WO2016088352A1 - 成膜用インク、成膜方法、膜付きデバイスおよび電子機器 - Google Patents

成膜用インク、成膜方法、膜付きデバイスおよび電子機器 Download PDF

Info

Publication number
WO2016088352A1
WO2016088352A1 PCT/JP2015/005948 JP2015005948W WO2016088352A1 WO 2016088352 A1 WO2016088352 A1 WO 2016088352A1 JP 2015005948 W JP2015005948 W JP 2015005948W WO 2016088352 A1 WO2016088352 A1 WO 2016088352A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
component
forming
forming ink
ink
Prior art date
Application number
PCT/JP2015/005948
Other languages
English (en)
French (fr)
Inventor
園山 卓也
光治 今村
昭太郎 渡辺
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/531,904 priority Critical patent/US10557046B2/en
Priority to KR1020177018004A priority patent/KR102196236B1/ko
Priority to CN201580065467.7A priority patent/CN107001834B/zh
Priority to EP15864668.7A priority patent/EP3228669A4/en
Publication of WO2016088352A1 publication Critical patent/WO2016088352A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a film-forming ink, a film-forming method, a device with a film, and an electronic device.
  • a film forming ink obtained by dissolving a film forming material in a solvent is supplied onto a substrate using a droplet discharge method, and the solvent is removed from the film forming ink on the substrate.
  • a method of forming a film by conducting the reaction see, for example, Patent Document 1.
  • an organic layer for example, a light emitting layer and a hole transporting layer
  • organic electroluminescence (organic EL) element Using, for example, an organic layer (for example, a light emitting layer and a hole transporting layer) of an organic electroluminescence (organic EL) element, a colored layer of a color filter, and a conductor pattern of a wiring substrate using this film forming method.
  • organic EL organic electroluminescence
  • patterning (film formation method) of a film such as an organic layer or a conductor pattern is performed by forming a bank (bank) having a recess corresponding to the shape of the film to be formed. After securing, film formation ink is supplied into the opening, and then the solvent is removed.
  • the film forming ink (droplet) is contained in the opening according to the volume of the opening surrounded by the partition, that is, within a range where the film forming ink does not overflow from the opening. Supplied to
  • the concentration can not be increased due to the limit of solubility, or the viscosity of the film forming ink increases with the increase in concentration, which results in There is a problem that discharge failure occurs when discharging the film-forming ink by the droplet discharge method.
  • An object of the present invention is to increase the apparent amount of droplets of film-forming ink supplied as droplets in the openings provided in the partition walls, thereby making the dimensional accuracy of the film to be formed excellent.
  • An object of the present invention is to provide a film-forming ink and a film-forming method, and to provide a film-coated device and an electronic device having a film formed by using such a film-forming method.
  • the film-forming ink of the present invention comprises a film-forming material and a liquid medium in which the film-forming material is dissolved or dispersed, and the liquid medium has a boiling point of 200 ° C. or higher at atmospheric pressure. It is characterized in that it contains one component and a second component whose boiling point at atmospheric pressure is lower than that of the first component.
  • the film-forming ink having such a configuration it is possible to increase the apparent amount of droplets of the film-forming ink supplied as droplets in the openings provided in the partition walls, so the dimensions of the film to be formed can be increased. Accuracy can be improved.
  • the second component preferably has a boiling point of 50 ° C. or more and 170 ° C. or less at atmospheric pressure.
  • the second component is surely vaporized after the discharge of the film-forming ink as a droplet, and the volume is ensured at the time of landing of the droplet compared with the time of discharge of the droplet. Can be made smaller.
  • the first component preferably has a boiling point of 250 ° C. or more and 340 ° C. or less at atmospheric pressure.
  • the film forming ink (first component) can be prevented from drying unexpectedly under atmospheric pressure (normal pressure), the storage stability of the film forming ink can be improved as shown in FIG. Be
  • the first component and the second component have a difference in boiling point at atmospheric pressure of 30 ° C. or more.
  • the first component preferably has a solubility capable of dissolving 0.5% by weight or more of the film-forming material.
  • the first component can sufficiently dissolve the film forming material, and even if the second component is volatilized after the discharge of the film forming ink, In the film-forming ink, deposition (elution) of the film-forming material can be properly suppressed or prevented. Therefore, the film-forming ink can be uniformly spread in a state of being uniformly dissolved in the film-forming ink in the opening. Therefore, a film with excellent dimensional accuracy is formed.
  • the content of the second component is preferably 5.0 wt% or more and 50 wt% or less with respect to the entire film-forming ink.
  • the volume of the droplets can be sufficiently reduced after the discharge of the film-forming ink as droplets, and the apparent droplet amount (supply amount of the film-forming ink supplied as droplets in the opening portion (supply amount) ) Can be increased.
  • the film-forming ink of the present invention is preferably formed into a film by drying after being supplied as droplets to an opening of a wall on a substrate. Thereby, a film excellent in dimensional accuracy is formed.
  • the droplets preferably have a weight of 2 ng or more and 12 ng or less when discharged.
  • the droplets having a uniform weight can be discharged from the droplet discharge head.
  • the droplet volume is set so that the volume at the time of impact is smaller than the volume at the time of ejection because the second component is volatilized after the ejection. .
  • the apparent amount of droplets of the film-forming ink supplied as droplets into the opening provided in the partition can be increased, so that the dimensional accuracy of the film to be formed can be improved.
  • the film forming method of the present invention comprises the steps of: supplying the film forming ink of the present invention as droplets into an opening (recess) provided in a partition provided on a substrate to form a liquid film; Forming a film in the opening by heating and drying the liquid film.
  • a film having a uniform and uniform film thickness can be formed with excellent film forming accuracy in the opening provided in the partition wall.
  • the film-coated device of the present invention is characterized by having a film formed by the film forming method of the present invention or a film obtained by processing the film.
  • Such a film-covered device is excellent in reliability because it has a film excellent in dimensional accuracy.
  • the electronic device of the present invention is characterized by having the filmed device of the present invention.
  • Such an electronic device is excellent in reliability because it is equipped with a device with a film excellent in reliability.
  • FIG. 3 is a schematic view for explaining a schematic configuration of a droplet discharge head provided in the droplet discharge device of FIG. 2; It is sectional drawing which shows a display apparatus provided with the light-emitting device which is an example of the film-covered device of this invention, and a color filter. It is sectional drawing which shows an example of the light emitting element of the light-emitting device with which the display apparatus shown in FIG. 4 was equipped.
  • the film-forming ink of the present invention has a film-forming material and a liquid medium in which the film-forming material is dissolved or dispersed.
  • the liquid medium has a first component whose boiling point at atmospheric pressure is 200 ° C. or higher, and a second component whose boiling point at atmospheric pressure is lower than that of the first component.
  • a film-forming ink is supplied as a droplet in the opening (recessed portion) provided in the partition provided on the substrate, and when the droplet lands in the opening Is configured to be smaller than the volume at the time of discharge by the volatilization of the second component after the discharge. Therefore, the apparent droplet amount (supply amount) of the film-forming ink supplied as droplets in the opening can be increased, so that the film to be formed can be formed with excellent dimensional accuracy. it can.
  • the film-forming material contained in the film-forming ink of the present invention is a constituent material of a film targeted for film formation or a precursor thereof.
  • Such a film forming material is determined according to the type of a film to be formed, and is not particularly limited, and various organic materials, various inorganic materials, and mixtures thereof can be used.
  • a film forming material a constituent material of each layer (particularly organic layer) of an organic electroluminescence (organic EL) element or a precursor thereof described later, a constituent material of a conductor pattern of a wiring substrate or a precursor thereof, a color filter The constituent material of a colored layer or its precursor etc. are mentioned.
  • the film forming material as the constituent material of the organic layer of the organic electroluminescent device or a precursor thereof, the organic layer of the organic electroluminescent device (for example, hole transport layer, hole injection layer, light emitting layer) , Intermediate layers, etc.).
  • the conductor pattern of a wiring board can be formed by using the said film-forming material as the constituent material of the conductor pattern of a wiring board, or its precursor.
  • the colored layer of the color filter can be formed by using the film forming material as a constituent material of the colored layer of the color filter or a precursor thereof. The details of these materials will be described later.
  • the film forming material for example, two or more kinds of components selected from the above may be used in combination.
  • the film-forming material may be dissolved or dispersed in a liquid medium to be described later, but the film-forming material may be liquid.
  • the average particle diameter of the film forming material is preferably 20 to 100 nm, and more preferably 5 to 50 nm. Thereby, the dispersion stability of the film forming material in the film forming ink can be made excellent.
  • the film forming material when the film forming material is mainly composed of an organic material, the film forming material can be dissolved in the liquid medium by appropriately selecting the first component and the second component.
  • the film forming material when the film forming material contains an inorganic material, or when the film forming material is insoluble in a liquid medium even if it is an organic material, the film forming material may be dispersed in the liquid medium. .
  • the content of the film-forming material in the film-forming ink is determined according to the application of the film-forming ink, and is not particularly limited, but is preferably 0.01 to 10 wt%, for example. More preferably, it is 05-5 wt%.
  • the dischargeability (discharge stability) from the droplet discharge head (inkjet head) for film formation can be made particularly excellent.
  • the liquid medium contained in the film-forming ink of the present invention contains the first component and the second component, and is a component that dissolves or disperses the film-forming material described above, that is, a solvent or a dispersion medium.
  • This liquid medium is such that substantially the entire amount (most part) is volatilized and removed by heating in a film forming method (film forming process) described later.
  • the liquid medium contained in the film-forming ink of the present invention comprises a first component having a boiling point at atmospheric pressure (normal pressure) (hereinafter also referred to simply as "boiling point") of 200.degree. And a second component having a boiling point lower than the component at atmospheric pressure.
  • the second component is a component having a boiling point lower than that of the first component and having high volatility. Therefore, when the film-forming ink is discharged as a droplet, the second component is volatilized until it reaches the inside of the opening provided in the partition provided on the substrate, whereby the volume of the droplet is increased. As compared with the time of discharge, the time of impact is smaller. As a result, it is possible to increase the apparent droplet amount (supply amount) of the film-forming ink supplied as droplets in the opening.
  • the first component has a boiling point of 200 ° C. or higher at atmospheric pressure and its volatility is low, it remains without volatilizing from the film-forming ink even after landing of the droplets. Since the film-forming ink supplied as droplets maintains a liquid state, it can wet and spread in the opening. Then, the film-forming ink is heated and dried in this wet-spread state, whereby a film with excellent dimensional accuracy is formed.
  • Such a first component and a second component have the above-described relationship of boiling point, and are not particularly limited as long as the film-forming ink can dissolve or disperse the film-forming material, and various solvents or various solvents can be used.
  • a dispersion medium can be used.
  • the case where at least the first component of the first component and the second component is a solvent capable of dissolving the film forming material will be described as an example.
  • atmospheric pressure means the pressure equal to atmospheric pressure, and, specifically, it is 10 5 Pa (1013 mbar).
  • normal temperature refers to a range of 20 ° C. ⁇ 15 ° C. (that is, 5 ° C. or more and 35 ° C. or less).
  • liquid medium an optimum one can be selected and used according to the type of film forming material and the application of the film to be formed.
  • liquid medium it is preferable to use one that has as little aggression as possible to the film forming material and other components contained in the film forming ink. Thereby, it is possible to reliably suppress or prevent the deterioration and degradation of the film-forming ink.
  • the liquid medium in the case where there is a possibility of remaining in the film after film formation, it is preferable to use one that does not disturb the characteristics according to the application of the film as much as possible.
  • the film-forming ink when used for film formation of the organic layer of the organic EL element, it is preferable to select each component of the liquid medium in consideration of the electrical characteristics.
  • the film-forming ink for film-forming of the colored layer of a color filter it is preferable to also consider an optical characteristic and to select each component of a liquid medium.
  • the first component has a boiling point of 200 ° C. or higher at normal pressure (atmospheric pressure). Moreover, in this embodiment, the solubility which melt
  • the first component since the first component has low volatility, the first component remains without volatilizing from the film-forming ink even after landing of the droplets. Then, since the film forming material exhibits the solubility to the first component, the film forming material maintains the state of being dissolved in the first component, that is, the film forming ink, and in this state, it spreads in the opening. It becomes. Therefore, the film is formed by heating and drying the film-forming ink after this, and the film may have excellent dimensional accuracy.
  • the first component is liquid at a normal temperature and pressure and in a state in which the above-mentioned second component is dissolved, and also in a liquid state either alone or in the state of coexistence with a film forming material.
  • the film-forming ink becomes liquid.
  • the film can be surely wet and spread in the opening, the film can be formed with excellent dimensional accuracy.
  • Such a first component is not particularly limited, but, for example, A-1) 1,1-bis (3,4-dimethylphenyl) ethane (1,1-bis (3,4-dimethylphenyl) ethane, boiling point 333 ° C.), A-2) benzyl benzoate (Benzyl benzoate, boiling point 324 ° C.), A-3) 4- (3-phenylpropyl) pyridine (4- (3-phenylpropyl) pyridine, boiling point 322 ° C.), A- 4) ⁇ , ⁇ -Dichlorodiphenylmethane ( ⁇ , ⁇ -Dichlorodiphenylmethane, boiling point 305 ° C.), A-5) 4-Isopropylbiphenyl (4-Isopropylbiphenyl, boiling point 298 ° C.), A-6) N-Methyldiphenylamine (N-Methyldiphenylamine) Boiling point 297
  • DMI 1,3-dimethyl-2-imidazolidinone
  • A-32) p-tol nitrile
  • the first component has a boiling point of 200 ° C. or more at atmospheric pressure, and preferably 250 ° C. or more and 340 ° C. or less.
  • the first component is a solvent capable of dissolving the film forming material, and preferably has a solubility capable of dissolving the film forming material having a weight of 0.5 wt% or more of the first component, More preferably, it has a solubility of not less than 5 wt% and not more than 4.5 wt%.
  • the solubility within this range, it can be said that the first component can sufficiently dissolve the film forming material, and even if the second component is volatilized after the discharge of the film forming ink, In the film-forming ink, deposition (elution) of the film-forming material can be properly suppressed or prevented. Therefore, the film-forming ink can be uniformly spread in a state of being uniformly dissolved in the film-forming ink in the opening. Therefore, a film with excellent dimensional accuracy is formed.
  • the second component has a lower boiling point at atmospheric pressure than the first component.
  • the second component is highly volatile, when the film-forming ink is discharged as droplets, it is defined by the openings provided in the partition provided on the substrate, that is, by the partition It volatilizes until it lands in the area (area).
  • the apparent droplet amount (supply amount) of the film-forming ink supplied as droplets in the opening is calculated. It can be increased. That is, the supply amount of the film forming material contained in the film forming ink into the opening can be increased.
  • the viscosity of the film-forming ink at the time of discharge can be set to a size suitable for the discharge of the film-forming ink, and thus a liquid of uniform size Drops can be ejected with excellent accuracy.
  • the viscosity of the film-forming ink is preferably set to, for example, about 3 cP or more and 20 cP or less.
  • the film-forming material required for forming a film can be uniformly supplied in each of the openings. It will be.
  • the second component is liquid at normal temperature and pressure.
  • the second component can be more smoothly volatilized from the film-forming ink after the discharge of the film-forming ink as droplets.
  • the second component and the first component are required to be uniform throughout the entire film-forming ink even during long-term storage, those having compatibility are respectively selected. Be done.
  • Such a second component is not particularly limited.
  • the second component may have a lower boiling point at atmospheric pressure than the first component, but a boiling point at atmospheric pressure of preferably 50 ° C. or more and 170 ° C. or less, and is 100 ° C. or more and 170 ° C. or less
  • the temperature is more preferably 130 ° C. or more and 170 ° C. or less.
  • the amount in the more preferable range the stability of the film-forming ink in storage in the air can be improved.
  • the above-mentioned more preferable range it is possible to enhance the discharge stability of the film-forming ink as droplets.
  • the difference in boiling point between the first component and the second component is preferably 30 ° C. or more, and more preferably 60 ° C. or more.
  • the content of the second component is preferably 5.0 wt% or more and 50 wt% or less, and more preferably 10 wt% or more and 50 wt% or less with respect to the total amount of the film-forming ink. If it is less than the above lower limit value, the volume of the droplet can not be made sufficiently small after ejection as a droplet of the film-forming ink, and depending on the size of the opening, it is supplied as a droplet in the opening There is a possibility that the effect that the apparent droplet amount (supply amount) of the film-forming ink can be increased can not be sufficiently obtained.
  • the content of the first component decreases depending on the type of the first component, and the dissolution rate of the film forming material in the film forming ink decreases due to this. As a result, the dimensional accuracy of the film may be reduced.
  • the second component is preferably a solvent in which the film forming material exhibits solubility, and preferably has a solubility capable of dissolving the film forming material having a weight of 0.1 wt% or more, and is 0.5 wt% or more More preferably, it has a solubility of 1.0 wt% or less. Thereby, the stability of the film-forming ink during storage can be improved.
  • the liquid medium as described above may contain other components other than the second component and the first component described above as long as they exhibit compatibility in the film-forming ink, and more specifically,
  • the component may contain one or more components having a boiling point lower than that of the first component at atmospheric pressure and higher than that of the second component.
  • this other component the thing similar to having demonstrated as a 1st component and a 2nd component can be used.
  • the film-forming ink as described above is used in a film-forming method using an inkjet method (droplet discharge method) as described later. According to the inkjet method, it is possible to supply droplets of uniform size with uniform droplet number (droplet amount) relatively easily and reliably in the opening formed on the substrate.
  • FIG. 1 is a view for explaining the film forming method of the present invention
  • FIG. 2 is a perspective view showing a schematic configuration of a droplet discharge apparatus used for the film forming method of the present invention
  • FIG. 3 is a droplet of FIG. It is a schematic diagram for demonstrating schematic structure of the droplet discharge head with which a discharge device is equipped.
  • the film forming method (film manufacturing method) of the present invention is a process of forming a liquid film by supplying the above-described film forming ink as droplets to an opening provided in a partition provided on a substrate.
  • Ink applying step [2]
  • a film having a uniform and uniform film thickness can be formed with excellent film forming accuracy in the opening provided in the partition wall.
  • the substrate 15 is an object on which a film to be formed is formed, and is not particularly limited.
  • various substrates, or substrates obtained by processing or processing various substrates can be used. .
  • the partition 16 can be obtained by forming a layer composed of various materials on substantially the entire top surface of the base material 15 and thereafter patterning the layer to form the opening 17.
  • the film-forming ink 1 described above is supplied into the opening 17 provided in the partition 16 provided on the substrate 15. As a result, a liquid film 1 ⁇ / b> A made of the film-forming ink 1 is formed in the opening 17.
  • the film-forming ink 1 is supplied into the opening 17 by a droplet discharge method. That is, the film forming ink 1 is discharged as droplets using the droplet discharge device that discharges the film forming ink, and the film forming ink 1 is supplied into the opening 17.
  • the droplet discharge device 100 includes a droplet discharge head (inkjet head; hereinafter simply referred to as a head) 110, a base 130, a table 140, and an ink reservoir (not shown). It has a table positioning means 170, a head positioning means 180, and a control device 190.
  • the base 130 is a table for supporting the components of the droplet discharge device 100 such as the table 140, the table positioning unit 170, and the head positioning unit 180.
  • the table 140 is installed on the base 130 via the table positioning means 170. Moreover, the table 140 mounts the base material 15.
  • a rubber heater (not shown) is disposed on the back surface of the table 140.
  • the entire upper surface of the substrate 15 placed on the table 140 can be heated to a predetermined temperature by a rubber heater.
  • the table positioning means 170 has a first moving means 171 and a motor 172.
  • the table positioning means 170 determines the position of the table 140 in the base 130, thereby determining the position of the substrate 15 in the base 130.
  • the first moving means 171 has two rails provided substantially in parallel with the Y direction, and a support that moves on the rails.
  • the support of the first moving means 171 supports the table 140 via the motor 172. Then, as the support base moves on the rails, the table 140 on which the base material 15 is placed is moved and positioned in the Y direction.
  • the motor 172 supports the table 140 and swings and positions the table 140 in the ⁇ z direction.
  • the head positioning unit 180 includes a second moving unit 181, a linear motor 182, and motors 183, 184, and 185. Head positioning means 180 determines the position of the head 110.
  • the second moving means 181 includes: two support columns erected from the base 130; a rail base supported by the support columns between the support columns; a rail base having two rails; And a support member (not shown) that supports the head 110. Then, the head 110 is moved and positioned in the X direction by moving the support member along the rails.
  • the linear motor 182 is provided near the support member, and can move and position the head 110 in the Z direction.
  • Motors 183, 184 and 185 swing and position head 110 in the ⁇ , ⁇ and ⁇ directions, respectively.
  • the droplet discharge device 100 accurately determines the relative position and posture of the ink discharge surface 115P of the head 110 and the base material 15 on the table 140. Can be controlled.
  • the head 110 discharges the film-forming ink 1 from a nozzle (projecting portion) 118 by an inkjet method (droplet discharge method).
  • the head 110 uses a piezo method in which ink is ejected using the piezo element 113 as a piezoelectric element. Since the piezo method does not apply heat to the film-forming ink 1, it has the advantage of not affecting the composition of the material.
  • the head 110 has a head body 111, a diaphragm 112, and a piezo element 113.
  • the head main body 111 has a main body 114 and a nozzle plate 115 at its lower end surface. Further, by interposing the plate-like nozzle plate 115 and the diaphragm 112 between the main body 114, a reservoir 116 as a space and a plurality of ink chambers 117 branched from the reservoir 116 are formed.
  • the film forming ink 1 is supplied to the reservoir 116 from an ink storage unit described later.
  • the reservoir 116 forms a flow path for supplying the film forming ink 1 to each ink chamber 117.
  • the nozzle plate 115 is mounted on the lower end surface of the main body 114, and constitutes an ink ejection surface 115P.
  • a plurality of nozzles 118 for discharging the film-forming ink 1 are opened corresponding to the respective ink chambers 117. Then, ink flow paths are formed from the ink chambers 117 toward the corresponding nozzles (discharge units) 118.
  • the diaphragm 112 is mounted on the upper end surface of the head main body 111, and constitutes the wall surface of each ink chamber 117.
  • the diaphragm 112 can vibrate in response to the vibration of the piezo element 113.
  • the piezoelectric element 113 is provided on the opposite side of the head body 111 of the diaphragm 112 to correspond to each ink chamber 117.
  • the piezoelectric element 113 is formed by sandwiching a piezoelectric material such as quartz with a pair of electrodes (not shown). The pair of electrodes is connected to the drive circuit 191.
  • the piezo element 113 is expanded or contracted.
  • the piezoelectric element 113 contracts and deforms, the pressure in the ink chamber 117 decreases, and the film-forming ink 1 flows from the reservoir 116 into the ink chamber 117.
