Uniform dispersion performance.
  • the acid solution is concentrated nitric acid having a mass concentration of 70% and concentrated sulfuric acid having a mass concentration of 98%. a mixture according to a volume ratio of 1-2:1;
  • the chemical shear solution is a sodium molybdate solution having a concentration of 0.5-0.8 moL/L and a silicomolybdic acid solution having a concentration of 0.3-0.5 moL/L in a volume of 1:1. a mixture of ratios.
  • the binder is one or more of polyvinylidene fluoride, styrene butadiene rubber, and polytetrafluoroethylene.
  • the dispersing agent is sodium carboxymethylcellulose or sodium alginate, and the viscosity of the sodium carboxymethylcellulose is less than 300 cps.
  • the viscosity of sodium carboxymethylcellulose is less than 300 cps, which makes it easy to disperse carbon black and active materials. When the viscosity is too high, the stirring process is prone to heat generation and eventually destroys the structure of the binder.
  • the preparation method steps are:
  • the active material activated carbon of the positive electrode tab the active material lithium titanate/graphene composite material of the negative electrode tab has a mass ratio of 2-8:1.
  • the active material activated carbon of the positive electrode tab the active material of the negative electrode tab, the lithium titanate/graphene composite material has a mass ratio of 2-8:1, and the positive active material content is too low.
  • the active material activated carbon of the positive electrode tab the active material lithium titanate/graphene composite material of the negative electrode tab has a mass ratio of 3-5:1.
  • the separator is a polypropylene composite separator prepared from the following raw material components: 80-85 wt% polypropylene, 10-15 wt% natural cellulose pulp, 3- 4 wt% of halloysite powder, 1-2 wt% of a silane coupling agent.
  • the natural cellulose pulp is obtained by the following steps:
  • the filter residue is beaten with a beater, and concentrated to obtain a natural cellulose slurry having a solid content of 60-70% by weight.
  • the natural cellulose slurry prepared by the above method contains a large amount of natural cellulose, and the natural cellulose has the characteristics of good hygroscopicity and good thermal stability, and a small amount of natural cellulose combined with polypropylene can improve polypropylene. Hygroscopicity and thermal stability enhance the absorption retention of the electrolyte to improve the rate performance and cycle performance of the product.
  • natural cellulose and polypropylene are combined to produce cross-linking, which also enhances the tensile strength and anti-sting strength of the separator to some extent.
  • the halloysite powder is pretreated by the following method:
  • the dried solid powder is calcined at 500-600 ° C for 3-5 h and cooled.
  • Eloline powder is a tubular material with a nanometer-sized hollow pipe, which has good adsorption performance, and is compounded in the separator to further enhance the hygroscopicity of the separator, and the halloysite powder can also improve the thermal stability of the separator. And mechanical strength.
  • the silane coupling agent is capable of making the halloysite powder and polypropylene more compatible.
  • the halloysite powder After pretreatment, the halloysite powder removes the crystal water inside its own structure, and its adsorption performance and high temperature resistance are greatly improved, and at the same time, the adsorption amount of halloysite powder can be expanded.
  • the beneficial effects of the invention are: by optimizing the selection of different positive and negative electrode materials, a new hybrid supercapacitor with higher capacity and longer cycle stability is obtained.
  • Figure 1 is a Ragone diagram of power density and energy density of the present invention.
  • the positive electrode active material (activated carbon, commercially available) used in the present invention has the following specifications: AC-1, AC-2, AC-3, AC-4, and the negative electrode active material (lithium titanate/graphene composite material, preparation method) Refer to the disclosure of the invention of CN102569769B.
  • the specifications and models are: LTO-1, LTO-2, LTO-3, LTO-4.
  • the performance parameters of the specific materials are shown in Tables 1 and 2.
  • the preparation process of the present invention is as follows:
  • the thickness of the pole piece during the coating process was controlled to 260 ⁇ m, the drying temperature was 110 ° C, and the coating rate was 5 m. /min, the dried electrode was rolled by a continuous rolling mill under a pressure of 40 t and a rolling rate of 5 m/min. After rolling, the electrode thickness was controlled at 240 ⁇ m, and the above electrode was die-cut into (50- 60) mm* (70-80) mm positive electrode tab.
  • the battery is vacuum dried at 65 ° C, -0.1 MPa for 24 h. After the cell is cooled to room temperature, it is placed in an aluminum plastic film outer bag, and the three sides including the side of the ear are heat-sealed. Tight Then, from the remaining side, an electrolyte (LiPF6 solution, a solvent having a volume ratio of 1:1:1, a mixture of EC, DEC, and DMC) was injected, and the amount of the electrolyte injected was 40 g. Finally, the injection port was subjected to a heat. Package.
  • LiPF6 solution LiPF6 solution, a solvent having a volume ratio of 1:1:1, a mixture of EC, DEC, and DMC
  • the capacitor was tested on a Land charge and discharge tester (Wuhan Chenhua, model BT2013C) for 2.7V/50mA (CC/CC), and then the capacitor was subjected to secondary encapsulation and trimming. Super capacitor.
  • the subsequent rate performance test current densities were 100, 200, 500, 1000, 2000, 5000 mA/g, respectively.
  • the capacitor has an energy density of 41.65 Wh/kg at 100 mA/g.
  • the Ragone diagram of the power density and energy density of the product of the invention is shown in Figure 1.
  • Embodiment 1 differs from Embodiment 1 in that:
  • Positive electrode material formulation activated carbon (AC-2) 85kg, conductive agent (Super P) 4kg, binder (PVDF + PTFE according to 1:1 mass ratio mixture) 10kg and dispersant (CMC, viscosity less than 300cps) 1kg.
  • Anode material formulation Lithium titanate/graphene composite (LTO-2) 80kg, conductive agent (Super P) 10kg, binder (PVDF+PTFE in a 1:1 mass ratio mixture) 10kg.
  • the capacitor has an energy density of 38.65 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • Cathode material formulation activated carbon (AC-3) 92kg, conductive agent (Super P) 4kg, binder (SBR) 3kg And dispersant (CMC) 1kg.
  • Anode material formulation lithium titanate/graphene composite (LTO-3) 92kg, conductive agent (SuperP) 4kg, binder (PVDF) 4kg.
