WO2016084924A1 - マグネシウム含有電解液 - Google Patents

マグネシウム含有電解液 Download PDF

Info

Publication number
WO2016084924A1
WO2016084924A1 PCT/JP2015/083325 JP2015083325W WO2016084924A1 WO 2016084924 A1 WO2016084924 A1 WO 2016084924A1 JP 2015083325 W JP2015083325 W JP 2015083325W WO 2016084924 A1 WO2016084924 A1 WO 2016084924A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
magnesium
chloride
siloxymagnesium
carbon atoms
Prior art date
Application number
PCT/JP2015/083325
Other languages
English (en)
French (fr)
Inventor
和彦 里
高広 清洲
水田 浩徳
悟郎 森
訓明 岡本
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to EP15864065.6A priority Critical patent/EP3226340B1/en
Priority to PL15864065T priority patent/PL3226340T3/pl
Priority to CN201580064216.7A priority patent/CN107004906B/zh
Priority to KR1020177016886A priority patent/KR20170089890A/ko
Priority to JP2016561954A priority patent/JP6575531B2/ja
Priority to US15/529,902 priority patent/US10367231B2/en
Publication of WO2016084924A1 publication Critical patent/WO2016084924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • C07F19/005Metal compounds according to more than one of main groups C07F1/00 - C07F17/00 without metal-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/064Aluminium compounds with C-aluminium linkage compounds with an Al-Halogen linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0836Compounds with one or more Si-OH or Si-O-metal linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolytic solution containing magnesium ions and an electrochemical device including the electrolytic solution.
  • Magnesium has a large electric capacity per unit volume because the ions are multivalent ions. Magnesium has a higher melting point than lithium and is safe, and also has the advantage that the distribution of resources on the earth is small, the amount of resources is abundant, and it is inexpensive. Therefore, a magnesium ion battery using metallic magnesium as a negative electrode has attracted attention as a next-generation battery that replaces a lithium ion battery.
  • Non-Patent Document 1 Aurbach et al. Prepared a THF solution of Mg (AlCl 2 BuEt) 2 using dibutylmagnesium Bu 2 Mg and ethylaluminum dichloride EtAlCl 2 and found that it can be used up to a potential of about 2.4 V with respect to magnesium.
  • Liao et al. Reported an electrolyte solution having an oxidation resistance of about 2.5 V against magnesium by mixing non-nucleophilic alkoxide-based magnesium salt and aluminum chloride. (Non-Patent Document 3).
  • an object of the present invention is to provide an electrolytic solution that uses a non-nucleophilic alkoxide-based magnesium salt and has a high oxidative decomposition potential and allows magnesium dissolution and precipitation to proceed repeatedly and stably.
  • the present invention provides a magnesium battery electrolyte comprising a mixture of a compound represented by the following general formula (I), a Lewis acid and a solvent:
  • Y represents a carbon atom or a silicon atom
  • X represents a chlorine atom or a bromine atom
  • R 1 may have a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group as a substituent.
  • R 2 and R 3 each independently represents: magnesium chlorideoxy group (—OMgCl); magnesium bromideoxy group (—OMgBr); alkenyl having 1 to 6 carbon atoms A group; an alkyl group having 1 to 6 carbon atoms which may have a halogeno group or an alkoxy group as a substituent; or a halogeno group, an alkyl group, a halogenoalkyl group or an alkoxy group which may have a substituent.
  • R ′ 2 and R ′ 3 each independently have a hydrogen atom; —OMgCl; —OMgBr; an alkenyl group having 1 to 6 carbon atoms; a halogeno group or an alkoxy group as a substituent.
  • the electrolytic solution of the present invention Since the electrolytic solution of the present invention has a higher oxidative decomposition potential than conventional electrolytic solutions, it can be used as an electrolytic solution for high-voltage magnesium batteries. Moreover, when the electrolytic solution of the present invention is used as an electrolytic solution for a magnesium secondary battery, there is an effect that dissolution and precipitation of magnesium repeatedly and stably proceeds. Furthermore, the electrolytic solution of the present invention also has excellent storage stability.
  • Example 7 The graph which showed the result of having carried out 10 cycles by the CV measurement using the electrolyte solution 1 [triphenylmethoxymagnesium chloride-aluminum chloride / tetrahydrofuran (THF) solution] in Example 7 is shown.
  • the graph which showed the result of having carried out 10 cycles by the CV measurement using the electrolyte solution 2 [triphenylmethoxy magnesium chloride-aluminum chloride / triglyme solution] in Example 7 is shown.
  • the graph which showed the result of having carried out 40 cycles by the CV measurement using the electrolyte solution 2 [triphenylmethoxy magnesium chloride-aluminum chloride / triglyme solution] in Example 7 is shown.
  • Comparative Example 3 represents a graph showing the results obtained by 10 cycles CV measurement using the comparative electrolytic solution 1 [(tert-BuOMgCl) 6 -AlCl 3 / THF solution.
  • Comparative Example 3 represents a graph showing the results obtained by 10 cycles CV measurement using the comparative electrolytic solution 2 [MgCl 2 -Me 2 AlCl- Bu 4 NCl / THF solution. The graph which showed the result of having carried out 10 cycles by the CV measurement using the electrolyte solution 7 [triphenylsiloxymagnesium chloride-aluminum chloride / THF solution] in Example 16 is shown.
  • Comparative Example 5 represents a graph showing the results obtained by 10 cycles CV measurement using the comparative electrolytic solution 3 [(Me 3 SiOMgCl) 6 -AlCl 3 / THF solution.
  • Y of the compound represented by the general formula (I) represents a carbon atom or a silicon atom, and a silicon atom is preferable.
  • the compound represented by the general formula (I) in which Y is a silicon atom exhibits better storage stability than when Y is a carbon atom.
  • X of the compound represented by the general formula (I) represents a chlorine atom or a bromine atom, and a chlorine atom is preferable.
  • Examples of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 of the compound represented by the general formula (I) include a phenyl group or a naphthyl group, and a phenyl group is preferable.
  • halogeno group as the substituent of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 include a fluoro group, a chloro group, a bromo group, and an iodo group, and a fluoro group is preferable.
  • the alkyl group as a substituent of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 is usually an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and may be linear or branched. The shape may be circular or circular.
  • the halogenoalkyl group as a substituent of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 may be linear, branched or cyclic, but is preferably linear, and usually has 1 to 6 carbon atoms. It is preferably 1 to 3. Specific examples include a fluoroalkyl group, a chloroalkyl group, a bromoalkyl group, and the like. A fluoroalkyl group is preferable, and a perfluoroalkyl group is particularly preferable.
  • Perfluoromethyl group, perfluoroethyl group, perfluoro-n-propyl group, perfluoro-n-butyl group, perfluoro-n-pentyl group, and perfluoro-n-hexyl group are preferable.
  • a fluoroethyl group and a perfluoro-n-propyl group are more preferable.
  • the alkoxy group as the substituent of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 usually has 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, specifically, for example, a methoxy group, Examples include ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, methoxy group, ethoxy group N-propoxy group, isopropoxy group, tert-butoxy group and the like are preferable.
  • aryl group having 6 to 10 carbon atoms which may have a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group as a substituent in R 1 to R 3 , an aryl group having a halogeno group as a substituent, An aryl group having an alkyl group as a substituent, an aryl group having an alkoxy group as a substituent, an unsubstituted aryl group, and the like are preferable.
  • the number of substituents of the aryl group having 6 to 10 carbon atoms having a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group as a substituent in R 1 to R 3 is usually 1 to 7, preferably 1. ⁇ 5, more preferably 1-2.
  • aryl group having 6 to 10 carbon atoms which may have a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group as a substituent in R 1 to R 3 include a phenyl group and a naphthyl group.