  • the piezoelectric element 113 is expanded and deformed, the pressure in the ink chamber 117 is increased, and the film forming ink 1 is discharged from the nozzle 118.
  • the amount of deformation of the piezo element 113 can be controlled by changing the applied voltage. Further, by changing the frequency of the applied voltage, the deformation speed of the piezo element 113 can be controlled. That is, by controlling the voltage applied to the piezo element 113, the discharge conditions of the film-forming ink 1 can be controlled.
  • the controller 190 controls each part of the droplet discharge device 100.
  • the waveform of the applied voltage generated by the drive circuit 191 is adjusted to control the ejection conditions of the film-forming ink 1, or the head positioning unit 180 and the table positioning unit 170 are controlled to form a film on the substrate 15.
  • the discharge position of the ink 1 is controlled.
  • the ink reservoir (not shown) stores the film-forming ink 1.
  • the ink storage portion (not shown) is connected to the head 110 (reservoir 116) via a transport path (not shown).
  • the film-forming ink 1 is discharged as a droplet from the head 110 using the droplet discharge device 100 as described above, and is deposited on the opening 17 provided in the partition 16 to form a film in the opening 17. Ink 1 is supplied.
  • the second component contained as a liquid medium in the film-forming ink 1 has a boiling point lower than that of the first component at atmospheric pressure and a high volatility. Therefore, when the film-forming ink 1 is discharged as a droplet, it evaporates until it lands in the opening 17. As a result, the volume of droplets is smaller at the time of landing compared to the time of discharge from the head 110 (see FIG. 1B). Therefore, the apparent droplet amount (supply amount) of the film-forming ink 1 supplied as droplets in the opening 17 can be increased. As a result, the film forming material necessary to form the film 1B is reliably supplied even if the size of the opening 17 is small.
  • the total amount of the film forming ink 1 supplied into the plurality of partitions is Uniformization can be easily achieved. Thereby, the uniformity of the film thickness of the film 1B formed in each opening 17 can be improved.
  • the viscosity of the film-forming ink 1 at the time of discharge from the head 110 can be set to a size suitable for the discharge of the film-forming ink 1. It is possible to eject droplets of uniform size with excellent accuracy. Therefore, the supply amount of the film-forming ink 1 supplied to each opening 17 can be made uniform.
  • the film forming material required for forming the film 1B can be uniformly supplied into the openings 17 where the film 1B is to be formed.
  • the droplet preferably has a weight of 2 ng or more and 12 ng or less, and more preferably 5 ng or more and 8 ng or less at the time of discharge.
  • a weight of 2 ng or more and 12 ng or less and more preferably 5 ng or more and 8 ng or less at the time of discharge.
  • the film-forming ink is deposited at the time of deposition compared to the time of discharge.
  • the volume decreases, such a decrease in volume continues even after landing, and also continues when the film-forming ink 1 spreads in the opening 17 to form the liquid film 1A.
  • the apparent drop amount (supply amount) of the film-forming ink 1 supplied as a droplet into the opening 17 can be increased also by the reduction of the volume at the time of such wetting and spreading.
  • a liquid film 1A comprising the film ink 1 is formed (see FIG. 1 (b)).
  • the first component contained as a liquid medium in the film-forming ink 1 has a boiling point of 200 ° C. or more at normal pressure (atmospheric pressure) and low volatility. Therefore, even after landing of the droplets, it remains without volatilizing from the film-forming ink 1. Then, since the film forming material exhibits the solubility to the first component, the film forming material maintains the state of being dissolved in the first component, ie, the film forming ink 1, and in this state, the inside of the opening 17 is By wet spreading, the liquid film 1A is formed.
  • the temperature and pressure of the atmosphere in the ink application step [1] are determined according to the composition of the film-forming ink 1 and the boiling points and melting points of the first component and the second component, respectively. There is no particular limitation as long as the film-forming ink 1 can be applied, but normal temperature and pressure are preferable. Therefore, it is preferable to use the film-forming ink 1 capable of applying the film-forming ink 1 in the opening 17 under normal temperature and normal pressure. Thereby, the ink application process [1] can be performed more easily.
  • the first component is removed from the liquid film, and the liquid film is dried, thereby forming a film 1B mainly composed of a film forming material as shown in FIG. 1 (c).
  • the film forming material is homogeneously dissolved in the liquid film 1A. It is in a state of being Therefore, the film 1B formed by heating and drying the liquid film 1A is formed as having a uniform and uniform film thickness.
  • the boiling point of the second component is lower than the boiling point of the first component, so the second component is also removed simultaneously when removing the first component by heating. Ru.
  • the temperature and pressure of the atmosphere in the drying step [2] are determined according to the composition of the film-forming ink 1 and the boiling points and melting points of the first component and the second component, respectively.
  • the heating temperature is not particularly limited as long as the first component can be removed from 1A, but the heating temperature is preferably higher than the boiling point of the first component and more preferably about 5 to 30 ° C. higher than the boiling point of the first component. preferable.
  • the pressure is preferably under reduced pressure, and more preferably about 10 0 Pa or more and 10 ⁇ 7 Pa or less.
  • the heating and depressurizing time is not particularly limited, but is set to about 1 minute to 30 minutes.
  • the method of heating the liquid film 1A is not particularly limited, but it may be performed by a hot plate, an infrared ray or the like, and may be performed by the rubber heater provided on the table 140 of the droplet discharge device 100 described above. .
  • the film 1B obtained as described above is composed of the constituent material of the film targeted for film formation or the precursor thereof.
  • membrane 1B is given a predetermined
  • the film forming material is a low molecular weight compound
  • a film containing a high molecular weight compound can be obtained by performing a treatment to cause a polymerization reaction of the low molecular weight compound.
  • the film forming material is a resin material
  • a film containing a high molecular weight compound can be obtained by performing a process of causing a crosslinking reaction of the resin material.
  • the film-forming material contains metal particles and a binder (resin material)
  • the film 1B can be fired to obtain a film made of metal.
  • the film 1B having a uniform and uniform film thickness is formed in the opening 17 with excellent film forming accuracy.
  • FIG. 4 is a cross-sectional view showing a display provided with a light emitting device and a color filter as an example of the filmed device of the present invention
  • FIG. 5 shows an example of a light emitting element of the light emitting device provided in the display shown in FIG. It is a sectional view showing.
  • the upper side in FIG. 4 and FIG. 5 will be described as “upper” and the lower side as “lower”.
  • the display device 300 shown in FIG. 4 includes a light emitting device 101 including a plurality of light emitting elements 200R, 200G, and 200B, and a transmission filter 102 including a transmissive layer 19 provided corresponding to each of the light emitting elements 200R, 200G, and 200B.
  • a light emitting device 101 including a plurality of light emitting elements 200R, 200G, and 200B
  • a transmission filter 102 including a transmissive layer 19 provided corresponding to each of the light emitting elements 200R, 200G, and 200B.
  • a plurality of light emitting elements 200R, 200G, and 200B and a plurality of transmission layers 19 are provided corresponding to the sub-pixels 300R, 300G, and 300B, and configure a display panel with a top emission structure.
  • the light emitting device 101 includes a substrate 21, a plurality of light emitting elements 200 R, 200 G, 200 B, and a plurality of switching elements 24.
  • the substrate 21 supports the plurality of light emitting elements 200R, 200G, 200B and the plurality of switching elements 24.
  • Each of the light emitting elements 200R, 200G, and 200B in the present embodiment has a configuration (top emission type) in which light is extracted from the side opposite to the substrate 21. Therefore, for the substrate 21, either a transparent substrate or an opaque substrate can be used.
  • the substrate 21 is substantially transparent (colorless transparent, colored transparent, or translucent). Ru.
  • constituent material of the substrate 21 examples include polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethyl methacrylate, polycarbonate, resin material such as polyarylate, quartz glass, soda glass And the like, and one or more of them may be used in combination.
  • the opaque substrate examples include a substrate made of a ceramic material such as alumina, a substrate obtained by forming an oxide film (insulating film) on the surface of a metal substrate such as stainless steel, and a substrate made of a resin material.
  • the average thickness of such a substrate 21 is not particularly limited, but is preferably about 0.1 to 30 mm, and more preferably about 0.1 to 10 mm.
  • a plurality of switching elements 24 are arranged in a matrix on such a substrate 21.
  • Each switching element 24 is provided corresponding to each light emitting element 200R, 200G, 200B, and is a driving transistor for driving each light emitting element 200R, 200G, 200B.
  • Each of the switching elements 24 includes a semiconductor layer 241 made of silicon, a gate insulating layer 242 formed on the semiconductor layer 241, a gate electrode 243 formed on the gate insulating layer 242, and a source electrode 244. And a drain electrode 245.
  • a planarizing layer 22 made of an insulating material is formed to cover such a plurality of switching elements 24.
  • Light emitting elements 200 ⁇ / b> R, 200 ⁇ / b> G, and 200 ⁇ / b> B are provided on the planarization layer 22 corresponding to the switching elements 24.
  • the reflection film 32, the corrosion prevention film 33, the anode 3, the laminate (organic EL light emitting portion) 14 (14R), the cathode 12 and the cathode cover 34 are stacked in this order on the planarization layer 22.
  • the anode 3 of each of the light emitting elements 200R, 200G, and 200B constitutes a pixel electrode, and is electrically connected to the drain electrode 245 of each switching element 24 by the conductive portion (wiring) 27.
  • the cathode 12 of each of the light emitting elements 200R, 200G, and 200B is a common electrode.
  • the laminates 14R, 14G, and 14B included in such light emitting elements 200R, 200G, and 200B can be formed by the above-described film forming method.
  • constituent materials included in each layer provided in laminates 14R, 14G, and 14B described later are contained as a film formation material of the film formation ink.
  • the manufacturing method of laminated body 14R, 14G, 14B is explained in full detail behind.
  • the configuration of the light emitting elements 200G and 200B can be the same as that of the light emitting element 200R except for the configuration of the light emitting layer 6 (that is, the light emitting color is different).
  • the light emitting elements 200R, 200G, and 200B may have the same configuration as each other except for the configuration of the light emitting layer 6, or may have different configurations.
  • the stacked bodies 14R, 14G, and 14B of the light emitting elements 200R, 200G, and 200B may have the same configuration as each other other than the configuration of the light emitting layer 6, or may have different configurations.
  • the laminates 14R, 14G, and 14B have different configurations, the effect of applying the film-forming ink and the film-forming method of the present invention becomes remarkable.
  • the partition wall 31 is provided between the adjacent light emitting elements 200R, 200G, and 200B.
  • the partition wall 31 has a function of preventing the light emission of adjacent light emitting elements 200R, 200G, and 200B from interfering with each other. Further, as described in detail later, when manufacturing the stacks 14R, 14G, and 14B by the droplet discharge method, the partition wall 31 has a function to hold the ink.
  • the transmission filter 102 is joined to the light emitting device 101 configured as described above via a resin layer 35 made of a thermosetting resin such as an epoxy resin.
  • the transmission filter 102 has a substrate 20, a plurality of transmission layers 19, and a light shielding layer (partition) 36.
  • the substrate (sealing substrate) 20 supports the transmission layers 19 and the partition walls 36. As described above, since each of the light emitting elements 200R, 200G, and 200B of the present embodiment is a top emission type, a transparent substrate is used as the substrate 20.
  • the constituent material of such a substrate 20 is not particularly limited as long as the substrate 20 has optical transparency, and the same constituent material as the above-described constituent material of the substrate 20 can be used.
  • the plurality of transmission layers 19 are provided corresponding to the light emitting elements 200R, 200G, and 200B, respectively.
  • Each transmission layer 19 is a filter unit that transmits red light R from the light emitting element 200R, red light G from the light emitting element 200G, and red light B from the light emitting element 200G.
  • a full color image can be displayed by transmitting light R, G, B emitted from such light emitting elements 200 R, 200 G, 200 B by the transmission layer 19.
  • the transmissive layer 19 is made of a translucent resin material. Among the materials mentioned as the constituent material of the substrate 21, those having translucency are used as the resin material.
  • a partition wall 36 is formed between adjacent transmission layers 19.
  • the partition wall 36 has a function of preventing the unintended sub-pixels 300R, 300G, and 300B from emitting light. Further, as will be described in detail later, when manufacturing the transmission filter 102 by the droplet discharge method, the partition wall 36 has a function to hold the ink.
  • the light emitting elements 200R, 200G, and 200B will be described in detail with reference to FIG.
  • the light emitting element 200R will be described representatively
  • the light emitting elements 200G and 200B will be described focusing on differences from the light emitting element 200R, and the description of the same matters as the light emitting element 200R will be omitted. Do.
  • a light emitting element (electroluminescent element) 200R shown in FIG. 5 includes a red light emitting layer 6 which emits light having an emission spectrum of R (red).
  • the laminate 14 is interposed between two electrodes (between the anode 3 and the cathode 12), and the laminate 14 is, as shown in FIG.
  • the hole injection layer 4, the hole transport layer 5, the red light emitting layer 6, the electron transport layer 10, and the electron injection layer 11 are stacked in this order from the anode 3 side to the cathode 12 side.
  • the anode 3 the hole injection layer 4, the hole transport layer 5, the red light emitting layer 6, the electron transport layer 10, the electron injection layer 11, and the cathode 12 are stacked in this order. It is.
  • the reflective film 32 and the corrosion prevention film 33 are provided between the anode 3 and the planarizing layer 22, and a cathode cover (sealed on the side opposite to the laminate 14 of the cathode 12).
  • Layer 34 is provided.
  • the light emitting element 200R In such a light emitting element 200R, electrons are supplied (injected) to the red light emitting layer 6 from the cathode 12 side, and holes are supplied (injected) from the anode 3 side. Then, in the red light emitting layer 6, holes and electrons recombine, and energy (exciton) is generated by the energy released upon this recombination, and energy (red fluorescence) is generated when the exciton returns to the ground state. Emit light).
  • the light emitting element 200R emits red light. And, when such light emission is taken out from the side of the transmission filter 102, it is enhanced by the resonance effect that is reflected between the reflective film 32 and the cathode 12. At the time of taking out, the laminate 14R is described later.
  • the film forming method of the present invention is applied to form a uniform thickness. Therefore, since the optical path length is made uniform, it is possible to enhance the emitted light without causing the enhancement unevenness at the portion of the partition wall 31.
  • Each layer constituting such a light emitting element 200R can be formed by the above-described film forming method.
  • the film-forming ink contains a material constituting a light-emitting layer described later or a precursor thereof.
  • the anode 3 is an electrode for injecting holes into the hole transport layer 5 via the hole injection layer 4 described later.
  • a constituent material of the anode 3 it is preferable to use a material having a large work function and excellent conductivity.
  • the constituent material of the anode 3 is, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , Al-containing ZnO or other oxide, Au, Pt, Ag And Cu or alloys containing these, etc., and one or more of these may be used in combination.
  • the average thickness of such an anode 3 is not particularly limited, but is preferably about 10 to 200 nm, and more preferably about 50 to 150 nm.
  • the cathode 12 is an electrode for injecting electrons into the electron transport layer 10 through the electron injection layer 11 described later.
  • a constituent material of the cathode 12 it is preferable to use a material having a small work function.
  • Examples of the constituent material of the cathode 12 include Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb, and alloys containing these. These may be used alone or in combination of two or more (for example, a laminate of a plurality of layers).
  • an alloy as a constituent material of the cathode 12
  • an alloy containing a stable metal element such as Ag, Al or Cu
  • an alloy such as MgAg, AlLi or CuLi.
  • the average thickness of such a cathode 12 is not particularly limited, but it is preferably about 80 to 10000 nm, and more preferably about 100 to 500 nm.
  • the hole injection layer 4 has a function of improving the hole injection efficiency from the anode 3.
  • the constituent material (hole injection material) of the hole injection layer 4 is not particularly limited.
  • poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) PEDOT / PSS
  • PEDOT / PSS / Nafion registered trademark
  • polythiophene and derivatives thereof polyaniline and derivatives thereof
  • polypyrrole and derivatives thereof N, N, N ', N'-tetraphenyl-p-diaminobenzene and derivatives thereof, etc. It is possible to use one kind or two or more kinds in combination.
  • the average thickness of such a hole injection layer 4 is not particularly limited, but is preferably about 5 to 150 nm, and more preferably about 10 to 100 nm.
  • the hole injection layer 4 can be omitted.
  • the hole transport layer 5 has a function of transporting the holes injected from the anode 3 via the hole injection layer 4 to the red light emitting layer 6.
  • the constituent material ((hole transport material)) of the hole transport layer 5 is not particularly limited, and various p-type polymer materials and various p-type low molecular weight materials can be used alone or in combination. .
  • Examples of the p-type polymer material include poly (2,7- (9,9-di-n-octylfluorene)-(1,4-phenylene-((4-sec-butylphenyl)) Those having an arylamine skeleton such as polyarylamines such as imino) -1,4-phenylene (TFB), those having a fluorene skeleton such as fluorene-bithiophene copolymer, such as a fluorene-arylamine copolymer Poly (N-vinylcarbazole), polyvinylpyrene, polyvinyl anthracene, polythiophene, polyalkylthiophene, polyhexylthiophene, poly (p-phenylenevinylene), poly (vinylenevinylene), having both an arylamine skeleton and a fluorene skeleton Pyrene formaldehyde resin, ethyl
  • Such p-type polymer materials can also be used as a mixture with other compounds.
  • poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT / PSS) etc. can be mentioned as a mixture containing polythiophene.
  • 1,1-bis (4-di-para-triaminophenyl) cyclohexane 1,1′-bis (4-di-para-tolylaminophenyl) Arylcycloalkane compounds such as -4-phenyl-cyclohexane, 4,4 ', 4''-trimethyltriphenylamine, N, N, N', N'- tetraphenyl-1, 1'-biphenyl-4 , 4'-diamine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD1), N, N'-diphenyl- N, N'-bis (4-methoxyphenyl) -1,1'-biphenyl-4,4'-diamine (TPD2), N, N, N ', N'--
  • Porphyrin compounds such as quinacridone, phthalocyanines, copper phthalocyanines, tetra (t-butyl) copper phthalocyanines, metal or metal-free phthalocyanine compounds such as iron phthalocyanines, copper naphthalocyanines, vanadyl naphthalocyanines, monochloromethanes
  • metal or metal-free naphthalocyanine compounds such as gallium naphthalocyanine, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, N, N, N ′, N′-tetra Ben like phenyl benzidine Jin-based compounds, and the like.
  • the average thickness of the hole transport layer 5 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 10 to 100 nm.
  • the hole transport layer 5 can be omitted.
  • the red light emitting layer (first light emitting layer) 6 is configured to include a red light emitting material that emits red light (first color).
  • Such a red light emitting material is not particularly limited, and various red fluorescent materials and red phosphorescent materials can be used alone or in combination of two or more.
  • the red fluorescent material is not particularly limited as long as it emits red fluorescence.
  • perylene derivatives europium complexes, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, porphyrin derivatives, nile red, 2- (1, 1 1-Dimethylethyl) -6- (2- (2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H-benzo (ij) quinolizine-9-yl) ethenyl)- 4H-pyran-4H-ylidene) propanedinitrile (DCJTB), 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), poly [2-methoxy-5 -(2-ethylhexyloxy) -1,4- (1-cyanovinylenephenylene)], poly [ ⁇ 9,9-dihexyl-2,7
  • the red phosphorescent material is not particularly limited as long as it emits red phosphorescence, and includes, for example, metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium and the like, and among the ligands of these metal complexes Also include those having at least one of phenylpyridine skeleton, bipyridyl skeleton, porphyrin skeleton and the like.
  • the red light emitting layer 6 may contain a host material to which the red light emitting material is added as a guest material.
  • the host material functions to recombine holes and electrons to form an exciton and to transfer the energy of the exciton to the red light-emitting material (Foster star movement or Dexter movement) to excite the red light-emitting material Have.
  • a red light emitting material which is a guest material can be used as a dopant in the host material.
  • Such host material is not particularly limited as long as it exerts the function as described above for the red light emitting material to be used, but when the red light emitting material contains a red fluorescent material, for example, naphthacene derivative, naphthalene Derivatives, acene derivatives such as anthracene derivatives (acene materials), distyrylarylene derivatives, perylene derivatives, distyrylbenzene derivatives, distyrylamine derivatives, triquinololato metal such as tris (8-quinolinolato) aluminum complex (Alq 3 ) Complex, triarylamine derivative such as tetramer of triphenylamine, oxadiazole derivative, silole derivative, dicarbazole derivative, oligothiophene derivative, benzopyran derivative, triazole derivative, benzoxazole derivative, benzothiazole derivative, Norin derivatives, 4,4'-bis (2,2'-diphenylvinyl) biphenyl (DP
  • the content (doping amount) of the red light emitting material in the red light emitting layer 6 is preferably 0.01 to 10 wt%. More preferably, it is 1 to 5 wt%.
  • the emission efficiency can be optimized by setting the content of the red light emitting material in such a range.
  • the average thickness of such a red light emitting layer 6 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 10 to 100 nm.
  • the electron transport layer 10 has a function of transporting the electrons injected from the cathode 12 via the electron injection layer 11 to the red light emitting layer 6.
  • the constituent material (electron transport material) of the electron transport layer 10 includes, for example, quinoline derivatives such as organic metal complexes having 8-quinolinol or its derivative such as tris (8-quinolinolato) aluminum (Alq 3 ) as a ligand, Oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives and the like can be mentioned, and one or more of these can be used in combination.
  • quinoline derivatives such as organic metal complexes having 8-quinolinol or its derivative such as tris (8-quinolinolato) aluminum (Alq 3 ) as a ligand
  • Oxadiazole derivatives perylene derivatives
  • pyridine derivatives pyrimidine derivatives
  • quinoxaline derivatives diphenylquinone derivatives
  • the average thickness of the electron transport layer 10 is not particularly limited, but is preferably about 0.5 to 100 nm, and more preferably about 1 to 50 nm.
  • the electron transport layer 10 can be omitted.
  • the electron injection layer 11 has a function of improving the electron injection efficiency from the cathode 12.
  • this electron injection layer 11 As a constituent material (electron injection material) of this electron injection layer 11, various inorganic insulating materials and various inorganic semiconductor materials are mentioned, for example.
  • Examples of such inorganic insulating materials include alkali metal chalcogenides (oxides, sulfides, selenides, telluride), alkaline earth metal chalcogenides, halides of alkali metals, and halides of alkaline earth metals. And one or more of these may be used in combination.
  • the electron injecting property can be further improved by forming the electron injecting layer using the above as a main material.
  • an alkali metal compound alkali metal chalcogenide, halide of an alkali metal, or the like
  • has a very small work function and by using this to form the electron injection layer 11, the light emitting element 200 can obtain high luminance. Become.
  • alkali metal chalcogenide examples include Li 2 O, LiO, Na 2 S, Na 2 Se, NaO and the like.
  • alkaline earth metal chalcogenide CaO, BaO, SrO, BeO, BaS, MgO, CaSe etc. are mentioned, for example.
  • halides of alkali metals include CsF, LiF, NaF, KF, LiCl, KCl, NaCl and the like.
  • halides of alkaline earth metals include CaF 2 , BaF 2 , SrF 2 , MgF 2 , BeF 2 and the like.
  • an oxide containing at least one element of Li, Na, Ba, Ca, Sr, Yb, Al, Ga, In, Cd, Mg, Si, Ta, Sb and Zn And nitrides and oxynitrides, and one or more of these may be used in combination.
  • the average thickness of the electron injection layer 11 is not particularly limited, but is preferably about 0.1 to 1000 nm, more preferably about 0.2 to 100 nm, and more preferably about 0.2 to 50 nm. More preferable.
  • the electron injection layer 11 can be omitted.
  • the light emitting element 200R is configured. Further, the light emitting elements 200G and 200B each have a green light emitting layer and a blue light emitting layer as shown below instead of the red light emitting layer 6 included in the light emitting element 200R. It emits light of (green) and B (blue).
  • the blue light emitting layer (second light emitting layer) contains a blue light emitting material that emits blue light (second color).
  • blue light emitting material for example, various blue fluorescent materials and blue phosphorescent materials can be mentioned, and one or two or more of them can be used in combination.