  • the capacitor has an energy density of 43.33 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • Cathode material formulation activated carbon (AC-4) 85kg, conductive agent (SuperP + carbon nanotubes in a 1:1 mass ratio mixture) 10kg, binder (SBR) 3kg and dispersant (CMC) 2kg.
  • Anode material formulation 85 kg of lithium titanate/graphene composite (LTO-4), 7 kg of conductive agent (SuperP), and 8 kg of binder (PVDF).
  • the capacitor has an energy density of 40.65 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • the conductive agents of the positive electrode material and the negative electrode material are modified carbon nanotubes, and the steps for preparing the modified carbon nanotubes are as follows:
  • the chemical shear solution was a mixture of a sodium molybdate solution having a concentration of 0.8 mol/L and a silicomolybdic acid solution having a concentration of 0.5 mol/L in a volume ratio of 1:1.
  • the capacitor has an energy density of 42.15 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • the conductive agents of the positive electrode material and the negative electrode material are modified carbon nanotubes, and the steps for preparing the modified carbon nanotubes are as follows:
  • the shearing solution was a mixture of a sodium molybdate solution having a concentration of 0.5 mol/L and a silicomolybdic acid solution having a concentration of 0.3 mol/L in a volume ratio of 1:1.
  • the capacitor has an energy density of 41.98 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • the conductive agents of the positive electrode material and the negative electrode material are modified carbon nanotubes, and the steps for preparing the modified carbon nanotubes are as follows:
  • the chemical shear solution was a mixture of a sodium molybdate solution having a concentration of 0.6 mol/L and a silicomolybdic acid solution having a concentration of 0.4 mol/L in a volume ratio of 1:1.
  • Ratio of secondary modified carbon nanotubes to perchloric acid with a mass concentration of 55% according to 1g: 25mL The mixture was uniformly mixed, heated to 65 ° C for 24 hours, cooled, filtered, washed with water, and vacuum dried to obtain modified carbon nanotubes.
  • the capacitor has an energy density of 42.53 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • the separator is a polypropylene composite separator prepared from the following raw material components: 80 wt% polypropylene, 15 wt% natural cellulose pulp, 3 wt% halloysite powder, 2 wt% silane. Coupling agent.
  • the natural cellulose slurry is prepared by the following steps:
  • the halloysite powder is pretreated by the following method:
  • the capacitor has an energy density of 41.98 Wh/kg at 100 mA/g.
  • Embodiment 1 differs from Embodiment 1 in that:
  • the separator is a polypropylene composite separator prepared from the following raw material components: 85 wt% polypropylene, 10 wt% natural cellulose pulp, 4 wt% halloysite powder, 1 wt% silane. Coupling agent.
  • the natural cellulose slurry is prepared by the following steps:
  • the halloysite powder is pretreated by the following method:
  • the capacitor has an energy density of 42.05 Wh/kg at 100 mA/g.
  • the invention compares and analyzes different types of activated carbon, and selects the best activated carbon material suitable for the high energy density and high power density of the hybrid capacitor.
  • the invention compares different structures of lithium titanate materials, a lithium titanate material having high specific power performance is obtained.
  • the energy density and power density of the capacitors are 20Wh/kg and 2kW/kg, respectively, which is much higher than that of the existing electric double layer capacitors of 5-10Wh/kg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种混合型超级电容器,包括正极铝箔片、负极铝箔片、电解液和隔膜,所述正极铝箔片正反两面均涂布有正极材料,所述负极铝箔片正反两面均涂布有负极材料,所述正极材料由以下质量百分比计的组分混合制成:85-92%的活性炭、4-10%的导电剂、1-2%的分散剂和3-10%的粘结剂;所述负极材料由以下质量百分比计的组分混合制成:80-92%的钛酸锂/石墨烯复合材料、4-10%的导电剂和4-10%的粘结剂;所述钛酸锂/石墨烯复合材料中石墨烯添加量为钛酸锂的5-25%。该电容器具有能快速充放电,高比能量,高容量,循环稳定性好的特点。

Description

一种混合型超级电容器 技术领域
本发明涉及一种电容器,特别涉及一种混合型超级电容器。
背景技术
作为一种新型的储能器件,超级电容器因其在功率密度、大电流充放电和长期循环使用寿命等方面的突出表现,使其成为了国家重大科技创新、新能源领域的前沿技术之一,更被列入到《国家中长期科学发展和技术发展规划纲要》(2002-2020),具有非常重要的战略意义和现实意义。目前商业化的超级电容器主要是基于“双电层储能机理”的炭-炭双电层电容器,尽管该系列电容器在功率密度和循环使用寿命方面具有突出的表现,但是能量密度偏低的缺点却限制了其广泛应用。为此,大量的研究人员开始探讨结合锂离子电池电极材料从而在保证功率密度的前提下显著提升产品的能量密度,如锂离子电容器。在众多负极材料中,尖晶石型钛酸锂因为具有“零应变”、比容量大、充放电效率高、抗过充性能好、安全性高等优点,使得其成为一种性能优异的新型电池电容材料,在动力型锂离子电池与超级电容器领域具有广泛的应用前景。然而,受制于合适正负电极材料的选取问题,使得该新型混合型超级电容器的研究与应用受到了很大程度的限制。
发明内容
本发明的目的在于提供一种混合型超级电容器,具有能快速充放电,高比能量的特点,它容量更高、循环稳定性更长。
本发明解决其技术问题所采用的技术方案是:
一种混合型超级电容器,包括正极铝箔片、负极铝箔片、电解液和隔膜,所述正极铝箔片正反两面均涂布有正极材料,所述负极铝箔片正反两面均涂布有负极材料,所述正极材料由以下质量百分比计的组分混合制成:85-92%的活性炭、4-10%的导电剂、1-2%的分散剂和3-10%的粘结剂;所述负极材料由以下质量百分比计的组分混合制成:80-92%的钛酸锂/石墨烯复合材料、4-10%的导电剂和4-10%的粘结剂;所述钛酸锂/石墨烯复合材料中石墨烯添加量为钛酸锂的5-25%。控制钛酸锂/石墨烯复合材料中石墨烯添加量为钛酸锂的5-25%,这样能保证负极材料中容量的同时提高复合材料的导电性,过量的石墨烯不利于钛酸锂电极材料的制备,电容器使用时容易产生气泡影响性能,钛酸锂/石墨烯复合材料能减少电容器使用时气泡的产生,克服气泡对产品使用性能的影响。
作为优选,所述活性炭的比表面积大于1500m2/g,表面官能团含量在0.5meq/g以下,平均粒径在8-10μm。控制活性炭这些参数的目的是在保证电容器正极容量的同时降低电容器的漏电流、提高活性炭材料的电极密度。作为优选,所述活性炭是以椰壳或针状焦为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将质量浓度为5-10%的硅烷偶联剂无水乙醇溶液与活性炭混合30-50min,然后再加入质量浓度为8-15%的铝酸酯偶联剂无水乙醇溶液在混合30-50min,过滤,过滤物在70-80℃下干燥4-5h,再在100℃-105℃下活化1-2h,硅烷偶联剂用量为活性炭重量的0.5-1%,铝酸酯偶联剂用量为活性炭重量的1-1.5%。以椰壳或针状焦为前驱体的活性炭,孔隙适中,用于正极活性物质的性能较佳。
发明人通过长期的实验研究后发现,先通过使用硅烷偶联剂对活性炭进行第一次表面处理,硅烷偶联剂混入活性炭后,能有效渗入活性炭颗粒之间的间隙,使活性炭颗粒间相对隔离,能有效的提高活性炭的分散性,然后再通过添加铝酸酯偶联剂对处理过的活性炭进行第二次表面处理,这样能有效解决活性炭团聚的问题,使铝酸酯偶联剂有效的包裹活性炭,进一步的防止了活性炭的团聚,由于偶联剂的处理,活性炭亲油基团增加,与粘结剂等成分混合的更均匀,所得正极材料成分分布均匀,性能稳定。作为优选,所述导电剂为导电炭黑、碳纳米管、石墨烯中的一种或几种。作为优选,所述导电剂为改性碳纳米管,改性碳纳米管的制备方法步骤如下:
(1)将碳纳米管、质量浓度30-50%的二甲基甲酰胺溶液及酸溶液按照1g:10-20mL:5-15mL的料液比混合,控制温度35-45℃下搅拌混合30-50min,过滤,分别用水和无水乙醇洗涤,80-100℃下真空干燥30-60min得初级改性碳纳米管;
(2)将初级改性碳纳米管与化学剪切液按照1g:30-50mL的料液比混合,加热至150-180℃,水热反应40-60h,冷却,水洗,得次级改性碳纳米管;
(3)次级改性碳纳米管与质量浓度50-60%的高氯酸按照1g:20-30mL的料液比混合均匀,加热至60-70℃保持24小时,冷却,过滤,水洗,真空干燥后得改性碳纳米管。
本发明最优选的导电剂采用改性碳纳米管。研究表明:在包含碳纳米管的电极中,当碳纳米管的数量大到足以使碳纳米管能够彼此接触时,才 能使电极不受碳纳米管自身的电阻影响,而主要受相互之间的接触电阻影响。因此在添加碳纳米管时需要的量就会较大。典型的多壁碳纳米管的直径一般为几纳米至几十纳米,长度为几至几十微米。制备的样品多呈杂乱分布,碳纳米管之间相互缠绕难以分散,成团状的碳纳米管需要被分散成单个的碳纳米管,才能发挥其特殊性能。