  • Fluorophenyl group chlorophenyl group, bromophenyl group, iodophenyl group, perfluorophenyl group, perchlorophenyl group, perbromophenyl group, periododophenyl group; methylphenyl group, ethylphenyl group, n-propylphenyl group, isopropyl Phenyl group, n-butylphenyl group, isobutylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n-pentylphenyl group, isopentylphenyl group, sec-pentylphenyl group, tert-pentylphenyl group, neopentyl Phenyl group, n-hexylpheny Group, isohexylphenyl group, sec-hexylphenyl group, tert-hexylphenyl group
  • phenyl group methylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, isobutylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n -Pentylphenyl group, isopentylphenyl group, sec-pentylphenyl group, tert-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, isohexylphenyl group, sec-hexylphenyl group, tert-hexylphenyl group, 3-methylpentylphenyl group, 2-methylpentylphenyl group, 1,2-dimethylbutylphenyl group, cyclopropylphenyl group, cyclopentylphenyl
  • the alkenyl group having 1 to 6 carbon atoms in R 2 and R 3 of the compound represented by the general formula (I) may be linear, branched or cyclic, and preferably has 1 to 3 carbon atoms.
  • vinyl group, allyl group, 1-propenyl group, isopropenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, 1,3-butadienyl group, 4-pentenyl group, 3- Examples include pentenyl group, 2-pentenyl group, 1-pentenyl group, 1-methyl-1-butenyl group, 5-hexenyl group, 4-hexenyl group, 3-hexenyl group, 2-hexenyl group, 1-hexenyl group, etc.
  • a vinyl group, an allyl group, a 1-propenyl group and an isopropenyl group are preferable, and an allyl group is more preferable.
  • the alkyl group having 1 to 6 carbon atoms in R 2 and R 3 of the compound represented by the general formula (I) preferably has 1 to 4 carbon atoms, and may be linear, branched or cyclic. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group Tert-pentyl group, neopentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, 3-methylpentyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, cyclopentyl group, Examples thereof include a cyclohexyl group, and a methyl group, an ethyl
  • halogeno group as a substituent of the alkyl group having 1 to 6 carbon atoms in R 2 and R 3 include a fluoro group, a chloro group, a bromo group, and an iodo group, and a fluoro group is preferred.
  • the alkoxy group as a substituent of the alkyl group having 1 to 6 carbon atoms in R 1 to R 3 usually has 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, specifically, for example, a methoxy group, Examples include ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, methoxy group, ethoxy group N-propoxy group, isopropoxy group and the like are preferable.
  • alkyl group having 1 to 6 carbon atoms which may have a halogeno group or an alkoxy group as a substituent in R 1 to R 3 include, for example, methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, isohexyl group, sec -Hexyl group, tert-hexyl group, 3-methylpentyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, cyclopentyl group, cyclohexyl group; perfluoromethyl group, perfluoroethyl group, perfluoro-n- Propyl group
  • R 2 and R 3 in the compound represented by the general formula (I) are a magnesium chlorideoxy group (—OMgCl); an alkenyl group having 1 to 6 carbon atoms; an alkyl group having 1 to 6 carbon atoms; or a halogeno group or an alkyl group
  • magnesium chlorideoxy group (-OMgCl), vinyl group, allyl group, 1-propenyl group, isopropenyl group, methyl group, ethyl group, n-propyl group, n-butyl group, phenyl group, Methylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group; fluoromethylphenyl group, chloromethylphenyl group, bromomethylphenyl group, iodomethylphenyl group; methoxyphenyl group, ethoxyphenyl group, n-propoxyphenyl Group, isopropoxyphenyl group, tert-butoxyphenyl group, etc., magnesium chlorideoxy group (-OMgCl), vinyl group, allyl group, 1-propenyl group, isopropenyl group, methyl group, ethyl group, n-propyl Group, etc.
  • the compound represented by the general formula (I) include compounds represented by the following general formula (II), (I-II) or (I-III). (Wherein R 4 , R 5 and R 6 each independently represents a halogeno group, an alkyl group, a halogenoalkyl group or an alkoxy group, and n4, n5 and n6 each independently represents 0 to 5) (X and Y are the same as above.)
  • R 7 represents a magnesium chlorideoxy group (—OMgCl); an alkenyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms; R 4 , R 6 , n4, n6 and X, Y Is the same as above.
  • R 8 s independently represent a magnesium chlorideoxy group (—OMgCl); an alkenyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms; R 4 , n4, X And Y are the same as above.
  • Y is preferably a silicon atom.
  • X is preferably a chlorine atom.
  • the halogeno group, alkyl group, halogenoalkyl group, or alkoxy group in R 4 , R 5, and R 6 is preferably a halogeno group, an alkyl group, or an alkoxy group. Specific examples thereof include the same as those described as the substituent of the aryl group having 6 to 10 carbon atoms in R 1 to R 3 , and preferable examples thereof are also the same.
  • n4, n5, and n6 are preferably 0-2.
  • alkenyl group having 1 to 6 carbon atoms and the alkyl group having 1 to 6 carbon atoms in the above R 7 and R 8 include the alkenyl group having 1 to 6 carbon atoms and the alkyl group having 1 to 6 carbon atoms in R 2 and R 3 , respectively.
  • the same thing as the alkyl group of 6 is mentioned, A preferable thing is also the same.
  • R 7 is preferably a magnesium chlorideoxy group (—OMgCl) or an alkenyl group having 1 to 6 carbon atoms.
  • R 8 is preferably an alkyl group having 1 to 6 carbon atoms.
  • Lewis acids include beryllium (Be), boron (B), aluminum (Al), silicon (Si), tin (Sn), titanium (Ti), chromium (Cr), iron (Fe), cobalt ( Co) is included as an element.
  • beryllium compounds such as beryllium fluoride (II), beryllium chloride (II), and beryllium bromide (II); boron chloride (III), boron fluoride (III), boron bromide (III), tri Boron compounds such as phenoxyborane, phenyldichloroborane, triphenylborane; aluminum chloride (III), aluminum bromide (III), aluminum iodide (III), dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride Aluminum compounds such as trimethylaluminum and triethylaluminum; silyl compounds such as trimethylsilyl triflate, trimethylsilyliodo, tert-butyldimethylsilyl triflate and triisopropylsilyl triflate; tin chloride (IV , Tin compounds such as tin
  • a boron compound or an aluminum compound is preferable, and an aluminum compound is more preferable.
  • aluminum chloride (III), methylaluminum dichloride, dimethylaluminum chloride, boron chloride (III) and the like are preferable, and aluminum chloride (III) is particularly preferable.
  • solvent As the solvent according to the present invention, those capable of dissolving the compound represented by the general formula (I) according to the present invention are preferable.
  • solvents include ether solvents, halogenated hydrocarbon solvents, carbonate solvents, nitrile solvents, sulfone solvents, and the like.
  • ether solvent examples include diethyl ether, diglyme, triglyme, tetraglyme, tetrahydrofuran, 2-methyltetrahydrofuran, diisopropyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, cyclopentyl methyl ether, and t-butyl.
  • halogenated hydrocarbon solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, and the like.
  • carbonate solvent examples include dimethyl carbonate.
  • nitrile solvents include acetonitrile, propionitrile, butyronitrile, succino
  • sulfone solvent examples include sulfolane, dimethyl sulfone, ethyl methyl sulfone, methyl-n-propyl sulfone, methyl isopropyl sulfone, n-butyl-methyl sulfone, and isobutyl methyl.
  • ether solvents, sulfone solvents and the like are preferable, specifically, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, tetrahydrofuran, sulfolane are particularly preferable, diglyme, triglyme, tetraglyme, Tetrahydrofuran is particularly preferred.
  • the solvent according to the present invention may be a mixture of two or more of the above solvents.
  • the electrolytic solution of the present invention is obtained by mixing the compound represented by the general formula (I) according to the present invention and the Lewis acid according to the present invention in the solvent according to the present invention.
  • the concentration of the compound represented by the general formula (I) in the electrolytic solution is usually 0.1 to 5 mol / mL, preferably 0.1 to 3 mol / mL, more preferably 0.2 to 2 mol / mL.