  • the blue fluorescent material is not particularly limited as long as it emits blue fluorescence.
  • distyrylamine derivatives such as distyryldiamine compounds, fluoranthene derivatives, pyrene derivatives, perylene and perylene derivatives, anthracene derivatives, benzo Oxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, chrysene derivatives, phenanthrene derivatives, distyrylbenzene derivatives, tetraphenylbutadiene, 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (BCzVBi) ), Poly [(9.9-dioctylfluorene-2,7-diyl) -co- (2,5-dimethoxybenzene-1,4-diyl)], poly [(9,9-dihexyloxyfluorene-2, 7-diyl)
  • the blue phosphorescent material is not particularly limited as long as it emits blue phosphorescence, and examples thereof include metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium, etc. Specifically, bis [4 , 6-difluorophenyl pyridinium sulfonate -N, C 2 '] - picolinate - iridium, tris [2- (2,4-difluorophenyl) pyridinate -N, C 2'] iridium, bis [2- (3,5 And-trifluoromethyl) pyridinate-N, C 2 ']-picolinate-iridium, bis (4, 6-difluorophenyl pyridinate-N, C 2 ') iridium (acetylacetonate) and the like.
  • metal complexes such as iridium, ruthenium, platinum, osmium, rhenium
  • the blue light emitting layer may contain a host material to which the blue light emitting material is added as a guest material.
  • the same one as the host material described in the red light emitting layer (first light emitting layer) 6 described above can be used.
  • the blue light emitting layer can emit red light with higher luminance and higher efficiency.
  • the green light emitting layer (third light emitting layer) is configured to include a green light emitting material that emits green light (third color).
  • Such a green light emitting material is not particularly limited, and examples thereof include various green fluorescent materials and green phosphorescent materials, and one or more of them can be used in combination.
  • the green fluorescent material is not particularly limited as long as it emits green fluorescence.
  • quinacridone and its derivatives such as coumarin derivatives and quinacridone derivatives, 9,10-bis [(9-ethyl-3-carbazole)- Vinylenyl] -anthracene, poly (9,9-dihexyl-2,7-vinylene fluorenylene), poly [(9,9-dioctyl fluorene-2,7-diyl) -co- (1,4-diphenylene-vinylene] -2-methoxy-5- ⁇ 2-ethylhexyloxy ⁇ benzene)], poly [(9,9-dioctyl-2,7-divinylene fluorenylene) -ortho-co- (2-methoxy-5- (2 -Ethoxylhexyloxy) -1,4-phenylene)] and the like.
  • the green phosphorescent material is not particularly limited as long as it emits green phosphorescence, and examples thereof include metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium and the like.
  • the green light emitting layer may contain a host material in which the green light emitting material is a guest material.
  • the same one as the host material described in the red light emitting layer (first light emitting layer) 6 described above can be used.
  • the green light emitting layer can emit red light with higher luminance and higher efficiency.
  • the film forming method of the present invention is applied to the formation of the laminates 14R, 14G, 14B of the light emitting elements 200R, 200G, 200B included in the display device 300 configured as described above.
  • FIG. 6 is a view for explaining the case where the film forming method of the present invention is applied to the manufacture of a laminate of light emitting elements provided in a display device.
  • the film forming method is the same as the film forming method described above except that the film forming ink for forming the layers included in the laminates 14R, 14G, and 14B is used. The description of the items is omitted.
  • the laminate 14R includes the hole injection layer 4, the hole transport layer 5, the red light emitting layer 6, the electron transport layer 10, and the electron injection layer 11 from the anode 3 side to the cathode 12 side.
  • the laminates 14G and 14B are each provided with a green light emitting layer and a blue light emitting layer instead of the red light emitting layer 6 included in the laminate 14R, in the following, the laminate 14R is laminated.
  • the case where a film is formed on the anode 3 exposed from the opening of the partition 31 provided on the planarizing layer 22 will be described as an example.
  • the film-forming ink 4A is supplied onto the anode 3 exposed from the opening of the partition 31 provided on the planarization layer 22 as shown in FIG. 6 (a) (see FIG. 6 (b)). ).
  • This process can be performed in the same manner as the ink application process [1] of the film forming method described above.
  • the film-forming ink 4A includes a film-forming material and a liquid medium, and is configured in the same manner as the film-forming ink 1 described above.
  • the film-forming ink 4A contains a hole injection material as a film-forming material.
  • the oxide (metal oxide) described above as the constituent material of the anode 3 is used on the surface of the anode 3 exposed from the opening of the partition 31, the hydroxyl group is exposed. Therefore, by using a hydroxyl group as the second component, the surface of the anode 3 and the second component have excellent affinity. Therefore, the film-forming ink 4A supplied as droplets in the opening can be spread more smoothly on the anode 3.
  • the fluorine element is exposed on this surface. Therefore, by using a component having a hydroxyl group as the second component, a repulsive force to repel between the surface of the partition wall surface 311 and the film-forming ink 4A is generated, whereby the film-forming ink is formed on the partition wall surface 311. It is possible to more accurately suppress or prevent the film-forming material contained in 4A from being stained.
  • the film forming ink 4A applied on the anode 3 is dried under reduced pressure or heated and dried.
  • the first component is removed from the film-forming ink 4A, and as a result, the film-forming ink 4A is dried, whereby the hole injection layer 4 is formed.
  • the film forming ink 5A is supplied onto the hole injection layer 4 formed in the opening of the partition 31 in the same manner as the ink application step [1] of the film forming method described above.
  • the film-forming ink 5A includes a film-forming material and a liquid medium, and is configured in the same manner as the film-forming ink 1 described above.
  • the film-forming ink 5A contains a hole transport material as a film-forming material.
  • the film forming ink 5A applied on the hole injection layer 4 is dried under reduced pressure or heated and dried.
  • the first component is removed from the film-forming ink 5A, and as a result, the film-forming ink 5A is dried, whereby the hole transport layer 5 is formed.
  • the film-forming ink 6A is supplied onto the hole transport layer 5 formed in the opening of the partition 31 in the same manner as the ink application step [1] of the film-forming method described above.
  • the film-forming ink 6A includes a film-forming material and a liquid medium, and is configured in the same manner as the film-forming ink 1 described above.
  • the film-forming ink 6A contains a red light-emitting material as a film-forming material.
  • the film-forming ink 6A applied on the hole transport layer 5 is dried under reduced pressure or heated.
  • the first component is removed from the film-forming ink 6A, and as a result, the film-forming ink 6A is dried, whereby the red light-emitting layer 6 is formed.
  • the electron transport layer 10 is formed on the red light emitting layer 6 formed in the opening of the partition wall 31.
  • the electron transport layer 10 is not particularly limited, but is preferably formed using a vapor phase process such as sputtering, vacuum evaporation, or CVD. By using a vapor phase process, it is possible to reliably form the electron transport layer 10 while preventing layer dissolution between the red light emitting layer 6 and the electron transport layer 10.
  • a vapor phase process such as sputtering, vacuum evaporation, or CVD.
  • the electron injection layer 11 is formed on the electron transport layer 10 formed in the opening of the partition wall 31.
  • the electron injection layer 11 is not particularly limited, but is preferably formed by using a vapor phase process such as sputtering, vacuum evaporation, or CVD. By using a vapor phase process, it is possible to reliably form the electron injection layer 11 while preventing layer dissolution between the electron transport layer 10 and the electron injection layer 11.
  • a vapor phase process such as sputtering, vacuum evaporation, or CVD.
  • the laminate 14R can be manufactured on the anode 3 exposed from the opening of the partition 31.
  • the laminates 14R, 14G, and 14G may be formed independently or collectively.
  • the laminates 14R, 14G, and 14B included in the display device 300 which is a device with a film thus obtained, the mixing of these is prevented by the partition wall 31, and the films are formed with excellent dimensional accuracy.
  • Can have the desired optical properties and have excellent reliability.
  • Such a film forming method can be applied not only to the production of the laminates 14R, 14G, and 14B, but also to the production of the color filter 103.
  • FIG. 7 is a view for explaining the case where the film forming method of the present invention is applied to the production of a color filter.
  • the film forming method is the same as the above-described film forming method except that plural kinds of film forming inks having different colors are used. Therefore, the description of the same items as the film forming method described above is omitted. Do.
  • the color filter 103 is a substrate supporting a plurality of colored layers 19R, 19G, 19B, a light shielding layer (partitions) 36, the colored layers 19R, 19G, 19B and the partitions 36. And 20.
  • the colored layer 19R is a filter unit that converts the light WR from the light emitting element 200R into red.
  • the colored layer 19G is a filter unit that converts WG from the light emitting element 200G into green.
  • the colored layer 19B is a filter unit that converts the light WB from the light emitting element 200B into blue.
  • the film-forming ink of the present invention is used to form the colored layers 19R, 19G, and 19B, but the method of manufacturing the color filter 103 using the film-forming ink of the present invention is described below. Will be explained.
  • a base material 15A in which partition walls 36 (banks) are formed on a substrate 20 is prepared.
  • the base material 15A may be made lyophilic by oxygen plasma treatment under atmospheric pressure prior to formation of the partition walls 36 (banks). Furthermore, the surface of the partition wall 36 may be subjected to surface treatment for imparting liquid repellency.
  • the film-forming ink 19RA is supplied to the section where the colored layer 19R is to be formed.
  • This process can be performed in the same manner as the ink application process [1] of the film forming method described above.
  • the film forming ink 19RA includes a film forming material and a liquid medium, and is configured in the same manner as the film forming ink 1 described above.
  • the film forming material of the film forming ink 19RA contains a colorant such as a red dye or pigment.
  • the film forming material of the film forming ink 19RA may include, for example, a resin material such as an acrylic resin.
  • the first component is removed from the film-forming ink 19RA.
  • the film-forming ink 19RA is dried, whereby the colored layer 19R is formed.
  • the film-forming ink 19GA is supplied to the section where the colored layer 19G is to be formed.
  • the colored layer 19R is solid, it does not flow out to other compartments.
  • the application of the film-forming ink 19GA to the substrate 15A in this step can also be performed in the same manner as the ink application step [1] of the film-forming method described above.
  • the film-forming ink 19GA includes a film-forming material and a liquid medium, and is configured in the same manner as the film-forming ink 1 described above.
  • the film forming material of the film forming ink 19GA contains a colorant such as a green dye or pigment. Further, the film forming material of the film forming ink 19GA may include, for example, a resin material such as an acrylic resin.
  • the first component is removed from the film-forming ink 19GA, and as a result, the film-forming ink 19GA is dried, whereby the colored layer 19G is formed.
  • the film-forming ink 19BA is supplied to the section where the colored layer 19B is to be formed.
  • the colored layers 19R and 19G are solid, they do not flow into other compartments.
  • the application of the film-forming ink 19BA to the substrate 15A in this step can also be performed in the same manner as the ink application step [1] of the film-forming method described above.
  • the film-forming ink 19BA includes a film-forming material and a liquid medium, and is configured in the same manner as the film-forming ink 1 described above.
  • the film forming material of the film forming ink 19BA contains a colorant such as a blue dye or a pigment.
  • the film forming material of the film forming ink 19BA may include, for example, a resin material such as an acrylic resin.
  • the first component is removed from the film-forming ink 19BA.
  • the film-forming ink 19BA is dried, whereby the colored layer 19B is formed.
  • solid colored layers 19R, 19G, and 19B are formed in the openings on the base 15A.
  • the same processes as the drying step [2] of the film-forming method described above are collectively performed to form colored layers 19R, 19G, and 19B.
  • 19B may be formed collectively.
  • the color filter 103 can be manufactured.
  • the color filter 103 which is a device with a film thus obtained, color mixing of the colored layers 19R, 19G and 19B can be prevented, and the colored layers 19R, 19G and 19B can be formed with excellent dimensional accuracy. As it can, it has desired optical properties and has excellent reliability.
  • the film-forming ink of the present invention can also be used to form a conductor pattern of a wiring substrate.
  • the film-forming ink for forming a conductor pattern is an ink for forming a conductor pattern precursor.
  • the film-forming material of the film-forming ink contains metal particles.
  • the film-forming ink is a dispersion obtained by dispersing metal particles in a dispersion medium.
  • Silver particles are suitably used as such metal particles, and the average particle diameter of the silver particles is preferably 1 nm or more and 100 nm or less, and more preferably 10 nm or more and 30 nm or less.
  • the discharge stability of the ink can be further enhanced, and a fine conductor pattern can be easily formed.
  • “average particle diameter” refers to the volume-based average particle diameter unless otherwise noted.
  • the silver particles (metal particles) are preferably dispersed in a dispersion medium as silver colloid particles (metal colloid particles) having a dispersant attached to the surface thereof.
  • a dispersion medium as silver colloid particles (metal colloid particles) having a dispersant attached to the surface thereof.
  • the content of silver colloid particles in the ink is preferably 1 wt% or more and 60 wt% or less, and more preferably 10 wt% or more and 50 wt% or less.
  • the film-forming material of the film-forming ink for forming a conductor pattern may contain the organic binder.
  • the organic binder prevents aggregation of silver particles in a conductor pattern precursor formed by the film-forming ink.
  • the organic binder can be decomposed and removed, and the silver particles in the conductor pattern precursor are combined to form a conductor pattern.
  • the organic binder is not particularly limited.
  • polyethylene glycol # 200 weight average molecular weight 200
  • polyethylene glycol # 300 weight average molecular weight 300
  • polyethylene glycol # 400 average molecular weight 400
  • polyethylene glycol # 600 Weight average molecular weight 600
  • polyethylene glycol # 1000 weight average molecular weight 1000
  • polyethylene glycol # 1500 weight average molecular weight 1500
  • polyethylene glycol # 1540 weight average molecular weight 1540
  • polyethylene glycol # 2000 weight average molecular weight 2000
  • polyglycerin esters for example, monoglycerin of polyglycerin, tristearate, tetrastearate, monooleate, pentaoleate, monolaurate, monocaprylate, polycinolate, sesquistearate, decaoleate, sesquioleate Etc.
  • the content of the organic binder in the ink is preferably 1 wt% to 30 wt%, and more preferably 5 wt% to 20 wt%. As a result, it is possible to more effectively prevent the occurrence of the crack and the disconnection while making the ejection stability of the ink particularly excellent.
  • the content of the organic binder if the content of the organic binder is less than the lower limit value, the effect of preventing the occurrence of cracks may be reduced.
  • the content of the organic binder exceeds the upper limit value, it may be difficult to make the viscosity of the ink sufficiently low depending on the composition of the organic binder.
  • FIG. 8 is a perspective view showing the configuration of a mobile (or notebook) personal computer to which the electronic device of the present invention is applied.
  • the personal computer 1100 comprises a main unit 1104 having a keyboard 1102 and a display unit 1106 having a display unit, and the display unit 1106 can be pivoted relative to the main unit 1104 via a hinge structure. It is supported by
  • the display unit included in the display unit 1106 is configured by the display device 300 described above.
  • FIG. 9 is a perspective view showing the configuration of a mobile phone (including PHS) to which the electronic device of the present invention is applied.
  • a cellular phone 1200 includes a display unit together with a plurality of operation buttons 1202, an earpiece 1204, and a mouthpiece 1206.
  • the display unit is configured by the display device 300 described above.
  • FIG. 10 is a perspective view showing the configuration of a digital still camera to which the electronic device of the present invention is applied. Note that in this figure, the connection to an external device is also shown in a simplified manner.
  • the digital still camera 1300 photoelectrically converts the light image of the subject with an imaging device such as a CCD (Charge Coupled Device).
  • An imaging signal image signal is generated.
  • a display unit is provided on the back of the case (body) 1302 in the digital still camera 1300, and is configured to perform display based on an imaging signal by a CCD, and functions as a finder for displaying an object as an electronic image.
  • this display unit is configured by the display device 300 described above.
  • a circuit board 1308 is installed inside the case.
  • the circuit board 1308 is provided with a memory capable of storing (storing) an imaging signal.
  • a light receiving unit 1304 including an optical lens (imaging optical system), a CCD, and the like is provided on the front side (the back side in the illustrated configuration) of the case 1302.
  • the image pickup signal of the CCD at that time is transferred and stored in the memory of the circuit board 1308.
  • a video signal output terminal 1312 and an input / output terminal 1314 for data communication are provided on the side of the case 1302.
  • a television monitor 1430 is connected to the video signal output terminal 1312
  • a personal computer 1440 is connected to the input / output terminal 1314 for data communication, as necessary.
  • the imaging signal stored in the memory of the circuit board 1308 is output to the television monitor 1430 or the personal computer 1440 by a predetermined operation.
  • An electronic device having such a film-covered device of the present invention has excellent reliability.
  • the mobile phone shown in FIG. 9, and the digital still camera shown in FIG. Monitor direct view type video tape recorder, laptop personal computer, car navigation device, pager, electronic notebook (including communication function included), electronic dictionary, calculator, electronic game machine, word processor, workstation, videophone, television for crime prevention Monitors, electronic binoculars, POS terminals, devices equipped with touch panels (eg cash dispensers for financial institutions, automatic ticket vending machines), medical devices (eg electronic thermometers, sphygmomanometers, blood glucose meters, electrocardiogram display devices, ultrasound diagnostic devices, Display for endoscopes), fish Detector, various measuring instruments, gages (e.g., gages for vehicles, aircraft, and ships), a flight simulator, other various monitors such, it can be applied to the projection type display device such as a projector.
  • the projection type display device such as a projector.
  • the present invention is not limited thereto.
  • the light emitting element includes three light emitting layers.
  • the light emitting layer may have one or two light emitting layers, or four or more light emitting layers.
  • a luminescent color of a light emitting layer it is not limited to R, G, B of embodiment mentioned above.
  • the type of liquid medium to be used at the time of film formation later is selected or the film previously formed is subjected to a crosslinking reaction. Can be prevented from dissolving at the time of film formation later.
  • the device with a film of the present invention is not limited to the color filter, the light emitting device, and the wiring substrate described above, and any device having a film formed using a film forming ink can be applied to various devices. .
  • CBP 4,4'-N, N'-dicarbazol-biphenyl
  • fac-tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) are prepared as light-emitting materials, and the content of CBP is
  • the light emitting layer is obtained by dissolving in a liquid solvent containing the first component (A-1) and the second component so that the content of 0.5 wt% and Ir (ppy) 3 becomes 0.5 wt%.
  • a film-forming ink for formation was prepared.
  • the second components (B-1, -2 ... -54, etc.) shown in Table 1 are used, respectively. Those having a content of the second component of 5, 30, 50 wt% were individually prepared. However, the preparation was omitted about what the 1st component and the 2nd component do not show compatibility.
  • ink for which the addition of the second component was omitted was prepared as a ink for comparison.
  • the film-forming ink for forming the hole transport layer and the light emitting layer is prepared on ITO of the opening provided in the partition provided on the substrate.
  • the liquid film was formed by the ink jet method.
  • the hole transport layer was formed by heating for 30 minutes under conditions of 200 ° C. and normal pressure, and the light emitting layer was formed by heating for 10 minutes under conditions of 160 ° C. and normal pressure.
  • the droplets to be supplied by the inkjet method had a weight of 10 ng at the time of discharge, and were supplied onto the silicon substrate until the weight after the discharge was approximately 500 ng.
  • Evaluation 1-3-1 Storage stability
  • the film-forming ink for forming the hole transport layer and the light emitting layer is stored for 7 days under conditions of 24 ° C. and normal pressure, respectively, and then the formation of the hole transport layer and light emitting layer are formed.
  • the state of the film-forming ink for printing was visually confirmed and evaluated according to the following four-step criteria.
  • Ejection stability The prepared film-forming ink for forming a hole transport layer and the light emitting layer is ejected using an ink jet method to form a droplet having an ejection weight of 10 ng.
  • the ejection stability of the film-forming ink for forming a light-emitting layer was evaluated according to the following four criteria.
  • the film thicknesses of the hole transport layer and the light emitting layer formed in the above 1-2 were measured. Furthermore, the states of the hole transport layer and the light emitting layer were visually confirmed and evaluated according to the following four criteria.
  • a uniform and flat film can be formed without precipitation.
  • O A uniform film can be formed without precipitation.
  • C No precipitation.
  • X A film can not be formed.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range in which the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • A-5) 4-isopropylbiphenyl is used as the first component A-1) As a first component, A-5) 4-isopropylbiphenyl in place of 1,1-bis (3,4-dimethylphenyl) ethane
  • the above 1-1 to 1-3 were carried out except using the above to prepare a film forming ink, to form a hole transport layer and a light emitting layer, and to evaluate the film.
  • Table 2 The evaluation results obtained as described above are shown in Table 2 below.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • A-24 diphenyl ether is used as the first component A-11) As the first component, A-24) diphenyl ether is used in place of 1,1-bis (3,4-dimethylphenyl) ethane
  • the above 1-1 to 1-3 were carried out to prepare a film forming ink, to form a hole transport layer and a light emitting layer, and to evaluate the film.
  • the evaluation results obtained as described above are shown in Table 7 below.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, and the hole transport layer and the light emission As compared with the case where the addition of the second component was omitted, the layer could be formed as a thick film with a uniform film thickness.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film forming ink within the range where the content of the second component is 5 wt% to 50 wt%, but the stability is low.
  • the film forming property is slightly inferior due to the above, the hole transport layer and the light emitting layer are formed as a film having a thicker film thickness than when the addition of the second component is omitted. It was possible.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • A-31) 1,3-Dimethyl-2-Imidazolidinone is Used as the First Component
  • A-1) As the First Component Instead of 1,1-bis (3,4-dimethylphenyl) ethane
  • a -31) Except using 1,3-dimethyl-2-imidazolidinone, the above 1-1 to 1-3 are carried out to prepare a film-forming ink, and to form a hole transport layer and a light emitting layer. The membrane and its evaluation were performed. The evaluation results obtained as described above are shown in Table 9 below.
  • the hole transport material and the light emitting material can be dissolved in the film-forming ink within the range where the content of the second component is 5 wt% to 50 wt%, but the stability is low.
  • the film forming property is slightly inferior due to the above, the hole transport layer and the light emitting layer are formed as a film having a thicker film thickness than when the addition of the second component is omitted. It was possible.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film forming ink within the range where the content of the second component is 5 wt% to 50 wt%, the stability is low.
  • the film forming property is slightly inferior due to the above, the hole transport layer and the light emitting layer are formed as a film having a thicker film thickness than when the addition of the second component is omitted. It was possible.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.
  • the hole transport material and the light emitting material can be dissolved in the film forming ink within the range where the content of the second component is 5 wt% to 50 wt%, but the stability is low.
  • the film forming property is slightly inferior due to the above, the hole transport layer and the light emitting layer are formed as a film having a thicker film thickness than when the addition of the second component is omitted. It was possible.
  • the boiling point of the second component When the boiling point of the second component is less than 130 ° C., the volatilization affects the formation of droplets at the time of discharge, and the discharge stability tends to be unstable. In particular, the boiling point is 100 ° C. When it is less than, the result is a noticeable result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Optical Filters (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 隔壁が備える開口部内に液滴として供給される成膜用インクの見かけ上の液滴量を増加させ、これにより、成膜される膜の寸法精度を優れたものとし得る成膜用インクおよび成膜方法を提供すること、また、かかる成膜方法を用いて形成された膜を有する膜付きデバイスおよび電子機器を提供すること。 本発明の成膜用インク1は、成膜材料と、前記成膜材料が溶解または分散される液性媒体とを有し、前記液性媒体は、大気圧上での沸点が200℃以上の第1成分と、該第1成分よりも大気圧上での沸点が低い第2成分とを含有している。

