WO2016103359A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016103359A1
WO2016103359A1 PCT/JP2014/084108 JP2014084108W WO2016103359A1 WO 2016103359 A1 WO2016103359 A1 WO 2016103359A1 JP 2014084108 W JP2014084108 W JP 2014084108W WO 2016103359 A1 WO2016103359 A1 WO 2016103359A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
wiring layer
interposer
signal
reference potential
Prior art date
Application number
PCT/JP2014/084108
Other languages
English (en)
French (fr)
Inventor
隆一 及川
落合 俊彦
修一 仮屋崎
祐治 萱島
剛 木田
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to US15/515,465 priority Critical patent/US9917026B2/en
Priority to PCT/JP2014/084108 priority patent/WO2016103359A1/ja
Priority to CN201480081265.7A priority patent/CN106663660B/zh
Priority to JP2016565722A priority patent/JP6352447B2/ja
Priority to TW104136225A priority patent/TWI695464B/zh
Publication of WO2016103359A1 publication Critical patent/WO2016103359A1/ja
Priority to US15/879,610 priority patent/US10347552B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6638Differential pair signal lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a semiconductor device, for example, a technique effective when applied to a semiconductor device in which a plurality of semiconductor components such as a semiconductor chip are electrically connected to each other via an interposer.
  • Patent Document 1 JP 2010-538358 (Patent Document 1), JP 2013-138177 (Patent Document 2), JP 2014-11169 (Patent Document 3), US Pat. No. 8,653,676 (Patent Document 4)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2014-11284 (Patent Document 5) describe a semiconductor device in which a plurality of semiconductor chips are electrically connected to each other through an interposer.
  • a part of the current flowing through the signal transmission path may be consumed by the interposer base material, which may cause the signal to attenuate.
  • the thickness of each wiring layer is reduced, so that a technique for continuously setting the impedance value of the signal transmission path to a predetermined value is required.
  • a semiconductor device includes first and second semiconductor components that are mounted on an interposer mounted on a wiring board and are electrically connected to each other via the interposer.
  • the interposer includes a base material and a plurality of wiring layers arranged on the main surface of the base material.
  • the plurality of wiring layers include a first wiring layer, a second wiring layer that is farther from the main surface of the substrate than the first wiring layer, and a third that is farther from the main surface than the second wiring layer. And a wiring layer.
  • the ratio of the reference potential wiring that constitutes a part of the reference potential transmission path is The ratio of the reference potential wiring in the third wiring layer is larger than the ratio of the reference potential wiring in the first wiring layer.
  • the ratio of the signal wiring constituting a part of the signal transmission path is the ratio of the signal wiring in the first wiring layer to the ratio of the signal wiring in the third wiring layer. More than.
  • the reliability of the semiconductor device can be improved.
  • FIG. 2 is a bottom view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an explanatory diagram showing a circuit configuration example when the semiconductor device shown in FIGS. 1 to 3 is mounted on a mounting substrate.
  • It is an expanded sectional view of the A section of FIG.
  • It is an expanded sectional view of the B section of FIG.
  • It is explanatory drawing which shows the relationship between the operating frequency of a signal transmission path
  • route, and signal loss It is principal part sectional drawing which shows typically the state through which an electric current flows into a silicon substrate.
  • FIG. 7 is a cross-sectional view of an essential part showing an example of an arrangement ratio for each type of transmission target in each wiring layer of the interposer shown in FIGS.
  • FIG. 11 is a cross-sectional view of a main part showing an example of an arrangement ratio for each type of transmission target in each wiring layer of an interposer that is an example of examination different from FIG. 10. It is an enlarged plan view of the B section shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view of a semiconductor device which is a modified example with respect to FIG. 6.
  • FIG. 14 is a modification of FIG.
  • FIG. 12 is an enlarged plan view of the semiconductor device shown in FIG. 13.
  • FIG. 15 is an enlarged sectional view taken along line AA in FIG. 14.
  • FIG. 11 is a modification of FIG. 10, and is a cross-sectional view of a main part showing an example of an arrangement ratio for each type of transmission target in each wiring layer of the interposer shown in FIGS.
  • FIG. 7 is an enlarged plan view showing a structure example of a wiring layer below a layer in which a plurality of surface electrodes of the interposer shown in FIG. 6 is formed.
  • FIG. 11 is a main part cross-sectional view illustrating a modification example of FIG. 10, illustrating an example of a distance between each wiring layer of the interposer and an arrangement ratio according to the type of transmission target.
  • FIG. 20 is an explanatory diagram showing an outline of a manufacturing process of the semiconductor device described with reference to FIGS. 1 to 19;
  • FIG. 7 is an enlarged cross-sectional view of a semiconductor device which is a modified example with respect to FIG. 6.
  • FIG. 22 is a modification of FIG. 10, and is a cross-sectional view of a main part illustrating an example of an arrangement ratio for each type of transmission target in each wiring layer of the interposer illustrated in FIG. 21.
  • FIG. 23 is a modification of FIG. 22, and is a cross-sectional view of a main part illustrating an example of an arrangement ratio for each type of transmission target in each wiring layer of the interposer.
  • X consisting of A is an element other than A unless specifically stated otherwise and clearly not in context. It does not exclude things that contain.
  • the component it means “X containing A as a main component”.
  • silicon member is not limited to pure silicon, but includes a SiGe (silicon-germanium) alloy, other multi-component alloys containing silicon as a main component, and other additives. Needless to say, it is also included.
  • gold plating, Cu layer, nickel / plating, etc. unless otherwise specified, not only pure materials but also members mainly composed of gold, Cu, nickel, etc. Shall be included.
  • hatching or the like may be omitted even in a cross section when it becomes complicated or when it is clearly distinguished from a gap.
  • the contour line of the background may be omitted even if the hole is planarly closed.
  • hatching or a dot pattern may be added in order to clearly indicate that it is not a void or to clearly indicate the boundary of a region.
  • the semiconductor device described by taking as an example in this embodiment includes a memory chip in which a memory circuit is formed, and a logic chip in which a control circuit for controlling the memory chip and an arithmetic processing circuit are formed. . Further, the memory chip and the logic chip are electrically connected via a silicon interposer, and a system is formed in one package.
  • a semiconductor device in which a system is formed in one package is called SiP (System in Package).
  • a semiconductor device in which a plurality of semiconductor chips are mounted in one package is called an MCM (Multi Chip Module).
  • FIG. 1 is a top view of the semiconductor device of the present embodiment
  • FIG. 2 is a bottom view of the semiconductor device shown in FIG.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • FIG. 4 is an explanatory diagram showing a circuit configuration example when the semiconductor device shown in FIGS. 1 to 3 is mounted on a mounting substrate.
  • the number of terminals includes various modifications in addition to the modes shown in FIGS.
  • the number of solder balls 11 shown in FIG. 2 may be larger than the number shown in FIG.
  • one of the plurality of wirings 13 formed in each wiring layer is exemplarily shown for easy viewing.
  • a typical transmission path among the many transmission paths included in the semiconductor device PKG1 is exemplarily illustrated.
  • the semiconductor device PKG1 of the present embodiment is mounted on a wiring board (package board) 10, an interposer (relay board) 20A mounted on the wiring board 10, and an interposer 20A.
  • a plurality of semiconductor chips 30 are provided. The plurality of semiconductor chips 30 are mounted side by side on the interposer 20A.
  • a plurality of solder balls (external terminals, electrodes, external electrodes) 11 as external terminals are arranged in a matrix (array) on the lower surface 10b of the wiring board 10 which is a mounting surface of the semiconductor device PKG1. Are arranged in a matrix).
  • Each of the plurality of solder balls 11 is connected to a land (external terminal, electrode, external electrode) 12 (see FIG. 3).
  • a semiconductor device in which a plurality of external terminals (solder balls 11 and lands 12) are arranged in a matrix on the mounting surface side like the semiconductor device PKG1 is referred to as an area array type semiconductor device. Since the area array type semiconductor device PKG1 can effectively use the mounting surface (lower surface 10b) side of the wiring substrate 10 as a space for arranging external terminals, the mounting area of the semiconductor device PKG1 is increased even if the number of external terminals increases. It is preferable at the point which can suppress increase of this. In other words, the semiconductor device PKG1 in which the number of external terminals increases with higher functionality and higher integration can be mounted in a space-saving manner.
  • the wiring board 10 includes an upper surface (surface, chip mounting surface) 10t on which a plurality of semiconductor chips 30 are mounted via an interposer 20A, and a lower surface (surface, mounting) opposite to the upper surface 10t. Surface) 10b, and a side surface 10s disposed between the upper surface 10t and the lower surface 10b. Further, the wiring board 10 has a rectangular outer shape in plan view as shown in FIG.
  • the interposer 20A includes an upper surface (surface, chip mounting surface) 20t on which a plurality of semiconductor chips (semiconductor components) 30 are mounted, and a lower surface (surface, mounting surface) opposite to the upper surface 10t. 20b, and a side surface 20s disposed between the upper surface 20t and the lower surface 20b. Further, the interposer 20A has a quadrangular outer shape in plan view as shown in FIG.
  • each of the plurality of semiconductor chips 30 includes a front surface (main surface, upper surface) 30t, a rear surface (main surface, lower surface) 30b opposite to the front surface 30t, and a front surface 30t and a rear surface 30b. Side surface 30s located between the two.
  • Each of the plurality of semiconductor chips 30 has a quadrangular outer shape in plan view as shown in FIG.
  • one of the plurality of semiconductor chips 30 is a memory chip 30A including a memory circuit, and the other is a logic chip 30B including a control circuit that controls the memory circuit. It is.
  • each of the memory chip 30A and the logic chip 30B is directly connected to the interposer 20A. In other words, no substrate or other chip component is inserted between the memory chip 30A and the interposer 20A and between the logic chip 30B and the interposer 20A.
  • the semiconductor device PKG1 of the present embodiment includes a system that operates by transmitting a signal between the logic chip 30B and the memory chip 30A.
  • the memory chip 30A includes a main memory circuit (memory circuit) that stores data communicated with the logic chip 30B.
  • the logic chip 30B includes a control circuit that controls the operation of the main memory circuit of the memory chip 30A.
  • the logic chip 30B includes an arithmetic processing circuit that performs arithmetic processing on the input data signal.
  • main circuits such as an arithmetic processing circuit and a control circuit are shown as a core circuit (main circuit) CORE1.
  • the circuit included in the core circuit CORE1 may include circuits other than those described above.
  • the logic chip 30B may be formed with an auxiliary storage circuit (storage circuit) having a storage capacity smaller than that of the main storage circuit of the memory chip 30A, such as a cache memory that temporarily stores data.
  • the logic chip 30B is formed with an external interface circuit (input / output circuit, external input / output circuit) IF1 for inputting / outputting signals to / from the external device 40.
  • a signal line SIG for transmitting a signal between the logic chip 30B and the external device 40 is connected to the external interface circuit IF1.
  • the external interface circuit IF1 is also connected to the core circuit CORE1, and the core circuit CORE1 can transmit signals to the external device 40 via the external interface circuit IF1.
  • the logic chip 30B is formed with an internal interface circuit (input / output circuit, internal input / output circuit) IF2 for inputting / outputting signals to / from an internal device (for example, the memory chip 30A).
  • the internal interface circuit IF2 is connected to a data line (signal line) DQ for transmitting a data signal and a control signal line (signal line) CMD for transmitting a control data signal such as an address signal and a command signal.
  • the data line DQ and the control signal line CMD are each connected to the internal interface circuit IF2 of the memory chip 30A.
  • the logic chip 30B includes a power supply circuit DRV1 that supplies a potential for driving the core circuit CORE1 and the input / output circuit.
  • a power supply line VD1 that supplies a power supply potential and a reference potential line VS1 that supplies a reference potential are connected to the power supply circuit DRV1.
  • FIG. 4 shows an example in which the pair of power supply line VD1 and reference potential line VS1 are connected to the logic chip 30B, but the potential supplied to the logic chip 30B is not limited to the above two types.
  • the power supply circuit DRV1 supplies a voltage for driving the external interface circuit IF1 of the logic chip 30B, and supplies a voltage for driving the core circuit CORE1 of the logic chip 30B. And may be included.
  • the power supply circuit DRV1 may include an internal interface power supply circuit that supplies a voltage for driving the internal interface circuit IF2 of the logic chip 30B. In this case, a plurality of power supply lines VD1 that supply a plurality of different power supply potentials are connected to the logic chip 30B.
  • the potential supplied to the reference potential line VS1 shown in FIG. 4 is, for example, a ground potential.
  • the potential supplied to the reference potential line VS1 may be a potential other than the ground potential.
  • SoC System on chip
  • the memory chip 30A includes a main memory circuit.
  • the main memory circuit is shown as the core circuit (main circuit) CORE2 of the memory chip 30A.
  • the circuit included in the core circuit CORE2 may include a circuit other than the main memory circuit.
  • the memory chip 30A is formed with an internal interface circuit (internal input / output circuit) IF2 for inputting / outputting signals to / from an internal device (for example, the logic chip 30B).
  • an internal interface circuit internal input / output circuit
  • the memory chip 30A includes a power supply circuit (drive circuit) DRV2 that supplies a potential for driving the core circuit CORE2.
  • a power supply line VD2 that supplies a power supply potential and a reference potential line VS1 that supplies a reference potential are connected to the power supply circuit DRV2.
  • the power supply potential supplied to the power supply line VD1 and the power supply potential supplied to the power supply line VD2 are supplied from the power supply 50 provided outside the semiconductor device PKG1, respectively.
  • FIG. 4 shows an example in which the pair of power supply line VD2 and reference potential line VS1 are connected to the memory chip 30A.
  • the logic chip 30B and the memory chip 30A are electrically connected through the power supply line VD3 for supplying the power supply potential for driving the internal interface circuit IF2 and the reference potential line VS2, respectively.
  • the method of supplying a potential to the memory chip 30A has various modifications other than the above.
  • the power supply potential for driving the internal interface circuit IF2 of the logic chip 30B and the power supply potential for driving the internal interface circuit IF2 of the memory chip 30A may be supplied independently.
  • the power supply 50 and the memory chip 30A shown in FIG. 4 are electrically connected via the power supply line VD3.
  • the plurality of transmission paths that electrically connect the logic chip 30B and the memory chip 30A include the reference potential line VS2 in addition to the data line DQ and the control signal line CMD.
  • the reference potential line VS2 is a path for transmitting a reference signal of a data signal transmitted through the data line DQ, for example.
  • a ground potential is supplied as a reference potential to the reference potential line VS2.
  • the potential is more stable when the reference potential line VS2 and the reference potential line VS1 are connected. Therefore, as shown with a dotted line in FIG.
  • the reference potential line VS2 and the reference potential line VS1 are connected in the interposer 20A.
  • the reference reference potential line VS2 may be supplied with a potential other than the ground potential as long as variation in potential in the transmission path can be reduced.
  • the power supply potential of the input / output power supply circuit may be used as a reference potential for reference.
  • the power supply line VD2 for supplying the power supply potential to the memory chip 30A and the reference potential line VS1 for supplying the reference potential to the memory chip 30A are not connected to the memory chip 30A. It is connected to the.
  • the power supply line VD1 and the reference potential line VS2 may be connected to the memory chip 30A via the logic chip 30B.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG.
  • FIG. 6 is an enlarged cross-sectional view of a portion B in FIG.
  • the wiring board 10 shown in FIGS. 1 to 5 is a board provided with a transmission path for supplying electric signals and potentials between the semiconductor device PKG1 and the mounting board 60 (see FIG. 4).
  • the wiring board 10 has a plurality of wiring layers (eight layers in the example shown in FIG. 3) that electrically connect the upper surface 10t side and the lower surface 10b side.
  • the plurality of wirings 13 provided in each wiring layer are covered with an insulating layer 14 that insulates between the plurality of wirings 13 and between adjacent wiring layers.
  • the wiring substrate 10 shown in FIG. 3 has a plurality of laminated insulating layers 14, and the middle insulating layer 14 is a core in which a fiber material such as glass fiber is impregnated with a resin material such as an epoxy resin, for example. It is a layer (core material).
  • the insulating layers 14 formed on the upper surface and the lower surface of the core layer are formed by, for example, a buildup method.
  • a so-called coreless substrate that does not have the insulating layer 14 serving as a core layer may be used.
  • the wiring board 10 includes via wirings 15 which are provided between the wiring layers and are interlayer conductive paths connecting the stacked wiring layers in the thickness direction.
  • a plurality of bonding pads (terminals, chip mounting surface side terminals, electrodes) 16 are formed on the upper surface 10 t of the wiring substrate 10.
  • the wiring 13 provided in the uppermost wiring layer is formed integrally with the bonding pad 16.
  • the bonding pad 16 can be considered as a part of the wiring 13.
  • the portion exposed from the insulating film 17 on the upper surface 10t of the wiring substrate 10 is defined as the bonding pad 16 and the portion covered with the insulating film 17 is defined as the wiring 13. Can do.
  • solder connection pads 12 are formed on the lower surface 10b of the wiring board 10. Solder balls 11 are connected to each of the plurality of lands 12, and the mounting substrate 60 and the semiconductor device PKG1 shown in FIG. 4 are electrically connected via the solder balls 11 shown in FIG. That is, the plurality of solder balls 11 function as external connection terminals of the semiconductor device PKG1.
  • the plurality of solder balls 11 and the plurality of lands 12 are electrically connected to the plurality of bonding pads 16 on the upper surface 10 t side via the plurality of wirings 13 of the wiring substrate 10.
  • the wiring 13 provided in the lowermost wiring layer (the wiring layer on the lowermost surface 10 b side) is formed integrally with the land 12.
  • the land 12 can be considered as a part of the wiring 13.
  • the portion exposed from the insulating film 17 on the lower surface 10 b of the wiring substrate 10 can be defined as the land 12, and the portion covered with the insulating film 17 can be defined as the wiring 13. .
  • solder balls 11 are not connected to the lands 12, and each of the lands 12 is exposed from the insulating film 17 on the lower surface 10 b of the wiring substrate 10.
  • a thin solder film may be connected instead of the ball-shaped solder ball 11, and this solder film may function as an external connection terminal.
  • the upper surface 10 t and the lower surface 10 b of the wiring substrate 10 are covered with an insulating film (solder resist film) 17.
  • the wiring 13 formed on the upper surface 10 t of the wiring substrate 10 is covered with an insulating film 17.
  • An opening is formed in the insulating film 17, and at least a part (bonding region) of the plurality of bonding pads 16 is exposed from the insulating film 17 in the opening.
  • the wiring 13 formed on the lower surface 10 b of the wiring substrate 10 is covered with an insulating film 17.
  • An opening is formed in the insulating film 17, and at least a part of the plurality of lands 12 (joined portions with the solder balls 11) is exposed from the insulating film 17 in the opening.
  • the semiconductor device PKG1 includes an interposer 20A mounted on the wiring board 10.
  • the interposer 20 ⁇ / b> A is a relay board that is interposed between the wiring board 10 and the plurality of semiconductor chips 30.
  • the interposer 20A includes a silicon substrate (base material) 21 having a main surface 21t and a plurality of wiring layers M1, M2, and M3 arranged on the main surface 21t.
  • a layer in which a plurality of surface electrodes 25 are formed is regarded as a wiring layer M4, in the example shown in FIG. 5, four wiring layers are laminated.
  • a plurality of wirings (conductor patterns) 22 are formed in each of the plurality of wiring layers M1, M2, and M3.
  • the plurality of wirings 22 are covered with an insulating layer 23 that insulates between the plurality of wirings 22 and between adjacent wiring layers.
  • the insulating layer 23 is an inorganic insulating layer made of an oxide of a semiconductor material such as silicon oxide (SiO).
  • a plurality of surface electrodes (electrode pads, terminals) 25 are formed on the wiring layer M3 of the interposer 20A. A part of each of the plurality of surface electrodes 25 is exposed from the passivation film 26 which is a protective insulating film on the upper surface 20t of the interposer 20A.
  • the surface electrode 25 is electrically connected to an electrode (surface electrode, pad) 33 of the semiconductor chip 30 via a bump electrode 35 connected to an exposed portion of the surface electrode 25.
  • a plurality of backside electrodes (electrodes, pads, terminals) 27 are formed on the lower surface 20b of the interposer 20A.
  • the plurality of back surface electrodes 27 are exposed on the lower surface 20b of the interposer 20A located on the opposite side of the main surface 21t of the silicon substrate 21.
  • the back electrode 27 is electrically connected to the bonding pad 16 of the wiring board 10 via the bump electrode 28 connected to the back electrode 27.
  • the interposer 20A includes a plurality of through electrodes 24 that penetrate the silicon substrate 21 in the thickness direction (the direction from one surface to the other surface of the main surface 21t and the lower surface 20b).
  • the plurality of through electrodes 24 are conductive paths formed by embedding a conductor such as copper (Cu) in a through hole formed to penetrate the silicon substrate 21 in the thickness direction.
  • Each of the plurality of through electrodes 24 has one end connected to the back electrode 27 and the other end connected to the wiring 22 of the wiring layer M1. That is, the plurality of front surface electrodes 25 and the plurality of back surface electrodes 27 of the interposer 20 ⁇ / b> A are electrically connected via the plurality of wirings 22 and the plurality of through electrodes 24, respectively.
  • the wiring board 10 described above is a support base material for the semiconductor device PKG1. In order to exhibit the function as a support substrate, it is preferable to improve rigidity and strength. For this reason, it is difficult to finely process the plurality of wirings 13 formed on the wiring board 10.
  • the interposer 20A is a relay board mounted on the wiring board 10, the rigidity and strength of the board may be lower than that of the wiring board 10. For this reason, the wiring density of the plurality of wirings 22 formed in the interposer 20 ⁇ / b> A can be improved as compared with the wirings 13 of the wiring board 10.
  • the interposer 20A of the present embodiment has a silicon substrate (base material) 21 that is a semiconductor substrate as shown in FIG. 5, and a plurality of wiring layers M1, M2, M3 on the main surface 21t of the silicon substrate 21.
  • a silicon substrate (base material) 21 that is a semiconductor substrate as shown in FIG. 5, and a plurality of wiring layers M1, M2, M3 on the main surface 21t of the silicon substrate 21.
  • the wiring density can be improved by using the same process as the process of forming the wirings on the semiconductor wafer.
  • the thickness of each wiring layer and the distance between wiring layers are also reduced.
  • the thickness of the wiring layers M1, M2, and M3 shown in FIGS. 5 and 6, that is, the thickness of each of the plurality of wirings 22 is thinner than the thickness of the wiring 13 of the wiring board 10.
  • the wiring 13 of the wiring board 10 and the wiring 22 of the interposer 20 ⁇ / b> A are shown in one figure, so that the thickness of the wiring 13 is less than twice the thickness of the wiring 22.
  • the thickness of the wiring 13 is several times to several tens of times the value of the thickness of the wiring 22 described above.
  • the separation distances of the wiring layers M1, M2, and M3 and the separation distance between the main surface 21t of the silicon substrate 21 and the wiring layer M1 are smaller than the thickness of the wiring 22.
  • the distance between each of the wiring layers M1, M2, and M3 and the distance between the main surface 21t of the silicon substrate 21 and the wiring layer M1 are about half of the thickness of the wiring 22 formed in the wiring layers M1, M2, and M3. It is. Note that the distance between the uppermost wiring layer M4 on which the plurality of surface electrodes 25 are formed and the wiring layer M3 is larger than the distance between the wiring layers M1, M2, and M3. For example, the distance between the wiring layer M4 and the wiring layer M3 is about the same as the thickness of the wiring 22.
  • the interposer 20A can improve the wiring density as compared with the wiring board 10, it is particularly effective when increasing the number of signal transmission paths connecting the plurality of semiconductor chips 30.
  • the interposer 20A is provided to form the wiring board 10. The number of wirings 13 (see FIG. 3) to be performed can be reduced.
  • the silicon substrate 21 widely used in the semiconductor wafer manufacturing process is used as a base material. Therefore, the silicon substrate 21 shown in FIG. 5 uses silicon, which is a semiconductor material, as a base material (main component).
  • a semiconductor substrate used for manufacturing a semiconductor chip is generally doped with an impurity element constituting p-type or n-type conductive characteristics in a semiconductor material as a base material. For this reason, when a general-purpose semiconductor wafer is used as the silicon substrate 21, the silicon substrate 21 contains an impurity element constituting p-type or n-type conductive characteristics.
  • silicon substrate 21 of the present embodiment various modifications can be applied to the silicon substrate 21 of the present embodiment.
  • a semiconductor material other than silicon may be used as a base material for the semiconductor substrate.
  • a semiconductor in which no impurity element is doped in a semiconductor material can be used as a semiconductor substrate.
  • the semiconductor device PKG1 includes a plurality of semiconductor chips 30 mounted on the upper surface 20t of the interposer 20A.
  • Each of the plurality of semiconductor chips 30 includes a silicon substrate (base material) 31 having a main surface 31t, and a wiring layer 32 disposed on the main surface 31t.
  • one wiring layer 32 is shown for the sake of clarity.
  • the wiring layer 32 shown in FIGS. 5 and 6 includes the wiring layers M1, M2, and the like of the interposer 20A.
  • a plurality of wiring layers that are thinner than M3 are stacked.
  • a plurality of wirings are formed in each of the plurality of wiring layers 32.
  • the plurality of wirings are covered with an insulating layer that insulates between the plurality of wirings and between adjacent wiring layers.
  • the insulating layer is an inorganic insulating layer made of an oxide of a semiconductor material such as silicon oxide (SiO).
  • a plurality of semiconductor elements such as transistor elements or diode elements are formed on the main surface 31t of the silicon substrate 31 included in each of the plurality of semiconductor chips 30.
  • the plurality of semiconductor elements are electrically connected to the plurality of electrodes 33 formed on the surface 30 t side through the plurality of wirings of the wiring layer 32.
  • each of the plurality of semiconductor chips 30 is mounted on the upper surface 20t of the interposer 20A with the surface 30t and the upper surface 20t of the interposer 20A facing each other.
  • a mounting method is called a face-down mounting method or a flip-chip connection method.
  • the semiconductor chip 30 and the interposer 20A are electrically connected as follows.
  • a plurality of electrodes (surface electrodes, pads, terminals) 33 are formed on the wiring layer 32 of the semiconductor chip 30. A part of each of the plurality of electrodes 33 is exposed from the passivation film 34 which is a protective insulating film on the surface 30 t of the semiconductor chip 30.
  • the electrode 33 is electrically connected to the surface electrode 25 of the interposer 20 ⁇ / b> A via the bump electrode 35 connected to the exposed portion of the electrode 33.
  • a part of the plurality of transmission paths connected to the memory chip 30A is not connected to the wiring board 10, and the logic chip 30B is connected via the interposer 20A. Connected to.
  • the data line DQ and the control signal line CMD are electrically separated from the wiring board 10.
  • the power supply line VD2 and the reference potential line VS1 for supplying the power supply potential for driving the circuit of the memory chip 30A are electrically connected to the wiring board 10. ing.
  • the reference potential line VS2 used for reference of the signal line may be separated from the wiring board 10.
  • each of the plurality of data lines DQ is designed to transmit a data signal at a transmission rate of 1 Gbps (1 gigabit per second) or more.
  • high clocking In order to increase the transmission speed of each of the plurality of signal transmission paths, it is necessary to increase the number of transmissions per unit time (hereinafter referred to as high clocking).
  • bus width expansion As another method for improving the signal transmission speed between the logic chip 30B and the memory chip 30A, there is a method of increasing the amount of data transmitted at a time by increasing the width of the data bus of the internal interface (Hereinafter referred to as bus width expansion). Further, there is a method of applying a combination of the above-described bus width expansion and high clock. In this case, many high-speed signal transmission paths are required. Therefore, a method of electrically connecting the logic chip 30B and the memory chip 30A via the interposer 20A as in the present embodiment is effective.
  • the memory chip 30A shown in FIG. 4 is a so-called wide I / O memory having a data bus width of 512 bits or more.
  • the memory chip 30A includes, for example, four channels having a data bus width of 128 bits, and the total bus width of the four channels is 512 bits.
  • the number of transmissions per unit time of each channel is increased to a high clock, for example, 1 Gbps or more.
  • the present inventor has a problem from the viewpoint of signal transmission reliability. I found out.
  • signal loss transmission loss
  • FIG. 7 is an explanatory diagram showing the relationship between the operating frequency of the signal transmission path and the signal loss.
  • FIG. 8 is a cross-sectional view of a principal part schematically showing a state where a current flows through the silicon substrate.
  • the frequency at which a signal is transmitted is shown logarithmically on the horizontal axis, and the degree of signal loss at each frequency is shown on the vertical axis.
  • the operating frequency band of the data line DQ shown in FIG. 4 is shown as a frequency band F2
  • the operating frequency band of the control signal line CMD is shown as a frequency band F1.
  • the display electrode 25 is indicated by a dotted line in order to clearly show that the wiring layer M ⁇ b> 4 is a layer for forming the surface electrode 25.
  • the silicon substrate 21 shown in FIG. 8 contains an impurity element that constitutes p-type or n-type conductive characteristics, like the silicon substrate 21 included in the interposer 20A of the present embodiment shown in FIG.
  • FIG. 9 is an enlarged plan view showing a region around the logic chip and the memory chip shown in FIG. 1 in an enlarged manner.
  • FIG. 10 is a cross-sectional view of the main part showing an example of the arrangement of wirings according to the type of transmission target in the cross section taken along the line AA in FIG.
  • a plurality of wirings 22 that electrically connect the memory chip 30 ⁇ / b> A and the logic chip 30 ⁇ / b> B, and a plurality of surface electrodes 25 of the interposer 20 ⁇ / b> A connected to both ends of the wiring 22 are indicated by dotted lines.
  • FIG. 9 schematically shows that the memory chip 30A and the logic chip 30B are electrically connected via a plurality of wirings 22.
  • FIG. 10 is a cross-sectional view, but in order to identify the type of transmission path formed by the plurality of wirings 22, different patterns are given depending on the type of transmission target.
  • hatching is applied to the data signal wiring 22DQ constituting a part of the data line DQ shown in FIG. 4, and a dot pattern is applied to the control signal wiring 22CMD constituting a part of the control signal line CMD shown in FIG. , Respectively.
  • the reference potential wiring 22VS serving as a reference potential transmission path is blank without any pattern.
  • the silicon substrate 21 is blank without any pattern.
  • the display electrode 25 is indicated by a dotted line in order to clearly show that the wiring layer M4 is a layer for forming the surface electrode 25.
  • the memory chip 30A and the logic chip 30B included in the semiconductor device PKG1 of the present embodiment are electrically connected through a plurality of wirings 22 of the interposer 20A.
  • the wiring 22 that electrically connects the memory chip 30A and the logic chip 30B is mainly disposed in a region 22A of the interposer 20A sandwiched between the memory chip 30A and the logic chip 30B.
  • the wiring structure in the region 22A shown in FIG. 9 may be examined, and the wiring structure in other regions is not particularly limited.
  • a region to which the plurality of wirings 22 electrically connecting the memory chip 30A and the logic chip 30B are connected is a plurality of regions connected to both ends of the plurality of wirings 22 as shown in FIG. This is a region 22B between the front surface electrodes 25.
  • each of the plurality of surface electrodes 25 connected to both ends of the plurality of wirings 22 is often formed close to the opposite sides of the adjacent semiconductor chip. .
  • most of the region 22B overlaps with the region 22A. Therefore, at least by improving the wiring structure of the region 22A, the reliability of signal transmission between adjacent semiconductor chips can be improved.
  • the wiring in the region 22B In some cases, it is preferable to consider the structure.
  • the interposer 20A included in the semiconductor device PKG1 of the present embodiment includes a wiring layer M1, a wiring layer M2 that is farther from the main surface 21t of the silicon substrate 21 than the wiring layer M1, and a wiring layer M2. Also includes a wiring layer M3 separated from the main surface 21t.
  • the ratio (occupancy) of the reference potential wiring 22VS constituting a part of the reference potential transmission path among the plurality of wirings 22 is the reference potential wiring in the wiring layer M3.
  • the ratio of 22VS is larger than the ratio (occupancy) of the reference potential wiring 22VS in the wiring layer M1.
  • the ratio of the reference potential wiring 22VS in the wiring layer M1 (or wiring layer M3) is the ratio of the reference potential wiring 22VS to the total plane area of the conductor patterns formed in the wiring layer M1 (or wiring layer M3). Occupancy rate.
  • the ratio of the signal wiring in the wiring layer M1 (or wiring layer M3) means the occupation ratio of the signal wiring with respect to the total plane area of the conductor pattern formed in the wiring layer M1 (or wiring layer M3). To do.
  • the ratio of a certain type of wiring in a certain wiring layer it has the same meaning as described above, unless it is explained that it is used in a different meaning.
  • the ratio (occupancy) of the signal wiring (data signal wiring 22DQ and control signal wiring 22CMD) that constitutes a part of the signal transmission path among the plurality of wirings 22.
  • the ratio of the signal wiring in the wiring layer M1 is larger than the ratio (occupancy) of the signal wiring in the wiring layer M3.
  • the configuration of the interposer 20A of the present embodiment can also be expressed as follows. That is, in the wiring layer M1 having a relatively short distance to the main surface 21t of the silicon substrate 21, signal wiring (data signal wiring 22DQ or control signal wiring 22CMD) is mainly provided, and the main surface of the silicon substrate 21 is provided. In the wiring layer M3 whose distance up to 21t is relatively long, the reference potential wiring 22VS is mainly provided. Thereby, the following effects are acquired.
  • the distribution of the electromagnetic field generated when a signal is passed through the wiring 22 can be controlled by the reference potential wiring 22VS.
  • the electromagnetic field is mainly the same as the wiring 22. It becomes distributed in layers or above. For this reason, even when the signal current flowing through the wiring 22 is a high-frequency signal, signal loss due to the current CF (see FIG. 8) flowing through the silicon substrate 21 can be suppressed.
  • the reference potential supplied to the reference potential wiring 22VS shown in FIG. 10 is the same potential as the potential (eg, ground potential) supplied to the reference potential line VS1 shown in FIG.
  • controlling the distribution of the electromagnetic field generated when a signal is passed through the wiring 22 may be a transmission path to which a potential other than the ground potential is supplied.
  • the power supply potential supplied for driving the input / output circuit shown in FIG. 4 may be used.
  • FIG. 11 is a cross-sectional view of the main part showing an example of the arrangement ratio for each type of transmission target in each wiring layer of the interposer, which is an examination example different from FIG.
  • the interposer 20H shown in FIG. 11 is different from the interposer 20A shown in FIG. 10 in the following points. That is, in the wiring layer M1 that is relatively close to the main surface 21t of the silicon substrate 21, the reference potential wiring 22VS is mainly provided, and the wiring layer that is relatively far from the main surface 21t of the silicon substrate 21. In M3, signal wiring is mainly provided. In other words, in the interposer 20H shown in FIG. 11, the reference potential wiring 22VS is provided between the plurality of signal wirings and the silicon substrate 21.
  • the inventor of the present application provides a reference potential wiring 22VS between a plurality of signal wirings and the silicon substrate 21, thereby shielding an electromagnetic field generated when a high frequency signal flows through the signal wiring by the reference potential wiring 22VS.
  • a reference potential wiring 22VS between a plurality of signal wirings and the silicon substrate 21, thereby shielding an electromagnetic field generated when a high frequency signal flows through the signal wiring by the reference potential wiring 22VS.
  • the shield becomes a mesh shape for the sake of manufacturing, and the shielding effect is diminished, so that it is difficult to suppress signal loss compared to the interposer 20A shown in FIG. I understood. The reason for this will be described below.
  • CMP Chemical Mechanical Polishing
  • the reference potential wiring 22VS In order to shield the electromagnetic field generated when the high frequency signal flows through the signal wiring (for example, the data signal wiring 22DQ) shown in FIG. 11 by the reference potential wiring 22VS, the reference potential wiring provided in the wiring layer M1. Although it is necessary to increase the area of 22VS, it is difficult to form the planar shape of the reference potential wiring 22VS into a sheet shape. For this reason, the electromagnetic field described above wraps around the silicon substrate 21 through the gap between the conductor patterns constituting the reference potential wiring 22VS. That is, it is difficult to obtain a sufficient shielding effect by the reference potential wiring 22VS.
  • the reference potential wiring 22VS is used as a conductor pattern for controlling the distribution of the electromagnetic field. Therefore, for example, the planar shape of the reference potential wiring 22VS shown in FIG. 10 is a linear pattern extending from one of the memory chip 30A and the logic chip 30B to the other like the wiring 22 shown by a dotted line in FIG. Even in some cases, signal loss can be suppressed. For example, even if the planar shape of the reference potential wiring 22VS shown in FIG. 10 is a mesh pattern, signal loss can be suppressed.
  • the reference potential wiring 22VS shown in FIG. 10 need not be used exclusively for controlling the distribution of the electromagnetic field. Therefore, a part of the electromagnetic field may be shielded by the reference potential wiring 22VS. Further, the reference potential wiring 22VS shown in FIG. 10 may constitute a part of the return current path of the high-speed signal.
  • the expression “the ratio of A is greater than the ratio of B” includes the case where the ratio of B is 0%.
  • the expression “the ratio of A is smaller than the ratio of B” includes the case where the ratio of A is 0%.
  • the ratio of A is greater (or less than the ratio of B) is used in the present specification, the same meaning is used.
  • the reference potential wiring 22VS is not formed in the wiring layer M1, and the ratio of the signal wiring in the wiring 22 formed in the wiring layer M1 in the region 22A (see FIG. 9) is 100%.
  • the reference potential wiring 22VS may be formed in the wiring layer M1 in the region 22A (see FIG. 9).
  • the ratio (occupancy) of the reference potential wiring 22VS constituting a part of the reference potential transmission path among the plurality of wirings 22 is the ratio of the reference potential wiring 22VS in the wiring layer M3. Is larger than the ratio (occupancy) of the reference potential wiring 22VS in the wiring layer M1.
  • the wiring structure of the interposer 20A shown in FIG. 10 can also be expressed as follows.
  • the ratio of the reference potential wiring (reference potential conductor) 22VS constituting a part of the reference potential transmission path is the ratio of the signal transmission path. It is smaller than the proportion of the signal wiring (data signal wiring 22DQ or control signal wiring 22CMD) constituting a part.
  • the ratio of the reference potential wiring 22VS that forms part of the reference potential transmission path is the ratio of the signal wiring that forms part of the signal transmission path. More than
  • signal wiring data signal wiring 22DQ or control signal wiring 22CMD
  • the reference potential wiring 22VS is mainly provided in the wiring layer M3 that is relatively far from the main surface 21t of the silicon substrate 21. Therefore, an electromagnetic field generated when high-speed signal transmission is performed is mainly distributed in the same layer as or above the wiring 22. As a result, according to the above configuration, signal loss can be suppressed.
  • a control signal wiring 22CMD for transmitting a signal in a relatively low frequency band F1 (see FIG. 7) and a control signal are connected to the plurality of signal wirings.
  • control data signals such as an address signal and a command signal transmitted through the control signal line CMD are transmitted at a frequency equal to or less than half that of the data signal transmitted through the data line DQ.
  • the degree of signal loss is lower in the frequency band F1 than in the frequency band F2.
  • the data signal wiring 22DQ transmitted at high frequency is preferably provided in the wiring layers M2 and M3, which are relatively far from the main surface 21t of the silicon substrate 21.
  • the distance between the wiring layer M1 and the main surface 21t of the silicon substrate 21 is smaller than the thickness of the wiring 22 of the wiring layer M1, and is, for example, about 0.5 ⁇ m to 0.6 ⁇ m.
  • the thickness of the insulating layer 23 between the wiring layer M1 and the main surface 21t of the silicon substrate 21 is smaller than the thickness of the wiring 22 of the wiring layer M1, for example, about 0.5 ⁇ m to 0.6 ⁇ m. . Therefore, from the viewpoint of reducing signal loss, it is particularly preferable that the data signal wiring 22DQ is not formed in the wiring layer M1, as shown in FIG.
  • the data signal wiring 22DQ is formed in the wiring layer M1 in order to increase the number of signal lines may be considered.
  • the ratio of the control signal wiring 22CMD in which the signal (control signal) is transmitted in the first frequency band (for example, the frequency band F1). Is larger than the ratio of the data signal wiring 22DQ in which a signal (data signal) is transmitted in a second frequency band (for example, frequency band F2) higher than the first frequency band.
  • the ratio of the control signal wiring 22CMD that transmits a signal (control signal) in the first frequency band is the second It is less than the ratio of the data signal wiring 22DQ through which a signal (data signal) is transmitted in a frequency band (for example, frequency band F2).
  • the expression “the ratio of A is greater than the ratio of B” includes the case where the ratio of B is 0%.
  • the expression “the ratio of A is smaller than the ratio of B” includes the case where the ratio of A is 0%.
  • the data signal wiring 22DQ is not formed in the wiring layer M1, and the control signal wiring CMD is included in the wiring 22 formed in the wiring layer M1 in the region 22A (see FIG. 9). The percentage is 100%.
  • the data signal wiring 22DQ is not formed in the wiring layers M2 and M3.
  • the return current path (return path) of the data signal transmitted through the data line DQ shown in FIG. 4 can be shortened.
  • the return current path for connecting the semiconductor chips 30 is preferably provided at a position close to the semiconductor chip 30.
  • the reference potential line VS2 for reference shown in FIG. 4 is supplied with, for example, a ground potential, which is also a return current path for a data signal transmitted through the data line DQ.
  • the reference potential wiring 22VS shown in FIG. 10 forms part of the reference reference potential line VS2
  • the reference potential wiring 22VS is provided at a position close to the semiconductor chip 30 shown in FIG. Can be shortened.
  • the reference potential wiring 22VS is mainly formed in the wiring layer M3 close to the surface electrode 25. Therefore, the transmission distance of the reference signal can be shortened compared to the interposer 20H shown in FIG.
  • the wiring layer M2 closer to the surface electrode 25 than the wiring layer M1 is mainly formed with the data signal wiring 22DQ transmitted mainly in the high frequency band F2 (see FIG. 7). ing. For this reason, even when the reference potential wiring 22VS is mainly formed in the wiring layer M3, an increase in the transmission distance of the high-frequency signal can be suppressed.
  • FIG. 12 is an enlarged plan view of a portion B shown in FIG.
  • the outline of the electrode 33A of the memory chip 30A, the electrode 33B of the logic chip 30B, and the surface electrode 25 of the interposer 20A is indicated by dotted lines in order to show the planar shape of the connection portion between the semiconductor chip 30 and the interposer 20A.
  • the contour of the electrode 33A and the contour of the surface electrode 25 connected to the electrode 33A, and the contour of the electrode 33B and the contour of the surface electrode 25 connected to the electrode 33B are substantially overlapped. ing.
  • the passivation film 26 that covers the surface of the interposer 20A is provided with a plurality of openings, and a part of the surface electrode 25 is exposed from the passivation film 26 in the openings.
  • the outline of the opening that exposes a part of the surface electrode 25 of the interposer 20A is indicated by a solid circle.
  • the logic chip 30B includes an external interface circuit IF1 that inputs / outputs signals to / from the external device 40 in addition to the internal interface circuit IF2 that inputs / outputs signals to / from the memory chip 30A.
  • the number of signal lines (signal line SIG, data line DQ, and control signal line CMD) connected to the logic chip 30B is the same as the number of signal lines (data line DQ and control signal line CMD) connected to the memory chip 30A. More than the number.
  • the transmission speed of the signal line SIG shown in FIG. 4 is faster than the transmission speed of the data line DQ. For this reason, the signal line SIG connected to the logic chip 30B or the power supply lines VD1 and VS1 that supply the drive voltage for the logic chip 30B needs to have a strengthened transmission path.
  • FIGS. 5 and 6 in the case of the plurality of electrodes 33 included in the logic chip 30 ⁇ / b> B, a plurality of (two in FIG. 6) through-electrodes with respect to one electrode 33. 24 is connected.
  • FIG. 6 in the case of the plurality of electrodes 33 included in the memory chip 30 ⁇ / b> A, one through electrode 24 is connected to one electrode 33. That is, the number of through electrodes 24 connected to each of the plurality of electrodes 33 of the logic chip 30B is larger than the number of through electrodes 24 connected to each of the plurality of electrodes 33 of the memory chip 30A.
  • the signal line SIG connected to the logic chip 30B shown in FIG. 4 or the power supply lines VD1 and VS1 for supplying a driving voltage for the logic chip 30B preferably have the following configuration from the viewpoint of strengthening the transmission path.
  • the area of the surface electrode 25B of the electrode 33B of the logic chip 30B is preferably larger than the area of the surface electrode 25A of the electrode 33A of the memory chip 30A.
  • the diameter D1 of the electrode (surface electrode, pad) 33B of the logic chip 30B is larger than the diameter D2 of the electrode (surface electrode, pad) 33A of the memory chip 30A.
  • FIG. 12 shows a case where the planar shape of the electrode 33A and the electrode 33B is a quadrangle, and the diagonal of the quadrangle is the value of the diameter D2 or the diameter D1.
  • the planar shape of the electrode 33A and the electrode 33B may be a shape other than a quadrangle.
  • the diameter of the circle is a value of the diameter D2 or the diameter D1.
  • the separation distance P1 between the adjacent electrodes 33B is larger than the separation distance P2 between the adjacent electrodes 33A among the plurality of electrodes 33A.
  • the separation distance P1 and the separation distance P2 described above are the smallest of the separation distances. Evaluate by value.
  • the diameter of the surface electrode 25 of the interposer 20A connected to the electrode 33 of the logic chip 30B may be increased as shown in FIG. it can.
  • a plurality (two in FIG. 6) of through electrodes 24 can be connected to one electrode 33 of the logic chip 30B.
  • FIG. 13 is an enlarged cross-sectional view of a semiconductor device which is a modification to FIG.
  • FIG. 14 is a modified example of FIG. 12, and is an enlarged plan view of the semiconductor device shown in FIG.
  • FIG. 15 is a modification of FIG. 10 and is a cross-sectional view of the main part showing an example of the arrangement ratio for each type of transmission target in each wiring layer of the interposer shown in FIGS.
  • FIG. 13 is an enlarged cross-sectional view of a semiconductor device which is a modification to FIG.
  • FIG. 14 is a modified example of FIG. 12, and is an enlarged plan view of the semiconductor device shown in FIG.
  • FIG. 15 is a modification of FIG. 10 and is a cross-sectional view of the main part showing an example of the arrangement ratio for each type of transmission target in each wiring layer of the interposer shown in FIGS.
  • FIG. 13 is an enlarged cross-sectional view of a semiconductor device which is a modification to FIG.
  • FIG. 14 is a modified example of
  • FIG. 16 is a cross-sectional view of a main part showing another modification example of FIG.
  • FIG. 17 is an enlarged plan view showing a structure example of the wiring layer below the layer on which the plurality of surface electrodes of the interposer shown in FIG. 6 are formed.
  • FIG. 14 in order to show the planar shape of the connecting portion between the semiconductor chip 30 and the interposer 20B, the surface electrode 25A of the interposer 20B connected to the memory chip 30A, the surface electrode 25B of the interposer 20B connected to the logic chip 30B, and The outline of the reference potential wiring 22VS is indicated by a dotted line.
  • the passivation film 26 (see FIG. 13) covering the surface of the interposer 20B is provided with a plurality of openings, and a part of the surface electrode 25 is exposed from the passivation film 26 in the openings.
  • the outline of the opening that exposes a part of the surface electrode 25 of the interposer 20B is indicated by a solid circle, and the type of transmission path that each exposed portion constitutes is indicated with an underline.
  • a pattern (dot pattern) is provided on the reference potential wiring 22VS so that the boundary between the conductor pattern constituting the reference potential wiring 22VS and the conductor pattern constituting another transmission path can be easily seen. It is attached.
  • the semiconductor device PKG2 shown in FIG. 13 is different from the semiconductor device PKG1 shown in FIG. 6 in the wiring layout of the interposer 20B. Specifically, in the interposer 20B included in the semiconductor device PKG2, the reference potential wiring 22VS that constitutes a part of the reference potential transmission path is formed in the uppermost wiring layer M4 on which the plurality of surface electrodes 25 are formed. This is different from the interposer 20A shown in FIG.
  • the interposer 20B differs from the interposer 20A in that many of the reference potential wirings 22VS are formed in the same layer as the plurality of surface electrodes 25.
  • a reference potential wiring 22VS constituting a part of a reference potential transmission path in the wiring 22 arranged in the wiring layer M4 of the interposer 20B. This ratio is larger than the ratio of the signal wiring constituting a part of the signal transmission path. In the example shown in FIG. 14, no conductor pattern other than the reference potential wiring 22VS is formed in the region 22A.
  • the reference potential line VS2 (in the region where the surface electrode 25 is not disposed in the uppermost layer, that is, the wiring layer M4 which is the wiring layer formed farthest from the main surface 21t of the silicon substrate 21.
  • a reference potential wiring 22VS that constitutes FIG. 14) is provided.
  • the surface electrode 25 and the reference potential wiring 22VS constituting the reference potential line VS2 of the interposer 20B are integrally formed.
  • the surface electrode 25 and the reference potential wiring 22VS constituting the reference potential line VS2 are connected to each other. Therefore, in the region 22A of the uppermost wiring layer M4 of the interposer 20B, the reference potential wiring 22VS is formed so as to cover most of the wiring layer M3 (see FIG. 13), and a part of the reference potential wiring 22VS is formed. It functions as a surface electrode 25 for transmitting a reference potential.
  • a surface electrode 25 constituting a transmission path other than the reference potential line VS2, for example, the signal line SG shown in FIG. 4 or the transmission path for the power supply lines VD1 and VD2 is arranged. An opening is formed in the reference potential wiring 22VS2 at a position, and a surface electrode 25 is formed in the opening.
  • the interposer 20B since the wiring layer M4 is used as a reference potential transmission path, the number of wirings of the data signal wiring 22DQ which is a high-speed transmission path in the wiring layer M2 and the wiring layer M3 as shown in FIG. Can be increased.
  • the reference potential wiring 22VS is not formed in each of the wiring layer M2 and the wiring layer M3, and only the data signal wiring 22DQ is arranged. .
  • the interposer 20B shown in FIG. 15 can increase the number of data signal wirings 22DQ as compared to the interposer 20A shown in FIG.
  • the reference potential wiring 22VS may be disposed in the wiring layer M2 or the wiring layer M3 as a modification to the example shown in FIG. Even in this case, the number of data signal lines 22DQ provided in each of the wiring layer M2 and the wiring layer M3 can be increased as compared with the interposer 20A shown in FIG. Further, since the control signal wiring 22CMD is mainly provided in the wiring layer M1, the number of the control signal wirings 22CMD can be sufficiently secured. Further, as a modification of the example shown in FIG. 15, the control signal wiring 22CMD may be arranged in the wiring layer M2 or the wiring layer M3.
  • the wiring layer M4 When the wiring layer M4 is used as a supply space for the reference potential wiring 22VS as in the interposer 20C included in the semiconductor device PKG3 shown in FIG. 16, a plurality of data signal wirings provided in the wiring layer M2 and the wiring layer M3.
  • the separation distance of 22DQ can be increased.
  • the reference potential wiring 22VS is formed in the wiring layer M4, and the high-speed signal transmission path wiring has a large distance from other wirings.
  • the data signal wiring 22DQ provided in the wiring layer M2 is provided so as not to overlap the control signal wiring 22CMD formed in the wiring layer M1 in the thickness direction.
  • the data signal wiring 22DQ provided in the wiring layer M2 is arranged so as not to overlap with the control signal wiring 22CMD formed in the wiring layer M1 in the thickness direction.
  • crosstalk between the transmission path of the data signal and the transmission path of other signals can be reduced. That is, the interposer 20 ⁇ / b> C illustrated in FIG. 16 is a configuration example when importance is attached to suppression of crosstalk of a wiring that performs high-speed signal transmission.
  • the wiring layer M2 is provided between the data signal wiring 22DQ formed in the wiring layer M3 and the control signal wiring 22CMD formed in the wiring layer M1, it is formed in the wiring layer M3.
  • the data signal wiring 22DQ and the control signal wiring 22CMD formed in the wiring layer M1 may overlap.
  • the wiring layer M4 is the uppermost wiring layer forming the surface electrode 25 (see FIG. 6)
  • the separation distance B34 between the wiring layer M3 and the wiring layer M4 is the separation distance B12 between the wiring layer M1 and the wiring layer M2.
  • the distance B23 between the wiring layer M2 and the wiring layer M3 is larger. Therefore, the data signal wiring 22DQ formed in the wiring layer M3 and the reference potential wiring 22VS formed in the wiring layer M4 may overlap in the thickness direction.
  • the reference potential wiring 22VS formed in the wiring layer M4 does not need to be flattened. For this reason, as shown in FIG. 14, it is not necessary to provide an opening other than the opening provided with the surface electrode 25 for the transmission path other than the reference potential, and a sheet-like conductive pattern that uniformly spreads is formed. can do.
  • the reference potential wiring 22VS is not formed in the wiring layer M4, for example, the reference potential wiring 22VS having a large area may be formed in the wiring layer M3 like the interposer 20D of the semiconductor device PKG4 shown in FIG. it can.
  • the reference potential wiring of the interposer 20 ⁇ / b> D shown in FIG. 23 has a larger area than the other wirings 22.
  • the conductor pattern formed on the wiring layer M3 which is not the uppermost layer needs to form a plurality of surface electrodes 25 (see FIG. 10) on the wiring layer M4 which is the uppermost layer (see FIG. 10). Difficult to form.
  • the reference potential wiring 22VS of the interposer 20D is a mesh-shaped conductor pattern (mesh pattern) in which a large number of linearly extending conductor patterns intersect each other.
  • the reference potential wiring 22VS formed in a sheet shape has a lower electrical resistance than the reference potential wiring 22VS formed in a mesh shape as shown in FIG. Therefore, when the reference potential wiring 22VS is used as the reference reference potential line VS2 (see FIG. 4), the sheet-like reference potential wiring 22VS can reduce variations in signal line characteristics.
  • the reference potential wiring 22VS is used as the reference potential line VS1 (see FIG. 4) for supplying a reference potential for driving voltage, the voltage drop is reduced by reducing the electric resistance of the reference potential wiring 22VS. Can be suppressed.
  • the sheet-like reference potential wiring 22VS is easier to shield the electromagnetic field than the mesh-shaped reference potential wiring 22VS. Therefore, signal loss can be reduced.
  • FIG. 18 is a modification of FIG. 10 and is a cross-sectional view of the main part showing an example of the distance between each wiring layer of the interposer and the arrangement ratio according to the type of transmission target.
  • FIG. 19 is a cross-sectional view of a principal part showing another modified example with respect to FIG. 18 and 19 illustrate the silicon substrate 21, the wiring 22 constituting each wiring layer, and the surface electrode 25, and the insulating layer 23 covering each wiring layer, as in the enlarged sectional view shown in FIG. Illustration of (see FIG. 6) is omitted.
  • a semiconductor device PKG5 shown in FIG. 18 is different from the semiconductor device PKG1 shown in FIG. 10 in the distance between the wiring layers of the interposer 20E.
  • the interposer 20E included in the semiconductor device PKG5 is different from the interposer 20A shown in FIG. 10 in that the separation distance B23 between the wiring layer M3 and the wiring layer M2 is larger than the separation distance B12 between the wiring layer M2 and the wiring layer M1.
  • the separation distance B34 between the wiring layer M4 and the wiring layer M3 is larger than the separation distance B23 between the wiring layer M3 and the wiring layer M2.
  • the distance between the wiring layers of the interposer 20D increases as the distance from the silicon substrate 21 increases.
  • the method of laminating the wiring layer on the silicon substrate 21 is performed by the following method, for example.
  • the insulating layer 23 (see FIG. 6) is deposited on the main surface 21t of the silicon substrate 21 (insulating layer deposition step).
  • an opening is formed in the insulating layer 23, and a conductor is embedded in the opening (conductor embedding step).
  • the upper surface side of the insulating layer in which the conductor is embedded (surface away from the main surface 21t of the silicon substrate 21) is polished and planarized by, for example, CMP (polishing step).
  • CMP polishing step
  • a first wiring layer M1 is formed.
  • an insulating layer is deposited on the first wiring layer M1 (insulating layer deposition step).
  • the conductor embedding step, the polishing step, and the insulating layer deposition step are similarly repeated to laminate a plurality of wiring layers.
  • the separation distance B23 and the separation distance B12 can be set to the same value as in the example shown in FIG. 10, but the modification example shown in FIG. Thus, the separation distance B23 may be larger than the separation distance B12.
  • each of the above-described interposers 20A, 20B, 20C, and 20D uses the same process as the process of forming the wiring on the semiconductor wafer, so that the wiring density of the plurality of wirings 22 is, for example, the wiring of the wiring board 10 shown in FIG.
  • the wiring density of 13 can be improved.
  • the thickness of the wiring 22 is about 1 ⁇ m to 1.2 ⁇ m, and the distance between the stacked wiring layers M1, M2, and M3 is about half the thickness of the wiring 22.
  • the design value of the characteristic impedance of the data line DQ shown in FIG. 4 is 50 ⁇ [Ohm]
  • the wiring path using the data signal wiring 22DQ shown in FIGS. 10 and 18, and for the reference reference potential In the wiring path using the wiring 22VS it is preferable that each approaches 50 ⁇ .
  • the capacitance component of the characteristic impedance defined by ⁇ is inversely proportional to the separation distance between the wiring layers. Therefore, when the separation distance is small, the capacitance component of the characteristic impedance becomes a large value. For this reason, if the wiring width is increased in order to reduce the above-described wiring resistance, the capacitance component of the characteristic impedance is further increased and the characteristic impedance becomes too smaller than 50 ⁇ . For this reason, the signal waveform becomes dull.
  • the margin for adjusting the resistance component and the capacitance component of the characteristic impedance is small.
  • the resistance component and the capacitance component of this characteristic impedance are in a trade-off relationship. If the margin for adjusting the resistance component and the capacitance component is reduced, it becomes difficult to adjust the characteristic impedance, and the impedance of the signal transmission path is set to a predetermined value. It becomes difficult to get close to the value.
  • the separation distance B23 when the separation distance B23 is made larger than the separation distance B12, the above trade-off relationship is improved. That is, by increasing the separation distance B23 between the wiring layer M2 mainly provided with the data signal wiring 22DQ and the wiring layer M3 mainly provided with the reference potential wiring 22VS, the wiring width can be increased. The capacitance component of the characteristic impedance is difficult to decrease. As a result, the characteristic impedance in the wiring path using the data signal wiring 22DQ and in the wiring path using the reference potential wiring 22VS is easily brought close to, for example, 50 ⁇ .
  • the separation distance B34 between the wiring layer M4 and the wiring layer M3 is larger than the separation distance B23 between the wiring layer M3 and the wiring layer M2. Since the wiring layer M4 is the uppermost wiring layer, the flatness of the uppermost surface electrode 25 may be lower than that of the wiring 22 of the other layers. For this reason, the separation distance B34 can be particularly increased. As shown in FIG. 18, when the wiring 22 is not formed in the wiring layer M4 in the region 22A (see FIG. 9), the magnitude of the separation distance B34 shown in FIG. The impact is small. However, when the reference potential wiring 22VS is formed in the wiring layer M4 like the interposer 20F included in the semiconductor device PKG6 of the modification shown in FIG. 19, the following effects are obtained.
  • An interposer 20F shown in FIG. 19 has a reference that forms a reference potential line VS in a wiring layer M4 that is a wiring layer that is formed farthest from the main surface 21t of the silicon substrate 21 in the region 22A (see FIG. 9).
  • a potential wiring 22VS is provided.
  • the wiring layer M3 is mainly formed with a data signal wiring 22DQ through which a data signal is transmitted at a high speed (for example, the frequency band F2 shown in FIG. 7). That is, in the interposer 20E, the uppermost wiring layer M4 is mainly provided with the reference potential wiring 22VS, and the wiring layer M3 is provided with the data signal wiring 22DQ mainly transmitted at high speed.
  • the above wiring structure can also be expressed as follows. That is, in the region 22A (see FIG. 9), in the wiring 22 arranged in the wiring layer M4 of the interposer 20F, the ratio of the reference potential wiring 22VS constituting a part of the reference potential transmission path is the ratio of the signal transmission path. More than the proportion of signal wiring that constitutes a part.
  • the ratio of the control signal wiring 22CMD that transmits a signal (control signal) in the first frequency band (for example, the frequency band F1) is the second It is less than the ratio of the data signal wiring 22DQ through which a signal (data signal) is transmitted in a frequency band (for example, frequency band F2).
  • the ratio of A is greater than the ratio of B includes the case where the ratio of B is 0%.
  • the expression “the ratio of A is smaller than the ratio of B” includes the case where the ratio of A is 0%.
  • the reference potential wiring 22VS is formed in a sheet shape in the wiring layer M4 (see FIG. 19) in the region 22A (see FIG. 14). Other wirings 22 are not formed.
  • the control signal wiring 22CMD and the reference potential wiring 22VS are not formed in the wiring layer M3 in the region 22A (see FIG. 9).
  • the reference potential wiring 22VS and the data signal wiring 22DQ are provided.
  • the characteristic impedance of the signal transmission path changes depending on the separation distance of 22DQ.
  • the distance between the data signal wiring 22DQ and the reference potential wiring 22VS is defined by the separation distance B34 between the wiring layer M4 and the wiring layer M3.
  • the separation distance B34 is further larger than the separation distance B23, the value of the characteristic impedance of the data signal wiring 22DQ can be easily brought close to a predetermined value (for example, 50 ⁇ ).
  • the uppermost wiring layer M4 can be thicker than the other wiring layers M1, M2, and M3. For this reason, the interposer 20F is preferable from the viewpoint of reducing the wiring resistance of the reference potential wiring 22VS.
  • each of the plurality of data signal wirings 22DQ provided in the wiring layer M2 includes the plurality of wirings 22 provided in the wiring layer M1, and the wirings. It does not overlap with the plurality of wirings 22 provided in the layer M3 in the thickness direction. In this case, since the distance between the data signal wiring 22DQ and the other wiring 22 can be increased, the characteristic impedance of the signal transmission path can be easily brought close to a predetermined value.
  • the separation distance B23 between the wiring layer M2 and the wiring layer M3 is larger than the separation distance B12. For this reason, the influence on the characteristic impedance due to the data signal wiring 22DQ of the wiring layer M2 and the data signal wiring 22DQ of the wiring layer M3 overlapping in the thickness direction can be reduced.
  • the data signal wiring 22DQ of the wiring layer M2 and the data signal wiring 22DQ of the wiring layer M3 overlap in the thickness direction, so that the data signal is compared with the interposer 20C shown in FIG.
  • the number of wiring lines 22DQ can be increased.
  • FIG. 20 is an explanatory diagram showing an outline of the manufacturing process of the semiconductor device described with reference to FIGS.
  • the interposer 20A shown in FIG. 10 the interposer 20B shown in FIG. 15, the interposer 20C shown in FIG. 16, the interposer 20D shown in FIG. 18, or the interposer 20E shown in FIG.
  • a method for manufacturing the interposers 20A, 20B, 20C, 20D, and 20E (hereinafter, typically described as the interposer 20A in the description of the manufacturing process) is to prepare a silicon substrate 21 that is a semiconductor wafer, A plurality of wiring layers are stacked. For example, as described above, the wiring layer is laminated by repeating the insulating layer deposition step, the conductor embedding step, and the polishing step.
  • a plurality of interposers 20A are collectively formed on a single semiconductor wafer. And after laminating
  • a plurality of semiconductor chips 30 are mounted on the interposer 20A as shown in FIG.
  • the plurality of semiconductor chips 30 are sequentially mounted so that the surfaces 30t of the plurality of semiconductor chips 30 and the upper surface 20t of the interposer 20A face each other.
  • the mounting order is not particularly limited, when there is a difference in the thickness of the plurality of semiconductor chips 30, it is preferable to mount the semiconductor chip 30 having a relatively small thickness first.
  • the memory chip 30A there is one memory chip 30A, but a stacked body in which a plurality of memory chips 30A are stacked may be used as the memory chip 30A.
  • the stacked body of the memory chips 30A is likely to be thicker than the logic chip 30B. Therefore, it is preferable to mount the logic chip 30B first.
  • the plurality of electrodes 33 of the semiconductor chip 30 and the plurality of surface electrodes 25 of the interposer 20 ⁇ / b> A are electrically connected via the plurality of bump electrodes 35.
  • the plurality of bump electrodes 35 are exposed, but an underfill resin (illustrated) is provided between the semiconductor chip 30 and the interposer 20 ⁇ / b> A so as to cover the periphery of the plurality of bump electrodes 35. May be omitted).
  • the underfill resin is an insulating resin, and can cover the bump electrodes 35 by covering the periphery of the plurality of bump electrodes 35.
  • the interposer mounting step as shown in FIG. 3, the wiring substrate 10 that is a package substrate is prepared, and the interposer 20 ⁇ / b> A on which a plurality of semiconductor chips 30 are mounted is mounted on the wiring substrate 10. In this step, mounting is performed so that the lower surface 20b of the interposer 20A and the upper surface 10t of the wiring board 10 face each other.
  • the plurality of back electrodes of the interposer 20 ⁇ / b> A and the plurality of bonding pads 16 of the wiring substrate 10 are electrically connected via the bump electrodes 28.
  • the plurality of bump electrodes 28 are exposed, but an underfill resin (illustrated) is provided between the interposer 20 ⁇ / b> A and the wiring board 10 so as to cover the periphery of the plurality of bump electrodes 28. May be omitted).
  • the underfill resin is an insulating resin, and can cover the bump electrodes 28 by covering the periphery of the bump electrodes 28.
  • the solder balls 11 are disposed on each of the plurality of lands 12 exposed on the lower surface 10b of the wiring board 10. Then, the plurality of solder balls 11 and the lands 12 are joined by heating the plurality of solder balls 11. Through this step, the plurality of solder balls 11 are electrically connected to the plurality of semiconductor chips 30 (logic chip 30B and memory chip 30A) via the wiring substrate 10.
  • the technique described in this embodiment is not limited to a so-called BGA (Ball Grid Array) type semiconductor device in which solder balls 11 are joined in an array.
  • the solder ball 11 is not formed and the land 12 is exposed, or the land 12 is shipped with a solder paste thinner than the solder ball 11 so-called LGA.
  • the present invention can be applied to a (Land Grid Array) type semiconductor device. In the case of an LGA type semiconductor device, the ball mounting process can be omitted.
  • FIG. 21 is an enlarged cross-sectional view of a semiconductor device which is a modification to FIG.
  • FIG. 22 is a modification of FIG. 10 and is a cross-sectional view of the main part showing an example of the arrangement ratio for each type of transmission target in each wiring layer of the interposer shown in FIG.
  • the semiconductor device PKG7 shown in FIG. 21 is different from the semiconductor device PKG1 shown in FIG. 6 in the structure of the interposer 20G.
  • the interposer 20G is different from the interposer 20A shown in FIG. 6 in that the insulating layer covering each of the plurality of wiring layers is the organic insulating layer 29.
  • the interposer 20G does not have the silicon substrate 21 shown in FIG. 6, and the lower surface 20b of the interposer 20G is covered with an insulating film 17 that is an organic insulating film called a solder resist film. However, a plurality of openings are formed in the insulating film 17, and a part of the back electrode 27 is exposed in the openings. Similarly, the upper surface 20t of the interposer 20G is covered with the insulating film 17, and some of the plurality of surface electrodes 25 are exposed in the plurality of openings formed in the insulating film 17.
  • the lowermost wiring layer M0, the wiring layer M1, the wiring layer M2, the wiring layer M3, and the uppermost wiring layer M4 are stacked in this order from the upper surface 10t side of the wiring board 10.
  • a plurality of backside electrodes 27 are formed on the lowermost wiring layer M0, and a plurality of front surface electrodes 25 are formed on the uppermost wiring layer M4.
  • the interposer 20G is the same as the interposer 20A shown in FIG. 6 described in the first embodiment.
  • the interposer 20G of the present embodiment does not have the silicon substrate 21 shown in FIG. 6, a part of the signal current energy described in the first embodiment is converted into thermal energy by the silicon substrate 21. The problem of consumption and signal loss does not occur.
  • the return current path for connecting the semiconductor chips 30 is preferably provided at a position close to the semiconductor chip 30.
  • the reference potential line VS2 for reference shown in FIG. 4 is supplied with, for example, a ground potential. This is also the return current path of the data signal transmitted through the data line DQ at the same time. But there is.
  • the reference potential wiring 22VS shown in FIG. 22 constitutes a part of the reference potential line VS2 which is a return current path
  • the reference potential wiring 22VS is provided at a position close to the semiconductor chip 30 shown in FIG.
  • the path length of the return current can be shortened.
  • the interposer 20G has the following wiring structure in a region 22A sandwiched between adjacent semiconductor chips 30. That is, as shown in FIG. 22, in the region 22A (see FIG. 21), the reference potential wiring 22VS constituting the return current path is mainly in the wiring layer M3 close to the wiring layer M4 where the surface electrode 25 is formed. Is formed.
  • the ratio (occupancy) of the reference potential wiring 22VS constituting a part of the reference potential transmission path among the plurality of wirings 22 is the reference potential wiring in the wiring layer M3.
  • the ratio of 22VS is larger than the ratio (occupancy) of the reference potential wiring 22VS in the wiring layer M1.
  • the ratio (occupancy) of the signal wiring (data signal wiring 22DQ and control signal wiring 22CMD) that constitutes a part of the signal transmission path among the plurality of wirings 22.
  • the ratio of the signal wiring in the wiring layer M1 is larger than the ratio (occupancy) of the signal wiring in the wiring layer M3.
  • the following wiring structure is used. That is, in the interposer 20G, in the plurality of wirings (conductor patterns) 22 arranged in the wiring layer M1, the ratio of the reference potential wiring (reference potential conductor) 22VS constituting a part of the transmission path of the reference potential is the signal This is less than the ratio of signal wiring (signal conductor) constituting a part of the transmission path. In the plurality of wirings 22 arranged in the wiring layer M3, the ratio of the reference potential wiring 22VS that forms part of the reference potential transmission path is the ratio of the signal wiring that forms part of the signal transmission path. More than
  • the interposer 20G according to the present embodiment is provided with the return current path in the wiring layer M3 close to the wiring layer M4 in which the surface electrode 25 is formed as described above, for example, the interposer 20G illustrated in FIG. In comparison, the path length of the return current can be shortened.
  • the data signal wiring 22DQ transmitted mainly in the high frequency band F2 is mainly formed in the wiring layer M2 closer to the surface electrode 25 than the wiring layer M1. ing.
  • the ratio of the control signal wiring 22CMD in which the signal (control signal) is transmitted in the first frequency band is the second Is less than the ratio of the data signal wiring 22DQ in which the signal (data signal) is transmitted in the frequency band (for example, the frequency band F2).
  • the ratio of the control signal wiring 22CMD in which the signal (control signal) is transmitted in the first frequency band is More than the ratio of the data signal wiring 22DQ in which a signal (data signal) is transmitted in a second frequency band (eg, frequency band F2) higher than the first frequency band. For this reason, it becomes possible to shorten the transmission distance of a high frequency signal.
  • the modification to the interposer 20A described in the first embodiment has been described with a focus on differences.
  • each of Modification 1 and Modification 2 described in the first embodiment and the structure of the semiconductor device PKG7 of the second embodiment can be applied in combination.
  • the relay substrate having the organic insulating layer 29 see FIG. 21
  • the interposer 20J included in the semiconductor device PKG8 shown in FIG. 23 is a relay board that combines the wiring structure of the interposer 20F described with reference to FIG. 19 and the wiring structure of the interposer 20G described with reference to FIG.
  • the interposer 20J is different from the interposer 20G shown in FIG. 22 in that the reference potential wiring 22VS is formed in the wiring layer M4. Therefore, the interposer 20J can increase the number of data signal wirings 22DQ more than the interposer 20G.
  • the interposer 20J since the interposer 20J has the reference potential wiring 22VS in the wiring layer M4 which is the uppermost layer, as described with reference to FIG. 14, the reference potential wiring 22VS of the wiring layer M4 can be formed in a sheet shape. it can. In this case, the reference potential wiring 22VS can function as an electromagnetic field shield layer.
  • the interposer 20J included in the semiconductor device PKG8 is different from the interposer 20G shown in FIG. 22 in that the distance B23 between the wiring layer M3 and the wiring layer M2 is larger than the distance B12 between the wiring layer M2 and the wiring layer M1. .
  • the separation distance B34 between the wiring layer M4 and the wiring layer M3 is larger than the separation distance B23 between the wiring layer M3 and the wiring layer M2.
  • the interposer 20J has characteristic impedances in the wiring path using the data signal wiring 22DQ and in the wiring path using the reference potential wiring 22VS for reference. It is easy to approach a predetermined value.
  • relay board described in this embodiment can be combined with each technique described as a modification in the above embodiment.
  • the wiring layer M1, the wiring layer M2, the wiring layer M3, and the wiring layer M4 are stacked on the main surface 21t of the silicon substrate 21.
  • the explanation was made by taking up a layered relay board.
  • the lowermost wiring layer M0, wiring layer M1, wiring layer M2, wiring layer M3, and wiring layer M4 are stacked in this order from the upper surface 10t side of the wiring substrate 10.
  • the five-layer relay board was taken up and explained.
  • the reference potential wiring 22VS is mainly provided in the wiring layer relatively close to the semiconductor chip 30 described in the first embodiment and the second embodiment, and the signal wiring is mainly used in the lower wiring layer.
  • the technique of being provided in the relay board can be applied to a relay board having various numbers of wiring layers.
  • a relay substrate having two wiring layers between the wiring layer M4 on which the surface electrode 25 is formed and the silicon substrate 21 (or between the wiring layer M0 shown in FIG. 21) may be used.
  • the reference potential wiring 22VS mainly in the wiring layer M4
  • three wiring layers can be secured.
  • it may be a relay substrate having four or more wiring layers between the wiring layer M4 on which the surface electrode 25 is formed and the silicon substrate 21 (or between the wiring layer M0 shown in FIG. 21). .
  • the space in which the data signal wiring 22DQ can be arranged further increases, the number of data lines DQ shown in FIG. 4 can be increased.
  • the present invention can be applied to a relay substrate having one wiring layer between the wiring layer M4 where the surface electrode 25 is formed and the silicon substrate 21 (or between the wiring layer M0 shown in FIG. 21).
  • a reference potential wiring may be provided in the uppermost wiring layer
  • a plurality of signal wirings including the data signal wiring 22DQ may be provided in the lowermost wiring layer.
  • the silicon substrate 21 it is better to increase the separation distance between the main surface 21t of the silicon substrate 21 and the wiring layer closest to the main surface 21t.
  • the description has been given taking an example in which one logic chip 30B and one memory chip 30A are mounted on the interposer.
  • three or more semiconductor chips 30 may be mounted on the interposer.
  • the memory chip 30A there is a technique for increasing the storage capacity by stacking a plurality of memory chips 30A. Therefore, the memory chip 30A described in the above embodiments and the like may be a stacked body of a plurality of memory chips.
  • the plurality of semiconductor chips 30 are not the memory chip 30A and the logic chip 30B. May be.
  • the plurality of semiconductor chips 30 may be a sensor chip in which a sensor circuit is formed and a controller chip in which a control circuit for controlling the sensor circuit is formed.
  • the data line DQ (see FIG. 4) described as the data signal transmission path in the above-described embodiment and each modification is a so-called single-ended signal transmission path.
  • a differential signal transmission path using two paired signal transmission paths may be used.
  • the modified examples can be applied in combination within a range not departing from the gist of the technical idea described in the above embodiment.
  • the interposer has a plurality of wiring layers, The first semiconductor component and the second semiconductor component are electrically connected to each other through the plurality of wiring layers, The plurality of wiring layers are separated from the first wiring layer, the second wiring layer farther from the first surface of the wiring board than the first wiring layer, and the first surface from the second wiring layer.
  • a third wiring layer In the plurality of wirings arranged in the first wiring layer, the ratio of the reference potential wiring constituting a part of the reference potential transmission path is higher than the ratio of the signal wiring constituting a part of the signal transmission path. Less In the plurality of wirings arranged in the third wiring layer, the ratio of the reference potential wiring is larger than the ratio of the signal wiring.
  • Semiconductor device In the plurality of wirings arranged in the first wiring layer, the ratio of the reference potential wiring constituting a part of the reference potential transmission path is higher than the ratio of the signal wiring constituting a part of the signal transmission path. Less In the plurality of wirings arranged in the third wiring layer, the ratio of the reference potential wiring is larger than the ratio of the signal wiring.
  • the interposer has a base material made of a semiconductor material as a base material, and a plurality of wiring layers arranged on the main surface of the base material, The first semiconductor component and the second semiconductor component are electrically connected to each other through the plurality of wiring layers, The plurality of wiring layers include a first wiring layer and a second wiring layer that is farther from the main surface of the base material than the first wiring layer, In a plan view, in the first region of the interposer sandwiched between the first semiconductor component and the second semiconductor component, The ratio of the reference potential wiring constituting a part of the reference potential transmission path is such that the ratio of the reference potential wiring in the second wiring layer is larger than the ratio of the reference potential wiring in the first wiring
  • the interposer has a base material made of a semiconductor material as a base material, and a plurality of wiring layers arranged on the main surface of the base material, The first semiconductor component and the second semiconductor component are electrically connected to each other through the plurality of wiring layers,
  • the plurality of wiring layers include a first wiring layer and a second wiring layer that is farther from the main surface of the base material than the first wiring layer, In a plan view, in the first region of the interposer sandwiched between the first semiconductor component and the second semiconductor component, In the plurality of wirings arranged in the first wiring layer, the ratio of the reference potential wiring constituting a part of the reference potential transmission path is higher than the ratio of the signal wiring constituting a part

Abstract

 半導体装置は、配線基板に搭載されたインタポーザ上に搭載され、かつ、インタポーザを介して互いに電気的に接続されている第1および第2半導体部品と、を含む。また、インタポーザの複数の配線層は、基準の主面側から順に積層される第1、第2および第3配線層、を有する。また、第1半導体部品と第2半導体部品とに挟まれたインタポーザの第1領域では、第3配線層における基準電位用配線の割合が第1配線層における基準電位用配線の割合よりも多い。また、第1領域では、第1配線層における信号用配線の割合が第3配線層における信号用配線の割合よりも多い。

Description

半導体装置
 本発明は、半導体装置に関し、例えば、半導体チップなどの複数の半導体部品がインタポーザを介して互いに電気的に接続された半導体装置に適用して有効な技術に関する。
 特表2010-538358号公報(特許文献1)、特開2013-138177号公報(特許文献2)、特開2014-11169号公報(特許文献3)、米国特許第8653676号明細書(特許文献4)、および特開2014-11284号公報(特許文献5)には、複数の半導体チップがインタポーザを介して互いに電気的に接続された半導体装置が記載されている。
特表2010-538358号公報 特開2013-138177号公報 特開2014-11169号公報 米国特許第8653676号明細書 特開2014-11284号公報
 複数の半導体部品を、インタポーザを介して互いに電気的に接続する技術がある。また、半導体パッケージの基材となる配線基板上にインタポーザを搭載する場合、配線基板によりパッケージ強度を確保できるので、インタポーザに形成される複数の配線の配置密度を向上させることができる。また、インタポーザに複数の配線層を設けると、複数の半導体部品間を接続する配線数をさらに増やすことができる。しかし、インタポーザに複数の配線層を設けた場合、信号伝送の信頼性の観点から課題があることが判った。
 例えば、インタポーザの基材を構成する部材の高周波信号に対する絶縁性の程度によっては、信号伝送経路を流れる電流の一部がインタポーザの基材によって消費され、信号が減衰する原因になる場合がある。
 また例えば、インタポーザを介して複数の半導体部品の間で信号を伝送する場合、インタポーザに形成される信号伝送経路は、短くすることが好ましい。
 また例えば、インタポーザに複数の配線層を設ける場合、各配線層の厚さが薄くなるので、信号伝送経路のインピーダンス値が連続的に所定の値になるようにする技術が必要になる。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態による半導体装置は、配線基板に搭載されたインタポーザ上に搭載され、かつ、上記インタポーザを介して互いに電気的に接続されている第1および第2半導体部品と、を含む。また、上記インタポーザは、基材と、上記基材の主面上に配置された複数の配線層と、を有する。上記複数の配線層は、第1配線層と、上記第1配線層よりも上記基材の主面から離れた第2配線層と、上記第2配線層よりも上記主面から離れた第3配線層と、を有する。また、平面視において、上記第1半導体部品と上記第2半導体部品とに挟まれた上記インタポーザの第1領域では、基準電位の伝送経路の一部を構成する基準電位用配線の割合は、上記第3配線層における上記基準電位用配線の割合が上記第1配線層における上記基準電位用配線の割合よりも多い。また、上記第1領域では、信号の伝送経路の一部を構成する信号用配線の割合は、上記第1配線層における上記信号用配線の割合が上記第3配線層における上記信号用配線の割合よりも多い。
 上記一実施の形態によれば、半導体装置の信頼性を向上させることができる。
一実施の形態である半導体装置の上面図である。 図1に示す半導体装置の下面図である。 図1のA-A線に沿った断面図である。 図1~図3に示す半導体装置を実装基板に搭載した時の回路構成例を示す説明図である。 図3のA部の拡大断面図である。 図3のB部の拡大断面図である。 信号伝送経路の動作周波数と、信号損失の関係を示す説明図である。 シリコン基板に電流が流れる状態を模式的に示す要部断面図である。 図1に示すロジックチップとメモリチップの間の領域周辺を拡大して示す拡大平面図である。 図5および図6に示すインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。 図10とは別の検討例であるインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。 図1に示すB部の拡大平面図である。 図6に対する変形例である半導体装置の拡大断面図である。 図12に対する変形例であって、図13に示す半導体装置の拡大平面図である。 図14のA-A線に沿った拡大断面図である。 図10に対する変形例であって、図5および図6に示すインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。 図6に示すインタポーザの複数の表面電極が形成された層の一層下の配線層の構造例を示す拡大平面図である。 図10に対する変形例であって、インタポーザの各配線層の間の距離、および伝送対象の種類別の配置割合の例を示す要部断面図である。 図10に対する他の変形例を示す要部断面図である。 図1~図19を用いて説明した半導体装置の製造工程の概要を示す説明図である。 図6に対する変形例である半導体装置の拡大断面図である。 図10に対する変形例であって、図21に示すインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。 図22に対する変形例であって、インタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。
 (本願における記載形式・基本的用語・用法の説明)
 本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクション等に分けて記載するが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、記載の前後を問わず、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しの説明を省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
 同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、A以外の要素を含むものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe(シリコン・ゲルマニウム)合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。また、金めっき、Cu層、ニッケル・めっき等といっても、そうでない旨、特に明示した場合を除き、純粋なものだけでなく、それぞれ金、Cu、ニッケル等を主要な成分とする部材を含むものとする。
 さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。
 また、実施の形態の各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
 また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するため、あるいは領域の境界を明示するために、ハッチングやドットパターンを付すことがある。
 (実施の形態1)
 本実施の形態では、複数の半導体部品が、インタポーザを介して互いに電気的に接続した半導体装置の例として、シリコン基板に複数の配線層が形成された、所謂、シリコンインタポーザに複数の半導体チップが搭載された実施態様を取り上げて説明する。詳しくは、本実施の形態で例示的に取り上げて説明する半導体装置は、メモリ回路が形成されたメモリチップと、メモリチップを制御する制御回路や演算処理回路が形成されたロジックチップと、を有する。また、メモリチップとロジックチップとは、シリコンインタポーザを介して電気的に接続され、一つのパッケージ内にシステムが形成されている。このように一つのパッケージ内にシステムが形成されている半導体装置は、SiP(System in Package)と呼ばれる。また、一つのパッケージ内に複数の半導体チップが搭載された半導体装置は、MCM(Multi Chip Module)と呼ばれる。
 <半導体装置の概要>
 まず、図1~図4を用いて本実施の形態の半導体装置の構造の概要について説明する。図1は本実施の形態の半導体装置の上面図、図2は、図1に示す半導体装置の下面図である。また、図3は、図1のA-A線に沿った断面図である。また、図4は、図1~図3に示す半導体装置を実装基板に搭載した時の回路構成例を示す説明図である。
 なお、図2および図3では、見易さのため、端子数が少ない場合の実施態様について示している。しかし、端子の数は図2および図3に示す態様の他、種々の変形例がある。例えば、図2に示す半田ボール11の数は、図2に示す数よりも多くても良い。また、図3では、見易さのため、各配線層に形成された複数の配線13のうちの一本を例示的に示している。また、図4に示す例では、半導体装置PKG1が有する多数の伝送経路のうちの代表的な伝送経路を例示的に示している。
 図1および図3に示すように、本実施の形態の半導体装置PKG1は、配線基板(パッケージ基板)10、配線基板10上に搭載されたインタポーザ(中継基板)20A、およびインタポーザ20A上に搭載された複数の半導体チップ30を有する。複数の半導体チップ30は、インタポーザ20A上に並べて搭載されている。
 また、図2に示すように、半導体装置PKG1の実装面である配線基板10の下面10bには、外部端子である複数の半田ボール(外部端子、電極、外部電極)11が、行列状(アレイ状、マトリクス状)に配置されている。複数の半田ボール11のそれぞれは、ランド(外部端子、電極、外部電極)12(図3参照)に接続されている。
 半導体装置PKG1のように、実装面側に、複数の外部端子(半田ボール11、ランド12)が行列状に配置された半導体装置を、エリアアレイ型の半導体装置と呼ぶ。エリアアレイ型の半導体装置PKG1は、配線基板10の実装面(下面10b)側を、外部端子の配置スペースとして有効活用することができるので、外部端子数が増大しても半導体装置PKG1の実装面積の増大を抑制することが出来る点で好ましい。つまり、高機能化、高集積化に伴って、外部端子数が増大する半導体装置PKG1を省スペースで実装することができる。
 また、図3に示すように、配線基板10は、インタポーザ20Aを介して複数の半導体チップ30が搭載された上面(面、チップ搭載面)10t、上面10tとは反対側の下面(面、実装面)10b、および上面10tと下面10bの間に配置された側面10sを有する。また、配線基板10は、図1に示すように平面視において四角形の外形形状を成す。
 また、図3に示すように、インタポーザ20Aは、複数の半導体チップ(半導体部品)30が搭載された上面(面、チップ搭載面)20t、上面10tとは反対側の下面(面、実装面)20b、および上面20tと下面20bの間に配置された側面20sを有する。また、インタポーザ20Aは、図1に示すように平面視において四角形の外形形状を成す。
 また、図3に示すように、複数の半導体チップ30のそれぞれは、表面(主面、上面)30t、表面30tとは反対側の裏面(主面、下面)30b、および、表面30tと裏面30bとの間に位置する側面30sを有する。また、複数の半導体チップ30のそれぞれは、図1に示すように平面視において四角形の外形形状を成す。
 図1および図3に示す例では、複数の半導体チップ30のうちの一つは、メモリ回路を備えるメモリチップ30Aであり、他の一つは、メモリ回路を制御する制御回路を備えるロジックチップ30Bである。また、図1および図3に示す例では、メモリチップ30Aおよびロジックチップ30Bのそれぞれは、インタポーザ20Aに直接的に接続されている。言い換えれば、メモリチップ30Aとインタポーザ20Aとの間、およびロジックチップ30Bとインタポーザ20Aとの間には、基板や他のチップ部品が挿入されていない。
 また、図4に示すように、本実施の形態の半導体装置PKG1は、ロジックチップ30Bとメモリチップ30Aとの間で信号を伝送することによって動作するシステムを備えている。メモリチップ30Aは、ロジックチップ30Bとの間で通信するデータを記憶する主記憶回路(記憶回路)を備えている。また、ロジックチップ30Bには、メモリチップ30Aの主記憶回路の動作を制御する制御回路を備えている。また、ロジックチップ30Bは、入力されたデータ信号に対して演算処理を行う、演算処理回路を備えている。図4では、一例として演算処理回路や制御回路などの主要な回路を、コア回路(主回路)CORE1として示している。ただし、コア回路CORE1に含まれる回路は、上記以外の回路が含まれていても良い。例えば、ロジックチップ30Bには、例えば一次的にデータを記憶するキャッシュメモリなど、メモリチップ30Aの主記憶回路よりも記憶容量が小さい補助記憶回路(記憶回路)が形成されていても良い。
 また、ロジックチップ30Bには、外部機器40との間で信号の入出力を行う外部インタフェース回路(入出力回路、外部入出力回路)IF1が形成されている。外部インタフェース回路IF1には、ロジックチップ30Bと外部機器40との間で信号を伝送する信号線SIGが接続される。また、外部インタフェース回路IF1は、コア回路CORE1とも接続され、コア回路CORE1は、外部インタフェース回路IF1を介して外部機器40との間で信号を伝送することができる。
 また、ロジックチップ30Bには、内部機器(例えば、メモリチップ30A)との間で信号の入出力を行う内部インタフェース回路(入出力回路、内部入出力回路)IF2が形成されている。内部インタフェース回路IF2には、データ信号を伝送するデータ線(信号線)DQ、およびアドレス信号やコマンド信号などの制御用のデータ信号を伝送する制御信号線(信号線)CMDが接続されている。データ線DQ、および制御信号線CMDは、それぞれメモリチップ30Aの内部インタフェース回路IF2に接続されている。
 また、ロジックチップ30Bには、コア回路CORE1や入出力回路を駆動するための電位を供給する電源回路DRV1を備えている。図4に示す例では、電源回路DRV1には、電源電位を供給する電源線VD1と、基準電位を供給する基準電位線VS1とが接続されている。
 なお、図4では、一対の電源線VD1と基準電位線VS1がロジックチップ30Bに接続される例を示しているが、ロジックチップ30Bに供給される電位は、上記二種類には限定されない。例えば、電源回路DRV1には、ロジックチップ30Bの外部インタフェース回路IF1を駆動する電圧を供給する、外部インタフェース用電源回路と、ロジックチップ30Bのコア回路CORE1を駆動する電圧を供給する、コア用電源回路とが含まれていても良い。また、電源回路DRV1には、ロジックチップ30Bの内部インタフェース回路IF2を駆動する電圧を供給する、内部インタフェース用電源回路が含まれていても良い。この場合、ロジックチップ30Bには、互いに異なる複数の電源電位を供給する複数の電源線VD1が接続される。
 また、図4に示す基準電位線VS1に供給される電位は、例えば接地電位である。しかし、駆動電圧は、互いに異なる第1の電位と第2の電位との差により規定されるため、基準電位線VS1に供給される電位は、接地電位以外の電位であっても良い。
 ロジックチップ30Bのように、ある装置やシステムの動作に必要な回路が一つの半導体チップ30に集約して形成されたものを、SoC(System on a Chip)と呼ぶ。ところで、ロジックチップ30Bに図4に示す主記憶回路を形成すれば、ロジックチップ30B、1枚でシステムを構成することができる。しかし、動作させる装置やシステムに応じて、必要な主記憶回路の容量は異なる。そこで、ロジックチップ30Bとは別の半導体チップ30(すなわち、メモリチップ30A)に主記憶回路を形成することで、ロジックチップ30Bの汎用性を向上させることができる。また、要求される主記憶回路の記憶容量に応じて、複数枚のメモリチップ30Aを接続することで、システムが備える記憶回路の容量の設計上の自由度が向上する。
 また、図4に示す例では、メモリチップ30Aは、主記憶回路を備えている。図4では主記憶回路をメモリチップ30Aのコア回路(主回路)CORE2として示している。ただし、コア回路CORE2に含まれる回路は、主記憶回路以外の回路が含まれていても良い。
 また、メモリチップ30Aには、内部機器(例えば、ロジックチップ30B)との間で信号の入出力を行う内部インタフェース回路(内部入出力回路)IF2が形成されている。
 また、メモリチップ30Aには、コア回路CORE2を駆動するための電位を供給する電源回路(駆動回路)DRV2を備えている。図4に示す例では、電源回路DRV2には、電源電位を供給する電源線VD2と、基準電位を供給する基準電位線VS1とが接続されている。図4に示す例では、電源線VD1に供給される電源電位、および電源線VD2に供給される電源電位は、それぞれ半導体装置PKG1の外部に設けられた電源50から供給される。
 なお、図4では、一対の電源線VD2と基準電位線VS1がメモリチップ30Aに接続される例を示している。また、図4に示す例では、内部インタフェース回路IF2を駆動する電源電位を供給する電源線VD3、および基準電位線VS2のそれぞれを介してロジックチップ30Bとメモリチップ30Aとが電気的に接続されている。ただし、メモリチップ30Aに電位を供給する方式は、上記以外に種々の変形例がある。例えば、ロジックチップ30Bの内部インタフェース回路IF2を駆動する電源電位と、メモリチップ30Aの内部インタフェース回路IF2を駆動する電源電位とが、それぞれ独立して供給されても良い。この場合、図4に示す電源50とメモリチップ30Aとは、電源線VD3を介して電気的に接続される。
 また、図4に示す例では、ロジックチップ30Bとメモリチップ30Aとを電気的に接続する複数の伝送経路には、データ線DQおよび制御信号線CMDの他、基準電位線VS2が含まれる。この基準電位線VS2は例えばデータ線DQによって伝送されるデータ信号のリファレンス信号を伝送する経路になっている。リファレンス用の基準電位線VS2には、基準電位として例えば接地電位が供給される。基準電位線VS2および基準電位線VS1にそれぞれ接地電位を供給する場合には、基準電位線VS2と基準電位線VS1とを接続した方が、電位が安定する。したがって、図4に点線を付して示すように、基準電位線VS2と基準電位線VS1とがインタポーザ20Aにおいて接続されていることが好ましい。ただし、リファレンス用の基準電位線VS2は伝送経路中の電位のばらつきが低減できれば、接地電位以外の電位が供給されても良い。例えば、入出力用電源回路の電源電位をリファレンス用の基準電位として利用しても良い。
 また、図4に示す例では、メモリチップ30Aに電源電位を供給する電源線VD2、およびメモリチップ30Aに基準電位を供給する基準電位線VS1は、それぞれロジックチップ30Bを経由せずにメモリチップ30Aに接続されている。ただし、図4に対する変形例としては、電源線VD1および基準電位線VS2がロジックチップ30Bを経由してメモリチップ30Aに接続されていても良い。
 <各部品の構成>
 次に、図1~図4に示す半導体装置PKG1を構成する主な部品について順に説明する。図5は、図3のA部の拡大断面図である。また、図6は、図3のB部の拡大断面図である。
 図1~図5に示す配線基板10は、半導体装置PKG1と実装基板60(図4参照)との間で、電気信号や電位を供給する伝送経路を備える基板である。配線基板10は、上面10t側と下面10b側を電気的に接続する複数の配線層(図3に示す例では8層)を有する。各配線層に設けられた、複数の配線13は、複数の配線13間、および隣り合う配線層間を絶縁する絶縁層14に覆われている。
 図3に示す配線基板10は、積層された複数の絶縁層14を有しており、真ん中の絶縁層14が、例えば、ガラス繊維などの繊維材にエポキシ樹脂などの樹脂材を含浸させたコア層(コア材)である。また、コア層の上面および下面にそれぞれ形成される絶縁層14は、例えばビルドアップ工法により形成されている。ただし、図3に対する変形例として、コア層となる絶縁層14を有していない、所謂、コアレス基板を用いても良い。
 また、配線基板10は、各配線層の間にもうけられ、積層された配線層を厚さ方向に接続する層間導電路であるビア配線15を有する。また、配線基板10の上面10tには、複数のボンディングパッド(端子、チップ搭載面側端子、電極)16が形成されている。なお、配線基板10が有する複数の配線層のうち、最上層の配線層(最も上面10t側の配線層)に設けられた配線13は、ボンディングパッド16と一体に形成されている。言い換えれば、ボンディングパッド16は配線13の一部と考えることができる。また、ボンディングパッド16と配線13を区別して考える場合には、配線基板10の上面10tにおいて、絶縁膜17から露出する部分をボンディングパッド16、絶縁膜17に覆われる部分を配線13として定義することができる。
 一方、配線基板10の下面10bには、複数のランド(端子、半田接続用パッド)12が形成されている。複数のランド12のそれぞれには、半田ボール11が接続されており、図4に示す実装基板60と半導体装置PKG1とは、図3に示す半田ボール11を介して電気的に接続される。すなわち、複数の半田ボール11は、半導体装置PKG1の外部接続端子として機能する。
 これら複数の半田ボール11および複数のランド12は、配線基板10の複数の配線13を介して、上面10t側の複数のボンディングパッド16と電気的に接続されている。なお、配線基板10が有する複数の配線層のうち、最下層の配線層(最も下面10b側の配線層)に設けられた配線13は、ランド12と一体に形成されている。言い換えれば、ランド12は配線13の一部と考えることができる。また、ランド12と配線13を区別して考える場合には、配線基板10の下面10bにおいて、絶縁膜17から露出する部分をランド12、絶縁膜17に覆われる部分を配線13として定義することができる。
 また、図3に対する変形例として、ランド12自身を外部接続端子として機能させる場合もある。この場合、ランド12に半田ボール11は接続されず、複数のランド12のそれぞれは、配線基板10の下面10bにおいて、絶縁膜17から露出する。また、図3に対する別の変形例として、ボール形状の半田ボール11に代えて、薄い半田膜を接続し、この半田膜を外部接続端子として機能させる場合もある。
 また、配線基板10の上面10tおよび下面10bは、絶縁膜(ソルダレジスト膜)17により覆われている。配線基板10の上面10tに形成された配線13は絶縁膜17に覆われている。絶縁膜17には開口部が形成され、この開口部において、複数のボンディングパッド16の少なくとも一部(ボンディング領域)が絶縁膜17から露出している。また、配線基板10の下面10bに形成された配線13は絶縁膜17に覆われている。絶縁膜17には開口部が形成され、この開口部において、複数のランド12の少なくとも一部(半田ボール11との接合部)が絶縁膜17から露出している。
 また、図5に示すように、半導体装置PKG1は、配線基板10上に搭載されるインタポーザ20Aを備えている。インタポーザ20Aは、配線基板10と複数の半導体チップ30との間に介在する中継基板である。本実施の形態では、インタポーザ20Aは、主面21tを有するシリコン基板(基材)21と、主面21t上に配置された複数の配線層M1、M2、M3と、を有する。図5に示すように、複数の表面電極25が形成された層を配線層M4と見做すと、図5に示す例では四層の配線層が積層されている。複数の配線層M1、M2、M3のそれぞれには、複数の配線(導体パターン)22が形成されている。複数の配線22は、複数の配線22間、および隣り合う配線層間を絶縁する絶縁層23に覆われている。絶縁層23は、例えば、酸化珪素(SiO)などの半導体材料の酸化物から成る、無機絶縁層である。
 また、インタポーザ20Aの配線層M3上には、複数の表面電極(電極パッド、端子)25が形成されている。複数の表面電極25のそれぞれの一部分は、インタポーザ20Aの上面20tにおいて、保護絶縁膜であるパッシベーション膜26から露出している。そして、表面電極25は、表面電極25の露出部分に接続されるバンプ電極35を介して半導体チップ30の電極(表面電極、パッド)33と電気的に接続されている。
 また、インタポーザ20Aの下面20bには、複数の裏面電極(電極、パッド、端子)27が形成されている。複数の裏面電極27は、シリコン基板21の主面21tの反対側に位置するインタポーザ20Aの下面20bにおいて、露出している。そして、裏面電極27は、裏面電極27接続されるバンプ電極28を介して配線基板10のボンディングパッド16と電気的に接続されている。
 また、インタポーザ20Aは、シリコン基板21を厚さ方向(主面21tおよび下面20bのうち、一方の面から他方の面に向かう方向)に貫通する複数の貫通電極24を備えている。複数の貫通電極24は、シリコン基板21を厚さ方向に貫通するように形成された貫通孔に例えば銅(Cu)などの導体を埋め込むことにより形成された導電経路である。複数の貫通電極24のそれぞれは、一方の端部が裏面電極27に接続され、他方の端部が配線層M1の配線22に接続されている。つまり、インタポーザ20Aの複数の表面電極25と複数の裏面電極27とは、複数の配線22および複数の貫通電極24を介してそれぞれ電気的に接続されている。
 上記した配線基板10は、半導体装置PKG1の支持基材である。支持基板としての機能を発揮するためには、剛性や強度を向上させることが好ましい。このため、配線基板10に形成する複数の配線13は微細加工が難しい。
 一方、インタポーザ20Aは、配線基板10上に搭載される中継基板なので、基板の剛性や強度は、配線基板10と比較して低くても良い。このため、インタポーザ20Aに形成される複数の配線22は、配線基板10の配線13と比較して配線密度を向上させることができる。
 特に、本実施の形態のインタポーザ20Aは、図5に示すように半導体基板であるシリコン基板(基材)21を有し、シリコン基板21の主面21t上に複数の配線層M1、M2、M3が積層された構造を有する。このように、半導体基板上に複数の配線22を形成する場合、半導体ウエハに配線を形成する工程と同様のプロセスを利用することで、配線密度を向上させることができる。
 半導体ウエハに配線を形成するプロセスを用いた場合、各配線層の厚さ、および配線層間の距離も薄くなる。例えば、図5および図6に示す配線層M1、M2、M3の厚さ、すなわち、複数の配線22それぞれの厚さは、配線基板10の配線13の厚さよりも薄い。図5および図6では、配線基板10の配線13とインタポーザ20Aの配線22とを一図に記載するため、配線13の厚さが配線22の厚さに対して二倍以下になっている。しかし、配線13の厚さは、上記した配線22の厚さの値に対して数倍から数十倍程度である。
 また、配線層M1、M2、M3のそれぞれの離間距離、およびシリコン基板21の主面21tと配線層M1との離間距離は、配線22の厚さよりも小さい。配線層M1、M2、M3のそれぞれの離間距離、およびシリコン基板21の主面21tと配線層M1との離間距離は、配線層M1、M2、M3に形成された配線22の厚さの半分程度である。なお、複数の表面電極25が形成された最上層の配線層M4と配線層M3との離間距離は、配線層M1、M2、M3のそれぞれの離間距離よりも大きい。例えば、配線層M4と配線層M3との離間距離は、配線22の厚さと同程度である。
 このように、インタポーザ20Aは、配線基板10と比較して、配線密度を向上させることができるので、複数の半導体チップ30間を結ぶ信号伝送経路の数を増加させる場合に特に有効である。特に、本実施の形態の図4に示す例のように、ロジックチップ30Bとメモリチップ30Aとを接続する信号伝送経路の数を増やす場合には、インタポーザ20Aを設けることにより、配線基板10に形成される配線13(図3参照)の数を低減することができる。
 なお、本実施の形態では、半導体ウエハの製造プロセスで広く利用される、シリコン基板21を基材として用いている。このため、図5に示すシリコン基板21は、半導体材料であるシリコンを母材(主たる成分)とする。また、半導体チップの製造に用いられる半導体基板は、母材である半導体材料中に、p型またはn型の導電特性を構成する不純物元素がドープされている場合が一般的である。このため、シリコン基板21として、汎用される半導体ウエハを用いた場合、シリコン基板21には、p型またはn型の導電特性を構成する不純物元素が含まれている。
 ただし、本実施の形態のシリコン基板21には、種々の変形例が適用可能である。例えば、半導体基板として、シリコン以外の半導体材料を母材にしても良い。また、半導体材料中に不純物元素がドープされていない半導体を半導体基板として用いることもできる。
 また、図6に示すように、半導体装置PKG1は、インタポーザ20Aの上面20t上に搭載される複数の半導体チップ30を備えている。複数の半導体チップ30のそれぞれは、主面31tを有するシリコン基板(基材)31と、主面31t上に配置された配線層32とを有する。なお、図5および図6では、見易さのため、一層の配線層32を示しているが、例えば、図5および図6に示す配線層32には、インタポーザ20Aの配線層M1、M2、M3よりも厚さが薄い複数の配線層が積層されている。また、見易さのために図示は省略するが、複数の配線層32のそれぞれには、複数の配線が形成されている。また、複数の配線は、複数の配線間、および隣り合う配線層間を絶縁する絶縁層に覆われている。絶縁層は、例えば、酸化珪素(SiO)などの半導体材料の酸化物から成る、無機絶縁層である。
 また、複数の半導体チップ30のそれぞれが備えるシリコン基板31の主面31tには、例えばトランジスタ素子、あるいはダイオード素子などの、複数の半導体素子が形成されている。複数の半導体素子は、配線層32の複数の配線を介して表面30t側に形成された複数の電極33と電気的に接続されている。
 また、本実施の形態では、複数の半導体チップ30のそれぞれは、表面30tとインタポーザ20Aの上面20tとが対向した状態で、インタポーザ20Aの上面20t上に搭載されている。このような実装方式は、フェイスダウン実装方式、あるいは、フリップチップ接続方式と呼ばれる。フリップチップ接続方式では、以下のように半導体チップ30と、インタポーザ20Aとが電気的に接続される。
 半導体チップ30の配線層32上には、複数の電極(表面電極、パッド、端子)33が形成されている。複数の電極33のそれぞれの一部分は、半導体チップ30の表面30tにおいて、保護絶縁膜であるパッシベーション膜34から露出している。そして、電極33は、電極33の露出部分に接続されるバンプ電極35を介してインタポーザ20Aの表面電極25と電気的に接続されている。
 また、本実施の形態では、図4に示すように、メモリチップ30Aに接続される複数の伝送経路のうちの一部は、配線基板10とは接続されず、インタポーザ20Aを介してロジックチップ30Bに接続される。図4に示す例では、データ線DQおよび制御信号線CMDは配線基板10とは電気的に分離されている。一方、メモリチップ30Aに接続される複数の伝送経路のうち、メモリチップ30Aの回路を駆動するための電源電位を供給する電源線VD2および基準電位線VS1は、配線基板10と電気的に接続されている。なお、ロジックチップ30Bとメモリチップ30Aとを電気的に接続する伝送経路のうち、信号線のリファレンス用に用いる基準電位線VS2は、配線基板10と分離されていても良い。
 <半導体チップ間を電気的に接続する伝送経路の詳細>
 次に、図4に示すようにロジックチップ30Bとメモリチップ30Aとを電気的に接続する信号伝送経路の詳細について説明する。
 SiP型の半導体装置の代表的な例として、本実施の形態のように、ロジックチップ30Bとメモリチップ30Aとが一つのパッケージ内に搭載された構成がある。このような構成のSiP型の半導体装置の性能を向上させるためには、ロジックチップ30Bとメモリチップ30Aとを接続する信号伝送経路の伝送速度を向上させる技術が要求される。例えば、図4に示す信号伝送経路のうち、複数のデータ線DQのそれぞれは、1Gbps(毎秒1ギガビット)以上の伝送速度でデータ信号を伝送するように設計されている。複数の信号伝送経路のそれぞれの伝送速度を高速化するためには、単位時間当たりの伝送回数を増やす必要がある(以下、高クロック化と記載する)。
 また、ロジックチップ30Bとメモリチップ30Aとの間の信号伝送速度を向上させる他の方法としては、内部インタフェースのデータバスの幅を大きくして1回に伝送するデータ量を増加させる方法がある(以下、バス幅拡大化と記載する)。また、上記したバス幅拡大化と高クロック化を組み合わせて適用する方法がある。この場合、高速の信号伝送経路が多数必要になる。したがって、本実施の形態のように、インタポーザ20Aを介してロジックチップ30Bとメモリチップ30Aとを電気的に接続する方法が有効である。
 例えば図4に示すメモリチップ30Aは、512bit以上のデータバスの幅を持つ、所謂、ワイドI/Oメモリである。詳しくは、メモリチップ30Aは、データバスの幅が128bitのチャンネルを、例えば4つ備えており、この4チャンネルのバス幅を合計すると、512bitとなる。また、各チャンネルの単位時間当たりの伝送回数は高クロック化され、例えばそれぞれ1Gbps以上になっている。
 ところが、本願発明者が複数の配線層を備えたインタポーザを介してロジックチップ30Bとメモリチップ30Aとを電気的に接続する構成について検討を行った結果、信号伝送の信頼性の観点から課題があることが判った。
 まず、本願発明者の検討によれば、シリコン基板を有するインタポーザ上で高速信号伝送を行った場合、信号のエネルギーの一部が熱エネルギーに変換されて消費され、伝送損失(以下、信号損失と呼ぶ)が発生する場合があることが判った。この時、図7に示すように信号の周波数が低い状態では信号損失の程度は小さいが、信号の周波数が高くなると信号損失の程度が急激に大きくなることが判った。
 図7は、信号伝送経路の動作周波数と、信号損失の関係を示す説明図である。また、図8は、シリコン基板に電流が流れる状態を模式的に示す要部断面図である。図7では、信号の伝送を行う周波数を横軸に対数で示し、各周波数における信号損失の程度を縦軸に示している。また、図7では、図4に示すデータ線DQの動作周波数帯を周波数帯F2として示し、制御信号線CMDの動作周波数帯を周波数帯F1として示している。また、図8では、配線層M4が、表面電極25を形成するための層であることを明示するため、表示電極25を点線で示している。
 ここで、図8に示す配線22に信号電流が流れる場合の挙動について検討する。図8に示すシリコン基板21には、図5に示す本実施の形態のインタポーザ20Aが有するシリコン基板21と同様に、p型またはn型の導電特性を構成する不純物元素が含まれている。
 図8に示す配線22に信号電流が流れると、配線22の周囲に電磁場が発生する。配線22に流れる信号電流の周波数が低い場合には、シリコン基板21には、図8に示す電流CFは流れ難い。このため、例えば、図7に示す周波数帯F1で信号電流を伝送する場合には、周波数が変化しても信号損失の程度は変化し難い。
 ところが、本願発明者の検討によれば、例えば、図7に示す周波数帯F2のように高い周波数で信号電流を伝送した場合、図8に示すシリコン基板21に電流CFが流れやすくなることが判った。また、シリコン基板21は、母材である半導体材料に不純物がドープされることにより、導電性を獲得しているので、配線22などの導体と比較して、シリコン基板21に電流CFが流れる場合の抵抗値が大きい。このため、電流CFが流れることにより生じた電気的エネルギー(電磁場およびこれに伴い生じる電流CF)は、熱エネルギーに変換され、消費される。この結果、配線22を流れる信号電流の電流値は低下する。すなわち、信号伝送経路に信号損失が発生する。本願発明者の検討によれば、信号伝送経路の動作周波数が1GHz(ギガヘルツ)以上になってくると、信号損失の程度が急激に大きくなる。
 したがって、信号伝送の信頼性を向上させる観点から、信号損失の程度が大きくなる周波数帯F2では、信号損失の増大を抑制する対策を施すことが好ましい。本実施の形態によれば、上記した信号損失の増大を抑制することができる。以下、その理由について順に説明する。
 図9は、図1に示すロジックチップとメモリチップの間の領域周辺を拡大して示す拡大平面図である。また、図10は、図9のA-A線に沿った断面において、伝送対象の種類別の配線の配置例を示す要部断面図である。なお、図9では、メモリチップ30Aとロジックチップ30Bとを電気的に接続する複数の配線22、および配線22の両端に接続されたインタポーザ20Aの複数の表面電極25を点線で示している。図9では、メモリチップ30Aとロジックチップ30Bとが複数の配線22を介して電気的に接続されていることを模式的に示したもので、配線22や表面電極25の数や位置は、図9に示す態様には限定されない。また、図9では、隣り合う半導体チップに挟まれた領域22A、および隣り合う半導体チップを電気的に接続する複数の配線22が形成された領域22Bの周縁部を二点鎖線で示している。また、領域22Aと領域22Bが重なるので、見易さのため、領域22Aには模様を付している。また、図10は、断面図であるが、複数の配線22が構成する伝送経路の種類を識別するため、伝送対象の種類に応じて異なる模様を付している。詳しくは、図4に示すデータ線DQの一部を構成するデータ信号用配線22DQにはハッチングを、図4に示す制御信号線CMDの一部を構成する制御信号用配線22CMDにはドットパターンを、それぞれ付している。また、基準電位の伝送経路となる基準電位用配線22VSには模様を付さず、ブランクにしている。また、シリコン基板21にも、模様を付さず、ブランクになっている。また、図10では、配線層M4が、表面電極25を形成するための層であることを明示するため、表示電極25を点線で示している。
 まず、隣り合う半導体チップ間の信号伝送の信頼性を向上させる観点から、配線構造の検討を行う必要がある領域について説明する。図9に示すように、本実施の形態の半導体装置PKG1が有するメモリチップ30Aとロジックチップ30Bとは、インタポーザ20Aの複数の配線22を介して電気的に接続されている。また、高速信号伝送を行う場合、信号伝送経路は短くすることが好ましい。このため、平面視において、メモリチップ30Aとロジックチップ30Bとを電気的に接続する配線22は、主に、メモリチップ30Aとロジックチップ30Bとに挟まれたインタポーザ20Aの領域22Aに配置される。このため、配線22の電気的特性を検討する場合には、図9に示す領域22Aにおける配線構造を検討すれば良く、他の領域の配線構造は特に限定されない。
 なお、メモリチップ30Aとロジックチップ30Bとを電気的に接続される複数の配線22が接続される領域は、厳密には、図9に示すように、複数の配線22の両端に接続される複数の表面電極25の間の領域22Bである。しかし、信号伝送経路を短くするためには、複数の配線22の両端に接続される複数の表面電極25のそれぞれは、隣り合う半導体チップの互いに対向する辺側に寄せて形成される場合が多い。この場合、図9に示すように、領域22Bの大部分は、領域22Aと重複している。したがって、少なくとも、領域22Aの配線構造を改善することにより、隣り合う半導体チップ間の信号伝送の信頼性を向上させることができる。ただし、例えば、隣り合う半導体チップ間を接続する配線22の長さが長く、複数の表面電極25のそれぞれが、隣り合う半導体チップの互いに対向する辺から離れている場合には、領域22Bにおける配線構造を考慮した方が好ましい場合もある。
 以下では、図9に示す領域22Aにおける配線構造について説明する。ただし、以下で説明する配線構造は、領域22Bにおける配線構造を考慮する場合にも適用できる。
 図10に示すように、本実施の形態の半導体装置PKG1が備えるインタポーザ20Aは、配線層M1と、配線層M1よりもシリコン基板21の主面21tから離れた配線層M2と、配線層M2よりも主面21tから離れた配線層M3と、を有する。
 また、領域22A(図9参照)では、複数の配線22のうち、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合(占有率)は、配線層M3における基準電位用配線22VSの割合が配線層M1における基準電位用配線22VSの割合(占有率)よりも多い。上記した配線層M1(または配線層M3)における基準電位用配線22VSの割合とは、配線層M1(または配線層M3)に形成された導体パターンの平面積の合計値に対する基準電位用配線22VSの占有率を意味する。また、配線層M1(または配線層M3)における信号用配線の割合とは、配線層M1(または配線層M3)に形成された導体パターンの平面積の合計値に対する信号用配線の占有率を意味する。以下、本明細書において、ある配線層におけるある種類の配線の割合と記載した場合には、特に違う意味で用いていることを説明した場合を除き、上記と同様の意味である。
 また、領域22A(図9参照)では、複数の配線22のうち、信号の伝送経路の一部を構成する信号用配線(データ信号用配線22DQおよび制御信号用配線22CMD)の割合(占有率)は、配線層M1における信号用配線の割合が配線層M3における信号用配線の割合(占有率)よりも多い。
 本実施の形態のインタポーザ20Aの構成は、以下のように表現することもできる。すなわち、シリコン基板21の主面21tまでの距離が相対的に近い配線層M1では、主に信号用配線(データ信号用配線22DQまたは制御信号用配線22CMD)が設けられ、シリコン基板21の主面21tまでの距離が相対的に遠い配線層M3では、主に基準電位用配線22VSが設けられている。これにより、以下の効果が得られる。
 すなわち、配線22に信号を流した時に発生する電磁場の分布を基準電位用配線22VSにより制御することができる。信号電流が流れる配線22の下方に設けられた基準電位用配線22VSの面積が小さく、配線22の上方に設けられた基準電位用配線22VSの面積が大きい場合、電磁場は、主に配線22と同層あるいは上方に分布するようになる。このため、配線22に流れる信号電流が高周波信号であった場合でも、シリコン基板21に電流CF(図8参照)が流れることによる信号損失を抑制できる。
 なお、図10に示す基準電位用配線22VSに供給される基準電位は、例えば図4に示す基準電位線VS1に供給される電位(例えば接地電位)と同じ電位である。また、配線22に信号を流した時に発生する電磁場の分布を制御することは、接地電位以外の電位が供給される伝送経路であっても良い。例えば、図4に示す入出力回路の駆動用に供給される電源電位であっても良い。
 ところで、本願発明者は、信号損失を抑制する別の方法として、図11に示す検討例について検討した。図11は、図10とは別の検討例であるインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。図11に示すインタポーザ20Hは、以下の点で図10に示すインタポーザ20Aと相違する。すなわち、シリコン基板21の主面21tまでの距離が相対的に近い配線層M1では、主に基準電位用配線22VSが設けられ、シリコン基板21の主面21tまでの距離が相対的に遠い配線層M3では、主に信号用配線が設けられている。言い換えれば、図11に示すインタポーザ20Hでは、複数の信号用配線とシリコン基板21との間に、基準電位用配線22VSが設けられている。
 本願発明者は、複数の信号用配線とシリコン基板21との間に、基準電位用配線22VSを設けることで、信号用配線に高周波信号が流れた時に生じる電磁場を、基準電位用配線22VSによりシールドする構成について検討した。しかし、図11に示すインタポーザ20Hの場合、製造の都合上シールドがメッシュ形状になり、シールド効果が減殺されるため、図10に示すインタポーザ20Aと比較して、信号損失を抑制することが難しいことが判った。この理由を以下に説明する。
 シリコン基板21上に複数の配線層を積層する場合、半導体ウエハ上に配線層を形成するプロセスを利用することで、配線22の高密度化が可能である。しかし、下地になる各配線層の表面の平坦性が低い場合、配線22の配線幅を十分に小さくすることができない。このため、配線層を積層するための準備として、下地になる配線層を平坦化する必要がある。平坦化する技術としては、例えば、CMP(Chemical Mechanical Polishing)と呼ばれる研磨技術がある。CMPは、柔らかい絶縁層23(図6参照)が金属パターンの間に埋め込まれることで、研磨面が平坦化する技術なので、金属パターンの間に絶縁層23が埋め込まれる隙間が必要である。したがって、例えばメッシュパターンなど、金属膜の間に複数の隙間を設け、金属膜の被覆率(金属膜が形成される面における金属膜の占有率)は、例えば50%程度にとどめる必要がある。
 図11に示す信号用配線(例えばデータ信号用配線22DQ)に高周波信号が流れた時に生じる電磁場を、基準電位用配線22VSによりシールドするためには、配線層M1に設けられている基準電位用配線22VSの面積を大きくする必要があるが、基準電位用配線22VSの平面形状をシート状に形成することは難しい。このため、上記した電磁場が、基準電位用配線22VSを構成する導体パターンの隙間からシリコン基板21に向かって回り込んでしまう。つまり、基準電位用配線22VSにより十分なシールド効果を得ることが難しい。
 一方、図10に示す本実施の形態では、基準電位用配線22VSは、電磁場の分布を制御するための導体パターンとして利用される。したがって、例えば、図10に示す基準電位用配線22VSの平面形状が図9に点線で示す配線22のように、メモリチップ30Aおよびロジックチップ30Bのうちの一方から他方に向かって延びる線形のパターンである場合でも、信号損失を抑制することができる。また、例えば、図10に示す基準電位用配線22VSの平面形状がメッシュパターンであっても、信号損失を抑制することができる。図10に示す基準電位用配線22VSは、専ら電磁場の分布を制御するために用いられる必要はない。したがって、上記電磁場の一部が基準電位用配線22VSによりシールドされても良い。また、図10に示す基準電位用配線22VSが、高速信号の帰路電流経路の一部を構成していても良い。
 なお、図10を用いて説明した配線構造の表現において「Aの割合は、Bの割合よりも多い」という表現には、Bの割合が0%である場合も含む。また、「Aの割合はBの割合よりも少ない」という表現には、Aの割合が0%である場合も含む。以後、本明細書において、「Aの割合は、Bの割合よりも多い(または少ない)」という表現を用いた場合には、同様の意味である。例えば、図10に示す例では、配線層M1には、基準電位用配線22VSが形成されず、領域22A(図9参照)の配線層M1形成された配線22のうち、信号用配線の割合は100%である。
 ただし、図10に対する変形例としては、領域22A(図9参照)の配線層M1に基準電位用配線22VSを形成しても良い。この場合、上記したように、複数の配線22のうち、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合(占有率)は、配線層M3における基準電位用配線22VSの割合が配線層M1における基準電位用配線22VSの割合(占有率)よりも多くなるようにする。これにより、高速信号伝送を行った時に生じる電磁場は、主に配線22と同層あるいは上方に分布するようになり、信号損失を抑制できる。
 また、図10に示すインタポーザ20Aの配線構造は、以下のように表現することもできる。また、配線層M1に配置された複数の配線(導体パターン)22において、基準電位の伝送経路の一部を構成する基準電位用配線(基準電位用導体)22VSの割合は、信号の伝送経路の一部を構成する信号用配線(データ信号用配線22DQまたは制御信号用配線22CMD)の割合に比べて少ない。また、配線層M3に配置された複数の配線22において、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて多い。
 上記の条件を満たす場合には、「シリコン基板21の主面21tまでの距離が相対的に近い配線層M1では、主に信号用配線(データ信号用配線22DQまたは制御信号用配線22CMD)が設けられ、シリコン基板21の主面21tまでの距離が相対的に遠い配線層M3では、主に基準電位用配線22VSが設けられている」と言える。したがって、高速信号伝送を行った時に生じる電磁場は、主に配線22と同層あるいは上方に分布するようになる。この結果、上記構成によれば、信号損失を抑制できる。
 また、図10に示すように、本実施の形態では、複数の信号用配線には、相対的に低い周波数帯F1(図7参照)で信号が伝送される制御信号用配線22CMDと、制御信号用配線22CMDよりも高い周波数帯F2(図7参照)で信号が伝送されるデータ信号用配線22DQとが含まれる。例えば、図4に示す例では、制御信号線CMDで伝送されるアドレス信号やコマンド信号などの制御用のデータ信号は、データ線DQで伝送されるデータ信号の半分以下の周波数で伝送される。図7を見ると判るように、周波数帯F1では、周波数帯F2と比較して、信号損失の程度が低い。
 本実施の形態のように、3層以上の配線層を有し、かつ、信号の種類によって、周波数が異なる場合には、図7に示す結果を考慮して、以下の構成が好ましい。すなわち、高周波で伝送されるデータ信号用配線22DQは、シリコン基板21の主面21tまでの距離が相対的に遠い配線層M2、M3に設けられていることが好ましい。一方、シリコン基板21の主面21tまでの距離が相対的に近い配線層M1には、信号損失の程度が低い制御信号用配線22CMDを設けることが好ましい。
 なお、配線層M1とシリコン基板21の主面21tとの離間距離は、配線層M1の配線22の厚さよりも薄く、例えば、0.5μm~0.6μm程度である。言い換えれば、配線層M1とシリコン基板21の主面21tとの間の絶縁層23の厚さは、配線層M1の配線22の厚さよりも薄く、例えば、0.5μm~0.6μm程度である。したがって、信号損失を低減する観点からは、図10に示すようにデータ信号用配線22DQは、配線層M1には形成されていないことが特に好ましい。ただし、例えば信号線の数を増やすため、配線層M1にデータ信号用配線22DQを形成する場合も考えられる。この場合には、配線層M1とシリコン基板21の主面21tとの離間距離を大きくすることが好ましい。
 詳しくは、配線層M1に配置された複数の信号用配線(導体パターン)において、第1の周波数帯(例えば周波数帯F1)で信号(制御用信号)が伝送される制御信号用配線22CMDの割合は、第1の周波数帯よりも高い第2の周波数帯(例えば周波数帯F2)で信号(データ信号)が伝送されるデータ信号用配線22DQの割合よりも多い。また、配線層M2に配置された複数の信号用配線において、第1の周波数帯(例えば周波数帯F1)で信号(制御用信号)が伝送される制御信号用配線22CMDの割合は、第2の周波数帯(例えば周波数帯F2)で信号(データ信号)が伝送されるデータ信号用配線22DQの割合よりも少ない。
 なお、上記したように、「Aの割合は、Bの割合よりも多い」という表現には、Bの割合が0%である場合も含む。また、「Aの割合はBの割合よりも少ない」という表現には、Aの割合が0%である場合も含む。例えば、図10に示す例では、配線層M1には、データ信号用配線22DQが形成されず、領域22A(図9参照)の配線層M1形成された配線22のうち、制御信号用配線CMDの割合は100%である。また、図10に示す例では、配線層M2、M3には、データ信号用配線22DQは形成されていない。
 また、本実施の形態によれば、図4に示すデータ線DQで伝送されるデータ信号の帰路電流経路(リターンパス)を短くすることができる。
 例えば図6に示すように、インタポーザ20Aを介して複数の半導体チップ30の間で信号を伝送する場合、インタポーザ20Aに形成される帰路電流経路は、短くすることが好ましい。言い換えれば、半導体チップ30同士を接続する帰路電流経路は、半導体チップ30に近い位置に設けることが好ましい。図4に示すリファレンス用の基準電位線VS2は、例えば接地電位が供給されるが、これは同時に、データ線DQで伝送されるデータ信号の帰路電流経路でもある。
 図10に示す基準電位用配線22VSが、リファレンス用の基準電位線VS2の一部を構成する場合、基準電位用配線22VSは、図6に示す半導体チップ30に近い位置に設けることで、帰路電流の経路長を短縮することができる。
 ここで、図10に示す本実施の形態のインタポーザ20Aでは、表面電極25に近い配線層M3に、主に基準電位用配線22VSが形成されている。したがって、図11に示すインタポーザ20Hと比較して、リファレンス信号の伝送距離を短くすることができる。
 また、図10に示す例では、配線層M1よりも表面電極25に近い配線層M2には、主として、高い周波数帯F2(図7参照)で伝送されるデータ信号用配線22DQが主に形成されている。このため、配線層M3に主に基準電位用配線22VSが形成されている場合でも、高周波信号の伝送距離が長くなることを抑制できる。
 また、図6に示すロジックチップ30Bに接続される伝送経路の電気的特性を改善する観点からは、以下の構成が好ましい。図12は、図1に示すB部の拡大平面図である。なお、図12では、半導体チップ30とインタポーザ20Aとの接続部分の平面形状を示すため、メモリチップ30Aの電極33A、ロジックチップ30Bの電極33B、およびインタポーザ20Aの表面電極25の輪郭を点線で示す。また、図12に示す例では、電極33Aの輪郭と電極33Aに接続される表面電極25の輪郭、および電極33Bの輪郭と電極33Bに接続される表面電極25の輪郭、のそれぞれは、ほぼ重なっている。また、上記したように、インタポーザ20Aの表面を覆うパッシベーション膜26には複数の開口部が設けられ、開口部において、表面電極25の一部がパッシベーション膜26から露出する。図12では、インタポーザ20Aの表面電極25の一部を露出させる開口部の輪郭を実線の円で示している。
 図4に示すように、ロジックチップ30Bは、メモリチップ30Aとの間で信号を入力または出力する内部インタフェース回路IF2の他、外部機器40との間で信号を入力または出力する外部インタフェース回路IF1を有している。このため、ロジックチップ30Bに接続される信号線(信号線SIG、データ線DQおよび制御信号線CMD)の数は、メモリチップ30Aに接続される信号線(データ線DQおよび制御信号線CMD)の数よりも多い。また、図4に示す信号線SIGの伝送速度は、データ線DQの伝送速度よりも速い。このため、ロジックチップ30Bに接続される信号線SIG、あるいはロジックチップ30B用の駆動電圧を供給する電源線VD1およびVS1は、伝送経路を強化しておく必要がある。
 そこで、本実施の形態の例では、図5および図6に示すように、ロジックチップ30Bが有する複数の電極33の場合、一つの電極33に対して複数(図6では二つ)の貫通電極24が接続されている。一方、図6に示すように、メモリチップ30Aが有する複数の電極33の場合、一つの電極33に対して一つの貫通電極24が接続されている。つまり、ロジックチップ30Bの複数の電極33のそれぞれに接続される貫通電極24の数は、メモリチップ30Aの複数の電極33のそれぞれに接続される貫通電極24の数よりも多い。これにより、図4に示す信号線SIGの伝送経路として、複数の貫通電極24(図6参照)を並列で接続した場合、電気信号の伝送経路の電気抵抗を低減できるので、信号の入出力電圧の低下を抑制することができる。また、ロジックチップ30Bに駆動電圧を供給する図4に示す電源線VD1や基準電位線VS1などの伝送経路として、複数の貫通電極24(図6参照)を並列で接続した場合、電源電位や基準電位の伝送経路の電気抵抗を低減できるので、駆動電圧の電圧降下を抑制することができる。
電圧ドロップを抑制することができる。なお、図6に示すように複数の電極33のうち、データ線DQなど、半導体チップ間で信号伝送を行う経路は貫通電極24に接続されていない。
 また、図4に示すロジックチップ30Bに接続される信号線SIG、あるいはロジックチップ30B用の駆動電圧を供給する電源線VD1およびVS1は、伝送経路を強化する観点からは、以下の構成が好ましい。図12に示すようにロジックチップ30Bの電極33Bの表面電極25Bの面積は、メモリチップ30Aの電極33Aの表面電極25Aの面積よりも大きいことが好ましい。表面電極25Bの平面積を大きくすることにより、一つの電極33Bにインタポーザ20Aの複数の伝送経路を接続することが可能になる。
 詳しくは、ロジックチップ30Bの電極(表面電極、パッド)33Bの径D1は、メモリチップ30Aの電極(表面電極、パッド)33Aの径D2よりも大きい。なお、図12では、電極33Aおよび電極33Bの平面形状が四角形である場合を示しており、四角形の対角線を径D2または径D1の値としている。ただし、電極33Aおよび電極33Bの平面形状は、四角形以外の形状であっても良い。例えば、電極33Aおよび電極33Bの平面形状が円形の場合には、円の直径が径D2または径D1の値になる。
 また、複数の電極33Bのうち、隣り合う電極33Bの離間距離P1は、複数の電極33Aのうち、隣り合う電極33Aの離間距離P2よりも大きい。なお、多数の電極33Bおよび多数の電極33Aを有し、離間距離P1および離間距離P2が複数の値を取る場合には、上記した、離間距離P1および離間距離P2は、各離間距離の最も小さい値で評価する。
 図12に示すように、ロジックチップ30Bの電極33Bの径D1が大きい場合、図6に示すように、ロジックチップ30Bの電極33に接続されるインタポーザ20Aの表面電極25の径も大きくすることができる。これにより、図6に示すように、ロジックチップ30Bが有する一つの電極33に対して複数(図6では二つ)の貫通電極24を接続することができる。
 <変形例1>
 次に、本実施の形態の変形例について説明する。まず、変形例1として、複数の表面電極25が形成されている最上層の配線層(電極パッド層)M4に基準電位の伝送経路の一部を構成する基準電位用配線22VSを形成した実施態様について説明する。図13は、図6に対する変形例である半導体装置の拡大断面図である。また、図14は、図12に対する変形例であって、図13に示す半導体装置の拡大平面図である。また、図15は、図10に対する変形例であって、図5および図6に示すインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。また、図16は、図10に対する他の変形例を示す要部断面図である。また、図17は、図6に示すインタポーザの複数の表面電極が形成された層の一層下の配線層の構造例を示す拡大平面図である。
 図14では、半導体チップ30とインタポーザ20Bとの接続部分の平面形状を示すため、メモリチップ30Aに接続されるインタポーザ20Bの表面電極25A、ロジックチップ30Bに接続されるインタポーザ20Bの表面電極25B、および基準電位用配線22VSの輪郭を点線で示す。また、インタポーザ20Bの表面を覆うパッシベーション膜26(図13参照)には複数の開口部が設けられ、開口部において、表面電極25の一部がパッシベーション膜26から露出する。図14では、インタポーザ20Bの表面電極25の一部を露出させる開口部の輪郭を実線の円で示し、各露出部分が構成する伝送経路の種類について下線を付して記載している。また、図14および図17では、基準電位用配線22VSを構成する導体パターンと、他の伝送経路を構成する導体パターンとの境界を見やすくするため、基準電位用配線22VSに模様(ドットパターン)を付している。
 図13に示す半導体装置PKG2は、インタポーザ20Bの配線レイアウトが図6に示す半導体装置PKG1と相違する。詳しくは、半導体装置PKG2が有するインタポーザ20Bは、複数の表面電極25が形成されている最上層の配線層M4に基準電位の伝送経路の一部を構成する基準電位用配線22VSが形成されている点で、図6に示すインタポーザ20Aと相違する。
 言い換えれば、インタポーザ20Bでは、基準電位用配線22VSの多くが複数の表面電極25と同層に形成されている点でインタポーザ20Aと異なる。
 また、隣り合う半導体チップ30に挟まれた領域22A(図14参照)では、インタポーザ20Bの配線層M4に配置された配線22において、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて多い。図14に示す例では、領域22Aには、基準電位用配線22VS以外の導体パターンは形成されていない。
 本変形例では、最上層、すなわち、シリコン基板21の主面21tから最も離れた位置に形成される配線層である配線層M4において、表面電極25が配置されていない領域に基準電位線VS2(図14参照)を構成する基準電位用配線22VSが設けられている。
 また、図14に示すように、インタポーザ20Bの基準電位線VS2を構成する表面電極25および基準電位用配線22VSは、一体に形成されている。言い換えれば、基準電位線VS2を構成する表面電極25および基準電位用配線22VSは、互いに連結されている。このため、インタポーザ20Bの最上層の配線層M4の領域22Aでは、配線層M3(図13参照)の大部分を覆うように基準電位用配線22VSが形成され、基準電位用配線22VSの一部が、基準電位伝送用の表面電極25として機能する。また、領域22Aの周辺領域では、基準電位線VS2以外の伝送経路、例えば、図4に示す信号線SG用、あるいは、電源線VD1、VD2用の伝送経路を構成する表面電極25が配置されている位置に、基準電位用配線22VS2に開口部が形成され、開口部内に表面電極25が形成されている。
 インタポーザ20Bの場合、最上層に基準電位用配線22VSを設けることで、図10を用いて説明したインタポーザ20Aと同様に、電磁場を上方に分布させることができる。このため、シリコン基板21に電流CF(図8参照)が流れることを抑制できる。
 また、インタポーザ20Bの場合、配線層M4を基準電位の伝送経路として活用するので、図15に示すように、配線層M2および配線層M3において、高速伝送経路であるデータ信号用配線22DQの配線数を増大させることができる。例えば、図15に示す例では、領域22A(図14参照)において、配線層M2および配線層M3のそれぞれでは、基準電位用配線22VSは形成されず、データ信号用配線22DQのみが配置されている。このため、図15に示すインタポーザ20Bは、図10に示すインタポーザ20Aよりもデータ信号用配線22DQの配線数を増やすことができる。
 ただし、図15に示す例に対する変形例として配線層M2や配線層M3に、基準電位用配線22VSを配置しても良い。その場合でも、配線層M2および配線層M3のそれぞれに設けるデータ信号用配線22DQの配線数は、図10に示すインタポーザ20Aと比較して多くすることができる。また、制御信号用配線22CMDは、主に配線層M1に設けられるので、制御信号用配線22CMDの配線数も十分に確保できる。また、図15に示す例に対する変形例として配線層M2や配線層M3に、制御信号用配線22CMDを配置しても良い。
 また、図16に示す半導体装置PKG3が有するインタポーザ20Cのように、配線層M4を基準電位用配線22VSの供給スペースとして活用した場合、配線層M2および配線層M3に設けた複数のデータ信号用配線22DQの離間距離を大きくするこができる。
 インタポーザ20Cでは、配線層M4に基準電位用配線22VSが形成され、かつ、高速の信号伝送経路用の配線が、他の配線との距離が大きくなっている。詳しくは、配線層M2に設けられたデータ信号用配線22DQは、配線層M1に形成された制御信号用配線22CMDと厚さ方向に重ならないように設けられている。また、配線層M2に設けられたデータ信号用配線22DQは、配線層M1に形成された制御信号用配線22CMDと厚さ方向に重ならないように配置されている。これにより、データ信号の伝送経路とほかの信号の伝送経路とのクロストークを低減することができる。つまり、図16に示すインタポーザ20Cは、高速信号伝送を行う配線のクロストークの抑制を重視した場合の構成例である。
 なお、配線層M3に形成されるデータ信号用配線22DQと、配線層M1に形成される制御信号用配線22CMDの間には、配線層M2が設けられているので、配線層M3に形成されるデータ信号用配線22DQと、配線層M1に形成される制御信号用配線22CMDとは重なっても良い。また、配線層M4は、表面電極25(図6参照)を形成する最上層の配線層なので、配線層M3と配線層M4の離間距離B34は、配線層M1と配線層M2の離間距離B12や、配線層M2と配線層M3の離間距離B23よりも大きい。したがって、配線層M3に形成されるデータ信号用配線22DQと、配線層M4に形成される基準電位用配線22VSとが厚さ方向に重なっていても良い。
 また、図15や図16に示すように、配線層M4は、最上層の配線層なので、配線層M4に形成される基準電位用配線22VSは、平坦化処理を行う必要がない。このため、図14に示すように、基準電位以外の伝送経路用の表面電極25が設けられた開口部以外には、開口部設けなくても良く、一様に広がるシート状の導体パターンを形成することができる。
 なお、配線層M4に基準電位用配線22VSを形成しない場合でも、例えば、図17に示す半導体装置PKG4のインタポーザ20Dのように、配線層M3に面積の広い基準電位用配線22VSを形成することはできる。図23に示すインタポーザ20Dの基準電位用配線は、他の配線22よりも面積が大きい。ただし、最上層ではない配線層M3に形成される導体パターンは、最上層である配線層M4(図10参照)に複数の表面電極25(図10参照)を形成する必要があるので、シート状に形成することが難しい。例えば、図17に示すように、インタポーザ20Dの基準電位用配線22VSは、直線的に延びる多数の導体パターンが互いに交差する、メッシュ形状の導体パターン(メッシュパターン)である。
 しかし、回路の電気特性を考慮すると、メッシュパターンよりもシート状にした方が好ましい。例えば、図14に示すように、シート状に形成された基準電位用配線22VSは、図17に示すようにメッシュ形状に形成された基準電位用配線22VSよりも電気抵抗が低い。このため、基準電位用配線22VSをリファレンス用の基準電位線VS2(図4参照)として利用する場合には、シート状の基準電位用配線22VSの方が、信号線路特性のばらつきを低減できる。
 また、基準電位用配線22VSを駆動電圧用の基準電位を供給する基準電位線VS1(図4参照)として利用する場合には、基準電位用配線22VSの電気抵抗が低くなることで、電圧降下を抑制することができる。
 また、基準電位用配線22VSを電磁場のシールド層として機能させることを考慮した場合、シート状の基準電位用配線22VSの方が、メッシュ形状の基準電位用配線22VSよりも電磁場をシールドし易い。したがって、信号損失を低減することができる。
 <変形例2>
 次に、変形例2として、配線層間の離間距離を層毎に異なる値にした実施態様について説明する。図18は、図10に対する変形例であって、インタポーザの各配線層の間の距離、および伝送対象の種類別の配置割合の例を示す要部断面図である。また、図19は、図10に対する他の変形例を示す要部断面図である。なお、図18および図19は、図10に示す拡大断面図と同様に、シリコン基板21、各配線層を構成する配線22、および表面電極25を図示し、各配線層を覆う、絶縁層23(図6参照)の図示を省略している。
 図18に示す半導体装置PKG5は、インタポーザ20Eの配線層間の距離が図10に示す半導体装置PKG1と相違する。詳しくは、半導体装置PKG5が有するインタポーザ20Eは、配線層M3と配線層M2の離間距離B23が、配線層M2と配線層M1の離間距離B12よりも大きい点で、図10に示すインタポーザ20Aと相違する。また、図18に示す例では、配線層M4と配線層M3との離間距離B34が配線層M3と配線層M2の離間距離B23よりもさらに大きい。言い換えれば、インタポーザ20Dは、シリコン基板21からの距離が離れる程、配線層間の離間距離が大きくなっている。
 シリコン基板21に配線層を積層する方法は、例えば以下の方法で行われる。まず、シリコン基板21の主面21t上に絶縁層23(図6参照)を堆積する(絶縁層堆積工程)。次に、絶縁層23に開口部を形成し、開口部内に導体を埋め込む(導体埋め込み工程)。次に、導体が埋め込まれた絶縁層の上面側(シリコン基板21の主面21tから離れた面)を例えばCMPにより研磨して平坦化する(研磨工程)。これにより、第1層目の配線層M1が形成される。次に、第1層目の配線層M1上に絶縁層を堆積する(絶縁層堆積工程)。以降、同様に導体埋め込み工程、研磨工程、および絶縁層堆積工程を繰り返して行い、複数の配線層を積層する。
 上記の方法で配線層を積層する場合、配線層上面の平坦性を向上させるためには、配線層間の離間距離、および配線層自体の厚さを小さくすることが好ましい。また、複数の配線層を積層する場合、下層の配線層の方が上層の配線層よりも高い平坦性が要求される。したがって、相対的にシリコン基板21に近い位置では、配線層間の離間距離を小さくする方が好ましい。一方、相対的に最上層の配線層M4に近い位置では、図10に示す例のように、離間距離B23と離間距離B12とを同じ値にすることもできるが、図18に示す変形例のように、離間距離B23が離間距離B12よりも大きくなるようにしても良い。
 そして、離間距離B23が離間距離B12よりも大きくなるようにすることで、以下の効果が得られる。
 上記したインタポーザ20A、20B、20C、20Dのそれぞれは、半導体ウエハに配線を形成する工程と同様のプロセスを利用することで、複数の配線22の配線密度を例えば図6に示す配線基板10の配線13の配線密度よりも向上させることができる。例えば、配線22の厚さは1μm~1.2μm程度であって、積層された配線層M1、M2、M3のそれぞれの離間距離は、配線22の厚さの半分程度である。
 ところが、複数の配線22それぞれの厚さを薄くすると、配線抵抗が高くなる。このため、それぞれの信号伝送経路のインピーダンス値を所定の値に近づけることが難しくなるという課題が生じる。
 例えば、図4に示すデータ線DQの特性インピーダンスの設計値が50Ω[Ohm]である時、図10や図18に示すデータ信号用配線22DQを用いた配線経路中、およびリファレンス用の基準電位用配線22VSを用いた配線経路中では、それぞれ50Ωに近づけることが好ましい。
 データ線DQが接続される入出力回路が持つ寄生回路と配線抵抗から成る時定数をτとすると、
τ=(信号配線抵抗+基準電位線抵抗)×(出力回路の寄生容量+入力回路の寄生容量)
 として定義される。
 ここで、データ信号用配線22DQおよび基準電位用配線22VSの配線抵抗が大きい場合、τの値が大きくなるため、信号波形が鈍る原因になる。
 一方、√(インダクタンス/容量)で定義される特性インピーダンスの容量成分は、配線層間の離間距離に反比例するので、離間距離が小さい場合には、特性インピーダンスの容量成分が大きい値になる。このため、上記した配線抵抗を下げるため配線幅を太くすると、特性インピーダンスの容量成分がさらに増加して特性インピーダンスが50Ωよりも小さくなりすぎる。このため、信号波形が鈍る原因となる。
 このように、配線層の厚さが薄く、配線層間の離間距離が小さい場合には、特性インピーダンスの抵抗成分と容量成分とを調整するマージンが小さくなる。この特性インピーダンスの抵抗成分と容量成分とは、トレードオフの関係にあり、抵抗成分と容量成分とを調整するマージンが小さくなれば、特性インピーダンスの調整が難しくなり、信号伝送経路のインピーダンスを所定の値に近づけることが難しくなる。
 そこで、図18に示すように、離間距離B23が離間距離B12よりも大きくなるようにした場合、上記したトレードオフの関係は改善される。すなわち、主にデータ信号用配線22DQが設けられた配線層M2と、主に基準電位用配線22VSが設けられた配線層M3との離間距離B23を大きくすることで、配線幅を太くしても、特性インピーダンスの容量成分が低下し難くなる。この結果、データ信号用配線22DQを用いた配線経路中、およびリファレンス用の基準電位用配線22VSを用いた配線経路中の特性インピーダンスを、例えば50Ωに近づけ易くなる。
 また、図18に示す例では、配線層M4と配線層M3との離間距離B34が配線層M3と配線層M2の離間距離B23よりもさらに大きい。配線層M4は最上層の配線層なので、最上層の表面電極25の平坦度は、他の層の配線22と比較して平坦度が低くても良い。このため、離間距離B34は特に大きくすることができる。図18に示すように、領域22A(図9参照)における配線層M4に配線22が形成されていない場合、配線経路の特性インピーダンスの調整の観点では、図7に示す離間距離B34の大小は、影響が小さい。しかし、図19に示す変形例の半導体装置PKG6が有するインタポーザ20Fのように、配線層M4に基準電位用配線22VSが形成されている場合には、以下の効果が得られる。
 図19に示すインタポーザ20Fは、領域22A(図9参照)において、シリコン基板21の主面21tから最も離れた位置に形成される配線層である配線層M4に、基準電位線VSを構成する基準電位用配線22VSが設けられている。また、配線層M3には、主に、高速(例えば、図7に示す周波数帯F2)でデータ信号が伝送されるデータ信号用配線22DQが形成されている。つまり、インタポーザ20Eは、最上層の配線層M4には主に基準電位用配線22VSを設け、配線層M3には、主に高速伝送されるデータ信号用配線22DQが設けられる。
 上記の配線構造は、以下のように表現することもできる。すなわち、領域22A(図9参照)において、インタポーザ20Fの配線層M4に配置された配線22において、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて多い。また、配線層M3に配置された複数の信号用配線において、第1の周波数帯(例えば周波数帯F1)で信号(制御用信号)が伝送される制御信号用配線22CMDの割合は、第2の周波数帯(例えば周波数帯F2)で信号(データ信号)が伝送されるデータ信号用配線22DQの割合よりも少ない。
 上記した「Aの割合は、Bの割合よりも多い」という表現には、Bの割合が0%である場合も含む。また、「Aの割合はBの割合よりも少ない」という表現には、Aの割合が0%である場合も含む。例えば、図19に示す例では、図14に示すインタポーザ20Bと同様に、領域22A(図14参照)における配線層M4(図19参照)には、基準電位用配線22VSのみがシート状に形成され、他の配線22は形成されていない。また、図19に示す例では、領域22A(図9参照)の配線層M3には、制御信号用配線22CMDおよび基準電位用配線22VSは形成されていない。
 インタポーザ20Fのように、配線層M4に、基準電位用配線22VSが設けられ、配線層M3に高周波数で信号伝送を行うデータ信号用配線22DQを設ける場合、基準電位用配線22VSとデータ信号用配線22DQの離間距離によって、信号伝送経路の特性インピーダンスが変化する。このデータ信号用配線22DQと基準電位用配線22VSとの距離は配線層M4と配線層M3の離間距離B34により規定される。
 したがって、図19に示すように、離間距離B34が離間距離B23よりもさらに大きくなっていることにより、データ信号用配線22DQの特性インピーダンスの値を所定の値(例えば50Ω)に近づけ易い。
 また、最上層の配線層M4は、他の配線層M1、M2、M3と比較して、配線22の厚さを厚くすることができる。このため、インタポーザ20Fは、基準電位用配線22VSの配線抵抗を低減する観点で好ましい。
 また、上記した<変形例1>で図16を用いて説明したインタポーザ20Cの構造は、高周波での信号伝送経路の特性インピーダンスを所定の値に近づけやすいという点でも好ましい。すなわち、図16に示す例では、領域22A(図9参照)において、配線層M2に設けられた複数のデータ信号用配線22DQのそれぞれが、配線層M1に設けられた複数の配線22、および配線層M3に設けられた複数の配線22と厚さ方向に重なっていない。この場合、データ信号用配線22DQと他の配線22との距離を離すことができるので、信号伝送経路の特性インピーダンスを所定の値に近づけやすい。
 一方、図19に示す半導体装置PKG6が有するインタポーザ20Fの場合、配線層M2と配線層M3との離間距離B23は、離間距離B12よりも大きくなっている。このため、配線層M2のデータ信号用配線22DQと、配線層M3のデータ信号用配線22DQとが厚さ方向に重なっていることによる、特性インピーダンスへの影響を低減することができる。そして、インタポーザ20Fの場合、配線層M2のデータ信号用配線22DQと、配線層M3のデータ信号用配線22DQとが厚さ方向に重なっているので、図16に示すインタポーザ20Cと比較してデータ信号用配線22DQの数を増加させることができる。
 <半導体装置の製造方法>
 次に、図1~図19を用いて説明した半導体装置PKG1、PKG2、PKG3、PKG4、PKG5の製造工程について説明する。ただし、上記した半導体装置PKG1、PKG2、PKG3、PKG4、PKG5は、インタポーザに配線層を積層する際の工程が異なる以外は同様の製造方法で製造される。したがって、以下の説明では、代表例として半導体装置PKG1の製造方法を説明する。また、以下の説明では、製造工程の流れを示すフロー図と、図1~図19を必要に応じて参照しながら説明する。図20は、図1~図19を用いて説明した半導体装置の製造工程の概要を示す説明図である。
 <インタポーザ準備>
 まず、インタポーザ準備工程では、図10に示すインタポーザ20A、図15に示すインタポーザ20B、図16に示すインタポーザ20C、図18に示すインタポーザ20D、または図19に示すインタポーザ20Eを準備する。インタポーザ20A、20B、20C、20D、20E(以下、製造工程の説明において、代表的にインタポーザ20Aと記載する)の製造方法は、半導体ウエハであるシリコン基板21を準備して、シリコン基板21上に複数の配線層を積層する。配線層の積層方法は、例えば上記したように、絶縁層堆積工程、導体埋め込み工程、および研磨工程を繰り返すことにより行う。
 本工程では、一枚の半導体ウエハに複数のインタポーザ20Aを一括して形成する。そして、配線層を積層し、電気的試験を行った後、半導体ウエハをダイシングラインに沿って切断し、複数のインタポーザ20Aを取得する。
 <ダイボンド>
 次にダイボンド工程では、図3に示すようにインタポーザ20A上に複数の半導体チップ30を搭載する。本工程では、複数の半導体チップ30の表面30tとインタポーザ20Aの上面20tとがそれぞれ対向するように、複数の半導体チップ30を順に搭載する。搭載順序は特に限定されないが、複数の半導体チップ30の厚さに差がある場合には、相対的に厚さが薄い半導体チップ30を先に搭載することが好ましい。
 例えば、本実施の形態では、メモリチップ30Aは一枚であるが、メモリチップ30Aとして複数枚のメモリチップ30Aが積層された積層体を用いても良い。この場合、ロジックチップ30Bよりもメモリチップ30Aの積層体の方が、厚さが厚くなり易いので、ロジックチップ30Bを先に搭載することが好ましい。
 また、本工程では、図6に示すように、半導体チップ30の複数の電極33とインタポーザ20Aの複数の表面電極25とは、複数のバンプ電極35を介して電気的に接続される。
 なお、図3、図5および図6では、複数のバンプ電極35が露出しているが、複数のバンプ電極35の周囲を覆うように半導体チップ30とインタポーザ20Aとの間にアンダフィル樹脂(図示は省略)を配置しても良い。アンダフィル樹脂は、絶縁性樹脂であって、複数のバンプ電極35の周囲を覆うことで、バンプ電極35を保護することができる。
 <インタポーザ搭載>
 次にインタポーザ搭載工程では、図3に示すようにパッケージ基板である配線基板10を準備して、複数の半導体チップ30が搭載されたインタポーザ20Aを配線基板10上に搭載する。本工程では、インタポーザ20Aの下面20bと配線基板10の上面10tとが対向するように搭載する。
 また、本工程では、図6に示すように、インタポーザ20Aの複数の裏面電極と配線基板10の複数のボンディングパッド16とは、バンプ電極28を介して電気的に接続される。
 なお、図3、図5および図6では、複数のバンプ電極28が露出しているが、複数のバンプ電極28の周囲を覆うようにインタポーザ20Aと配線基板10との間にアンダフィル樹脂(図示は省略)を配置しても良い。アンダフィル樹脂は、絶縁性樹脂であって、複数のバンプ電極28の周囲を覆うことで、バンプ電極28を保護することができる。
 <ボールマウント>
 次に、ボールマウント工程では、図3に示すように、配線基板10の下面10bに形成された複数のランド12に、外部端子になる複数の半田ボール11を接合する。
 本工程では、配線基板10の下面10bが上方を向くようにした後、配線基板10の下面10bにおいて露出する複数のランド12のそれぞれの上に半田ボール11を配置する。その後、複数の半田ボール11を加熱することで複数の半田ボール11とランド12を接合する。本工程により、複数の半田ボール11は、配線基板10を介して複数の半導体チップ30(ロジックチップ30Bおよびメモリチップ30A)と電気的に接続される。ただし、本実施の形態で説明する技術は、アレイ状に半田ボール11を接合した、所謂BGA(Ball Grid Array)型の半導体装置に限って適用させるものではない。例えば、本実施の形態に対する変形例としては、半田ボール11を形成せず、ランド12を露出させた状態、あるいはランド12に半田ボール11よりも薄く半田ペーストを塗布した状態で出荷する、所謂LGA(Land Grid Array)型の半導体装置に適用することができる。LGA型の半導体装置の場合には、ボールマウント工程は省略することができる。
 (実施の形態2)
 上記実施の形態では、インタポーザとしてシリコン基板21上に複数の配線層が形成された、シリコンインタポーザを用いた実施態様について説明した。シリコンインタポーザの場合、上記実施の形態1で説明したように、半導体ウエハに配線を形成する工程と同様のプロセスを利用できるので、配線密度を向上させ易いという利点がある。
 ただし、近年、有機絶縁層を介して複数の配線層を積層した、多層樹脂基板の細線化技術が進歩しており、多層樹脂基板であってもシリコンインタポーザに迫る配線幅や配線層厚さ、あるいは層間絶縁膜の厚さが実現されてきている。そこで、本実施の形態では、前記実施の形態1で説明した技術を、多層樹脂基板に適用した実施態様について説明する。
 図21は、図6に対する変形例である半導体装置の拡大断面図である。また、図22は、図10に対する変形例であって、図21に示すインタポーザの各配線層において、伝送対象の種類別の配置割合の例を示す要部断面図である。
 図21に示す半導体装置PKG7は、インタポーザ20Gの構造が、図6に示す半導体装置PKG1と相違する。詳しくは、インタポーザ20Gは、複数の配線層のそれぞれを覆う絶縁層が有機絶縁層29である点で、図6に示すインタポーザ20Aと相違する。
 また、インタポーザ20Gは、図6に示すシリコン基板21を有しておらず、インタポーザ20Gの下面20bは、ソルダレジスト膜と呼ばれる有機絶縁膜である絶縁膜17に覆われている。ただし、絶縁膜17には複数の開口部が形成され、開口部において、裏面電極27の一部が露出している。また、同様に、インタポーザ20Gの上面20tは絶縁膜17に覆われ、絶縁膜17に形成された複数の開口部において、複数の表面電極25の一部が露出している。
 また、例えばインタポーザ20Gは、配線基板10の上面10t側から順に、最下層の配線層M0、配線層M1、配線層M2、配線層M3、および最上層の配線層M4が積層されている。最下層の配線層M0には、複数の裏面電極27が形成され、最上層の配線層M4には、複数の表面電極25が形成されている。
 上記相違点以外の点は、インタポーザ20Gは、上記実施の形態1で説明した図6に示すインタポーザ20Aと同様である。
 本実施の形態のインタポーザ20Gは、図6に示すシリコン基板21を有していないので、上記実施の形態1で説明した、信号電流のエネルギーの一部がシリコン基板21で熱エネルギーに変換されて消費され、信号損失が発生するという課題は、生じない。
 しかし、インタポーザ20Gを介して複数の半導体チップ30の間で信号を伝送する場合、インタポーザ20Gに形成される帰路電流経路は、短くすることが好ましい。言い換えれば、半導体チップ30同士を接続する帰路電流経路は、半導体チップ30に近い位置に設けることが好ましい。上記実施の形態1で説明したように、図4に示すリファレンス用の基準電位線VS2は、例えば接地電位が供給されるが、これは同時に、データ線DQで伝送されるデータ信号の帰路電流経路でもある。
 図22に示す基準電位用配線22VSが、帰路電流経路である基準電位線VS2の一部を構成する場合、基準電位用配線22VSは、図21に示す半導体チップ30に近い位置に設けることで、帰路電流の経路長を短縮することができる。
 ここで、インタポーザ20Gは、隣り合う半導体チップ30に挟まれた領域22Aにおいて、以下の配線構造を備える。すなわち、図22に示すように、領域22A(図21参照)では、表面電極25が形成された配線層M4に近い配線層M3には、帰路電流経路を構成する基準電位用配線22VSが主に形成されている。
 詳しくは、領域22A(図21参照)では複数の配線22のうち、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合(占有率)は、配線層M3における基準電位用配線22VSの割合が配線層M1における基準電位用配線22VSの割合(占有率)よりも多い。また、領域22A(図9参照)では、複数の配線22のうち、信号の伝送経路の一部を構成する信号用配線(データ信号用配線22DQおよび制御信号用配線22CMD)の割合(占有率)は、配線層M1における信号用配線の割合が配線層M3における信号用配線の割合(占有率)よりも多い。
 また、図22に示す例では、以下の配線構造になっている。すなわち、インタポーザ20Gでは、配線層M1に配置された複数の配線(導体パターン)22において、基準電位の伝送経路の一部を構成する基準電位用配線(基準電位用導体)22VSの割合は、信号の伝送経路の一部を構成する信号用配線(信号用導体)の割合に比べて少ない。また、配線層M3に配置された複数の配線22において、基準電位の伝送経路の一部を構成する基準電位用配線22VSの割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて多い。
 本実施の形態に係るインタポーザ20Gは、上記のように、表面電極25が形成された配線層M4に近い配線層M3に帰路電流経路が設けられているので、例えば、図11に示すインタポーザ20Hと比較して、帰路電流の経路長を短縮することができる。
 また、図22に示す例では、配線層M1よりも表面電極25に近い配線層M2には、主として、高い周波数帯F2(図7参照)で伝送されるデータ信号用配線22DQが主に形成されている。言い換えれば、配線層M2に配置された複数の信号用配線において、第1の周波数帯(例えば周波数帯F1)で信号(制御用信号)が伝送される制御信号用配線22CMDの割合は、第2の周波数帯(例えば周波数帯F2)で信号(データ信号)が伝送されるデータ信号用配線22DQの割合よりも少ない。また、配線層M1に配置された複数の信号用配線(導体パターン)において、第1の周波数帯(例えば周波数帯F1)で信号(制御用信号)が伝送される制御信号用配線22CMDの割合は、第1の周波数帯よりも高い第2の周波数帯(例えば周波数帯F2)で信号(データ信号)が伝送されるデータ信号用配線22DQの割合よりも多い。このため、高周波信号の伝送距離を短くすることが可能になる。
 なお、本実施の形態では、上記実施の形態1で説明したインタポーザ20Aに対する変形例について相違点を中心に説明した。しかし、上記実施の形態1で説明した変形例1および変形例2のそれぞれと本実施の形態2の半導体装置PKG7の構造を組み合わせて適用することもできる。以下では、本実施の形態2のように、有機絶縁層29(図21参照)を有する中継基板と、上記実施の形態で説明した各変形例で説明した技術とを組み合わせた場合の実施態様を例示的に説明する。例えば、図23に示す半導体装置PKG8が有するインタポーザ20Jは、図19を用いて説明したインタポーザ20Fの配線構造と、図22を用いて説明したインタポーザ20Gの配線構造とを組み合わせた中継基板である。
 インタポーザ20Jは、配線層M4に基準電位用配線22VSが形成されている点で、図22に示すインタポーザ20Gと相違する。このため、インタポーザ20Jは、インタポーザ20Gよりもデータ信号用配線22DQの配線数を増やすことができる。
 また、インタポーザ20Jは、最上層である配線層M4に基準電位用配線22VSを有するので、図14を用いて説明したように、配線層M4の基準電位用配線22VSは、シート状にすることができる。この場合、基準電位用配線22VSを電磁場のシールド層として機能させることができる。
 また、半導体装置PKG8が有するインタポーザ20Jは、配線層M3と配線層M2の離間距離B23が、配線層M2と配線層M1の離間距離B12よりも大きい点で、図22に示すインタポーザ20Gと相違する。また、図23に示す例では、配線層M4と配線層M3との離間距離B34が配線層M3と配線層M2の離間距離B23よりもさらに大きい。
 このため、インタポーザ20Jは、図22に示すインタポーザ20Gと比較して、データ信号用配線22DQを用いた配線経路中、およびリファレンス用の基準電位用配線22VSを用いた配線経路中の特性インピーダンスを、所定の値に近づけ易い。
 上記の他、本実施の形態で説明した中継基板を、上記実施の形態で変形例として説明した各技術と組み合わせることができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば、上記実施の形態1では、中継基板として、図10に示すように、シリコン基板21の主面21t上に配線層M1、配線層M2、配線層M3、および配線層M4が積層された四層構造の中継基板を取り上げて説明した。また、上記実施の形態1では、図21に示すように、配線基板10の上面10t側から順に最下層の配線層M0、配線層M1、配線層M2、配線層M3、および配線層M4が積層された五層構造の中継基板を取り上げて説明した。しかし、上記実施の形態1および上記実施の形態2で説明した、相対的に半導体チップ30に近い側の配線層に主に基準電位用配線22VSを設け、信号用配線は主に下層の配線層に設けるという技術は、種々の配線層数の中継基板に適用できる。
 例えば、表面電極25が形成される配線層M4とシリコン基板21との間(または図21に示す配線層M0との間)に、二層の配線層を有する中継基板であっても良い。この場合、配線層M4に主に基準電位用配線22VSを設けることで、三層分の配線層が確保できる。
 また例えば、表面電極25が形成される配線層M4とシリコン基板21との間(または図21に示す配線層M0との間)に、四層以上の配線層を有する中継基板であっても良い。この場合、データ信号用配線22DQを配置可能なスペースが更に増加するので、図4に示すデータ線DQの数を増加させることができる。
 また例えば、表面電極25が形成される配線層M4とシリコン基板21との間(または図21に示す配線層M0との間)に、一層の配線層を有する中継基板に適用することもできる。この場合、最上層の配線層に基準電位用の配線を設け、最下層の配線層にデータ信号用配線22DQを含む複数の信号用配線を設ければ良い。ただし、シリコン基板21を用いる場合、シリコン基板21の主面21tと、主面21tに最も近い配線層との離間距離を大きくした方が良い。
 また、例えば、上記実施の形態や各変形例では、簡単のため、配線基板10にインタポーザのみが搭載された実施態様について説明した。しかし、インタポーザ以外の半導体部品や電子部品が配線基板10上に搭載されていても良い。
 また、例えば、上記実施の形態や各変形例では、インタポーザ上にロジックチップ30Bとメモリチップ30Aとがそれぞれ一個ずつ搭載された例を取り上げて説明した。しかし、インタポーザ上に三個以上の半導体チップ30が搭載されていても良い。例えば、メモリチップ30Aの場合、複数のメモリチップ30Aを積層して、記憶容量を増加させる技術がある。したがって、上記実施の形態等で説明したメモリチップ30Aは、複数のメモリチップの積層体であっても良い。
 また、例えば、隣り合ってインタポーザ上に搭載される半導体チップ30の間が、インタポーザの配線層を介して接続されていれば良いので、複数の半導体チップ30はメモリチップ30Aとロジックチップ30Bではなくても良い。例えば、複数の半導体チップ30は、センサ回路が形成されたセンサチップと、センサ回路を制御する制御回路が形成されたコントローラチップであっても良い。
 また、例えば、上記実施の形態や各変形例で、データ信号の伝送経路として説明した、データ線DQ(図4参照)は、所謂シングルエンド構造の信号伝送経路である。しかし、変形例としては、対になる二本の信号伝送経路を用いた差動信号の伝送経路であっても良い。
 また例えば、上記実施の形態で説明した技術思想の要旨を逸脱しない範囲内において、変形例同士を組み合わせて適用することができる。
 その他、実施の形態に記載された内容の一部を以下に記載する。
 (1)
 配線基板と、
 前記配線基板の第1面に搭載されたインタポーザと、
 前記インタポーザ上に搭載された第1半導体部品と、
 前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
 前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
 を含み、
 前記インタポーザは、複数の配線層を有し、
 前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
 前記複数の配線層は、第1配線層と、前記第1配線層よりも前記配線基板の前記第1面から離れた第2配線層と、前記第2配線層よりも前記第1面から離れた第3配線層と、を有し、
  前記第1配線層に配置された複数の配線において、基準電位の伝送経路の一部を構成する基準電位用配線の割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて少なく、
  前記第3配線層に配置された複数の配線において、前記基準電位用配線の割合は、前記信号用配線の割合に比べて多い、
 半導体装置。
 (2)
 配線基板と、
 前記配線基板の第1面に搭載されたインタポーザと、
 前記インタポーザ上に搭載された第1半導体部品と、
 前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
 前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
 を含み、
 前記インタポーザは、半導体材料を母材とする基材と、前記基材の主面上に配置された複数の配線層と、を有し、
 前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
 前記複数の配線層は、第1配線層と、前記第1配線層よりも前記基材の主面から離れた第2配線層と、を有し、
 平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
  基準電位の伝送経路の一部を構成する基準電位用配線の割合は、前記第2配線層における前記基準電位用配線の割合が前記第1配線層における前記基準電位用配線の割合よりも多く、
  信号の伝送経路の一部を構成する信号用配線の割合は、前記第1配線層における前記信号用配線の割合が前記第2配線層における前記信号用配線の割合よりも多い、
 半導体装置。
 (3)
 配線基板と、
 前記配線基板の第1面に搭載されたインタポーザと、
 前記インタポーザ上に搭載された第1半導体部品と、
 前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
 前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
 を含み、
 前記インタポーザは、半導体材料を母材とする基材と、前記基材の主面上に配置された複数の配線層と、を有し、
 前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
 前記複数の配線層は、第1配線層と、前記第1配線層よりも前記基材の主面から離れた第2配線層と、を有し、
 平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
  前記第1配線層に配置された複数の配線において、基準電位の伝送経路の一部を構成する基準電位用配線の割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて少なく、
  前記第2配線層に配置された複数の配線において、前記基準電位用配線の割合は、前記信号用配線の割合に比べて多い、
 半導体装置。
10 配線基板(パッケージ基板)
10b 下面(面、実装面)
10s 側面
10t 上面(面、チップ搭載面)
11 半田ボール(外部端子、電極、外部電極)
12 ランド(外部端子、電極、外部電極、端子、半田接続用パッド)
13 配線
14 絶縁層
15 ビア配線
16 ボンディングパッド(端子、チップ搭載面側端子、電極)
17 絶縁膜
20A、20B、20C、20D、20E、20F、20G、20H、20J インタポーザ(中継基板)
20b 下面(面、実装面)
20s 側面
20t 上面(面、チップ搭載面)
21 シリコン基板(基材)
21t 主面
22 配線(導体パターン)
22A、22B 領域
22CMD 制御信号用配線
22DQ データ信号用配線
22VS 基準電位用配線(基準電位用導体)
23 絶縁層
24 貫通電極
25、25A,25B 表面電極(電極パッド、端子)
26 パッシベーション膜
27 裏面電極(電極、パッド、端子)
28 バンプ電極
29 有機絶縁層
30 半導体チップ(半導体部品)
30A メモリチップ
30b 裏面(主面、下面)
30B ロジックチップ
30s 側面
30t 表面(主面、上面)
31 シリコン基板(基材)
31t 主面
32 配線層
33、33A、33B 電極(表面電極、パッド、端子)
34 パッシベーション膜
35 バンプ電極
40 外部機器
50 電源
60 実装基板
B12、B23、B34 離間距離
CF 電流
CMD 制御信号線(信号線)
CORE1、CORE2 コア回路(主回路)
D1、D2 径
DQ データ線(信号線)
DRV1、DRV2 電源回路(駆動回路)
F1、F2 周波数帯
IF1 外部インタフェース回路(入出力回路、外部入出力回路)
IF2 内部インタフェース回路(入出力回路、内部入出力回路)
M0、M1、M2、M3、M4 配線層
P1、P2 離間距離
PKG1、PKG2、PKG3、PKG4、PKG5、PKG6、PKG7、PKG8 半導体装置
SIG 信号線
VD1、VD2、VD3 電源線
VS1、VS2 基準電位線

Claims (20)

  1.  配線基板と、
     前記配線基板の第1面に搭載されたインタポーザと、
     前記インタポーザ上に搭載された第1半導体部品と、
     前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
     前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
     を含み、
     前記インタポーザは、半導体材料を母材とする基材と、前記基材の主面上に配置された複数の配線層と、を有し、
     前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
     前記複数の配線層は、第1配線層と、前記第1配線層よりも前記基材の主面から離れた第2配線層と、前記第2配線層よりも前記基材の主面から離れた第3配線層と、を有し、
     平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
      基準電位の伝送経路の一部を構成する基準電位用配線の割合は、前記第3配線層における前記基準電位用配線の割合が前記第1配線層における前記基準電位用配線の割合よりも多く、
      信号の伝送経路の一部を構成する信号用配線の割合は、前記第1配線層における前記信号用配線の割合が前記第3配線層における前記信号用配線の割合よりも多い、
     半導体装置。
  2.  請求項1において、
     前記基材には、第1導電型または前記第1導電型とは反対の第2導電型の導電特性を構成する不純物元素が含まれている、半導体装置。
  3.  請求項2において、
     前記複数の信号用配線には、第1の周波数帯で第1信号が伝送される第1信号用配線と、前記第1の周波数帯よりも高い第2の周波数帯で第2信号が伝送される第2信号用配線と、が含まれ、
     平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
     前記第1配線層に配置された複数の前記信号用配線において、前記第1信号用配線の割合は、前記第2信号用配線の割合よりも多く、
     前記第2配線層に配置された複数の前記信号用配線において、前記第1信号用配線の割合は、前記第2信号用配線の割合よりも少ない、半導体装置。
  4.  請求項3において、
     前記第1配線層には、前記第2信号用配線は形成されていない、半導体装置。
  5.  請求項3において、
     前記第3配線層と前記第2配線層との離間距離は、前記第1配線層と前記第2配線層との離間距離よりも大きい、半導体装置。
  6.  請求項5において、
     前記インタポーザの前記複数の配線層は、前記第3配線層よりも前記基材の主面から離れ、かつ、複数の第1電極パッドが形成された最上層の配線層をさらに有し、
     前記最上層の配線層と前記第3配線層との離間距離は、前記第3配線層と前記第2配線層との離間距離よりも大きい、半導体装置。
  7.  請求項2において、
     前記インタポーザの前記複数の配線層は、前記第3配線層よりも前記基材の主面から離れ、かつ、複数の第1電極パッドが形成された最上層の配線層をさらに有し、
     前記第3配線層に形成された前記基準電位用配線は、平面視においてメッシュ形状を成す、半導体装置。
  8.  請求項2において、
     前記インタポーザの前記複数の配線層は、前記第3配線層よりも前記基材の主面から離れ、かつ、複数の第1電極パッドが形成された最上層の配線層をさらに有し、
     前記最上層の配線層と前記第3配線層との離間距離は、前記第3配線層と前記第2配線層との離間距離よりも大きい、半導体装置。
  9.  請求項2において、
     前記インタポーザの前記第3配線層には複数の第1電極パッドが形成され、
     前記複数の第1電極パッドは、複数のバンプ電極を介して前記第1半導体部品または前記第2半導体部品に電気的に接続された、半導体装置。
  10.  請求項8において、
     前記インタポーザの前記第3配線層に形成された前記複数の第1電極パッドのうち、前記基準電位の伝送経路の一部を構成する基準電位用の第1電極パッドは、複数の第1電極パッドが互いに連結し、シート状に形成されている、半導体装置。
  11.  請求項1において、
     前記インタポーザの前記複数の配線層の離間距離、および前記第1配線層と前記基材の主面との離間距離は、前記複数の配線層のそれぞれの厚さよりも小さい、半導体装置。
  12.  請求項1において、
     前記第3配線層と前記第2配線層との離間距離は、前記第2配線層と前記第1配線層との離間距離よりも大きい、半導体装置。
  13.  請求項3において、
     前記第1半導体部品は、第1回路を備え、
     前記第2半導体部品は、前記第1半導体部品の前記第1回路の動作を制御する第2回路を備え、
     前記第1半導体部品と前記第2半導体部品とは、前記第1信号用配線、前記第2信号用配線、および前記基準電位用配線を介して電気的に接続されている、半導体装置。
  14.  請求項13において、
     前記第1信号用配線および前記第2信号用配線は、前記配線基板と電気的に分離され、前記基準電位用配線は、前記配線基板と電気的に接続されている、半導体装置。
  15.  請求項1において、
     前記インタポーザの前記複数の配線層は、前記第3配線層よりも前記基材の主面から離れ、かつ、複数の第1電極パッドが形成された最上層の配線層をさらに有し、
     前記第1領域では、前記最上層の配線層には、配線が形成されていない、半導体装置。
  16.  配線基板と、
     前記配線基板の第1面に搭載されたインタポーザと、
     前記インタポーザ上に搭載された第1半導体部品と、
     前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
     前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
     を含み、
     前記インタポーザは、半導体材料を母材とする基材と、前記基材の主面上に配置された複数の配線層と、を有し、
     前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
     前記複数の配線層は、第1配線層と、前記第1配線層よりも前記基材の主面から離れた第2配線層と、前記第2配線層よりも前記基材の主面から離れた第3配線層と、を有し、
     平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
      前記第1配線層に配置された複数の配線において、基準電位の伝送経路の一部を構成する基準電位用配線の割合は、信号の伝送経路の一部を構成する信号用配線の割合に比べて少なく、
      前記第3配線層に配置された複数の配線において、前記基準電位用配線の割合は、前記信号用配線の割合に比べて多い、
     半導体装置。
  17.  請求項16において、
     前記基材には、第1導電型または前記第1導電型とは反対の第2導電型の導電特性を構成する不純物元素が含まれた、半導体装置。
  18.  請求項17において、
     前記複数の信号用配線には、第1の周波数帯で第1信号が伝送される第1信号用配線と、前記第1の周波数帯よりも高い第2の周波数帯で第2信号が伝送される第2信号用配線と、が含まれ、
     平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
     前記第1配線層に配置された複数の前記信号用配線において、前記第1信号用配線の割合は、前記第2信号用配線の割合よりも多く、
     前記第2配線層に配置された複数の前記信号用配線において、前記第1信号用配線の割合は、前記第2信号用配線の割合よりも少ない、半導体装置。
  19.  配線基板と、
     前記配線基板の第1面に搭載されたインタポーザと、
     前記インタポーザ上に搭載された第1半導体部品と、
     前記インタポーザ上に前記第1半導体部品と並べて搭載され、かつ、前記第1半導体部品を制御する第2半導体部品と、
     前記配線基板の前記第1面とは反対側の第2面に形成された複数の外部端子と、
     を含み、
     前記インタポーザは、複数の配線層を有し、
     前記第1半導体部品と前記第2半導体部品は、前記複数の配線層を介して、互いに電気的に接続され、
     前記複数の配線層は、第1配線層と、前記第1配線層よりも前記配線基板の前記第1面から離れた第2配線層と、前記第2配線層よりも前記第1面から離れた第3配線層と、を有し、
     平面視において、前記第1半導体部品と前記第2半導体部品とに挟まれた前記インタポーザの第1領域では、
      基準電位の伝送経路の一部を構成する基準電位用配線の割合は、前記第3配線層における前記基準電位用配線の割合が前記第1配線層における前記基準電位用配線の割合よりも多く、
      信号の伝送経路の一部を構成する信号用配線の割合は、前記第1配線層における前記信号用配線の割合が前記第3配線層における前記信号用配線の割合よりも多い、
     半導体装置。
  20.  請求項19において、
     前記第3配線層と前記第2配線層との離間距離は、前記第2配線層と前記第1配線層との離間距離よりも大きい、半導体装置。
PCT/JP2014/084108 2014-12-24 2014-12-24 半導体装置 WO2016103359A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/515,465 US9917026B2 (en) 2014-12-24 2014-12-24 Semiconductor device
PCT/JP2014/084108 WO2016103359A1 (ja) 2014-12-24 2014-12-24 半導体装置
CN201480081265.7A CN106663660B (zh) 2014-12-24 2014-12-24 半导体装置
JP2016565722A JP6352447B2 (ja) 2014-12-24 2014-12-24 半導体装置
TW104136225A TWI695464B (zh) 2014-12-24 2015-11-03 半導體裝置
US15/879,610 US10347552B2 (en) 2014-12-24 2018-01-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084108 WO2016103359A1 (ja) 2014-12-24 2014-12-24 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/515,465 A-371-Of-International US9917026B2 (en) 2014-12-24 2014-12-24 Semiconductor device
US15/879,610 Continuation US10347552B2 (en) 2014-12-24 2018-01-25 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2016103359A1 true WO2016103359A1 (ja) 2016-06-30

Family

ID=56149458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084108 WO2016103359A1 (ja) 2014-12-24 2014-12-24 半導体装置

Country Status (5)

Country Link
US (2) US9917026B2 (ja)
JP (1) JP6352447B2 (ja)
CN (1) CN106663660B (ja)
TW (1) TWI695464B (ja)
WO (1) WO2016103359A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093107A (ja) * 2016-12-06 2018-06-14 ルネサスエレクトロニクス株式会社 半導体装置
US11171112B2 (en) 2018-01-22 2021-11-09 Renesas Electronics Corporation Semiconductor device
US11749597B2 (en) 2019-11-22 2023-09-05 Renesas Electronics Corporation Semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917026B2 (en) * 2014-12-24 2018-03-13 Renesas Electronics Corporation Semiconductor device
KR20190087893A (ko) * 2018-01-17 2019-07-25 삼성전자주식회사 클럭을 공유하는 반도체 패키지 및 전자 시스템
US10685925B2 (en) * 2018-01-26 2020-06-16 Nvidia Corporation Resistance and capacitance balancing systems and methods
KR102587976B1 (ko) * 2018-02-06 2023-10-12 삼성전자주식회사 반도체 패키지
TWI677956B (zh) * 2018-04-12 2019-11-21 大陸商蘇州震坤科技有限公司 用於半導體封裝結構的萬用轉接電路層
CN108962301B (zh) * 2018-05-24 2022-04-12 济南德欧雅安全技术有限公司 一种存储装置
US10770398B2 (en) * 2018-11-05 2020-09-08 Micron Technology, Inc. Graphics processing unit and high bandwidth memory integration using integrated interface and silicon interposer
JP7134077B2 (ja) * 2018-11-26 2022-09-09 ルネサスエレクトロニクス株式会社 半導体装置および電子装置
US11264332B2 (en) 2018-11-28 2022-03-01 Micron Technology, Inc. Interposers for microelectronic devices
US10916494B2 (en) * 2019-01-02 2021-02-09 Qualcomm Incorporated Device comprising first solder interconnects aligned in a first direction and second solder interconnects aligned in a second direction
JP7279464B2 (ja) * 2019-03-28 2023-05-23 株式会社アイシン 電子基板
US20220319980A1 (en) * 2019-05-07 2022-10-06 Rambus Inc. Crosstalk cancelation structures in semiconductor packages
KR20210046913A (ko) * 2019-10-18 2021-04-29 삼성전자주식회사 시스템-인-패키지 모듈
US11616019B2 (en) * 2020-12-21 2023-03-28 Nvidia Corp. Semiconductor assembly
JP7245947B1 (ja) * 2022-08-15 2023-03-24 Fcnt株式会社 印刷配線基板及び無線通信端末

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223614A (ja) * 1999-01-29 2000-08-11 Kyocera Corp セラミック多層配線基板
JP2006024734A (ja) * 2004-07-08 2006-01-26 Toyota Industries Corp 半導体素子のシールド構造
JP2010278101A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 多層基板および半導体装置
US20110042795A1 (en) * 2009-08-20 2011-02-24 International Business Machines Corporation Three-Dimensional Silicon Interposer for Low Voltage Low Power Systems
JP2012164794A (ja) * 2011-02-07 2012-08-30 Sony Corp 積層配線基板
WO2014077154A1 (ja) * 2012-11-13 2014-05-22 ピーエスフォー ルクスコ エスエイアールエル 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239485B1 (en) * 1998-11-13 2001-05-29 Fujitsu Limited Reduced cross-talk noise high density signal interposer with power and ground wrap
JP4092890B2 (ja) * 2001-05-31 2008-05-28 株式会社日立製作所 マルチチップモジュール
JP3861669B2 (ja) * 2001-11-22 2006-12-20 ソニー株式会社 マルチチップ回路モジュールの製造方法
JP4615189B2 (ja) * 2003-01-29 2011-01-19 シャープ株式会社 半導体装置およびインターポーザチップ
JP2005079385A (ja) * 2003-09-01 2005-03-24 Toshiba Corp 光半導体装置および光信号入出力装置
US7623365B2 (en) 2007-08-29 2009-11-24 Micron Technology, Inc. Memory device interface methods, apparatus, and systems
JP5330184B2 (ja) * 2009-10-06 2013-10-30 新光電気工業株式会社 電子部品装置
JP5079059B2 (ja) * 2010-08-02 2012-11-21 日本特殊陶業株式会社 多層配線基板
JP5579108B2 (ja) * 2011-03-16 2014-08-27 株式会社東芝 半導体装置
KR101906408B1 (ko) 2011-10-04 2018-10-11 삼성전자주식회사 반도체 패키지 및 그 제조 방법
JP2013138177A (ja) 2011-11-28 2013-07-11 Elpida Memory Inc 半導体装置の製造方法
JP2014011169A (ja) 2012-06-27 2014-01-20 Ps4 Luxco S A R L シリコンインターポーザ及びこれを備える半導体装置
JP5852929B2 (ja) 2012-06-29 2016-02-03 株式会社日立製作所 インターポーザ、プリント基板及び半導体装置
US20140000163A1 (en) * 2012-07-02 2014-01-02 Ming-Tsun LIN Water culture hydroponics system
US9917026B2 (en) * 2014-12-24 2018-03-13 Renesas Electronics Corporation Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223614A (ja) * 1999-01-29 2000-08-11 Kyocera Corp セラミック多層配線基板
JP2006024734A (ja) * 2004-07-08 2006-01-26 Toyota Industries Corp 半導体素子のシールド構造
JP2010278101A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 多層基板および半導体装置
US20110042795A1 (en) * 2009-08-20 2011-02-24 International Business Machines Corporation Three-Dimensional Silicon Interposer for Low Voltage Low Power Systems
JP2012164794A (ja) * 2011-02-07 2012-08-30 Sony Corp 積層配線基板
WO2014077154A1 (ja) * 2012-11-13 2014-05-22 ピーエスフォー ルクスコ エスエイアールエル 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093107A (ja) * 2016-12-06 2018-06-14 ルネサスエレクトロニクス株式会社 半導体装置
US11171112B2 (en) 2018-01-22 2021-11-09 Renesas Electronics Corporation Semiconductor device
US11749597B2 (en) 2019-11-22 2023-09-05 Renesas Electronics Corporation Semiconductor device

Also Published As

Publication number Publication date
JPWO2016103359A1 (ja) 2017-06-01
US9917026B2 (en) 2018-03-13
CN106663660B (zh) 2019-11-05
TWI695464B (zh) 2020-06-01
JP6352447B2 (ja) 2018-07-04
US10347552B2 (en) 2019-07-09
US20180151460A1 (en) 2018-05-31
CN106663660A (zh) 2017-05-10
TW201635453A (zh) 2016-10-01
US20170213776A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6352447B2 (ja) 半導体装置
US10325841B2 (en) Semiconductor device
JP6449760B2 (ja) 半導体装置
JP6429647B2 (ja) 半導体装置
CN108140616B (zh) 半导体器件
US8729709B2 (en) Semiconductor device
US10446531B2 (en) Electronic device and semiconductor device
US9029984B2 (en) Semiconductor substrate assembly
US9343393B2 (en) Semiconductor substrate assembly with embedded resistance element
US10159144B2 (en) Semiconductor device
JP2014011169A (ja) シリコンインターポーザ及びこれを備える半導体装置
JPWO2005093834A1 (ja) チップ積層型半導体装置
WO2013098929A1 (ja) 半導体チップ及びそれを搭載した半導体モジュール
JP6535788B2 (ja) 半導体装置
JP2013062309A (ja) 半導体装置
JP2012009717A (ja) 半導体チップ及びそれを搭載した半導体モジュール
JP2008124072A (ja) 半導体装置
JP2021028927A (ja) 半導体装置、その製造方法および電子装置
TWI740569B (zh) 配線基板及半導體裝置
TW201327699A (zh) 半導體晶片及搭載其之半導體模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908966

Country of ref document: EP

Kind code of ref document: A1