步骤(1)将碳纳米管与质量浓度30-50%的二甲基甲酰胺溶液及酸溶液混合,同时辅以搅拌,以扩大碳纳米管与液体的接触面,使得碳纳米管分散均匀,质量浓度30-50%的二甲基甲酰胺溶液及酸溶液的特定溶剂组合体系,能够使得碳纳米管能在体系中分散更均匀,有效避免碳纳米管团聚。步骤(1)先将碳纳米管分散均匀,这样利于步骤(2)的剪切,将步骤(1)分散均匀的碳纳米管与本发明特定的化学剪切液水热反应,能有效切断碳纳米管,获得长度较均一(长度大约在100-150nm)左右的均一化碳纳米管,这样的碳纳米管在用于电极材料时,可以用更少的量发挥更优异的导电导热效果。
步骤(3)将步骤(2)得到的均一化碳纳米管在高氯酸中水热反应,高氯酸分子能够插层、溶胀碳纳米管束,使碳纳米管彼此分开并将其表面高反应活性的碳质副产物暴露出来,从而实现选择性功能化碳质副产物。与表面活性剂类似,这些功能化的碳质副产物具有两亲性,可改善碳纳米管与粘结剂的相互作用,协助碳纳米管分散,从而大大提高碳纳米管在制备正负极材料时的均匀分散性能。
作为优选,所述酸溶液为质量浓度70%的浓硝酸与质量浓度98%的浓硫酸 按照1-2:1的体积比的混合物;所述化学剪切液为浓度0.5-0.8moL/L的钼酸钠溶液与浓度0.3-0.5moL/L的硅钼酸溶液按照1:1的体积比的混合物。
作为优选,所述粘结剂为聚偏氟乙烯、丁苯橡胶、聚四氟乙烯中的一种或几种。
作为优选,所述分散剂为羟甲基纤维素钠或海藻酸钠,所述羟甲基纤维素钠的粘度小于300cps。羟甲基纤维素钠的粘度小于300cps,这样容易实现对炭黑、活性物质的分散,粘度过高时搅拌过程容易产热最终破坏粘结剂的结构。
作为优选,其制备方法步骤为:
(1)将活性炭、导电剂、分散剂和粘结剂加入去离子水中,经真空高速搅拌后形成正极浆料,将正极浆料均匀涂布在正极铝箔片的正反两面上,经干燥、碾压、冲切后获得正极极片,正极极片厚度为120-250μm;
(2)将钛酸锂/石墨烯复合材料、导电剂和粘结剂加入N-甲基吡咯烷酮中,真空高速搅拌后形成负极浆料,将负极浆料均匀涂布在负极铝箔片的正反两面上,经干燥、碾压、冲切后获得负极极片,负极极片厚度为50-90μm;
(3)正极极片、隔膜及负极极片组合叠片后获得电芯,将电芯置于外壳中,注入电解液,封装后获得混合型超级电容器。
作为优选,所述电芯结构中,正极极片的活性物质活性炭:负极极片的活性物质钛酸锂/石墨烯复合材料的质量比为2-8:1。作为优选,所述电芯结构中,正极极片的活性物质活性炭:负极极片的活性物质钛酸锂/石墨烯复合材料的质量比为2-8:1,正极活性物质含量过低时不能充分发挥负极材料的 理论容量,正极活性物质含量过高时则容易造成极片过厚,最终影响产品的循环稳定性。优选正极极片的活性物质活性炭:负极极片的活性物质钛酸锂/石墨烯复合材料的质量比为3-5:1。
作为优选,所述隔膜为聚丙烯复合材料隔膜,所述聚丙烯复合材料隔膜由以下原料组分制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-4wt%的埃洛石粉,1-2wt%的硅烷偶联剂。
作为优选,所述天然纤维素浆料由以下步骤制得:
(1)将竹纤维加入到质量浓度10-15%的氢氧化钠溶液中,然后300-350℃蒸煮1-2h;氢氧化钠溶液用量为每1g竹纤维使用氢氧化钠溶液5-8mL;
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取滤渣;
(3)用打浆机对滤渣进行打浆,浓缩后得到固含量为60-70wt%的天然纤维素浆料。
按上述方法制得的天然纤维素浆料中含有大量的天然纤维素,天然纤维素具有吸湿性好,热稳定性佳的特点,少量的天然纤维素与聚丙烯进行复合后,能够改善聚丙烯吸湿性和热稳定性,使得隔膜对电解液的吸收保持能力加强,从而改善产品的倍率性能和循环性能。此外,天然纤维素和聚丙烯复合后,天然纤维素产生了交联,在一定程度上也增强了隔膜的拉伸强度和抗尖刺强度。
作为优选,所述埃洛石粉经过以下方法预处理而得:
(1)称取粒径为300-500nm的埃洛石粉与质量浓度5-10%的盐酸溶液按照 1g:5-10mL的料液比混合,搅拌混匀,得到悬浊液;
(2)将步骤(1)所得悬浊液放于50-60℃水浴中进行超声波处理15-20分钟;
(3)将步骤(2)处理后的悬浊液离心分离后取固体粉末,将固体粉末用去离子水洗至中性后进行干燥;
(4)将干燥后的固体粉末500-600℃下煅烧3-5h,冷却。
埃洛石粉为一种具有纳米尺寸的中空管道的管状材料,具有良好的吸附性能,将其复合在隔膜中,能够进一步增强隔膜的吸湿性,而且埃洛石粉也同时能够提高隔膜的热稳定性能和机械强度。硅烷偶联剂能够使埃洛石粉和聚丙烯更好地相容。
经过预处理后的埃洛石粉去除了其自身结构内部的结晶水,其吸附性能和耐高温性能得到大幅提升,且同时埃洛石粉的吸附量也能到扩容。
本发明的有益效果是:通过优化不同正负电极材料的选取,从而获得容量更高、循环稳定性更长的新型混合型超级电容器。
附图说明
图1是本发明功率密度和能量密度的Ragone图。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体说明。
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方 法。
本发明所使用的正极活性材料(活性炭,市售)规格型号为:AC-1,AC-2,AC-3,AC-4,而负极活性材料(钛酸锂/石墨烯复合材料,制备方法参见CN102569769B发明专利公开的内容)规格型号为:LTO-1,LTO-2,LTO-3,LTO-4,具体材料的性能参数指标如表1和表2所示。
表1:正极活性炭主要性能参数
Figure PCTCN2015091541-appb-000001
表2:负极钛酸锂/石墨烯复合材料主要性能参数
Figure PCTCN2015091541-appb-000002
实施例1
本发明的制备过程如下:
(1)称取活性炭(AC-1)89kg、导电剂(Super P)5kg、粘结剂(SBR)5kg和分散剂(CMC)1kg,以去离子水为溶剂,依次将分散剂、导电剂、活性炭和粘结剂加入10L的真空高速拌浆机中,以3500rpm的速度将混合物进行真空高速搅拌4-6h,在此期间通过添加去离子水调节浆料的粘度,并控制浆料 的固含量在20-40%之间得正极浆料。将正极浆料采用连续涂布机的方式均匀的涂布在正极铝箔片(腐蚀箔)的正反两面上,涂布过程极片厚度控制为260μm,干燥温度为110℃,涂布速率为5m/min,将干燥后的电极采用连续碾压机在40t的压力、5m/min的碾压速率条件下进行碾压,碾压后电极厚度控制在240μm,并将上述电极冲切成(50-60)mm*(70-80)mm的正极极片。
(2)称取钛酸锂/石墨烯复合材料(LTO-1)90kg,导电剂(Super P)5kg,粘结剂(PVDF)5kg,依次按顺序加入N-甲基吡咯烷酮溶液中,通过控制溶剂的加入量使浆料的粘度和固含量分别维持在5000cps和60%,通过真空高速搅拌机在真空、3500rpm的条件下搅拌4-6h,得到负极浆料。将负极浆料采用双面连续涂布的方式涂布在负极铝箔片(腐蚀箔)上,涂布厚度、涂布速率以及干燥温度分别维持在90μm、5m/min和130℃。将上述电极经碾压、冲切后即可得到负极极片,其中碾压与冲切条件与正极制备相同,负极极片厚度控制在65μm左右。
