CN111234531B - 一种油敏可控精密变形的薄膜及其制备方法 - Google Patents

一种油敏可控精密变形的薄膜及其制备方法 Download PDF

Info

Publication number
CN111234531B
CN111234531B CN202010041202.6A CN202010041202A CN111234531B CN 111234531 B CN111234531 B CN 111234531B CN 202010041202 A CN202010041202 A CN 202010041202A CN 111234531 B CN111234531 B CN 111234531B
Authority
CN
China
Prior art keywords
film
triangular prism
oil
micro
polydimethylsiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010041202.6A
Other languages
English (en)
Other versions
CN111234531A (zh
Inventor
于照鹏
董利明
宋云云
李佳倩
王星南
付梦迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202010041202.6A priority Critical patent/CN111234531B/zh
Publication of CN111234531A publication Critical patent/CN111234531A/zh
Application granted granted Critical
Publication of CN111234531B publication Critical patent/CN111234531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Abstract

本发明公开了一种油敏可控精密变形的薄膜,薄膜为掺杂氧化石墨烯的聚二甲基硅氧烷固化膜,氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,薄膜的一面为光面,薄膜的另一面刻蚀有微轨道结构,微轨道结构为若干平行排列的沿欲卷曲方向延伸的条形凹槽或三棱柱槽队列。本发明还公开了一种油敏可控精密变形的薄膜的制备方法,包括:将氧化石墨烯与聚二甲基硅氧烷混合搅拌均匀,除气加热固化;采用激光刻蚀制备微轨道结构;将制备好的薄膜切割成需要的形状。本发明的薄膜可对油脂刺激做出三维的复杂变形响应,解决了多层结构寿命问题,便于生产加工。

