WO2016106786A1 - 多晶硅基板及其制造方法 - Google Patents

多晶硅基板及其制造方法 Download PDF

Info

Publication number
WO2016106786A1
WO2016106786A1 PCT/CN2015/070103 CN2015070103W WO2016106786A1 WO 2016106786 A1 WO2016106786 A1 WO 2016106786A1 CN 2015070103 W CN2015070103 W CN 2015070103W WO 2016106786 A1 WO2016106786 A1 WO 2016106786A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
amorphous silicon
metal catalyst
annealing
Prior art date
Application number
PCT/CN2015/070103
Other languages
English (en)
French (fr)
Inventor
唐丽娟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,656 priority Critical patent/US9490124B2/en
Publication of WO2016106786A1 publication Critical patent/WO2016106786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular to a polycrystalline silicon substrate and a method of fabricating the same.
  • the methods for crystallizing amorphous silicon thin films into polycrystalline silicon include solid phase crystallization (SPC), metal induced crystallization (MIC), metal lateral induced crystallization (MILC), rapid thermal annealing (RTA), and excimer lasers. Annealing (ELA).
  • SPC solid phase crystallization
  • MIC metal induced crystallization
  • MILC metal lateral induced crystallization
  • RTA rapid thermal annealing
  • ELA excimer lasers.
  • the MIC method and the MILC method can obtain fine polycrystalline silicon crystals, and therefore, the usage rate is very high.
  • the MIC method and the MILC method may have a metal catalyst residual phenomenon in the crystallization process, which may cause a large leakage current of the semiconductor layer in the thin film transistor, affecting the performance of the thin film transistor.
  • the present invention provides a polycrystalline silicon substrate and a method of manufacturing the same, which can reduce the residual phenomenon of metal ions of the metal catalyst, reduce the leakage current of the semiconductor layer in the thin film transistor, and improve the performance of the thin film transistor.
  • the present invention provides a method for fabricating a polycrystalline silicon substrate, the method comprising: providing a substrate; sequentially forming an amorphous silicon layer, an insulating layer, and a metal catalyst layer on the substrate; Annealing once, so that metal ions in the metal catalyst layer are extended downward to the amorphous silicon layer through the insulating layer, thereby inducing crystallization of amorphous silicon in the amorphous silicon layer; Insulating layer and the metal catalyst layer; performing secondary annealing on the substrate to laterally diffuse the metal ions along the amorphous silicon layer, thereby inducing amorphous silicon in the amorphous silicon layer Performing secondary crystallization and forming a polysilicon layer; wherein, the step of performing an annealing on the substrate further comprises: patterning the insulating layer and the metal catalyst layer; wherein the step of performing the second annealing on the substrate further comprises: The polysilicon layer is patterned.
  • the step of sequentially forming an amorphous silicon layer, an insulating layer, and a metal catalyst layer on the substrate further includes: forming a buffer layer on the substrate; forming an amorphous silicon layer and insulating on the substrate in sequence
  • the layer and the metal catalyst layer include: sequentially forming the amorphous silicon on the buffer layer a layer, the insulating layer, and the metal catalyst layer.
  • the present invention provides another method for fabricating a polycrystalline silicon substrate, the method comprising: providing a substrate; forming an amorphous silicon layer, an insulating layer, and a metal catalyst layer on the substrate; Performing an annealing to cause metal ions in the metal catalyst layer to extend downward through the insulating layer to the amorphous silicon layer, thereby inducing crystallization of amorphous silicon in the amorphous silicon layer; The insulating layer and the metal catalyst layer; performing secondary annealing on the substrate to laterally diffuse the metal ions along the amorphous silicon layer, thereby inducing amorphous in the amorphous silicon layer The silicon is subjected to secondary crystallization and a polysilicon layer is formed.
  • the temperature of one annealing is 500-600 degrees Celsius.
  • the temperature of the secondary annealing is 550-650 degrees Celsius.
  • the method further comprises:
  • the step of sequentially forming an amorphous silicon layer, an insulating layer, and a metal catalyst layer on the substrate includes:
  • the amorphous silicon layer, the insulating layer, and the metal catalyst layer are sequentially formed on the buffer layer.
  • the buffer layer is at least one of silicon oxide, silicon nitride, and silicon oxynitride or any combination thereof.
  • the insulating layer is at least one of silicon oxide, silicon nitride, and silicon oxynitride or any combination thereof.
  • the metal catalyst layer is at least one or any combination of Ni, Pd, Ti, Ag, Au, Al, Sn, Sb, Cr, and Mo.