(3)将上述正、负电极极片、PP/PE/PP型多层隔膜(美国Celgard公司产)采用“弓型”叠片方式叠成75*55*6.2mm的电芯,其中10个正极片的极耳汇集在一起超声焊接上铝极耳,10个负极极片的极耳汇集在一起超声焊接上铝极耳,极耳间距为15mm,电芯结构组装后满足正极极片的活性物质活性炭:负极极片的活性物质钛酸锂/石墨烯复合材料的质量比为2-8:1。
将电芯在65℃,-0.1MPa的条件下真空干燥24h,待电芯冷却至室温后将其放入铝塑膜外包装袋中,将包括极耳一边在内的三边进行热封口,紧 接着从剩下的一边进行电解液(LiPF6溶液,溶剂为体积比为1:1:1的EC,DEC和DMC的混合物)的注入,电解液的注入量为40g,最后将注入口进行一次热封装。
将电容器在Land充放电测试仪上(武汉晨华产,型号为BT2013C)进行2.7V/50mA(CC/CC)的化成测试,然后将该电容器进行二次封装、裁边整形处理后即得到整个超级电容器。后续倍率性能测试电流密度分别为100,200,500,1000,2000,5000mA/g。该电容器在100mA/g条件下具有41.65Wh/kg的能量密度。本发明产品功率密度和能量密度的Ragone图见图1。
实施例2
本实施例与实施例1不同之处在于:
正极材料配方:活性炭(AC-2)85kg、导电剂(Super P)4kg、粘结剂(PVDF+PTFE按照1:1的质量比混合物)10kg和分散剂(CMC,粘度小于300cps)1kg。
负极材料配方:钛酸锂/石墨烯复合材料(LTO-2)80kg,导电剂(Super P)10kg,粘结剂(PVDF+PTFE按照1:1的质量比混合物)10kg。
其它同实施例1。
该电容器在100mA/g条件下具有38.65Wh/kg的能量密度。
实施例3
本实施例与实施例1不同之处在于:
正极材料配方:活性炭(AC-3)92kg、导电剂(Super P)4kg、粘结剂(SBR)3kg 和分散剂(CMC)1kg。
负极材料配方:钛酸锂/石墨烯复合材料(LTO-3)92kg,导电剂(SuperP)4kg,粘结剂(PVDF)4kg。
其它同实施例1。
该电容器在100mA/g条件下具有43.33Wh/kg的能量密度。
实施例4
本实施例与实施例1不同之处在于:
正极材料配方:活性炭(AC-4)85kg、导电剂(SuperP+碳纳米管按照1:1的质量比混合物)10kg、粘结剂(SBR)3kg和分散剂(CMC)2kg。
负极材料配方:钛酸锂/石墨烯复合材料(LTO-4)85kg,导电剂(SuperP)7kg,粘结剂(PVDF)8kg。
其它同实施例1。
该电容器在100mA/g条件下具有40.65Wh/kg的能量密度。
实施例5
本实施例与实施例1不同之处在于:
正极材料和负极材料的导电剂均为改性碳纳米管,改性碳纳米管的制备方法步骤如下:
(1)将碳纳米管、质量浓度30%的二甲基甲酰胺溶液及酸溶液按照1g:20mL:5mL的料液比混合,控制温度35℃下搅拌混合50min,过滤,分别用水和无水乙醇洗涤,80℃下真空干燥60min得初级改性碳纳米管;酸溶液为质量浓度70%的浓硝酸与质量浓度98%的浓硫酸按照2:1的体积比的 混合物。
(2)将初级改性碳纳米管与化学剪切液按照1g:30mL的料液比混合,加热至150℃,水热反应60h,冷却,水洗,得次级改性碳纳米管;所述化学剪切液为浓度0.8moL/L的钼酸钠溶液与浓度0.5moL/L的硅钼酸溶液按照1:1的体积比的混合物。
(3)次级改性碳纳米管与质量浓度50%的高氯酸按照1g:30mL的料液比混合均匀,加热至60℃保持24小时,冷却,过滤,水洗,真空干燥后得改性碳纳米管。
其它同实施例1。
该电容器在100mA/g条件下具有42.15Wh/kg的能量密度。
实施例6
本实施例与实施例1不同之处在于:
正极材料和负极材料的导电剂均为改性碳纳米管,改性碳纳米管的制备方法步骤如下:
(1)将碳纳米管、质量浓度50%的二甲基甲酰胺溶液及酸溶液按照1g:10mL:15mL的料液比混合,控制温度45℃下搅拌混合30min,过滤,分别用水和无水乙醇洗涤,100℃下真空干燥30min得初级改性碳纳米管;酸溶液为质量浓度70%的浓硝酸与质量浓度98%的浓硫酸按照1:1的体积比的混合物。
(2)将初级改性碳纳米管与化学剪切液按照1g:50mL的料液比混合,加热至180℃,水热反应40h,冷却,水洗,得次级改性碳纳米管;所述化学 剪切液为浓度0.5moL/L的钼酸钠溶液与浓度0.3moL/L的硅钼酸溶液按照1:1的体积比的混合物。
(3)次级改性碳纳米管与质量浓度60%的高氯酸按照1g:20mL的料液比混合均匀,加热至70℃保持24小时,冷却,过滤,水洗,真空干燥后得改性碳纳米管。
其它同实施例1。
该电容器在100mA/g条件下具有41.98Wh/kg的能量密度。
实施例7
本实施例与实施例1不同之处在于:
正极材料和负极材料的导电剂均为改性碳纳米管,改性碳纳米管的制备方法步骤如下:
(1)将碳纳米管、质量浓度40%的二甲基甲酰胺溶液及酸溶液按照1g:15mL:10mL的料液比混合,控制温度40℃下搅拌混合40min,过滤,分别用水和无水乙醇洗涤,90℃下真空干燥50min得初级改性碳纳米管;酸溶液为质量浓度70%的浓硝酸与质量浓度98%的浓硫酸按照1.5:1的体积比的混合物。
(2)将初级改性碳纳米管与化学剪切液按照1g:40mL的料液比混合,加热至170℃,水热反应50h,冷却,水洗,得次级改性碳纳米管;所述化学剪切液为浓度0.6moL/L的钼酸钠溶液与浓度0.4moL/L的硅钼酸溶液按照1:1的体积比的混合物。
(3)次级改性碳纳米管与质量浓度55%的高氯酸按照1g:25mL的料液比 混合均匀,加热至65℃保持24小时,冷却,过滤,水洗,真空干燥后得改性碳纳米管。
其它同实施例1。
该电容器在100mA/g条件下具有42.53Wh/kg的能量密度。
实施例8
本实施例与实施例1不同之处在于:
隔膜采用聚丙烯复合材料隔膜,所述聚丙烯复合材料隔膜由以下原料组分制备而成:80wt%的聚丙烯,15wt%的天然纤维素浆料,3wt%的埃洛石粉,2wt%的硅烷偶联剂。
所述天然纤维素浆料由以下步骤制得:
(1)将竹纤维(市售)加入到质量浓度10%的氢氧化钠溶液中,然后300℃蒸煮2h;氢氧化钠溶液用量为每1g竹纤维使用氢氧化钠溶液8mL;
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80℃的热水中进行研磨,研磨后进行过滤,取滤渣;
(3)用打浆机对滤渣进行打浆,浓缩后得到固含量为60wt%的天然纤维素浆料。
所述埃洛石粉经过以下方法预处理而得:
(1)称取粒径为300-500nm的埃洛石粉(市售)与质量浓度5%的盐酸溶液按照1g:10mL的料液比混合,搅拌混匀,得到悬浊液;
(2)将步骤(1)所得悬浊液放于50℃水浴中进行超声波处理20分钟;
(3)将步骤(2)处理后的悬浊液离心分离后取固体粉末,将固体粉末用 去离子水洗至中性后进行干燥;