Description

一种油敏可控精密变形的薄膜及其制备方法
技术领域
本发明涉及一种可控变形薄膜及其制备方法,特别是涉及一种油敏可控精密变形的薄膜及其制备方法。
背景技术
由于智能材料可以在化学或物理的外界刺激下做出响应,因此由智能材料制备的薄膜在生物医学,传感器,微流体和机器人学等各个领域有巨大的潜在应用。目前智能薄膜的发展应用仍存在一些挑战,例如制备薄膜所采用的智能软体材料需要较为复杂的合成方式,导致薄膜生产成本高,生产效率低;薄膜针对外界刺激的响应速度较慢,响应动作滞后;目前的智能薄膜只能针对温度、湿度、光、电场、磁场、pH等的变化做出响应,难以针对油脂刺激做出响应;薄膜的变形精度不高,只能做出折叠、弯曲响应,难以实现三维的复杂变形响应;为了实现薄膜的形变响应,通常采用双层或多层材料设计,因此层间的结合力较弱,多次变形后,层间容易开裂分离,导致其寿命较短。
发明内容
针对上述现有技术的缺陷,本发明的目的是提供一种油敏可控精密变形的薄膜,满足对油脂刺激做出三维的复杂变形响应需求,解决变形响应稳定性及寿命问题。本发明的另一目的是提供一种油敏可控精密变形的薄膜的制备方法。
本发明的技术方案是这样的:一种油敏可控精密变形的薄膜,所述薄膜为掺杂氧化石墨烯的聚二甲基硅氧烷固化膜,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,所述薄膜的一面为光面,所述薄膜的另一面刻蚀有微轨道结构,所述微轨道结构为若干平行排列的条形凹槽,所述条形凹槽的纵截面为矩形,所述条形凹槽沿欲卷曲方向延伸。
优选地,所述条形凹槽的宽度为0.1~1毫米,深度为0.1~1毫米,相邻的所述条形凹槽间距为0.1~1毫米。
一种油敏可控精密变形的薄膜,所述薄膜为掺杂氧化石墨烯的聚二甲基硅氧烷固化膜,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,所述薄膜的一面为光面,所述薄膜的另一面刻蚀有微轨道结构,所述微轨道结构为若干行平行排列的三棱柱槽队列,每行所述三棱柱槽队列由若干三棱柱槽组成,相邻的所述三棱柱槽的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列。
优选地,所述三棱柱槽的深度为0.1~1毫米,截面三角的底边长为0.1~1毫米,相邻的所述三棱柱槽队列中所述三棱柱槽的截面三角的底边所在侧面的间距为0.1~1毫米。
优选地,所述氧化石墨烯占聚二甲基硅氧烷的质量比为3~5%。
一种油敏可控精密变形的薄膜的制备方法,包括以下步骤:
S1、混合搅拌:将氧化石墨烯与聚二甲基硅氧烷混合搅拌均匀,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在光滑表面上,用模具控制薄膜厚度,然后在真空环境下除气加热固化;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备微轨道结构,另一面不做任何处理,将制备好的薄膜揭下进行超声清洗,所述微轨道结构为若干平行排列的条形凹槽,所述凹槽的纵截面为矩形,所述凹槽沿欲卷曲方向延伸;
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜。
一种油敏可控精密变形的薄膜的制备方法,包括以下步骤:
S1、混合搅拌:将氧化石墨烯与聚二甲基硅氧烷混合搅拌均匀,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在光滑表面上,用模具控制薄膜厚度,然后在真空环境下除气加热固化;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备微轨道结构,另一面不做任何处理,将制备好的薄膜揭下进行超声清洗,所述微轨道结构为若干行平行排列的三棱柱槽队列,每行所述三棱柱槽队列由若干三棱柱槽组成,相邻的所述三棱柱槽的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列;
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜。
优选地,所述步骤S2除气加热固化时,加热温度为50~120摄氏度,固化时间为1~3小时。
本发明所提供的薄膜的两面具备不同的润湿性,超疏水表面对油脂有较强的吸附能力,而且由于表面结构显著增加了表面积,与油脂的接触面积更大,吸收油脂后体积发生膨胀,并且表面微轨道对油脂扩散的限制作用,使薄膜的膨胀程度具备各向异性。而另一表面是疏水表面,对油脂的吸附能力较弱,且表面积相对较小,体积变化很小。因此在非对称的内部拉伸力和油脂表面张力的共同作用下,薄膜沿着垂直微轨道的方向,向着疏水表面的一侧弯曲变形。制备的薄膜由单一单层材料组成,具备双面润湿性不同的表面,可塑性、柔韧性好,通过油脂刺激能实现薄膜的三维可控复杂变形,通过乙醇刺激则可以恢复原状。
本发明与现有技术相比,具有以下有益效果:
(1)制备方法工艺简单,成本低,将石墨烯较好的亲油特性与聚二甲基硅氧烷聚合物的疏水特性相叠加,增强薄膜的吸油能力。
(2)石墨烯较好的耐腐蚀性能与聚合物具有化学惰性的作用相叠加,增强薄膜耐腐蚀性能,延长薄膜的使用寿命。
(3)石墨烯较好的柔韧性、耐冲击性与聚二甲基硅氧烷聚合物优异的耐高低温性的特点相结合,提高薄膜的稳定性。
(4)薄膜为同一材料构成的单层结构,具备两种不同的润湿表面,在反复弯曲变性后,不会发生层间分离,增加了薄膜寿命。
(5)该薄膜能够被制成任意大小、形状,不受尺寸的限制,易于批量生产。
(6)该薄膜可对微轨道分布进行设计,轨道可以是直线,也可以是曲线,同一薄膜中可以存在多种不同方向的轨道,易于实现复杂的三维变形。
附图说明
图1为具有三棱柱槽形式微轨道结构的油敏可控精密变形的薄膜结构示意图。
图2为三棱柱槽形式微轨道结构俯视示意图。
图3为具有条形凹槽形式微轨道结构的油敏可控精密变形的薄膜结构示意图。
图4为实施例1制得的油脂响应薄膜变形照片及示意图。
图5为实施例2制得的油脂响应薄膜变形照片及示意图。
图6为实施例4制得的油脂响应薄膜变形和恢复的照片及示意图。
具体实施方法
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为3.3%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为10:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为80摄氏度,时间为2.5小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图1所示的微轨道结构,微轨道结构为若干行平行排列的三棱柱槽队列1,每行三棱柱槽队列1由若干三棱柱槽101组成,相邻的三棱柱槽101的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列。三棱柱槽101的深度为170微米,截面三角的底边L1长为0.13毫米,截面三角的高度L2为0.26毫米,相邻的三棱柱槽队列1中三棱柱槽101的截面三角的底边所在侧面的间距L3为0.26毫米。激光加工的功率为12瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜成功达到预定变形,最大弯曲角度达到360度,如图4所示。用乙醇清洗后,薄膜恢复原状。该薄膜可用作厨房、海洋油污监测,也可作为儿童玩具。