  • the amount of Lewis acid used in the electrolytic solution of the present invention is usually 0.1 to 5 mol times, preferably 0.1 to 3 mol times that of the compound represented by the general formula (I) according to the present invention.
  • the electrolytic solution of the present invention contains additives such as a film forming agent, an overcharge inhibitor, an oxygen scavenger, a dehydrating agent, a flame retardant and the like and a coordinating additive such as crown ether, which are usually used in this field. Also good.
  • Such an electrolytic solution of the present invention can be used for a magnesium battery, and in the case of a magnesium secondary battery, it exhibits a high oxidative decomposition potential and can be used stably and repeatedly.
  • the electrolytic solution of the present invention is produced by dissolving (mixing) the compound represented by the general formula (I) according to the present invention and the Lewis acid according to the present invention in the solvent according to the present invention. More specifically, 0.1 to 5 mol of the Lewis acid according to the present invention is used with respect to 1 mol of the compound represented by the general formula (I) according to the present invention, and the concentration is adjusted to the above concentration. It is manufactured by adding to such a solvent and mixing. In addition, it may be heated or cooled in the range of ⁇ 78 to 300 ° C. as necessary during mixing, preferably 0 to 70 ° C.
  • the electrochemical device of the present invention has a positive electrode, a negative electrode, and an electrolytic solution of the present invention.
  • a primary battery, a secondary battery, an electric double layer capacitor and the like can be mentioned, and among them, a secondary battery is preferable.
  • the positive electrode in the electrochemical device of the present invention is not particularly limited as long as it can contain magnesium or magnesium ions inside, on the surface and in the vicinity thereof.
  • an oxide containing cobalt, manganese, vanadium, aluminum, iron, silicon, phosphorus, nickel, molybdenum, titanium, or the like, or an electrode containing sulfide as an active material can be given.
  • the positive electrode may contain an active material capable of adsorbing and storing magnesium such as sulfur or magnesium ions, an organic chemical substance having high oxidizing power, and a material forming an electric double layer such as porous carbon or activated carbon.
  • magnesium may be included in an oxidized form.
  • the negative electrode in the electrochemical device of the present invention is not particularly limited as long as it can contain magnesium or magnesium ions inside, on the surface, or in the vicinity thereof.
  • Specific examples include metal magnesium capable of dissolving and precipitating magnesium, a magnesium alloy, a metal that can be alloyed with magnesium, a carbon material capable of intercalating magnesium or magnesium ions, and the like.
  • the electrochemical device of the present invention may further have a separator in addition to the positive electrode, the negative electrode, and the electrolytic solution of the present invention.
  • the separator is not particularly limited as long as it electrically insulates the positive electrode and the negative electrode and can permeate magnesium ions, and examples thereof include a microporous polymer film such as a porous polyolefin film.
  • Specific examples of the porous polyolefin film include, for example, a porous polyethylene film alone or a multilayer film obtained by superposing a porous polyethylene film and a porous polypropylene film.
  • X of the compound represented by the general formula (I ′) represents a chlorine atom or a bromine atom, and a chlorine atom is preferable.
  • R ′ 1 of the compound represented by the general formula (I ′) represents a halogeno group, an alkyl group, a halogenoalkyl group, or an aryl group having 6 to 10 carbon atoms which may have an alkoxy group as a substituent
  • Specific examples and preferable examples of the aryl group having 6 to 10 carbon atoms which may have a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group as a substituent include R of the compound represented by the general formula (I). The same thing as 1 is mentioned.
  • R ′ 2 and R ′ 3 in the compound represented by the general formula (I ′) are each independently selected from: a magnesium chlorideoxy group (—OMgCl); an alkenyl group having 1 to 6 carbon atoms; a halogeno group or an alkoxy group.
  • An alkenyl group having 1 to 6 carbon atoms; an alkyl group having 1 to 6 carbon atoms which may have a halogeno group or an alkoxy group as a substituent; and a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group is substituted.
  • Specific examples and preferred examples of the aryl group having 6 to 10 carbon atoms which may be present as a group include the same as R 2 and R 3 of the compound represented by the general formula (I).
  • Preferable specific examples of R ′ 2 and R ′ 3 include the same as R 2 and R 3 of the compound represented by the general formula (I).
  • the compound represented by the general formula (I ′) include, for example, a magnesium bromide compound, specifically, triphenylsiloxymagnesium bromide; tris (2-methylphenyl) siloxymagnesium bromide, tris (3- Methylphenyl) siloxymagnesium bromide, tris (4-methylphenyl) siloxymagnesium bromide, tris (2,2-dimethylphenyl) siloxymagnesium bromide, tris (3,3-dimethylphenyl) siloxymagnesium bromide, tris (2,3- Dimethylphenyl) siloxymagnesium bromide, tris (2,4-dimethylphenyl) siloxymagnesium bromide, tris (3,4-dimethylphenyl) siloxymagnesium bromide, tris (2,4,6-trimethylphenyl) siloxymagnesium bromide , Tris (2,3,4,5-tetramethylphenyl, Tri
  • Specific examples of the compound represented by the general formula (I ′) include, for example, a magnesium chloride compound, specifically, triphenylsiloxymagnesium chloride; tris (2-methylphenyl) siloxymagnesium chloride, tris ( 3-methylphenyl) siloxymagnesium chloride, tris (4-methylphenyl) siloxymagnesium chloride, tris (2,2-dimethylphenyl) siloxymagnesium chloride, tris (3,3-dimethylphenyl) siloxymagnesium chloride, tris (2, 3-dimethylphenyl) siloxymagnesium chloride, tris (2,4-dimethylphenyl) siloxymagnesium chloride, tris (3,4-dimethylphenyl) siloxymagnesium chloride, tris (2,4,6-trimethylphenyl) siloxymagnesium Loride, Tris (2,3,4,5-tetramethylphenyl) siloxymagnesium chloride, Tris (2,
  • the compound represented by the general formula (I ′) is preferably the above magnesium chloride compound, among which triphenylsiloxymagnesium chloride, tris (2-methylphenyl) siloxymagnesium chloride, tris (3-methylphenyl) siloxymagnesium chloride, Tris (4-methylphenyl) siloxymagnesium chloride, Tris (2-fluorophenyl) siloxymagnesium chloride, Tris (3-fluorophenyl) siloxymagnesium chloride, Tris (4-fluorophenyl) siloxymagnesium chloride, Tris (2-methoxyphenyl) ) Siloxymagnesium chloride, Tris (3-methoxyphenyl) siloxymagnesium chloride, Tris (4-methoxyphenyl) siloxymagnesium chloride, Dimethylphenylsiloxy Magnesium chloride, diphenylsilane dioxy bis (magnesium chloride) and the like are preferable.
  • the compound represented by the general formula (I ′) may be a coordination body, for example, a coordination body formed with the solvent according to the present invention.
  • a coordination body formed with the solvent according to the present invention.
  • THF it is estimated that the following dimeric coordination body is formed.
  • X, R ′ 1 , R ′ 2 and R ′ 3 are the same as above.
  • the compound represented by the general formula (I ′) can be obtained, for example, by reacting a silanol compound represented by the following general formula (II ′) with a Grignard reagent in an appropriate solvent.
  • a silanol compound represented by the following general formula (II ′) with a Grignard reagent in an appropriate solvent.
  • R ′ 1 to R ′ 3 are the same as above
  • Specific examples of the compound represented by the general formula (II ′) include those according to the specific examples of the compound represented by the general formula (I ′), and preferred compounds represented by the general formula (I ′) are also exemplified. The thing according to these preferable things is mentioned.
  • the compound represented by the general formula (II ′) a commercially available product or a product produced by a method known per se may be used.
  • a method known per se for example, after producing a compound represented by the following general formula (III ′) according to the method described in PaulPaD. Price et al, Dalton Tarnsactions, (2), 271-282, 2008 The compound is subjected to an oxidation method known per se.
  • Examples of the Grignard reagent include a compound represented by RMgX (R represents a substituted alkyl group having 1 to 6 carbon atoms or a substituted phenyl group, and X is the same as above).
