JP6044743B2 - フェライト系ステンレス鋼およびその製造方法 - Google Patents

フェライト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
JP6044743B2
JP6044743B2 JP2016523346A JP2016523346A JP6044743B2 JP 6044743 B2 JP6044743 B2 JP 6044743B2 JP 2016523346 A JP2016523346 A JP 2016523346A JP 2016523346 A JP2016523346 A JP 2016523346A JP 6044743 B2 JP6044743 B2 JP 6044743B2
Authority
JP
Japan
Prior art keywords
brazing
nitrogen
steel
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523346A
Other languages
English (en)
Other versions
JPWO2016017123A1 (ja
Inventor
福田 國夫
國夫 福田
光幸 藤澤
光幸 藤澤
知洋 石井
知洋 石井
石川 伸
伸 石川
力 上
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6044743B2 publication Critical patent/JP6044743B2/ja
Publication of JPWO2016017123A1 publication Critical patent/JPWO2016017123A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、Ni含有ろう材を用いた高温でのろう付けを行う場合に良好なろう付け性を示すとともに、耐食性にも優れるフェライト系ステンレス鋼およびその製造方法に関するものである。
近年、地球環境保護の立場から、自動車に対して燃費のさらなる向上や排気ガス浄化の強化が求められている。このため、排熱回収器やEGR(Exhaust Gas Recirculation)クーラーの自動車への適用が増大しつつある。
ここで、排熱回収器とは、エンジン冷却水の熱を暖房に利用したり、排気ガスの熱でエンジンの冷却水を温めてエンジン始動時の暖機時間を短くしたりすることで、燃費を向上させる装置である。一般的に、排熱回収器は、触媒コンバーターとマフラーとの間に設置され、パイプ、プレート、フィン、サイドプレート等を組み合わせた熱交換器部分と、入側・出側パイプ部分で構成される。一般に、背圧抵抗を減らすため、フィンやプレートには、板厚が薄いもの(0.1〜0.5mm程度)が、また、強度の確保の点から、サイドプレートやパイプなどには、板厚が厚いもの(0.8〜1.5mm程度)がそれぞれ使用される。そして、排気ガスは、入側パイプより熱交換器部分に入り、そこで、その熱をフィンなどの伝熱面を介して冷却水へ伝え、出側パイプから排出される。また、かような排熱回収器の熱交換器部分を構成するプレートやフィンの接着、組み立てには、Ni含有ろう材によるろう付けが主に用いられる。
また、EGRクーラーは、エキゾーストマニホールドなどから排気ガスを取り入れるパイプと、排気ガスをエンジンの吸気側に戻すパイプと、排気ガスを冷却する熱交換器とで構成される。具体的な構造としては、エキゾーストマニホールドから排ガスをエンジンの吸気側に還流させる経路上に、水流通路と排気ガス通路を併せ持つ、熱交換器を有する構造となっている。このような構造とすることにより、排気側における高温の排気ガスが、熱交換器によって冷却され、冷却された排気ガスが吸気側に還流してエンジンの燃焼温度を低下させ、高温下で生成しやすいNOXを抑制するシステムが形成される。また、EGRクーラーの熱交換器部分は、軽量化、コンパクト化、コスト低減などの理由から、薄板のフィンとプレートを重ね合わせて構成されており、これらの接着、組み立てには、やはりNi含有ろう材によるろう付けが主に用いられる。
このように、排熱回収器やEGRクーラーの熱交換器部分は、Ni含有ろう材を用いたろう付けにより接着、組み立てされていることから、これらの熱交換器部分に用いられる素材には、Ni含有ろう材に対する良好なろう付け性が求められる。また、これらの熱交換器部分では、高温の排気ガスが通過するため、高温の排気ガスに対する耐酸化性も求められる。さらに、排気ガスには、窒素酸化物(NOX)、硫化酸化物(SOX)、炭化水素(HC)が若干含まれるので、これらが熱交換器で結露して、腐食性の強い酸性の凝縮水となる。このため、これらの熱交換器部分に用いられる素材には、常温での耐食性も求められる。特にろう付け熱処理時には高温になるので、粒界のCrが優先的にCやNと反応し、Cr欠乏層が出来る、いわゆる鋭敏化を防いで耐食性を確保することが必要である。
以上のようなことから、排熱回収器やEGRクーラーの熱交換器部分には、通常、炭素含有量を低減した鋭敏化し難いSUS316L、SUS304Lなどのオーステナイト系ステンレス鋼が使用されてきた。しかし、オーステナイト系ステンレス鋼は、Niを多量に含有するために高コストになることや、熱膨張が大きいため、エキゾーストマニホールド周囲部品のように、高温で激しい振動で拘束力をうける使用環境での疲労特性、高温での熱疲労特性が低い点に問題があった。
そこで、排熱回収器やEGRクーラーの熱交換器部分にオーステナイト系ステンレス鋼以外の鋼を用いることが検討されている。
例えば、特許文献1には、排熱回収器の熱交換器部材として、MoやTi、Nbを添加し、さらに、SiおよびAl含有量を低減させたフェライト系ステンレス鋼が開示されている。ここでは、TiやNbを添加することにより、鋼中のCおよびNをTiおよびNb炭窒化物として安定化させて鋭敏化を防止し、さらに、SiおよびAl含有量を低減することにより、ろう付け性を改善することが開示されている。
また、特許文献2には、排熱回収器の熱交換器用部材として、Cr含有量によってMo含有量を規定するとともに、CおよびN含有量によってTiおよびNb含有量を規定した耐凝縮水腐食性に優れたフェライト系ステンレス鋼が開示されている。
さらに、特許文献3には、EGRクーラー用材料として、Cr,Cu,Al,Ti等の成分を一定の関係式において添加するフェライト系ステンレス鋼が開示されている。
加えて、特許文献4および5には、EGRクーラーの部材およびEGRクーラーの熱交換器部分の材料として、Nbを0.3〜0.8質量%または0.2〜0.8質量%含有させたフェライト系ステンレス鋼が開示されている。
特開平7-292446号公報 特開2009-228036号公報 特開2010-121208号公報 特開2009-174040号公報 特開2010-285683号公報 特開2008-190035号公報
しかし、特許文献1に開示された鋼は、ろう付け処理温度が低い銅ろう材の使用を前提としており、ろう付け処理温度が高いNi含有ろう材(例えばJIS規格(JIS Z 3265)のBNi-2、BNi-5など)を使用する場合には、ろう付け不良が起こるという問題があった。
また、特許文献2に開示された鋼、特にAlを含有する鋼では、Ni含有ろう材を用いて高温でのろう付け処理をする場合に、ろうのぬれ広がり性を悪化させるAl酸化皮膜が生成して、ろう付け性を低下させるという問題があった。
さらに、特許文献3に開示された鋼では、Ni含有ろう材を用いた高温でのろう付け処理の際に生成するAl酸化皮膜を抑制するために、成分組成の面で一定の考慮が払われているものの、その抑制効果は十分とは言えなかった。そのため、例えば、鋼板を重ね合わせてろう付けを行う場合には重ね合わせ部分のすき間部へのろう材の浸透が十分ではなく、また満足のいく接合強度が得られない等、必ずしも十分なろう付け性が得られなかった。
この点、特許文献4および5に開示された鋼では、多量のNbを含有させることにより、Ni含有ろう材を用いたろう付け処理時における結晶粒の粗大化を抑制して、靭性の低下を防止しており、またAlを含有しない場合には、ろう付け性についても一定の改善が図られている。
しかし、Alを含有する場合、特許文献4および5に開示された鋼では、Ni含有ろう材を用いた高温でのろう付け処理の際に生成するAl酸化皮膜の抑制効果はやはり十分とは言えなかった。そのため、例えば、鋼を重ね合わせてろう付けを行う場合には重ね合わせ部分のすき間部へのろう材の浸透が十分ではなく、また満足のいく接合強度が得られない等、必ずしも十分なろう付け性は得られなかった。
一方、特許文献6に開示されているように、Alは、TIG溶接を行う場合にAl酸化物を選択的に形成することで、溶接部の耐食性の劣化を抑制する効果があり、このような観点からは一定量を含有させることが有効である。
本発明は、上記の現状に鑑み開発されたものであって、Alを含有する場合であっても、Ni含有ろう材を用いた高温でのろう付けを行う場合に良好なろう付け性を示すとともに、耐食性にも優れるフェライト系ステンレス鋼を、その製造方法とともに提供することを目的とする。
さて、発明者らは、Alを含有させることを前提に成分組成および製造条件を種々に変化させてAl含有フェライト系ステンレス鋼を製造し、製造した鋼の各種特性、特にNi含有ろう材を用いた高温でのろう付けを行う場合のろう付け性について、鋭意検討した。
その結果、成分組成を最適化するとともに、ろう付け処理に先立ち、雰囲気を制御した熱処理を行って鋼の表層部に所定の窒素濃化層を形成することで、ろう付け処理時におけるAl酸化皮膜の生成を有効に防止することができ、これによりNi含有ろう材を用いた高温でのろう付けを行う場合であっても、十分に満足のいく良好なろう付け性が得られるとの知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.003〜0.020%、
Si:0.05〜1.00%、
Mn:0.10〜0.50%、
P:0.04%以下、
S:0.01%以下、
Cr:16.0〜25.0%、
Ni:0.05〜0.60%、
Nb:0.25〜0.40%、
Al:0.005〜0.15%および
N:0.005〜0.030%
を含有するとともに、Mo:0.50〜2.50%またはCu:0.05〜0.80%のうちから選んだ少なくとも1種を含有し、残部がFeおよび不可避的不純物からなり、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03〜0.30質量%となる窒素濃化層をそなえるフェライト系ステンレス鋼。
2.さらに質量%で
:0.01〜0.20%および
B:0.0003〜0.0030%
のうちから選んだ1種または2種を含有する前記1に記載のフェライト系ステンレス鋼。
3.さらに質量%で、
Ti:0.005〜0.10%および
Ca:0.0003〜0.0030%
を含有する前記1または2に記載のフェライト系ステンレス鋼。
4.前記1〜3のいずれかに記載のフェライト系ステンレス鋼を製造する方法であって、
前記1〜3のいずれかに記載の成分組成からなるスラブを熱間圧延し、熱延板とする工程と、
前記熱延板に必要に応じて熱延板焼鈍を施す工程と、
前記熱延板に冷間圧延と焼鈍の組み合わせを1回または2回以上施す工程とをそなえ、
前記冷間圧延後の最終の焼鈍時に、600〜800℃の温度域における雰囲気の露点を−20℃以下として前記冷間圧延後の鋼板を加熱し、前記冷間圧延後の鋼板に、露点:−20℃以下、窒素濃度:5vol%以上の雰囲気にて、890℃以上の温度で窒素濃化層の生成処理を行う、フェライト系ステンレス鋼の製造方法。
本発明によれば、Ni含有ろう材を用いた高温でのろう付けを行う場合に良好なろう付け性を示すとともに、耐食性にも優れるフェライト系ステンレス鋼を得ることができる。
ろう材のすき間部への浸透性評価に用いる試験材の模式図である。 ろう付け部の接合強度評価に用いる引張試験片の模式図であり、(a)はろう付け前の引張試験片の片側を、(b)はろう付け後の引張試験片の全体を示す図である。
以下、本発明を具体的に説明する。
まず、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、鋼の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.003〜0.020%
C量が多くなると強度が向上し、少なくなると加工性が向上する。ここで、Cは、十分な強度を得るために0.003%以上の含有が必要である。しかし、C量が0.020%を超えると、加工性の低下が顕著となるうえ、粒界にCr炭化物が析出して鋭敏化を起こして耐食性が低下しやすくなる。そのため、C量は0.003〜0.020%の範囲とする。好ましくは0.005〜0.015%の範囲である。さらに好ましくは0.005〜0.010%の範囲である。
Si:0.05〜1.00%
Siは、脱酸剤として有用な元素である。その効果は0.05%以上の含有で得られる。しかし、Si量が1.00%を超えると、加工性の低下が顕著となって、成型加工が困難となる。そのため、Si量は0.05〜1.00%の範囲とする。好ましくは0.10〜0.50%の範囲である。
Mn:0.10〜0.50%
Mnは脱酸作用があり、その効果は0.10%以上の含有で得られる。しかし、Mnの過剰な添加は、固溶強化により加工性を損なう。また、腐食の起点となるMnSの析出を促進して、耐食性を低下させる。このため、Mnは0.50%以下の含有が適当である。従って、Mn量は0.10〜0.50%の範囲とする。好ましくは0.15〜0.35%の範囲である。
P:0.04%以下
Pは、鋼に不可避的に含まれる元素であり、過剰な含有は溶接性を低下させ、粒界腐食を生じさせやすくする。その傾向は、Pの0.04%超の含有で顕著となる。そのため、P量は0.04%以下とする。好ましくは0.03%以下である。ただし、過度の脱Pは精錬時間の増加やコストの上昇を招くため、P量は0.005%以上とすることが好ましい。
S:0.01%以下
Sは、鋼に不可避的に含まれる元素であり、0.01%超の含有は、MnSの析出を促進し、耐食性を低下させる。よって、S量は0.01%以下とする。好ましくは0.004%以下である。ただし、過度の脱Sは精錬時間の増加やコストの上昇を招くため、S量は0.0005%以上とすることが好ましい。
Cr:16.0〜25.0%
Crは、ステンレス鋼の耐食性を確保するために重要な元素である。Cr量が16.0%未満では、ろう付け処理後に十分な耐食性が得られない。しかし、Crを過剰に添加すると、加工性が劣化する。そのため、Cr量は16.0〜25.0%の範囲とする。好ましくは18.0〜19.5%の範囲である。
Ni:0.05〜0.60%
Niは、0.05%以上の含有で、靭性およびすき間部の耐食性の向上に有効に寄与する元素である。しかし、Ni量が0.60%を超えると、応力腐食割れ感受性が高くなる。さらには、Niは高価な元素であるので、コストの増大を招く。そのため、Ni量は0.05〜0.60%の範囲とする。好ましくは0.10〜0.50%の範囲である。
Nb:0.25〜0.45%
Nbは、後述するTiと同様、CおよびNと結合することにより、Cr炭窒化物の析出による耐食性の低下(鋭敏化)を抑制する元素である。また、窒素と結合して窒素濃化層を生成させる効果がある。これらの効果は、Nb量が0.25%以上で得られる。一方、Nb量が0.45%を超えると、溶接部で溶接割れが生じやすくなる。そのため、Nb量は、0.25〜0.45%の範囲とする。好ましくは0.30〜0.40%の範囲である。
Al:0.005〜0.15%
Alは、脱酸に有用な元素である。さらに、TIG溶接を行う場合には、Al酸化物を選択的に形成することで、溶接部の耐食性が劣化するのを防止する。それらの効果はAlの0.005%以上の含有で得られる。しかし、ろう付け処理時にAl酸化皮膜が鋼の表面に生成すると、ろう材のぬれ広がり性や密着性が低下して、ろう付けが困難になる。本発明では、鋼の表層に窒素濃化層を生成させてろう付け処理時のAl酸化皮膜の生成を防止しているが、Al含有量が0.15%を超えると、Al酸化皮膜の生成を十分に防止できなくなる。そのため、Al量は0.005〜0.15%の範囲とする。好ましくは、0.005〜0.10%の範囲である。さらに好ましくは、0.005〜0.04%の範囲である。
N:0.005〜0.030%
Nは、窒素濃化層を形成することにより、ろう付け処理時のAlやTiの酸化皮膜の生成を防止して、ろう付け性を向上させる重要な元素である。このような窒素濃化層を形成するには、N量を0.005%以上とする必要がある。しかし、N量が0.030%を超えると、鋭敏化が起こりやすくなるとともに加工性が低下する。このため、N量は0.005〜0.030%の範囲とする。好ましくは0.007〜0.025%の範囲である。さらに好ましくは、0.007〜0.020%の範囲である。
また、本発明のフェライト系ステンレス鋼では、Mo:0.50〜2.50%またはCu:0.05〜0.80%のうちから選んだ少なくとも1種を含有させる必要がある。
Mo:0.50〜2.50%
Moは、ステンレス鋼の不動態化皮膜を安定化させて耐食性を向上させる。排熱回収器やEGRクーラーでは、凝縮水による内面腐食や融雪剤などによる外面腐食を防止する効果がある。さらに、高温熱疲労特性の向上効果があり、エキゾーストマニホールド直下に取り付けられるEGRクーラーに使用する場合には、特に有効な元素である。これらの効果はMo量が0.50%以上で得られる。しかし、Mo量が2.50%を超えると、加工性が低下する。そのため、Mo量は0.50〜2.50%の範囲とする。好ましくは1.00〜2.00%の範囲である。
Cu:0.05〜0.80%
Cuは、耐食性を高める元素である。この効果は、Cu量が0.05%以上で得られる。しかし、Cu量が0.80%を超えると、熱間加工性が低下する。そのため、Cu量は0.05〜0.80%の範囲とする。好ましくは0.10〜0.60%の範囲である。
以上、基本成分について説明したが、本発明では、必要に応じて、以下に述べる元素を適宜含有させることができる。
Ti:0.005〜0.10%
Tiは、CおよびNと優先的に結合することにより、Cr炭窒化物の析出による耐食性の低下(鋭敏化)を抑制する元素である。その効果はTiの0.005%以上の含有で得られる。しかし、ろう付け性の観点からは、あまり好ましい元素ではない。というのは、Tiは酸素に対して活性な元素であり、ろう付け処理時にTi酸化皮膜が鋼の表面に生成して、ろう付け性を低下させるからである。本発明では、鋼の表層に窒素濃化層を生成させてろう付け処理時のTi酸化皮膜の生成を防止しているが、Ti量が0.10%を超えると、ろう付け性が低下しやすくなる。そのため、Tiを含有する場合は、0.005〜0.10%の範囲とする。好ましくは0.005〜0.05%の範囲である。
V:0.01〜0.20%
Vは、Ti同様に、鋼中に含まれるCおよびNと結合し、鋭敏化を防止する。また、窒素と結合して窒素濃化層を生成させる効果がある。これらの効果は、V量が0.01%以上で得られる。一方、V量が0.20%を超えると、加工性が低下する。そのため、Vを含有する場合は、0.01〜0.20%の範囲とする。好ましくは0.01〜0.15%の範囲である。さらに好ましくは0.01〜0.10%の範囲である。
Ca:0.0003〜0.0030%
Caは、溶接部の溶け込み性を改善して溶接性を向上させる。その効果は、Ca量が0.0003%以上で得られる。しかし、Ca量が0.0030%を超えると、Sと結合してCaSを生成し、耐食性を悪化させる。そのため、Caを含有する場合は、0.0003〜0.0030%の範囲とする。好ましくは0.0005〜0.0020%の範囲である。
B:0.0003〜0.0030%
Bは、二次加工脆性を改善する元素である。その効果は、B量が0.0003%以上で発現する。しかし、B量が0.0030%を超えると、固溶強化により延性が低下する。そのため、Bを含有する場合は0.0003〜0.0030%の範囲とする。
以上、本発明のフェライト系ステンレス鋼における成分組成について説明した。
なお、本発明における成分組成のうち、上記以外の成分はFeおよび不可避的不純物である。
また、本発明のフェライト系ステンレス鋼では、鋼の成分組成を上記した範囲に適切に制御するとともに、ろう付け前に雰囲気を制御した熱処理を行って、鋼の表層部に以下のような窒素濃化層を生成させることが極めて重要である。
表面より0.05μmの深さまでの間の窒素濃度のピーク値:0.03〜0.30質量%
本発明のフェライト系ステンレス鋼では、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03〜0.30質量%となる窒素濃化層を生成させる。これにより、ろう付け処理時に鋼の表面にAlやTiの酸化皮膜が生成するのを防止することができ、結果的に、Ni含有ろう材を使用する場合のろう付け性が向上する。
ここに、このような窒素濃化層では、Nが、鋼中のTi、Al、V、Nb、Cr等と結合するのであるが、この窒素濃化層によるろう付け処理時のAlやTiの酸化皮膜の生成抑制機構について、発明者らは次のように考えている。
すなわち、窒素濃化層の形成によって、鋼の表層部に存在するAlやTi等がNと結合して、表面に拡散できなくなる。そして、この窒素濃化層が障壁となり、この窒素濃化層より内側に存在するAlやTiが表面に拡散できなくなる。このため、鋼中のAlやTiが表面に拡散せず、結果的に、AlやTiの酸化皮膜の生成が抑制されるのである。
なお、TIG溶接を行う場合には、鋼表面が溶けることで鋼の表層部に形成した窒素濃化層が破壊され、これによって、溶接部でのAl酸化物の選択的な形成が可能となり、溶接部の耐食性の劣化を防止できる。
ここに、窒素濃度のピーク値が0.03質量%未満では、ろう付け処理時に鋼の表面におけるAlやTiの酸化皮膜の生成を十分には防止できなくなる。一方、窒素濃度のピーク値が0.30質量%を超えると、表層部が硬化し、エンジンなどの熱振動によりフィン板にクラックが入る等、欠陥が生じやすくなる。
従って、表面より0.05μmの深さまでの間における窒素濃度のピーク値は、0.03〜0.30質量%の範囲とする。好ましくは0.05%〜0.20質量%の範囲である。
なお、ここでいう表面より0.05μmの深さまでの間における窒素濃度のピーク値は、例えば、グロー放電発光分析により鋼の窒素濃度を深さ方向に測定し、鋼表面から0.05μmの深さまでの窒素濃度の最大値を、深さ0.50μmにおける窒素濃度の測定値で除し、その値に化学分析で求めた鋼の窒素濃度を乗じることで算出することができる。
また、ここでいう窒素濃化層は、鋼の表面から窒素を浸透させて窒素を濃化させた領域を意味し、鋼の表層部、具体的には、深さ方向に鋼の表面より深さ0.005〜0.05μm程度の領域に形成される。
次に、本発明のフェライト系ステンレス鋼の好適な製造方法について説明する。
上記した成分組成の溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。
この鋼素材を、1100℃〜1250℃で1〜24時間の加熱をするか、あるいは加熱することなく直接、熱間圧延して熱延板とする。熱延板には、通常、900℃〜1100℃で1〜10分の熱延板焼鈍を施すが、用途によっては熱延板焼鈍を省略してもよい。
ついで、熱延板に冷間圧延と焼鈍の組み合わせを施すことにより、製品とする。
なお、冷間圧延は形状矯正と伸び性、曲げ性、プレス成形性を向上させるために50%以上の圧下率で行うことが好ましい。また、冷間圧延−焼鈍プロセスは、2回以上繰り返しても良い。
ここで、本発明のフェライト系ステンレス鋼を得るには、上記した窒素濃化層を生成させることが必要となるが、この窒素濃化層の生成処理は、冷間圧延後の最終の焼鈍(仕上焼鈍)時に行うことが好適である。
というのは、この窒素濃化層の生成処理は、鋼板から部材を切り出した後などに、焼鈍とは別工程で行うこともできるが、冷間圧延後の最終の焼鈍(仕上焼鈍)時に行うと工程を増やすことなく、窒素濃化層を生成させることができ、製造効率の面で有利となるからである。
以下、窒素濃化層の生成処理条件について、説明する。
露点:−20℃以下
露点が−20℃を超えると、鋼の表面に酸化皮膜が生成して、雰囲気中の窒素が鋼に浸透せず、窒素濃化層が生成されない。このため、露点は−20℃以下とする。好ましくは−30℃以下である。さらに好ましくは−40℃以下である。なお、下限については特に限定されるものではないが、通常−55℃程度である。
処理雰囲気中の窒素濃度:5vol%以上
処理雰囲気中の窒素濃度が5vol%未満では、十分な量の窒素が鋼に浸透せず窒素濃化層が生成しない。このため、処理雰囲気中の窒素濃度は5vol%以上とする。好ましくは、10vol%以上である。なお、窒素以外の処理雰囲気残部としては、水素、ヘリウム、アルゴン、ネオン、CO、CO2のうちから選んだ1種以上とすることが好ましい。なお、処理雰囲気中の窒素濃度は100vol%であってもよい。
処理温度:890℃以上
処理温度が890℃未満では、処理雰囲気中の窒素が鋼に浸透せず窒素濃化層が生成しない。このため、処理温度は890℃以上とする。好ましくは900℃以上である。しかし、処理温度が1100℃を超えると、鋼が変形するので、処理温度は1100℃以下とすることが好ましい。より好ましくは1050℃以下である。
また、処理時間は5〜3600秒の範囲とすることが好ましい。というのは、処理時間が5秒未満になると、処理雰囲気における窒素が十分に鋼に浸透せず、一方、3600秒を超えるとその効果が飽和するためである。好ましくは30〜300秒の範囲である。
以上、窒素濃化層の生成処理条件について説明したが、所望の窒素濃化層を生成させるには、上記した窒素濃化層の生成処理条件のみならず、最終の焼鈍における加熱条件(すなわち窒素濃化層の生成処理前の加熱条件)を適正に制御することが重要である。
最終の焼鈍の加熱時の600℃〜800℃の温度域における雰囲気の露点:−20℃以下
最終の焼鈍時の加熱の際、600℃〜800℃までの温度域における雰囲気の露点が高いと、鋼表面に酸化物が生成する。かような酸化物は、上記した窒素濃化層の生成処理の際、雰囲気中の窒素が鋼に侵入するの阻害する。このため、かような酸化物が鋼表面に存在すると、窒素濃化層の生成処理条件を適正に制御しても、鋼の表層の窒化が進行せず、所望の窒素濃化層を生成させることが困難となる。このため、最終の焼鈍の加熱時の600℃〜800℃の温度域における雰囲気の露点は−20℃以下とする。好ましくは、−35℃以下である。なお、下限については特に限定されるものではないが、通常−55℃程度である。
また、最終の焼鈍(仕上焼鈍)後に、通常の酸洗や研磨により脱スケールを行ってもよいが、製造効率の点から、ブラシロール、研磨粉、ショットブラストなどの機械的な研削を行い、ついで硝塩酸溶液中で酸洗する高速酸洗プロセスを適用して、脱スケールを行うことが好ましい。
なお、最終の焼鈍(仕上焼鈍)時に窒素濃化層の生成処理を行った場合には、生成させた窒素濃化層が除去されないように、酸洗量や研磨量を調整すべき点に注意が必要である。
表1に示す成分組成になる鋼を50kg小型真空溶解炉で溶製した。これらの鋼塊を、Arガスでパージした炉内で1150℃に加熱後、熱間圧延を施して3.5mm厚の熱延板とした。ついで、これらの熱延板に対して1030℃×1分間の熱延板焼鈍を施し、表面にガラスビーズのショットブラスト処理を行った後、温度80℃の200g/l硫酸溶液中に120秒浸漬後、150g/l硝酸および30g/l弗酸よりなる温度55℃の混合酸中に60秒浸漬することにより酸洗を行い、脱スケールを行った。
その後、板厚:0.8mmまで冷間圧延し、ついで表2に示す条件で焼鈍を行い、冷延焼鈍板を得た。なお、No.1〜19では、焼鈍時の加熱において600℃未満の温度で窒素濃化層の生成処理と同じ雰囲気ガスに調整した。また、No.20では、75vol%H2+25vol%N2ガス、露点:−15℃の雰囲気で600〜800℃の温度域における加熱を行い、800℃以上の温度において表2に示す窒素濃化層の生成処理条件に雰囲気を調整した。
なお、外観が濃い黄色や青色になったものは厚い酸化皮膜が生成したと判断し、温度:55℃の150g/l硝酸および5g/l塩酸よりなる混酸溶液中で、+20A/dm2→−20A/dm2の電解酸洗を、2回、電解時間を変えて行った。
かくして得られた冷延焼鈍板について、以下のようにして、(1)延性の評価および(2)窒素濃化層の窒素濃度の測定を行った。
また、これらの冷延焼鈍板に対してNi含有ろう材によるろう付けを行い、ろう付け処理後の冷延焼鈍板について、(3)耐食性の評価を行うとともに、(4)ろう付け性の評価を行った。この(4)ろう付け性の評価は、(a)ろう材のすき間部への浸透性と、(b)ろう付け部の接合強度により行うものとし、それぞれ以下のようにして行った。
(1)延性の評価
上記の各冷延焼鈍板から、圧延方向と直角にJIS 13B号引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、以下の基準で延性を評価した。評価結果を表2に示す。
○(合格) :破断伸びが20%以上
×(不合格):破断伸びが20%未満
(2)窒素濃化層の窒素濃度の測定
各冷延焼鈍板の表面を、グロー放電発光分析(以下、GDSと記す。)により分析した。まず、表層からのスパッター時間を変えた試料を作り、その断面をSEMで観察して、スパッター時間と深さの関係の検量線を作成した。
また、窒素濃度を、鋼表面から0.50μmの深さまでスパッターしながら測定した。ここで、0.50μmの深さでは、CrやFeの測定値が一定になることから、この深さでの窒素濃度の測定値を、母材(地鉄)の窒素濃度とした。
そして、鋼表面から0.05μmまでの窒素濃度の測定値のうち、一番高いピーク値(最大値)を、深さ0.50μmにおける窒素濃度の測定値で除し、その値に化学分析で求めた鋼の窒素濃度を乗じ、これにより得られた値を表面より0.05μmの深さまでの間における窒素濃度のピーク値とした。これらの値を表2に示す。
(3)耐食性の評価
ろう付け処理後の各冷延焼鈍板を用いて、ろう材が付着していない部分から20mm角の試験片を採取し、この試験片を11mm角の測定面を残してシール材で被覆した。ついで、この試験片を30℃の3.5%NaCl溶液中に浸漬させ、NaClの濃度以外はJIS G 0577に準拠して、耐食性試験を実施し、孔食電位Vc'100を測定して以下の基準で評価した。評価結果を表2に示す。
○(合格) :孔食電位Vc'100が150(mV vs SCE)以上
×(不合格):孔食電位Vc'100が150(mV vs SCE)未満
(4)ろう付け性の評価
(a)ろう材のすき間部への浸透性
図1に示すように、各冷延焼鈍板について30mm角と25mm×30mmの板を切り出し、この2枚の板を重ねて、一定のトルク力(170kgf)で、クランプ治具ではさみ止めしたのち、片側の端面にろう材を1.2g塗布し、ろう付け処理後に板間にろう材がどの程度浸透したかを、重ねた板の側面部にて目視により確認し、以下の基準で評価した。評価結果を表2に示す。なお、図中、符号1が冷延焼鈍板、2がろう材である。
◎(合格、特に優れる):ろう材を塗布した反対側の端部までろう材が浸透
○(合格):ろう材の浸透が2枚の板の重なり長さの50%以上100%未満
△(不合格):ろう材の浸透が2枚の板の重なり長さの10%以上50%未満
×(不合格):ろう材の浸透が2枚の板の重なり長さの10%未満
(b)ろう付け部の接合強度
図2に示すように、中央で分割したJIS 13号B引張試験片同士を5mm重ね合わせ、クランプ治具ではさみ、片側の重ね部にろう材を0.1g塗布してろう付け処理を行った。ろう付け後、常温で引張試験を行い、ろう付け部の接合強度を以下の基準で評価した。評価結果を表2に示す。なお、図中、符号3が引張試験片である。
◎(合格、特に優れる):母材の引張強度の95%以上でもろう付け部の破断なし(母材部分が破断)
○(合格):母材の引張強度の95%以上でろう付け部が破断
△(不合格):母材の引張強度の50%以上95%未満でろう付け部が破断
×(不合格):母材の引張強度の50%未満でろう付け部が破断
なお、上記したろう付け性の評価ではいずれも、代表的なNi含有ろう材であるJIS規格:BNi-5(Niマトリックスに19%Cr-10%Si)をろう材として用いた。また、ろう付けは、密封した炉内で行った。雰囲気としては、10-2Paの高真空雰囲気とした場合と、高真空とした後にArを封入し、圧力を100PaとしたArキャリアガス雰囲気とした場合のそれぞれで行った。さらに、熱処理温度パターンは、昇温温度10℃/s、均熱時間1(全体の温度を均一にする工程):1060℃×1800s、昇温温度10℃/s、均熱時間2(実際にろう材の融点以上の温度でろう付けを行う工程):1170℃×600sの処理を行った後、炉冷し、200℃に温度が下がったときに外気(大気)でパージするものとした。
Figure 0006044743
Figure 0006044743
表2より、発明例No.1〜10、17〜19ではいずれも、ろう材のすき間部への浸透性が良好で、ろう付け部の接合強度も良好であった。このため、これらの発明例では、Ni含有ろう材を用いた場合であっても、良好なろう付け性を示すことがわかる。また、これらの発明例では、耐食性や延性も良好であった。
これに対し、成分組成や窒素濃度のピーク値が適正範囲外となる比較例No.11〜16、20では、良好なろう付け性および/または耐食性が得られなかった。
本発明によれば、ろう付けにより組み立てられる排熱回収器やEGRクーラーの熱交換器部材等に用いて好適なフェライト系ステンレス鋼が得られるので、産業上極めて有用である。
1 冷延焼鈍板
2 ろう材
3 引張試験片

Claims (4)

  1. 質量%で、
    C:0.003〜0.020%、
    Si:0.05〜1.00%、
    Mn:0.10〜0.50%、
    P:0.04%以下、
    S:0.01%以下、
    Cr:16.0〜25.0%、
    Ni:0.05〜0.60%、
    Nb:0.25〜0.40%、
    Al:0.005〜0.15%および
    N:0.005〜0.030%
    を含有するとともに、Mo:0.50〜2.50%またはCu:0.05〜0.80%のうちから選んだ少なくとも1種を含有し、残部がFeおよび不可避的不純物からなり、表面より0.05μmの深さまでの間の窒素濃度のピーク値が0.03〜0.30質量%となる窒素濃化層をそなえるフェライト系ステンレス鋼。
  2. さらに質量%で、
    V:0.01〜0.20%および
    B:0.0003〜0.0030%
    のうちから選んだ1種または2種を含有する請求項1に記載のフェライト系ステンレス鋼。
  3. さらに質量%で、
    Ti:0.005〜0.10%および
    Ca:0.0003〜0.0030%
    を含有する請求項1または2に記載のフェライト系ステンレス鋼。
  4. 請求項1〜3のいずれかに記載のフェライト系ステンレス鋼を製造する方法であって、
    請求項1〜3のいずれかに記載の成分組成からなるスラブを熱間圧延し、熱延板とする工程と、
    前記熱延板に必要に応じて熱延板焼鈍を施す工程と、
    前記熱延板に冷間圧延と焼鈍の組み合わせを1回または2回以上施す工程とをそなえ、
    前記冷間圧延後の最終の焼鈍時に、600〜800℃の温度域における雰囲気の露点を−20℃以下として前記冷間圧延後の鋼板を加熱し、前記冷間圧延後の鋼板に、露点:−20℃以下、窒素濃度:5vol%以上の雰囲気にて、890℃以上の温度で窒素濃化層の生成処理を行う、フェライト系ステンレス鋼の製造方法。
JP2016523346A 2014-07-31 2015-07-23 フェライト系ステンレス鋼およびその製造方法 Active JP6044743B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014156609 2014-07-31
JP2014156609 2014-07-31
PCT/JP2015/003695 WO2016017123A1 (ja) 2014-07-31 2015-07-23 フェライト系ステンレス鋼およびその製造方法

Publications (2)

Publication Number Publication Date
JP6044743B2 true JP6044743B2 (ja) 2016-12-14
JPWO2016017123A1 JPWO2016017123A1 (ja) 2017-04-27

Family

ID=55217043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523346A Active JP6044743B2 (ja) 2014-07-31 2015-07-23 フェライト系ステンレス鋼およびその製造方法

Country Status (8)

Country Link
US (1) US10450625B2 (ja)
EP (1) EP3176280B1 (ja)
JP (1) JP6044743B2 (ja)
KR (1) KR101935288B1 (ja)
CN (1) CN106574333A (ja)
ES (1) ES2838098T3 (ja)
TW (1) TWI567210B (ja)
WO (1) WO2016017123A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900714B1 (ja) * 2014-05-14 2016-04-06 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6311843B2 (ja) 2016-03-31 2018-04-18 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018043310A1 (ja) 2016-09-02 2018-03-08 Jfeスチール株式会社 フェライト系ステンレス鋼
EP3508597A4 (en) * 2016-09-02 2019-09-04 JFE Steel Corporation FERRITIC STAINLESS STEEL
JP7329984B2 (ja) * 2019-06-25 2023-08-21 日鉄ステンレス株式会社 ステンレス鋼
WO2021100687A1 (ja) * 2019-11-19 2021-05-27 日鉄ステンレス株式会社 フェライト系ステンレス鋼板
CN115386807B (zh) * 2022-09-19 2023-12-22 山西太钢不锈钢股份有限公司 铁素体不锈钢热轧中板及其制备方法
CN116024504A (zh) * 2022-12-16 2023-04-28 坤石容器制造有限公司 一种半导体行业高纯化学不稳定电子特气用铁素体不锈钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168811A (ja) * 1987-12-24 1989-07-04 Kawasaki Steel Corp 耐銹性に優れたフェライト系ステンレス鋼の製造方法
JP2001032051A (ja) * 1999-07-22 2001-02-06 Nippon Steel Corp 耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板および製造方法
JP2008001945A (ja) * 2006-06-22 2008-01-10 Nippon Steel & Sumikin Stainless Steel Corp 耐発銹性と加工性に優れた光輝焼鈍仕上げフェライト系ステンレス鋼板およびその製造方法
WO2010047131A1 (ja) * 2008-10-24 2010-04-29 新日鐵住金ステンレス株式会社 Egrクーラ用フェライト系ステンレス鋼板
WO2015141145A1 (ja) * 2014-03-20 2015-09-24 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861220A (ja) * 1981-10-09 1983-04-12 Sumitomo Metal Ind Ltd 耐銹性に優れたフエライトステンレス鋼の製造方法
JPS6013060A (ja) * 1983-07-04 1985-01-23 Nippon Stainless Steel Co Ltd 耐銹性の優れたステンレス鋼光輝焼鈍材
JPH01176094A (ja) * 1987-12-28 1989-07-12 Kawasaki Steel Corp 成形性と耐食性に優れる高クロム・フェライト系ステンレス鋼の製造方法
DE69516336T2 (de) 1994-01-26 2000-08-24 Kawasaki Steel Co Verfahren zur herstellung eines stahlbleches mit hoher korrosionsbeständigkeit
JP3237369B2 (ja) * 1994-02-04 2001-12-10 住友金属工業株式会社 加工性に優れた外装用高耐銹性フェライトステンレス鋼板の製造方法
JP2642056B2 (ja) 1994-04-22 1997-08-20 日本冶金工業株式会社 熱交換器用フェライト系ステンレス鋼
JP3224694B2 (ja) 1994-10-07 2001-11-05 新日本製鐵株式会社 耐銹性と加工性に優れたフェライト系ステンレス鋼板
JPH10176249A (ja) 1996-12-13 1998-06-30 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼鋼材およびその製造方法
JPH11236654A (ja) * 1998-02-25 1999-08-31 Nippon Steel Corp ロウ接性に優れたアンモニア−水系吸収式サイクル熱交換器用ステンレス鋼
JP2000212704A (ja) * 1999-01-20 2000-08-02 Nippon Steel Corp 加工性および耐食性に優れたフェライト系ステンレス鋼およびその薄鋼板の製造方法
JP2008078115A (ja) * 2006-08-24 2008-04-03 Nissan Motor Co Ltd 遷移金属窒化物、燃料電池用セパレータ、遷移金属窒化物の製造方法、燃料電池用セパレータの製造方法、燃料電池スタック、及び燃料電池車両
US8383034B2 (en) 2007-01-12 2013-02-26 Jfe Steel Corporation Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP5390175B2 (ja) 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 ろう付け性に優れたフェライト系ステンレス鋼
JP5264199B2 (ja) 2008-01-28 2013-08-14 日新製鋼株式会社 フェライト系ステンレス鋼を用いたegrクーラー
JP5274047B2 (ja) 2008-02-23 2013-08-28 日新製鋼株式会社 フェライト系ステンレス鋼材およびその製造方法並びに自動車マフラー
JP5252959B2 (ja) 2008-03-21 2013-07-31 日新製鋼株式会社 自動車排熱回収装置
JP5349153B2 (ja) 2009-06-15 2013-11-20 日新製鋼株式会社 ろう付け用フェライト系ステンレス鋼材および熱交換器部材
CN103459636B (zh) 2011-03-29 2016-01-13 新日铁住金不锈钢株式会社 生物燃料供给系统部件用铁素体系不锈钢、生物燃料供给系统部件、排热回收器用铁素体系不锈钢以及排热回收器
JP5821336B2 (ja) * 2011-07-01 2015-11-24 Jfeスチール株式会社 固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法並びに固体高分子型燃料電池セパレータ
PL2952602T3 (pl) * 2013-02-04 2020-09-07 Nippon Steel Stainless Steel Corporation Blacha cienka z nierdzewnej stali ferrytycznej mająca doskonałą obrabialność oraz sposób jej wytwarzania
WO2016017692A1 (ja) * 2014-07-29 2016-02-04 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168811A (ja) * 1987-12-24 1989-07-04 Kawasaki Steel Corp 耐銹性に優れたフェライト系ステンレス鋼の製造方法
JP2001032051A (ja) * 1999-07-22 2001-02-06 Nippon Steel Corp 耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板および製造方法
JP2008001945A (ja) * 2006-06-22 2008-01-10 Nippon Steel & Sumikin Stainless Steel Corp 耐発銹性と加工性に優れた光輝焼鈍仕上げフェライト系ステンレス鋼板およびその製造方法
WO2010047131A1 (ja) * 2008-10-24 2010-04-29 新日鐵住金ステンレス株式会社 Egrクーラ用フェライト系ステンレス鋼板
WO2015141145A1 (ja) * 2014-03-20 2015-09-24 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法

Also Published As

Publication number Publication date
EP3176280A1 (en) 2017-06-07
US20170183752A1 (en) 2017-06-29
KR101935288B1 (ko) 2019-01-04
CN106574333A (zh) 2017-04-19
WO2016017123A1 (ja) 2016-02-04
TW201610185A (zh) 2016-03-16
JPWO2016017123A1 (ja) 2017-04-27
EP3176280B1 (en) 2020-09-02
TWI567210B (zh) 2017-01-21
ES2838098T3 (es) 2021-07-01
KR20170031768A (ko) 2017-03-21
US10450625B2 (en) 2019-10-22
EP3176280A4 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5846339B1 (ja) フェライト系ステンレス鋼およびその製造方法
JP6044743B2 (ja) フェライト系ステンレス鋼およびその製造方法
JP6369565B2 (ja) フェライト系ステンレス鋼およびその製造方法
JP6607268B2 (ja) フェライト系ステンレス鋼
JPWO2016103565A6 (ja) フェライト系ステンレス鋼およびその製造方法
JP5152387B2 (ja) 耐熱性と加工性に優れるフェライト系ステンレス鋼
JP5428396B2 (ja) 耐熱性と溶接性に優れるフェライト系ステンレス鋼
JP6547927B1 (ja) フェライト系ステンレス鋼
WO2019159606A1 (ja) フェライト系ステンレス鋼

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250