实施例2
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为4%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为10:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为100摄氏度,时间为2小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图1、图2所示的微轨道结构,采用激光刻蚀在固化的薄膜一面制备图1所示的微轨道结构,微轨道结构为若干行平行排列的三棱柱槽队列1,每行三棱柱槽队列1由若干三棱柱槽101组成,相邻的三棱柱槽101的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列。三棱柱槽101的深度为240微米,截面三角的底边L1长为0.13毫米,截面三角的高度L2为0.26毫米,相邻的三棱柱槽队列1中三棱柱槽101的截面三角的底边所在侧面的间距L3为0.39毫米。激光加工的功率为18瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜成功达到预定变形,最大弯曲角度达到360度,如图5所示。用乙醇清洗后,薄膜恢复原状。该薄膜可用作厨房、海洋油污监测,也可作为儿童玩具。
实施例3
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为0.5%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为10:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为50摄氏度,时间为3小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图1、图2所示的微轨道结构,采用激光刻蚀在固化的薄膜一面制备图1所示的微轨道结构,微轨道结构为若干行平行排列的三棱柱槽队列1,每行三棱柱槽队列1由若干三棱柱槽101组成,相邻的三棱柱槽101的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列。三棱柱槽101的深度为240微米,截面三角的底边L1长为0.5毫米,截面三角的高度L2为0.5毫米,相邻的三棱柱槽队列1中三棱柱槽101的截面三角的底边所在侧面的间距L3为1毫米。激光加工的功率为18瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜未能完全达到预定的变形程度,最大弯曲角度达到211度。用乙醇清洗后,薄膜恢复原状。
实施例4
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为4.8%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为8:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为120摄氏度,时间为1小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图3所示的微轨道结构,微轨道结构为若干平行排列的条形凹槽2,条形凹槽2深度为300微米,条形凹槽2的纵截面为矩形,条形凹槽2沿欲卷曲方向延伸,条形凹槽2宽度L4为0.3毫米,相邻的条形凹槽2的间距L5为0.2毫米。激光加工的功率为24瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜成功达到预定变形,最大弯曲角度达到360度,如图6所示。用乙醇清洗后,薄膜恢复原状。该薄膜可用作油敏机械手,抓取和移动物品。
实施例5
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为7.8%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为8:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为120摄氏度,时间为1小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图3所示的微轨道结构,微轨道结构为若干平行排列的条形凹槽2,条形凹槽2深度为300微米,条形凹槽2的纵截面为矩形,条形凹槽2沿欲卷曲方向延伸,条形凹槽2宽度L4为0.8毫米,相邻的条形凹槽2的间距L5为0.5毫米。激光加工的功率为24瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜未能完全达到预定的变形程度,最大弯曲角度达到187度。用乙醇清洗后,薄膜恢复原状。
实施例6
油敏可控精密变形的薄膜的制备方法如下:
S1、混合搅拌:将占聚二甲基硅氧烷的质量比为9.6%的氧化石墨烯与聚二甲基硅氧烷(预聚物与交联剂质量比为8:1)混合,搅拌30分钟直到二者混合均匀,获得前驱体液;
S2除气加热固化:将前驱体液倾倒在玻璃上,用模具控制薄膜厚度为1毫米,然后在真空环境下除气加热固化,温度为120摄氏度,时间为1小时;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备图3所示的微轨道结构,微轨道结构为若干平行排列的条形凹槽2,条形凹槽2深度为300微米,条形凹槽2的纵截面为矩形,条形凹槽2沿欲卷曲方向延伸,条形凹槽2宽度L4为0.6毫米,相邻的条形凹槽2的间距L5为1毫米。激光加工的功率为24瓦,频率为20000赫兹,脉冲为100纳秒,扫描速度为200毫米/秒。另一面不做任何处理,将制备好的薄膜揭下进行超声清洗。
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜,将2毫升的食用油滴在薄膜表面,薄膜未能完全达到预定的变形程度,最大弯曲角度达到137度。用乙醇清洗后,薄膜恢复原状。

