WO2016104232A1 - 導電性ペースト - Google Patents

導電性ペースト Download PDF

Info

Publication number
WO2016104232A1
WO2016104232A1 PCT/JP2015/085010 JP2015085010W WO2016104232A1 WO 2016104232 A1 WO2016104232 A1 WO 2016104232A1 JP 2015085010 W JP2015085010 W JP 2015085010W WO 2016104232 A1 WO2016104232 A1 WO 2016104232A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
mass
paste according
parts
conductive
Prior art date
Application number
PCT/JP2015/085010
Other languages
English (en)
French (fr)
Inventor
塩井 直人
齊藤 寛
真名美 中石
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to KR1020177015868A priority Critical patent/KR20170102230A/ko
Priority to CN201580069180.1A priority patent/CN107004459B/zh
Priority to JP2016566131A priority patent/JP6623174B2/ja
Publication of WO2016104232A1 publication Critical patent/WO2016104232A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a conductive paste that can be suitably used for forming an electrode of a chip-type electronic component, for example.
  • chip-type electronic components such as a chip inductor, a chip capacitor, and a chip resistor are surface-mounted on the substrate.
  • Such a chip-type electronic component usually includes a pair of electrodes (referred to as terminal electrodes, external electrodes, or simply electrodes) for electrical connection with a circuit on the substrate.
  • this terminal electrode is usually soldered to a circuit on the substrate.
  • thermosetting conductive paste containing a conductive resin in a specific ratio.
  • Patent Documents 2 and 3 include copper powder, a thermosetting resin, a chelate-forming substance, and a specific alkoxy group-containing modified silicone resin as a conductive paste suitable for conducting the through-hole portion of the substrate.
  • a conductive paste is disclosed.
  • Patent Document 4 discloses a conductive paint in which copper powder surface-coated with titanate or the like, a specific resol type phenol resin, an amino compound, a chelate layer forming agent, an epoxy resin, and an epoxy polyol are blended at a specific ratio.
  • the Patent Document 5 describes a specific adhesive consisting of a specific copper-silver alloy powder and a curable resin composition as a conductive adhesive used for fixing and joining an electronic component on a wiring circuit instead of soldering.
  • a conductive adhesive containing a polyvinyl acetal resin, a polyamide resin, and / or a rubber-modified epoxy resin in a conductive resin.
  • the chip-type electronic component When a chip-type electronic component is surface-mounted on a substrate, the chip-type electronic component generates heat during use, and the connection between the chip-type electronic component and the substrate is distorted due to the difference in thermal expansion between the chip-type electronic component and the substrate May concentrate and cracks and interfacial debonding may occur at the connection portion. Cracks and interfacial debonding can cause poor conduction at the connection.
  • An object of the present invention is to provide a conductive paste suitable for forming an electrode of a chip-type electronic component, which can suppress the occurrence of cracks and surface peeling due to a difference in thermal expansion as described above.
  • a conductive paste including a conductive filler, a chelate-forming substance, a phenol resin, and a modified epoxy resin is provided.
  • the modified epoxy resin is preferably at least one selected from the group consisting of urethane-modified resins, rubber-modified resins, ethylene oxide-modified resins, propylene oxide-modified resins, fatty acid-modified resins, and urethane rubber-modified resins.
  • the total amount of the resin contained in the conductive paste is preferably 11 parts by mass or more and 43 parts by mass or less with respect to 100 parts by mass of the conductive filler.
  • the content of the modified epoxy resin based on the total amount of the resin contained in the conductive paste is preferably 13% by mass or more and 60% by mass or less.
  • the phenolic resin is preferably a resol type phenolic resin.
  • the content of the phenol resin based on the total amount of the resin contained in the conductive paste is 38% by mass or more and 85% by mass or less.
  • the chelate-forming substance is one or more compounds selected from the group consisting of a pyridine derivative represented by the formula I (wherein n represents an integer of 2 or more and 8 or less) and 1,10-phenanthroline. preferable.
  • the ratio of the chelate-forming substance to 100 parts by mass of the conductive filler is preferably 0.1 parts by mass or more and 2.0 parts by mass or less.
  • the conductive paste further contains a boron compound.
  • the boron compound is preferably a borate ester compound.
  • the boric acid ester compound is preferably a boric acid triester compound.
  • the boric acid triester compound preferably has 3 to 54 carbon atoms.
  • the conductive paste preferably contains a boron compound in a range of 0.02 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the conductive filler.
  • the conductive paste further contains a highly reactive epoxy resin.
  • the content of the highly reactive epoxy resin based on the total amount of the resin contained in the conductive paste is preferably 1.4% by mass or more and 9.5% by mass or less.
  • the conductive paste further includes a coupling agent.
  • the conductive paste preferably contains the coupling agent in the range of 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the conductive filler.
  • the conductive paste preferably contains copper powder as the conductive filler.
  • the conductive paste preferably contains silver powder as the conductive filler.
  • the conductive paste preferably contains silver-coated copper powder as the conductive filler.
  • a terminal electrode of a chip-type electronic component at least a part of which is a cured product of the conductive paste.
  • a chip-type electronic component including a terminal electrode at least partially made of a cured product of the conductive paste.
  • a conductive paste suitable for forming an electrode of a chip-type electronic component that can suppress the occurrence of cracks and surface peeling due to a difference in thermal expansion as described above.
  • the conductive paste of the present invention contains at least a conductive filler, a chelate-forming substance, a phenol resin, and a modified epoxy resin.
  • a conductive filler used in a known conductive paste particularly a conductive filler used in a known conductive paste used to form a terminal electrode of a chip-type electronic component, is appropriately selected. Can be used.
  • metal powder can be used, particularly copper powder, silver powder, or a kind of powder coated with silver (silver coated copper powder) or a mixture of two or more of these powders. Is preferred.
  • Copper and silver have low electrical resistivity among metals, and good conductivity of the cured conductive paste can be obtained.
  • the surface of the metal powder may be covered with an oxide film.
  • the surface of normally available copper powder is covered with an oxide film.
  • the particles of the conductive filler can be strongly bonded to each other. Therefore, good conductivity of the cured conductive paste can be obtained.
  • the contact resistance between the metal powders can be reduced and the conductivity can be improved by strong pressure bonding.
  • the conductive paste of the present invention contains at least a phenol resin and a modified epoxy resin as a resin.
  • the resin contained in the conductive paste may be only a phenol resin and a modified epoxy resin, but may contain other resins in addition to these resins.
  • the elastic modulus of the cured conductive paste can be adjusted, particularly reduced. Therefore, when the terminal electrode of the chip-type electronic component is formed using a conductive paste, the elastic modulus can be reduced. If such a chip-type electronic component is fixed to the substrate by soldering or the like, the terminal electrode functions as a buffer material, and it is possible to suppress the occurrence of cracks and surface peeling due to the difference in thermal expansion as described above. .
  • Modified epoxy resin is an epoxy resin that has been modified to give various performances to an epoxy resin such as a bisphenol A type epoxy resin.
  • the epoxy resin modified to have various performances means, for example, one obtained by polymerizing different components in the epoxy resin to partially change the structure of the main chain, or one having a functional group introduced therein.
  • those having flexibility are preferable.
  • urethane-modified epoxy resin, rubber-modified epoxy resin, ethylene oxide-modified epoxy resin, propylene oxide-modified epoxy resin, fatty acid-modified epoxy resin, urethane rubber-modified epoxy resin, and the like are preferable.
  • As the modified epoxy resin a modified epoxy resin having an epoxy equivalent of more than 186 can be used.
  • a resol type phenol resin is preferable. Since the resol type phenol resin has a self-reactive functional group, it has an advantage that it can be cured only by heating.
  • the resol type phenol resin can be obtained by reacting phenol or a phenol derivative with formaldehyde in the presence of an alkali catalyst.
  • phenol derivative examples include alkylphenols such as cresol, xylenol, and t-butylphenol, and phenylphenol and resorcinol.
  • Resitop PL-4348 (trade name) manufactured by Gunei Chemical Industry Co., Ltd. can be used.
  • the highly reactive epoxy resin refers to a polyfunctional epoxy resin having an epoxy equivalent of 186 or less and two or more epoxy groups in one molecule.
  • a suitable fixing strength adheresion strength between a chip-type electrode component in which an electrode is formed using a conductive paste and a substrate
  • Examples of the highly reactive epoxy resin include Denacol series (trade names EX212L, EX214L, EX216L, EX321L and EX850L) manufactured by Nagase ChemteX Corporation, and trade names ED-503G and ED-523G manufactured by ADEKA Corporation, Mitsubishi.
  • the conductive paste contains other resins (resins other than phenolic resins, modified epoxy resins and highly reactive epoxy resins), other resins used for conductive pastes known as other resins, particularly printed wiring boards Resin used for the well-known electroconductive paste used in order to plan conduction
  • electrical_connection of a through hole can be used suitably.
  • resins with curing shrinkage that is, thermosetting resins are preferable, and for example, epoxy resins other than modified epoxy resins and highly reactive epoxy resins, and silicone resins can be used.
  • a ligand compound capable of chelate bonding to a conductive filler can be used.
  • a metal powder in the preparation of a conductive paste It is desirable that it can be dissolved.
  • Chelating substances that satisfy this requirement include diamines capable of bidentate coordination, such as ethylenediamine, N- (2-hydroxyethyl) ethylenediamine, trimethylenediamine, 1,2-diaminocyclohexane, and triethylenetetramine.
  • Bidentate ligands that utilize ring nitrogen and amino nitrogen such as 2-aminomethylpyridine, purine, adenine, histamine, and 1,3-dione that produces acetylacetonato type bidentate ligands And similar compounds such as acetylacetone, 4,4,4-trifluoro-1-phenyl-1,3-butanedione, hexafluoroacetylacetone, benzoylacetone, dibenzoylmethane, 5,5-dimethyl-1,3- Cyclohexanedione, oxine, 2-methyloxine, oxine 5-sulfonic acid, dimethylglyoxime, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, can also be mentioned and salicylaldehyde.
  • ring nitrogen and amino nitrogen such as 2-aminomethylpyridine, purine, adenine, histamine, and 1,3-dione that
  • the 1,3-diones that produce the acetylacetonato-type bidentate ligands and similar compounds are keto-enol tautomeric, although the keto body itself is not a chelating agent.
  • the anion species generated by releasing protons can function as bidentate ligands of the acetylacetonate type.
  • the chelate-forming substance is one or more selected from the group of nitrogen-containing heteroaromatic compounds composed of a pyridine derivative represented by the formula I (wherein n represents an integer of 2 to 8) and 1,10-phenanthroline It is preferable that it is a kind of multidentate ligand compound.
  • the pyridine derivative represented by the formula I and 1,10-phenanthroline can efficiently chelate metal ions such as copper ions, and the resulting chelate complex is relatively stable near room temperature.
  • the precipitate is washed with hot toluene, water and hot toluene in this order and dried to obtain the desired polypyridine.
  • the degree of polymerization n is adjusted by selecting the starting material and the degree of bromination of the brominated pyridine contained.
  • the zero-valent nickel complex an equimolar mixture of nickel-1,5-octadiene complex and 1,5-octadiene and triallylphosphine is used.
  • n is 2 or 3
  • a purified simple compound is commercially available as a reagent.
  • n is 4 or more, it is also possible to synthesize compounds having n of 2 or 3 as starting materials.
  • the synthesized polypyridine represented by the formula I has a slight distribution of the number of repetitions of the pyridine skeleton when purified to the extent of recrystallization, and shows an average value obtained from the molecular weight distribution.
  • n 1 pyridine itself is rarely mixed during precipitation, and only contains those having n of 2 or more. When n is 2 or more, sufficient chelate forming ability is exhibited.
  • the solubility in a solvent decreases. When n exceeds 8, the solubility in a solvent becomes poor, and the preparation of a solution required for forming a desired chelate tends to become increasingly difficult.
  • the repeating number n of the pyridine skeleton is preferably selected in the range of 2 to 8, More preferably, n is in the range of 2 to 3.
  • the conductive paste may contain a boron compound.
  • a boron compound in combination with the above components, the storage stability of the conductive paste can be improved.
  • the conductive paste may not contain a boron compound.
  • the boron compound is preferably a boric acid ester compound, particularly a boric acid triester compound.
  • the number of carbon atoms of the boric acid triester compound is preferably from 3 to 54, more preferably from 6 to 30, and even more preferably from 6 to 12, from the viewpoint of availability and / or ease of production.
  • boric acid ester compound alkyl or aryl esters of boric acid can be used, and specifically, trimethyl borate, triethyl borate, tributyl borate, tridecyl borate, trioctadecyl borate, triphenyl borate and the like can be used.
  • boric acid triester compound having 6 to 12 carbon atoms include triethyl borate, 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 2-isopropoxy-4,4, 5,5-tetramethyl-1,3,2-dioxaborolane, 2-isopropoxy-4,4,6-trimethyl-1,3,2-dioxaborinane, tripropyl borate, isopropyl borate, tris (trimethylsilyl) borate, boric acid Mention may be made of tributyl.
  • the coupling agent it is preferable to appropriately add a coupling agent effective for the conductive filler (particularly, metal powder such as copper), for example, a silane coupling agent.
  • a coupling agent it is easier to obtain a suitable fixing strength (adhesion strength between a chip-type electrode component in which an electrode is formed using a conductive paste and a substrate).
  • Preferred coupling agent types are, for example, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, etc. be able to. These have low volatility and low reactivity with resins (especially thermosetting resins).
  • a solvent an antifoaming agent, an anti-settling agent, a dispersing agent, and the like can be added to the conductive paste.
  • Zinc powder as an antioxidant and resin curing agents can also be used as appropriate.
  • a solvent that does not react with the resin (particularly thermosetting resin) and can dissolve the chelate-forming substance can be selected.
  • the amount of the resin component (the total amount of resin contained in the conductive paste) with respect to 100 parts by mass of the conductive filler is preferably 11 parts by mass to 43 parts by mass.
  • the resin component is 11 parts by mass or more, the shrinkage of the resin component with respect to the entire paste becomes good, and it is easy to obtain a good contact ratio between the conductive fillers, and hence a good paste cured product. It is.
  • the resin component is 43 parts by mass or less, the amount of the resin component with respect to the entire paste is in a suitable range, and therefore, it is possible to obtain a good contact rate between conductive fillers, and thus a good paste cured product conductivity. Easy.
  • the resin component is more preferably 15 parts by mass or more and more preferably 30 parts by mass or less with respect to 100 parts by mass of the conductive filler.
  • the amount is 15 parts by mass or more, it is easy to obtain excellent conductivity of the cured paste by the curing shrinkage force of the resin.
  • it is 30 parts by mass or less, it is further easy to secure a contact area between the fillers, and it is easy to obtain excellent conductivity of the cured paste.
  • the ratio of the modified epoxy resin in the resin component is preferably 13% by mass to 60% by mass.
  • the modified epoxy resin in the resin component is in the range of 13% by mass to 60% by mass, it is easy to lower the elastic modulus of the cured conductive paste, and suitable fixing strength (using conductive paste) Thus, it is easy to obtain a bonding strength between the chip-type electrode component on which the electrode is formed and the substrate.
  • the proportion of the phenol resin in the resin component is preferably 38% by mass to 85% by mass.
  • it is easy to obtain excellent conductivity of the cured paste by the curing shrinkage force of the resin. Since it is easy to ensure the contact area between fillers as it is 85 mass% or less, it is easy to obtain the electroconductivity of the excellent paste hardened
  • the ratio of the highly reactive epoxy resin in the resin component is preferably 1.4% by mass to 9.5% by mass.
  • suitable adhesion strength between the chip-type electrode component in which the electrode is formed using the conductive paste and the substrate
  • fixing strength it is easier to obtain
  • the amount of the chelate-forming substance is preferably 0.1 parts by mass or more and 2.0 parts by mass or less per 100 parts by mass of the conductive filler. When this amount is 0.1 parts by mass or more, it is easy to obtain a good volume resistivity when an electrode is formed using a conductive paste. When this amount is 2.0 parts by mass or less, it is easy to obtain good storage stability of the conductive paste.
  • the amount of the boron compound is preferably 0.02 parts by mass or more and preferably 10 parts by mass or less per 100 parts by mass of the conductive filler.
  • this amount is 0.02 parts by mass or more, it is easy to obtain good storage stability of the conductive paste.
  • this amount is 10 parts by mass or less, it is easy to obtain a good volume resistivity of the cured conductive paste.
  • the amount added can be appropriately selected according to the amount of the conductive filler contained in the conductive paste. For example, 0.1 to 10 parts per 100 parts by weight of the conductive filler. It can be determined in consideration of adhesion and the like in the range of mass parts. When the coupling agent is within this range, it is easier to obtain a suitable fixing strength (adhesion strength between a chip-type electrode component in which an electrode is formed using a conductive paste and a substrate).
  • the conductive paste contains a boron compound
  • a conductive paste excellent in storage stability can be obtained without blending a latent curing agent.
  • the conductive paste of the present invention is stable even if it contains a chelate-forming agent that is not a latent curing agent, for example, amines such as a pyridine derivative (for example, a compound represented by Formula I) or 1,10-phenanthroline. Excellent in properties.
  • the conductive paste can be prepared by a preparation method known in the field of conductive paste.
  • the conductive paste can be prepared by appropriately mixing the components constituting the conductive paste.
  • a conductive paste can be prepared by mixing components other than the conductive filler and then adding the conductive filler to the obtained mixture.
  • the conductive paste of the present invention can be suitably used for forming terminal electrodes of chip-type electronic components such as chip inductors, chip capacitors, and chip resistors.
  • the terminal electrode is obtained by applying a conductive paste to a position where the electrical connection with the inside of the chip-type electronic component is possible (the portion of the chip-type electronic component where the terminal electrode is to be provided), and heating and curing as appropriate. Can be formed.
  • the heating temperature can be appropriately determined in consideration of the components used, particularly the curing temperature of the resin.
  • the cured product of the conductive paste may be used as the terminal electrode as it is.
  • the entire terminal electrode is made of a cured conductive paste.
  • the surface of the electrode made of a cured conductive paste can be plated with a metal such as nickel or tin.
  • the cured product of the conductive paste functions as a base electrode, and a part of the terminal electrode is formed by the cured product of the conductive paste.
  • a configuration similar to that of a known chip-type electronic component can be adopted except that at least a part of the terminal electrode is made of a cured product of the conductive paste.
  • the terminal electrode of such a chip type electronic component can be fixed to the substrate by a known method for fixing the chip type electronic component to the substrate, such as soldering.
  • Tables 1 and 2 summarize the composition and evaluation results of the conductive filler in each example.
  • surface is a mass part.
  • the description “5.0.E-05” means “5.0 ⁇ 10 ⁇ 5 ”.
  • Real 1 means Example 1
  • Rao 1 means Comparative Example 1.
  • the materials used are as follows. -Conductive filler copper powder (Mitsui Metal Mining Co., Ltd., trade name: T-22), ⁇ Phenolic resin Resol type phenolic resin having a weight average molecular weight of about 20,000 obtained by reacting phenol and formaldehyde in the presence of an alkali catalyst (manufactured by Gunei Chemical Industry Co., Ltd., trade name: Resitop PL-4348), Modified epoxy resin Urethane modified epoxy resin (manufactured by ADEKA, trade name: EPU-78-13S (epoxy equivalent: 210, two epoxy groups in the molecule)), Rubber-modified epoxy resin (manufactured by ADEKA, trade name: EPR-21 (epoxy equivalent: 200, two epoxy groups in the molecule)), Highly reactive epoxy resin Bifunctional epoxy resin (manufactured by Nagase ChemteX Corporation, trade name: EX-214L (epoxy equivalent: 120, epoxy groups in the molecule: two)), Multi
  • a conductive paste was prepared based on the formulation (parts by mass) shown in Table 1 or Table 2. Specifically, first, a material other than the conductive filler was put into a container and stirred using a rotation-revolution stirrer (manufactured by Kurashiki Boseki Co., Ltd.) to prepare a uniform liquid resin composition. Next, a conductive filler was added to the prepared resin composition, and stirring was performed using a rotation-revolution stirrer (manufactured by Kurashiki Boseki Co., Ltd.) to obtain a conductive paste.
  • a rotation-revolution stirrer manufactured by Kurashiki Boseki Co., Ltd.
  • the conductive paste of the example contains a modified epoxy resin, and the conductive paste of the comparative example does not contain a modified epoxy resin.
  • Examples 23 to 26, 28, 47 to 50 and 52 a highly reactive epoxy resin was blended into the conductive paste. Furthermore, in Examples 27 and 51, a coupling agent was blended into the conductive paste.
  • the elastic modulus of the cured film was measured in a load-unloading test mode (test force: 100 mN) using a dynamic ultra micro hardness tester (manufactured by Shimadzu Corporation, trade name: DUH-211SR).
  • the indenter used was a triangular pan indenter (115 ° ridge angle, Belkovic type).
  • the conductive paste was printed on a glass plate in a strip shape having a thickness of 80 ⁇ m and 1 cm ⁇ 5 cm using a metal mask having a thickness of 80 ⁇ m, dried at 80 ° C. for 5 minutes to remove the solvent, and then 210 ° C. 1 Cured in time.
  • the volume resistivity test method described in JIS-H-8646 the width, length, and thickness of the formed conductive paste cured film were measured, and the measured resistance value was measured by a four-terminal method. Volume resistivity was measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Wire Bonding (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

 チップ型電子部品と基板との熱膨張差によるクラックや表面剥離の発生を抑制することのできる、チップ型電子部品の電極を形成するに好適な導電性ペーストを提供する。導電性フィラーと、キレート形成物質と、フェノール樹脂と、変性エポキシ樹脂と、を含むことを特徴とする導電性ペースト。

Description

導電性ペースト
 本発明は、例えばチップ型電子部品の電極を形成するために好適に使用できる、導電性ペーストに関する。
 携帯型電子製品等の小型電子製品においては、しばしばプリント配線基板に電子部品が表面実装される。つまり、チップインダクタ、チップコンデンサ、チップ抵抗などのチップ型電子部品が基板に表面実装される。
 このようなチップ型電子部品は、基板上の回路との電気的接続のために通例一対の電極(端子電極もしくは外部電極、あるいは単に電極などと呼ばれる)を備えている。チップ型電子部品を基板に実装する際には、通常、この端子電極を基板上の回路にはんだ付けする。
 特許文献1には、このような端子電極を形成するに好適な導電性ペーストとして、それぞれ特定の粒径を有する銀粉末、スズ銀合金粉末ならびに銀および/または銀スズ合金微粉末と、熱硬化性樹脂とを特定の比率で含む熱硬化性導電性ペーストが開示される。
 また、用途は異なるが、次のような導電性ペーストが知られている。すなわち、特許文献2、3に、基板のスルーホール部分の導通を図るために好適な導電性ペーストとして、銅粉、熱硬化性樹脂、キレート形成物質、および特定のアルコキシ基含有変成シリコーン樹脂を含む導電性ペーストが開示される。また、特許文献4には、チタネート等で表面被覆した銅粉、特定のレゾール型フェノール樹脂、アミノ化合物、キレート層形成剤、エポキシ樹脂、エポキシポリオールが特定の割合で配合された導電塗料が開示される。また、特許文献5には、はんだ付けの替わりに電子部品を配線回路上に固着接合するために用いられる導電性接着剤として、特定の銅-銀合金粉末および硬化性樹脂組成物からなり、硬化性樹脂中にポリビニルアセタール樹脂、ポリアミド樹脂および/またはゴム変性エポキシ樹脂を含む導電性接着剤が開示される。
国際公開第2009/098938号パンフレット 特開2000-219811号公報 特開2002-33018号公報 特開平6-108006号公報 特開平8-302312号公報
 チップ型電子部品が基板に表面実装された基板においては、その使用時にチップ型電子部品が発熱し、チップ型電子部品と基板との熱膨張差によってチップ型電子部品と基板との接続部分にゆがみが集中し、接続部分にクラックや界面剥離が生じるおそれがある。クラックや界面剥離は、接続部分の導通不良の原因となりうる。
 本発明の目的は、前述のような熱膨張差によるクラックや表面剥離の発生を抑制することのできる、チップ型電子部品の電極を形成するに好適な導電性ペーストを提供することである。
 本発明の一態様により、導電性フィラーと、キレート形成物質と、フェノール樹脂と、変性エポキシ樹脂と、を含むことを特徴とする導電性ペーストが提供される。
 変性エポキシ樹脂が、ウレタン変性樹脂、ゴム変性樹脂、エチレンオキサイド変性樹脂、プロピレンオキサイド変性樹脂、脂肪酸変性樹脂、およびウレタンゴム変性樹脂からなる群から選ばれる少なくとも一種であることが好ましい。
 導電性ペーストに含まれる樹脂の総量が、導電性フィラー100質量部に対して11質量部以上43質量部以下であることが好ましい。
 導電性ペーストに含まれる樹脂の総量を基準とする変性エポキシ樹脂の含有率が、13質量%以上60質量%以下であることが好ましい。
 フェノール樹脂が、レゾール型フェノール樹脂であることが好ましい。
 導電性ペーストに含まれる樹脂の総量を基準とするフェノール樹脂の含有率が、38質量%以上85質量%以下であることが好ましい。
 キレート形成物質が、式I(式中、nは2以上8以下の整数を示す)で示されるピリジン誘導体および1,10-フェナントロリンからなる群から選択される一種もしくは複数種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
  導電性フィラー100質量部に対するキレート形成物質の割合が、0.1質量部以上2.0質量部以下であることが好ましい。
 導電性ペーストが、ほう素化合物をさらに含むことが好ましい。ほう素化合物が、ほう酸エステル化合物であることが好ましい。ほう酸エステル化合物が、ほう酸トリエステル化合物であることが好ましい。ほう酸トリエステル化合物の炭素数が3~54であることが好ましい。導電性ペーストが、ほう素化合物を、導電性フィラー100質量部当り、0.02質量部以上10質量部以下の範囲で含むことが好ましい。
 導電性ペーストが、高反応性エポキシ樹脂をさらに含むことが好ましい。導電性ペーストに含まれる樹脂の総量を基準とする高反応性エポキシ樹脂の含有率が、1.4質量%以上9.5質量%以下であることが好ましい。
 導電性ペーストが、カップリング剤をさらに含むことが好ましい。導電性ペーストが、カップリング剤を、導電性フィラー100質量部当り、0.1質量部以上10質量部以下の範囲で含むことが好ましい。
 導電性ペーストが、導電性フィラーとして、銅粉を含むことが好ましい。導電性ペーストが、導電性フィラーとして、銀粉を含むことが好ましい。導電性ペーストが、導電性フィラーとして、銀コート銅粉を含むことが好ましい。
 本発明の別の態様により、少なくとも一部が上記導電性ペーストの硬化物からなる、チップ型電子部品の端子電極が提供される。
 本発明のさらに別の態様により、少なくとも一部が上記導電性ペーストの硬化物からなる端子電極を含む、チップ型電子部品が提供される。
 本発明によれば、前述のような熱膨張差によるクラックや表面剥離の発生を抑制することのできる、チップ型電子部品の電極を形成するに好適な導電性ペーストを提供することができる。
 本発明の導電性ペーストは、導電性フィラーと、キレート形成物質と、フェノール樹脂と、変性エポキシ樹脂と、を少なくとも含む。
 〔導電性フィラー〕
 導電性フィラーとして、公知の導電性ペーストに使用される導電性フィラー、特にはチップ型電子部品の端子電極を形成するために使用される公知の導電性ペーストに使用される導電性フィラーを、適宜用いることができる。
 導電性フィラーとして、金属粉を用いることができ、特には銅粉、銀粉、あるいは銀によってコーティングされた銅粉(銀コート銅粉)のうちの一種の粉またはこれらの粉の二種以上の混合物が好ましい。
 銅や銀の電気抵抗率は金属の中でも低く、導電性ペースト硬化物の良好な導電性を得ることができる。特には、コストの観点から、銅粉を用いることが好ましい。
 金属粉の表面が酸化被膜で覆われていることがある。例えば、通常入手できる銅粉の表面は酸化被膜で覆われている。このような場合、金属粉の粒子同士、特には銅粉の粒子同士を接触させただけでは良好な導電性を得ることが難しいことがある。本発明によれば、硬化時の収縮率が高いフェノール樹脂を用いるため、このような場合であっても、導電性フィラーの粒同士を強く圧着させることができる。したがって、良好な導電性ペースト硬化物の導電性を得ることができる。また、酸化被膜で覆われていない金属粉、例えば銀粉の場合であっても、強い圧着によって、金属粉同士の接触抵抗を低下させ、導電性を向上させることができる。
 〔樹脂〕
 本発明の導電性ペーストは、樹脂として、少なくともフェノール樹脂と変性エポキシ樹脂とを含む。導電性ペーストに含まれる樹脂は、フェノール樹脂と変性エポキシ樹脂だけであってもよいが、これら樹脂に加えてその他の樹脂を含んでもよい。
 〔変性エポキシ樹脂〕
 フェノール樹脂に加えて変性エポキシ樹脂を用いることによって、導電性ペースト硬化物の弾性率を調整、特には低下させることができる。したがって、チップ型電子部品の端子電極を、導電性ペーストを用いて形成した場合、その弾性率を低下させることができる。このようなチップ型電子部品を基板にはんだ付け等によって固定すれば、端子電極が言わば緩衝材として機能し、前述のような熱膨張差によるクラックや表面剥離の発生を抑制することが可能となる。
 変性エポキシ樹脂とはビスフェノールA型エポキシ樹脂などのエポキシ樹脂に、各種性能を持たせるために変性を行なったエポキシ樹脂である。各種性能を持たせるために変性を行ったエポキシ樹脂とは、例えば、エポキシ樹脂に異なる成分を重合させて主鎖の構造を一部変えたもの、官能基を導入させたものなどをいう。特には、変性エポキシ樹脂の中でも柔軟性をもつものが好ましい。例えば、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、エチレンオキサイド変性エポキシ樹脂、プロピレンオキサイド変性エポキシ樹脂、脂肪酸変性エポキシ樹脂、ウレタンゴム変性エポキシ樹脂、などが好ましい。変性エポキシ樹脂としては、エポキシ当量が186を超える変性エポキシ樹脂を用いることができる。
 〔フェノール樹脂〕
 フェノール樹脂は、前述のように、硬化時の収縮率が高い(従って硬化したペーストの導電性が高くなる)。
 フェノール樹脂として、レゾール型フェノール樹脂が好ましい。レゾール型フェノール樹脂は、自己反応性の官能基を有するため、加熱するだけで硬化させることができるという利点を有する。
 レゾール型フェノール樹脂は、フェノールもしくはフェノール誘導体を、アルカリ触媒下でホルムアルデヒドと反応させて得ることができる。
 上記フェノール誘導体としては、クレゾール、キシレノール、t-ブチルフェノールなどのアルキルフェノール、さらには、フェニルフェノール、レゾルシノール等が挙げられる。