  • Examples of the alkyl group having 1 to 6 carbon atoms in R include the same as the alkyl group having 1 to 6 carbon atoms in R 2 and R 3 .
  • Examples of the substituent of the alkyl group and the phenyl group in R include a halogeno group, an alkyl group, a halogenoalkyl group, or an alkoxy group, and specific examples thereof include the substituent of the aryl group in R 1 . The same as the person who explained it.
  • the amount of the Grignard reagent used in the reaction of the silanol compound represented by the general formula (II ′) and the Grignard reagent is usually 0.5 to 2 mol relative to 1 mol of the compound represented by the general formula (II ′), The amount is preferably 0.5 to 1 mol.
  • the reaction temperature between the silanol compound represented by the general formula (II ′) and the Grignard reagent is usually ⁇ 78 to 80 ° C., and the reaction time is usually 5 seconds to 5 hours.
  • the reaction is preferably performed in an inert gas atmosphere such as argon or nitrogen, and more preferably performed in an argon atmosphere.
  • any solvent may be used as long as at least one of the silanol compound represented by the general formula (II ′) or the Grignard reagent is dissolved, and a solvent capable of dissolving both is preferable.
  • Specific examples include the same solvents as the above-mentioned present invention, among which diethyl ether, diglyme, triglyme, tetraglyme, tetrahydrofuran, 2-methyltetrahydrofuran, diisopropyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether. , Ether solvents such as triethylene glycol dimethyl ether, cyclopentyl methyl ether, t-butyl methyl ether, 1,4-dioxane, and the like, preferably tetrahydrofuran. In addition, you may wash
  • solvents such as diisopropyl ether
  • the compound represented by formula (I ′) is produced, for example, as follows. That is, the silanol compound represented by the general formula (II ′) is dissolved in a solvent such as tetrahydrofuran under an argon gas atmosphere. Further, a tetrahydrofuran solution or the like in which 0.1 to 2 mol of phenylmagnesium chloride is dissolved is added dropwise with respect to 1 mol of the silanol compound, and the mixture is reacted for 5 seconds to 5 hours. If necessary, the reaction solution is concentrated and dried to obtain a solid, and the resulting solid is washed with a solvent such as diisopropyl ether and dried to produce the compound represented by the general formula (I ′). Is done.
  • Example 1 Preparation of Electrolytic Solution 1
  • benzophenone manufactured by Wako Pure Chemical Industries, Ltd.
  • THF tetrahydrofuran
  • the solution was dissolved in 20 ml, and 20 ml (40 mmol) of a THF solution (manufactured by Tokyo Chemical Industry Co., Ltd.) of 2M phenylmagnesium chloride (PhMgCl) was added dropwise. After stirring for 4 hours, the crystals were collected by filtration and dried to obtain triphenylmethoxymagnesium chloride (Ph 3 COMgCl).
  • Example 2 Preparation of Electrolyte 2 Under an argon gas atmosphere, 1.60 g (5 mmol) of triphenylmethoxymagnesium chloride (Ph 3 COMgCl) obtained in (1) of Example 1 was mixed with 20 ml of triglyme and heated to 50 ° C. After that, 0.17 g (1.25 mmol) of aluminum chloride (AlCl 3 ) was added. After maintaining at 50 ° C. for 5 minutes, the solution was cooled and filtered to obtain an electrolytic solution 2 [triphenylmethoxymagnesium chloride-aluminum chloride / triglyme solution].
  • Example 3 Preparation of Electrolyte 3 Under an argon gas atmosphere, 1.60 g (5 mmol) of triphenylmethoxymagnesium chloride (Ph 3 COMgCl) obtained in (1) of Example 1 was mixed with 20 ml of THF and heated to 35 ° C. Then, 0.48 g (5 mmol) of dimethylaluminum chloride (Me 2 AlCl) (concentrated hexane solution manufactured by Kanto Chemical Co., Inc.) was added. After maintaining at 50 ° C. for 5 minutes, the mixture was cooled to obtain electrolytic solution 3 [triphenylmethoxymagnesium chloride-dimethylaluminum chloride / THF solution].
  • triphenylmethoxymagnesium chloride Ph 3 COMgCl
  • Example 4 Preparation of Electrolyte 4 (1) Synthesis of Magnesium Salt Under an argon gas atmosphere, a THF solution (manufactured by Tokyo Chemical Industry Co., Ltd.) in a THF solution (Tokyo Chemical Industry Co., Ltd.) with a concentration of 2M phenylmagnesium chloride (PhMgCl) was added. 30 ml of Kojun Pharmaceutical Co., Ltd.) was added, and 1.28 g (22 mmol) of acetone (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After stirring for 2 hours, the crystals were collected by filtration and dried to obtain dimethylphenylmethoxymagnesium chloride (Me 2 PhCOMgCl).
  • Example 5 Preparation of electrolyte solution 5 Under an argon gas atmosphere, 7.29 g (40 mmol) of benzophenone (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 20 ml of THF (manufactured by Wako Pure Chemical Industries, Ltd.), and the concentration was 1M. 40 ml (40 mmol) of a THF solution (manufactured by Tokyo Chemical Industry Co., Ltd.) of allylmagnesium chloride ((C 3 H 5 ) MgCl) was added dropwise and stirred for 4 hours.
  • Example 6 Preparation of Electrolyte 6 Under Argon Gas Atmosphere, 4.36 g (20 mmol) of 4,4-difluorobenzophenone (Wako Pure Chemical Industries, Ltd.) was added to tetrahydrofuran (THF) (Wako Pure Chemical Industries, Ltd.) After dissolving in 15 ml, 10 ml (20 mmol) of a THF solution (manufactured by Tokyo Chemical Industry Co., Ltd.) of phenylmagnesium chloride (PhMgCl) at a concentration of 2M was added dropwise and stirred for 4 hours.
  • THF tetrahydrofuran
  • Comparative Example 1 Preparation of Comparative Electrolyte 1 Under Argon Gas Atmosphere, 2M Concentrated Ethyl Magnesium Chloride (EtMgCl) in THF (Tokyo Chemical Industry Co., Ltd.) 10ml (20mmol) and THF (Wako Pure Chemical Industries, Ltd.) 10 ml) was mixed, and 1.48 g (20 mmol) of tert-butanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise.
  • EtMgCl Ethyl Magnesium Chloride
  • Comparative Electrolytic Solution 1 [(tert-BuOMgCl) 6 -AlCl 3 / THF solution].
  • Comparative Example 2 Preparation of Comparative Electrolytic Solution 2
  • 0.5 g (5.3 mmol) of magnesium chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • 21 ml of THF manufactured by Wako Pure Chemical Industries, Ltd.
  • Dimethylaluminum chloride (Me 2 AlCl) (Concentrated hexane solution manufactured by Kanto Chemical Co., Inc.) 0.97 g (10.5 mmol) was added dropwise, and then tetrabutylammonium chloride (Bu 4 NCl) (Tokyo Chemical Industry Co., Ltd.) 1.46 g (5.3 mmol) was added.
  • the mixture was cooled to obtain Comparative Electrolytic Solution 2 [MgCl 2 -Me 2 AlCl—Bu 4 NCl / THF solution].
  • Example 7 Cyclic Voltammetry (CV) Measurement of Various Electrolytic Solutions Using the electrolytic solutions 1 to 6, cyclic voltammetry (CV) measurement was performed (Example 7). Similarly, CV measurement was performed using Comparative Electrolytic Solutions 1 and 2 (Comparative Example 3). Specifically, the CV measurement was performed as follows. That is, using a 3-pole beaker cell, platinum electrode (diameter 3 mm; manufactured by BAS) as working electrode, Mg rod (diameter 1.6 mm; manufactured by Niraco) as counter electrode, and Mg rod (diameter 1.6 mm; Niraco) as reference electrode Used).
  • the results of the oxidative decomposition potential (10th cycle) of each electrolytic solution are shown in the following table.
  • the results of the 10th cycle of the electrolytic solution 1 are shown in FIG. 1
  • the results of the 10th and 40th cycles of the electrolytic solution 2 are shown in FIGS. 2 and 3, respectively, and the results of the 10th cycle of the comparative electrolytic solutions 1 and 2 are shown.
  • the horizontal axis in the figure represents the potential of the working electrode based on the potential of the reference electrode
  • the vertical axis (mA / cm 2 ) represents the current obtained by dividing the current value observed at each potential by the surface area of the working electrode. Represents density.
  • the electrolytic solution of the present invention has an oxidative decomposition potential of +2.8 V to +3.4 V, and can be used at a high voltage equal to or higher than that of the conventional method. Furthermore, from the results of FIG. 3, it was found that the electrolytic solution 2 can be used stably without deterioration even after dissolution and precipitation of magnesium 40 times.
  • Comparative Electrolytic Solution 2 [(t-BuOMgCl) 6 -AlCl 3 in THF] is an electrolytic solution described in J. Mater. Chem. A, 2014, 2, 581-584 (Non-patent Document 3). .
  • Non-patent Document 3 Non-patent Document 3
  • CV measurement using the electrolytic solution it was confirmed that the oxidative decomposition potential was +2.4 V almost as per the literature value.
  • the copper plate surface was confirmed by SEM, and as a result, the deposition of magnesium was confirmed.
  • elemental analysis of magnesium, aluminum, copper, chlorine, carbon, and oxygen was performed by EDS (energy dispersive X-ray analysis), and it was also confirmed that the precipitate was magnesium.
  • Example 8 Preparation of Electrolyte 7 (1) Synthesis of Magnesium Salt Under an argon gas atmosphere, 11.1 g (40 mmol) of triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) was added to tetrahydrofuran (THF) (Wako Pure Chemical Industries, Ltd.). 20 ml (40 mmol) of a THF solution (manufactured by Tokyo Chemical Industry Co., Ltd.) with a concentration of 2M phenylmagnesium chloride (PhMgCl) was added dropwise and stirred for 1 hour.
  • THF tetrahydrofuran
  • triphenylsiloxymagnesium chloride (Ph 3 SiOMgCl) 3.35 g (10 mmol) was mixed with 40 ml of THF (manufactured by Wako Pure Chemical Industries, Ltd.) and heated to 50 ° C. Then, 1.33 g (10 mmol) of aluminum chloride (AlCl 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After maintaining at 50 ° C. for 10 minutes, the mixture was cooled and filtered after 1 week to obtain an electrolytic solution 7 [triphenylsiloxymagnesium chloride-aluminum chloride / THF solution].
  • Example 9 Preparation of Electrolyte 8 Under an argon gas atmosphere, THF (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 0.84 g (2.5 mmol) of triphenylsiloxymagnesium chloride (Ph 3 SiOMgCl) obtained in Example 8 (1). 10 ml was mixed, and 0.5 ml (0.5 mmol) of a solution of trichloroborane (BCl 3 ) in dichloromethane (CH 2 Cl 2 ) (made by Wako Pure Chemical Industries, Ltd.) having a concentration of 1M was added dropwise at room temperature. After heating and maintaining at 50 ° C.
  • THF manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 10 Preparation of Electrolyte 9 Triglyme (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 0.84 g (2.5 mmol) of triphenylsiloxymagnesium chloride (Ph 3 SiOMgCl) obtained in Example 8 (1) under an argon gas atmosphere. After mixing 10 ml and heating to 50 ° C., 0.33 g (2.5 mmol) of aluminum chloride (AlCl 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After maintaining at 50 ° C. for 10 minutes, the mixture was cooled and filtered after 1 week to obtain an electrolytic solution 9 [triphenylsiloxymagnesium chloride-aluminum chloride / triglyme solution].
  • Example 11 Preparation of Electrolytic Solution 10
  • Tris (4-methylphenyl) silanol A THF solution of 1.0-methylphenylmagnesium bromide (1.0 M, manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a 1000 mL flask under a nitrogen atmosphere. mL (288 mmol) was added. Thereafter, a solution obtained by dissolving 12.2 g (90 mmol) of trichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) in 302 mL of THF was added dropwise over 1 hour while keeping the temperature of the solution in the flask at 35 ° C. or lower.
  • the mixed solution was passed through 60 g of silica gel C-200 (manufactured by Wako Pure Chemical Industries, Ltd.), and the by-product manganese oxide was filtered. The filtrate was concentrated under reduced pressure to obtain a crude product of tris (4-methylphenyl) silanol.
  • the obtained crude product was dissolved in 30 mL of dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.) and 60 mL of n-hexane (Wako Pure Chemical Industries, Ltd.), and concentrated under reduced pressure to crystallize.
  • the precipitated white solid was filtered and washed with n-hexane (10 mL).
  • Example 12 Preparation of Electrolytic Solution 11 (1) Synthesis of Tris (4-fluoro) silanol A THF solution of 1.0-fluorophenylmagnesium bromide (1.0 M, manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a 1000 mL flask under a nitrogen atmosphere. 288 mL (288 mmol) was added. Thereafter, a solution obtained by dissolving 12.2 g (90 mmol) of trichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) in 302 mL of THF was added dropwise over 1 hour while keeping the temperature of the solution in the flask at 35 ° C. or lower.
  • 1.0-fluorophenylmagnesium bromide 1.0 M, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 13 Preparation of Electrolytic Solution 12
  • Tris (3,5-dimethoxyphenyl) silanol In a 2000 mL flask, 6.36 g (0.262 mol) of Mg scraped (Wako Pure Chemical Industries, Ltd.) and iodine (Wako Pure Chemical Industries, Ltd.) 10 mg) was added and dried under reduced pressure for 1 hour. Furthermore, 222 mL of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added under a nitrogen atmosphere.
  • the obtained crude product was dissolved in 50 mL of diisopropyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) and 30 ml of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), concentrated under reduced pressure, and crystallized.
  • the precipitated white solid was filtered and washed with ethanol (30 mL).
  • the obtained solid was dried under reduced pressure to obtain 28.7 g (65.0 mmol, yield 87%, white solid) of tris (3,5-dimethoxyphenyl) silane.
  • the mixed solution was passed through 60 g of silica gel C-200 (manufactured by Wako Pure Chemical Industries, Ltd.), and the by-product manganese oxide was filtered.
  • the filtrate was concentrated under reduced pressure to obtain a crude product of tris (3,5-dimethoxyphenyl) silanol.
  • the obtained crude product was dissolved in 20 mL of dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.) and 30 mL of n-hexane (Wako Pure Chemical Industries, Ltd.), concentrated and crystallized.
  • the precipitated white solid was filtered and washed with n-hexane (30 mL).
  • Example 14 Preparation of Electrolysis 13 (1) Synthesis of Magnesium Salt Under an argon gas atmosphere, 4.57 g (30 mmol) of dimethylphenylsilanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added to tetrahydrofuran (THF) (Wako Pure Chemical Industries, Ltd.). 15 ml (30 mmol) of a THF solution of phenylmagnesium chloride (PhMgCl) having a concentration of 2M (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise and stirred for 1 hour.
  • THF tetrahydrofuran
  • Example 15 Preparation of Electrolytic Solution 14
  • diphenylsilanediol Tokyo Chemical Industry Co., Ltd.
  • THF tetrahydrofuran
  • RhMgCl phenylmagnesium chloride
  • Comparative Example 4 Preparation of Comparative Electrolytic Solution 3 Trimethylsilanol (Me 3 SiOH) (5 mmol (10 mmol) in 2M concentration of ethyl magnesium chloride (EtMgCl) in THF (Tokyo Chemical Industry Co., Ltd.) under an argon gas atmosphere ( 0.90 g (10 mmol) (Aldrich) was added dropwise and air-cooled. At room temperature, 0.22 g (1.67 mmol) of aluminum chloride (AlCl 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for 1 hour. Comparative electrolyte 3 [(Me 3 SiOMgCl) 6 -AlCl 3 / THF Solution] was obtained.
  • Example 16 Preparation of Electrolytic Solution 15 (1) Synthesis of Magnesium Salt Under an argon gas atmosphere, 5.53 g (20 mmol) of triphenylsilanol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to tetrahydrofuran (THF) (Wako Pure Chemical Industries, Ltd.). The product was dissolved in 20 ml, and 10 ml (10 mmol) of a THF solution of phenylmagnesium bromide (PhMgBr) having a concentration of 1M (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise and reacted for 1 hour.
  • PhMgBr phenylmagnesium bromide
  • triphenylsiloxymagnesium bromide (Ph 3 SiOMgBr)) 0.95 g was mixed with 10 ml of THF (manufactured by Wako Pure Chemical Industries, Ltd.), heated to 50 ° C., and then chlorinated. 0.33 g (2.5 mmol) of aluminum (AlCl 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After maintaining at 50 ° C. for 10 minutes, the mixture was cooled and filtered to obtain an electrolytic solution 15 [triphenylsiloxymagnesium bromide-aluminum chloride / THF solution].
  • Example 17 Cyclic Voltammetry (CV) Measurement of Various Electrolytic Solutions Using the electrolytic solutions 7 to 15, cyclic voltammetry (CV) measurement was performed in the same manner as in Example 7 (Example 17). . Similarly, CV measurement was performed in the same manner as in Example 7 using the comparative electrolytic solution 3 (Comparative Example 5).
  • the results of the oxidative decomposition potential of each electrolytic solution are shown in Table 2 below.
  • the result of the 10th cycle of the electrolytic solution 7 is shown in FIG. 6, and the result of the 10th cycle of the comparative electrolytic solution 3 is shown in FIG.
  • the horizontal axis in the figure represents the potential of the working electrode based on the potential of the reference electrode, and the vertical axis (mA / cm 2 ) represents the current obtained by dividing the current value observed at each potential by the surface area of the working electrode. Represents density.
  • the electrolytic solution of the present invention using a silicon compound has an oxidative decomposition potential of +2.8 V to +3.2 V, which is higher than the conventional method, and can be used at a high voltage. I found it possible. Moreover, about the electrolyte solution 7, CV measurement was performed using the thing after 1 month preservation

Abstract

 本発明は、非求核的なアルコキシド系マグネシウム塩を用いて、酸化分解電位が高く、マグネシウムの溶解析出が繰り返し安定して進行する電解液の提供を目的とする。 (1) 下記一般式(I)で示される化合物とルイス酸と溶媒を混合してなる、マグネシウム電池用電解液: 、(2)上記電解液、正極及び負極を含む電気化学デバイス、及び(3) 下記一般式(I')で示される化合物に関する。

Description

マグネシウム含有電解液
 本発明は、マグネシウムイオンを含有する電解液及び該電解液を含む電気化学デバイスに関する。
 マグネシウムは、そのイオンが多価イオンであるため、単位体積あたりの電気容量が大きい。また、マグネシウムはリチウムと比較して融点が高く、安全であることに加え、地球上での資源分布の偏りが小さく、資源量が豊富で安価であるというメリットもある。そのため、金属マグネシウムを負極としたマグネシウムイオン電池は、リチウムイオン電池に代わる次世代の電池として注目されている。
 しかしながら、金属マグネシウムを負極としたマグネシウムイオン電池においては、マグネシウムがその高い還元性に起因して電解液と反応することで、電極表面に不動態皮膜が形成される。その結果、マグネシウムの可逆的な溶解、析出を阻害し、負極反応が困難となる。
 このような不動態皮膜を形成しない電解液としては、グリニャール試薬RMgX(Rはアルキル基又はアリール基であり、Xは塩素又は臭素である。)をテトラヒドロフランに溶解した電解液が知られており、マグネシウムの可逆的な溶解、析出が確認されている。
 一方、AurbachらはジブチルマグネシウムBu2MgとエチルアルミニウムジクロリドEtAlCl2を用いて、Mg(AlCl2BuEt)2のTHF溶液を調製し、マグネシウムに対して2.4V程度の電位まで使用可能であることを報告している(非特許文献1)。
 しかし、これらのグリニャール試薬やアルキルマグネシウムを使用した電解液は求核的性質を有するため、正極に使用される化学的に活性の高い活物質や硫黄と直接反応する懸念があり、実用電池での使用において制限があった。
 これに対し、Wangらは、非求核的なフェノキシド系マグネシウム塩と塩化アルミニウムを混合することにより、マグネシウムに対して2.6V 程度まで使用可能な電解液を報告している(非特許文献2)。
 また、Liaoらは、非求核的なアルコキシド系マグネシウム塩と塩化アルミニウムを混合することにより、マグネシウムに対して2.5V程度の酸化耐性を有する電解液を報告している。(非特許文献3)。
Nature, 407, p724-727 (2000) Chem.Commun,2012,48,10763-10765 J.Mater.Chem.A, 2014,2,581-584
 非特許文献2や非特許文献3に記載の電解液は、上記のように非求核的なマグネシウム塩を使用した上で広い電位窓を有する電解液を報告しているが、より高電位で作動可能な電解液が現在求められている。
 即ち、本発明は、非求核的なアルコキシド系マグネシウム塩を用いて、酸化分解電位が高く、マグネシウムの溶解析出が繰り返し安定して進行する電解液の提供を目的とする。
 本発明は、「下記一般式(I)で示される化合物とルイス酸と溶媒を混合してなる、マグネシウム電池用電解液:
Figure JPOXMLDOC01-appb-I000003

(式中、Yは炭素原子又はケイ素原子を表し、Xは塩素原子又は臭素原子を表し、Rは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表し、R及びRは、それぞれ独立して、;マグネシウムクロリドオキシ基(-OMgCl);マグネシウムブロミドオキシ基(-OMgBr);炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表す。)」、「上記電解液、正極及び負極を含む電気化学デバイス」及び「下記一般式(I’)で示される化合物:
Figure JPOXMLDOC01-appb-I000004

(式中、Xは塩素原子又は臭素原子を表し、R’は、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表し、R’及びR’は、それぞれ独立して、水素原子;-OMgCl;-OMgBr;炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表す。)」に関する。
 本発明の電解液は、従来の電解液と比較して酸化分解電位が高いため、高電圧のマグネシウム電池の電解液として用いることができる。また、本発明の電解液は、マグネシウム二次電池の電解液として用いた場合、マグネシウムの溶解析出が繰り返し安定して進行するという効果を奏する。更に、本発明の電解液は、優れた保存安定性も有する。
実施例7における、電解液1[トリフェニルメトキシマグネシウムクロリド-塩化アルミニウム/テトラヒドロフラン(THF)溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。 実施例7における、電解液2[トリフェニルメトキシマグネシウムクロリド-塩化アルミニウム/トリグライム溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。 実施例7における、電解液2[トリフェニルメトキシマグネシウムクロリド-塩化アルミニウム/トリグライム溶液]を用いたCV測定で40サイクルさせた結果を示したグラフを表す。 比較例3における、比較電解液1[(tert-BuOMgCl)6-AlCl3/THF溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。 比較例3における、比較電解液2[MgCl2-Me2AlCl-Bu4NCl/THF溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。 実施例16における、電解液7[トリフェニルシロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。 比較例5における、比較電解液3[(Me3SiOMgCl)6-AlCl3/THF溶液]を用いたCV測定で10サイクルさせた結果を示したグラフを表す。
[一般式(I)で示される化合物]
 一般式(I)で示される化合物のYは、炭素原子又はケイ素原子を表し、ケイ素原子が好ましい。Yがケイ素原子である一般式(I)で示される化合物は、Yが炭素原子の場合よりも更に優れた保存安定性を示す。
 一般式(I)で示される化合物のXは、塩素原子又は臭素原子を表し、塩素原子が好ましい。
 一般式(I)で示される化合物のR~Rにおける炭素数6~10のアリール基としては、フェニル基又はナフチル基が挙げられ、フェニル基が好ましい。
 R~Rにおける炭素数6~10のアリール基の置換基としてのハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられ、フルオロ基が好ましい。
 R~Rにおける炭素数6~10のアリール基の置換基としてのアルキル基としては、通常炭素数1~6のアルキル基であり、炭素数1~4が好ましく、直鎖状でも分枝状でも環状でもよい。具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1,2-ジメチルブチル基、シクロペンチル基、シクロヘキシル基等が挙げられ、メチル基、エチル基、n-プロピル基、n-ブチル基が好ましく、メチル基がより好ましい。
 R~Rにおける炭素数6~10のアリール基の置換基としてのハロゲノアルキル基としては、直鎖状でも分枝状でも環状でもよいが直鎖状が好ましく、炭素数は通常1~6、好ましくは1~3である。具体的には、フルオロアルキル基、クロロアルキル基、ブロモアルキル基等が挙げられ、フルオロアルキル基が好ましく、中でもパーフルオロアルキル基が特に好ましい。より具体的には、例えばフルオロメチル基、パーフルオロメチル基、フルオロエチル基、パーフルオロエチル基、フルオロ-n-プロピル基、パーフルオロ-n-プロピル基、フルオロ-n-ブチル基、パーフルオロ-n-ブチル基、フルオロ-n-ペンチル基、パーフルオロ-n-ペンチル基、フルオロ-n-ヘキシル基、パーフルオロ-n-ヘキシル基、クロロメチル基、パークロロメチル基、クロロエチル基、パークロロエチル基、クロロ-n-プロピル基、パークロロ-n-プロピル基、クロロ-n-ブチル基、パークロロ-n-ブチル基、クロロ-n-ペンチル基、パークロロ-n-ペンチル基、クロロ-n-ヘキシル基、パークロロ-n-ヘキシル基、ブロモメチル基、パーブロモメチル基、ブロモエチル基、パーブロモエチル基、ブロモ-n-プロピル基、パーブロモ-n-プロピル基、ブロモ-n-ブチル基、パーブロモ-n-ブチル基、ブロモ-n-ペンチル基、パーブロモ-n-ペンチル基、ブロモ-n-ヘキシル基、パーブロモ-n-ヘキシル基等が挙げられ、中でもパーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロ-n-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロ-n-ヘキシル基が好ましく、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基がより好ましい。
 R~Rにおける炭素数6~10のアリール基の置換基としてのアルコキシ基としては、通常炭素数1~6であり、炭素数1~4が好ましく、具体的には例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ等が挙げられ、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、tert-ブトキシ基等が好ましい。
 R~Rにおけるハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基としては、ハロゲノ基を置換基として有するアリール基、アルキル基を置換基として有するアリール基、アルコキシ基を置換基として有するアリール基、無置換のアリール基等が好ましい。また、R~Rにおけるハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有する炭素数6~10のアリール基の置換基の数は、通常1~7個、好ましくは1~5個、より好ましくは1~2個である。
 R~Rにおけるハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基は、具体的には例えば、フェニル基、ナフチル基;フルオロフェニル基、クロロフェニル基、ブロモフェニル基、ヨードフェニル基、パーフルオロフェニル基、パークロロフェニル基、パーブロモフェニル基、パーヨードフェニル基;メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、イソブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、n-ペンチルフェニル基、イソペンチルフェニル基、sec-ペンチルフェニル基、tert-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、イソヘキシルフェニル基、sec-ヘキシルフェニル基、tert-ヘキシルフェニル基、3-メチルペンチルフェニル基、2-メチルペンチルフェニル基、1,2-ジメチルブチルフェニル基、シクロプロピルフェニル基、シクロペンチルフェニル基、シクロヘキシルフェニル基;フルオロメチルフェニル基、パーフルオロメチルフェニル基、フルオロエチルフェニル基、パーフルオロエチルフェニル基、フルオロ-n-プロピルフェニル基、パーフルオロ-n-プロピルフェニル基、フルオロイソプロピルフェニル基、パーフルオロイソプロピルフェニル基、フルオロ-n-ブチルフェニル基、パーフルオロ-n-ブチルフェニル基、フルオロイソブチルフェニル基、パーフルオロイソブチルフェニル基、フルオロ-sec-ブチルフェニル基、パーフルオロ-sec-ブチルフェニル基、フルオロ-tert-ブチルフェニル基、パーフルオロ-tert-ブチルフェニル基、フルオロ-n-ペンチルフェニル基、パーフルオロ-n-ペンチルフェニル基、フルオロイソペンチルフェニル基、パーフルオロイソペンチルフェニル基、フルオロ-sec-ペンチルフェニル基、パーフルオロ-sec-ペンチルフェニル基、フルオロ-tert-ペンチルフェニル基、パーフルオロ-tert-ブチルフェニル基、フルオロネオペンチルフェニル基、パーフルオロネオペンチルフェニル基、フルオロ-n-ヘキシルフェニル基、パーフルオロ-n-ヘキシルフェニル基、フルオロイソヘキシルフェニル基、パーフルオロイソヘキシルフェニル基、フルオロ-sec-ヘキシルフェニル基、パーフルオロ-sec-ヘキシルフェニル基、フルオロ-tert-ヘキシルフェニル基、パーフルオロ-tert-ヘキシルフェニル基、フルオロ-3-メチルペンチルフェニル基、パーフルオロ-3-メチルペンチルフェニル基、フルオロ-2-メチルペンチルフェニル基、パーフルオロ-2-メチルペンチルフェニル基、フルオロ-1,2-ジメチルブチルフェニル基、パーフルオロ-1,2-ジメチルブチルフェニル基、フルオロシクロプロピルフェニル基、パーフルオロシクロプロピルフェニル基、フルオロシクロブチルフェニル基、パーフルオロシクロブチルフェニル基、フルオロシクロペンチルフェニル基、パーフルオロシクロペンチルフェニル基、フルオロシクロヘキシルフェニル基、パーフルオロシクロヘキシルフェニル基、クロロメチルフェニル基、パークロロメチルフェニル基、クロロエチルフェニル基、パークロロエチルフェニル基、クロロ-n-プロピルフェニル基、パークロロ-n-プロピルフェニル基、クロロイソプロピルフェニル基、パークロロイソプロピルフェニル基、クロロ-n-ブチルフェニル基、パークロロ-n-ブチルフェニル基、クロロイソブチルフェニル基、パークロロイソブチルフェニル基、クロロ-sec-ブチルフェニル基、パークロロ-sec-ブチルフェニル基、クロロ-tert-ブチルフェニル基、パークロロ-tert-ブチルフェニル基、クロロ-n-ペンチルフェニル基、パークロロ-n-ペンチルフェニル基、クロロイソペンチルフェニル基、パークロロイソペンチルフェニル基、クロロ-sec