WO2016088228A1 - プログラマブルロジックコントローラシステム - Google Patents

プログラマブルロジックコントローラシステム Download PDF

Info

Publication number
WO2016088228A1
WO2016088228A1 PCT/JP2014/082043 JP2014082043W WO2016088228A1 WO 2016088228 A1 WO2016088228 A1 WO 2016088228A1 JP 2014082043 W JP2014082043 W JP 2014082043W WO 2016088228 A1 WO2016088228 A1 WO 2016088228A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
temperature
temperature value
cooling
functional
Prior art date
Application number
PCT/JP2014/082043
Other languages
English (en)
French (fr)
Inventor
達 川名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/082043 priority Critical patent/WO2016088228A1/ja
Priority to JP2016558811A priority patent/JP6138376B2/ja
Priority to US15/525,095 priority patent/US20170322607A1/en
Priority to DE112014007228.1T priority patent/DE112014007228T5/de
Priority to KR1020177014741A priority patent/KR20170078787A/ko
Priority to CN201480083772.4A priority patent/CN107003652A/zh
Publication of WO2016088228A1 publication Critical patent/WO2016088228A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/14Plc safety
    • G05B2219/14043Detection of abnormal temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21156Over temperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a programmable logic controller system in which a plurality of units are connected.
  • a power supply unit is arranged at the beginning, a central processing unit (CPU) unit is connected next to the power supply unit, and further connected to the CPU unit.
  • CPU central processing unit
  • a basic block having a configuration in which an input / output unit or another unit having other functions is arranged is used.
  • Each unit is connected by a base unit in order to perform communication inside and outside the PLC system.
  • Patent Document 1 provides a data transfer path between a CPU unit of a main device, a power supply unit of the main device, and a power supply unit of an expansion device.
  • Each power supply unit is equipped with a temperature detector, and the internal temperature is measured only after data is transferred to the CPU unit in response to a command from the CPU when the power supply unit is turned on. Data is stored in internal memory.
  • Patent Document 1 monitors the temperature of only the power supply unit. For this reason, even if the internal temperature of the other plurality of units rises, the temperature management of the unit cannot be performed, and the control for suppressing the temperature rise of the unit cannot be performed.
  • the temperature value in the PLC system can be measured by mounting the temperature monitoring function in the PLC system as in the PLC device disclosed in Patent Document 1.
  • the PLC device of Patent Document 1 constantly monitors the temperature inside the power supply unit, power consumption during operation of the PLC device increases. Then, as the power consumption increases, the cost for operating the PLC device increases, and the management cost of the PLC device increases.
  • the present invention has been made in view of the above, and in a PLC system in which a CPU unit and a unit having other functions are connected, a PLC system capable of controlling the temperature value in the unit with low power consumption is provided. The purpose is to obtain.
  • the present invention has a power unit, a central processing unit, and a functional unit having functions different from those of the power unit and the central processing unit.
  • the unit and the first end unit disposed at the end with respect to the power supply unit are sequentially disposed adjacent to each other while being in contact with each other, and can be electrically and communicated via a connector connecting the functional units.
  • a programmable logic controller system comprising a basic block connected to a temperature monitoring unit that intermittently detects a temperature value in the functional unit at a predetermined timing, and a cooling in the functional unit.
  • the temperature value detected in the temperature monitoring unit of the functional unit of the basic block is compared with a predetermined value set in advance corresponding to the functional unit of the basic block, and based on the result of the comparison
  • a temperature control management unit that controls the operation of the cooling unit of the functional unit that has detected the temperature value compared with the specified value.
  • the PLC system according to the present invention has an effect that the temperature value in the unit can be controlled with low power consumption in a PLC system in which a CPU unit and a unit having other functions are connected.
  • FIG. 1 is a block diagram schematically showing a functional configuration of a CPU unit according to a first embodiment of the present invention.
  • 1 is a block diagram schematically showing a functional configuration of a target unit and an end cover according to a first embodiment of the present invention.
  • 1 is a block diagram schematically showing a functional configuration of a temperature monitoring unit according to a first embodiment of the present invention.
  • 1 is a block diagram schematically showing a functional configuration of a temperature control management unit according to a first embodiment of the present invention.
  • the flowchart which shows an example of the procedure of the temperature control process in the unit in the PLC system concerning Embodiment 1 of this invention.
  • the flowchart which shows an example of the procedure of the detection process of the temperature value inside a target unit, and the cooling control process among the temperature control processes in the unit in this Embodiment 1 of this invention.
  • the figure which shows typically an example of a structure of the PLC system concerning Embodiment 2 of this invention.
  • the flowchart which shows an example of the procedure of the temperature monitoring process in Embodiment 2 of this invention.
  • FIG. 1 is a diagram schematically illustrating an example of the configuration of the PLC system 1 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram schematically illustrating a functional configuration of the CPU unit 12 according to the first embodiment.
  • FIG. 3 is a block diagram schematically showing a functional configuration of the target units 13-1 to 13-4 and the end cover 14 according to the first embodiment.
  • the PLC system 1 has a unit direct connection type structure in which the units arranged adjacent to each other are directly connected in contact with each other.
  • the PLC system 1 includes one basic block 10.
  • the basic block 10 is a functional unit having individual functions, a power supply unit 11 that supplies voltage to the units in the basic block 10, a CPU unit 12 that manages the entire PLC system, and an input / output unit or other functions.
  • Target units 13-1 to 13-4 which are general units, and an end cover 14 that is a termination unit that indicates the termination of the block and performs block termination processing.
  • All the units of the power supply unit 11, the CPU unit 12, the target units 13-1 to 13-4, and the end cover 14 that is the end unit are in contact with each other and the units arranged adjacent to each other.
  • the internal bus 15 in each unit and the bus connector 16 that connects adjacent units function as a signal transmission path in the information communication between the voltage supply line and each unit.
  • Each component in each unit is connected by an internal bus 15.
  • Each unit can perform information communication between the units via the internal bus 15 and the bus connector 16. Further, a voltage is supplied from the power supply unit 11 to other units via the internal bus 15 and the bus connector 16.
  • four target units 13-1 to 13-4 are arranged, but the number of target units is not limited to four.
  • the power supply unit 11 supplies a voltage to the connected CPU unit 12 via the bus connector 16.
  • the power supply unit 11 supplies a voltage to the target units 13-1 to 13-4 and the end cover 14 via the CPU unit 12. That is, the power supply unit 11 supplies a voltage from the CPU unit 12 to the end cover 14 via the internal bus 15 in each unit and the bus connector 16 that connects adjacent units.
  • the CPU unit 12 includes a temperature monitoring unit 50 that intermittently detects a temperature value in the functional unit at a predetermined timing, a cooling control unit 60 that controls cooling processing in the functional unit, and a function
  • the cooling unit 70 that performs the cooling process in the unit, the temperature value detected by the temperature monitoring unit 50 of the functional unit, and a specified value set in advance corresponding to the functional unit are compared, and the result of the comparison
  • the temperature control management unit 80 for controlling the operation of the cooling unit 70 of the functional unit that has detected the temperature value compared with the specified value
  • the CPU 90 for managing the control in the CPU unit 12 and the entire PLC system, and each unit
  • the display part 100 which displays the temperature value of the inside is provided.
  • the temperature control management unit 80 manages temperature monitoring processing and cooling processing of the functional unit 12.
  • the CPU unit 12 can communicate with other units via a communication unit (not shown).
  • the temperature monitoring unit 50, the cooling control unit 60, the temperature control management unit 80, and the CPU 90 can be configured by an electronic circuit, and can be configured using a microcomputer.
  • the target units 13-1 to 13-4 and the end cover 14 perform a temperature monitoring unit 50, a cooling control unit 60, a cooling unit 70, and function processing specific to each unit, respectively. And a function processing unit 110. Further, each of the target units 13-1 to 13-4 and the end cover 14 can communicate with other units via a communication unit (not shown).
  • FIG. 4 is a block diagram schematically showing a functional configuration of the temperature monitoring unit 50 according to the first embodiment.
  • the temperature monitoring unit 50 includes a unit communication unit 51 that is a communication function unit, a temperature value detection unit 52 that detects an internal temperature value of the unit, and a temperature value storage unit 53 that is a storage unit that stores the temperature value.
  • the temperature monitoring unit 50 can be configured by an electronic circuit, and an integrated circuit (IC) can be used.
  • the unit communication unit 51 has a function of performing information communication with other units via the internal bus 15 and the bus connector 16.
  • the unit communication unit 51 functions as a communication unit between the own unit and another unit in addition to the communication between the temperature monitoring unit 50 and another unit. Therefore, the unit communication unit 51 may be provided separately from the temperature monitoring unit 50.
  • the temperature value detection unit 52 includes a temperature sensor that detects the internal temperature value of the unit, that is, the internal temperature value of the unit.
  • the temperature value detection unit 52 performs monitoring processing of the internal temperature value of the unit, that is, detection processing, using the temperature sensor.
  • the temperature value detection unit 52 outputs a temperature value corresponding to the value detected by the temperature sensor.
  • the temperature value detection unit 52 detects the temperature value inside the unit based on the in-unit temperature value detection instruction information that is input from the CPU unit 12 and instructs the detection of the temperature inside the unit.
  • the temperature value output from the temperature value detection unit 52 is input and stored in the temperature value storage unit 53 inside the detected unit.
  • the temperature value inside the unit is the temperature of the internal atmosphere of the unit.
  • a temperature sensor such as a thermistor or a thermocouple can be employed.
  • the temperature value detection unit 52 can be configured to include a circuit that measures the electrical resistance value of the thermistor and a circuit that converts the measured electrical resistance value into a temperature value.
  • the temperature value detection unit 52 is configured to include a circuit for measuring the electromotive force of the thermocouple and a circuit for converting the measured electromotive force into a temperature value. Can do.
  • the installation position of the temperature sensor may be any position as long as the temperature in the unit can be detected.
  • the temperature sensor is installed in the vicinity of the heat generating component in the unit.
  • the temperature sensors may be installed at a plurality of positions in the unit, and the temperature value detection unit 52 may generate a temperature value by performing a predetermined calculation such as an average process on the output values of the plurality of temperature sensors. .
  • the temperature value storage unit 53 stores the temperature value inside the unit detected by the temperature value detection unit 52.
  • the cooling control unit 60 controls the operation of the cooling unit 70 based on the cooling unit operation instruction information that is input from the comparison unit 83 described later and instructs the operation of the cooling unit 70 or the continuation of the operation state. Further, the cooling control unit 60 controls the stop of the cooling unit 70 based on the cooling unit stop instruction information input from the comparison unit 83 and instructing to stop the operation of the cooling unit 70 or to continue the stopped state.
  • the cooling control unit 60 can be configured by an electronic circuit, and an IC can be used.
  • the cooling unit 70 cools the inside of the unit to reduce the temperature of the parts including the heat generating parts in the unit and the temperature inside the unit, thereby suppressing the temperature rise of the heat generating parts. By operating the cooling unit 70, the temperature of the heat generating component in the unit can be lowered to extend the life of the heat generating component and the life of the unit.
  • the cooling unit 70 can be a water-cooled microcooler.
  • FIG. 5 is a block diagram schematically illustrating a functional configuration of the temperature control management unit 80 according to the first embodiment.
  • the temperature control management unit 80 includes a CPU unit communication unit 81 which is a communication function unit, a specified value storage unit 82, a comparison unit 83, and a comparison result storage unit 84.
  • the temperature control management unit 80 can be configured by an electronic circuit, and an IC can be used.
  • the CPU unit communication unit 81 has a function of performing information communication with the unit communication unit 51 of the CPU unit 12 and other units via the internal bus 15 and the bus connector 16.
  • the CPU unit 12 can read the temperature value detected by each unit and stored in the temperature value storage unit 53 through the CPU unit communication unit 81.