(4)将干燥后的固体粉末500℃下煅烧5h,冷却。
其它同实施例1。
该电容器在100mA/g条件下具有41.98Wh/kg的能量密度。
实施例9
本实施例与实施例1不同之处在于:
隔膜采用聚丙烯复合材料隔膜,所述聚丙烯复合材料隔膜由以下原料组分制备而成:85wt%的聚丙烯,10wt%的天然纤维素浆料,4wt%的埃洛石粉,1wt%的硅烷偶联剂。
所述天然纤维素浆料由以下步骤制得:
(1)将竹纤维(市售)加入到质量浓度15%的氢氧化钠溶液中,然后350℃蒸煮1h;氢氧化钠溶液用量为每1g竹纤维使用氢氧化钠溶液5mL;
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为90℃的热水中进行研磨,研磨后进行过滤,取滤渣;
(3)用打浆机对滤渣进行打浆,浓缩后得到固含量为70wt%的天然纤维素浆料。
所述埃洛石粉经过以下方法预处理而得:
(1)称取粒径为300-500nm的埃洛石粉(市售)与质量浓度10%的盐酸溶液按照1g:5mL的料液比混合,搅拌混匀,得到悬浊液;
(2)将步骤(1)所得悬浊液放于60℃水浴中进行超声波处理15分钟;
(3)将步骤(2)处理后的悬浊液离心分离后取固体粉末,将固体粉末用 去离子水洗至中性后进行干燥;
(4)将干燥后的固体粉末600℃下煅烧3h,冷却。
其它同实施例1。
该电容器在100mA/g条件下具有42.05Wh/kg的能量密度。
本发明一方面通过对比分析不同型号的活性炭,遴选出适合混合型电容器高能量密度与高功率密度的最佳活性炭材料。另一方面,通过对比不同结构钛酸锂材料,得到具有高比功率性能的钛酸锂材料。通过采用新型正负电极材料,使得电容器的能量密度与功率密度分别达到20Wh/kg和2kW/kg以上,远远高于现有双电层电容器的5-10Wh/kg。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (13)

  1. 一种混合型超级电容器,包括正极铝箔片、负极铝箔片、电解液和隔膜,其特征在于:所述正极铝箔片正反两面均涂布有正极材料,所述负极铝箔片正反两面均涂布有负极材料,所述正极材料由以下质量百分比计的组分混合制成:85-92%的活性炭、4-10%的导电剂、1-2%的分散剂和3-10%的粘结剂;所述负极材料由以下质量百分比计的组分混合制成:80-92%的钛酸锂/石墨烯复合材料、4-10%的导电剂和4-10%的粘结剂;所述钛酸锂/石墨烯复合材料中石墨烯添加量为钛酸锂的5-25%。
  2. 根据权利要求1所述的一种混合型超级电容器,其特征在于:所述活性炭的比表面积大于1500m2/g,表面官能团含量在0.5meq/g以下,平均粒径在8-10μm。
  3. 根据权利要求2所述的一种混合型超级电容器,其特征在于:所述活性炭是以椰壳或针状焦为前驱体的活性炭,所述活性炭表面改性处理后使用,表面改性处理的方法为:将质量浓度为5-10%的硅烷偶联剂无水乙醇溶液与活性炭混合30-50min,然后再加入质量浓度为8-15%的铝酸酯偶联剂无水乙醇溶液在混合30-50min,过滤,过滤物在70-80℃下干燥4-5h,再在100℃-105℃下活化1-2h,硅烷偶联剂用量为活性炭重量的0.5-1%,铝酸酯偶联剂用量为活性炭重量的1-1.5%。
  4. 根据权利要求1所述的一种混合型超级电容器,其特征在于:所述导电剂为导电炭黑、碳纳米管、石墨烯中的一种或几种。
  5. 根据权利要求1所述的一种混合型超级电容器,其特征在于:所述导电剂为改性碳纳米管,改性碳纳米管的制备方法步骤如下:
    (1)将碳纳米管、质量浓度30-50%的二甲基甲酰胺溶液及酸溶液按照1g:10-20mL:5-15mL的料液比混合,控制温度35-45℃下搅拌混合30-50min,过滤,分别用水和无水乙醇洗涤,80-100℃下真空干燥30-60min得初级改性碳纳米管;
    (2)将初级改性碳纳米管与化学剪切液按照1g:30-50mL的料液比混合,加热至150-180℃,水热反应40-60h,冷却,水洗,得次级改性碳纳米管;
    (3)次级改性碳纳米管与质量浓度50-60%的高氯酸按照1g:20-30mL的料液比混合均匀,加热至60-70℃保持24小时,冷却,过滤,水洗,真空干燥后得改性碳纳米管。
  6. 根据权利要求5所述的一种混合型超级电容器,其特征在于:所述酸溶液为质量浓度70%的浓硝酸与质量浓度98%的浓硫酸按照1-2:1的体积比的混合物;所述化学剪切液为浓度0.5-0.8moL/L的钼酸钠溶液与浓度0.3-0.5moL/L的硅钼酸溶液按照1:1的体积比的混合物。
  7. 根据权利要求1所述的一种混合型超级电容器,其特征在于:所述粘结剂为聚偏氟乙烯、丁苯橡胶、聚四氟乙烯中的一种或几种。
  8. 根据权利要求1所述的一种混合型超级电容器,其特征在于:所述分散剂为羟甲基纤维素钠或海藻酸钠,所述羟甲基纤维素钠的粘度小于300cps。
  9. 根据权利要求1所述的一种混合型超级电容器,其特征在于:其制备方法步骤为:
    (1)将活性炭、导电剂、分散剂和粘结剂加入去离子水中,经真空高速搅拌后形成正极浆料,将正极浆料均匀涂布在正极铝箔片的正反两面上,经 干燥、碾压、冲切后获得正极极片,正极极片厚度为120-250μm;
    (2)将钛酸锂/石墨烯复合材料、导电剂和粘结剂加入N-甲基吡咯烷酮中,真空高速搅拌后形成负极浆料,将负极浆料均匀涂布在负极铝箔片的正反两面上,经干燥、碾压、冲切后获得负极极片,负极极片厚度为50-90μm;
    (3)正极极片、隔膜及负极极片组合叠片后获得电芯,将电芯置于外壳中,注入电解液,封装后获得混合型超级电容器。
  10. 根据权利要求9所述的一种混合型超级电容器,其特征在于:所述电芯结构中,正极极片的活性物质活性炭:负极极片的活性物质钛酸锂/石墨烯复合材料的质量比为2-8:1。
  11. 根据权利要求9所述的一种混合型超级电容器,其特征在于:所述隔膜为聚丙烯复合材料隔膜,所述聚丙烯复合材料隔膜由以下原料组分制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-4wt%的埃洛石粉,1-2wt%的硅烷偶联剂。
  12. 根据权利要求11所述的一种混合型超级电容器,其特征在于:所述天然纤维素浆料由以下步骤制得:
    (1)将竹纤维加入到质量浓度10-15%的氢氧化钠溶液中,然后300-350℃蒸煮1-2h;氢氧化钠溶液用量为每1g竹纤维使用氢氧化钠溶液5-8mL;
    (2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取滤渣;
    (3)用打浆机对滤渣进行打浆,浓缩后得到固含量为60-70wt%的天然纤维素浆料。
  13. 根据权利要求11所述的一种混合型超级电容器,其特征在于:所述埃洛石粉经过以下方法预处理而得:
    (1)称取粒径为300-500nm的埃洛石粉与质量浓度5-10%的盐酸溶液按照1g:5-10mL的料液比混合,搅拌混匀,得到悬浊液;
    (2)将步骤(1)所得悬浊液放于50-60℃水浴中进行超声波处理15-20分钟;
    (3)将步骤(2)处理后的悬浊液离心分离后取固体粉末,将固体粉末用去离子水洗至中性后进行干燥;