Description

成膜用インク、成膜方法、膜付きデバイスおよび電子機器
 本発明は、成膜用インク、成膜方法、膜付きデバイスおよび電子機器に関する。
 成膜方法としては、例えば、成膜材料を溶媒に溶解してなる成膜用インクを液滴吐出法を用いて基材上に供給し、その基材上の成膜用インクから溶媒を除去することにより膜を形成する方法が知られている(例えば、特許文献1参照)。
 この成膜方法を用いて、例えば、有機エレクトロルミネッセンス(有機EL)素子の有機層(例えば、発光層および正孔輸送層等)、カラーフィルターの着色層および配線基板の導体パターン等を形成することが提案されている。
 このような有機層や、導体パターン等の膜のパターニング(成膜方法)は、具体的には、形成すべき膜の形状に対応した凹部を備える隔壁(バンク)を形成して成膜領域を確保した後、その開口部内に、成膜用インクを供給し、その後、溶媒を除去することにより行われる。
 かかる構成の膜の成膜方法では、隔壁で囲まれる開口部の容積に応じて、すなわち、開口部から成膜用インクが溢れ出さない範囲内で、成膜用インク(液滴)が開口部内に供給される。
 ここで、例えば、有機EL素子では、近年、高精細化が求められることに起因して、画素の微細化が進んでおり、その結果、開口部の体積の微細化を伴い、少ない液滴数で膜化に必要な固形分量を得ることが求められる。
 かかる問題点を解決する手法として、例えば、成膜用インク中に含まれる成膜材料(溶質)の高濃度化を図ることが考えられる。
 しかしながら、この手法では、成膜材料の種類によってはその溶解度の限界により高濃度化を図ることができなかったり、高濃度化に伴い成膜用インクの粘度が上昇し、これに起因して、液滴吐出法による成膜用インクの吐出の際に吐出不良を引き起こしたりするという問題がある。
特開平11-54270号公報
 本発明の目的は、隔壁が備える開口部内に液滴として供給される成膜用インクの見かけ上の液滴量を増加させ、これにより、成膜される膜の寸法精度を優れたものとし得る成膜用インクおよび成膜方法を提供すること、また、かかる成膜方法を用いて形成された膜を有する膜付きデバイスおよび電子機器を提供することにある。
 このような目的は、下記の本発明により達成される。
 本発明の成膜用インクは、成膜材料と、前記成膜材料が溶解または分散される液性媒体とを有し、前記液性媒体は、大気圧上での沸点が200℃以上の第1成分と、該第1成分よりも大気圧上での沸点が低い第2成分とを含有していることを特徴とする。
 かかる構成の成膜用インクを用いることで、隔壁が備える開口部内に液滴として供給される成膜用インクの見かけ上の液滴量を増加させることができるため、成膜される膜の寸法精度の向上が図られる。
 本発明の成膜用インクでは、前記第2成分は、大気圧上での沸点が50℃以上170℃以下であることが好ましい。
 かかる範囲内に設定することにより、成膜用インクの液滴としての吐出後に第2成分を確実に揮発させて、液滴の着弾時に、液滴の吐出時と比較して、その容積を確実に小さくすることができる。
 本発明の成膜用インクでは、前記第1成分は、大気圧上での沸点が250℃以上340℃以下であることが好ましい。
 これにより、大気圧(常圧)下において、不本意に成膜用インク(第1成分)が乾燥するのを的確に抑制することができるため、成膜用インクの保存安定性の向上が図られる。
 本発明の成膜用インクでは、前記第1成分および前記第2成分は、これらの大気圧上での沸点の差が30℃以上であることが好ましい。
 これにより、第2成分が成膜用インクから揮発することで除去される際に、この第2成分とともに第1成分が不本意に揮発して除去されるのを、的確に抑制または防止することができる。
 本発明の成膜用インクでは、前記第1成分は、その0.5wt%以上の重量の前記成膜材料を溶解し得る溶解度を有することが好ましい。
 かかる範囲内の溶解度を有することにより、第1成分を、成膜材料を十分に溶解し得るものであると言うことができ、成膜用インクの吐出後において第2成分が揮発したとしても、成膜用インク内において、成膜材料が析出(溶出)するのを的確に抑制または防止することができる。そのため、開口部内において、成膜用インク内に均質に溶解させた状態で、成膜用インクを均一に濡れ広げることができる。そのため、優れた寸法精度の膜が成膜される。
 本発明の成膜用インクでは、前記第2成分は、その含有量が当該成膜用インクの全体に対して、5.0wt%以上50wt%以下であることが好ましい。
 これにより、成膜用インクの液滴としての吐出後に液滴の容積を十分に小さくすることができ、開口部内に液滴として供給される成膜用インクの見かけ上の液滴量(供給量)を増加させることができる。
 本発明の成膜用インクは、液滴として基板上の壁部が有する開口部に供給した後、乾燥させることで成膜されるものであることが好ましい。
 これにより、寸法精度に優れた膜が成膜される。
 本発明の成膜用インクは、前記液滴は、その吐出時において、2ng以上12ng以下の重さを有することが好ましい。
 これにより、均一な重さを有する液滴を液滴吐出ヘッドから吐出させることができる。
 本発明の成膜用インクは、前記液滴は、着弾時の容積が、吐出時の容積よりも、前記吐出後に前記第2成分が揮発することで、小さくなるよう設定されていることが好ましい。
 これにより、隔壁が備える開口部内に液滴として供給される成膜用インクの見かけ上の液滴量を増加させることができるため、成膜される膜の寸法精度の向上が図られる。
 本発明の成膜方法は、本発明の成膜用インクを、基材上に設けられた隔壁が備える開口部(凹部)内に液滴として供給して、液状被膜を形成する工程と、前記液状被膜を加熱して乾燥させることで、前記開口部内に膜を成膜する工程とを有することを特徴とする。
 かかる構成の成膜方法によれば、前記隔壁が備える開口部内に、均質で均一な膜厚を有する膜を優れた成膜精度で形成することができる。
 本発明の膜付きデバイスは、本発明の成膜方法により形成された膜またはそれを処理した膜を有することを特徴とする。
 このような膜付きデバイスは、寸法精度に優れた膜を備えるので、信頼性に優れる。
 本発明の電子機器は、本発明の膜付きデバイスを有することを特徴とする。
 このような電子機器は、信頼性に優れる膜付きデバイスを備えるので、信頼性に優れる。
本発明の成膜方法を説明するための図である。 本発明の成膜方法に用いる液滴吐出装置の概略構成を示す斜視図である。 図2の液滴吐出装置が備える液滴吐出ヘッドの概略構成を説明するための模式図である。 本発明の膜付きデバイスの一例である発光装置およびカラーフィルターを備える表示装置を示す断面図である。 図4に示す表示装置に備えられた発光装置の発光素子の一例を示す断面図である。 本発明の成膜方法を表示装置が備える発光素子の積層体の製造に適用した場合を説明する図である。 本発明の成膜方法をカラーフィルターの製造に適用した場合を説明する図である。 本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。 本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。 本発明の電子機器を適用したディジタルスチールカメラの構成を示す斜視図である。
 以下、本発明の好適な実施形態について詳細に説明する。
 (成膜用インク)
 本発明の成膜用インクは、成膜材料と、その成膜材料が溶解または分散される液性媒体とを有する。
 特に、本発明の成膜用インクは、前記液性媒体が、大気圧上での沸点が200℃以上の第1成分と、この第1成分よりも大気圧上での沸点が低い第2成分とを含有していることを特徴としている。後に詳述するが、このような成膜用インクは、基材上に設けられた隔壁が備える開口部(凹部)内に液滴として供給されるが、この液滴の開口部内への着弾時の容積が、吐出時の容積よりも、吐出後に第2成分が揮発することで、小さくなるように構成されている。そのため、開口部内に液滴として供給される成膜用インクの見かけ上の液滴量(供給量)を増加させることができることから、成膜される膜を優れた寸法精度で成膜することができる。
 以下、本発明の成膜用インクの各成分を詳細に説明する。
 (成膜材料)
 本発明の成膜用インクに含まれる成膜材料は、成膜の目的とする膜の構成材料またはその前駆体である。
 このような成膜材料は、成膜の目的とする膜の種類に応じて決定されるものであり、特に限定されず、各種有機材料、各種無機材料およびこれらの混合物を用いることができる。例えば、成膜材料としては、後述する、有機エレクトロルミネッセンス(有機EL)素子の各層(特に有機層)の構成材料またはその前駆体、配線基板の導体パターンの構成材料またはその前駆体、カラーフィルターの着色層の構成材料またはその前駆体等が挙げられる。
 このように、前記成膜材料を有機エレクトロルミネッセンス素子の有機層の構成材料またはその前駆体とすることにより、有機エレクトロルミネッセンス素子の有機層(例えば、正孔輸送層、正孔注入層、発光層、中間層等)を形成することができる。また、前記成膜材料を配線基板の導体パターンの構成材料またはその前駆体とすることにより、配線基板の導体パターンを形成することができる。さらに、前記成膜材料をカラーフィルターの着色層の構成材料またはその前駆体とすることにより、カラーフィルターの着色層を形成することができる。なお、これらの材料については、後に詳述する。
 また、成膜材料としては、例えば、上記から選択される2種以上の成分を組み合わせて用いてもよい。
 なお、成膜用インク中において、成膜材料は、後述する液性媒体に溶解しているものであってもよいし、分散しているものであってもよいが、成膜材料が液性媒体中に分散しているものである場合、成膜材料の平均粒径は、20~100nmであるのが好ましく、5~50nmであるのがより好ましい。これにより、成膜用インク中における成膜材料の分散安定性を優れたものとすることができる。
 また、前記成膜材料が有機材料を主材料とするものである場合、第1成分および第2成分を適宜選択することにより、液性媒体に成膜材料を溶解させることができる。
 一方、前記成膜材料が無機材料を含むものである場合や、前記成膜材料が有機材料であっても液性媒体に不溶である場合には、成膜材料を液性媒体に分散させればよい。
 成膜用インク中における成膜材料の含有率は、成膜用インクの用途に応じて決められるものであり、特に限定されないが、例えば、0.01~10wt%であるのが好ましく、0.05~5wt%であるのがより好ましい。成膜材料の含有率が前記範囲内の値であると、成膜用の液滴吐出ヘッド(インクジェットヘッド)からの吐出性(吐出安定性)を特に優れたものとすることができる。
 (液性媒体)
 本発明の成膜用インクに含まれる液性媒体は、第1成分および第2成分を含むものであり、前述した成膜材料を溶解または分散させる成分、すなわち、溶媒または分散媒である。この液性媒体は、後述する成膜方法(成膜過程)において、加熱することで、そのほぼ全量(大部分)が揮発して除去されるものである。
 特に、本発明の成膜用インクに含まれる液性媒体は、大気圧(常圧)上での沸点(以下、単に「沸点」とも言う)が200℃以上の第1成分と、この第1成分よりも大気圧上での沸点が低い第2成分とを含有している。
 このような成膜用インク中において、第2成分は、その沸点が第1成分よりも低く、揮発性の高い成分である。そのため、成膜用インクが液滴として吐出されると、基板上に設けられた隔壁が備える開口部内に着弾するまでの間で、この第2成分が揮発することで、液滴の容積が前記吐出時と比較して、着弾時の方が小さくなる。その結果、開口部内に液滴として供給される成膜用インクの見かけ上の液滴量(供給量)を増加させることができる。
 さらに、第1成分は、大気圧上での沸点が200℃以上であり、その揮発性が低いことから、液滴の着弾後においても、成膜用インク中から揮発することなく、残存するため、液滴として供給された成膜用インクが液状状態を維持することから、開口部内を濡れ広がることができる。そして、この濡れ広がった状態で、成膜用インクを加熱して乾燥させることで、優れた寸法精度の膜が成膜されることとなる。
 このような第1成分および第2成分は、前述したような沸点の関係を有し、成膜用インクが成膜用材料を溶解または分散させることができれば、特に限定されず、各種溶媒または各種分散媒を用いることができる。なお、以下では、第1成分および第2成分のうち少なくとも第1成分が、成膜用材料を溶解し得る溶媒である場合を一例に説明する。
 なお、本明細書において、「常圧」とは、大気圧に等しい圧力を言い、具体的には、10Pa(1013mbar)である。また、「常温」とは、20℃±15℃(すなわち5℃以上35℃以下)の範囲を言う。
 また、液性媒体は、成膜材料の種類や成膜の目的とする膜の用途に応じて最適なものを選択して用いることができる。
 さらに、液性媒体は、成膜用インクに含まれる成膜材料やその他の成分に対する攻撃性ができるだけ少ないものを用いるのが好ましい。これにより、成膜用インクの変質・劣化を確実に抑制または防止することができる。
 また、液性媒体は、成膜後に膜中に残留する可能性がある場合には、その膜の用途に応じた特性をできるだけ阻害しないものを用いるのが好ましい。例えば、成膜用インクを有機EL素子の有機層の成膜に用いる場合には、電気的特性をも考慮して液性媒体の各成分を選定するのが好ましい。また、成膜用インクをカラーフィルターの着色層の成膜に用いる場合には、光学的特性をも考慮して液性媒体の各成分を選定するのが好ましい。
 以下、第1成分および第2成分について詳述する。
 [第1成分]
 第1成分は、常圧(大気圧)上での沸点が200℃以上のものである。また、本実施形態では、成膜材料を溶解する溶解性を示すものである。
 このように第1成分は、揮発性が低いものであることから、液滴の着弾後においても、成膜用インク中から揮発することなく、残存する。そして、この第1成分に対して成膜材料が溶解性を示すことから、成膜材料が第1成分すなわち成膜用インクに溶解した状態を維持し、この状態で、開口部内を濡れ広がることとなる。したがって、この後に、成膜用インクを加熱して乾燥させることで、膜が成膜されるが、この膜を優れた寸法精度を有するものとし得る。
 なお、この第1成分は、常温常圧で、前述した第2成分が溶解した状態で液状をなし、単独または成膜材料と共存している状態においても液状をなすものである。これにより、第2成分が揮発した後の成膜用インクにおいても、成膜用インクが液状をなすこととなる。その結果、開口部内において確実に濡れ広がることができるため、優れた寸法精度で膜を形成することができる。
 このような第1成分としては、特に限定されないが、例えば、A-1)1,1-ビス(3,4-ジメチルフェニル)エタン(1,1-Bis(3,4-Dimethylphenyl)ethane、沸点333℃)、A-2)安息香酸ベンジル(Benzyl Benzoate、沸点324℃)、A-3)4-(3-フェニルプロピル)ピリジン(4-(3-phenylpropyl)pyridine、沸点322℃)、A-4)α,α-ジクロロジフェニルメタン(α,α-Dichlorodiphenylmethane、沸点305℃)、A-5)4-イソプロピルビフェニル(4-Isopropylbiphenyl、沸点298℃)、A-6)N-メチルジフェニルアミン(N-Methyldiphenylamine、沸点297℃)、A-7)ビフェニルエーテル(Dibenzyl Ether、沸点295℃)、A-8)2,3,5-トリ-メチルビフェニルエーテル(2,3,5-tri-methy diphenyl ether、235TMDPE、沸点295℃)、A-9)2,2,5-トリ-メチルビフェニルエーテル(2,2,5-tri-methy diphenyl ether、225TMDPE、沸点290℃)、A-10)エチル 2-ナフチルエーテル(Ethyl 2-Naphthyl Ether、沸点282℃)、A-11)1-プロピル-4-フェニルベンゼン(1-propyl-4-phenyl benzene、NPBP、沸点280℃)、A-12)2-フェノキシ 1,4-ジメチルベンゼン(2-phenoxy 1,4-dimethyl benzene、25DMDPE、沸点280℃)、A-13)テトラエチレングリコールジメチルエーテル(Tetraethyleneglycol dimethyl ether、沸点275℃)、A-14)2-フェノキシテトラヒドロフラン(2-phenoxytetrahydropuran、沸点274.7℃)、A-15)2-フェニルアニソール(2-Phenylanisole、沸点274℃)、A-16)3-フェノキシトルエン(3-Phenoxytoluene、沸点273℃)、A-17)3-フェニルピリジン(3-phenylpyridine、沸点272℃)、A-18)ジメチルベンジルエーテル(Dimethyl benzyl ether、沸点270℃)、A-19)2-フェニルピリジン(2-Phenylpyridine、沸点268℃)、A-20)2-フェノキシトルエン(2-Phenoxytoluene、MDPE、沸点265℃)、A-21)ジフェニルメタン(Diphenyl methane、沸点265℃)、A-22)1,2-ジメトキ-4-(1-プロペニル)ベンゼン(1,2-Dimethoxy-4-(1-propenyl)benzene、沸点264℃)、A-23)トリエチレングリコールブチルメチルエーテル(Triethyleneglycol butylmethyl ether、沸点261℃)、A-24)ジフェニルエーテル(Diphenyl ether、沸点259℃)、A-25)4,4'-ジフルオロジフェニルメタン(4,4'-Difluorodiphenylmethane、沸点258℃)、A-26)ジエチレングリコールジブチルエーテル(Diethyleneglycol dibutyl ether、沸点256℃)、A-27)4-メトキシベンズアルデヒドジメチルアセタール(4-Methoxybenzaldehyde Dimethyl Acetal、沸点253℃)、A-28)1,3-ジプロポキシベンゼン(1,3-Dipropoxybenzene、沸点251℃)、A-29)シクロヘキシルベンゼン(Cyclohexylbenzene、CHB、沸点236℃)、A-30)ジエチレングリコールモノブチルエーテル(Diethyleneglycol monobutyl ether、沸点230℃)、A-31)1,3-ジメチル-2-イミダゾリジノン(1,3-dimethyl-2-imidazolidinone、DMI、沸点220℃)、A-32)p-トルニトリル(p-Tolunitrile、沸点218℃)、A-33)トリエチレングリコールジメチルエーテル(Triethyleneglycol dimethyl ether、沸点216℃)、A-34)トリプロピレングリコールジメチルエーテル(Tripropyleneglycol dimethyl ether、沸点215℃)、A-35)ジエチレングリコールブチルメチルエーテル(Diethyleneglycol butylmethyl ether、沸点212℃)、A-36)o-トルニトリル(o-Tolunitrile、沸点205℃)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
 この第1成分は、大気圧上での沸点が200℃以上のものであるが、250℃以上340℃以下であることが好ましい。これにより、大気圧(常圧)下において、不本意に成膜用インク(第1成分)が乾燥するのを的確に抑制することができるため、成膜用インクの保存安定性の向上が図られる。
 また、第1成分は、本実施形態では、成膜材料を溶解し得る溶媒であり、第1成分の0.5wt%以上の重量の成膜材料を溶解し得る溶解度を有することが好ましく、1.5wt%以上4.5wt%以下の溶解度を有することがより好ましい。かかる範囲内の溶解度を有することにより、第1成分を、成膜材料を十分に溶解し得るものであると言うことができ、成膜用インクの吐出後において第2成分が揮発したとしても、成膜用インク内において、成膜材料が析出(溶出)するのを的確に抑制または防止することができる。そのため、開口部内において、成膜用インク内に均質に溶解させた状態で、成膜用インクを均一に濡れ広げることができる。そのため、優れた寸法精度の膜が成膜される。
 [第2成分]
 第2成分は、第1成分よりも大気圧上での沸点が低いものである。
 このように第2成分は、揮発性が高いものであることから、成膜用インクが液滴として吐出されると、基板上に設けられた隔壁が備える開口部内、すなわち、隔壁により画成された区画(領域)内に着弾するまでの間で揮発する。その結果、液滴の容積が前記吐出時と比較して、着弾時の方が小さくなるため、開口部内に液滴として供給される成膜用インクの見かけ上の液滴量(供給量)を増加させることができる。すなわち、成膜用インクに含まれる成膜材料の開口部内への供給量を増大させることができる。
 また、第2成分が成膜用インク内に含まれることで、吐出時における成膜用インクの粘度を、成膜用インクの吐出に適した大きさに設定できることから、均一な大きさの液滴を優れた精度で吐出することができる。なお、成膜用インクの粘度は、具体的には、例えば、3cP以上20cP以下程度に設定されていることが好ましい。
 以上のような2つの利点から、成膜用インクを供給する開口部がたとえ小さいものであったとしても、膜の形成に要する成膜材料を、かかる各開口部内に均一に供給することができるようになる。
 なお、第2成分は、常温常圧で液状をなすものであることが好ましい。これにより、成膜用インクの液滴としての吐出の後に、第2成分を成膜用インクからより円滑に揮発させることができる。
 また、この第2成分と第1成分とは、成膜用インクが長期保存時においてもその全体に亘って均質なものであることが求められることから、相溶性を備えるものが、それぞれ、選択される。
 このような第2成分としては、特に限定されないが、例えば、B-1)1,2,4-トリメチルベンゼン(沸点169℃)、B-2)1,3,5-トリメチルベンゼン(沸点165℃)、B-3)アニソール(沸点154℃)、B-4)3-フルオロ-o-キシレン(沸点150℃)、B-5)4-ヘプタン(沸点150℃)、B-6)3-ヘプタン(沸点148℃)、B-7)2-フルオロ-m-キシレン(沸点147℃)、B-8)2-ヘプタン(沸点145℃)、B-9)エチレングリコールモノメチルエーテルアセテート(沸点145℃)、B-10)o-キシレン(沸点144℃)、B-11)2,6-ルチジン(沸点144℃)、B-12)1,2,4-トリメチルシクロヘキサン(沸点142℃)、B-13)m-キシレン(沸点139℃)、B-14)p-キシレン(沸点138℃)、B-15)1-ペンタノール(沸点138℃)、B-16)2-ヘキサノール(沸点135℃)、B-17)クロロベンゼン(沸点131℃)、B-18)シクロペンタノン(沸点130℃)、B-19)オクタン(沸点126℃)、B-20)1,2-ジメチルシクロヘキサノン(沸点124℃)、B-21)1,3-ジメチルシクロヘキサノン(沸点124℃)、B-22)エチレングリコールモノメチルエーテル(沸点124℃)、B-23)1,4-ジメチルシクロヘキサン(沸点120℃)、B-24)プロピレングリコールモノメチルエーテル(沸点120℃)、B-25)1-ブタノール(沸点118℃)、B-26)4-フルオロトルエン(沸点116℃)、B-27)3‐ペンタノール(沸点116℃)、B-28)ピリジン(沸点115℃)、B-29)2-フルオロトルエン(沸点114℃)、B-30)3-フルオロトルエン(沸点113℃)、B-31)トルエン(沸点111℃)、B-32)3-ペンタノン(沸点102℃)、B-33)ジオキサン(沸点101℃)、B-34)メチルシクロヘキサノン(沸点101℃)、B-35)1,4-ジオキサン(沸点101℃)、B-36)2-ペンタノン(沸点100℃)、B-37)水(沸点100℃)、B-38)2-ブタノール(沸点98℃)、B-39)ヘプタン(沸点98℃)、B-40)1-プロパノール(沸点97℃)、B-41)プロピレングリコールジメチルエーテル(沸点97℃)、B-42)アセトニトリル(沸点88℃)、B-43)エチレングリコールジメチルエーテル(沸点85℃)、B-44)2-プロパノール(沸点82℃)、B-45)Tert-ブタノール(沸点82℃)、B-46)シクロヘキサン(沸点81℃)、B-47)2-ブタノン(沸点80℃)、B-48)エタノール(沸点78℃)、B-49)1,3-ジオキソラン(沸点76℃)、B-50)ヘキサン(沸点69℃)、B-51)テトラヒドロフラン(沸点66℃)、B-52)メタノール(沸点65℃)、B-53)アセトン(沸点57℃)、B-54)Tert-ブチルメチルエーテル(沸点55℃)等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
 この第2成分は、第1成分よりも大気圧上での沸点が低ければ良いが、大気圧上での沸点が50℃以上170℃以下であることが好ましく、100℃以上170℃以下であることがより好ましく、130℃以上170℃以下であることがさらに好ましい。前記好ましい範囲内に設定することにより、成膜用インクの液滴としての吐出後に第2成分を確実に揮発させて、液滴の着弾時に、液滴の吐出時と比較して、その容積を確実に小さくすることができる。さらに、前記より好ましい範囲内に設定することにより、大気中における成膜用インクの保管時での安定的をも向上させることができる。また、前記さらに好ましい範囲内に設定することにより、成膜用インクの液滴としての吐出安定性をも高めることが可能となる。