Claims (8)

1.一种油敏可控精密变形的薄膜,其特征在于,所述薄膜为掺杂氧化石墨烯的聚二甲基硅氧烷固化膜,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,所述薄膜的一面为光面,所述薄膜的另一面刻蚀有微轨道结构,所述微轨道结构为若干平行排列的条形凹槽,所述条形凹槽的纵截面为矩形,所述条形凹槽沿欲卷曲方向延伸,所述条形凹槽的宽度为0.1~1毫米,深度为0.1~1毫米,相邻的所述条形凹槽间距为0.1~1毫米。
2.一种油敏可控精密变形的薄膜,其特征在于,所述薄膜为掺杂氧化石墨烯的聚二甲基硅氧烷固化膜,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,所述薄膜的一面为光面,所述薄膜的另一面刻蚀有微轨道结构,所述微轨道结构为若干行平行排列的三棱柱槽队列,每行所述三棱柱槽队列由若干三棱柱槽组成,相邻的所述三棱柱槽的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列,所述三棱柱槽的深度为0.1~1毫米,截面三角的底边长为0.1~1毫米,相邻的所述三棱柱槽队列中所述三棱柱槽的截面三角的底边所在侧面的间距为0.1~1毫米。
3.根据权利要求1所述的油敏可控精密变形的薄膜,其特征在于,所述氧化石墨烯占聚二甲基硅氧烷的质量比为3~5%。
4.根据权利要求2所述的油敏可控精密变形的薄膜,其特征在于,所述氧化石墨烯占聚二甲基硅氧烷的质量比为3~5%。
5.一种油敏可控精密变形的薄膜的制备方法,其特征在于,包括以下步骤:
S1、混合搅拌:将氧化石墨烯与聚二甲基硅氧烷混合搅拌均匀,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在光滑表面上,用模具控制薄膜厚度,然后在真空环境下除气加热固化;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备微轨道结构,另一面不做任何处理,将制备好的薄膜揭下进行超声清洗,所述微轨道结构为若干平行排列的条形凹槽,所述凹槽的纵截面为矩形,所述凹槽沿欲卷曲方向延伸,所述条形凹槽的宽度为0.1~1毫米,深度为0.1~1毫米,相邻的所述条形凹槽间距为0.1~1毫米;
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜。
6.一种油敏可控精密变形的薄膜的制备方法,其特征在于,包括以下步骤:
S1、混合搅拌:将氧化石墨烯与聚二甲基硅氧烷混合搅拌均匀,所述氧化石墨烯占聚二甲基硅氧烷的质量比为0.5~10%,获得前驱体液;
S2、除气加热固化:将前驱体液倾倒在光滑表面上,用模具控制薄膜厚度,然后在真空环境下除气加热固化;
S3、微轨道加工:采用激光刻蚀在固化的薄膜一面制备微轨道结构,另一面不做任何处理,将制备好的薄膜揭下进行超声清洗,所述微轨道结构为若干行平行排列的三棱柱槽队列,每行所述三棱柱槽队列由若干三棱柱槽组成,相邻的所述三棱柱槽的截面三角的底边所在侧面呈连续且沿预卷曲方向延伸排列,所述三棱柱槽的深度为0.1~1毫米,截面三角的底边长为0.1~1毫米,相邻的所述三棱柱槽队列中所述三棱柱槽的截面三角的底边所在侧面的间距为0.1~1毫米;
S4、机械切割:根据需求,将制备好的薄膜切割成需要的形状,制成油敏可控精密变形的薄膜。
7.根据权利要求5所述的油敏可控精密变形的薄膜的制备方法,其特征在于,所述步骤S2除气加热固化时,加热温度为50~120摄氏度,固化时间为1~3小时。
8.根据权利要求6所述的油敏可控精密变形的薄膜的制备方法,其特征在于,所述步骤S2除气加热固化时,加热温度为50~120摄氏度,固化时间为1~3小时。
CN202010041202.6A 2020-01-15 2020-01-15 一种油敏可控精密变形的薄膜及其制备方法 Active CN111234531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010041202.6A CN111234531B (zh) 2020-01-15 2020-01-15 一种油敏可控精密变形的薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010041202.6A CN111234531B (zh) 2020-01-15 2020-01-15 一种油敏可控精密变形的薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111234531A CN111234531A (zh) 2020-06-05
CN111234531B true CN111234531B (zh) 2021-11-26