 フェノール樹脂としては、例えば、群栄化学工業株式会社製のレヂトップPL-4348(商品名)を用いることができる。
 〔高反応性エポキシ樹脂〕
 高反応性エポキシ樹脂とは、エポキシ当量が186以下であって、且つ1分子中にエポキシ基が2つ以上ある多官能のエポキシ樹脂をいう。変性エポキシ樹脂およびフェノール樹脂に加えて高反応性エポキシ樹脂を用いることによって、好適な固着強度(導電性ペーストを用いて電極を形成したチップ型電極部品と基板との固着強度)を得ることがさらに容易である。
 高反応性エポキシ樹脂としては、例えば、ナガセケムテックス株式会社製のデナコールシリーズ(商品名EX212L、EX214L、EX216L、EX321LおよびEX850L)、株式会社ADEKA製の商品名ED-503GおよびED-523G、三菱化学株式会社製の商品名jER630、jER604およびjER152、三菱ガス化学株式会社製の商品名テトラッドXおよびテトラッドC、ならびに日本化薬株式会社製の商品名EPPN-501H、EPPN-5010HYおよびEPPN502を用いることができる。
 〔他の樹脂〕
 導電性ペーストが、その他の樹脂(フェノール樹脂、変性エポキシ樹脂および高反応性エポキシ樹脂以外の樹脂)を含む場合、その他の樹脂として公知の導電性ペーストに使用される樹脂、特にはプリント配線基板のスルーホールの導通を図るために使用される公知の導電性ペーストに使用される樹脂を、適宜用いることができる。その他の樹脂として、硬化収縮を伴う樹脂、すなわち熱硬化性樹脂が好ましく、例えば、変性エポキシ樹脂および高反応性エポキシ樹脂以外のエポキシ樹脂や、シリコーン樹脂を用いることができる。
 〔キレート形成物質〕
 キレート形成物質として、導電性フィラー(特には金属)に対してキレート結合が可能な配位子化合物が利用でき、特に、導電性ペーストの調製に際し、金属粉に作用させる工程では、有機溶媒中に溶解できることが望ましい。この要件を満たすキレート形成物質として、二座配位が可能なジアミン類、例えば、エチレンジアミン、N-(2-ヒドロキシエチル)エチレンジアミン、トリメチレンジアミン、1,2-ジアミノシクロヘキサン、トリエチレンテトラミンなど、芳香環窒素とアミノ窒素を利用する二座配位子、例えば、2-アミノメチルピリジン、プリン、アデニン、ヒスタミンなど、さらには、アセチルアセトナト型の二座配位子を生成する1,3-ジオン類とその類似化合物、例えば、アセチルアセトン、4,4,4-トリフルオロ-1-フェニル-1,3-ブタンジオン、ヘキサフルオロアセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタン、5,5-ジメチル-1,3-シクロヘキサンジオン、オキシン、2-メチルオキシン、オキシン-5-スルホン酸、ジメチルグリオキシム、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、サリチルアルデヒドなどをも挙げることができる。なお、前記アセチルアセトナト型の二座配位子を生成する1,3-ジオン類とその類似化合物は、ケト体自体は、キレート化剤ではないものの、ケト・エノール互変異性をし、エノール体は酸として機能する結果、プロトンを放出し生成するアニオン種はアセチルアセトナト型の二座配位子として機能が可能となる。
 キレート形成物質が、式I(式中、nは2以上8以下の整数を示す)で示されるピリジン誘導体および1,10-フェナントロリンからなる含窒素複素芳香環化合物の群から選択される一種もしくは複数種の多座配位子化合物であることが好ましい。式Iで表されるピリジン誘導体や1,10-フェナントロリンは、銅イオンなどの金属イオンを効率的にキレート化でき、生成したキレート錯体も室温近くでは、比較的安定である。
Figure JPOXMLDOC01-appb-C000003
  式Iで表されるポリピリジンの合成方法の一例を以下に示す。出発原料をアジ化ナトリウムと加熱混合することによりピリジン骨格の窒素に対しオルソの位置をアジ化する。続いて、これを臭化酸素酸中、亜硝酸ナトリウムで処理して臭化ジアゾニウムとし、引き続きこれに臭素を加えることによりブロモ化する。このブロモ化ピリジンを、例えば、DMF(N,N-ジメチルホルムアミド)中、60℃で、0価ニッケル錯体により脱ハロゲン化縮重合させると、黄から黄橙色の沈澱を得る。沈澱を熱トルエン、水、熱トルエンの順に洗浄し、乾燥することにより目的のポリピリジンを得る。重合度nの調整は、出発原料の選択、含まれるブロモ化ピリジンのブロモ化の度合いによって調整する。なお、0価ニッケル錯体については、ニッケル-1,5-オクタジエン錯体と1,5-オクタジエンおよびトリアリルホスフィンの等モル混合物を用いる。なお、nが、2または3のものは、試薬として、精製された単体の化合物が市販されている。nが4以上の化合物については、このnが、2または3のものを出発原料として合成することも可能である。
 一般に合成された式Iで表されるポリピリジンは、再結晶程度の精製では、そのピリジン骨格の繰り返し数nは、若干の分布を有しており、分子量分布から求めた平均値を示す。ただし、上記の合成方法に従うと、n=1のピリジン自体は、沈澱中に混入することはまれであり、nが2以上のもののみを含有することになる。nが2以上のときに、十分なキレート形成能を発揮する。一方、nが増すにつれ、溶媒への溶解性は低下して、nが8を超えると溶媒への溶解性が乏しくなり、所望のキレート形成に要する溶液の調製が次第に困難となる傾向がある。従って、本発明の導電性ペーストに添加されるキレート形成物質として、式Iで表されるポリピリジンを用いる場合には、ピリジン骨格の繰り返し数nは、2~8の範囲に選択することが好ましく、より好ましくは、nが2~3の範囲のものを利用する。
 〔ほう素化合物〕
 導電性ペーストはほう素化合物を含んでもよい。上記成分と組み合わせてほう素化合物を用いることにより、導電性ペーストの保管安定性を向上させることが可能である。ただし、導電性ペーストがほう素化合物を含まなくてもよい。
 ほう素化合物が、ほう酸エステル化合物、特にはほう酸トリエステル化合物であることが好ましい。ほう酸トリエステル化合物の炭素数は、入手容易性および/または製造容易性の観点から、好ましくは3~54、より好ましくは6~30、さらに好ましくは6~12である。
 ほう酸エステル化合物としては、ほう酸のアルキルまたはアリールエステルを用いることができ、具体的にはほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリデシル、ほう酸トリオクタデシル、ほう酸トリフェニルなどを用いることができる。
 炭素数6~12のほう酸トリエステル化合物の具体例として、ほう酸トリエチル、2-メトキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン、2-イソプロポキシ-4,4,6-トリメチル-1,3,2-ジオキサボリナン、ほう酸トリプロピル、ほう酸イソプロピル、トリス(トリメチルシリル)ボラート、ほう酸トリブチルを挙げることができる。
 〔カップリング剤〕
 カップリング剤としては、導電性フィラー(特には、銅などの金属粉)に対して有効なカップリング剤、例えば、シラン系カップリング剤を適宜添加することが好ましい。カップリング剤を用いることにより、好適な固着強度(導電性ペーストを用いて電極を形成したチップ型電極部品と基板との固着強度)を得ることがさらに容易である。
 好ましいカップリング剤種は、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシランなどを挙げることができる。これらは、揮発性が低く、樹脂(特には熱硬化性樹脂)との反応性が低い。
 〔他の成分〕
 導電性ペーストには、必要に応じて、溶媒、消泡剤、沈降防止剤、分散剤などを適宜加えることができる。酸化防止剤としての亜鉛粉末や、樹脂の硬化剤も適宜用いることができる。
 溶媒としては、樹脂(特には熱硬化樹脂)とは反応せず、キレート形成物質を溶解可能な溶媒を選択することができる。例えば、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルカルビトール、メチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、メチルカルビトールアセテート、ブチルカルビトールアセテート等が挙げられる。
 〔導電性ペーストの組成〕
 導電性フィラー100質量部に対する樹脂成分の量(導電性ペーストに含まれる樹脂の総量)は11質量部~43質量部が好ましい。樹脂成分が11質量部以上であると、ペースト全体に対する樹脂成分の収縮性が良好となり、良好な導電性フィラー同士の接触率を得ること、したがって良好なペースト硬化物の導電性を得ることが容易である。また、樹脂成分が43質量部以下であると、ペースト全体に対する樹脂成分の量が好適な範囲となり、したがって良好な導電性フィラー同士の接触率、ひいては良好なペースト硬化物の導電性を得ることが容易である。
 さらには、導電性フィラー100質量部に対して樹脂成分が15質量部以上であることがより好ましく、また、30質量部以下であることがより好ましい。15質量部以上であると、樹脂による硬化収縮力によって、優れたペースト硬化物の導電性を得ることが容易である。30質量部以下であると、フィラー間の接触面積を確保することが更に容易であり、優れたペースト硬化物の導電性を得ることが容易である。
 また、樹脂成分中の変性エポキシ樹脂の割合は、13質量%~60質量%が好ましい。樹脂成分中の変性エポキシ樹脂が13質量%~60質量%の範囲にあると、導電性ペースト硬化物の弾性率を低下させることが容易であり、かつ、好適な固着強度(導電性ペーストを用いて電極を形成したチップ型電極部品と基板との固着強度)を得ることが容易である。
 さらに、樹脂成分中のフェノール樹脂の割合は、38質量%~85質量%が好ましい。38質量%以上であると、樹脂による硬化収縮力によって、優れたペースト硬化物の導電性を得ることが容易である。85質量%以下であると、フィラー間の接触面積を確保することが容易であるため、優れたペースト硬化物の導電性を得ることが容易である。
 また、樹脂成分中の高反応性エポキシ樹脂の割合は、1.4質量%~9.5質量%が好ましい。樹脂成分中の高反応性エポキシ樹脂が1.4質量%~9.5質量%の範囲にあると、好適な固着強度(導電性ペーストを用いて電極を形成したチップ型電極部品と基板との固着強度)を得ることがさらに容易である。
 キレート形成物質の量は、導電性フィラー100質量部当り、0.1質量部以上2.0質量部以下であることが好ましい。この量が0.1質量部以上であると、導電性ペーストを用いて電極を形成した際に良好な体積抵抗率を得ることが容易である。この量が2.0質量部以下であると、導電性ペーストの良好な保管安定性を得ることが容易である。
 導電性ペーストがほう素化合物を含む場合、ほう素化合物の量は、導電性フィラー100質量部当り、0.02質量部以上であることが好ましく、また、10質量部以下であることが好ましい。この量が0.02質量部以上であると、導電性ペーストの良好な保管安定性を得ることが容易である。この量が10質量部以下であると、導電性ペースト硬化物の良好な体積抵抗率を得ることが容易である。
 カップリング剤を使用する場合、その添加量は、導電性ペーストに含有する導電性フィラーの量に応じて適宜選択することができ、例えば、導電性フィラー100質量部に対して0.1~10質量部の範囲で密着性等を考慮して決めることができる。カップリング剤がこの範囲にあると、好適な固着強度(導電性ペーストを用いて電極を形成したチップ型電極部品と基板との固着強度)を得ることがさらに容易である。
 導電性ペーストがほう素化合物を含む場合、潜在性硬化剤を配合することなく、保管安定性に優れる導電性ペーストを得ることができる。本発明の導電性ペーストは、潜在性硬化剤ではないキレート形成剤、例えば、ピリジン誘導体(例えば式Iで表される化合物)や1,10-フェナントロリンなどのアミン類を含んでいても、保管安定性に優れる。
 〔導電性ペーストの調製〕
 導電性ペーストの分野で公知の調製方法によって、導電性ペーストを調製することができる。導電性ペーストを構成する各成分を適宜混合することにより、導電性ペーストを調製することができる。例えば導電性フィラー以外の成分を混合し、その後、得られた混合物に導電性フィラーを添加することにより、導電性ペーストを調製することができる。
 〔導電性ペーストの使用〕
 本発明の導電性ペーストは、チップインダクタ、チップコンデンサ、チップ抵抗などのチップ型電子部品の端子電極を形成するために好適に使用することができる。
 例えば、チップ型電子部品の内部との電気的導通が可能な位置(チップ型電子部品の、端子電極を設けるべき部分)に導電性ペーストを塗布し、適宜加熱して硬化させることによって、端子電極を形成することができる。加熱温度は、使用する成分、特には樹脂の硬化温度を考慮して、適宜決定することができる。
 導電性ペーストの硬化物をそのまま端子電極としてもよい。この場合、端子電極の全体が導電性ペースト硬化物からなる。あるいは、導電性ペースト硬化物からなる電極の表面を、ニッケルやスズなどの金属でめっきすることもできる。この場合、導電性ペーストの硬化物が言わば下地電極として機能し、端子電極の一部が導電性ペーストの硬化物によって形成されることになる。
 端子電極の少なくとも一部が上記導電性ペーストの硬化物からなること以外は、公知のチップ型電子部品の構成と同様の構成を採用することができる。
 このようなチップ型電子部品の端子電極を、はんだ付けなどの、チップ型電子部品を基板に固着させる公知の方法によって、基板に固着させることができる。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限定されるものではない。表1および2に、各例における導電性フィラーの配合と評価結果をまとめてある。なお、表中、各成分の配合量の単位は質量部である。また体積抵抗率の欄において、例えば「5.0.E-05」という記載は「5.0×10-5」を意味する。また、表において、例えば「実1」は実施例1を意味し、「比1」は比較例1を意味する。
 使用した材料は以下のとおりである。
・導電性フィラー
 銅粉(三井金属鉱業株式会社製、商品名:T-22)、
・フェノール樹脂
 フェノールとホルムアルデヒドをアルカリ触媒下で反応して得られる重量平均分子量約20000のレゾール型フェノール樹脂(群栄化学工業株式会社製、商品名:レヂトップPL-4348)、
・変性エポキシ樹脂
 ウレタン変性エポキシ樹脂(株式会社ADEKA製、商品名:EPU-78-13S(エポキシ当量:210、分子中のエポキシ基:2つ))、
 ゴム変性エポキシ樹脂(株式会社ADEKA製、商品名:EPR-21(エポキシ当量:200、分子中のエポキシ基:2つ))、
・高反応性エポキシ樹脂
 2官能エポキシ樹脂(ナガセケムテックス株式会社製、商品名:EX-214L(エポキシ当量:120、分子中のエポキシ基:2つ))、
 多官能エポキシ樹脂(三菱化学株式会社製、商品名:jER630(エポキシ当量:100、分子中のエポキシ基:3つ))、
・カップリング剤
 シランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:TSL8350)、
・キレート形成物質
 2,2’-ビピリジル(n=2の式Iの化合物)、
 1,10-フェナントロリン、
 ピリジン化合物(n=4の式Iの化合物)、
 ピリジン化合物(n=8の式Iの化合物)、
・ほう素化合物
 ほう酸トリメチル、
 ほう酸トリエチル、
 ほう酸トリブチル、
 ほう酸トリデシル、
 ほう酸トリオクタデシル、
・溶媒
 ブチルセロソルブ。
 各例において、表1もしくは表2に示される配合(質量部)に基づき、導電性ペーストを調製した。具体的にはまず、導電性フィラー以外の材料を容器に投入し、自転-公転攪拌機(倉敷紡績株式会社製)を用いて撹拌を行い、均一な液状樹脂組成物を調製した。次いで、調製された樹脂組成物に導電性フィラーを添加し、自転-公転攪拌機(倉敷紡績株式会社製)を用いて撹拌を行い、導電性ペーストを得た。
 表1に示した実施例および比較例(実施例1~28および比較例1)では、導電性ペーストにほう素化合物を配合した。表2に示した実施例および比較例(実施例29~52および比較例2)では、導電性ペーストはほう素化合物を含まない。
 実施例の導電性ペーストは変性エポキシ樹脂を含み、比較例の導電性ペーストは変性エポキシ樹脂を含まない。
 また、実施例23~26、28、47~50および52では、導電性ペーストに高反応性エポキシ樹脂を配合した。さらに、実施例27および51では、導電性ペーストにカップリング剤を配合した。
 〔弾性率評価〕
 樹脂の硬化物について弾性率を測定した。前記自転-公転攪拌機を用い、表1もしくは2に示される配合比でフェノール樹脂、変性エポキシ樹脂、高反応性エポキシ樹脂、カップリング剤、キレート形成物質、ほう素化合物と溶剤を混合し、樹脂混合物を得た。この樹脂混合物を、厚さ120μmのメタルマスクを使用して、ガラス板に厚さ120μm、1cm×3cmの短冊状に印刷し、80℃5分で乾燥して溶剤を除去した後、210℃1時間で硬化させた。ダイナミック超微小硬度計(島津製作所製、商品名:DUH-211SR)を用い、負荷-除荷試験モード(試験力:100mN)により硬化膜の弾性率を測定した。圧子は三角すい圧子(稜間角115度、ベルコビッチタイプ)を使用した。
 〔体積抵抗率評価〕
 導電性ペーストを、厚さ80μmのメタルマスクを使用して、ガラス板に厚さ80μm、1cm×5cmの短冊状に印刷し、80℃5分で乾燥して溶剤を除去した後、210℃1時間で硬化させた。JIS-H-8646に記載の体積抵抗率試験法に準拠して、形成された導電性ペースト硬化膜の幅、長さ、および厚みを実測し、4端子法にて測定抵抗値を測定し、体積抵抗率を測定した。
 〔ダイシェア強度評価〕
 導電性ペーストを、厚さ80μmのメタルマスクを使用して、銅板に厚さ80μm、1cm×1cmの短冊状に印刷し、80℃5分で乾燥して溶剤を除去した後、210℃1時間で硬化させた。Snめっき電極付き3216チップ(TOP Line製、商品名:1206P7A-TIN)に接着剤(ヘンケルジャパン株式会社製、商品名:LOCTITE)を塗布し、導電性ペースト硬化膜上に静置し、24時間室温硬化させた。ボンドテスタDage series4000(株式会社アークテック)を用い、ダイシェア強度を測定した。
 〔保管安定性評価〕
 保管安定性の評価方法に関しては、導電性ペースト調製直後の粘度と、40℃で1日間保管した後の粘度とを粘度計(東機産業株式会社製、商品名:VISCOMETER TV-25)で測定し、保管中に生じた粘度の上昇倍率を算定した。粘度測定は25℃において行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (22)

  1.  導電性フィラーと、キレート形成物質と、フェノール樹脂と、変性エポキシ樹脂と、を含むことを特徴とする、導電性ペースト。
  2.  変性エポキシ樹脂が、ウレタン変性樹脂、ゴム変性樹脂、エチレンオキサイド変性樹脂、プロピレンオキサイド変性樹脂、脂肪酸変性樹脂、およびウレタンゴム変性樹脂からなる群から選ばれる少なくとも一種であることを特徴とする、請求項1に記載の導電性ペースト。
  3.  導電性ペーストに含まれる樹脂の総量が、導電性フィラー100質量部に対して11質量部以上43質量部以下であることを特徴とする、請求項1または2に記載の導電性ペースト。
  4.  導電性ペーストに含まれる樹脂の総量を基準とする変性エポキシ樹脂の含有率が、13質量%以上60質量%以下である、請求項1~3の何れかに記載の導電性ペースト。
  5.  フェノール樹脂が、レゾール型フェノール樹脂であることを特徴とする、請求項1~4の何れかに記載の導電性ペースト。
  6.  導電性ペーストに含まれる樹脂の総量を基準とするフェノール樹脂の含有率が、38質量%以上85質量%以下である、請求項1~5の何れかに記載の導電性ペースト。
  7.  キレート形成物質が、式I(式中、nは2以上8以下の整数を示す)で示されるピリジン誘導体および1,10-フェナントロリンからなる群から選択される一種もしくは複数種の化合物であることを特徴とする、請求項1~6の何れかに記載の導電性ペースト。
    Figure JPOXMLDOC01-appb-C000001
  8.  導電性フィラー100質量部に対するキレート形成物質の割合が、0.1質量部以上2.0質量部以下であることを特徴とする、請求項1~7の何れかに記載の導電性ペースト。
  9.  ほう素化合物をさらに含むことを特徴とする、請求項1~8の何れかに記載の導電性ペースト。
  10.  ほう素化合物が、ほう酸エステル化合物であることを特徴とする、請求項9記載の導電性ペースト。
  11.  ほう酸エステル化合物が、ほう酸トリエステル化合物であることを特徴とする、請求項10に記載の導電性ペースト。
  12.  ほう酸トリエステル化合物の炭素数が3~54であることを特徴とする、請求項11に記載の導電性ペースト。
  13.  ほう素化合物を、導電性フィラー100質量部当り、0.02質量部以上10質量部以下の範囲で含むことを特徴とする、請求項9~12の何れかに記載の導電性ペースト。
  14.  高反応性エポキシ樹脂をさらに含むことを特徴とする、請求項1~13の何れかに記載の導電性ペースト。
  15.  導電性ペーストに含まれる樹脂の総量を基準とする高反応性エポキシ樹脂の含有率が、1.4質量%以上9.5質量%以下である、請求項14に記載の導電性ペースト。
  16.  カップリング剤をさらに含むことを特徴とする、請求項1~15の何れかに記載の導電性ペースト。
  17.  カップリング剤を、導電性フィラー100質量部当り、0.1質量部以上10質量部以下の範囲で含むことを特徴とする、請求項16に記載の導電性ペースト。
  18.  導電性フィラーとして、銅粉を含むことを特徴とする、請求項1~17の何れかに記載の導電性ペースト。
  19.  導電性フィラーとして、銀粉を含むことを特徴とする、請求項1~18の何れかに記載の導電性ペースト。
  20.  導電性フィラーとして、銀コート銅粉を含むことを特徴とする、請求項1~19の何れかに記載の導電性ペースト。
  21.  少なくとも一部が請求項1~20の何れかに記載される導電性ペーストの硬化物からなる、チップ型電子部品の端子電極。
  22.  少なくとも一部が請求項1~20の何れかに記載される導電性ペーストの硬化物からなる端子電極を含む、チップ型電子部品。
     