  • the method further comprises:
  • the insulating layer and the metal catalyst layer are patterned.
  • the method further comprises:
  • the polysilicon layer is patterned.
  • the present invention further provides a polycrystalline silicon substrate, which is fabricated by a method of manufacturing a polycrystalline silicon substrate, the manufacturing method comprising: providing a substrate; forming an amorphous silicon layer and insulating on the substrate in sequence a layer and a metal catalyst layer; annealing the substrate once, so that metal ions in the metal catalyst layer extend downward through the insulating layer to the amorphous silicon layer, thereby inducing the amorphous silicon layer Amorphous silicon is subjected to primary crystallization; the insulating layer and the metal catalyst layer are removed Performing secondary annealing on the substrate to laterally diffuse the metal ions along the amorphous silicon layer, thereby inducing secondary crystallization of amorphous silicon in the amorphous silicon layer, and forming a polysilicon layer .
  • the temperature of one annealing is 500-600 degrees Celsius.
  • the temperature of the secondary annealing is 550-650 degrees Celsius.
  • the step of sequentially forming an amorphous silicon layer, an insulating layer, and a metal catalyst layer on the substrate further includes: forming a buffer layer on the substrate; forming an amorphous silicon layer and insulating on the substrate in sequence
  • the step of the layer and the metal catalyst layer includes sequentially forming the amorphous silicon layer, the insulating layer, and the metal catalyst layer on the buffer layer.
  • the buffer layer is at least one of silicon oxide, silicon nitride, and silicon oxynitride or any combination thereof.
  • the insulating layer is at least one of silicon oxide, silicon nitride, and silicon oxynitride or any combination thereof.
  • the metal catalyst layer is at least one or any combination of Ni, Pd, Ti, Ag, Au, Al, Sn, Sb, Cr, and Mo.
  • the method further comprises: patterning the insulating layer and the metal catalyst layer.
  • the step of performing the second annealing on the substrate further includes: patterning the polysilicon layer.
  • the beneficial effects of the present invention are: in the prior art, after the amorphous silicon layer, the insulating layer and the metal catalyst layer are sequentially formed on the substrate, the substrate is annealed once to make the metal catalyst layer
  • the metal ions extend downward to the amorphous silicon layer through the insulating layer, thereby inducing the amorphous silicon in the amorphous silicon layer to undergo primary crystallization, then removing the insulating layer and the metal catalyst layer, and second annealing the substrate to make the metal
  • the ions are laterally diffused along the amorphous silicon layer, thereby inducing secondary crystallization of the amorphous silicon in the amorphous silicon layer, and forming a polysilicon layer.
  • FIG. 1 is a flow chart of a method for fabricating a polycrystalline silicon substrate according to an embodiment of the present invention
  • FIG. 2 is a process flow diagram corresponding to the method shown in FIG. 1;
  • FIG. 3 is a flowchart of a method for manufacturing a TFT switch tube according to an embodiment of the present invention
  • Figure 4 is a process flow diagram corresponding to the method shown in Figure 3;
  • FIG. 5 is a schematic structural diagram of a TFT switch tube according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for manufacturing a polysilicon substrate according to an embodiment of the present invention. As shown in FIG. 1, the manufacturing method of the present invention includes the following steps:
  • Step S1 providing a substrate 11.
  • the material of the substrate 11 may be glass, plastic or steel.
  • the substrate 11 is also subjected to cleaning, drying, and the like to ensure the cleanliness of the substrate 11.
  • Step S2 The amorphous silicon layer 12, the insulating layer 13, and the metal catalyst layer 14 are sequentially formed on the substrate 11.
  • the buffer layer 15 is also formed on the substrate 11 before this step.
  • the buffer layer 15 is at least one or any combination of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiOxNy).
  • the amorphous silicon layer 12, the insulating layer 13, and the metal catalyst layer 14 are sequentially formed on the buffer layer 15.
  • the insulating layer 13 is an oxide and/or a nitride. Specifically, the insulating layer 13 is at least one of silicon oxide, silicon nitride, and silicon oxynitride or any combination thereof.
  • the metal catalyst layer 14 is nickel (Ni), palladium (Pd), titanium (Ti), silver (Ag), gold (Au), aluminum (Al), tin (Sn), bismuth (Sb), chromium (Cr), and At least one or any combination of molybdenum (Mo).
  • Step S3 The substrate 11 is annealed once, so that the metal ions 141 in the metal catalyst layer 14 are extended downward to the amorphous silicon layer 12 via the insulating layer, thereby inducing the amorphous silicon in the amorphous silicon layer 12 to undergo primary crystallization.