Family

ID=70871152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010041202.6A Active CN111234531B (zh) 2020-01-15 2020-01-15 一种油敏可控精密变形的薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111234531B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713789B (zh) * 2021-08-31 2023-06-02 西安交通大学 一种基于湿度驱动的二氧化碳吸附膜可变形结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332923A (en) * 1980-10-23 1982-06-01 Dow Corning Corporation Composition for coating heat sensitive substrates
WO2007139812A2 (en) * 2006-05-23 2007-12-06 Dow Corning Corporation Novel silicone film former for delivery of actives
CN107001834A (zh) * 2014-12-02 2017-08-01 精工爱普生株式会社 成膜用油墨、成膜方法、膜设备及电子设备
CN109021824A (zh) * 2018-10-11 2018-12-18 常熟理工学院 一种耐腐蚀自清洁石墨烯涂层薄膜及其制备方法
CN109486266A (zh) * 2018-10-11 2019-03-19 常熟理工学院 一种用于防腐涂层的可自愈石墨烯复合材料及其制备方法
CN109682508A (zh) * 2018-12-29 2019-04-26 贝骨新材料科技(上海)有限公司 一种敏感油墨材料和柔性压力薄膜传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332923A (en) * 1980-10-23 1982-06-01 Dow Corning Corporation Composition for coating heat sensitive substrates
WO2007139812A2 (en) * 2006-05-23 2007-12-06 Dow Corning Corporation Novel silicone film former for delivery of actives
CN107001834A (zh) * 2014-12-02 2017-08-01 精工爱普生株式会社 成膜用油墨、成膜方法、膜设备及电子设备
CN109021824A (zh) * 2018-10-11 2018-12-18 常熟理工学院 一种耐腐蚀自清洁石墨烯涂层薄膜及其制备方法
CN109486266A (zh) * 2018-10-11 2019-03-19 常熟理工学院 一种用于防腐涂层的可自愈石墨烯复合材料及其制备方法
CN109682508A (zh) * 2018-12-29 2019-04-26 贝骨新材料科技(上海)有限公司 一种敏感油墨材料和柔性压力薄膜传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets;Andrea Rinaldi,等;《SENSORS》;20161216;第16卷(第12期);第2148页 *
pH-Responsive Poly(dimethylsiloxane) Copolymer Decorated Magnetic Nanoparticles for Remotely Controlled Oil-in-Water Nanoemulsion Separation;Jing Yang,等;《Macromol. Rapid Commun.》;20180511;第40卷(第5期);第1800013页 *
响应性支化聚合物和均聚物的自组装研究及其生物应用;王龙海;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20171215(第12期);第B014-27页 *
基于PDMS微结构调控构筑的导电高分子复合材料及其应变敏感性能研究;魏向东;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190115(第1期);第B020-634页 *

Also Published As

Publication number Publication date
CN111234531A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Cardoso et al. Fluorinated polymers as smart materials for advanced biomedical applications
Yong et al. Superoleophobic surfaces
CN109781311B (zh) 一种柔性电容式压力传感器及其制备方法
CN110398259B (zh) 多感知功能的柔性传感器件及制备方法
Kim et al. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings
CN106541568B (zh) 一种三维负泊松比周期性多孔材料及其制作方法
CN111234531B (zh) 一种油敏可控精密变形的薄膜及其制备方法
WO2008094213A2 (en) Large area induced assembly of nanostructures
CN102336393A (zh) 飞秒激光在有机玻璃表面制备疏水性微结构的方法
CN108773009A (zh) 具有微纳双级结构的疏水/陷光复眼透镜阵列的制造方法及其应用
CN106167247A (zh) 基于能量调节飞秒激光仿生加工的各向异性微纳米表面
US20110300339A1 (en) High aspect ratio adhesive structure and a method of forming the same
CN105983786B (zh) 一种采用激光实现玻璃加工的方法
CN104713570B (zh) 利用摩擦发电测量物体运动参数的方法和装置
KR102590895B1 (ko) 전기장 기법을 이용한 형태 가변형 마이크로 패턴화 고분자 촉각 소재의 제조방법
CN111740000A (zh) 一种MXene复合材料基电化学致动器、其制备方法和用途
CN109357796A (zh) 可穿戴压力传感器及其制造方法
CN111171570B (zh) 一种快速响应油敏变形薄膜及其制备方法
Feng et al. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance
CN111829697B (zh) 一种带凸半球结构的柔性压力传感器及其制备方法
CN113138042B (zh) 一种pdms—ps聚合物电介质的电容式柔性压力传感器及其制作工艺
DE102017125647B4 (de) Thermoelektrische Vorrichtungen und Verfahren zum Bilden von thermoelektrischen Vorrichtungen
CN104891426B (zh) 一种具有选择性刺激回复功能微图案薄膜的制备方法
CN110246607B (zh) 一种高透光率高结合强度的柔性透明导电薄膜及其制备方法和应用
Iwata et al. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant