WO2016103565A1 - フェライト系ステンレス鋼およびその製造方法 - Google Patents
フェライト系ステンレス鋼およびその製造方法 Download PDFInfo
- Publication number
- WO2016103565A1 WO2016103565A1 PCT/JP2015/005728 JP2015005728W WO2016103565A1 WO 2016103565 A1 WO2016103565 A1 WO 2016103565A1 JP 2015005728 W JP2015005728 W JP 2015005728W WO 2016103565 A1 WO2016103565 A1 WO 2016103565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brazing
- nitrogen
- steel
- stainless steel
- ferritic stainless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a ferritic stainless steel that exhibits good brazing properties when brazing at high temperature using a Ni-containing brazing material and is excellent in corrosion resistance, and a method for producing the same.
- the exhaust heat recovery unit uses the heat of the engine cooling water for heating, or warms the engine cooling water with the heat of the exhaust gas to shorten the warm-up time at the start of the engine. It is a device that improves.
- an exhaust heat recovery unit is installed between a catalytic converter and a muffler, and is composed of a heat exchanger part combining pipes, plates, fins, side plates, etc., and inlet and outlet pipe parts. .
- fins and plates are thin (about 0.1 to 0.5 mm) to reduce back pressure resistance, and side plates and pipes are thick to ensure strength. Each one (about 0.8-1.5mm) is used.
- the exhaust gas enters the heat exchanger portion from the inlet side pipe, where the heat is transferred to the cooling water via the heat transfer surface such as fins and is discharged from the outlet side pipe.
- brazing with a Ni-containing brazing material is mainly used for bonding and assembling the plates and fins constituting the heat exchanger portion of such an exhaust heat recovery unit.
- the EGR cooler includes a pipe that takes in exhaust gas from an exhaust manifold, a pipe that returns the exhaust gas to the intake side of the engine, and a heat exchanger that cools the exhaust gas.
- a pipe that takes in exhaust gas from an exhaust manifold, a pipe that returns the exhaust gas to the intake side of the engine, and a heat exchanger that cools the exhaust gas.
- it has a structure having a heat exchanger having both a water flow passage and an exhaust gas passage on a passage for returning exhaust gas from the exhaust manifold to the intake side of the engine.
- the high-temperature exhaust gas on the exhaust side is cooled by the heat exchanger, and the cooled exhaust gas recirculates to the intake side, lowering the combustion temperature of the engine and generating it at a high temperature.
- a system that suppresses easy NO X is formed.
- the heat exchanger part of the EGR cooler is made up of thin fins and plates stacked for light weight, compactness, and cost reduction. Brazing with a material is
- the material used for these heat exchanger parts includes Ni. Good brazing properties for the brazing filler metal are required.
- the exhaust gas contains some nitrogen oxides (NO X ), sulfide oxides (SO X ), and hydrocarbons (HC). It becomes condensed water. For this reason, the corrosion resistance at normal temperature is calculated
- the temperature becomes high during the brazing heat treatment it is necessary to prevent the so-called sensitization, in which Cr at the grain boundaries reacts preferentially with C and N to form a Cr-deficient layer, thereby ensuring corrosion resistance.
- austenitic stainless steels such as SUS316L and SUS304L, which have a reduced carbon content and are difficult to be sensitized, have been used for the heat exchanger parts of exhaust heat recovery units and EGR coolers.
- austenitic stainless steel is expensive because it contains a large amount of Ni, and because of its large thermal expansion, it can be used in environments where it is subjected to restraint by vigorous vibration at high temperatures, such as parts around exhaust manifolds. There was a problem in that fatigue characteristics and thermal fatigue characteristics at high temperatures were low.
- Patent Document 1 discloses a ferritic stainless steel to which Mo, Ti, and Nb are added and the Si and Al contents are further reduced as a heat exchanger member of an exhaust heat recovery device.
- Mo, Ti, and Nb are added and the Si and Al contents are further reduced as a heat exchanger member of an exhaust heat recovery device.
- C and N in the steel are stabilized as Ti and Nb carbonitrides to prevent sensitization, and further by reducing the Si and Al contents, It is disclosed to improve the attachment.
- Patent Document 2 discloses a condensate corrosion resistance in which Mo content is defined by Cr content and Ti and Nb content is defined by C and N contents as a heat exchanger member of an exhaust heat recovery unit.
- An excellent ferritic stainless steel is disclosed.
- Patent Document 3 discloses a ferritic stainless steel in which components such as Cr, Cu, Al, Ti, etc. are added in a certain relational expression as an EGR cooler material.
- Patent Documents 4 and 5 disclose ferritic stainless steel containing 0.3 to 0.8 mass% or 0.2 to 0.8 mass% of Nb as a material for the EGR cooler member and the heat exchanger portion of the EGR cooler. ing.
- Patent Documents 1 and 2 have a problem that the price is high because it is necessary to contain Mo with a high raw material cost.
- brazing materials with high brazing temperatures for example, BNi-2 and BNi-5 of JIS standard (JISJISZ (3265)) for these steels, brazing defects may occur. In some cases, sufficient brazability could not be obtained.
- Patent Documents 3, 4 and 5 also disclose steel containing Cu, which is less expensive than Mo.
- Cu-containing steel when the steel plates are overlapped and brazed, the gap portion of the overlapped portion is disclosed. Insufficient penetration of the brazing material into the steel, and satisfactory brazing performance could not be obtained, for example, satisfactory joint strength could not be obtained. This is presumably because Cu-containing steel tends to generate a Cr oxide film that lowers brazeability during brazing at a high temperature using a Ni-containing brazing material.
- Patent Documents 4 and 5 disclose steels containing neither Mo nor Cu, but these steels lacked the corrosion resistance after brazing.
- the present invention has been developed in view of the above situation, and is good for brazing at a high temperature using a Ni-containing brazing material without containing a large amount of expensive elements such as Mo.
- An object of the present invention is to provide a ferritic stainless steel exhibiting brazing properties and excellent corrosion resistance together with its manufacturing method.
- the inventors manufactured Cu-containing ferritic stainless steel by variously changing the component composition and manufacturing conditions, and various types of steel manufactured.
- the characteristics, in particular, brazing performance when brazing at a high temperature using a Ni-containing brazing material was studied.
- the Cr oxide film during the brazing process is optimized by optimizing the component composition and performing a heat treatment with controlled atmosphere prior to the brazing process to form a predetermined nitrogen enriched layer on the surface layer of the steel. It is possible to effectively prevent the formation of copper, and it is possible to obtain a satisfactory and satisfactory brazing property even when brazing at high temperature using a Ni-containing brazing material. Obtained.
- the present invention was completed after further studies based on the above findings.
- the gist configuration of the present invention is as follows. 1. % By mass C: 0.003-0.025%, Si: 0.05-1.00% Mn: 0.05-1.00% P: 0.04% or less, S: 0.01% or less, Cr: 16.0-23.0%, Cu: 0.20-0.80% Ni: 0.05-0.60% Nb: 0.20 to 0.70% and N: 0.005 to 0.020% A ferritic stainless steel with a nitrogen concentration layer, the balance of which is Fe and inevitable impurities, and the peak value of the nitrogen concentration from the surface to a depth of 0.05 ⁇ m is 0.03 to 0.30 mass%.
- the steel is further mass%, Mo: 0.05-0.20% Al: 0.01-0.15%, Ti: 0.01-0.15%, V: 0.01-0.20% Ca: 0.0003 to 0.0030% and B: 0.0003 to 0.0030% 2.
- a method for producing the ferritic stainless steel according to 1 or 2 Hot-rolling a slab comprising the component composition according to 1 or 2 to obtain a hot-rolled sheet; Subjecting the hot-rolled sheet to hot-rolled sheet annealing as necessary; A process of applying a combination of cold rolling and annealing once or twice or more, During the final annealing, the dew point of the atmosphere in the temperature range of 600 to 800 ° C is set to -20 ° C or lower, and the cold-rolled sheet after the final cold rolling is heated, and the dew point is -20 ° C or lower, nitrogen Concentration: A ferritic stainless steel manufacturing method in which a nitrogen-concentrated layer is formed at a temperature of 900 ° C. or higher in an atmosphere of 5 vol% or higher.
- the present invention will be specifically described. First, the reason why the component composition of steel is limited to the above range in the present invention will be described.
- the unit of element content in the component composition of steel is “mass%”, hereinafter, it is simply indicated by “%” unless otherwise specified.
- C 0.003-0.025%
- the amount of C increases, the strength improves, and when it decreases, the workability improves.
- C needs to contain 0.003% or more in order to obtain sufficient strength.
- the amount of C exceeds 0.025%, the workability is remarkably deteriorated, and Cr carbide is precipitated at the grain boundaries to cause sensitization, and the corrosion resistance tends to be lowered. Therefore, the C content is in the range of 0.003 to 0.025%. Preferably it is 0.005 to 0.020% of range. More preferably, it is 0.005 to 0.015% of range.
- Si 0.05-1.00%
- Si is an element useful as a deoxidizer. The effect is obtained with a content of 0.05% or more. However, if the amount of Si exceeds 1.00%, the workability deteriorates remarkably, making molding difficult. Therefore, the Si content is in the range of 0.05 to 1.00%. Preferably it is 0.10 to 0.50% of range.
- Mn 0.05-1.00%
- Mn has a deoxidizing action, and the effect is obtained with a content of 0.05% or more.
- excessive addition of Mn impairs workability due to solid solution strengthening. It also promotes the precipitation of MnS, which is the starting point of corrosion, and lowers the corrosion resistance.
- the Mn content is suitably 1.00% or less. Therefore, the Mn content is in the range of 0.05 to 1.00%. Preferably it is 0.15 to 0.35% of range.
- P 0.04% or less
- the P content is 0.04% or less.
- the P amount is preferably 0.005% or more.
- S 0.01% or less S is an element inevitably contained in steel, and the content exceeding 0.01% promotes precipitation of MnS and lowers corrosion resistance. Therefore, the S content is 0.01% or less. Preferably it is 0.007% or less. However, excessive desulfurization causes an increase in refining time and cost, so the S amount is preferably 0.0005% or more.
- Cr 16.0-23.0% Cr is an important element for ensuring the corrosion resistance of stainless steel. If the Cr content is less than 16.0%, sufficient corrosion resistance cannot be obtained after brazing. However, when Cr is added excessively, a Cr oxide film is formed during brazing at a high temperature using a Ni-containing brazing material, and the brazing property deteriorates. Therefore, the Cr content is in the range of 16.0-23.0%. Preferably it is 18.0 to 21.5% of range.
- Cu 0.20 to 0.80%
- Cu is an element that enhances corrosion resistance. This effect is obtained when the Cu content is 0.20% or more. However, when the amount of Cu exceeds 0.80%, the hot workability decreases. Therefore, the Cu content is set in the range of 0.20 to 0.80%. Preferably it is 0.22 to 0.60% of range. More preferably, it is in the range of 0.30 to 0.50%.
- Ni 0.05 to 0.60%
- Ni is an element that contributes effectively to improving the toughness and the corrosion resistance of the gap when contained in an amount of 0.05% or more.
- the Ni content exceeds 0.60%, the stress corrosion cracking sensitivity becomes high.
- the Ni content is in the range of 0.05 to 0.60%. Preferably it is 0.10 to 0.50% of range.
- Nb 0.20 to 0.70%
- Nb is an element that suppresses the deterioration (sensitization) of corrosion resistance due to the precipitation of Cr carbonitride by bonding with C and N, as with Ti described later. Moreover, it has the effect of producing
- N is an important element that improves the brazing property by preventing the formation of an oxide film of Al or Ti during the brazing process by forming a nitrogen concentrated layer.
- the N content needs to be 0.005% or more.
- the N content is in the range of 0.005 to 0.020%.
- it is 0.007 to 0.015% of range. More preferably, it is in the range of 0.007 to 0.010%.
- Mo 0.05-0.20% Mo stabilizes the passivation film of stainless steel and improves the corrosion resistance. This effect is obtained when the Mo content is 0.05% or more. However, since Mo is an expensive element, the content is preferably 0.20% or less. Therefore, when it contains Mo, it is 0.05 to 0.20% of range.
- Al 0.01-0.15%
- Al is an element useful for deoxidation. The effect is obtained when the Al content is 0.01% or more. However, if an Al oxide film is formed on the surface of the steel during the brazing process, the wetting spreadability and adhesion of the brazing material are lowered, and brazing becomes difficult.
- a nitrogen-enriched layer is formed on the steel surface layer to prevent the formation of an Al oxide film during the brazing process. However, if the Al content exceeds 0.15%, the formation of the Al oxide film is sufficient. Cannot be prevented. Therefore, when Al is contained, the content is made 0.01 to 0.15%. Preferably it is 0.05 to 0.10% of range.
- Ti 0.01-0.15%
- Ti is an element that suppresses a decrease in corrosion resistance (sensitization) due to precipitation of Cr carbonitride by preferentially bonding with C and N. The effect is obtained when the Ti content is 0.01% or more.
- it is not a preferable element from the viewpoint of brazing. This is because Ti is an active element with respect to oxygen, and a Ti oxide film is formed on the surface of the steel during the brazing process, thereby reducing the brazing property.
- a nitrogen-enriched layer is formed on the surface layer of the steel to prevent the formation of a Ti oxide film during the brazing treatment.
- the Ti amount exceeds 0.15%, the brazing property tends to be lowered. . Therefore, when Ti is contained, the content is made 0.01 to 0.15%. Preferably it is 0.05 to 0.10% of range.
- V 0.01-0.20%
- V like Ti, combines with C and N contained in the steel to prevent sensitization. Moreover, it has the effect of producing
- the V amount exceeds 0.20%, the workability deteriorates. Therefore, when V is contained, the content is made 0.01 to 0.20%. Preferably it is 0.01 to 0.15% of range. More preferably, it is 0.01 to 0.10% of range.
- Ca 0.0003 to 0.0030%
- Ca improves the weldability by improving the penetration of the weld. The effect is obtained when the Ca content is 0.0003% or more. However, when the amount of Ca exceeds 0.0030%, it combines with S to generate CaS, which deteriorates the corrosion resistance. Therefore, when Ca is contained, the content is made 0.0003 to 0.0030%. Preferably it is 0.0005 to 0.0020% of range.
- B 0.0003-0.0030%
- B is an element that improves secondary work brittleness. The effect is manifested when the B content is 0.0003% or more. However, if the amount of B exceeds 0.0030%, the ductility decreases due to solid solution strengthening. Therefore, when B is contained, the content is made 0.0003 to 0.0030%.
- the component composition in the ferritic stainless steel of the present invention has been described above.
- components other than the above are Fe and inevitable impurities.
- the steel composition is appropriately controlled within the above-mentioned range, and heat treatment is performed under controlled atmosphere before brazing, so that the following nitrogen concentration is present in the surface layer of the steel. It is very important to produce a stratified layer. Peak value of nitrogen concentration from the surface to a depth of 0.05 ⁇ m: 0.03-0.30 mass%
- a nitrogen-concentrated layer in which the peak value of the nitrogen concentration between the surface and the depth of 0.05 ⁇ m is 0.03 to 0.30 mass% is generated. Thereby, it can suppress that oxide films, such as Cr, produce
- N is combined with Cr, Nb, Ti, Al, V, etc. in the steel.
- Oxidation of Cr, etc. during brazing treatment by this nitrogen-enriched layer The inventors consider the film formation suppression mechanism as follows. That is, the formation of the nitrogen enriched layer makes it impossible for Cr or the like present in the surface layer portion of the steel to combine with N and diffuse to the surface. And this nitrogen concentration layer becomes a barrier, and Cr etc. which exists inside this nitrogen concentration layer cannot diffuse to the surface. For this reason, Cr in the steel does not diffuse on the surface, and as a result, the formation of an oxide film such as Cr is suppressed.
- the peak value of the nitrogen concentration when the peak value of the nitrogen concentration is less than 0.03% by mass, it becomes impossible to sufficiently prevent the formation of an oxide film such as Cr on the surface of the steel during the brazing process.
- the peak value of the nitrogen concentration exceeds 0.30% by mass, the surface layer portion is cured, and defects such as cracks are likely to occur in the fin plate due to thermal vibration of the engine or the like. Therefore, the peak value of the nitrogen concentration between the surface and the depth of 0.05 ⁇ m is in the range of 0.03 to 0.30 mass%. Preferably, it is in the range of 0.05% to 0.20% by mass.
- the peak value of the nitrogen concentration between the surface and the depth of 0.05 ⁇ m here is measured, for example, by measuring the nitrogen concentration of the steel in the depth direction by glow discharge emission analysis, and from the steel surface to the depth of 0.05 ⁇ m. It can be calculated by dividing the maximum value of the nitrogen concentration by the measured value of the nitrogen concentration at a depth of 0.50 ⁇ m and multiplying that value by the nitrogen concentration of the steel obtained by chemical analysis.
- the nitrogen-enriched layer here means a region where nitrogen is infiltrated by infiltrating nitrogen from the steel surface, and the surface layer of the steel, specifically, the depth direction is deeper than the steel surface. It is formed in an area of about 0.005 to 0.05 ⁇ m.
- Molten steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and a steel material (slab) is obtained by a continuous casting method or an ingot-bundling method.
- the steel material is heated at 1100 ° C. to 1250 ° C. for 1 to 24 hours, or directly hot-rolled without heating to form a hot-rolled sheet.
- the hot-rolled sheet is usually subjected to hot-rolled sheet annealing at 900 ° C. to 1100 ° C. for 1 to 10 minutes, but depending on the application, the hot-rolled sheet annealing may be omitted.
- a product is obtained by subjecting the hot-rolled sheet to a combination of cold rolling and annealing.
- cold rolling is preferably performed at a rolling reduction of 50% or more in order to improve shape correction, extensibility, bendability, and press formability.
- the cold rolling-annealing process may be repeated twice or more.
- the generation process of this nitrogen-concentrated layer is the final annealing after cold rolling ( It is suitable to carry out at the time of finish annealing). This is because the nitrogen-enriched layer generation process can be performed in a separate process from annealing, such as after cutting a member from a steel sheet, but is performed during the final annealing (finish annealing) after cold rolling. This is because a nitrogen-concentrated layer can be generated without increasing the number of steps, which is advantageous in terms of production efficiency.
- conditions for generating the nitrogen-concentrated layer will be described.
- Dew point -20 ° C or less
- the dew point exceeds -20 ° C, an oxide film is formed on the surface of the steel, nitrogen in the atmosphere does not penetrate into the steel, and a nitrogen concentrated layer is not formed.
- the dew point is -20 ° C or less.
- it is ⁇ 30 ° C. or lower. More preferably, it is -40 degrees C or less.
- the lower limit is not particularly limited, but is usually about -55 ° C.
- Nitrogen concentration in the processing atmosphere 5 vol% or more
- the nitrogen concentration in the processing atmosphere is set to 5 vol% or more.
- it is 10 vol% or more.
- hydrogen, helium, argon, neon, CO selected from among CO 2 it is one or more preferred.
- the nitrogen concentration in the processing atmosphere may be 100 vol%.
- Treatment temperature 900 ° C or more
- nitrogen in the treatment atmosphere does not penetrate into the steel and a nitrogen enriched layer is not formed.
- processing temperature shall be 900 degreeC or more.
- it is 950 degreeC or more.
- the treatment temperature is preferably 1100 ° C. or less. More preferably, it is 1050 ° C. or lower.
- the processing time is preferably in the range of 5 to 3600 seconds. This is because when the treatment time is less than 5 seconds, nitrogen in the treatment atmosphere does not sufficiently penetrate the steel, while when it exceeds 3600 seconds, the effect is saturated.
- the range is preferably 30 to 300 seconds.
- the nitrogen concentration layer generation processing conditions have been described above.
- the heating conditions in the final annealing that is, nitrogen
- Dew point of atmosphere in the temperature range of 600 ° C to 800 ° C at the time of final annealing heating -20 ° C or less
- Oxides are formed on the steel surface. Such an oxide inhibits nitrogen in the atmosphere from entering the steel during the above-described formation process of the nitrogen concentrated layer.
- the dew point of the atmosphere in the temperature range of 600 ° C. to 800 ° C. during the final annealing heating is set to ⁇ 20 ° C. or lower. Preferably, it is ⁇ 35 ° C. or lower.
- the lower limit is not particularly limited, but is usually about -55 ° C.
- descaling may be performed by normal pickling or polishing, but from the viewpoint of production efficiency, mechanical grinding such as brush roll, polishing powder, shot blasting is performed, Next, it is preferable to perform descaling by applying a high-speed pickling process in which pickling is performed in a nitric acid solution. Note that if the nitrogen enriched layer is generated during the final annealing (finish annealing), the pickling amount and polishing amount should be adjusted so that the generated nitrogen enriched layer is not removed. is required.
- the atmospheric gases in all heating processes and cooling processes in the temperature range of 200 ° C. or higher during the annealing are the same as the nitrogen enriched layer generation process shown in Table 2 It was.
- the atmospheric gas in the heating process from 200 ° C. to 800 ° C. during the annealing is a 100% H 2 gas atmosphere, and the heating process in the other temperature range and cooling to 200 ° C.
- the atmospheric gas in the process was the same atmospheric gas as that of the nitrogen enriched layer generation process shown in Table 2.
- the cold-rolled annealed sheet thus obtained was subjected to (1) evaluation of ductility and (2) measurement of the nitrogen concentration of the nitrogen-concentrated layer as follows. Also, these cold-rolled annealed plates are brazed with a brazing material containing Ni, and (3) the corrosion resistance of the cold-rolled annealed plates after the brazing treatment is evaluated, and (4) the brazeability is evaluated. Went. This (4) brazing property evaluation was performed based on (a) the permeability of the brazing material into the gap and (b) the bonding strength of the brazing portion, and was performed as follows.
- ⁇ (Accepted, especially excellent): No breakage of brazed part even if 95% or more of tensile strength of base metal (base material part is broken)
- Brazing was performed in a sealed furnace.
- a high vacuum atmosphere of 10 ⁇ 2 Pa was used, and an Ar carrier gas atmosphere in which Ar was sealed after the high vacuum was applied and the pressure was 100 Pa, respectively.
- the heat treatment temperature pattern is as follows: heating temperature 10 ° C / s, soaking time 1 (step of making the entire temperature uniform): 1060 ° C x 1800s, heating temperature 10 ° C / s, soaking time 2 (actually Step of brazing at a temperature equal to or higher than the melting point of the brazing material): After processing at 1170 ° C. ⁇ 600 s, the furnace was cooled and purged with the outside air (atmosphere) when the temperature dropped to 200 ° C.
- ferritic stainless steel suitable for use in an exhaust heat recovery unit assembled by brazing, a heat exchanger member of an EGR cooler, or the like can be obtained, which is extremely useful industrially.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
例えば、特許文献1には、排熱回収器の熱交換器部材として、MoやTi、Nbを添加し、さらに、SiおよびAl含有量を低減させたフェライト系ステンレス鋼が開示されている。ここでは、TiやNbを添加することにより、鋼中のCおよびNをTiおよびNb炭窒化物として安定化させて鋭敏化を防止し、さらに、SiおよびAl含有量を低減することにより、ろう付け性を改善することが開示されている。
さらに、特許文献3には、EGRクーラー用材料として、Cr,Cu,Al,Ti等の成分を一定の関係式において添加するフェライト系ステンレス鋼が開示されている。
さらに、特許文献4および5には、MoもCuも含有しない鋼が開示されているが、これらの鋼では、ろう付け後の耐食性が不足していた。
その結果、成分組成を最適化するとともに、ろう付け処理に先立ち、雰囲気を制御した熱処理を行って鋼の表層部に所定の窒素濃化層を形成することで、ろう付け処理時におけるCr酸化皮膜の生成を有効に防止することができ、これによりNi含有ろう材を用いた高温でのろう付けを行う場合であっても、十分に満足のいく良好なろう付け性が得られるとの知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
1.質量%で、
C:0.003~0.025%、
Si:0.05~1.00%、
Mn:0.05~1.00%、
P:0.04%以下、
S:0.01%以下、
Cr:16.0~23.0%、
Cu:0.20~0.80%、
Ni:0.05~0.60%、
Nb:0.20~0.70%および
N:0.005~0.020%
を含有し、残部がFeおよび不可避的不純物からなり、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03~0.30質量%となる窒素濃化層をそなえるフェライト系ステンレス鋼。
Mo:0.05~0.20%、
Al:0.01~0.15%、
Ti:0.01~0.15%、
V:0.01~0.20%、
Ca:0.0003~0.0030%および
B:0.0003~0.0030%
のうちから選んだ1種または2種以上を含有する前記1に記載のフェライト系ステンレス鋼。
前記1または2に記載の成分組成からなるスラブを熱間圧延し、熱延板とする工程と、
前記熱延板に必要に応じて熱延板焼鈍を施す工程と、
冷間圧延と焼鈍の組み合わせを1回または2回以上施す工程とをそなえ、
最終の焼鈍時に、600~800℃の温度域における雰囲気の露点を-20℃以下として最終の冷間圧延後の冷延板を加熱し、該冷延板に、露点:-20℃以下、窒素濃度:5vol%以上の雰囲気にて、900℃以上の温度で窒素濃化層の生成処理を行う、フェライト系ステンレス鋼の製造方法。
まず、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、鋼の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.003~0.025%
C量が多くなると強度が向上し、少なくなると加工性が向上する。ここで、Cは、十分な強度を得るために0.003%以上の含有が必要である。しかし、C量が0.025%を超えると、加工性の低下が顕著となるうえ、粒界にCr炭化物が析出して鋭敏化を起こして耐食性が低下しやすくなる。そのため、C量は0.003~0.025%の範囲とする。好ましくは0.005~0.020%の範囲である。さらに好ましくは0.005~0.015%の範囲である。
Siは、脱酸剤として有用な元素である。その効果は0.05%以上の含有で得られる。しかし、Si量が1.00%を超えると、加工性の低下が顕著となって、成型加工が困難となる。そのため、Si量は0.05~1.00%の範囲とする。好ましくは0.10~0.50%の範囲である。
Mnは脱酸作用があり、その効果は0.05%以上の含有で得られる。しかし、Mnの過剰な添加は、固溶強化により加工性を損なう。また、腐食の起点となるMnSの析出を促進して、耐食性を低下させる。このため、Mnは1.00%以下の含有が適当である。従って、Mn量は0.05~1.00%の範囲とする。好ましくは0.15~0.35%の範囲である。
Pは、鋼に不可避的に含まれる元素であり、過剰な含有は溶接性を低下させ、粒界腐食を生じさせやすくする。その傾向は、Pの0.04%超の含有で顕著となる。そのため、P量は0.04%以下とする。好ましくは0.03%以下である。ただし、過度の脱Pは精錬時間の増加やコストの上昇を招くため、P量は0.005%以上とすることが好ましい。
Sは、鋼に不可避的に含まれる元素であり、0.01%超の含有は、MnSの析出を促進し、耐食性を低下させる。よって、S量は0.01%以下とする。好ましくは0.007%以下である。ただし、過度の脱Sは精錬時間の増加やコストの上昇を招くため、S量は0.0005%以上とすることが好ましい。
Crは、ステンレス鋼の耐食性を確保するために重要な元素である。Cr量が16.0%未満では、ろう付け処理後に十分な耐食性が得られない。しかし、Crを過剰に添加すると、Ni含有ろう材を用いた高温でのろう付け処理の際にCr酸化皮膜が生成し、ろう付性が劣化する。そのため、Cr量は16.0~23.0%の範囲とする。好ましくは18.0~21.5%の範囲である。
Cuは、耐食性を高める元素である。この効果は、Cu量が0.20%以上で得られる。しかし、Cu量が0.80%を超えると、熱間加工性が低下する。そのため、Cu量は0.20~0.80%の範囲とする。好ましくは0.22~0.60%の範囲である。より好ましくは0.30~0.50%の範囲である。
Niは、0.05%以上の含有で、靭性およびすき間部の耐食性の向上に有効に寄与する元素である。しかし、Ni量が0.60%を超えると、応力腐食割れ感受性が高くなる。さらには、Niは高価な元素であるので、コストの増大を招く。そのため、Ni量は0.05~0.60%の範囲とする。好ましくは0.10~0.50%の範囲である。
Nbは、後述するTiと同様、CおよびNと結合することにより、Cr炭窒化物の析出による耐食性の低下(鋭敏化)を抑制する元素である。また、窒素と結合して窒素濃化層を生成させる効果がある。これらの効果は、Nb量が0.20%以上で得られる。一方、Nb量が0.70%を超えると、溶接部で溶接割れが生じやすくなる。そのため、Nb量は、0.20~0.70%の範囲とする。好ましくは0.25~0.60%の範囲、より好ましくは0.30~0.50%の範囲である。
Nは、窒素濃化層を形成することにより、ろう付け処理時のAlやTiの酸化皮膜の生成を防止して、ろう付け性を向上させる重要な元素である。このような窒素濃化層を形成するには、N量を0.005%以上とする必要がある。しかし、N量が0.020%を超えると、鋭敏化が起こりやすくなるとともに加工性が低下する。このため、N量は0.005~0.020%の範囲とする。好ましくは0.007~0.015%の範囲である。さらに好ましくは、0.007~0.010%の範囲である。
Moは、ステンレス鋼の不動態化皮膜を安定化させて耐食性を向上させる。この効果はMo量が0.05%以上で得られる。しかし、Moは高価な元素であるので、0.20%以下とすることが好ましい。そのため、Moを含有する場合は、0.05~0.20%の範囲とする。
Alは、脱酸に有用な元素である。その効果はAlの0.01%以上の含有で得られる。しかし、ろう付け処理時にAl酸化皮膜が鋼の表面に生成すると、ろう材のぬれ広がり性や密着性が低下して、ろう付けが困難になる。本発明では、鋼の表層に窒素濃化層を生成させてろう付け処理時のAl酸化皮膜の生成も防止しているが、Al含有量が0.15%を超えると、Al酸化皮膜の生成を十分に防止できなくなる。そのため、Alを含有する場合は、0.01~0.15%の範囲とする。好ましくは0.05~0.10%の範囲である。
Tiは、CおよびNと優先的に結合することにより、Cr炭窒化物の析出による耐食性の低下(鋭敏化)を抑制する元素である。その効果はTiの0.01%以上の含有で得られる。しかし、ろう付け性の観点からは、あまり好ましい元素ではない。というのは、Tiは酸素に対して活性な元素であり、ろう付け処理時にTi酸化皮膜が鋼の表面に生成して、ろう付け性を低下させるからである。本発明では、鋼の表層に窒素濃化層を生成させてろう付け処理時のTi酸化皮膜の生成も防止しているが、Ti量が0.15%を超えると、ろう付け性が低下しやすくなる。そのため、Tiを含有する場合は、0.01~0.15%の範囲とする。好ましくは0.05~0.10%の範囲である。
Vは、Ti同様に、鋼中に含まれるCおよびNと結合し、鋭敏化を防止する。また、窒素と結合して窒素濃化層を生成させる効果がある。これらの効果は、V量が0.01%以上で得られる。一方、V量が0.20%を超えると、加工性が低下する。そのため、Vを含有する場合は、0.01~0.20%の範囲とする。好ましくは0.01~0.15%の範囲である。さらに好ましくは0.01~0.10%の範囲である。
Caは、溶接部の溶け込み性を改善して溶接性を向上させる。その効果は、Ca量が0.0003%以上で得られる。しかし、Ca量が0.0030%を超えると、Sと結合してCaSを生成し、耐食性を悪化させる。そのため、Caを含有する場合は、0.0003~0.0030%の範囲とする。好ましくは0.0005~0.0020%の範囲である。
Bは、二次加工脆性を改善する元素である。その効果は、B量が0.0003%以上で発現する。しかし、B量が0.0030%を超えると、固溶強化により延性が低下する。そのため、Bを含有する場合は0.0003~0.0030%の範囲とする。
なお、本発明における成分組成のうち、上記以外の成分はFeおよび不可避的不純物である。
表面より0.05μmの深さまでの間の窒素濃度のピーク値:0.03~0.30質量%
本発明のフェライト系ステンレス鋼では、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03~0.30質量%となる窒素濃化層を生成させる。これにより、ろう付け処理時に鋼の表面にCr等の酸化皮膜が生成するのを抑制することができ、結果的に、Ni含有ろう材を使用する場合のろう付け性が向上する。
すなわち、窒素濃化層の形成によって、鋼の表層部に存在するCr等がNと結合して、表面に拡散できなくなる。そして、この窒素濃化層が障壁となり、この窒素濃化層より内側に存在するCr等が表面に拡散できなくなる。このため、鋼中のCr等が表面に拡散せず、結果的に、Cr等の酸化皮膜の生成が抑制されるのである。
従って、表面より0.05μmの深さまでの間の窒素濃度のピーク値は、0.03~0.30質量%の範囲とする。好ましくは0.05%~0.20質量%の範囲である。
また、ここでいう窒素濃化層は、鋼の表面から窒素を浸透させて窒素を濃化させた領域を意味し、鋼の表層部、具体的には、深さ方向に鋼の表面より深さ0.005~0.05μm程度の領域に形成される。
上記した成分組成の溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。
この鋼素材を、1100℃~1250℃で1~24時間の加熱をするか、あるいは加熱することなく直接、熱間圧延して熱延板とする。熱延板には、通常、900℃~1100℃で1~10分の熱延板焼鈍を施すが、用途によっては熱延板焼鈍を省略してもよい。
なお、冷間圧延は形状矯正と伸び性、曲げ性、プレス成形性を向上させるために50%以上の圧下率で行うことが好ましい。また、冷間圧延-焼鈍プロセスは、2回以上繰り返しても良い。
というのは、この窒素濃化層の生成処理は、鋼板から部材を切り出した後などに、焼鈍とは別工程で行うこともできるが、冷間圧延後の最終の焼鈍(仕上焼鈍)時に行うと工程を増やすことなく、窒素濃化層を生成させることができ、製造効率の面で有利となるからである。
以下、この窒素濃化層の生成処理条件について、説明する。
露点が-20℃を超えると、鋼の表面に酸化皮膜が生成して、雰囲気中の窒素が鋼に浸透せず、窒素濃化層が生成されない。このため、露点は-20℃以下とする。好ましくは-30℃以下である。さらに好ましくは-40℃以下である。なお、下限については特に限定されるものではないが、通常-55℃程度である。
処理雰囲気中の窒素濃度が5vol%未満では、十分な量の窒素が鋼に浸透せず窒素濃化層が生成しない。このため、処理雰囲気中の窒素濃度は5vol%以上とする。好ましくは、10vol%以上である。なお、窒素以外の処理雰囲気残部としては、水素、ヘリウム、アルゴン、ネオン、CO、CO2のうちから選んだ1種以上とすることが好ましい。なお、処理雰囲気中の窒素濃度は100vol%であってもよい。
処理温度が900℃未満では、処理雰囲気中の窒素が鋼に浸透せず窒素濃化層が生成しない。このため、処理温度は900℃以上とする。好ましくは950℃以上である。しかし、処理温度が1100℃を超えると、鋼が変形するので、処理温度は1100℃以下とすることが好ましい。より好ましくは1050℃以下である。
最終の焼鈍の加熱時の600℃~800℃の温度域における雰囲気の露点:-20℃以下
最終の焼鈍時の加熱の際、600℃~800℃までの温度域における雰囲気の露点が高いと、鋼表面に酸化物が生成する。かような酸化物は、上記した窒素濃化層の生成処理の際、雰囲気中の窒素が鋼に侵入するの阻害する。このため、かような酸化物が鋼表面に存在すると、窒素濃化層の生成処理条件を適正に制御しても、鋼の表層の窒化が進行せず、所望の窒素濃化層を生成させることが困難となる。このため、最終の焼鈍の加熱時の600℃~800℃の温度域における雰囲気の露点は-20℃以下とする。好ましくは、-35℃以下である。なお、下限については特に限定されるものではないが、通常-55℃程度である。
なお、最終の焼鈍(仕上焼鈍)時に窒素濃化層の生成処理を行った場合には、生成させた窒素濃化層が除去されないように、酸洗量や研磨量を調整すべき点に注意が必要である。
なお、外観が濃い黄色や青色になったものは厚い酸化皮膜が生成したと判断し、温度:55℃の150g/l硝酸および5g/l塩酸よりなる混酸溶液中で、+20A/dm2→-20A/dm2の電解酸洗を、2回、電解時間を変えて行った。
また、これらの冷延焼鈍板に対してNi含有ろう材によるろう付けを行い、ろう付け処理後の冷延焼鈍板について、(3)耐食性の評価を行うとともに、(4)ろう付け性の評価を行った。この(4)ろう付け性の評価は、(a)ろう材のすき間部への浸透性と、(b)ろう付け部の接合強度により行うものとし、それぞれ以下のようにして行った。
上記の各冷延焼鈍板から、圧延方向と直角にJIS 13B号引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、以下の基準で延性を評価した。評価結果を表2に示す。
○(合格) :破断伸びが20%以上
×(不合格):破断伸びが20%未満
各冷延焼鈍板の表面を、グロー放電発光分析(以下、GDSと記す。)により分析した。まず、表層からのスパッター時間を変えた試料を作り、その断面をSEMで観察して、スパッター時間と深さの関係の検量線を作成した。
また、窒素濃度を、鋼表面から0.50μmの深さまでスパッターしながら測定した。ここで、0.50μmの深さでは、CrやFeの測定値が一定になることから、この深さでの窒素濃度の測定値を、母材(地鉄)の窒素濃度とした。
そして、鋼表面から0.05μmまでの窒素濃度の測定値のうち、一番高いピーク値(最大値)を、深さ0.50μmにおける窒素濃度の測定値で除し、その値に化学分析で求めた鋼の窒素濃度を乗じ、これにより得られた値を表面より0.05μmの深さまでの間における窒素濃度のピーク値とした。これらの値を表2に示す。
ろう付け処理後の各冷延焼鈍板を用いて、ろう材が付着していない部分から20mm角の試験片を採取し、この試験片を11mm角の測定面を残してシール材で被覆した。ついで、この試験片を30℃の3.5%NaCl溶液中に浸漬させ、NaClの濃度以外はJIS G 0577に準拠して、耐食性試験を実施し、孔食電位Vc'100を測定して以下の基準で評価した。評価結果を表2に示す。
○(合格) :孔食電位Vc'100が100(mV vs SCE)以上
×(不合格):孔食電位Vc'100が100(mV vs SCE)未満
(a)ろう材のすき間部への浸透性
図1に示すように、各冷延焼鈍板について30mm角と25mm×30mmの板を切り出し、この2枚の板を重ねて、一定のトルク力(170kgf)で、クランプ治具ではさみ止めしたのち、片側の端面にろう材を1.2g塗布し、ろう付け処理後に板間にろう材がどの程度浸透したかを、重ねた板の側面部にて目視により確認し、以下の基準で評価した。評価結果を表2に示す。なお、図中、符号1が冷延焼鈍板、2がろう材である。
◎(合格、特に優れる):ろう材を塗布した反対側の端部までろう材が浸透
○(合格):ろう材の浸透が2枚の板の重なり長さの50%以上100%未満
△(不合格):ろう材の浸透が2枚の板の重なり長さの10%以上50%未満
×(不合格):ろう材の浸透が2枚の板の重なり長さの10%未満
図2に示すように、中央で分割したJIS 13号B引張試験片同士を5mm重ね合わせ、クランプ治具ではさみ、片側の重ね部にろう材を0.1g塗布してろう付け処理を行った。ろう付け後、常温で引張試験を行い、ろう付け部の接合強度を以下の基準で評価した。評価結果を表2に示す。なお、図中、符号3が引張試験片である。
◎(合格、特に優れる):母材の引張強度の95%以上でもろう付け部の破断なし(母材部分が破断)
○(合格):母材の引張強度の95%以上でろう付け部が破断
△(不合格):母材の引張強度の50%以上95%未満でろう付け部が破断
×(不合格):母材の引張強度の50%未満でろう付け部が破断
これに対し、成分組成や窒素濃度のピーク値が適正範囲外となる比較例No.17~23では、良好なろう付け性または耐食性が得られなかった。
2 ろう材
3 引張試験片
Claims (3)
- 質量%で、
C:0.003~0.025%、
Si:0.05~1.00%、
Mn:0.05~1.00%、
P:0.04%以下、
S:0.01%以下、
Cr:16.0~23.0%、
Cu:0.20~0.80%、
Ni:0.05~0.60%、
Nb:0.20~0.70%および
N:0.005~0.020%
を含有し、残部がFeおよび不可避的不純物からなり、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03~0.30質量%となる窒素濃化層をそなえるフェライト系ステンレス鋼。 - 前記鋼が、さらに質量%で、
Mo:0.05~0.20%、
Al:0.01~0.15%、
Ti:0.01~0.15%、
V:0.01~0.20%、
Ca:0.0003~0.0030%および
B:0.0003~0.0030%
のうちから選んだ1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼。 - 請求項1または2に記載のフェライト系ステンレス鋼を製造する方法であって、
請求項1または2に記載の成分組成からなるスラブを熱間圧延し、熱延板とする工程と、
前記熱延板に必要に応じて熱延板焼鈍を施す工程と、
冷間圧延と焼鈍の組み合わせを1回または2回以上施す工程とをそなえ、
最終の焼鈍時に、600~800℃の温度域における雰囲気の露点を-20℃以下として最終の冷間圧延後の冷延板を加熱し、該冷延板に、露点:-20℃以下、窒素濃度:5vol%以上の雰囲気にて、900℃以上の温度で窒素濃化層の生成処理を行う、フェライト系ステンレス鋼の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES15872143T ES2721541T3 (es) | 2014-12-24 | 2015-11-17 | Acero inoxidable ferrítico y proceso para producir el mismo |
US15/538,335 US10458013B2 (en) | 2014-12-24 | 2015-11-17 | Ferritic stainless steel and process for producing same |
MX2017008362A MX2017008362A (es) | 2014-12-24 | 2015-11-17 | Acero inoxidable ferritico y proceso para la produccion del mismo. |
CN201580070725.0A CN107109569B (zh) | 2014-12-24 | 2015-11-17 | 铁素体系不锈钢及其制造方法 |
JP2016565875A JP6369565B2 (ja) | 2014-12-24 | 2015-11-17 | フェライト系ステンレス鋼およびその製造方法 |
EP15872143.1A EP3239315B1 (en) | 2014-12-24 | 2015-11-17 | Ferritic stainless steel and process for producing same |
KR1020177017965A KR101951581B1 (ko) | 2014-12-24 | 2015-11-17 | 페라이트계 스테인리스강 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-260776 | 2014-12-24 | ||
JP2014260776 | 2014-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103565A1 true WO2016103565A1 (ja) | 2016-06-30 |
Family
ID=56149639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005728 WO2016103565A1 (ja) | 2014-12-24 | 2015-11-17 | フェライト系ステンレス鋼およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10458013B2 (ja) |
EP (1) | EP3239315B1 (ja) |
JP (1) | JP6369565B2 (ja) |
KR (1) | KR101951581B1 (ja) |
CN (1) | CN107109569B (ja) |
ES (1) | ES2721541T3 (ja) |
MX (1) | MX2017008362A (ja) |
TW (1) | TWI579391B (ja) |
WO (1) | WO2016103565A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018188687A (ja) * | 2017-04-28 | 2018-11-29 | 新日鐵住金株式会社 | 耐熱部材用フェライト系ステンレス鋼板 |
KR20190030718A (ko) * | 2016-09-02 | 2019-03-22 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
KR20200105932A (ko) * | 2018-02-14 | 2020-09-09 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941461B2 (en) | 2016-03-31 | 2021-03-09 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing steel sheet, and method for producing coated steel sheet |
JP6699670B2 (ja) | 2016-09-02 | 2020-05-27 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP7014754B2 (ja) * | 2019-07-09 | 2022-02-01 | Jfeスチール株式会社 | 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板 |
WO2021100687A1 (ja) * | 2019-11-19 | 2021-05-27 | 日鉄ステンレス株式会社 | フェライト系ステンレス鋼板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168811A (ja) * | 1987-12-24 | 1989-07-04 | Kawasaki Steel Corp | 耐銹性に優れたフェライト系ステンレス鋼の製造方法 |
JPH01176094A (ja) * | 1987-12-28 | 1989-07-12 | Kawasaki Steel Corp | 成形性と耐食性に優れる高クロム・フェライト系ステンレス鋼の製造方法 |
JP2009197293A (ja) * | 2008-02-23 | 2009-09-03 | Nisshin Steel Co Ltd | フェライト系ステンレス鋼材およびその製造方法並びに自動車マフラー |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5861220A (ja) | 1981-10-09 | 1983-04-12 | Sumitomo Metal Ind Ltd | 耐銹性に優れたフエライトステンレス鋼の製造方法 |
JPS6013060A (ja) * | 1983-07-04 | 1985-01-23 | Nippon Stainless Steel Co Ltd | 耐銹性の優れたステンレス鋼光輝焼鈍材 |
JP3268927B2 (ja) * | 1993-12-22 | 2002-03-25 | 新日本製鐵株式会社 | 加工性と耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材 |
KR100240741B1 (ko) | 1994-01-26 | 2000-01-15 | 에모또 간지 | 내부식성이 우수한 스테인레스강판의 제조방법 |
JP3237369B2 (ja) | 1994-02-04 | 2001-12-10 | 住友金属工業株式会社 | 加工性に優れた外装用高耐銹性フェライトステンレス鋼板の製造方法 |
JP2642056B2 (ja) | 1994-04-22 | 1997-08-20 | 日本冶金工業株式会社 | 熱交換器用フェライト系ステンレス鋼 |
JP3224694B2 (ja) | 1994-10-07 | 2001-11-05 | 新日本製鐵株式会社 | 耐銹性と加工性に優れたフェライト系ステンレス鋼板 |
JPH10176249A (ja) * | 1996-12-13 | 1998-06-30 | Sumitomo Metal Ind Ltd | フェライト系ステンレス鋼鋼材およびその製造方法 |
JPH11236654A (ja) * | 1998-02-25 | 1999-08-31 | Nippon Steel Corp | ロウ接性に優れたアンモニア−水系吸収式サイクル熱交換器用ステンレス鋼 |
JP2000212704A (ja) | 1999-01-20 | 2000-08-02 | Nippon Steel Corp | 加工性および耐食性に優れたフェライト系ステンレス鋼およびその薄鋼板の製造方法 |
JP2001032051A (ja) | 1999-07-22 | 2001-02-06 | Nippon Steel Corp | 耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板および製造方法 |
JP4963043B2 (ja) | 2006-06-22 | 2012-06-27 | 新日鐵住金ステンレス株式会社 | 耐発銹性と加工性に優れた光輝焼鈍仕上げフェライト系ステンレス鋼板およびその製造方法 |
JP2008078115A (ja) * | 2006-08-24 | 2008-04-03 | Nissan Motor Co Ltd | 遷移金属窒化物、燃料電池用セパレータ、遷移金属窒化物の製造方法、燃料電池用セパレータの製造方法、燃料電池スタック、及び燃料電池車両 |
EP2100983B1 (en) | 2007-01-12 | 2012-10-31 | JFE Steel Corporation | Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness |
JP5390175B2 (ja) | 2007-12-28 | 2014-01-15 | 新日鐵住金ステンレス株式会社 | ろう付け性に優れたフェライト系ステンレス鋼 |
JP5264199B2 (ja) | 2008-01-28 | 2013-08-14 | 日新製鋼株式会社 | フェライト系ステンレス鋼を用いたegrクーラー |
JP5252959B2 (ja) | 2008-03-21 | 2013-07-31 | 日新製鋼株式会社 | 自動車排熱回収装置 |
JP5462583B2 (ja) * | 2008-10-24 | 2014-04-02 | 新日鐵住金ステンレス株式会社 | Egrクーラ用フェライト系ステンレス鋼板 |
JP5349153B2 (ja) | 2009-06-15 | 2013-11-20 | 日新製鋼株式会社 | ろう付け用フェライト系ステンレス鋼材および熱交換器部材 |
US9611525B2 (en) * | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
JP5821336B2 (ja) | 2011-07-01 | 2015-11-24 | Jfeスチール株式会社 | 固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法並びに固体高分子型燃料電池セパレータ |
EP2952602B1 (en) * | 2013-02-04 | 2020-04-22 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet which is excellent in workability and method of production of same |
US20170088912A1 (en) | 2014-03-20 | 2017-03-30 | Jfe Steel Corporation | Ferritic stainless steel and production method therefor (as amended) |
EP3176277B1 (en) * | 2014-07-29 | 2020-05-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel material for fuel cell, and method for producing same |
-
2015
- 2015-11-17 JP JP2016565875A patent/JP6369565B2/ja active Active
- 2015-11-17 MX MX2017008362A patent/MX2017008362A/es unknown
- 2015-11-17 EP EP15872143.1A patent/EP3239315B1/en active Active
- 2015-11-17 ES ES15872143T patent/ES2721541T3/es active Active
- 2015-11-17 KR KR1020177017965A patent/KR101951581B1/ko active IP Right Grant
- 2015-11-17 CN CN201580070725.0A patent/CN107109569B/zh active Active
- 2015-11-17 US US15/538,335 patent/US10458013B2/en active Active
- 2015-11-17 WO PCT/JP2015/005728 patent/WO2016103565A1/ja active Application Filing
- 2015-12-21 TW TW104142961A patent/TWI579391B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168811A (ja) * | 1987-12-24 | 1989-07-04 | Kawasaki Steel Corp | 耐銹性に優れたフェライト系ステンレス鋼の製造方法 |
JPH01176094A (ja) * | 1987-12-28 | 1989-07-12 | Kawasaki Steel Corp | 成形性と耐食性に優れる高クロム・フェライト系ステンレス鋼の製造方法 |
JP2009197293A (ja) * | 2008-02-23 | 2009-09-03 | Nisshin Steel Co Ltd | フェライト系ステンレス鋼材およびその製造方法並びに自動車マフラー |
Non-Patent Citations (1)
Title |
---|
See also references of EP3239315A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190030718A (ko) * | 2016-09-02 | 2019-03-22 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
KR102234326B1 (ko) * | 2016-09-02 | 2021-03-30 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
US11230756B2 (en) | 2016-09-02 | 2022-01-25 | Jfe Steel Corporation | Ferritic stainless steel |
JP2018188687A (ja) * | 2017-04-28 | 2018-11-29 | 新日鐵住金株式会社 | 耐熱部材用フェライト系ステンレス鋼板 |
KR20200105932A (ko) * | 2018-02-14 | 2020-09-09 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
KR102389026B1 (ko) | 2018-02-14 | 2022-04-20 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
Also Published As
Publication number | Publication date |
---|---|
TWI579391B (zh) | 2017-04-21 |
EP3239315B1 (en) | 2019-01-30 |
JPWO2016103565A1 (ja) | 2017-10-05 |
JP6369565B2 (ja) | 2018-08-08 |
CN107109569A (zh) | 2017-08-29 |
KR20170088431A (ko) | 2017-08-01 |
EP3239315A4 (en) | 2018-01-24 |
CN107109569B (zh) | 2019-09-06 |
EP3239315A1 (en) | 2017-11-01 |
US10458013B2 (en) | 2019-10-29 |
TW201629244A (zh) | 2016-08-16 |
KR101951581B1 (ko) | 2019-02-22 |
ES2721541T3 (es) | 2019-08-01 |
US20170349995A1 (en) | 2017-12-07 |
MX2017008362A (es) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846339B1 (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP6044743B2 (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP6369565B2 (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP6607268B2 (ja) | フェライト系ステンレス鋼 | |
JPWO2016103565A6 (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP5786491B2 (ja) | Egrクーラー用フェライト系ステンレス鋼 | |
JP2009235570A (ja) | 耐熱性と溶接性に優れるフェライト系ステンレス鋼 | |
JP6547927B1 (ja) | フェライト系ステンレス鋼 | |
WO2019159606A1 (ja) | フェライト系ステンレス鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872143 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016565875 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538335 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/008362 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177017965 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015872143 Country of ref document: EP |