  • the metal catalyst layer 14 is also patterned before the substrate 11 is annealed in this step.
  • the concentration of the diffused metal ion 141 can be reduced.
  • thermal annealing can be achieved by a CVD (Chemical Vapor Deposition) method or an RTA (rapid thermal annealing) method.
  • CVD Chemical Vapor Deposition
  • RTA rapid thermal annealing
  • the metal ions 141 in the metal catalyst layer 14 diffuse downward to the amorphous silicon layer 12 under heating, and the metal ions mainly induce amorphous by the principle of SGS or MIC (metal induced crystallization).
  • the amorphous silicon in the silicon layer 12 is subjected to primary crystallization.
  • the temperature of one annealing in this step is 500-600 degrees Celsius.
  • Step S4 The insulating layer 13 and the metal catalyst layer 14 are removed.
  • the insulating layer 13 and the metal catalyst layer 14 are preferably removed by etching.
  • Step S5 The substrate 11 is subjected to secondary annealing to laterally diffuse the metal ions 141 along the amorphous silicon layer 12, thereby inducing secondary crystallization of the amorphous silicon in the amorphous silicon layer 12, and forming the polysilicon layer 121.
  • the metal ions 141 will continuously react with the silicon atoms in the amorphous silicon to form a metal silicide, crystallizing the amorphous silicon, and the metal ions 141 will only The reaction of silicon atoms in amorphous silicon does not react with silicon atoms in polycrystalline silicon, which is the principle of MILC (metal-induced lateral crystallization). Therefore, based on the MILC principle, this step performs secondary thermal annealing on the substrate 11, specifically, using the MILC principle to cause the metal ions 141 to continue to induce secondary crystallization of the amorphous silicon in the amorphous silicon layer 12. The crystal grains gradually grow, and the metal ions diffuse toward the lateral direction (ie, the edge) of the amorphous silicon layer 12 while the crystal grains grow. Thus, most of the metal ions 141 eventually gather on the edges of the amorphous silicon layer 12.
  • the temperature of the secondary annealing is 550-650 degrees Celsius.
  • the polycrystalline silicon layer 121 formed by the crystal is further patterned, specifically, the portion of the edge of the polysilicon layer 121 is removed, thereby The metal ions 141 diffused to the edge of the polysilicon layer 121 are removed, thereby achieving the effect of reducing metal ion residue.
  • the embodiment of the invention further provides a method for manufacturing a TFT switch tube, which is specifically shown in FIG. 3 and FIG. 4 .
  • 3 is a flow chart of a method of manufacturing a TFT switch tube
  • FIG. 4 is a manufacturing process diagram corresponding to the method shown in FIG.
  • a method for manufacturing a TFT (Thin Film Transistor) switch tube includes the following steps:
  • Step S10 forming a polysilicon substrate 100.
  • the buffer layer 15 and the polysilicon layer 121 are sequentially formed on the substrate 11.
  • the specific formation process of the polysilicon substrate 100 is as described above, and details are not described herein again.
  • Step S11 A gate insulating layer (GI) 101, a gate electrode 102, and an inter layer insulate (ILD) 103 are sequentially formed on the polysilicon substrate 100.
  • GI gate insulating layer
  • ILD inter layer insulate
  • Step S12 a source 104 and a drain 105 are formed on the interlayer insulating layer 103, and the source 104 and the drain 105 are electrically connected to the polysilicon substrate through the via M1, respectively.
  • the invention also provides a TFT switch tube based on the method described above, please refer to FIG. 5 for details.
  • the TFT switch 10 provided by the embodiment of the present invention includes a polysilicon substrate 100, a gate insulating layer 101, a gate 102, an interlayer insulating layer 103, a source 104, and a drain 105.
  • the polycrystalline silicon substrate 100 is made by the manufacturing method described in the foregoing embodiments.
  • the polycrystalline silicon substrate 100 includes a substrate 11, a buffer layer 15, and a polysilicon layer 121.
  • the buffer layer 15 is disposed on the substrate 11, and the polysilicon layer 121 is disposed on the buffer layer 15.
  • the gate insulating layer 101, the gate electrode 102, and the interlayer insulating layer 103 are sequentially formed on the polysilicon substrate 100.
  • the source 104 and the drain 105 are disposed on the interlayer insulating layer 103, and are electrically connected through the via hole M1 and the polysilicon layer 121 passing through the gate insulating layer 101 and the interlayer insulating layer 103.
  • the present invention can reduce the residual phenomenon of the metal catalyst when forming the polysilicon layer, reduce the leakage current of the semiconductor layer in the thin film transistor, and thereby improve the performance of the thin film transistor.

Abstract

一种多晶硅基板及其制造方法。方法包括:提供一基板(11);在基板上依次形成非晶硅层(12)、绝缘层(13)以及金属催化剂层(14);对基板进行一次退火,以使金属催化剂层中的金属离子经绝缘层向下扩展至非晶硅层,进而诱导非晶硅层中的非晶硅进行一次结晶;移除绝缘层以及金属催化剂层;对基板进行二次退火,以使金属离子沿非晶硅层进行侧向扩散,进而诱导非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。通过上述方式,可以在形成多晶硅层时减少金属催化剂残留现象,降低薄膜晶体管中半导体层的漏电流,从而提高薄膜晶体管的性能。

Description

多晶硅基板及其制造方法 【技术领域】
本发明涉及半导体制造技术领域,特别是涉及一种多晶硅基板及其制造方法。
【背景技术】
目前,将非晶硅薄膜结晶成多晶硅的方法主要有固相晶化(SPC)、金属诱导晶化(MIC)、金属侧向诱导晶化(MILC)、快速热退火(RTA)和准分子激光退火(ELA)。其中,MIC方法和MILC方法能够获得精细的多晶硅晶体,因此,使用率非常高。但MIC方法和MILC方法在结晶过程中会存在金属催化剂残留现象,从而会导致薄膜晶体管中半导体层的漏电流很大,影响薄膜晶体管的性能。
【发明内容】
有鉴于此,本发明提供一种多晶硅基板及其制造方法,能够减小金属催化剂的金属离子的残留现象,降低薄膜晶体管中半导体层的漏电流,从而提高薄膜晶体管的性能。
为解决上述问题,本发明提供了一种多晶硅基板的制造方法,该制造方法包括:提供一基板;在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;移除所述绝缘层以及所述金属催化剂层;对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层;其中,对基板进行一次退火的步骤之前进一步包括:对绝缘层以及金属催化剂层进行图案化;其中,对所述基板进行二次退火的步骤之后进一步包括:对所述多晶硅层进行图案化。
其中,在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:在所述基板上形成缓冲层;所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:在所述缓冲层上依次形成所述非晶硅 层、所述绝缘层以及所述金属催化剂层。
为解决上述问题,本发明提供了另一种多晶硅基板的制造方法,该制造方法包括:提供一基板;在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;移除所述绝缘层以及所述金属催化剂层;对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。
其中,一次退火的温度为500-600摄氏度。
其中,二次退火的温度为550-650摄氏度。
其中,在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:
在所述基板上形成缓冲层;
所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:
在所述缓冲层上依次形成所述非晶硅层、所述绝缘层以及所述金属催化剂层。
其中,缓冲层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
其中,绝缘层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
其中,金属催化剂层为Ni、Pd、Ti、Ag、Au、Al、Sn、Sb、Cr和Mo至少一种或任意组合。
其中,对所述基板进行一次退火的步骤之前进一步包括:
对所述绝缘层以及所述金属催化剂层进行图案化。
其中,对所述基板进行二次退火的步骤之后进一步包括:
对所述多晶硅层进行图案化。
为解决上述问题,本发明又提供了一种多晶硅基板,该多晶硅基板由多晶硅基板的制造方法制成,所述制造方法包括:提供一基板;在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;移除所述绝缘层以及所述金属催化剂层 ;对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。
其中,一次退火的温度为500-600摄氏度。
其中,二次退火的温度为550-650摄氏度。
其中,在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:在所述基板上形成缓冲层;所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:在所述缓冲层上依次形成所述非晶硅层、所述绝缘层以及所述金属催化剂层。
其中,缓冲层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
其中,绝缘层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
其中,金属催化剂层为Ni、Pd、Ti、Ag、Au、Al、Sn、Sb、Cr和Mo至少一种或任意组合。
其中,对所述基板进行一次退火的步骤之前进一步包括:对所述绝缘层以及所述金属催化剂层进行图案化。
其中,对所述基板进行二次退火的步骤之后进一步包括:对所述多晶硅层进行图案化。
通过上述方案,本发明的有益效果是:区域别于现有技术,本发明在基板上依次形成非晶硅层、绝缘层以及金属催化剂层后,对基板进行一次退火,以使金属催化剂层中的金属离子经绝缘层向下扩展至非晶硅层,进而诱导非晶硅层中的非晶硅进行一次结晶,然后移除绝缘层以及金属催化剂层,对基板进行二次退火,以使金属离子沿非晶硅层进行侧向扩散,进而诱导非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。由此可使得大部分的金属离子最终会聚在多晶硅层的两端的边缘上,使得后续将多晶硅图形化之后,可以去掉大部分的金属离子,可达到降低金属离子的残留现象,降低薄膜晶体管中半导体层的漏电流,从而提高薄膜晶体管的性能。
【附图说明】
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明实施例提供的一种多晶硅基板的制造方法的流程图;
图2是对应图1所示的方法的工艺制程图;
图3本发明实施例提供的一种TFT开关管的制造方法的流程图;
图4是对应图3所示的方法的工艺制程图;
图5是本发明实施例提供的一种TFT开关管的结构示意图。
【具体实施方式】
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一区域分实施方式,而不是全区域实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
请参阅图1,图1是本发明实施例提供的一种多晶硅基板的制造方法的流程图。如图1所示,本发明的制造方法包括以下步骤:
步骤S1:提供一基板11。
其中,基板11的材质可以为玻璃、塑胶或者钢铁。本步骤还会对基板11进行清洗、烘干等工序,以保证基板11的干净度。
步骤S2:在基板11上依次形成非晶硅层12、绝缘层13以及金属催化剂层14。
其中,在本步骤之前还会在基板11上形成缓冲层15。缓冲层15为氧化硅(SiOx)、氮化硅(SiNx)和氮氧化硅(SiOxNy)中的至少一种或任意组合。
本步骤具体为在缓冲层15上依次形成非晶硅层12、绝缘层13以及金属催化剂层14。其中,绝缘层13为氧化物和/或氮化物,具体为绝缘层13为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。金属催化剂层14为镍(Ni)、钯(Pd)、钛(Ti)、银(Ag)、金(Au)、铝(Al)、锡(Sn)、锑(Sb)、铬(Cr)和钼(Mo)中的至少一种或任意组合。
步骤S3:对基板11进行一次退火,以使金属催化剂层14中的金属离子141经绝缘层向下扩展至非晶硅层12,进而诱导非晶硅层12中的非晶硅进行一次结晶。
在本步骤对基板11进行一次退火之前还对金属催化剂层14进行图案化。可以减少扩散的金属离子141浓度。
本步骤可通过CVD(Chemical Vapor Deposition,化学气相沉积)方式或者RTA(rapid thermal annealing,快速热退火)方式实现热退火。使得一段时间内,金属催化剂层14中的金属离子141在加热的情况下向下扩散至非晶硅层12,金属离子主要利用SGS或MIC(metal induced crystallization、金属诱导晶化)原理诱导非晶硅层12中的非晶硅进行一次结晶。
其中,本步骤的一次退火的温度为500-600摄氏度。
步骤S4:移除绝缘层13以及金属催化剂层14。优选通过蚀刻的方式移除绝缘层13以及金属催化剂层14。
步骤S5:对基板11进行二次退火,以使金属离子141沿非晶硅层12进行侧向扩散,进而诱导非晶硅层12中的非晶硅进行二次结晶,并形成多晶硅层121。
因为非晶硅层12中的非晶硅的活化能较低,金属离子141会不断的与非晶硅中的硅原子反应生成金属硅化物,使非晶硅结晶,且金属离子141只会与非晶硅中的硅原子反应,不会与多晶硅中的硅原子反应,这就是MILC(metal-induced lateral crystallization,金属横向诱导非晶硅晶化)的原理。因此,基于MILC原理,本步骤对基板11进行二次热退火,具体为利用MILC原理使得金属离子141继续诱导非晶硅层12中的非晶硅进行二次结晶。晶粒逐渐长大,在晶粒长大的同时,金属离子向非晶硅层12的侧向(即边缘)扩散。这样大多数金属离子141最终会聚集到非晶硅层12的边缘上。
其中,二次退火的温度为550-650摄氏度。
本发明在对基板11进行了二次退火,以完成非晶硅的二次结晶之后,还进一步对结晶形成的多晶硅层121进行图案化,具体为去掉多晶硅层121边缘的部分,由此可以将扩散到多晶硅层121边缘的金属离子141去除,从而达到了减少金属离子残留的效果。
本发明实施例还提供了一种TFT开关管的制造方法,具体请参阅图3和图4所示。其中,图3是TFT开关管的制造方法的流程图,图4是对应图3所示的方法的制造工艺图。
如图3和图4所示,TFT(Thin Film Transistor,薄膜晶体管)开关管的制造方法包括以下步骤:
步骤S10:形成一多晶硅基板100。
其中,具体为在基板11上依次形成缓冲层15和多晶硅层121。其中,多晶硅基板100的具体形成过程如前文所述,在此不再赘述。多晶硅基板100
步骤S11:在多晶硅基板100上依次形成栅极绝缘层(Gate insulate,GI)101、栅极102以及层间绝缘层(inter layer insulate,ILD)103。
步骤S12:在层间绝缘层103上形成源极104和漏极105,并且源极104和漏极105分别通过通孔M1与多晶硅基板电连接。
本发明还提供基于前文所述的方法一种TFT开关管,具体请参阅图5。
如图5所示,本发明实施例提供的TFT开关管10包括多晶硅基板100、栅极绝缘层101、栅极102、层间绝缘层103、源极104和漏极105。
其中,多晶硅基板100由前文实施例所述的制造方法制成。多晶硅基板100包括基板11、缓冲层15以及多晶硅层121。缓冲层15设置在基板11上,多晶硅层121设置在缓冲层15上。栅极绝缘层101、栅极102、层间绝缘层103依次形成在多晶硅基板100上。源极104和漏极105设置在层间绝缘层103上,并通过穿过栅极绝缘层101和层间绝缘层103的通孔M1和多晶硅层121电连接。
综上所述,本发明可以在形成多晶硅层时减少金属催化剂残留现象,降低薄膜晶体管中半导体层的漏电流,从而提高薄膜晶体管的性能。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种多晶硅基板的制造方法,其中,所述制造方法包括:
    提供一基板;
    在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;
    对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;
    移除所述绝缘层以及所述金属催化剂层;
    对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层;
    其中,所述对所述基板进行一次退火的步骤之前进一步包括:
    对所述金属催化剂层进行图案化;
    对所述基板进行二次退火的步骤之后进一步包括:
    对所述多晶硅层进行图案化。
  2. 根据权利要求1所述的制造方法,其中,所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:
    在所述基板上形成缓冲层;
    所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:
    在所述缓冲层上依次形成所述非晶硅层、所述绝缘层以及所述金属催化剂层。
  3. 一种多晶硅基板的制造方法,其中,所述制造方法包括:
    提供一基板;
    在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;
    对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;
    移除所述绝缘层以及所述金属催化剂层;
    对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。
  4. 根据权利要求3所述的制造方法,其中,所述一次退火的温度为500-600摄氏度。
  5. 根据权利要求3所述的制造方法,其中,所述二次退火的温度为550-650摄氏度。
  6. 根据权利要求3所述的制造方法,其中,所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:
    在所述基板上形成缓冲层;
    所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:
    在所述缓冲层上依次形成所述非晶硅层、所述绝缘层以及所述金属催化剂层。
  7. 根据权利要求6所述的制造方法,其中,所述缓冲层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
  8. 根据权利要求3所述的制造方法,其中,所述绝缘层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
  9. 根据权利要求3所述的制造方法,其中,所述金属催化剂层为Ni、Pd、Ti、Ag、Au、Al、Sn、Sb、Cr和Mo中的至少一种或任意组合。
  10. 根据权利要求3所述的制造方法,其中,所述对所述基板进行一次退火的步骤之前进一步包括:
    对所述金属催化剂层进行图案化。
  11. 根据权利要求3所述的制造方法,其中,所述对所述基板进行二次退火的步骤之后进一步包括:
    对所述多晶硅层进行图案化。
  12. 一种多晶硅基板,其中,所述多晶硅基板由多晶硅基板的制造方法制成,所述制造方法包括:
    提供一基板;
    在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层;
    对所述基板进行一次退火,以使所述金属催化剂层中的金属离子经所述绝缘层向下扩展至所述非晶硅层,进而诱导所述非晶硅层中的非晶硅进行一次结晶;
    移除所述绝缘层以及所述金属催化剂层;
    对所述基板进行二次退火,以使所述金属离子沿所述非晶硅层进行侧向扩散,进而诱导所述非晶硅层中的非晶硅进行二次结晶,并形成多晶硅层。
  13. 根据权利要求12所述的多晶硅基板,其中,所述一次退火的温度为500-600摄氏度。
  14. 根据权利要求12所述的多晶硅基板,其中,所述二次退火的温度为550-650摄氏度。
  15. 根据权利要求12所述的多晶硅基板,其中,所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤之前进一步包括:
    在所述基板上形成缓冲层;
    所述在所述基板上依次形成非晶硅层、绝缘层以及金属催化剂层的步骤包括:
    在所述缓冲层上依次形成所述非晶硅层、所述绝缘层以及所述金属催化剂层。
  16. 根据权利要求15所述的多晶硅基板,其中,所述缓冲层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
  17. 根据权利要求12所述的多晶硅基板,其中,所述绝缘层为氧化硅、氮化硅和氮氧化硅中的至少一种或任意组合。
  18. 根据权利要求12所述的多晶硅基板,其中,所述金属催化剂层为N i、Pd、Ti、Ag、Au、Al、Sn、Sb、Cr和Mo中的至少一种或任意组合。
  19. 根据权利要求12所述的多晶硅基板,其中,所述对所述基板进行一次退火的步骤之前进一步包括:
    对所述金属催化剂层进行图案化。
  20. 根据权利要求12所述的多晶硅基板,其中,所述对所述基板进行二次退火的步骤之后进一步包括:
    对所述多晶硅层进行图案化。
PCT/CN2015/070103 2014-12-30 2015-01-05 多晶硅基板及其制造方法 WO2016106786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,656 US9490124B2 (en) 2014-12-30 2015-01-05 Polycrystalline silicon substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410850901.XA CN104538350A (zh) 2014-12-30 2014-12-30 多晶硅基板及其制造方法
CN201410850901.X 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016106786A1 true WO2016106786A1 (zh) 2016-07-07