  • the specified value storage unit 82 sets a specified reference temperature value that is lower by a predetermined temperature than the temperature at which the normal operation of the PLC system 1 may cause heat damage.
  • the specified value storage unit 82 is a specified value for each unit that is lower than the temperature at which there is a possibility of heat damage to the normal operation of the CPU unit 12, the target units 13-1 to 13-4, and the end cover 14.
  • the reference temperature value is stored.
  • this prescribed reference temperature value is referred to as a prescribed value.
  • the specified value when the upper limit of the internal temperature value at which a certain unit can operate normally is 65 ° C., the specified value is 60 ° C.
  • This specified value is a reference value for determining whether or not to operate the cooling unit 70 of each unit, and is an upper limit temperature value that is allowed as the internal temperature value of each unit being within the normal range.
  • the specified values are individually set for the CPU unit 12, the target units 13-1 to 13-4, and the end cover 14, and are stored in the specified value storage unit 82 in advance.
  • the comparison unit 83 includes a temperature value in the unit input from the unit communication unit 51 of the temperature monitoring unit 50 of the CPU unit 12 or other unit, and a specified value stored in the specified value storage unit 82 and corresponding to each unit. , And the comparison result is stored in the comparison result storage unit 84. That is, the comparison unit 83 stores the comparison result between the temperature value in the unit and the specified value in the comparison result storage unit 84 for each unit.
  • the comparison result storage unit 84 stores a result of comparison between a temperature value inside a certain unit and a specified value, which is executed by the comparison unit 83.
  • the CPU 90 is a control unit that communicates with the CPU unit 12 and other units to manage control of the entire PLC system.
  • the display unit 100 is a display unit that displays the temperature value in each unit. By using the display unit 100, the CPU unit 12 can monitor the internal temperature of each unit. Further, the display unit 100 can display various information in the PLC system 1.
  • the display unit 100 can use a display device such as a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the function processing unit 110 is a function unit that performs processing unique to each unit.
  • the function processing unit 110 performs predetermined processing based on an instruction from the CPU unit 12 while communicating with the CPU unit 12, for example.
  • the function processing unit 110 can be configured by an electronic circuit, and an IC can be used.
  • FIG. 6 is a flowchart illustrating an example of the procedure of the temperature control process in the unit in the PLC system 1 according to the first embodiment.
  • FIG. 7 is a flowchart showing an example of the procedure of the temperature value detection process and the cooling control process in the target unit among the temperature control processes in the unit according to the first embodiment, and step S30 of the flowchart shown in FIG. Details of the process are shown.
  • the power supply unit 11 supplies a voltage to each unit of the basic block 10 via the bus connector 16 that connects the units. Thereby, the PLC system 1 is started.
  • the unit communication unit 51 of each unit is in a communicable state.
  • step S20 the CPU 90 accesses each unit via the internal bus 15 and the bus connector 16 and performs processing for grasping the number of units connected to the PLC system 1 and the number of additional blocks.
  • the CPU unit 12 acquires the unit arrangement state in the basic block 10 of the PLC system 1.
  • the CPU unit 12 acquires the arrangement state of each unit of the basic block 10 by acquiring, for example, a management number stored in a nonvolatile memory (not shown) of each unit.
  • Each unit performs an initial process based on the control of the CPU 90 of the CPU unit 12, and then starts the process of each unit. Thereby, the PLC system 1 operates.
  • step S30 the internal temperature value detection process and the cooling control process are performed for the target unit that is the target of the internal temperature value detection process and the cooling control process.
  • Step S30 is performed intermittently after the end of the predetermined processing in the CPU 90, at a predetermined cycle, or when the PLC system 1 is reset.
  • the target unit is any unit from the CPU unit 12 to the end cover 14 excluding the power supply unit 11 in the basic block.
  • the end cover 14 is the target unit will be described first.
  • step S31 the temperature value inside the target unit is detected and stored. That is, the CPU unit communication unit 81 of the CPU unit 12 outputs the in-unit temperature value detection instruction information to the end cover 14.
  • the in-unit temperature value detection instruction information is intermittently output after the end of the predetermined process in the CPU 90, at a predetermined period, or when the PLC system 1 is reset.
  • the in-unit temperature value detection instruction information is input to the temperature value detection unit 52 via the unit communication unit 51 of the temperature monitoring unit 50 of the end cover 14.
  • the temperature value detection unit 52 of the end cover 14 detects the temperature value inside the own unit based on the input in-unit temperature value detection instruction information.
  • the temperature value detection unit 52 of the end cover 14 outputs the detected temperature value to the temperature value storage unit 53.
  • the temperature value storage unit 53 of the end cover 14 stores the temperature value output from the temperature value detection unit 52.
  • the temperature value storage unit 53 may store the temperature value in association with the stored time, for example.
  • the unit communication unit 51 of the end cover 14 outputs the stored temperature value to the CPU unit 12 as a response to the in-unit temperature value detection instruction information. With the above process, the temperature monitoring process in the end cover 14 is completed.
  • the CPU unit communication unit 81 transmits a temperature value reading request notification to the unit communication unit 51 of the end cover 14 so that the temperature value stored in the temperature value storage unit 53 is output to the CPU unit 12. Also good.
  • the unit communication unit 51 of the end cover 14 transmits the temperature value stored in the temperature value storage unit 53 to the CPU unit 12 in response to the temperature value reading request notification.
  • the temperature value output from the end cover 14 is input to the comparison unit 83 of the temperature control management unit 80 via the CPU unit communication unit 81 of the temperature control management unit 80 of the CPU unit 12.
  • the comparison unit 83 compares the temperature value input from the end cover 14 with a specified value for the end cover 14 in step S32. That is, the comparison unit 83 reads the specified value for the end cover 14 stored in the specified value storage unit 82. Then, the comparison unit 83 compares the temperature value input from the end cover 14 with the specified value for the end cover 14 acquired from the specified value storage unit 82. Specifically, the comparison unit 83 determines whether or not the temperature value input from the end cover 14 is greater than a specified value.
  • the comparison unit 83 stores the temperature value input from the end cover 14 and compared with the specified value as a comparison result. The data is output to and stored in the unit 84. Then, the comparison unit 83 outputs the temperature value stored in the comparison result storage unit 84 to the display unit 100 via the CPU unit communication unit 81 when the temperature value is larger than the specified value.
  • the display unit 100 displays the temperature value and displays that the temperature value of the end cover 14 is larger than the specified value. By displaying on the display unit 100 that the temperature value of the end cover 14 is greater than the specified value, the user can visually recognize that the end cover 14 is in a state that requires cooling.
  • the comparison unit 83 may output and store the rising temperature information, which is a temperature difference between the temperature value and the predetermined value, together with the temperature value to the comparison result storage unit 84. Thereby, the comparison part 83 can output and display the rising temperature information on the display part 100 together with the temperature value.
  • the comparison unit 83 performs processing for instructing control of the cooling unit 70 of the end cover 14 based on the content of the comparison result. If the temperature value input from the end cover 14 is larger than the specified value, that is, if Yes in step S32, the comparison unit 83 operates the cooling unit 70 of the end cover 14 that is the target unit in step S33. I do. That is, the comparison unit 83 outputs the cooling unit operation instruction information to the cooling control unit 60 of the end cover 14.
  • the cooling control unit 60 of the end cover 14 When the cooling unit operation instruction information is input, the cooling control unit 60 of the end cover 14 performs a process of operating the cooling unit 70 of the end cover 14 based on the cooling unit operation instruction information. When the cooling unit 70 of the end cover 14 is operating in advance, the cooling control unit 60 of the end cover 14 performs control to continue the operation of the cooling unit 70.
  • step S34 the comparison unit 83 performs a process of operating the cooling unit 70 of the unit disposed adjacent to the end cover 14 that is the target unit. That is, the comparison unit 83 also outputs the cooling unit operation instruction information to the cooling control unit 60 of the unit disposed adjacent to the end cover 14.
  • the end cover 14 is located at the end of the basic block. For this reason, the comparison unit 83 outputs the cooling unit operation instruction information to the cooling control unit 60 of the unit disposed on the power supply unit 11 side as compared with the end cover 14. That is, the comparison unit 83 outputs the cooling unit operation instruction information to the cooling control unit 60 of the target unit 13-4.
  • the cooling control unit 60 of the target unit 13-4 When the cooling unit operation instruction information is input, the cooling control unit 60 of the target unit 13-4 performs a process of operating the cooling unit 70 of the target unit 13-4 based on the cooling unit operation instruction information. This is because an adjacent unit adjacent to a unit having a high temperature value is affected by the heat of the unit having a high temperature value, and the temperature rise inside the unit is accelerated.
  • the cooling control unit 60 of the target unit 13-4 performs control to continue the operating state of the cooling unit 70.
  • the comparison unit 83 sends only one cooling unit operation instruction information to the cooling control unit 60 of the unit disposed on the power supply unit 11 side as compared with the end cover 14. Was output. However, when the unit that has detected the internal temperature value is any unit between the power supply unit 11 and the end cover 14, the comparison unit 83 is adjacent to both sides of the target unit that has detected the internal temperature value.
  • the cooling unit operation instruction information is output to the cooling control units 60 of the two arranged units.
  • step S35 the comparison unit 83 determines whether or not there is a unit in which the internal temperature value is not detected in the above series of processing and is arranged adjacent to the target unit, that is, a temperature value non-detected adjacent unit. Determine whether.
  • step S35 if there is a temperature value non-detected adjacent unit, that is, if it is Yes in step S35, the process returns to step S31 with the temperature value non-detected adjacent unit as the target unit.
  • the end cover 14 is a terminal unit, it is determined whether or not there is only one unit disposed on the power supply unit 11 side as compared with the end cover 14 that is the target unit.
  • only one target unit 13-4 is arranged on the power supply unit 11 side. Accordingly, the target unit 13-4 becomes a temperature value non-detected adjacent unit, and the process of step S31 is performed with the target unit 13-4 as the target unit.
  • Step S35 if there is no adjacent unit for which the temperature value has not been detected, that is, if No in Step S35, the series of temperature control processing is terminated.
  • the comparison unit 83 is the cooling unit of the end cover 14 that is the target unit in step S36.
  • the process which stops 70 is performed. That is, the comparison unit 83 outputs the cooling unit stop instruction information to the cooling control unit 60 of the end cover 14.
  • the comparison unit 83 may output and store the temperature value input from the end cover 14 and compared with the specified value in the comparison result storage unit 84.
  • the cooling control unit 60 of the end cover 14 When the cooling unit stop instruction information is input, the cooling control unit 60 of the end cover 14 performs a process of stopping the cooling unit 70 of the end cover 14 based on the cooling unit stop instruction information. In addition, when the cooling unit 70 of the end cover 14 is stopped in advance, the cooling control unit 60 of the end cover 14 performs control to continue the stopped state of the cooling unit 70. Thereby, unnecessary operation
  • step S37 the comparison unit 83 performs a process of stopping the cooling unit 70 of the unit disposed adjacent to the end cover 14 that is the target unit. That is, the comparison unit 83 also outputs the cooling unit stop instruction information to the cooling control unit 60 of the unit disposed adjacent to the end cover 14.
  • the end cover 14 is located at the end of the basic block. Therefore, the comparison unit 83 outputs the cooling unit stop instruction information to the cooling control unit 60 of the unit disposed on the power supply unit 11 side as compared with the end cover 14. That is, the comparison unit 83 outputs the cooling unit stop instruction information to the cooling control unit 60 of the target unit 13-4.
  • the cooling control unit 60 of the target unit 13-4 performs a process of stopping the cooling unit 70 of the target unit 13-4 based on the cooling unit stop instruction information. This is because the adjacent unit adjacent to the target unit whose temperature value is within the normal range is not affected by the heat of the target unit, so that the temperature rise inside the unit does not accelerate. Thereby, unnecessary operation
  • the cooling control unit 60 of the target unit 13-4 performs control to continue the stopped state of the cooling unit 70. After step S37, the process proceeds to step S35.
  • step S30 for the six units from the end cover 14 to the CPU unit 12, the above-described processing of step S30, that is, the processing of step S31 to step S35, is sequentially performed from the end cover 14 to the CPU unit 12. Is done. Then, the process of step S30 described above is performed from the end cover 14 to the CPU intermittently after the end of the predetermined process in the CPU 90, at a predetermined cycle, or at the time of resetting the PLC system 1 while the PLC system 1 is operating. Repeatedly for unit 12.
  • step S30 is sequentially performed in the order from the end cover 14 to the CPU unit 12, but the process of step S30 may be performed in the order from the end cover 14 to the CPU unit 12. .
  • the display unit 100 is provided in the CPU unit 12, but a display unit having the same function as the display unit 100 may be arranged in the basic block. Further, a display device having the same function as the display unit 100 may be provided outside the basic block.
  • the temperature monitoring unit 50, the cooling control unit 60, and the cooling unit are respectively added to the CPU unit 12, the target units 13-1 to 13-4, and the end cover 14 in the PLC system 1.
  • Part 70 is provided. Thereby, the temperature value inside each unit can be detected and monitored.
  • the CPU unit 12 is provided with a temperature control management unit 80. Thereby, based on the comparison result between the temperature value detected by the temperature monitoring unit 50 and the specified value, the cooling process in each unit can be controlled, and the temperature management control in each unit can be performed.
  • the temperature monitoring unit 50 of each unit intermittently detects and stores the internal temperature value at an arbitrary predetermined timing. In this way, by monitoring the temperature value in the unit at an arbitrary predetermined timing, the temperature value in the unit is monitored due to the heat generation caused by the monitoring of the temperature value in the unit, compared with the case of constantly monitoring the temperature value in the unit. The power consumption required for the temperature value rise and temperature value monitoring can be suppressed.
  • the temperature control management unit 80 of the CPU unit 12 acquires the temperature value detected and stored in each unit through the bus connector 16 connecting the units.
  • the temperature control management unit 80 compares the temperature value with the specified value, and if the temperature value is larger than the specified value, the cooling control unit 60 operates the cooling unit 70. With the operation of the cooling unit 70 mounted on each unit, any unit can individually suppress an increase in internal temperature. If the temperature value is equal to or less than the specified value, the cooling control unit 60 stops the cooling unit 70.
  • the temperature control management part 80 is provided only in the CPU unit 12, the configuration is simple.
  • the temperature monitoring unit 50 stores the temperature value
  • the monitoring of the temperature value by the temperature monitoring unit 50 and the processing in the temperature control management unit 80 may not be performed continuously. That is, heat generation at the same time in the CPU unit 12 can be suppressed by changing the timing of the processing by the temperature monitoring unit 50 and the processing by the temperature control management unit 80.
  • the cooling unit 70 of the target unit whose temperature value is larger than the specified value is operated, and adjacent units adjacent to the unit are cooled from the same timing as the target unit.
  • the temperature value rise of the components in the adjacent unit can be suppressed from an early stage, and the lifetime of the components in the adjacent unit and the lifetime of the unit can be extended.
  • the unit direct connection type PLC system the units arranged adjacent to each other are directly connected to each other. For this reason, the temperature in the unit tends to rise due to the influence of the heat of the units arranged adjacent to each other, and it is essential to suppress the temperature rise of the unit.
  • it is possible to suppress the temperature rise of the adjacent units by cooling the adjacent units in addition to the cooling of the target unit whose temperature value is larger than the specified value.
  • the first embodiment even when the number of units mounted is changed in a direct connection type PLC system that is connected via a bus connector in a state where adjacent units are in contact with each other, Since it is possible to individually detect and cool the units that need to suppress the internal temperature rise, it is possible to control the temperature value in the unit with the minimum necessary power consumption.
  • the temperature value in the unit can be controlled with less power consumption.
  • Embodiment 2 FIG. In the first embodiment, the case where the PLC system is configured by only basic blocks is shown, but in the second embodiment, the case where the PLC system is configured by basic blocks and additional blocks is shown.
  • FIG. 8 is a diagram schematically illustrating an example of the configuration of the PLC system 2 according to the second embodiment.
  • the PLC system 2 has one basic block 210 and an expansion block 220 connected to the basic block 210 via an expansion cable 230.
  • the basic block 210 includes a power supply unit 11, a CPU unit 12, target units 13-1 to 13-3, an end cover 14, and a branch unit 17.
  • the branch unit 17 is provided when a block other than the basic block 210 is added, and is provided at an arbitrary position between the CPU unit 12 and the end cover 14.
  • the branch unit 17 includes the temperature monitoring unit 50, the cooling control unit 60, and the cooling unit 70 described in the first embodiment.
  • the branch unit 17 can communicate with other units via a communication unit provided therein.
  • the expansion block 220 serves as a connecting portion of the voltage supplied from the power supply unit 11 to the expansion block 220, and includes the expansion unit 21 serving as the start end, the target units 22-1 to 22-4, and the end cover 23 serving as the end unit. Have. All the units of the expansion block 220 are connected via the bus connector 16 connected to the internal bus 15 in each unit in a state in which adjacent units are in contact with each other.
  • the extension unit 21, the target units 22-1 to 22-4, and the end cover 23 include the temperature monitoring unit 50, the cooling control unit 60, and the cooling unit 70 described in the first embodiment.
  • the extension unit 21, the target units 22-1 to 22-4, and the end cover 23 can communicate with other units via a communication unit provided therein.
  • the branch cable 17 of the basic block 210 and the extension unit 21 of the extension block 220 are connected by an extension cable 230.
  • this extension cable 230 the voltage supply from the power supply unit 11 of the basic block 210 to the extension block 220 and the communication between the basic block 210 and the extension block 220 can be performed via the branch unit 17.
  • the description of the same components as those in Embodiment 1 is omitted.
  • it can be realized with the same configuration as that of the additional block 220. That is, a branch unit is newly provided in the extension block 220. Then, the branch unit and the new extension unit are connected by an extension cable.
  • FIG. 9 is a flowchart showing an example of the procedure of the temperature monitoring process in the second embodiment.
  • the power supply unit 11 supplies a voltage to each unit of each unit of the basic block 210 via the bus connector 16 that connects the units.
  • the power supply unit 11 also supplies a voltage to each unit of the extension block 220 connected to the branch unit 17 via the extension cable 230.
  • the PLC system 2 is started.
  • the unit communication unit 51 of each unit is in a communicable state.
  • step S120 the CPU 90 accesses each unit of the basic block 210 and the extension block 220 via the internal bus 15, the bus connector 16 and the extension cable 230, and determines the number of units connected to the PLC system 2. Execute the process to grasp the number of expansion blocks. Then, each unit of the basic block 210 and the extension block 220 performs initial processing based on the control of the CPU 90 of the CPU unit 12, and then starts processing of each unit. Thereby, the PLC system 2 operates.
  • step S130 the target unit that is the target of the internal temperature value detection process and the cooling process, An internal temperature value detection process and a cooling control process are performed.
  • the target unit is any unit from the CPU unit 12 to the end cover 14 excluding the power supply unit 11 in the basic block 210, and includes the branch unit 17.
  • step S130 the same processing as step S30 described with reference to FIG. 7 in the first embodiment is performed.
  • step S130 After the process of step S130 is performed for each unit from the CPU unit 12 to the end cover 14 in the basic block 210, the comparison unit 83 has an additional block connected to the basic block 210 in step S140. It is determined whether or not.
  • step S150 If there is an expansion block connected to the basic block 210 in step S140, that is, if Yes in step S140, internal temperature value detection processing and cooling control processing are performed in step S150 with the expansion block unit as the target unit. .
  • the target unit here is each unit in the expansion block 220.
  • step S150 the same processing as step S30 described with reference to FIG. 7 in the first embodiment is performed.
  • step S150 the same processing as step S30 described above is sequentially performed on the six units from the end cover 23 to the extension unit 21 from the end cover 23 toward the extension unit 21.
  • step S160 the comparison unit 83 determines whether there are more extension blocks, that is, the extension block 220. It is determined whether there is an expansion block connected to the.
  • step S160 if there are more extension blocks, that is, if the answer is Yes in step S160, the process returns to step S150 with each unit of the extension block as the target unit. If there is no additional block in step S160, that is, if no in step S160, the series of temperature control processing ends.
  • Step S140 if there is no additional block connected to the basic block 210 in Step S140, that is, if No in Step S140, the series of temperature control processing ends.
  • step S150 is sequentially performed in the order from the end cover 23 to the extension unit 21, but the process of step S150 may be performed in the order from the extension unit 21 to the end cover 23. .
  • each unit of the extension block 220 can also detect and monitor the temperature value inside each unit, and can perform temperature management control in each unit. .
  • a CPU unit and a unit having other functions are connected, and in a PLC system including an extension block, temperature value control in the unit can be performed with low power consumption. There is an effect.
  • Embodiment 3 FIG.
  • the units are sequentially connected from the unit located at one end to the unit located at the other end in the unit row as the target unit. Temperature value detection processing and cooling control processing are performed.
  • the internal temperature value detection process and the cooling control process may be performed on only one arbitrary unit as the target unit in the unit row as the target unit.
  • selection temperature value detection instruction information for selecting and instructing any one unit from the unit block of the basic block or the extension block as the target unit may be input to the CPU unit communication unit 81 from the outside.
  • the CPU unit communication unit 81 may hold in advance selection temperature value detection instruction information for a specific unit. Based on the selected temperature value detection instruction information, the CPU unit communication unit 81 outputs selected unit temperature value detection instruction information with any one unit as a target unit only to the selected unit. Then, the unit to which the selected unit temperature value detection instruction information is input and the CPU unit 12 perform the process of step S30 excluding step S35.
  • the third embodiment it is possible to perform the process of detecting the internal temperature value of the unit and the cooling control process only for the selected specific unit. That is, only for a specific unit, it is possible to control whether or not the internal temperature value is extremely high or it is not necessary to cool the unit.
  • Embodiment 4 the detection processing of the internal temperature value of the unit is intermittently performed after completion of the predetermined processing in the CPU 90, at a predetermined cycle, or at the timing when the PLC system 1 is reset.
  • the case where the cooling control process is performed has been described.
  • the above-described processing of step S30, step S130, and step S150 can be performed.
  • additional temperature value detection instruction information for instructing output of additional in-unit temperature value detection instruction information from the CPU unit communication unit 81 may be input to the CPU unit communication unit 81 from the outside.
  • the CPU unit communication unit 81 outputs the in-unit temperature value detection instruction information as described above based on the additional temperature value detection instruction information.
  • the temperature control processing of the functional units other than the power supply unit 11 has been described as an example.
  • the above configuration and processing may be applied to the entire functional block including the power supply unit 11. I do not care.
  • the power supply unit 11 similarly to the target units 13-1 to 13-4 and the end cover 14, the power supply unit 11 includes a temperature monitoring unit 50, a cooling control unit 60, a cooling unit 70, and a function processing unit 110. Then, the CPU unit 12 and the power supply unit 11 can perform the temperature control process of the power supply unit 11 by performing the process described in the above embodiment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 10 basic blocks 11 power supply units, 12 central processing units, 13-1 to 13-4 target units, 14 end covers, 15 internal buses, 16 bus connectors, 17 branch units, 21 extension units, 22-1 to 22-4 Target unit, 23 end cover, 50 temperature monitoring unit, 51 unit communication unit, 52 temperature value detection unit, 53 temperature value storage unit, 60 cooling control unit, 70 cooling unit, 80 temperature control management unit, 81 CPU unit communication unit, 82 Specified value storage unit, 83 comparison unit, 84 comparison result storage unit, 100 display unit, 110 function processing unit, 210 basic block, 220 expansion block, 230 expansion cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Programmable Controllers (AREA)

Abstract

電源ユニット(11)と、中央演算ユニット(12)と、一般ユニット(13)と、終端に配置される終端ユニット(14)とが隣接して順次配置され、コネクタ(16)を介して電気的および通信可能に接続された基本ブロック(10)を備えるプログラマブルロジックコントローラシステム(1)において、一般ユニット(13)は、機能ユニット内の温度値を既定のタイミングで間欠的に検出する温度監視部(50)と、機能ユニット内の冷却を行う冷却部(70)と、を備え、中央演算ユニット(12)は、温度監視部(50)と、冷却部(70)と、基本ブロック(10)の機能ユニットの温度監視部(50)において検出された温度値と、基本ブロック(10)の機能ユニットに対応して予め個別に設定された規定値とを比較し、比較の結果に基づいて規定値と比較した温度値を検出した機能ユニットの冷却部(70)の稼働を制御する温度制御管理部(80)と、を備える。

Description

プログラマブルロジックコントローラシステム
 本発明は、複数のユニットが接続されたプログラマブルロジックコントローラシステムに関する。
 従来、プログラマブルロジックコントローラ(Programmable Logic Controller:PLC)システムにおいては、始端に電源ユニットが配置され、該電源ユニットの隣に中央演算処理装置(Central Processing Unit:CPU)ユニットが連結され、さらにCPUユニットに続いて入出力ユニットまたはその他の機能を有する他のユニットが配置された構成の基本ブロックが用いられている。そして、各ユニット間は、PLCシステムの内外で通信を行うためにベースユニットにより連結されている。
 上述したようにCPUユニットと、他のユニットとが接続されたPLCシステムにおいて、該PLCシステムの稼働時には、ユニット内部の基板および部品に電流が流れ、部品から発熱が生じる。部品の発熱が継続されて、ユニット内部の温度が著しく上昇すると、部品またはユニットの機能および性能の低下、部品の寿命の低下が発生する。したがって、PLCシステムが正常に動作するためにユニット内部の部品の発熱によりユニット内部の温度が著しく上昇しないことが必要である。
 PLCシステムにおけるユニットの温度を管理する方法として、特許文献1には、本体装置のCPUユニットと、本体装置の電源ユニットおよび増設用装置の電源ユニットとの間にデータ転送経路が設けられている。そして、各電源ユニットは温度検出器を備え、電源ユニットの電源オン時とCPUからのコマンドに対応して、データをCPUユニットに転送した後だけ内部温度を測定して、電源ユニット内部の不揮発性内部メモリにデータを格納している。
特開2006-294007号公報
 しかし、上記特許文献1のPLC装置では、電源ユニットのみの温度監視を行っている。このため、その他の複数のユニットの内部温度が上昇しても、当該ユニットの温度管理は行えず、当該ユニットの温度上昇を抑制する制御ができない。
 また、上記特許文献1のPLC装置のように温度監視機能をPLCシステムに実装することにより、PLCシステム内の温度値を測定することができる。しかし、特許文献1のPLC装置では、電源ユニット内部の温度を常時監視しているため、PLC装置の稼働時の消費電力が増加しまう。そして、消費電力が増えることにより、PLC装置を稼働するためのコストが増加し、PLC装置の管理費が増加してしまう。
 本発明は、上記に鑑みてなされたものであって、CPUユニットと、他の機能を有するユニットとが接続されたPLCシステムにおいて、少ない消費電力でユニット内の温度値制御が可能なPLCシステムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、機能ユニットとして、電源ユニットと、中央演算ユニットと、前記機能ユニットのうち前記電源ユニットおよび前記中央演算ユニットと異なる機能を有する一般ユニットと、前記電源ユニットに対して終端に配置される第1終端ユニットとが、当接した状態で隣接して順次配置されるとともに前記機能ユニット間を接続するコネクタを介して電気的および通信可能に接続された基本ブロックを備えるプログラマブルロジックコントローラシステムであって、前記一般ユニットは、前記機能ユニット内の温度値を既定のタイミングで間欠的に検出する温度監視部と、前記機能ユニット内の冷却を行う冷却部と、を備え、前記中央演算ユニットは、前記温度監視部と、前記冷却部と、前記基本ブロックの前記機能ユニットの前記温度監視部において検出された温度値と、前記基本ブロックの前記機能ユニットに対応して予め個別に設定された規定値とを比較し、前記比較の結果に基づいて、前記規定値と比較した前記温度値を検出した前記機能ユニットの前記冷却部の稼働を制御する温度制御管理部と、を備えることを特徴とする。
 本発明にかかるPLCシステムは、CPUユニットと、他の機能を有するユニットとが接続されたPLCシステムにおいて、少ない消費電力でユニット内の温度値制御が可能になる、という効果を奏する。
本発明の実施の形態1にかかるPLCシステムの構成の一例を模式的に示す図 本発明の実施の形態1にかかるCPUユニットの機能構成を模式的に示すブロック図 本発明の実施の形態1にかかるターゲットユニットとエンドカバーとの機能構成を模式的に示すブロック図 本発明の実施の形態1にかかる温度監視部の機能構成を模式的に示すブロック図 本発明の実施の形態1にかかる温度制御管理部の機能構成を模式的に示すブロック図 本発明の実施の形態1にかかるPLCシステムでのユニット内の温度制御処理の手順の一例を示すフローチャート 本発明の本実施の形態1におけるユニット内の温度制御処理のうち対象ユニットの内部の温度値の検出処理および冷却制御処理の手順の一例を示すフローチャート 本発明の実施の形態2にかかるPLCシステムの構成の一例を模式的に示す図 本発明の実施の形態2における温度監視処理の手順の一例を示すフローチャート
 以下に、本発明の実施の形態1にかかるプログラマブルロジックコントローラシステムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるPLCシステム1の構成の一例を模式的に示す図である。図2は、本実施の形態1にかかるCPUユニット12の機能構成を模式的に示すブロック図である。図3は、本実施の形態1にかかるターゲットユニット13-1~13-4とエンドカバー14との機能構成を模式的に示すブロック図である。PLCシステム1は、隣接して配置されたユニット同士が当接した状態で直接連結されたユニット直接連結型の構成を有している。PLCシステム1は、1つの基本ブロック10を備える。基本ブロック10は、個別の機能を有する機能ユニットとして、基本ブロック10内のユニットに対して電圧を供給する電源ユニット11と、PLCシステム全体を管理するCPUユニット12と、入出力ユニットまたは他の機能を有する一般ユニットであるターゲットユニット13-1~13-4と、ブロックの終端を示すとともにブロックの終端処理を行う終端ユニットであるエンドカバー14と、を有する。
 電源ユニット11、CPUユニット12、ターゲットユニット13-1~13-4、および終端ユニットであるエンドカバー14の全てのユニットは、隣接して配置されたユニット同士が当接した状態で、各ユニット内の内部バス15に接続したバスコネクタ16を介して接続されている。各ユニット内の内部バス15および隣接するユニットを接続するバスコネクタ16は、電圧供給線および各ユニット間の情報通信における信号の伝送経路として機能する。各ユニット内の各構成部は、内部バス15により接続されている。各ユニットは、内部バス15およびバスコネクタ16を介して各ユニット間で情報通信ができる。また、電源ユニット11から他のユニットに対して、内部バス15およびバスコネクタ16を介して電圧が供給される。また、この例では、ターゲットユニット13-1~13-4が4個配置されている場合が示されているが、ターゲットユニットの数量は4個に限定されるものではない。
 電源ユニット11は、連結されたCPUユニット12に対して、バスコネクタ16を介して電圧を供給する。また、電源ユニット11は、CPUユニット12を介して、ターゲットユニット13-1~13-4およびエンドカバー14に電圧を供給する。すなわち、電源ユニット11は、各ユニット内の内部バス15および隣接するユニットを接続するバスコネクタ16を介して、CPUユニット12からエンドカバー14まで電圧を供給する。
 図2に示すように、CPUユニット12は、機能ユニット内の温度値を既定のタイミングで間欠的に検出する温度監視部50と、機能ユニット内の冷却処理を制御する冷却制御部60と、機能ユニット内の冷却処理を行う冷却部70と、機能ユニットの温度監視部50において検出された温度値と、機能ユニットに対応して予め個別に設定された規定値とを比較し、該比較の結果に基づいて、規定値と比較した温度値を検出した機能ユニットの冷却部70の稼働を制御する温度制御管理部80と、CPUユニット12内およびPLCシステム全体の制御を管理するCPU90と、各ユニット内の温度値を表示する表示部100と、を備える。温度制御管理部80は、機能ユニット12の温度監視処理および冷却処理を管理する。CPUユニット12は、図示しない通信部を介して、他のユニットと通信可能である。温度監視部50と、冷却制御部60と、温度制御管理部80と、CPU90とは電子回路により構成することができ、マイクロコンピュータを用いて構成することができる。
 図3に示すように、ターゲットユニット13-1~13-4とエンドカバー14とは、それぞれ温度監視部50と、冷却制御部60と、冷却部70と、各ユニットに特有の機能処理を実施する機能処理部110と、を備える。また、ターゲットユニット13-1~13-4とエンドカバー14とは、それぞれ図示しない通信部を介して、他のユニットと通信可能である。
 図4は、本実施の形態1にかかる温度監視部50の機能構成を模式的に示すブロック図である。温度監視部50は、通信機能部であるユニット通信部51と、ユニットの内部温度値を検出する温度値検出部52と、温度値を記憶する記憶部である温度値記憶部53と、を備える。温度監視部50は、電子回路により構成することができ、集積回路(Integrated Circuit:IC)を用いることができる。
 ユニット通信部51は、他のユニットと内部バス15およびバスコネクタ16を介して情報通信を行う機能を有する。ユニット通信部51は、温度監視部50と他のユニットとの通信の他に、自ユニットと他のユニットとの通信部としても機能する。したがって、ユニット通信部51は、温度監視部50と別個に設けてもよい。
 温度値検出部52は、ユニットの内部温度値、すなわちユニットの内部の温度値を検出する温度センサを備えて構成される。温度値検出部52は、該温度センサを用いてユニットの内部温度値の監視処理、すなわち検出処理を行う。温度値検出部52は、温度センサでの検出値に対応した温度値を出力する。温度値検出部52は、CPUユニット12から入力されてユニットの内部の温度の検出を指示するユニット内温度値検出指示情報に基づいて、ユニットの内部の温度値を検出する。温度値検出部52が出力した温度値は、検出したユニットの内部の温度値記憶部53に入力されて格納される。ユニットの内部の温度値は、ユニットの内部雰囲気の温度である。
 温度値検出部52の温度センサとしては、サーミスタまたは熱電対などの温度センサを採用することができる。温度センサとしてサーミスタが採用される場合には、該サーミスタの電気抵抗値を計測する回路、および計測した電気抵抗値を温度値に変換する回路を含めて温度値検出部52を構成することができる。また、温度センサとして熱電対が採用される場合には、該熱電対の起電力を計測する回路、および計測した起電力を温度値に変換する回路を含めて温度値検出部52を構成することができる。
 温度センサの設置位置は、ユニット内の温度を検出することができるのであれば、どの位置であっても構わない。一例として、温度センサは、ユニット内の発熱部品の近傍に設置される。また、温度センサは、ユニット内の複数の位置に設置され、温度値検出部52は、複数の温度センサの出力値に対して平均処理など既定の演算を行って温度値を生成してもよい。
 温度値記憶部53は、温度値検出部52によって検出されたユニットの内部の温度値を記憶する。
 冷却制御部60は、後述する比較部83から入力されて冷却部70の稼働または稼働状態の継続を指示する冷却部稼働指示情報に基づいて、冷却部70の稼働を制御する。また、冷却制御部60は、比較部83から入力されて冷却部70の稼働の停止または停止状態の継続を指示する冷却部停止指示情報に基づいて、冷却部70の停止を制御する。冷却制御部60は、電子回路により構成することができ、ICを用いることができる。
 冷却部70は、ユニット内を冷却してユニット内の発熱部品を含む部品の温度およびユニット内の温度を低下させて、発熱部品の温度上昇を抑制する。冷却部70を稼働させることにより、ユニット内の発熱部品の温度を低下させて該発熱部品の寿命およびユニットの寿命を延ばすことができる。冷却部70は、水冷型のマイクロ冷却器を用いることができる。
 図5は、本実施の形態1にかかる温度制御管理部80の機能構成を模式的に示すブロック図である。温度制御管理部80は、通信機能部であるCPUユニット通信部81と、規定値記憶部82と、比較部83と、比較結果記憶部84と、を備える。温度制御管理部80は、電子回路により構成することができ、ICを用いることができる。
 CPUユニット通信部81は、CPUユニット12およびその他のユニットのユニット通信部51と、内部バス15およびバスコネクタ16を介して情報通信を行う機能を有する。CPUユニット12は、各ユニットで検出されて温度値記憶部53に記憶された温度値を、CPUユニット通信部81を通じて読み込むことができる。
 規定値記憶部82は、PLCシステム1が稼動する上で、該PLCシステム1の正常な稼働に対して熱による害を及ぼす可能性がある温度よりも既定の温度だけ低い規定の基準温度値を格納している。すなわち、規定値記憶部82は、CPUユニット12、ターゲットユニット13-1~13-4およびエンドカバー14の正常な稼働に対して熱による害が生じる可能性がある温度より低い、ユニット毎の規定の基準温度値を記憶している。以下、この規定の基準温度値を規定値と呼ぶ。規定値の一例としては、あるユニットが正常に稼働できる内部温度値の上限が65℃の場合に、規定値は60℃とされる。この規定値は、各ユニットの冷却部70を稼働させるか否かを判定する際の基準値であり、各ユニットの内部温度値が正常範囲内であるとして許容される上限の温度値である。規定値は、CPUユニット12、ターゲットユニット13-1~13-4、およびエンドカバー14について、個別に設定されて予め規定値記憶部82に記憶されている。
 比較部83は、CPUユニット12またはその他のユニットの温度監視部50のユニット通信部51から入力されるユニット内の温度値と、規定値記憶部82に記憶されて各ユニットに対応する規定値と、を比較し、比較した結果を比較結果記憶部84に格納する。すなわち、比較部83は、ユニット内の温度値と規定値との比較した結果を、ユニット毎に比較結果記憶部84に記憶させる。
 比較結果記憶部84は、比較部83によって実行された、あるユニットの内部の温度値と規定値との比較の結果を記憶する。
 CPU90は、CPUユニット12内およびその他のユニットと通信を行い、PLCシステム全体の制御を管理する制御部である。
 表示部100は、各ユニット内の温度値を表示する表示部である。表示部100を使用することで、各ユニットの内部温度をCPUユニット12においてモニタリングすることができる。また、表示部100は、PLCシステム1内の各種情報を表示可能である。表示部100は、液晶ディスプレイ(Liquid Crystal Display:LCD)などの表示デバイスを用いることができる。
 機能処理部110は、各ユニットに固有の処理を行う機能部である。機能処理部110は、たとえばCPUユニット12と通信を行いながら、CPUユニット12の指示に基づいて既定の処理を行う。機能処理部110は、電子回路により構成することができ、ICを用いることができる。
 つぎに、PLCシステム1でのユニット内の温度制御処理について説明する。図6は、本実施の形態1にかかるPLCシステム1でのユニット内の温度制御処理の手順の一例を示すフローチャートである。図7は、本実施の形態1におけるユニット内の温度制御処理のうち対象ユニットの内部の温度値の検出処理および冷却制御処理の手順の一例を示すフローチャートであり、図6に示すフローチャートのステップS30の処理の詳細を示す。
 まず、ステップS10においてPLCシステム1の電源がオンにされると、電源ユニット11はユニット間を連結するバスコネクタ16を介して基本ブロック10の各ユニットに電圧を供給する。これにより、PLCシステム1が起動される。各ユニットに電圧が供給されると、各ユニットのユニット通信部51は通信可能な状態となる。
 つぎに、ステップS20において、CPU90は、内部バス15およびバスコネクタ16を介して各ユニットにアクセスして、PLCシステム1に接続されているユニット数と、増設ブロック数を把握する処理を行う。たとえば、CPUユニット12は、PLCシステム1の基本ブロック10内でのユニットの配置状態を取得する。CPUユニット12は、たとえば各ユニットの図示しない不揮発性メモリに記憶された管理番号を取得することにより、基本ブロック10の各ユニットの配置状態を取得する。そして、各ユニットは、CPUユニット12のCPU90の制御に基づいて、初期処理を実施し、その後、各ユニットの処理を開始する。これにより、PLCシステム1が稼働する。
 その後、ステップS30において、内部温度値の検出処理および冷却制御処理の対象となる対象ユニットについて、内部温度値の検出処理および冷却制御処理を行う。ステップS30は、CPU90における既定の処理の終了後、または既定の周期で、またはPLCシステム1のリセット時に、間欠的に行われる。対象ユニットは、基本ブロックにおいて、電源ユニット11を除いた、CPUユニット12からエンドカバー14までのいずれかのユニットである。ここでは、最初にエンドカバー14を対象ユニットとする場合について説明する。
 まず、ステップS31において、対象ユニットの内部の温度値の検出および記憶を行う。すなわち、CPUユニット12のCPUユニット通信部81が、エンドカバー14に対してユニット内温度値検出指示情報を出力する。ユニット内温度値検出指示情報は、CPU90における既定の処理の終了後、または既定の周期で、またはPLCシステム1のリセット時に、間欠的に出力される。ユニット内温度値検出指示情報は、エンドカバー14の温度監視部50のユニット通信部51を介して温度値検出部52に入力される。エンドカバー14の温度値検出部52は、入力されたユニット内温度値検出指示情報に基づいて、自ユニットの内部の温度値を検出する。つぎに、エンドカバー14の温度値検出部52は、検出した温度値を温度値記憶部53に出力する。エンドカバー14の温度値記憶部53は、温度値検出部52から出力された温度値を記憶する。該温度値記憶部53は、温度値をたとえば記憶した時間と対応付けして記憶してもよい。温度値記憶部53に温度値が記憶されると、エンドカバー14のユニット通信部51は、ユニット内温度値検出指示情報に対する応答として、記憶された温度値をCPUユニット12に出力する。以上の処理によって、エンドカバー14での温度監視処理が終了する。
 なお、CPUユニット通信部81がエンドカバー14のユニット通信部51に対して温度値の読み込み要求通知を送信することで、温度値記憶部53に記憶された温度値がCPUユニット12に出力されてもよい。この場合は、エンドカバー14のユニット通信部51が、該温度値の読み込み要求通知に対する応答で、温度値記憶部53に記憶されている温度値をCPUユニット12に対して送信する。
 エンドカバー14から出力された温度値は、CPUユニット12の温度制御管理部80のCPUユニット通信部81を介して、温度制御管理部80の比較部83に入力される。比較部83は、エンドカバー14から出力された温度値が入力されると、ステップS32において、エンドカバー14から入力された温度値と、エンドカバー14用の規定値とを比較する。すなわち、比較部83は、規定値記憶部82に記憶されている、エンドカバー14用の規定値を読み出す。そして、比較部83は、エンドカバー14から入力された温度値と、規定値記憶部82から取得したエンドカバー14用の規定値とを比較する。具体的には、比較部83は、エンドカバー14から入力された温度値が規定値より大であるか否かを判定する。
 エンドカバー14から入力された温度値が規定値より大である場合、すなわちステップS32においてYesの場合は、比較部83は、エンドカバー14から入力されて規定値と比較した温度値を比較結果記憶部84に出力して記憶させる。そして、比較部83は、温度値が規定値より大である場合に比較結果記憶部84に記憶させた温度値を、CPUユニット通信部81を介して表示部100に出力する。表示部100は、温度値が入力されると、該温度値を表示して、エンドカバー14の温度値が規定値より大であることを表示する。エンドカバー14の温度値が規定値より大であることを表示部100に表示させることにより、エンドカバー14が冷却の必要な状態であることをユーザに視覚的に認識させることができる。
 また、比較部83は、温度値と既定値との温度差である上昇温度情報を温度値とともに比較結果記憶部84に出力して記憶させてもよい。これにより、比較部83は、温度値とともに上昇温度情報を表示部100に出力して、表示させることができる。
 また、比較部83は、比較結果の内容に基づいて、エンドカバー14の冷却部70の制御を指示する処理を行う。エンドカバー14から入力された温度値が規定値より大である場合、すなわちステップS32においてYesの場合は、ステップS33において、比較部83は対象ユニットであるエンドカバー14の冷却部70を稼働させる処理を行う。すなわち、比較部83は、冷却部稼働指示情報をエンドカバー14の冷却制御部60に出力する。
 冷却部稼働指示情報が入力されると、エンドカバー14の冷却制御部60は、該冷却部稼働指示情報に基づいて、エンドカバー14の冷却部70を稼働させる処理を行う。また、エンドカバー14の冷却部70が予め稼働している場合は、エンドカバー14の冷却制御部60は、該冷却部70の稼働を継続させる制御を行う。
 つぎに、ステップS34において、比較部83は対象ユニットであるエンドカバー14に隣接して配置されたユニットの冷却部70を稼働させる処理を行う。すなわち、比較部83は、エンドカバー14に隣接して配置されたユニットの冷却制御部60にも冷却部稼働指示情報を出力する。ここで、エンドカバー14は、基本ブロックの終端に位置する。このため、比較部83は、エンドカバー14に比して1台だけ電源ユニット11側に配置されたユニットの冷却制御部60に冷却部稼働指示情報を出力する。すなわち、比較部83は、ターゲットユニット13-4の冷却制御部60に冷却部稼働指示情報を出力する。
 冷却部稼働指示情報が入力されると、ターゲットユニット13-4の冷却制御部60は、該冷却部稼働指示情報に基づいて、ターゲットユニット13-4の冷却部70を稼働させる処理を行う。これは、温度値が高いユニットに隣接する隣接ユニットは、温度値が高いユニットの有する熱にあぶられて、ユニット内部の温度上昇が早くなるためである。また、ターゲットユニット13-4の冷却部70が予め稼働している場合は、ターゲットユニット13-4の冷却制御部60は、該冷却部70の稼働状態を継続させる制御を行う。
 なお、エンドカバー14は基本ブロックの終端に位置するため、比較部83は、エンドカバー14に比して1台だけ電源ユニット11側に配置されたユニットの冷却制御部60に冷却部稼働指示情報を出力した。しかし、内部温度値を検出したユニットが電源ユニット11とエンドカバー14との間のいずれかのユニットである場合には、比較部83は、内部温度値を検出した対象ユニットの両側に隣接して配置された2つのユニットの冷却制御部60に冷却部稼働指示情報を出力する。
 つぎに、ステップS35において、比較部83は、上記の一連の処理において内部温度値が未検出であり、且つ対象ユニットに隣接して配置されたユニット、すなわち温度値未検出隣接ユニットがあるか否かを判定する。
 ステップS35において、温度値未検出隣接ユニットがある場合、すなわちステップS35においてYesの場合は、温度値未検出隣接ユニットを対象ユニットとしてステップS31の処理に戻る。ここで、エンドカバー14は終端ユニットであるため、対象ユニットであるエンドカバー14に比して1台だけ電源ユニット11側に配置されたユニットがあるか否かを判定する。本実施の形態1では、エンドカバー14に比して1台だけ電源ユニット11側にターゲットユニット13-4が配置されている。したがって、該ターゲットユニット13-4が温度値未検出隣接ユニットとなり、ターゲットユニット13-4を対象ユニットとしてステップS31の処理が実施される。
 また、ステップS35において、温度値未検出隣接ユニットがない場合、すなわちステップS35においてNoの場合は、一連の温度制御処理を終了する。
 一方、ステップS32において、エンドカバー14から入力された温度値が規定値以下である場合、すなわちステップS32においてNoの場合は、ステップS36において、比較部83は対象ユニットであるエンドカバー14の冷却部70を停止させる処理を行う。すなわち、比較部83は、冷却部停止指示情報をエンドカバー14の冷却制御部60に出力する。なお、比較部83は、エンドカバー14から入力されて規定値と比較した温度値を比較結果記憶部84に出力して記憶させてもよい。
 冷却部停止指示情報が入力されると、エンドカバー14の冷却制御部60は、該冷却部停止指示情報に基づいて、エンドカバー14の冷却部70を停止させる処理を行う。また、エンドカバー14の冷却部70が予め停止している場合は、エンドカバー14の冷却制御部60は、該冷却部70の停止状態を継続させる制御を行う。これにより、冷却部70の不要な稼働をなくすことができ、消費電力の低減が可能である。
 つぎに、ステップS37において、比較部83は対象ユニットであるエンドカバー14に隣接して配置されたユニットの冷却部70を停止させる処理を行う。すなわち、比較部83は、エンドカバー14に隣接して配置されたユニットの冷却制御部60にも冷却部停止指示情報を出力する。ここで、エンドカバー14は、基本ブロックの終端に位置する。このため、比較部83は、エンドカバー14に比して1台だけ電源ユニット11側に配置されたユニットの冷却制御部60に冷却部停止指示情報を出力する。すなわち、比較部83は、ターゲットユニット13-4の冷却制御部60に冷却部停止指示情報を出力する。
 冷却部停止指示情報が入力されると、ターゲットユニット13-4の冷却制御部60は、該冷却部停止指示情報に基づいて、ターゲットユニット13-4の冷却部70を停止させる処理を行う。これは、温度値が正常範囲内の対象ユニットに隣接する隣接ユニットは、該対象ユニットの有する熱にあぶられて、ユニット内部の温度上昇が早くなることがないためである。これにより、冷却部70の不要な稼働をなくすことができ、消費電力の低減が可能である。また、ターゲットユニット13-4の冷却部70が予め停止している場合は、ターゲットユニット13-4の冷却制御部60は、該冷却部70の停止状態を継続させる制御を行う。そして、ステップS37の後は、ステップS35の処理に移行する。
 本実施の形態1では、エンドカバー14からCPUユニット12までの6つのユニットについて、エンドカバー14からCPUユニット12に向かって、上述したステップS30の処理、すなわちステップS31からステップS35の処理が順次実施される。そして、上述したステップS30の処理は、PLCシステム1の稼働中において、CPU90における既定の処理の終了後、または既定の周期で、またはPLCシステム1のリセット時に、間欠的に、エンドカバー14からCPUユニット12に対して繰り返し実施される。
 また、上記においては、エンドカバー14からCPUユニット12に向かう順序で、順次ステップS30の処理を行っているが、エンドカバー14からCPUユニット12に向かう順序でステップS30の処理を実施してもよい。
 また、上記においては、表示部100がCPUユニット12内に設けられているが、表示部100と同じ機能を有する表示ユニットを基本ブロック内に配置してもよい。また、表示部100と同じ機能を有する表示装置を基本ブロックの外部に設けてもよい。
 上述したように、本実施の形態1では、PLCシステム1におけるCPUユニット12ターゲットユニット13-1~13-4およびエンドカバー14との各ユニットに、それぞれ温度監視部50と冷却制御部60と冷却部70とが設けられる。これにより、各ユニットの内部の温度値を検出して監視することができる。また、CPUユニット12には、温度制御管理部80が設けられる。これにより、温度監視部50で検出された温度値と規定値との比較結果に基づいて、各ユニット内の冷却処理を制御して、各ユニット内の温度管理制御を行うことができる。
 すなわち、PLCシステム1の稼働中、各ユニットの温度監視部50は任意の既定のタイミングで間欠的に内部の温度値を検出して、記憶する。このように、任意の既定のタイミングでユニット内の温度値を監視することにより、ユニット内の温度値を常時監視する場合と比べて、ユニット内の温度値の監視に起因した、発熱によるユニット内の温度値の上昇および温度値の監視に要する消費電力を抑制することできる。
 そして、CPUユニット12の温度制御管理部80は、ユニット間を連結しているバスコネクタ16を通じて、各ユニットで検出されて記憶された温度値を取得する。温度制御管理部80が該温度値と規定値とを比較し、温度値が規定値よりも大であれば冷却制御部60が冷却部70を稼働させる。各ユニットに実装されている冷却部70の稼働により、どのユニットでも内部の温度の上昇を個別に抑制することができる。また、温度値が規定値以下であれば冷却制御部60が冷却部70を停止させる。このように、ユニット内の温度値が規定値よりも大である場合のみ、冷却部70の稼働させることにより、ユニット内の冷却を常時実施する場合と比べて消費電力を抑制することできる。また、温度制御管理部80は、CPUユニット12のみに設けられるため、構成が簡略である。
 また、温度監視部50は温度値を記憶するため、温度監視部50による温度値の監視と温度制御管理部80での処理は連続して行われなくてもよい。すなわち、温度監視部50による処理と温度制御管理部80とによる処理の時期を異ならせることにより、CPUユニット12内での同時期における発熱を抑制することができる。
 また、各ユニットの温度監視部50により各ユニットの内部の温度値を検出して、温度値が規定値よりも大である場合に、その旨または温度値を表示部100に表示することにより、冷却が必要な状態にあるユニットをユーザに視覚的に認識させることができる。そして、当該表示が表示部100にされていない場合には、ユニットの温度が正常範囲内にあることが認識できる。
 また、本実施の形態1では、温度値が規定値よりも大である対象ユニットの冷却部70を稼働させるとともに、該ユニットに隣接する隣接ユニットも対象ユニットと同じタイミングから冷却する。これにより、早い段階から隣接ユニット内の部品の温度値上昇を抑制し、隣接ユニット内の部品の寿命およびユニットの寿命を延ばすことができる。ユニット直接連結型のPLCシステムでは、隣接して配置されたユニット同士が当接した状態で直接連結される。このため、隣接して配置されたユニットの熱の影響でユニット内の温度が上昇しやすく、ユニットの温度上昇の抑制が必須である。本実施の形態1では、温度値が規定値よりも大である対象ユニットの冷却に加えて隣接ユニットの冷却を行うことにより、隣り合うユニットの温度上昇の抑制が可能である。
 また、本実施の形態1では、隣接して配置されたユニット同士が当接した状態でバスコネクタを介して接続されている直接連結型のPLCシステムにおいて、ユニットの装着数を変更した場合でも、内部の温度上昇の抑制が必要なユニットを個別に検出して冷却を実施することができるため、必要最低限の消費電力でユニット内の温度値の制御を行うことができる。
 また、本実施の形態1では、隣接して配置されたユニット同士が当接した状態でバスコネクタを介して接続されている直接連結型のPLCシステムにおいて、ユニットの装着枚数を変更した場合でも、各ユニットに適した温度への内部温度の制御を任意のタイミングで行うことができ、内部温度値の制御の自由度が向上する。
 したがって、本実施の形態1によれば、CPUユニットと、他の機能を有するユニットとが接続されたPLCシステムにおいて、少ない消費電力でユニット内の温度値制御が可能になる、という効果を奏する。
実施の形態2.
 実施の形態1では、PLCシステムが基本ブロックのみで構成される場合を示したが、実施の形態2では、PLCシステムが基本ブロックと増設ブロックとによって構成される場合を示す。
 図8は、本実施の形態2にかかるPLCシステム2の構成の一例を模式的に示す図である。PLCシステム2は、1つの基本ブロック210と、基本ブロック210に増設ケーブル230を介して接続される増設ブロック220と、を有する。
 基本ブロック210は、電源ユニット11と、CPUユニット12と、ターゲットユニット13-1~13-3と、エンドカバー14と、分岐ユニット17とを備える。分岐ユニット17は、基本ブロック210以外のブロックを増設する場合に設けられ、CPUユニット12とエンドカバー14との間の任意の位置に設けられる。分岐ユニット17は、実施の形態1で説明した温度監視部50と、冷却制御部60と、冷却部70とを備える。分岐ユニット17は、内部に備える通信部を介して、他のユニットと通信可能である。
 増設ブロック220は、電源ユニット11から増設ブロック220へ供給される電圧の連結部分となり、始端となる増設ユニット21と、ターゲットユニット22-1~22-4と、終端ユニットであるエンドカバー23とを有する。増設ブロック220の全てのユニットは、隣接して配置されたユニット同士が当接した状態で、各ユニット内の内部バス15に接続したバスコネクタ16を介して接続されている。増設ユニット21と、ターゲットユニット22-1~22-4と、エンドカバー23とは、実施の形態1で説明した温度監視部50と、冷却制御部60と、冷却部70とを備える。増設ユニット21と、ターゲットユニット22-1~22-4と、エンドカバー23とは、それぞれ内部に備える通信部を介して、他のユニットと通信可能である。
 基本ブロック210の分岐ユニット17と増設ブロック220の増設ユニット21との間は、増設ケーブル230で接続される。この増設ケーブル230によって、基本ブロック210の電源ユニット11から増設ブロック220への電圧の供給、および、基本ブロック210と増設ブロック220との通信を、分岐ユニット17を介して行うことができる。なお、実施の形態1と同一の構成要素については、その説明を省略している。さらに増設ブロックを増設する場合は、増設ブロック220の増設と同じ構成で実現できる。すなわち、増設ブロック220に新たに分岐ユニットを設ける。そして、該分岐ユニットと新たな増設ユニットとを増設ケーブルで接続する。
 つぎに、PLCシステム2でのユニット内の温度制御処理について説明する。図9は、本実施の形態2における温度監視処理の手順の一例を示すフローチャートである。
 まず、ステップS110においてPLCシステム2の電源がオンにされると、電源ユニット11はユニット間を連結するバスコネクタ16を介して基本ブロック210の各ユニット各ユニットに電圧を供給する。また、電源ユニット11は、分岐ユニット17に増設ケーブル230を介して接続される増設ブロック220の各ユニットにも電圧を供給する。これにより、PLCシステム2が起動される。各ユニットに電圧が供給されると、各ユニットのユニット通信部51は通信可能な状態となる。
 つぎに、ステップS120において、CPU90は、内部バス15、バスコネクタ16および増設ケーブル230を介して基本ブロック210および増設ブロック220の各ユニットにアクセスして、PLCシステム2に接続されているユニット数と、増設ブロック数を把握する処理を行う。そして、基本ブロック210および増設ブロック220の各ユニットは、CPUユニット12のCPU90の制御に基づいて、初期処理を実施し、その後、各ユニットの処理を開始する。これにより、PLCシステム2が稼働する。
 その後、CPU90における既定の処理の終了後、または既定の周期で、またはPLCシステム1のリセット時に、間欠的に、ステップS130において、内部温度値の検出処理および冷却処理の対象となる対象ユニットについて、内部温度値の検出処理および冷却制御処理を行う。対象ユニットは、基本ブロック210において、電源ユニット11を除いた、CPUユニット12からエンドカバー14までのいずれかのユニットであり、分岐ユニット17を含む。ここでは、最初にエンドカバー14を対象ユニットとする場合について説明する。ステップS130としては、実施の形態1において図7を参照して説明したステップS30と同じ処理が行われる。
 つぎに、基本ブロック210においてCPUユニット12からエンドカバー14までの各ユニットに対してステップS130の処理が実施された後、ステップS140において、比較部83は、基本ブロック210に接続する増設ブロックがあるか否かを判定する。
 ステップS140において、基本ブロック210に接続する増設ブロックがある場合、すなわちステップS140においてYesの場合は、ステップS150において、増設ブロックのユニットを対象ユニットとして、内部温度値の検出処理および冷却制御処理を行う。ここでの対象ユニットは、増設ブロック220における各ユニットである。ステップS150としては、実施の形態1において図7を参照して説明したステップS30と同じ処理が行われる。ここでは、最初にエンドカバー23を対象ユニットとする場合について説明する。すなわち、ステップS150では、エンドカバー23から増設ユニット21までの6つのユニットについて、エンドカバー23から増設ユニット21に向かって、上述したステップS30と同じ処理が順次実施される。
 つぎに、エンドカバー23から増設ユニット21までの各ユニットに対してステップS150の処理が実施された後、ステップS160において、比較部83は、さらに増設ブロックがあるか否か、すなわち、増設ブロック220に接続する増設ブロックがあるか否かを判定する。
 ステップS160において、さらに増設ブロックがある場合、すなわちステップS160においてYesの場合は、該増設ブロックの各ユニットを対象ユニットとしてステップS150の処理に戻る。また、ステップS160において、さらに増設ブロックがない場合、すなわちステップS160においてNoの場合は、一連の温度制御処理を終了する。
 一方、ステップS140において、基本ブロック210に接続する増設ブロックがない場合、すなわちステップS140においてNoの場合は、一連の温度制御処理を終了する。
 なお、上記においては、エンドカバー23から増設ユニット21に向かう順序で、順次ステップS150の処理を行っているが、増設ユニット21からエンドカバー23に向かう順序でステップS150の処理を実施してもよい。
 上述したように、本実施の形態2では、増設ブロック220の各ユニットを対象ユニットとして、実施の形態1の場合と同様にして内部温度値の検出処理および冷却制御処理を行う。これにより、実施の形態1の場合と同様に、増設ブロック220の各ユニットについても各ユニットの内部の温度値を検出して監視することができ、各ユニット内の温度管理制御を行うことができる。
 したがって、本実施の形態2によれば、CPUユニットと、他の機能を有するユニットとが接続され、増設ブロックを備えるPLCシステムにおいて、少ない消費電力でユニット内の温度値制御が可能になる、という効果を奏する。
実施の形態3.
 実施の形態1および実施の形態2においては、基本ブロックまたは増設ブロックのそれぞれにおいて、対象ユニットとなるユニット列のうち一端部に位置するユニットから他端部に位置するユニットに向かって、順次、内部温度値の検出処理および冷却制御処理を行っている。基本ブロックまたは増設ブロックのそれぞれにおいて、対象ユニットとなるユニット列のうち、対象ユニットとして任意の1つのユニットのみに対して内部温度値の検出処理および冷却制御処理を行ってもよい。
 この場合は、基本ブロックまたは増設ブロックのユニット列のうち任意の1つのユニットを対象ユニットとして選択指示する選択温度値検出指示情報を外部からCPUユニット通信部81に対して入力すればよい。また、特定のユニットを対象とした選択温度値検出指示情報をCPUユニット通信部81が予め保持していてもよい。CPUユニット通信部81は、該選択温度値検出指示情報に基づいて、任意の1つのユニットを対象ユニットとした選択ユニット内温度値検出指示情報を、選択したユニットにのみ出力する。そして、選択ユニット内温度値検出指示情報が入力されたユニットおよびCPUユニット12は、ステップS30のうちステップS35を除いた処理を実施する。
 これにより、実施の形態3では、選択された特定のユニットについてのみ、ユニットの内部温度値の検出処理および冷却制御処理を行うことが可能である。すなわち、特定のユニットについてのみ、内部温度値が極端に高くないか、冷却の必要がないかを判断して、ユニット内の温度値を制御することが可能となる。
実施の形態4.
 実施の形態1および実施の形態2においては、CPU90における既定の処理の終了後、または既定の周期で、またはPLCシステム1のリセット時のタイミングで、間欠的に、ユニットの内部温度値の検出処理および冷却制御処理を行う場合について説明した。一方、CPU90における既定の処理の終了後、または一定の周期のタイミング以外の任意のタイミングでも、上述したステップS30、ステップS130およびステップS150の処理を実施可能である。この場合は、CPUユニット通信部81からの追加のユニット内温度値検出指示情報の出力を指示する追加温度値検出指示情報を外部からCPUユニット通信部81に対して入力すればよい。CPUユニット通信部81は、該追加温度値検出指示情報に基づいて、上述したようにユニット内温度値検出指示情報を出力する。
 また、このような追加温度値検出指示情報を外部からCPUユニット通信部81に対して入力することにより、上述した一連の処理により冷却部70を稼働させたユニットに対して内部の温度値の検出を再度実施することができる。そして、温度値が規定値以下に低下している場合には、上述したステップS36とステップS37との処理により、該ユニットの冷却部70、さらには該ユニットに隣接するユニットの冷却部70を停止させることができる。これにより、本実施の形態4においては、冷却部70の不要な稼働をなくすことができ、消費電力の低減が可能である。
 なお、上記の実施の形態では、電源ユニット11以外の機能ユニットの温度制御処理を例に説明したが、電源ユニット11上記の構成および処理を電源ユニット11を含めた機能ブロック全体に適用しても構わない。この場合は、ターゲットユニット13-1~13-4およびエンドカバー14と同様に、電源ユニット11が温度監視部50と、冷却制御部60と、冷却部70と、機能処理部110とを備える。そして、CPUユニット12および電源ユニット11が上記の実施の形態で説明した処理を行うことにより、電源ユニット11の温度制御処理を行える。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 基本ブロック、11 電源ユニット、12 中央演算ユニット、13-1~13-4 ターゲットユニット、14 エンドカバー、15 内部バス、16 バスコネクタ、17 分岐ユニット、21 増設ユニット、22-1~22-4 ターゲットユニット、23 エンドカバー、50 温度監視部、51 ユニット通信部、52 温度値検出部、53 温度値記憶部、60 冷却制御部、70 冷却部、80 温度制御管理部、81 CPUユニット通信部、82 規定値記憶部、83 比較部、84 比較結果記憶部、100 表示部、110 機能処理部、210 基本ブロック、220 増設ブロック、230 増設ケーブル。

Claims (10)

  1.  機能ユニットとして、電源ユニットと、中央演算ユニットと、前記機能ユニットのうち前記電源ユニットおよび前記中央演算ユニットと異なる機能を有する一般ユニットと、前記電源ユニットに対して終端に配置される第1終端ユニットとが、当接した状態で隣接して順次配置されるとともに前記機能ユニット間を接続するコネクタを介して電気的および通信可能に接続された基本ブロックを備えるプログラマブルロジックコントローラシステムであって、
     前記一般ユニットは、
     前記機能ユニット内の温度値を既定のタイミングで間欠的に検出する温度監視部と、
     前記機能ユニット内の冷却を行う冷却部と、
     を備え、
     前記中央演算ユニットは、
     前記温度監視部と、
     前記冷却部と、
     前記基本ブロックの前記機能ユニットの前記温度監視部において検出された温度値と、前記基本ブロックの前記機能ユニットに対応して予め個別に設定された規定値とを比較し、前記比較の結果に基づいて、前記規定値と比較した前記温度値を検出した前記機能ユニットの前記冷却部の稼働を制御する温度制御管理部と、
     を備えることを特徴とするプログラマブルロジックコントローラシステム。
  2.  前記基本ブロックに増設ケーブルを介して電気的および通信可能に接続される増設ブロックをさらに備え、
     前記基本ブロックは、前記電源ユニットと前記第1終端ユニットとの間に配置される分岐ユニットをさらに備え、
     前記増設ブロックは、前記機能ユニットとして、前記基本ブロックの前記分岐ユニットに前記増設ケーブルを介して接続される増設ユニットと、前記増設ユニットに対して終端に配置される第2終端ユニットと、前記増設ユニットと前記第2終端ユニットとの間に配置される前記一般ユニットとが、当接した状態で隣接して順次配置されるとともに前記コネクタを介して電気的および通信可能に接続され、
     前記分岐ユニットと前記増設ユニットと前記第2終端ユニットとは、前記温度監視部と前記冷却部とを備え、
     前記温度制御管理部は、前記増設ブロックの前記機能ユニットにおいて検出された温度値と、前記増設ブロックの前記機能ユニットに対応して予め個別に設定された前記規定値とを比較し、前記比較の結果に基づいて、前記規定値と比較した前記温度値を検出した前記機能ユニットの前記冷却部の稼働を制御すること、
     を特徴とする請求項1に記載のプログラマブルロジックコントローラシステム。
  3.  前記温度制御管理部は、前記温度値が前記規定値よりも大である場合に、前記規定値と比較した前記温度値が検出された前記機能ユニットの前記冷却部を稼働させるまたは稼働状態を継続させる制御処理を行うこと、
     を特徴とする請求項1または2に記載のプログラマブルロジックコントローラシステム。
  4.  前記温度制御管理部は、前記冷却部を稼働させた前記機能ユニットの隣に配置された前記機能ユニットの前記冷却部を稼働させるまたは稼働状態を継続させる制御処理を行うこと、
     を特徴とする請求項3に記載のプログラマブルロジックコントローラシステム。
  5.  前記温度制御管理部は、前記温度値が前記規定値以下である場合に、前記規定値と比較した前記温度値が検出された前記機能ユニットの前記冷却部を停止させるまたは停止状態を継続させる制御処理を行うこと、
     を特徴とする請求項1または2に記載のプログラマブルロジックコントローラシステム。
  6.  前記温度制御管理部は、前記冷却部を停止させた前記機能ユニットの隣に配置された前記機能ユニットの前記冷却部を停止させるまたは停止状態を継続させる制御処理を行うこと、
     を特徴とする請求項5に記載のプログラマブルロジックコントローラシステム。
  7.  前記温度監視部は、前記温度制御管理部により指示された任意の前記機能ユニット内の温度値を検出すること、
     を特徴とする請求項1から6のいずれか1つに記載のプログラマブルロジックコントローラシステム。
  8.  前記温度監視部は、前記既定のタイミング以外に、前記温度制御管理部により指示された任意のタイミングで前記機能ユニット内の温度値を検出すること、
     を特徴とする請求項1から6のいずれか1つに記載のプログラマブルロジックコントローラシステム。
  9.  前記温度監視部は、検出した前記温度値を記憶する記憶部を備えること、
     を特徴とする請求項1に記載のプログラマブルロジックコントローラシステム。
  10.  前記記憶部に記憶した前記温度値を表示する表示部を備えること、
     を特徴とする請求項9に記載のプログラマブルロジックコントローラシステム。
PCT/JP2014/082043 2014-12-03 2014-12-03 プログラマブルロジックコントローラシステム WO2016088228A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/082043 WO2016088228A1 (ja) 2014-12-03 2014-12-03 プログラマブルロジックコントローラシステム
JP2016558811A JP6138376B2 (ja) 2014-12-03 2014-12-03 プログラマブルロジックコントローラシステムの中央演算処理ユニット
US15/525,095 US20170322607A1 (en) 2014-12-03 2014-12-03 Programmable logic controller system
DE112014007228.1T DE112014007228T5 (de) 2014-12-03 2014-12-03 Speicherprogrammierbares Steuerungssystem
KR1020177014741A KR20170078787A (ko) 2014-12-03 2014-12-03 프로그래머블 로직 컨트롤러 시스템
CN201480083772.4A CN107003652A (zh) 2014-12-03 2014-12-03 可编程逻辑控制器系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082043 WO2016088228A1 (ja) 2014-12-03 2014-12-03 プログラマブルロジックコントローラシステム

Publications (1)

Publication Number Publication Date
WO2016088228A1 true WO2016088228A1 (ja) 2016-06-09

Family

ID=56091201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082043 WO2016088228A1 (ja) 2014-12-03 2014-12-03 プログラマブルロジックコントローラシステム

Country Status (6)

Country Link
US (1) US20170322607A1 (ja)
JP (1) JP6138376B2 (ja)
KR (1) KR20170078787A (ja)
CN (1) CN107003652A (ja)
DE (1) DE112014007228T5 (ja)
WO (1) WO2016088228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226911B2 (en) 2018-08-22 2022-01-18 Mitsubishi Electric Corporation Programmable logic controller, CPU unit, function unit, method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061839B2 (en) 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Input/output control unit, programmable logic controller, and inspection system
WO2020054023A1 (ja) * 2018-09-13 2020-03-19 三菱電機株式会社 設定支援装置、設定支援方法及びプログラム
US11803218B2 (en) * 2022-01-28 2023-10-31 Sea Sonic Electronics Co., Ltd. Output structure for power supply with a plurality of heat dissipation plates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234911A (ja) * 1988-03-16 1989-09-20 Mitsubishi Electric Corp シーケンサの冷却装置の制御装置
JPH11175112A (ja) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp プログラマブルコントローラ用設備の予防保全装置
JP2006294007A (ja) * 2005-03-15 2006-10-26 Omron Corp プログラマブル・コントローラ装置
US20080294296A1 (en) * 2007-05-23 2008-11-27 Emulex Design & Manufacturing Corporation Chip overheat protection
WO2013098971A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 電源装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637181B2 (ja) * 1997-05-09 2005-04-13 株式会社東芝 コンピュータシステムおよびそのクーリング制御方法
JP2000039922A (ja) * 1998-07-24 2000-02-08 Nec Gumma Ltd ファン制御装置
US6826456B1 (en) * 2001-05-04 2004-11-30 Rlx Technologies, Inc. System and method for controlling server chassis cooling fans
JP2004355421A (ja) * 2003-05-30 2004-12-16 Hitachi Ltd Cpu冷却機構異常の検出
US7475494B1 (en) * 2003-08-25 2009-01-13 Isothermal Systems Research, Inc. Hybrid thermal management system
US7327221B1 (en) * 2003-09-30 2008-02-05 Rockwell Automation Technologies, Inc. Power supply communication system and method
CN100383699C (zh) * 2003-12-27 2008-04-23 鸿富锦精密工业(深圳)有限公司 中央处理器温度自动测试系统及方法
US7330983B2 (en) * 2004-06-14 2008-02-12 Intel Corporation Temperature-aware steering mechanism
EP1703347B1 (en) * 2005-03-15 2018-10-17 Omron Corporation Programmable logic controller device and programmable logic controller system
US9219699B2 (en) * 2010-09-15 2015-12-22 Hewlett Packad Enterprise Development LP Computer system with fabric modules
WO2014155697A1 (ja) * 2013-03-29 2014-10-02 三菱電機株式会社 Plcシステム
US20150012115A1 (en) * 2013-07-04 2015-01-08 Nvidia Corporation Operating environment parameter regulation in a multi-processor environment
CN104283709A (zh) * 2013-07-10 2015-01-14 英业达科技有限公司 服务器系统和其数据传送方法
US20150120009A1 (en) * 2013-10-31 2015-04-30 Rockwell Automation Technologies, Inc. Independent Operation of Control Hardware and a Monitoring System in an Automation Controller
US9422944B2 (en) * 2014-08-15 2016-08-23 Dell Products, Lp Carbon fiber laminate piezoelectric cooler and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234911A (ja) * 1988-03-16 1989-09-20 Mitsubishi Electric Corp シーケンサの冷却装置の制御装置
JPH11175112A (ja) * 1997-12-05 1999-07-02 Mitsubishi Electric Corp プログラマブルコントローラ用設備の予防保全装置
JP2006294007A (ja) * 2005-03-15 2006-10-26 Omron Corp プログラマブル・コントローラ装置
US20080294296A1 (en) * 2007-05-23 2008-11-27 Emulex Design & Manufacturing Corporation Chip overheat protection
WO2013098971A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226911B2 (en) 2018-08-22 2022-01-18 Mitsubishi Electric Corporation Programmable logic controller, CPU unit, function unit, method, and program

Also Published As

Publication number Publication date
US20170322607A1 (en) 2017-11-09
KR20170078787A (ko) 2017-07-07
JP6138376B2 (ja) 2017-05-31
CN107003652A (zh) 2017-08-01
DE112014007228T5 (de) 2017-08-24
JPWO2016088228A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6138376B2 (ja) プログラマブルロジックコントローラシステムの中央演算処理ユニット
KR100799410B1 (ko) 프로그래머블 컨트롤러
US8324907B2 (en) Electrical connection quality detection
JP6188095B2 (ja) 自動車の充電装置
CN102570405B (zh) 电动工具用装置
JP2023080115A (ja) 電池システム
JP6504544B2 (ja) 表示装置の制御方法、及び、表示システム
JP6752169B2 (ja) 熱電対式液位計測システム
JP4129648B2 (ja) プログラマブル・コントローラ装置
KR100777041B1 (ko) 열 테스트를 위한 장치 및 방법
JP5819023B2 (ja) Plcシステム
JP5080228B2 (ja) 温度制御方式
JP6897104B2 (ja) 熱電対による温度測定装置
TWI585557B (zh) 可程式邏輯控制器系統
KR102166663B1 (ko) 시스템 온 칩의 테스트 시스템 및 그것의 테스트 방법
CN110785672A (zh) 电池测试方法及设备
TWI437392B (zh) 可程式控制器系統
JP2008275448A (ja) 半導体試験装置
JP2011002942A (ja) 制御システム、通信システム及び通信装置
JP3174994U (ja) 消毒保管機
JP5787620B2 (ja) 電子機器及びその制御方法、プログラム
JP6297243B1 (ja) 処理装置
JP5434951B2 (ja) 温度試験装置、温度試験方法及びプログラム
JP2018060350A (ja) 機器監視装置及び機器監視方法
JP2008076172A (ja) 半導体テスト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558811

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15525095

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177014741

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014007228

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907360

Country of ref document: EP

Kind code of ref document: A1