    (4)将干燥后的固体粉末500-600℃下煅烧3-5h,冷却。
PCT/CN2015/091541 2014-12-29 2015-10-09 一种混合型超级电容器 WO2016107239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410841836.4 2014-12-29
CN201410841836.4A CN104701024A (zh) 2014-12-29 2014-12-29 一种混合型超级电容器

Publications (1)

Publication Number Publication Date
WO2016107239A1 true WO2016107239A1 (zh) 2016-07-07

Family

ID=53348044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091541 WO2016107239A1 (zh) 2014-12-29 2015-10-09 一种混合型超级电容器

Country Status (3)

Country Link
CN (1) CN104701024A (zh)
DE (2) DE202015104572U1 (zh)
WO (1) WO2016107239A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482155A (zh) * 2017-07-20 2017-12-15 湖南秒冲新能源科技有限责任公司 一种适应大功率工作的石墨烯涂层电池极耳结构及其制造方法
CN113234590A (zh) * 2021-05-18 2021-08-10 浙江大学 一种沼气制备装置及方法
CN113257583A (zh) * 2021-05-25 2021-08-13 江西理工大学 Li3V2O5-碳纳米管复合材料及其制备方法和在锂离子混合电容器中的应用
CN113270276A (zh) * 2021-05-19 2021-08-17 河北科技大学 一种超级电容器电极的制备工艺
CN113314353A (zh) * 2021-03-12 2021-08-27 浙江省林业科学研究院 基于毛竹生物活性炭电极的可降解超级电容器
CN114334476A (zh) * 2021-12-30 2022-04-12 常州创明超电材料科技有限公司 超级电容器用活性炭电极的制备方法
CN114613605A (zh) * 2020-12-04 2022-06-10 山东圣泉新能源科技有限公司 电容器极片及其制备方法、超级电容器
CN115458717A (zh) * 2022-08-18 2022-12-09 兰州大学 一种复合电极材料及其制备方法和应用
CN115710825A (zh) * 2022-12-15 2023-02-24 武汉纺织大学 一种电驱动热致变色纤维及其制备方法
CN116230423A (zh) * 2023-03-08 2023-06-06 兰州大学 可植入电容式离子二极管及其制备方法和应用
CN113871210B (zh) * 2021-08-30 2023-07-18 兰州大学 一种石墨烯纳米卷基电极材料及其制备方法与应用
CN115710825B (zh) * 2022-12-15 2024-05-31 武汉纺织大学 一种电驱动热致变色纤维及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701024A (zh) * 2014-12-29 2015-06-10 宁波南车新能源科技有限公司 一种混合型超级电容器
CN106252097B (zh) * 2016-07-28 2018-08-31 宁波中车新能源科技有限公司 一种(Li4Ti5O12-AC)/AC混合超级电容器
CN108963198A (zh) * 2017-05-22 2018-12-07 动力专家有限公司 正极、负极,其制备方法以及包括其的锂离子电池
RU175936U1 (ru) * 2017-05-31 2017-12-25 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Суперконденсатор
RU182720U1 (ru) * 2018-01-24 2018-08-29 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Гибридный суперконденсатор
CN113363082B (zh) * 2021-06-03 2023-06-09 杭州阳名新能源设备科技有限公司 一种氟改性活性炭电极表面复合处理方法及其应用
CN114203460A (zh) * 2022-02-18 2022-03-18 天津普兰能源科技有限公司 一种电容器电极的制作方法以及电容器的制作方法
CN114843452A (zh) * 2022-05-25 2022-08-02 楚能新能源股份有限公司 一种干法制片设备
CN115536481A (zh) * 2022-10-08 2022-12-30 北京理工大学 一种铝纤维增强铝/聚四氟乙烯含能材料的制备方法
CN115970648B (zh) * 2023-03-17 2023-05-09 寿光富康制药有限公司 一种用于污水处理的碳材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789315A (zh) * 2010-03-19 2010-07-28 常州康维电子科技有限公司 混合超级电容器及其制备方法
CN201838460U (zh) * 2010-03-19 2011-05-18 常州康维电子科技有限公司 混合超级电容器
US20130058008A1 (en) * 2011-09-06 2013-03-07 Samsung Electro-Mechanics Co., Ltd. Electrode active material composition and electrochemical capacitor including the same
CN103022459A (zh) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 一种石墨烯/钛酸锂复合负极材料的制备方法
CN103762089A (zh) * 2014-01-08 2014-04-30 深圳清华大学研究院 电极片及其制备方法、超级电容器
CN104701024A (zh) * 2014-12-29 2015-06-10 宁波南车新能源科技有限公司 一种混合型超级电容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569769B (zh) 2012-02-24 2014-07-09 清华大学深圳研究生院 一种钛酸锂与石墨烯复合电极材料的制备方法
CN103268827A (zh) * 2013-03-06 2013-08-28 吉林大学 一种超级电容器电极活性材料的制备方法
CN104008892A (zh) * 2014-01-28 2014-08-27 宁波南车新能源科技有限公司 一种超级电容器浆料的粘度控制方法及所用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789315A (zh) * 2010-03-19 2010-07-28 常州康维电子科技有限公司 混合超级电容器及其制备方法
CN201838460U (zh) * 2010-03-19 2011-05-18 常州康维电子科技有限公司 混合超级电容器
US20130058008A1 (en) * 2011-09-06 2013-03-07 Samsung Electro-Mechanics Co., Ltd. Electrode active material composition and electrochemical capacitor including the same
CN103022459A (zh) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 一种石墨烯/钛酸锂复合负极材料的制备方法
CN103762089A (zh) * 2014-01-08 2014-04-30 深圳清华大学研究院 电极片及其制备方法、超级电容器
CN104701024A (zh) * 2014-12-29 2015-06-10 宁波南车新能源科技有限公司 一种混合型超级电容器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482155A (zh) * 2017-07-20 2017-12-15 湖南秒冲新能源科技有限责任公司 一种适应大功率工作的石墨烯涂层电池极耳结构及其制造方法
CN114613605A (zh) * 2020-12-04 2022-06-10 山东圣泉新能源科技有限公司 电容器极片及其制备方法、超级电容器
CN113314353A (zh) * 2021-03-12 2021-08-27 浙江省林业科学研究院 基于毛竹生物活性炭电极的可降解超级电容器
CN113234590A (zh) * 2021-05-18 2021-08-10 浙江大学 一种沼气制备装置及方法
CN113234590B (zh) * 2021-05-18 2024-01-16 浙江大学 一种沼气制备装置及方法
CN113270276A (zh) * 2021-05-19 2021-08-17 河北科技大学 一种超级电容器电极的制备工艺
CN113270276B (zh) * 2021-05-19 2022-09-20 河北科技大学 一种超级电容器电极的制备工艺
CN113257583A (zh) * 2021-05-25 2021-08-13 江西理工大学 Li3V2O5-碳纳米管复合材料及其制备方法和在锂离子混合电容器中的应用
CN113871210B (zh) * 2021-08-30 2023-07-18 兰州大学 一种石墨烯纳米卷基电极材料及其制备方法与应用
CN114334476A (zh) * 2021-12-30 2022-04-12 常州创明超电材料科技有限公司 超级电容器用活性炭电极的制备方法
CN115458717A (zh) * 2022-08-18 2022-12-09 兰州大学 一种复合电极材料及其制备方法和应用
CN115710825A (zh) * 2022-12-15 2023-02-24 武汉纺织大学 一种电驱动热致变色纤维及其制备方法
CN115710825B (zh) * 2022-12-15 2024-05-31 武汉纺织大学 一种电驱动热致变色纤维及其制备方法
CN116230423A (zh) * 2023-03-08 2023-06-06 兰州大学 可植入电容式离子二极管及其制备方法和应用

Also Published As

Publication number Publication date
DE102015122890A1 (de) 2016-06-30
DE202015104572U1 (de) 2015-09-17
CN104701024A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2016107239A1 (zh) 一种混合型超级电容器
CN107799699B (zh) 一种黏土矿物复合锂电池隔膜及其制备方法
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
WO2016110134A1 (zh) 一种基于复合正、负极材料的新型电池电容
JP5864687B2 (ja) グラフェン基複合負極材料の製造方法及び製造された負極材料とリチウムイオン二次電池
JP2021182554A (ja) ケイ素系負極材料、その製造方法、およびリチウムイオン二次電池における使用
JP5494487B2 (ja) 鉛蓄電池用電極および鉛蓄電池
JP5412909B2 (ja) 鉛蓄電池用電極および鉛蓄電池
CN105489898B (zh) 导电水性粘结剂及其制备方法、锂离子电池
CN108630920A (zh) 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
US20150162617A1 (en) Si@C core/shell Nanomaterials for High Performance Anode of Lithium Ion Batteries
JP6922035B2 (ja) リチウム二次電池電極の製造方法
WO2009119582A1 (ja) 鉛蓄電池用電極およびその利用
CN102544502A (zh) 用于锂二次电池的正极负极导电添加剂及其制备方法和相关锂二次电池的制备方法
WO2016110108A1 (zh) 一种纳米级锂离子复合正极的等离子喷射制备方法
CN108039449B (zh) 锂离子电池的制备方法及锂离子电池
CN105977490A (zh) 一种由氧化石墨烯改性制备石墨烯复合负极材料的方法
WO2016090958A1 (zh) 一种混合型电容器负极浆料制备方法
WO2016110109A1 (zh) 一种锂离子电容电池的负压阶梯式化成方法
CN108134044B (zh) 一种高安全性锂离子电池负极材料及其制备方法
CN106356556B (zh) 一种使用寿命长的锂离子动力电池及其制备方法
CN111435732B (zh) 锂离子电池的负极材料及其制备方法和锂离子电池
CN114335477B (zh) 一种硅基材料及含有该材料的电池
CN109961967A (zh) 锂离子电容器及其制备方法
CN109428064A (zh) 一种高性能锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874924

Country of ref document: EP

Kind code of ref document: A1