Family

ID=52853854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070103 WO2016106786A1 (zh) 2014-12-30 2015-01-05 多晶硅基板及其制造方法

Country Status (2)

Country Link
CN (1) CN104538350A (zh)
WO (1) WO2016106786A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727525A (zh) * 2005-03-04 2006-02-01 中国科学院长春光学精密机械与物理研究所 一种制备多晶硅的方法
CN1758447A (zh) * 2004-10-05 2006-04-12 三星Sdi株式会社 薄膜晶体管及其制造方法
CN1889232A (zh) * 2005-06-30 2007-01-03 中华映管股份有限公司 多晶硅的制造方法
CN101110365A (zh) * 2006-05-18 2008-01-23 三星Sdi株式会社 制造pmos薄膜晶体管的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666564B1 (ko) * 2004-08-04 2007-01-09 삼성에스디아이 주식회사 박막트랜지스터의 제조 방법
KR100839735B1 (ko) * 2006-12-29 2008-06-19 삼성에스디아이 주식회사 트랜지스터, 이의 제조 방법 및 이를 구비한 평판 표시장치
US8334536B2 (en) * 2007-03-16 2012-12-18 Samsung Display Co., Ltd. Thin film transistor, organic light emitting diode display device having the same, flat panel display device, and semiconductor device, and methods of fabricating the same
KR20080111693A (ko) * 2007-06-19 2008-12-24 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조 방법, 이를 이용하여 형성된박막트랜지스터, 그의 제조방법, 및 이를 포함하는유기전계발광표시장치
KR100889627B1 (ko) * 2007-08-23 2009-03-20 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 구비한유기전계발광표시장치
KR100965260B1 (ko) * 2008-01-25 2010-06-22 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법 및 이를 구비한유기전계발광표시장치
KR101049802B1 (ko) * 2009-11-20 2011-07-15 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조방법, 박막트랜지스터, 그를 구비하는 유기전계발광표시장치 및 그들의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758447A (zh) * 2004-10-05 2006-04-12 三星Sdi株式会社 薄膜晶体管及其制造方法
CN1727525A (zh) * 2005-03-04 2006-02-01 中国科学院长春光学精密机械与物理研究所 一种制备多晶硅的方法
CN1889232A (zh) * 2005-06-30 2007-01-03 中华映管股份有限公司 多晶硅的制造方法
CN101110365A (zh) * 2006-05-18 2008-01-23 三星Sdi株式会社 制造pmos薄膜晶体管的方法

Also Published As

Publication number Publication date
CN104538350A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
US7361566B2 (en) Method of forming poly-silicon thin film transistors
TWI492315B (zh) 低溫多晶矽薄膜晶體管製造方法
KR100836744B1 (ko) 비정질 실리콘의 주울 가열 결정화 방법
WO2017008368A1 (zh) Tft基板的制作方法及制得的tft基板
KR100666564B1 (ko) 박막트랜지스터의 제조 방법
KR101084233B1 (ko) 박막트랜지스터 및 그 제조 방법
WO2015165164A1 (zh) 低温多晶硅薄膜晶体管及其制作方法、阵列基板和显示装置
WO2016206239A1 (zh) 低温多晶硅薄膜晶体管及其制备方法
WO2015180450A1 (zh) 低温多晶硅薄膜晶体管及其制备方法和显示器件
WO2017140036A1 (zh) 低温多晶硅薄膜晶体管及其制造方法
WO2017070868A1 (zh) N型tft的制作方法
WO2014169544A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
KR101117643B1 (ko) 비정질 실리콘막의 결정화 방법, 그리고 박막 트랜지스터 및 이의 제조 방법
CN105655404B (zh) 低温多晶硅薄膜晶体管及其制作方法
TW201705299A (zh) 薄膜電晶體的製造方法
WO2015192558A1 (zh) 低温多晶硅薄膜晶体管、其制备方法及阵列基板与显示装置
WO2016065768A1 (zh) 低温多晶硅的制作方法及tft基板的制作方法
WO2019000508A1 (zh) 薄膜晶体管阵列基板及其制备方法、显示装置
WO2014153841A1 (zh) 低温多晶硅薄膜制作方法、薄膜晶体管制作方法
KR20090042122A (ko) 금속유도 측면 결정화를 이용한 하부 게이트 구조를 갖는다결정 실리콘 박막 트랜지스터 및 그의 제조방법
US9490124B2 (en) Polycrystalline silicon substrate and manufacturing method thereof
WO2016106786A1 (zh) 多晶硅基板及其制造方法
WO2017206215A1 (zh) 低温多晶硅薄膜晶体管的制作方法
WO2020134937A1 (zh) 薄膜晶体管的制作方法和显示面板
KR100669499B1 (ko) 금속유도 측면결정화법을 이용한 비정질 실리콘 박막의결정화 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433656

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874479

Country of ref document: EP

Kind code of ref document: A1