 また、第1成分と第2成分との沸点の差は、30℃以上であることが好ましく、60℃以上であることがより好ましい。これにより、第2成分が成膜用インクから揮発することで除去される際に、この第2成分とともに第1成分が不本意に揮発して除去されるのを、的確に抑制または防止することができる。
 さらに、第2成分の含有量は、成膜用インクの全量に対して、5.0wt%以上50wt%以下であることが好ましく、10wt%以上50wt%以下であることが好ましい。前記下限値未満であると、成膜用インクの液滴としての吐出後に液滴の容積を十分には小さくすることができず、開口部の大きさによっては、開口部内に液滴として供給される成膜用インクの見かけ上の液滴量(供給量)を増加させることができるという効果を十分に得ることができないおそれがある。さらに、前記上限値を超えると、第1成分の種類によっては、第1成分の含有量が小さくなり、これに起因して、成膜用インク内での成膜材料の溶解率が低下し、その結果、膜の寸法精度が低下してしまうおそれがある。
 また、第2成分は、成膜材料が溶解性を示す溶媒であることが好ましく、その0.1wt%以上の重量の成膜材料を溶解し得る溶解度を有することが好ましく、0.5wt%以上1.0wt%以下の溶解度を有することがより好ましい。これにより、成膜用インクの保存時における安定性の向上が図られる。
 なお、以上のような液性媒体は、成膜用インクにおいて相溶性を示すものであれば、前述した第2成分および第1成分以外の他の成分を含んでいてもよく、より具体的には、大気圧上での沸点が第1成分より沸点が低く、かつ、第2成分より沸点が高い成分を1種または2種以上含んでいてもよい。なお、この他の成分としては、第1成分および第2成分として説明したのと同様のものを用いることができる。
 以上説明したような成膜用インクは、後述するようなインクジェット法(液滴吐出法)を用いた成膜方法に用いられるものである。インクジェット法によれば、比較的簡単かつ確実に、基板上に形成された開口部内に、均一な大きさの液滴を、均一な液滴数(液滴量)で供給することができる。
 以下、この成膜用インクを用いた、インクジェット法による成膜方法について説明する。
 (成膜方法)
 次に、前述した成膜用インクを用いた成膜方法、すなわち、本発明の成膜方法について説明する。
 図1は、本発明の成膜方法を説明するための図、図2は、本発明の成膜方法に用いる液滴吐出装置の概略構成を示す斜視図、図3は、図2の液滴吐出装置が備える液滴吐出ヘッドの概略構成を説明するための模式図である。
 本発明の成膜方法(膜の製造方法)は、[1]前述した成膜用インクを基材上に設けられた隔壁が備える開口部内に液滴として供給して、液状被膜を形成する工程(インク付与工程)と、[2]前記液状被膜を加熱して、液状被膜を乾燥させることで、前記成膜材料を主成分とする膜を形成する工程(乾燥工程)とを有する。
 かかる構成の成膜方法によれば、前記隔壁が備える開口部内に、均質で均一な膜厚を有する膜を優れた成膜精度で形成することができる。
 以下、本発明の成膜方法の各工程を順次詳細に説明する。
 [1]インク付与工程
 1-1
 まず、図1(a)に示すように、隔壁16が上面に設けられた基材15を用意する。
 この基材15は、成膜の目的とする膜が形成される対象物であり、特に限定されず、例えば、各種基板や、各種基板を処理や加工等を施したもの等を用いることができる。
 また、隔壁16は、基材15の上面のほぼ全面に、各種材料で構成される層を形成し、その後、この層をパターニングして開口部17を形成することで得ることができる。
 1-2
 次いで、図1(b)に示すように、基材15上に設けられた隔壁16が備える開口部17内に、前述した成膜用インク1を供給する。これにより、開口部17内に成膜用インク1からなる液状被膜1Aが形成される。
 本実施形態では、液滴吐出法により開口部17内に成膜用インク1を供給する。すなわち、成膜用インクを吐出する液滴吐出装置を用いて、成膜用インク1を液滴として吐出し、開口部17内に成膜用インク1を供給する。
 ここで、かかる液滴吐出装置の好適な実施形態について説明する。
 図2に示すように、液滴吐出装置100は、液滴吐出ヘッド(インクジェットヘッド。以下、単にヘッドと呼ぶ)110と、ベース130と、テーブル140と、インク貯留部(図示せず)と、テーブル位置決め手段170と、ヘッド位置決め手段180と、制御装置190とを有している。
 ベース130は、テーブル140、テーブル位置決め手段170、およびヘッド位置決め手段180等の液滴吐出装置100の各構成部材を支持する台である。
 テーブル140は、テーブル位置決め手段170を介してベース130に設置されている。また、テーブル140は、基材15を載置するものである。
 また、テーブル140の裏面には、ラバーヒーター(図示せず)が配設されている。テーブル140上に載置された基材15は、その上面全体がラバーヒーターにて所定の温度に加熱可能となっている。
 テーブル位置決め手段170は、第1移動手段171と、モーター172とを有している。テーブル位置決め手段170は、ベース130におけるテーブル140の位置を決定し、これにより、ベース130における基材15の位置を決定する。
 第1移動手段171は、Y方向と略平行に設けられた2本のレールと、当該レール上を移動する支持台とを有している。第1移動手段171の支持台は、モーター172を介してテーブル140を支持している。そして、支持台がレール上を移動することにより、基材15を載置するテーブル140は、Y方向に移動および位置決めされる。
 モーター172は、テーブル140を支持しており、θz方向にテーブル140を揺動および位置決めする。
 ヘッド位置決め手段180は、第2移動手段181と、リニアモーター182と、モーター183、184、185とを有している。ヘッド位置決め手段180は、ヘッド110の位置を決定する。
 第2移動手段181は、ベース130から立設する2本の支持柱と、当該支持柱同士の間に当該支持柱に支持されて設けられ、2本のレールを有するレール台と、レールに沿って移動可能でヘッド110を支持する支持部材(図示せず)とを有している。そして、支持部材がレールに沿って移動することにより、ヘッド110は、X方向に移動および位置決めされる。
 リニアモーター182は、支持部材付近に設けられており、ヘッド110のZ方向の移動および位置決めをすることができる。
 モーター183、184、185は、ヘッド110を、それぞれα,β,γ方向に揺動および位置決めする。
 以上のようなテーブル位置決め手段170およびヘッド位置決め手段180とにより、液滴吐出装置100は、ヘッド110のインク吐出面115Pと、テーブル140上の基材15との相対的な位置および姿勢を、正確にコントロールできるようになっている。
 図3に示すように、ヘッド110は、インクジェット方式(液滴吐出方式)によって成膜用インク1をノズル(突出部)118から吐出するものである。本実施形態では、ヘッド110は、圧電体素子としてのピエゾ素子113を用いてインクを吐出させるピエゾ方式を用いている。ピエゾ方式は、成膜用インク1に熱を加えないため、材料の組成に影響を与えないなどの利点を有する。
 ヘッド110は、ヘッド本体111と、振動板112と、ピエゾ素子113とを有している。
 ヘッド本体111は、本体114と、その下端面にノズルプレート115とを有している。そして、本体114を板状のノズルプレート115と振動板112とが挟み込むことにより、空間としてのリザーバ116およびリザーバ116から分岐した複数のインク室117が形成されている。
 リザーバ116には、後述するインク貯留部より成膜用インク1が供給される。リザーバ116は、各インク室117に成膜用インク1を供給するための流路を形成している。
 また、ノズルプレート115は、本体114の下端面に装着されており、インク吐出面115Pを構成している。このノズルプレート115には、成膜用インク1を吐出する複数のノズル118が、各インク室117に対応して開口されている。そして、各インク室117から対応するノズル(吐出部)118に向かって、インク流路が形成されている。
 振動板112は、ヘッド本体111の上端面に装着されており、各インク室117の壁面を構成している。振動板112は、ピエゾ素子113の振動に応じて振動可能となっている。
 ピエゾ素子113は、その振動板112のヘッド本体111と反対側に、各インク室117に対応して設けられている。ピエゾ素子113は、水晶等の圧電材料を一対の電極(不図示)で挟持したものである。その一対の電極は、駆動回路191に接続されている。
 そして、駆動回路191からピエゾ素子113に電気信号を入力すると、ピエゾ素子113が膨張変形または収縮変形する。ピエゾ素子113が収縮変形すると、インク室117の圧力が低下して、リザーバ116からインク室117に成膜用インク1が流入する。また、ピエゾ素子113が膨張変形すると、インク室117の圧力が増加して、ノズル118から成膜用インク1が吐出される。なお、印加電圧を変化させることにより、ピエゾ素子113の変形量を制御することができる。また、印加電圧の周波数を変化させることにより、ピエゾ素子113の変形速度を制御することができる。すなわち、ピエゾ素子113への印加電圧を制御することにより、成膜用インク1の吐出条件を制御し得るようになっている。
 制御装置190は、液滴吐出装置100の各部位を制御する。例えば、駆動回路191で生成する印加電圧の波形を調節して成膜用インク1の吐出条件を制御したり、ヘッド位置決め手段180およびテーブル位置決め手段170を制御することにより基材15への成膜用インク1の吐出位置を制御したりする。
 インク貯留部(図示せず)は、成膜用インク1を貯留する。
 インク貯留部(図示せず)は、搬送路(図示せず)を介して、ヘッド110(リザーバ116)に接続されている。
 以上説明したような液滴吐出装置100を用いて、ヘッド110から、成膜用インク1が液滴として吐出され、隔壁16が備える開口部17に着弾することで、開口部17内に成膜用インク1が供給される。
 この際、成膜用インク1に、液性媒体として含まれる第2成分は、第1成分よりも大気圧上での沸点が低く、揮発性が高いものである。そのため、成膜用インク1が液滴として吐出されると、開口部17内に着弾するまでの間で揮発する。その結果、液滴の容積がヘッド110からの吐出時と比較して、着弾時の方が小さくなる(図1(b)参照。)。したがって、開口部17内に液滴として供給される成膜用インク1の見かけ上の液滴量(供給量)を増加させることができる。その結果、膜1Bを形成するのに必要な成膜材料を、開口部17の大きさがたとえ小さいものであったとしても、確実に供給されることとなる。また、前記吐出後における液滴の微小化によって、より多くの液滴を隔壁16内に供給することが可能であるため、複数の隔壁内に供給される成膜用インク1の総液量の均一化を容易に図ることができる。これによって、各開口部17内に形成される膜1Bの膜厚の均一性を向上させることができる。
 また、第2成分が成膜用インク1内に含まれることで、ヘッド110からの吐出時における成膜用インク1の粘度を、成膜用インク1の吐出に適した大きさに設定できることから、均一な大きさの液滴を優れた精度で吐出することができる。そのため、各開口部17に供給される、成膜用インク1の供給量を均一なものとすることができる。
 以上のことから、膜1Bの形成に要する成膜材料を、膜1Bを形成すべき各開口部17内に均一に供給することができる。
 また、液滴は、その吐出時において、2ng以上12ng以下の重さを有することが好ましく、5ng以上8ng以下の重さを有することがより好ましい。これにより、均一な重さを有する液滴を液滴吐出ヘッドから吐出させることができる。
 なお、ヘッド110からの液滴の吐出の後、開口部17内に着弾するまでの間で、第2成分が揮発することで、成膜用インクは、吐出時と比較して着弾時において、その容積が小さくなるが、このような容積の減少は、着弾後においても持続し、開口部17内を成膜用インク1が濡れ広がり液状被膜1Aを形成する際においても持続する。このような濡れ広がり時における体積の減少によっても、開口部17内に液滴として供給される成膜用インク1の見かけ上の液滴量(供給量)を増加させることができる。
 そして、開口部17内に、液滴が着弾すると、すなわち、成膜用インク1が供給されると、この成膜用インク1が開口部17を濡れ広がり、その結果、開口部17内に成膜用インク1からなる液状被膜1Aが形成される(図1(b)参照。)。
 この際、成膜用インク1に、液性媒体として含まれる第1成分は、常圧(大気圧)上での沸点が200℃以上であり、揮発性が低いものである。そのため、液滴の着弾後においても、成膜用インク1中から揮発することなく、残存する。そして、この第1成分に対して成膜材料が溶解性を示すことから、成膜材料が第1成分すなわち成膜用インク1に溶解した状態を維持し、この状態で、開口部17内を濡れ広がることで、液状被膜1Aが形成される。
 このインク付与工程[1]における雰囲気の温度および圧力は、それぞれ、成膜用インク1の組成や第1成分および第2成分の沸点および融点に応じて決められるものであり、開口部17内に成膜用インク1を付与することができれば、特に限定されないが、常温常圧であるのが好ましい。したがって、常温常圧下において、開口部17内に成膜用インク1を付与可能な成膜用インク1を用いるのが好ましい。これにより、インク付与工程[1]をより簡単に行い得る。
 [2]乾燥工程
 次に、開口部17内に形成された液状被膜1A(成膜用インク1)を加熱する。
 これにより、液状被膜から第1成分を除去して、液状被膜を乾燥させることで、図1(c)に示すように、成膜材料を主成分とする膜1Bが形成される。
 この際、液状被膜1A中には、液性溶媒として第1成分が残存し、この第1成分が成膜材料に対する溶解性を示すことから、成膜材料は、液状被膜1A中に均質に溶解された状態となっている。したがって、この液状被膜1Aを加熱・乾燥させて形成される膜1Bは、均質で均一な膜厚を有するものとして形成される。
 なお、液状被膜に第2成分が残存する場合、この第2成分の沸点は第1成分の沸点よりも低いことから、この加熱による第1成分の除去の際に、第2成分も同時に除去される。
 乾燥工程[2]における雰囲気の温度および圧力は、それぞれ、成膜用インク1の組成や第1成分および第2成分の沸点および融点に応じて決められるものであり、基材15上の液状被膜1Aから第1成分を除去することができれば、特に限定されないが、その加熱温度は、第1成分の沸点よりも高いのが好ましく、第1成分の沸点よりも5~30℃程度高いのがより好ましい。また、圧力は、減圧下であるのが好ましく、10Pa以上10-7Pa以下程度であるのがより好ましい。
 また、加熱・減圧の時間は、特に限定されないが、1分以上30分以下程度に設定される。
 さらに、液状被膜1Aを加熱する方法は、特に限定されないが、ホットプレートや赤外線などで行うことができ、さらに、前述した液滴吐出装置100のテーブル140に設けられたラバーヒーターにより行ってもよい。
 なお、以上のようにして得られる膜1Bは、成膜の目的とする膜の構成材料またはその前駆体で構成されたものとなる。
 そして、成膜材料として前駆体を用いた場合、膜1Bは、必要に応じて、所定の処理が施される。例えば、成膜材料が低分子量化合物である場合、その低分子量化合物の重合反応を生じさせる処理を行うことにより、高分子量化合物を含んで構成された膜を得ることができる。また、成膜材料が樹脂材料である場合、その樹脂材料の架橋反応を生じさせる処理を行うことにより、高分子量化合物を含んで構成された膜を得ることができる。また、成膜材料が金属粒子およびバインダー(樹脂材料)を含むものである場合、膜1Bに焼成処理を施すことにより、金属で構成された膜を得ることができる。
 以上のような工程を経ることで、開口部17内に、均質で均一な膜厚を有する膜1Bが優れた成膜精度で形成される。
 (表示装置)
 次に、本発明の膜付きデバイスについて説明する。
 図4は、本発明の膜付きデバイスの一例である発光装置およびカラーフィルターを備える表示装置を示す断面図、図5は、図4に示す表示装置に備えられた発光装置の発光素子の一例を示す断面図である。なお、以下では、説明の都合上、図4中および図5中の上側を「上」、下側を「下」として説明を行う。
 図4に示す表示装置300は、複数の発光素子200R、200G、200Bを備える発光装置101と、各発光素子200R、200G、200Bに対応して設けられた透過層19を備える透過フィルター102とを有している。
 このような表示装置300は、複数の発光素子200R、200G、200Bおよび複数の透過層19がサブ画素300R、300G、300Bに対応して設けられ、トップエミッション構造のディスプレイパネルを構成している。
 なお、本実施形態では表示装置の駆動方式としてアクティブマトリックス方式を採用した例に説明するが、パッシブマトリックス方式を採用したものであってもよい。
 発光装置101は、基板21と、複数の発光素子200R、200G、200Bと、複数のスイッチング素子24とを有している。
 基板21は、複数の発光素子200R、200G、200Bおよび複数のスイッチング素子24を支持するものである。本実施形態の各発光素子200R、200G、200Bは、基板21とは反対側から光を取り出す構成(トップエミッション型)である。したがって、基板21には、透明基板および不透明基板のいずれも用いることができる。なお、各発光素子200R、200G、200Bが基板21側から光を取り出す構成(ボトムエミッション型)である場合には、基板21は、実質的に透明(無色透明、着色透明または半透明)とされる。
 基板21の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 不透明基板としては、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
 このような基板21の平均厚さは、特に限定されないが、0.1~30mm程度であるのが好ましく、0.1~10mm程度であるのがより好ましい。
 このような基板21上には、複数のスイッチング素子24がマトリクス状に配列されている。
 各スイッチング素子24は、各発光素子200R、200G、200Bに対応して設けられ、各発光素子200R、200G、200Bを駆動するための駆動用トランジスターである。
 このような各スイッチング素子24は、シリコンからなる半導体層241と、半導体層241上に形成されたゲート絶縁層242と、ゲート絶縁層242上に形成されたゲート電極243と、ソース電極244と、ドレイン電極245とを有している。
 このような複数のスイッチング素子24を覆うように、絶縁材料で構成された平坦化層22が形成されている。
 平坦化層22上には、各スイッチング素子24に対応して発光素子200R、200G、200Bが設けられている。
 発光素子200Rは、平坦化層22上に、反射膜32、腐食防止膜33、陽極3、積層体(有機EL発光部)14(14R)、陰極12、陰極カバー34がこの順に積層されている。本実施形態では、各発光素子200R、200G、200Bの陽極3は、画素電極を構成し、各スイッチング素子24のドレイン電極245に導電部(配線)27により電気的に接続されている。また、各発光素子200R、200G、200Bの陰極12は、共通電極とされている。
 このような発光素子200R、200G、200Bがそれぞれ備える積層体14R、14G、14Bは、それぞれ、前述したような成膜方法により形成することができる。その場合、成膜用インクの成膜材料として、後述する積層体14R、14G、14Bが備える各層に含まれる構成材料が含有される。なお、積層体14R、14G、14Bの製造方法については、後に詳述する。
 また、発光素子200G、200Bの構成は、それぞれ、発光層6の構成(すなわち、発光色が異なること)以外は、発光素子200Rと同様に構成することができる。なお、発光素子200R、200G、200Bは、発光層6の構成以外が互いに同じ構成であってもよいし、互いに異なる構成であってもよい。例えば、発光素子200R、200G、200Bの積層体14R、14G、14Bは、発光層6の構成以外が互いに同じ構成であってもよいし、互いに異なる構成であってもよい。ただし、積層体14R、14G、14Bが互いに異なる構成である場合、本発明の成膜用インクおよび成膜方法を適用することによる効果が顕著となる。
 隣接する発光素子200R、200G、200B同士の間には、隔壁31が設けられている。
 この隔壁31は、隣接する発光素子200R、200G、200B同士の発光が干渉し合うのを防止する機能を有する。また、後に詳述するように、液滴吐出法により積層体14R、14G、14Bを製造する際に、隔壁31は、インクをせき止める機能を有する。
 このように構成された発光装置101には、エポキシ樹脂等の熱硬化性樹脂で構成された樹脂層35を介して、透過フィルター102が接合されている。
 透過フィルター102は、基板20と、複数の透過層19と、遮光層(隔壁)36とを有している。
 基板(封止基板)20は、各透過層19および隔壁36を支持するものである。前述したように本実施形態の各発光素子200R、200G、200Bはトップエミッション型であるため、基板20には、透明基板が用いられる。
 このような基板20の構成材料としては、基板20が光透過性を有するものであれば、特に限定されず、前述した基板20の構成材料と同様のものを用いることができる。
 複数の透過層19は、それぞれ、発光素子200R、200G、200Bに対応して設けられている。
 各透過層19は、それぞれ、発光素子200Rからの赤色の光R、発光素子200Gからの赤色の光G、および、発光素子200Gからの赤色の光Bを透過するフィルター部である。このような発光素子200R、200G、200Bから発光される光R、G、Bを透過層19で透過させることで、フルカラー画像を表示することができる。
 この透過層19は、透光性を有する樹脂材料で構成されている。この樹脂材料として、基板21の構成材料で挙げたもののうち、透光性を有するものが用いられる。
 隣接する透過層19同士の間には、隔壁36が形成されている。
 この隔壁36は、意図しないサブ画素300R、300G、300Bが発光するのを防止する機能を有する。また、後に詳述するように、液滴吐出法により透過フィルター102を製造する際に、隔壁36は、インクをせき止める機能を有する。
 (発光素子)
 ここで、図5に基づき、発光素子200R、200G、200Bを詳細に説明する。なお、以下では、発光素子200Rを代表的に説明し、発光素子200G、200Bについては、発光素子200Rとの相違点を中心に説明し、発光素子200Rと同様の事項については、その説明を省略する。
 図5に示す発光素子(エレクトロルミネッセンス素子)200Rは、発光スペクトルがR(赤色)の光を発光させる赤色発光層6を備えるものである。
 このような発光素子200Rでは、前述したように2つの電極間(陽極3と陰極12との間)に積層体14が介挿されており、この積層体14は、図5に示すように、陽極3側から陰極12側へ、正孔注入層4と正孔輸送層5と赤色発光層6と電子輸送層10と電子注入層11とがこの順に積層されている。
 言い換えすれば、発光素子200Rは、陽極3と正孔注入層4と正孔輸送層5と赤色発光層6と電子輸送層10と電子注入層11と陰極12とがこの順に積層されてなるものである。
 また、本実施形態では、陽極3と平坦化層22との間に、反射膜32および腐食防止膜33が設けられ、また、陰極12の積層体14と反対側には、陰極カバー(封止層)34が設けられている。
 このような発光素子200Rにあっては、赤色発光層6に対し、陰極12側から電子が供給(注入)されるとともに、陽極3側から正孔が供給(注入)される。そして、赤色発光層6では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーによりエキシトン(励起子)が生成し、エキシトンが基底状態に戻る際にエネルギー(赤色の蛍光やりん光)を放出(発光)する。これにより、発光素子200Rは、赤色発光する。そして、このような発光が、透過フィルター102側から取り出されるときに、反射膜32と陰極12との間を反射する共振効果により増強されるが、この取り出しの際に、積層体14Rが、後述のように、本発明の成膜方法を適用して、均一な厚さに形成されている。したがって、光路長の均一化がなされていることから、隔壁31の際部において増強ムラを生じさせることなく、発光光を増強させることができる。
 このような発光素子200Rを構成する各層は、前述した成膜方法により形成することができる。特に、有機材料で構成された層、より好ましくは発光層を前述した成膜方法により形成するのが好ましい。その場合、成膜用インクには、後述する発光層を構成する材料またはその前駆体が含まれる。
 以下、発光素子200Rを構成する各部を順次説明する。
 (陽極)
 陽極3は、後述する正孔注入層4を介して正孔輸送層5に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。
 陽極3の構成材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 このような陽極3の平均厚さは、特に限定されないが、10~200nm程度であるのが好ましく、50~150nm程度であるのがより好ましい。
 (陰極)
 一方、陰極12は、後述する電子注入層11を介して電子輸送層10に電子を注入する電極である。この陰極12の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。
 陰極12の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rbまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば、複数層の積層体等)用いることができる。
 特に、陰極12の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極12の構成材料として用いることにより、陰極12の電子注入効率および安定性の向上を図ることができる。
 このような陰極12の平均厚さは、特に限定されないが、80~10000nm程度であるのが好ましく、100~500nm程度であるのがより好ましい。
 (正孔注入層)
 正孔注入層4は、陽極3からの正孔注入効率を向上させる機能を有するものである。
 この正孔注入層4の構成材料(正孔注入材料)としては、特に限定されないが、例えば、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)、PEDOT/PSS/Nafion(登録商標)、ポリチオフェンおよびその誘導体、ポリアニリンおよびその誘導体、ポリピロールおよびその誘導体、N,N,N’,N’-テトラフェニル-p-ジアミノベンゼンおよびその誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 このような正孔注入層4の平均厚さは、特に限定されないが、5~150nm程度であるのが好ましく、10~100nm程度であるのがより好ましい。
 なお、この正孔注入層4は、省略することができる。
 (正孔輸送層)
 正孔輸送層5は、陽極3から正孔注入層4を介して注入された正孔を赤色発光層6まで輸送する機能を有するものである。
 この正孔輸送層5の構成材料((正孔輸送材料))としては、特に限定されないが、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができる。
 p型の高分子材料(有機ポリマー)としては、例えば、ポリ(2,7-(9,9-ジ-n-オクチルフルオレン)-(1,4-フェニレン-((4-sec-ブチルフェニル)イミノ)-1,4-フェニレン(TFB)等のポリアリールアミンのようなアリールアミン骨格を有するもの、フルオレン-ビチオフェン共重合体のようなフルオレン骨格を有するもの、フルオレン-アリールアミン共重合体のようなアリールアミン骨格およびフルオレン骨格の双方を有するもの、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。
 このようなp型の高分子材料は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
 一方、p型の低分子材料としては、例えば、1,1-ビス(4-ジ-パラ-トリアミノフェニル)シクロへキサン、1,1’-ビス(4-ジ-パラ-トリルアミノフェニル)-4-フェニル-シクロヘキサンのようなアリールシクロアルカン系化合物、4,4’,4’’-トリメチルトリフェニルアミン、N,N,N’,N’-テトラフェニル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD1)、N,N’-ジフェニル-N,N’-ビス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD2)、N,N,N’,N’-テトラキス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD3)、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)、TPTEのようなアリールアミン系化合物、N,N,N’,N’-テトラフェニル-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(パラ-トリル)-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(メタ-トリル)-メタ-フェニレンジアミン(PDA)のようなフェニレンジアミン系化合物、カルバゾール、N-イソプロピルカルバゾール、N-フェニルカルバゾールのようなカルバゾール系化合物、スチールベン、4-ジ-パラ-トリルアミノスチールベンのようなスチールベン系化合物、OZのようなオキサゾール系化合物、トリフェニルメタン、m-MTDATAのようなトリフェニルメタン系化合物、1-フェニル-3-(パラ-ジメチルアミノフェニル)ピラゾリンのようなピラゾリン系化合物、ベンジン(シクロヘキサジエン)系化合物、トリアゾールのようなトリアゾール系化合物、イミダゾールのようなイミダゾール系化合物、1,3,4-オキサジアゾール、2,5-ジ(4-ジメチルアミノフェニル)-1,3,4,-オキサジアゾールのようなオキサジアゾール系化合物、アントラセン、9-(4-ジエチルアミノスチリル)アントラセンのようなアントラセン系化合物、フルオレノン、2,4,7,-トリニトロ-9-フルオレノン、2,7-ビス(2-ヒドロキシ-3-(2-クロロフェニルカルバモイル)-1-ナフチルアゾ)フルオレノンのようなフルオレノン系化合物、ポリアニリンのようなアニリン系化合物、シラン系化合物、1,4-ジチオケト-3,6-ジフェニル-ピロロ-(3,4-c)ピロロピロールのようなピロール系化合物、フローレンのようなフローレン系化合物、ポルフィリン、金属テトラフェニルポルフィリンのようなポルフィリン系化合物、キナクリドンのようなキナクリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、銅ナフタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのような金属または無金属のナフタロシアニン系化合物、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン、N,N,N’,N’-テトラフェニルベンジジンのようなベンジジン系化合物等が挙げられる。
 このような正孔輸送層5の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、10~100nm程度であるのがより好ましい。
 なお、この正孔輸送層5は、省略することができる。
 (赤色発光層)
 この赤色発光層(第1の発光層)6は、赤色(第1の色)に発光する赤色発光材料を含んで構成されている。
 このような赤色発光材料としては、特に限定されず、各種赤色蛍光材料、赤色燐光材料を1種または2種以上組み合わせて用いることができる。
 赤色蛍光材料としては、赤色の蛍光を発するものであれば特に限定されず、例えば、ペリレン誘導体、ユーロピウム錯体、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、ポルフィリン誘導体、ナイルレッド、2-(1,1-ジメチルエチル)-6-(2-(2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H-ベンゾ(ij)キノリジン-9-イル)エテニル)-4H-ピラン-4H-イリデン)プロパンジニトリル(DCJTB)、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DCM)、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-(1-シアノビニレンフェニレン)]、ポリ[{9,9-ジヘキシル-2,7-ビス(1-シアノビニレン)フルオレニレン}オルト-コ-{2,5-ビス(N,N’-ジフェニルアミノ)-1,4-フェニレン}]、ポリ[{2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-(1-シアノビニレンフェニレン)}-コ-{2,5-ビス(N,N’-ジフェニルアミノ)-1,4-フェニレン}]等を挙げられる。
 赤色燐光材料としては、赤色の燐光を発するものであれば特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム等の金属錯体が挙げられ、これら金属錯体の配位子の内の少なくとも1つがフェニルピリジン骨格、ビピリジル骨格、ポルフィリン骨格等を持つものも挙げられる。より具体的には、トリス(1-フェニルイソキノリン)イリジウム、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジネート-N,C’]イリジウム(アセチルアセトネート)(btp2Ir(acac))、2,3,7,8,12,13,17,18-オクタエチル-12H,23H-ポルフィリン-白金(II)、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジネート-N,C’]イリジウム、ビス(2-フェニルピリジン)イリジウム(アセチルアセトネート)が挙げられる。
 また、赤色発光層6中には、前述した赤色発光材料の他に、赤色発光材料がゲスト材料として添加されるホスト材料が含まれていてもよい。
 ホスト材料は、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを赤色発光材料に移動(フェルスター移動またはデクスター移動)させて、赤色発光材料を励起する機能を有する。このようなホスト材料を用いる場合、例えば、ゲスト材料である赤色発光材料をドーパントとしてホスト材料にドープして用いることができる。
 このようなホスト材料としては、用いる赤色発光材料に対して前述したような機能を発揮するものであれば、特に限定されないが、赤色発光材料が赤色蛍光材料を含む場合、例えば、ナフタセン誘導体、ナフタレン誘導体、アントラセン誘導体のようなアセン誘導体(アセン系材料)、ジスチリルアリーレン誘導体、ペリレン誘導体、ジスチリルベンゼン誘導体、ジスチリルアミン誘導体、トリス(8-キノリノラト)アルミニウム錯体(Alq)等のキノリノラト系金属錯体、トリフェニルアミンの4量体等のトリアリールアミン誘導体、オキサジアゾール誘導体、シロール誘導体、ジカルバゾール誘導体、オリゴチオフェン誘導体、ベンゾピラン誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、4,4’-ビス(2,2’-ジフェニルビニル)ビフェニル(DPVBi)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることもできる。
 前述したような赤色発光材料(ゲスト材料)およびホスト材料を用いる場合、赤色発光層6中における赤色発光材料の含有量(ドープ量)は、0.01~10wt%であるのが好ましく、0.1~5wt%であるのがより好ましい。赤色発光材料の含有量をこのような範囲内とすることで、発光効率を最適化することができる。
 このような赤色発光層6の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、10~100nm程度であるのがより好ましい。
 (電子輸送層)
 電子輸送層10は、陰極12から電子注入層11を介して注入された電子を赤色発光層6に輸送する機能を有するものである。
 電子輸送層10の構成材料(電子輸送材料)としては、例えば、トリス(8-キノリノラト)アルミニウム(Alq)等の8-キノリノールないしその誘導体を配位子とする有機金属錯体などのキノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 電子輸送層10の平均厚さは、特に限定されないが、0.5~100nm程度であるのが好ましく、1~50nm程度であるのがより好ましい。
 なお、この電子輸送層10は、省略することができる。
 (電子注入層)
 電子注入層11は、陰極12からの電子注入効率を向上させる機能を有するものである。
 この電子注入層11の構成材料(電子注入材料)としては、例えば、各種の無機絶縁材料、各種の無機半導体材料が挙げられる。
 このような無機絶縁材料としては、例えば、アルカリ金属カルコゲナイド(酸化物、硫化物、セレン化物、テルル化物)、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらを主材料として電子注入層を構成することにより、電子注入性をより向上させることができる。特にアルカリ金属化合物(アルカリ金属カルコゲナイド、アルカリ金属のハロゲン化物等)は仕事関数が非常に小さく、これを用いて電子注入層11を構成することにより、発光素子200は、高い輝度が得られるものとなる。
 アルカリ金属カルコゲナイドとしては、例えば、LiO、LiO、NaS、NaSe、NaO等が挙げられる。
 アルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、MgO、CaSe等が挙げられる。
 アルカリ金属のハロゲン化物としては、例えば、CsF、LiF、NaF、KF、LiCl、KCl、NaCl等が挙げられる。
 アルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF、BeF等が挙げられる。
 また、無機半導体材料としては、例えば、Li、Na、Ba、Ca、Sr、Yb、Al、Ga、In、Cd、Mg、Si、Ta、SbおよびZnのうちの少なくとも1つの元素を含む酸化物、窒化物または酸化窒化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 電子注入層11の平均厚さは、特に限定されないが、0.1~1000nm程度であるのが好ましく、0.2~100nm程度であるのがより好ましく、0.2~50nm程度であるのがさらに好ましい。
 なお、この電子注入層11は、省略することができる。
 以上のように発光素子200Rが構成される。また、発光素子200G、200Bは、発光素子200Rが備える赤色発光層6に代えて、それぞれ、以下に示すような、緑色発光層および青色発光層を備えるものであり、これにより、発光スペクトルがG(緑色)およびB(青色)の光を発光する。
 (青色発光層)
 青色発光層(第2の発光層)は、青色(第2の色)に発光する青色発光材料を含んで構成されている。
 このような青色発光材料としては、例えば、各種青色蛍光材料および青色燐光材料が挙げられ、これらのうちの1種または2種以上組み合わせて用いることができる。
 青色蛍光材料としては、青色の蛍光を発するものであれば、特に限定されず、例えば、ジスチリルジアミン系化合物等のジスチリルアミン誘導体、フルオランテン誘導体、ピレン誘導体、ペリレンおよびペリレン誘導体、アントラセン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、クリセン誘導体、フェナントレン誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(BCzVBi)、ポリ[(9.9-ジオクチルフルオレン-2,7-ジイル)-コ-(2,5-ジメトキシベンゼン-1,4-ジイル)]、ポリ[(9,9-ジヘキシルオキシフルオレン-2,7-ジイル)-オルト-コ-(2-メトキシ-5-{2-エトキシヘキシルオキシ}フェニレン-1,4-ジイル)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-コ-(エチルニルベンゼン)]等が挙げられる。
 青色燐光材料としては、青色の燐光を発するものであれば、特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム等の金属錯体が挙げられ、具体的には、ビス[4,6-ジフルオロフェニルピリジネート-N,C’]-ピコリネート-イリジウム、トリス[2-(2,4-ジフルオロフェニル)ピリジネート-N,C’]イリジウム、ビス[2-(3,5-トリフルオロメチル)ピリジネート-N,C’]-ピコリネート-イリジウム、ビス(4,6-ジフルオロフェニルピリジネート-N,C’)イリジウム(アセチルアセトネート)等が挙げられる。
 また、青色発光層中には、前述した青色発光材料の他に、青色発光材料がゲスト材料として添加されるホスト材料が含まれていてもよい。
 このようなホスト材料としては、前述した赤色発光層(第1の発光層)6で説明したホスト材料と同様のものを用いることができる。
 また、このような青色発光層のホスト材料は、赤色発光層6のホスト材料と同様に、アセン誘導体(アセン系材料)を用いるのが好ましい。これにより、青色発光層をより高輝度かつ高効率で赤色発光させることができる。
 (緑色発光層)
 緑色発光層(第3の発光層)は、緑色(第3の色)に発光する緑色発光材料を含んで構成されている。
 このような緑色発光材料としては、特に限定されず、例えば、各種緑色蛍光材料および緑色燐光材料が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 緑色蛍光材料としては、緑色の蛍光を発するものであれば特に限定されず、例えば、クマリン誘導体、キナクリドン誘導体等のキナクリドンおよびその誘導体、9,10-ビス[(9-エチル-3-カルバゾール)-ビニレニル]-アントラセン、ポリ(9,9-ジヘキシル-2,7-ビニレンフルオレニレン)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-コ-(1,4-ジフェニレン-ビニレン-2-メトキシ-5-{2-エチルヘキシルオキシ}ベンゼン)]、ポリ[(9,9-ジオクチル-2,7-ジビニレンフルオレニレン)-オルト-コ-(2-メトキシ-5-(2-エトキシルヘキシルオキシ)-1,4-フェニレン)]等が挙げられる。
 緑色燐光材料としては、緑色の燐光を発するものであれば特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム等の金属錯体が挙げられ、具体的には、ファク-トリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)、ビス(2-フェニルピリジネート-N,C’)イリジウム(アセチルアセトネート)、ファク-トリス[5-フルオロ-2-(5-トリフルオロメチル-2-ピリジン)フェニル-C,N]イリジウム等が挙げられる。
 また、緑色発光層中には、前述した緑色発光材料の他に、緑色発光材料をゲスト材料とするホスト材料が含まれていてもよい。
 このようなホスト材料としては、前述した赤色発光層(第1の発光層)6で説明したホスト材料と同様のものを用いることができる。
 また、このような緑色発光層のホスト材料は、赤色発光層6のホスト材料と同様に、アセン誘導体(アセン系材料)を用いるのが好ましい。これにより、緑色発光層をより高輝度かつ高効率で赤色発光させることができる。
 (発光素子における積層体の製造方法)
 以上のように構成された表示装置300が備える発光素子200R、200G、200Bの積層体14R、14G、14Bの形成に、本発明の成膜方法が適用される。
 以下、本発明の成膜方法を用いた、積層体14R、14G、14Bの製造方法(形成方法)について説明する。
 図6は、本発明の成膜方法を表示装置が備える発光素子の積層体の製造に適用した場合を説明する図である。
 なお、以下の説明では、積層体14R、14G、14Bが備える各層を形成するための成膜用インクを用いる点以外は、前述した成膜方法と同様であるので、前述した成膜方法と同様の事項については、その説明を省略する。
 また、本実施形態では、積層体14Rは、陽極3側から陰極12側へ、正孔注入層4と正孔輸送層5と赤色発光層6と電子輸送層10と電子注入層11とがこの順に積層されたものであり、積層体14G、14Bは、それぞれ、積層体14Rが備える赤色発光層6に代えて緑色発光層および青色発光層を備えるものであることから、以下では、積層体14Rを、平坦化層22上に設けられた隔壁31の開口部から露出する陽極3上に、成膜する場合を一例に説明する。
 A-1
 まず、図6(a)に示すような、平坦化層22上に設けられた隔壁31の開口部から露出する陽極3上に、成膜用インク4Aを供給する(図6(b)参照。)。
 本工程は、前述した成膜方法のインク付与工程[1]と同様にして行うことができる。
 成膜用インク4Aは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク4Aは、成膜材料として、正孔注入材料が含まれている。
 なお、隔壁31の開口部から露出する陽極3の表面には、陽極3の構成材料として前述した酸化物(金属酸化物)を用いた場合、水酸基が露出している。そのため、第2成分として、水酸基を備えるものを用いることで、陽極3の表面と第2成分とが優れた親和性を有することとなる。そのため、開口部内に液滴として供給された成膜用インク4Aをより円滑に陽極3上を濡れ広げさせることができる。
 さらに、隔壁31の隔壁面311の表面に、撥液性を付与する表面処理を施した場合、この表面にはフッ素元素が露出している。そのため、第2成分として、水酸基を備えるものを用いることで、隔壁面311の表面と成膜用インク4Aとの間に反発する反発力が生じ、これにより、隔壁面311において、成膜用インク4Aに含まれる成膜材料が染み上がるのをより的確に抑制または防止することができる。
 そして、前述した成膜方法の乾燥工程[2]と同様にして、陽極3上に付与された成膜用インク4Aを減圧乾燥もしくは加熱乾燥する。
 これにより、図6(c)に示すように、成膜用インク4Aから第1成分が除去され、その結果、成膜用インク4Aが乾燥することで、正孔注入層4が形成される。
 A-2
 次に、隔壁31の開口部に形成された正孔注入層4上に、前述した成膜方法のインク付与工程[1]と同様にして、成膜用インク5Aを供給する。
 成膜用インク5Aは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク5Aは、成膜材料として、正孔輸送材料が含まれている。
 なお、隔壁31の隔壁面311の表面に、撥液性を付与する表面処理を施した場合、この表面にはフッ素元素が露出している。そのため、第2成分として、水酸基を備えるものを用いることで、隔壁面311の表面と成膜用インク5Aとの間に反発する反発力が生じ、これにより、隔壁面311において、成膜用インク5Aに含まれる成膜材料が染み上がるのをより的確に抑制または防止することができる。
 そして、前述した成膜方法の乾燥工程[2]と同様にして、正孔注入層4上に付与された成膜用インク5Aを減圧乾燥もしくは加熱乾燥する。
 これにより、成膜用インク5Aから第1成分が除去され、その結果、成膜用インク5Aが乾燥することで、正孔輸送層5が形成される。
 A-3
 次に、隔壁31の開口部に形成された正孔輸送層5上に、前述した成膜方法のインク付与工程[1]と同様にして、成膜用インク6Aを供給する。
 なお、隔壁31の隔壁面311の表面に、撥液性を付与する表面処理を施した場合、この表面にはフッ素元素が露出している。そのため、第2成分として、水酸基を備えるものを用いることで、隔壁面311の表面と成膜用インク6Aとの間に反発する反発力が生じ、これにより、隔壁面311において、成膜用インク6Aに含まれる成膜材料が染み上がるのをより的確に抑制または防止することができる。
 成膜用インク6Aは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク6Aは、成膜材料として、赤色発光材料が含まれている。
 そして、前述した成膜方法の乾燥工程[2]と同様にして、正孔輸送層5上に付与された成膜用インク6Aを減圧乾燥もしくは加熱乾燥する。
 これにより、成膜用インク6Aから第1成分が除去され、その結果、成膜用インク6Aが乾燥することで、赤色発光層6が形成される。
 A-4
 次に、隔壁31の開口部に形成された赤色発光層6上に、電子輸送層10を形成する。
 この電子輸送層10は、特に限定されないが、例えば、スパッタ法、真空蒸着法、CVD法等の気相プロセスを用いて形成するのが好ましい。気相プロセスを用いることにより、赤色発光層6と電子輸送層10との間での層溶解を防止しつつ、電子輸送層10を確実に形成することができる。
 A-5
 次に、隔壁31の開口部に形成された電子輸送層10上に、電子注入層11を形成する。
 この電子注入層11は、特に限定されないが、例えば、スパッタ法、真空蒸着法、CVD法等の気相プロセスを用いて形成するのが好ましい。気相プロセスを用いることにより、電子輸送層10と電子注入層11との間での層溶解を防止しつつ、電子注入層11を確実に形成することができる。
 以上のようにして、隔壁31の開口部から露出する陽極3上に、積層体14Rを製造することができる。なお、積層体14R、14G、14Gは、それぞれ、独立して形成するようにしてもよいし、一括して形成してもよい。
 このようにして得られた膜付きデバイスである表示装置300が備える積層体14R、14G、14Bは、隔壁31により、これらの混合が防止されるとともに、これらを優れた寸法精度で成膜することができるので、所望の光学特性を有するものとなり、優れた信頼性を有する。
 このような成膜方法は、積層体14R、14G、14Bの製造に限らず、カラーフィルター103の製造にも適用することができる。
 (カラーフィルターの製造方法)
 次に、本発明の成膜方法のより具体的な応用例として、前述したカラーフィルター103の製造方法ついて説明する。
 図7は、本発明の成膜方法をカラーフィルターの製造に適用した場合を説明する図である。
 なお、以下の説明では、色の異なる複数種の成膜用インクを用いる点以外は、前述した成膜方法と同様であるので、前述した成膜方法と同様の事項については、その説明を省略する。
 このカラーフィルター103は、図7(e)に示すように、複数の着色層19R、19G、19Bと、遮光層(隔壁)36と、各着色層19R、19G、19Bおよび隔壁36を支持する基板20と、を有している。
 このカラーフィルター103において、着色層19Rは、発光素子200Rからの光WRを赤色に変換するフィルター部である。また、着色層19Gは、発光素子200GからのWGを緑色に変換するフィルター部である。また、着色層19Bは、発光素子200Bからの光WBを青色に変換するフィルター部である。
 かかる構成のカラーフィルター103において、各着色層19R、19G、19Bの形成に、本発明の成膜用インクが用いられるが、以下、本発明の成膜用インクを用いたカラーフィルター103の製造方法について説明する。
 B-1
 まず、図7(a)に示すように、基板20上に隔壁36(バンク)が形成されてなる基材15Aを用意する。
 また、必要に応じて、隔壁36(バンク)が形成の形成に先立って、大気圧下の酸素プラズマ処理によって、基材15Aを親液化してもよい。
 さらに、隔壁36の表面には、撥液性を付与する表面処理を施してもよい。
 B-2
 次に、図7(b)に示すように、着色層19Rが形成されるべき区画に、成膜用インク19RAを供給する。
 本工程は、前述した成膜方法のインク付与工程[1]と同様にして行うことができる。
 成膜用インク19RAは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク19RAの成膜材料は、赤色の染料または顔料等の着色剤を含んでいる。また、成膜用インク19RAの成膜材料には、例えばアクリル樹脂等の樹脂材料が含まれていてもよい。
 B-3
 そして、前述した成膜方法の乾燥工程[2]と同様にして、基材15A上に付与された成膜用インク19RAを加熱する。
 これにより、図7(c)に示すように、成膜用インク19RAから第1成分が除去され、その結果、成膜用インク19RAが乾燥することで、着色層19Rが形成される。
 その後、図7(c)に示すように、着色層19Gが形成されるべき区画に、成膜用インク19GAを供給する。このとき、着色層19Rは固体状であるので、他の区画へ流れ出すことはない。
 本工程における基材15Aへの成膜用インク19GAの付与も、前述した成膜方法のインク付与工程[1]と同様にして行うことができる。
 成膜用インク19GAは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク19GAの成膜材料は、緑色の染料または顔料等の着色剤を含んでいる。また、成膜用インク19GAの成膜材料には、例えばアクリル樹脂等の樹脂材料が含まれていてもよい。
 B-4
 そして、前述した成膜方法の乾燥工程[2]と同様にして、基材15A上に付与された成膜用インク19GAを加熱する。
 これにより、図7(d)に示すように、成膜用インク19GAから第1成分が除去され、その結果、成膜用インク19GAが乾燥することで、着色層19Gが形成される。
 その後、図7(d)に示すように、着色層19Bが形成されるべき区画に、成膜用インク19BAを供給する。このとき、着色層19R、19Gはそれぞれ固体状であるので、他の区画へ流れ出すことはない。
 本工程における基材15Aへの成膜用インク19BAの付与も、前述した成膜方法のインク付与工程[1]と同様にして行うことができる。
 成膜用インク19BAは、成膜材料および液性媒体を含み、前述した成膜用インク1と同様に構成されている。
 また、成膜用インク19BAの成膜材料は、青色の染料または顔料等の着色剤を含んでいる。また、成膜用インク19BAの成膜材料には、例えばアクリル樹脂等の樹脂材料が含まれていてもよい。
 B-5
 そして、前述した成膜方法の乾燥工程[2]と同様にして、基材15A上に付与された成膜用インク19BAを加熱する。
 これにより、図7(e)に示すように、成膜用インク19BAから第1成分が除去され、その結果、成膜用インク19BAが乾燥することで、着色層19Bが形成される。
 以上のようにして、基材15A上の開口部内に固体状の着色層19R、19G、19Bが形成される。なお、基材15A上に、成膜用インク19RA、19GA、19BAを全て付与した後に、前述した成膜方法の乾燥工程[2]と同様の処理を一括して施し、着色層19R、19G、19Bを一括して形成してもよい。
 以上のようにして、カラーフィルター103を製造することができる。
 このようにして得られた膜付きデバイスであるカラーフィルター103は、着色層19R、19G、19Bの混色が防止されるとともに、着色層19R、19G、19Bを優れた寸法精度で成膜することができるので、所望の光学特性を有するものとなり、優れた信頼性を有する。
 (他の応用例)
 さらに、本発明の成膜用インクは、配線基板の導体パターンの形成に用いることもできる。
 導体パターンを形成するための成膜用インクは、導体パターン前駆体を形成するためのインクである。
 具体的には、成膜用インクの成膜材料は、金属粒子を含んでいる。そして、成膜用インクは、金属粒子を分散媒に分散してなる分散液である。
 かかる金属粒子としては、銀粒子が好適に用いられ、銀粒子の平均粒径は、1nm以上100nm以下であるのが好ましく、10nm以上30nm以下であるのがより好ましい。これにより、インクの吐出安定性をより高いものとすることができるとともに、微細な導体パターンを容易に形成することができる。なお、本明細書では、「平均粒径」とは、特に断りのない限り、体積基準の平均粒径のことを指すものとする。
 また、銀粒子(金属粒子)は、その表面に分散剤が付着した銀コロイド粒子(金属コロイド粒子)として、分散媒中に分散していることが好ましい。これにより、銀粒子の水系分散媒への分散性が特に優れたものとなり、インクの吐出安定性が特に優れたものとなる。
 インク中における銀コロイド粒子の含有量は、1wt%以上60wt%以下であるのが好ましく、10wt%以上50wt%以下であるのがより好ましい。
 また、導体パターンを形成するための成膜用インクの成膜材料は、有機バインダーを含んでいてもよい。有機バインダーは、成膜用インクによって形成された導体パターン前駆体において、銀粒子の凝集を防止するものである。また、焼結時においては、有機バインダーは、分解されて除去されることができ、導体パターン前駆体中の銀粒子同士は、結合して導体パターンを形成する。
 有機バインダーとしては、特には限定されないが、例えば、ポリエチレングリコール#200(重量平均分子量200)、ポリエチレングリコール#300(重量平均分子量300)、ポリエチレングリコール#400(平均分子量400)、ポリエチレングリコール#600(重量平均分子量600)、ポリエチレングリコール#1000(重量平均分子量1000)、ポリエチレングリコール#1500(重量平均分子量1500)、ポリエチレングリコール#1540(重量平均分子量1540)、ポリエチレングリコール#2000(重量平均分子量2000)等のポリエチレングリコール、ポリビニルアルコール#200(重量平均分子量:200)、ポリビニルアルコール#300(重量平均分子量:300)、ポリビニルアルコール#400(平均分子量:400)、ポリビニルアルコール#600(重量平均分子量:600)、ポリビニルアルコール#1000(重量平均分子量:1000)、ポリビニルアルコール#1500(重量平均分子量:1500)、ポリビニルアルコール#1540(重量平均分子量:1540)、ポリビニルアルコール#2000(重量平均分子量:2000)等のポリビニルアルコール、ポリグリセリン、ポリグリセリンエステル等のポリグリセリン骨格を有するポリグリセリン化合物が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。また、ポリグリセリンエステルとしては、例えば、ポリグリセリンのモノステアレート、トリステアレート、テトラステアレート、モノオレエート、ペンタオレエート、モノラウレート、モノカプリレート、ポリシノレート、セスキステアレート、デカオレエート、セスキオレエート等が挙げられる。
 また、インク中における有機バインダーの含有量は、1wt%以上30wt%以下であるのが好ましく、5wt%以上20wt%以下であるのがより好ましい。これにより、インクの吐出安定性を特に優れたものとしつつ、クラック、断線の発生をより効果的に防止することができる。これに対して、有機バインダーの含有量が前記下限値未満であると、有機バインダーの組成によっては、クラックの発生を防止する効果が小さくなる場合がある。また、有機バインダーの含有量が前記上限値を超えると、有機バインダーの組成によっては、インクの粘度を十分に低いものとすることが困難な場合がある。
 (電子機器)
 図8は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。
 この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部を備える表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
 このパーソナルコンピューター1100において、表示ユニット1106が備える表示部が前述の表示装置300で構成されている。
 図9は、本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
 この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206とともに、表示部を備えている。
 携帯電話機1200において、この表示部が前述の表示装置300で構成されている。
 図10は、本発明の電子機器を適用したディジタルスチールカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。
 ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチールカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
 ディジタルスチールカメラ1300におけるケース(ボディー)1302の背面には、表示部が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、被写体を電子画像として表示するファインダーとして機能する。
 ディジタルスチールカメラ1300において、この表示部が前述の表示装置300で構成されている。
 ケースの内部には、回路基板1308が設置されている。この回路基板1308は、撮像信号を格納(記憶)し得るメモリーが設置されている。
 また、ケース1302の正面側(図示の構成では裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
 撮影者が表示部に表示された被写体像を確認し、シャッターボタン1306を押下すると、その時点におけるCCDの撮像信号が、回路基板1308のメモリーに転送・格納される。
 また、このディジタルスチールカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示のように、ビデオ信号出力端子1312にはテレビモニター1430が、デ-タ通信用の入出力端子1314にはパーソナルコンピューター1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、回路基板1308のメモリーに格納された撮像信号が、テレビモニター1430や、パーソナルコンピューター1440に出力される構成になっている。
 このような本発明の膜付きデバイスを有する電子機器は、優れた信頼性を有する。
 なお、本発明の電子機器は、図8のパーソナルコンピューター(モバイル型パーソナルコンピューター)、図9の携帯電話機、図10のディジタルスチールカメラの他にも、例えば、テレビや、ビデオカメラ、ビューファインダー型、モニター直視型のビデオテープレコーダー、ラップトップ型パーソナルコンピューター、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター、その他各種モニター類、プロジェクター等の投射型表示装置等に適用することができる。
 以上、本発明の成膜用インク、成膜方法、膜付きデバイスおよび電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
 例えば、前述した実施形態では、発光素子が3層の発光層を有するものについて説明したが、発光層が1層または2層であってもよいし、4層以上であってもよい。また、発光層の発光色としては、前述した実施形態のR、G、Bに限定されない。
 また、本発明の成膜方法を用いて複数の層を積層する場合、後の膜形成時に用いる液性媒体の種類を選定したり、先に形成した膜を架橋反応させたりすることにより、先に形成した膜が後の膜形成時に溶解するのを防止することができる。
 また、本発明の膜付きデバイスとしては、前述したカラーフィルター、発光装置、配線基板に限定されず、成膜用インクを用いて形成された膜を有するデバイスであれば、様々なデバイスに適用できる。
 次に、本発明の具体的実施例について説明する。
 ・成膜用インクによる膜の形成
 1.第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンを用いた場合
 1-1.成膜用インクの調製
 まず、正孔輸送性材料として、ポリ(2,7-(9,9-ジ-n-オクチルフルオレン)-(1,4-フェニレン-((4-sec-ブチルフェニル)イミノ)-1,4-フェニレン(TFB)を用意し、このTFBの含有量が0.8wt%となるように、第1成分(A-1)と第2成分とを含む液性溶媒に溶解することで、正孔輸送層形成用の成膜用インクを調製した。
 また、発光材料として、4,4'-N,N'-dicarbazol-biphenyl(CBP)およびファク-トリス(2-フェニルピリジン)イリジウム(Ir(ppy))をそれぞれ用意し、CBPの含有量が0.5wt%、Ir(ppy)の含有量が0.5wt%、となるように、第1成分(A-1)と第2成分とを含む液性溶媒に溶解することで、発光層形成用の成膜用インクを調製した。
 なお、これら正孔輸送層形成用および発光層形成用の成膜用インクとしては、それぞれ、表1に示す第2成分(B-1、-2・・・-54等)を用い、さらに、第2成分の含有量が5、30、50wt%となるものを個別に調製した。ただし、第1成分と第2成分とが相溶性を示さないものについては、その調製を省略した。また、正孔輸送層形成用および発光層形成用の成膜用インクとして、それぞれ、第2成分の添加が省略されたものを比較用のものとして調製した。
 1-2.正孔輸送層および発光層の成膜
 まず、基材上に設けられた隔壁が備える開口部のITO上に、調製した正孔輸送層形成用および発光層形成用の成膜用インクを、それぞれ、インクジェット法により供給して液状被膜を形成した。
 乾燥工程を経た後、200℃、常圧の条件で30分間加熱することにより正孔輸送層を、また、160℃、常圧の条件で10分間加熱することにより発光層をそれぞれ形成した。
 なお、インクジェット法により供給する液滴は、吐出時の重さが10ngのものとし、吐出後の重量がほぼ500ngとなるまで、シリコン基板上に供給した。
 1-3.評価
 1-3-1.保存安定性
 調製した正孔輸送層形成用および発光層形成用の成膜用インクを、それぞれ、24℃、常圧の条件で7日間保存し、その後の正孔輸送層形成用および発光層形成用の成膜用インクの状態を目視で確認し、以下の4段階の基準に従って評価した。
  ◎: 非常に安定していた
  ○: 保存後に若干の揮発が認められた
  △: 密閉容器でないと大気中での揮発が著しい
  ×: 密閉容器でないと大気中での揮発が特に著しい
 1-3-2.吐出安定性
 調製した正孔輸送層形成用および発光層形成用の成膜用インクを、それぞれ、インクジェット法を用いて吐出重量10ngの液滴を吐出させ、その際の正孔輸送層形成用および発光層形成用の成膜用インクの吐出安定性を、以下の4段階の基準に従って評価した。
  ◎: 連続的に安定した吐出が得られた
  ○: 8時間放置した後、吐出の際、曲り抜け詰まりが発生するが、即座に回復する
  △: 8時間放置した後、吐出の際、曲り抜け詰まりが発生し、即座に回復しない
  ×: 8時間放置した後、吐出の際、曲り抜け詰まりが発生し、回復しない
 1-3-3.成膜性
 前記1-2において、インクジェット法により液状被膜を形成した際に、シリコン基板に供給した液滴の着弾したときの重量を吐出後重量として測定した。
 また、前記1-2において成膜された正孔輸送層および発光層の膜厚を測定した。さらに、正孔輸送層および発光層の状態を目視で確認し、以下の4段階の基準に従って評価した。
  ◎: 析出なく均一で平坦な膜が形成できる
  ○: 析出なく均一な膜ができる
  △: 析出なし
  ×: 膜を形成することができない
 これらの評価結果を、それぞれ、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 2.第1成分としてA-5)4-イソプロピルビフェニルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-5)4-イソプロピルビフェニルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 3.第1成分としてA-7)ビフェニルエーテルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-7)ビフェニルエーテルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 4.第1成分としてA-9)2,2,5-トリ-メチルビフェニルエーテルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-9)2,2,5-トリ-メチルビフェニルエーテルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 5.第1成分としてA-16)3-フェノキシトルエンを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-16)3-フェノキシトルエンを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 6.第1成分としてA-20)2-フェノキシトルエンを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-20)2-フェノキシトルエンを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 7.第1成分としてA-24)ジフェニルエーテルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-24)ジフェニルエーテルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができ、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として、均一な膜厚で成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 8.第1成分としてA-29)シクロヘキシルベンゼンを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-29)シクロヘキシルベンゼンを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができるものの、その安定性が低いことに起因して成膜性に若干劣る結果となったが、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 9.第1成分としてA-31)1,3-ジメチル-2-イミダゾリジノンを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-31)1,3-ジメチル-2-イミダゾリジノンを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができるものの、その安定性が低いことに起因して成膜性に若干劣る結果となったが、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 10.第1成分としてA-32)p-トルニトリルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-32)p-トルニトリルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができるものの、その安定性が低いことに起因して成膜性に若干劣る結果となったが、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 11.第1成分としてA-36)o-トルニトリルを用いた場合
 第1成分としてA-1)1,1-ビス(3,4-ジメチルフェニル)エタンに代えて、A-36)o-トルニトリルを用いたこと以外は、前記1-1~1-3を実施して、成膜用インクの調製、正孔輸送層および発光層の成膜ならびにその評価を行った。
 以上のようにして得られた評価結果を、それぞれ、以下の表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、第2成分の含有量を5wt%~50wt%とした範囲内において、正孔輸送材料および発光材料を成膜用インクに溶解させることができるものの、その安定性が低いことに起因して成膜性に若干劣る結果となったが、正孔輸送層および発光層を、第2成分の添加を省略した場合と比較して、膜厚が厚い膜として成膜することができた。
 なお、第2成分の沸点が130℃未満であると、その揮発に伴い、吐出時の液滴の形成に影響が生じ、吐出安定性が不安定となる傾向を示し、特に、沸点が100℃未満であると傾向が顕著に認められる結果となった。
 1…成膜用インク 1A…液状被膜 1B…膜 3…陽極 4…正孔注入層 4A…成膜用インク 5…正孔輸送層 6…赤色発光層 10…電子輸送層 11…電子注入層 12…陰極 14…積層体 14R、14G、14B…積層体 15、15A…基材 16…隔壁 17…開口部 19…透過層 19B…着色層 19BA…成膜用インク 19G…着色層 19GA…成膜用インク 19R…着色層 19RA…成膜用インク 20…基板 21…基板 22…平坦化層 24…スイッチング素子 27…導電部 31…隔壁 32…反射膜 33…腐食防止膜 34…陰極カバー 35…樹脂層 36…隔壁 100…液滴吐出装置 101…発光装置 102…透過フィルター 103…カラーフィルター 110…ヘッド 111…ヘッド本体 112…振動板 113…ピエゾ素子 114…本体 115…ノズルプレート 115P…インク吐出面 116…リザーバ 117…インク室 118…ノズル 130…ベース 140…テーブル 170…テーブル位置決め手段 171…第1移動手段 172…モーター 180…ヘッド位置決め手段 181…第2移動手段 182…リニアモーター 183、184、185…モーター 190…制御装置 191…駆動回路 200…発光素子 200R、200G、200B…発光素子 241…半導体層 242…ゲート絶縁層 243…ゲート電極 244…ソース電極 245…ドレイン電極 300…表示装置 300R、300G、300B…サブ画素 311…隔壁面 1100…パーソナルコンピューター 1102…キーボード 1104…本体部 1106…表示ユニット 1200…携帯電話機 1202…操作ボタン 1204…受話口 1206…送話口 1300…ディジタルスチールカメラ 1302…ケース 1304…受光ユニット 1306…シャッターボタン 1308…回路基板 1312…ビデオ信号出力端子 1314…入出力端子 1430…テレビモニター 1440…パーソナルコンピューター。

Claims (12)

  1.  成膜材料と、
     前記成膜材料が溶解または分散される液性媒体とを有し、
     前記液性媒体は、大気圧上での沸点が200℃以上の第1成分と、該第1成分よりも大気圧上での沸点が低い第2成分とを含有していることを特徴とする成膜用インク。
  2.  前記第2成分は、大気圧上での沸点が50℃以上170℃以下である請求項1に記載の成膜用インク。
  3.  前記第1成分は、大気圧上での沸点が250℃以上340℃以下である請求項1または2に記載の成膜用インク。
  4.  前記第1成分および前記第2成分は、これらの大気圧上での沸点の差が30℃以上である請求項1ないし3のいずれか1項に記載の成膜用インク。
  5.  前記第1成分は、その0.5wt%以上の重量の前記成膜材料を溶解し得る溶解度を有する請求項1ないし4のいずれか1項に記載の成膜用インク。
  6.  前記第2成分は、その含有量が当該成膜用インクの全体に対して、5.0wt%以上50wt%以下である請求項1ないし5のいずれか1項に記載の成膜用インク。
  7.  当該成膜用インクは、液滴として基板上の壁部が有する凹部に供給した後、乾燥させることで成膜されるものである請求項1ないし6のいずれか1項に記載の成膜用インク。
  8.  前記液滴は、その吐出時において、2ng以上12ng以下の重さを有する請求項7に記載の成膜用インク。
  9.  前記液滴は、着弾時の容積が、吐出時の容積よりも、前記吐出後に前記第2成分が揮発することで、小さくなるよう設定されている請求項7または8に記載の成膜用インク。
  10.  請求項1ないし9のいずれかに記載の成膜用インクを、基材上に設けられた隔壁が備える凹部内に液滴として供給して、液状被膜を形成する工程と、
     前記液状被膜を加熱して乾燥させることで、前記凹部内に膜を成膜する工程とを有することを特徴とする成膜方法。
  11.  請求項10に記載の成膜方法により形成された膜またはそれを処理した膜を有することを特徴とする膜付きデバイス。
  12.  請求項11に記載の膜付きデバイスを有することを特徴とする電子機器。
PCT/JP2015/005948 2014-12-02 2015-11-30 成膜用インク、成膜方法、膜付きデバイスおよび電子機器 WO2016088352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/531,904 US10557046B2 (en) 2014-12-02 2015-11-30 Film-forming ink, film formation method, device with film, and electronic apparatus
KR1020177018004A KR102196236B1 (ko) 2014-12-02 2015-11-30 성막용 잉크, 성막 방법, 막 부착 디바이스 및 전자 기기
CN201580065467.7A CN107001834B (zh) 2014-12-02 2015-11-30 成膜用油墨、成膜方法、膜设备及电子设备
EP15864668.7A EP3228669A4 (en) 2014-12-02 2015-11-30 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-244520 2014-12-02
JP2014244520A JP6638187B2 (ja) 2014-12-02 2014-12-02 成膜用インクおよび成膜方法

Publications (1)

Publication Number Publication Date
WO2016088352A1 true WO2016088352A1 (ja) 2016-06-09

Family

ID=56091315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005948 WO2016088352A1 (ja) 2014-12-02 2015-11-30 成膜用インク、成膜方法、膜付きデバイスおよび電子機器

Country Status (7)

Country Link
US (1) US10557046B2 (ja)
EP (1) EP3228669A4 (ja)
JP (1) JP6638187B2 (ja)
KR (1) KR102196236B1 (ja)
CN (1) CN107001834B (ja)
TW (1) TWI719003B (ja)
WO (1) WO2016088352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170335126A1 (en) * 2014-12-02 2017-11-23 Seiko Epson Corporation Film-forming ink, film formation method, device with film, and electronic apparatus
EP3340307A1 (en) * 2016-12-22 2018-06-27 LG Display Co., Ltd. Transparent display device including an emitting area and a transmitting area

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960922B (zh) * 2017-04-10 2019-03-12 京东方科技集团股份有限公司 喷墨打印成膜方法
US11993728B2 (en) * 2018-02-23 2024-05-28 Konica Minolta, Inc. Composition for electronic devices, ink for electronic devices, and method for producing electronic device
CN108400259B (zh) * 2018-03-20 2020-05-01 京东方科技集团股份有限公司 Oled器件的制备方法及显示面板的制备方法
CN112771995B (zh) * 2018-09-25 2024-08-16 日产化学株式会社 带有有机功能膜的基板的制造方法
WO2020094538A1 (en) * 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
CN110406266B (zh) * 2019-08-30 2020-08-25 昆山国显光电有限公司 喷墨打印装置和喷墨打印方法
CN111234531B (zh) * 2020-01-15 2021-11-26 常熟理工学院 一种油敏可控精密变形的薄膜及其制备方法
WO2022149519A1 (ja) * 2021-01-06 2022-07-14 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JPWO2023153161A1 (ja) * 2022-02-09 2023-08-17

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154270A (ja) * 1997-07-30 1999-02-26 Seiko Epson Corp 有機el素子用組成物および有機el素子の製造方法
JP2008239964A (ja) * 2007-03-01 2008-10-09 Canon Inc インクジェット記録用インクセット及びインクジェット記録方法
JP2011507991A (ja) * 2007-12-14 2011-03-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 顔料及びラテックスを含有するインクジェットインクで使用するためのリン酸塩含有界面活性剤
JP2014077046A (ja) * 2012-10-10 2014-05-01 Konica Minolta Inc 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
JP2014132044A (ja) * 2011-08-25 2014-07-17 Hitachi Chemical Co Ltd インクジェット用シリカ系被膜形成組成物、シリカ系被膜の形成方法、半導体デバイス及び太陽電池システム
JP2014156045A (ja) * 2013-02-15 2014-08-28 Seiko Epson Corp インクジェット記録方法
JP2014198824A (ja) * 2013-01-30 2014-10-23 株式会社リコー インクジェット用水性インク、インクジェット記録方法、インクジェット記録物
JP2014205770A (ja) * 2013-04-12 2014-10-30 東洋インキScホールディングス株式会社 インクジェット用水性インキ
JP2014218035A (ja) * 2013-05-09 2014-11-20 コニカミノルタ株式会社 パターン形成方法及び塗布液

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843937B1 (en) 1997-07-16 2005-01-18 Seiko Epson Corporation Composition for an organic EL element and method of manufacturing the organic EL element
EP1083775B1 (en) * 1999-03-29 2010-10-13 Seiko Epson Corporation Composition comprising an organic electroluminescent material
JP4347569B2 (ja) 2001-02-27 2009-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 基板に材料を蒸着する方法
DE102004023276A1 (de) * 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Lösungen organischer Halbleiter
WO2005123856A1 (ja) * 2004-06-17 2005-12-29 Sharp Kabushiki Kaisha 塗液、膜の製造方法、機能素子の製造方法、及び、機能素子
JP4616596B2 (ja) * 2004-08-27 2011-01-19 株式会社 日立ディスプレイズ 電子装置の製造方法
WO2006087945A1 (ja) * 2005-02-15 2006-08-24 Pioneer Corporation 成膜用組成物及び有機電界発光素子
EP2216380A1 (en) * 2007-11-16 2010-08-11 Sumitomo Chemical Company, Limited Coating liquid used in coating method for discharging coating liquid through slit-shaped discharge outlet
GB2460216A (en) * 2008-03-03 2009-11-25 Cambridge Display Tech Ltd Hole transport material composition
CN101880525B (zh) * 2009-05-07 2013-10-16 财团法人工业技术研究院 液态荧光剂组合物及发光组件
JP6309269B2 (ja) * 2010-05-27 2018-04-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 有機電子装置を調製するための配合物および方法
JP5938669B2 (ja) * 2011-09-28 2016-06-22 株式会社Joled 有機発光素子の製造方法、有機発光素子、有機表示装置、有機発光装置、機能層の形成方法、機能性部材、表示装置および発光装置
JP6015073B2 (ja) * 2012-04-02 2016-10-26 セイコーエプソン株式会社 機能層形成用インク、発光素子の製造方法
JP6225413B2 (ja) * 2012-11-16 2017-11-08 セイコーエプソン株式会社 機能層形成用インク、インク容器、吐出装置、機能層の形成方法、有機el素子の製造方法
JP6201538B2 (ja) * 2013-09-03 2017-09-27 セイコーエプソン株式会社 機能層形成用インクの製造方法、有機el素子の製造方法
JP6390114B2 (ja) * 2014-02-14 2018-09-19 セイコーエプソン株式会社 成膜用インク、吐出検査方法、吐出検査装置および発光素子の製造方法
JP6638186B2 (ja) * 2014-12-02 2020-01-29 セイコーエプソン株式会社 成膜用インクおよび成膜方法
JP6645132B2 (ja) * 2015-11-13 2020-02-12 セイコーエプソン株式会社 インク組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154270A (ja) * 1997-07-30 1999-02-26 Seiko Epson Corp 有機el素子用組成物および有機el素子の製造方法
JP2008239964A (ja) * 2007-03-01 2008-10-09 Canon Inc インクジェット記録用インクセット及びインクジェット記録方法
JP2011507991A (ja) * 2007-12-14 2011-03-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 顔料及びラテックスを含有するインクジェットインクで使用するためのリン酸塩含有界面活性剤
JP2014132044A (ja) * 2011-08-25 2014-07-17 Hitachi Chemical Co Ltd インクジェット用シリカ系被膜形成組成物、シリカ系被膜の形成方法、半導体デバイス及び太陽電池システム
JP2014077046A (ja) * 2012-10-10 2014-05-01 Konica Minolta Inc 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
JP2014198824A (ja) * 2013-01-30 2014-10-23 株式会社リコー インクジェット用水性インク、インクジェット記録方法、インクジェット記録物
JP2014156045A (ja) * 2013-02-15 2014-08-28 Seiko Epson Corp インクジェット記録方法
JP2014205770A (ja) * 2013-04-12 2014-10-30 東洋インキScホールディングス株式会社 インクジェット用水性インキ
JP2014218035A (ja) * 2013-05-09 2014-11-20 コニカミノルタ株式会社 パターン形成方法及び塗布液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228669A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170335126A1 (en) * 2014-12-02 2017-11-23 Seiko Epson Corporation Film-forming ink, film formation method, device with film, and electronic apparatus
US10526500B2 (en) * 2014-12-02 2020-01-07 Seiko Epson Corporation Film-forming ink, film formation method, device with film, and electronic apparatus
EP3340307A1 (en) * 2016-12-22 2018-06-27 LG Display Co., Ltd. Transparent display device including an emitting area and a transmitting area
US10209406B2 (en) 2016-12-22 2019-02-19 Lg Display Co., Ltd. Transparent display device including an emitting area and a transmitting area

Also Published As

Publication number Publication date
CN107001834A (zh) 2017-08-01
TW201627424A (zh) 2016-08-01
US10557046B2 (en) 2020-02-11
JP6638187B2 (ja) 2020-01-29
KR102196236B1 (ko) 2020-12-29
JP2016108375A (ja) 2016-06-20
KR20170090469A (ko) 2017-08-07
EP3228669A1 (en) 2017-10-11
US20170267880A1 (en) 2017-09-21
EP3228669A4 (en) 2018-05-23
TWI719003B (zh) 2021-02-21
CN107001834B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
JP6638187B2 (ja) 成膜用インクおよび成膜方法
JP6015073B2 (ja) 機能層形成用インク、発光素子の製造方法
KR102166377B1 (ko) 성막용 잉크, 성막 방법, 막 부착 디바이스 및 전자 기기
KR102127219B1 (ko) 성막용 잉크, 성막 방법, 발광 소자의 제조 방법, 발광 소자, 발광 장치 및 전자 기기
JP6531347B2 (ja) 機能層形成用インクおよび発光素子の製造方法
US20150232746A1 (en) Film-forming ink, discharge inspection method, discharge inspection apparatus, method for manufacturing light emitting element, light emitting element, light emitting apparatus, and electronic equipment
JP6106917B2 (ja) 成膜用インク、成膜方法および発光素子の製造方法
JP5577945B2 (ja) 成膜方法、発光素子の製造方法、発光素子、発光装置および電子機器
KR101899914B1 (ko) 성막용 잉크, 성막 방법, 액적 토출 장치, 발광 소자의 제조 방법, 발광 소자, 발광 장치 및 전자 기기
JP2017022068A (ja) 有機el素子の製造方法、有機el素子の製造装置、電気光学装置および電子機器
JP6078947B2 (ja) 成膜用インク、成膜方法および発光素子の製造方法
JP5976269B2 (ja) 成膜用インク、成膜方法
JP6060993B2 (ja) 成膜方法
JP5527105B2 (ja) 成膜用インク、成膜方法および発光素子の製造方法
JP5527104B2 (ja) 成膜用インク、成膜方法および発光素子の製造方法
WO2016157712A1 (ja) 機能性インク、成膜方法、液滴吐出装置、膜付デバイスおよび電子機器
JP2016172221A (ja) 液滴吐出方法、プログラムおよび膜付きデバイスの製造方法
JP2016168516A (ja) 液滴吐出装置、液滴吐出方法および膜付きデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018004

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015864668

Country of ref document: EP