PCT/JP2015/085010 2014-12-26 2015-12-15 導電性ペースト WO2016104232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177015868A KR20170102230A (ko) 2014-12-26 2015-12-15 도전성 페이스트
CN201580069180.1A CN107004459B (zh) 2014-12-26 2015-12-15 导电性糊剂
JP2016566131A JP6623174B2 (ja) 2014-12-26 2015-12-15 導電性ペースト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265178 2014-12-26
JP2014265178 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104232A1 true WO2016104232A1 (ja) 2016-06-30

Family

ID=56150257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085010 WO2016104232A1 (ja) 2014-12-26 2015-12-15 導電性ペースト

Country Status (5)

Country Link
JP (1) JP6623174B2 (ja)
KR (1) KR20170102230A (ja)
CN (1) CN107004459B (ja)
TW (1) TWI684186B (ja)
WO (1) WO2016104232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220976A1 (ja) 2020-05-01 2021-11-04 昭栄化学工業株式会社 導電性樹脂組成物及び電子部品の製造方法
WO2021220975A1 (ja) 2020-05-01 2021-11-04 昭栄化学工業株式会社 電子部品の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268381A (ja) * 1991-02-22 1992-09-24 Asahi Chem Ind Co Ltd 銅合金系組成物、それを用いて印刷された成形物、ペーストおよび接着剤
JPH08302312A (ja) * 1995-05-08 1996-11-19 Asahi Chem Ind Co Ltd 導電性接着剤
JP2000219811A (ja) * 1999-01-29 2000-08-08 Harima Chem Inc 導電性ペースト及びその製造方法
JP2005264095A (ja) * 2004-03-22 2005-09-29 Kyoto Elex Kk 導電性樹脂組成物及び導電性ペースト
JP2007018932A (ja) * 2005-07-08 2007-01-25 Kyocera Chemical Corp 回路基板の製造方法と回路基板
JP2007091899A (ja) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2012136697A (ja) * 2010-12-08 2012-07-19 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2015028869A (ja) * 2013-07-30 2015-02-12 ハリマ化成株式会社 導電性ペースト

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237432B2 (ja) * 1995-01-23 2001-12-10 株式会社村田製作所 導電性ペースト
JPH08273432A (ja) * 1995-03-30 1996-10-18 Mitsui Mining & Smelting Co Ltd 導電性組成物
EP2533254B1 (en) * 2010-02-05 2015-11-04 Namics Corporation Reducing agent composition for conductive metal paste
CN102054883B (zh) * 2010-03-30 2011-11-16 泸溪县金源粉体材料有限责任公司 一种供硅太阳能电池铝浆生产用的铝膏及其制备方法
JP5916633B2 (ja) * 2011-01-26 2016-05-11 ナミックス株式会社 導電性ペースト及び導電膜の製造方法
JP2015042696A (ja) * 2011-12-22 2015-03-05 味の素株式会社 導電性接着剤
KR20150037861A (ko) * 2012-07-20 2015-04-08 도요보 가부시키가이샤 레이저 에칭 가공용 도전성 페이스트, 도전성 박막 및 도전성 적층체
CN102938269B (zh) * 2012-10-17 2015-01-07 西安工程大学 一种具有良好抗氧化性能铜电子浆料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268381A (ja) * 1991-02-22 1992-09-24 Asahi Chem Ind Co Ltd 銅合金系組成物、それを用いて印刷された成形物、ペーストおよび接着剤
JPH08302312A (ja) * 1995-05-08 1996-11-19 Asahi Chem Ind Co Ltd 導電性接着剤
JP2000219811A (ja) * 1999-01-29 2000-08-08 Harima Chem Inc 導電性ペースト及びその製造方法
JP2005264095A (ja) * 2004-03-22 2005-09-29 Kyoto Elex Kk 導電性樹脂組成物及び導電性ペースト
JP2007018932A (ja) * 2005-07-08 2007-01-25 Kyocera Chemical Corp 回路基板の製造方法と回路基板
JP2007091899A (ja) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2012136697A (ja) * 2010-12-08 2012-07-19 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2015028869A (ja) * 2013-07-30 2015-02-12 ハリマ化成株式会社 導電性ペースト

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220976A1 (ja) 2020-05-01 2021-11-04 昭栄化学工業株式会社 導電性樹脂組成物及び電子部品の製造方法
WO2021220975A1 (ja) 2020-05-01 2021-11-04 昭栄化学工業株式会社 電子部品の製造方法
KR20230004732A (ko) 2020-05-01 2023-01-06 쇼에이 가가쿠 가부시키가이샤 전자 부품의 제조 방법
KR20230006863A (ko) 2020-05-01 2023-01-11 쇼에이 가가쿠 가부시키가이샤 도전성 수지 조성물 및 전자 부품의 제조 방법

Also Published As

Publication number Publication date
KR20170102230A (ko) 2017-09-08
JP6623174B2 (ja) 2019-12-18
JPWO2016104232A1 (ja) 2017-10-05
TWI684186B (zh) 2020-02-01
CN107004459B (zh) 2020-04-03
CN107004459A (zh) 2017-08-01
TW201628019A (zh) 2016-08-01

Similar Documents

Publication Publication Date Title
US20110140162A1 (en) Conductive adhesive and led substrate using the same
JP5400801B2 (ja) 外部電極用導電性ペースト、それを用いて形成した外部電極を有する積層セラミック電子部品及び積層セラミック電子部品の製造方法
KR100804840B1 (ko) 도전 페이스트 및 그것을 이용한 전자부품 탑재기판
WO2014051149A1 (ja) 導電性接着剤
JP6623174B2 (ja) 導電性ペースト
JP6777548B2 (ja) 導電性ペースト
JP6340174B2 (ja) 導電性ペースト
JP2007277384A (ja) 導電性接着剤
JP6132400B2 (ja) 導電性材料
JP4962063B2 (ja) 導電性ペースト
EP0166588B1 (en) Epoxy resin composition
JP5034577B2 (ja) 導電性ペースト
WO2018179838A1 (ja) 導電性ペースト
JP5861600B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP2004059987A (ja) 外部電極及びそれを備えた電子部品
JP5764824B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP2002212492A (ja) 導電性塗料
JP3547083B2 (ja) 熱硬化性導電ペースト
JP2006143762A (ja) 導電性接着剤
EP3939719A1 (en) Metal particle-containing composition, and conductive adhesive film
JP5402910B2 (ja) 導電ペースト及びその製造方法
JP4888295B2 (ja) 導電性ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566131

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015868

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872801

Country of ref document: EP

Kind code of ref document: A1