-ペンチルフェニル基、パークロロ-sec-ペンチルフェニル基、クロロ-tert-ペンチルフェニル基、パークロロ-tert-ブチルフェニル基、クロロネオペンチルフェニル基、パークロロネオペンチルフェニル基、クロロ-n-ヘキシルフェニル基、パークロロ-n-ヘキシルフェニル基、クロロイソヘキシルフェニル基、パークロロイソヘキシルフェニル基、クロロ-sec-ヘキシルフェニル基、パークロロ-sec-ヘキシルフェニル基、クロロ-tert-ヘキシルフェニル基、パークロロ-tert-ヘキシルフェニル基、クロロ-3-メチルペンチルフェニル基、パークロロ-3-メチルペンチルフェニル基、クロロ-2-メチルペンチルフェニル基、パークロロ-2-メチルペンチルフェニル基、クロロ-1,2-ジメチルブチルフェニル基、パークロロ-1,2-ジメチルブチルフェニル基、クロロシクロプロピルフェニル基、パークロロシクロプロピルフェニル基、クロロシクロブチルフェニル基、パークロロシクロブチルフェニル基、クロロシクロペンチルフェニル基、パークロロシクロペンチルフェニル基、クロロシクロヘキシルフェニル基、パークロロシクロヘキシルフェニル基、ブロモメチルフェニル基、パーブロモメチルフェニル基、ブロモエチルフェニル基、パーブロモエチルフェニル基、ブロモ-n-プロピルフェニル基、パーブロモ-n-プロピルフェニル基、ブロモイソプロピルフェニル基、パーブロモイソプロピルフェニル基、ブロモ-n-ブチルフェニル基、パーブロモ-n-ブチルフェニル基、ブロモイソブチルフェニル基、パーブロモイソブチルフェニル基、ブロモ-sec-ブチルフェニル基、パーブロモ-sec-ブチルフェニル基、ブロモ-tert-ブチルフェニル基、パーブロモ-tert-ブチルフェニル基、ブロモ-n-ペンチルフェニル基、パーブロモ-n-ペンチルフェニル基、ブロモイソペンチルフェニル基、パーブロモイソペンチルフェニル基、ブロモ-sec-ペンチルフェニル基、パーブロモ-sec-ペンチルフェニル基、ブロモ-tert-ペンチルフェニル基、パーブロモ-tert-ブチルフェニル基、ブロモネオペンチルフェニル基、パーブロモネオペンチルフェニル基、ブロモ-n-ヘキシルフェニル基、パーブロモ-n-ヘキシルフェニル基、ブロモイソヘキシルフェニル基、パーブロモイソヘキシルフェニル基、ブロモ-sec-ヘキシルフェニル基、パーブロモ-sec-ヘキシルフェニル基、ブロモ-tert-ヘキシルフェニル基、パーブロモ-tert-ヘキシルフェニル基、ブロモ-3-メチルペンチルフェニル基、パーブロモ-3-メチルペンチルフェニル基、ブロモ-2-メチルペンチルフェニル基、パーブロモ-2-メチルペンチルフェニル基、ブロモ-1,2-ジメチルブチルフェニル基、パーブロモ-1,2-ジメチルブチルフェニル基、ブロモシクロプロピルフェニル基、パーブロモシクロプロピルフェニル基、ブロモシクロブチルフェニル基、パーブロモシクロブチルフェニル基、ブロモシクロペンチルフェニル基、パーブロモシクロペンチルフェニル基、ブロモシクロヘキシルフェニル基、パーブロモシクロヘキシルフェニル基;メトキシフェニル基、エトキシフェニル基、n-プロポキシフェニル基、イソプロポキシフェニル基、n-ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、n-ペンチルオキシフェニル基、イソペンチルオキシフェニル基、sec-ペンチルオキシフェニル基、tert-ペンチルオキシフェニル基、ネオペンチルオキシフェニル基、n-ヘキシルオキシフェニル基、イソヘキシルオキシフェニル基、sec-ヘキシルオキシフェニル基、tert-ヘキシルオキシフェニル基、3-メチルペンチルオキシフェニル基、2-メチルペンチルオキシフェニル基、1,2-ジメチルブトキシフェニル基、シクロプロピルオキシフェニル基、シクロブチルオキシフェニル基、シクロペンチルオキシフェニル基、シクロヘキシルオキシフェニル基等が挙げられる。
 上記具体例の中でも、フェニル基、メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、イソブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、n-ペンチルフェニル基、イソペンチルフェニル基、sec-ペンチルフェニル基、tert-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、イソヘキシルフェニル基、sec-ヘキシルフェニル基、tert-ヘキシルフェニル基、3-メチルペンチルフェニル基、2-メチルペンチルフェニル基、1,2-ジメチルブチルフェニル基、シクロプロピルフェニル基、シクロペンチルフェニル基、シクロヘキシルフェニル基;フルオロメチルフェニル基、パーフルオロメチルフェニル基、フルオロエチルフェニル基、パーフルオロエチルフェニル基、フルオロ-n-プロピルフェニル基、パーフルオロ-n-プロピルフェニル基、フルオロ-n-ブチルフェニル基、パーフルオロ-n-ブチルフェニル基、フルオロ-n-ペンチルフェニル基、パーフルオロ-n-ペンチルフェニル基、フルオロ-n-ヘキシルフェニル基、パーフルオロ-n-ヘキシルフェニル基、クロロメチルフェニル基、パークロロメチルフェニル基、クロロエチルフェニル基、パークロロエチルフェニル基、クロロ-n-プロピルフェニル基、パークロロ-n-プロピルフェニル基、クロロ-n-ブチルフェニル基、パークロロ-n-ブチルフェニル基、クロロ-n-ペンチルフェニル基、パークロロ-n-ペンチルフェニル基、クロロ-n-ヘキシルフェニル基、パークロロ-n-ヘキシルフェニル基、ブロモメチルフェニル基、パーブロモメチルフェニル基、ブロモエチルフェニル基、パーブロモエチルフェニル基、ブロモ-n-プロピルフェニル基、パーブロモ-n-プロピルフェニル基、ブロモ-n-ブチルフェニル基、パーブロモ-n-ブチルフェニル基、ブロモ-n-ペンチルフェニル基、パーブロモ-n-ペンチルフェニル基、ブロモ-n-ヘキシルフェニル基、パーブロモ-n-ヘキシルフェニル基;メトキシフェニル基、エトキシフェニル基、n-プロポキシフェニル基、イソプロポキシフェニル基、n-ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、n-ペンチルオキシフェニル基、n-ヘキシルオキシフェニル基等が好ましく、フェニル基、メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基;フルオロメチルフェニル基、クロロメチルフェニル基、ブロモメチルフェニル基、ヨードメチルフェニル基、;メトキシフェニル基、エトキシフェニル基、n-プロポキシフェニル基、イソプロポキシフェニル基、tert-ブトキシフェニル基等がより好ましい。
 一般式(I)で示される化合物のR及びRにおける炭素数1~6のアルケニル基としては、直鎖状でも分枝状でも或いは環状でもよく、炭素数1~3のものが好ましい。具体的には、例えばビニル基、アリル基、1-プロペニル基、イソプロペニル基、3-ブテニル基、2-ブテニル基、1-ブテニル基、1,3-ブタジエニル基、4-ペンテニル基、3-ペンテニル基、2-ペンテニル基、1-ペンテニル基、1-メチル-1-ブテニル基、5-ヘキセニル基、4-ヘキセニル基、3-ヘキセニル基、2-ヘキセニル基、1-ヘキセニル基等が挙げられ、中でもビニル基、アリル基、1-プロペニル基、イソプロペニル基が好ましく、アリル基がより好ましい。
 一般式(I)で示される化合物のR及びRにおける炭素数1~6のアルキル基としては、炭素数1~4が好ましく、直鎖状でも分枝状でも環状でもよい。具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1,2-ジメチルブチル基、シクロペンチル基、シクロヘキシル基等が挙げられ、メチル基、エチル基、n-プロピル基、n-ブチル基が好ましい。
 R及びRにおける炭素数1~6のアルキル基の置換基としてのハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられ、フルオロ基が好ましい。
 R~Rにおける炭素数1~6のアルキル基の置換基としてのアルコキシ基としては、通常炭素数1~6であり、炭素数1~3が好ましく、具体的には例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ等が挙げられ、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等が好ましい。
 R~Rにおけるハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基としては、具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1,2-ジメチルブチル基、シクロペンチル基、シクロヘキシル基;パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロイソブチル基、パーフルオロ-sec-ブチル基、パーフルオロ-tert-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロイソペンチル基、パーフルオロ-sec-ペンチル基、パーフルオロ-tert-ペンチル基、パーフルオロネオペンチル基、パーフルオロ-n-ヘキシル基、パーフルオロイソヘキシル基、パーフルオロ-sec-ヘキシル基、パーフルオロ-tert-ヘキシル基、パーフルオロ-3-メチルペンチル基、パーフルオロ-2-メチルペンチル基、パーフルオロ-1,2-ジメチルブチル基、パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基、フルオロメチル基、フルオロエチル基、フルオロ-n-プロピル基、フルオロイソプロピル基、フルオロ-n-ブチル基、フルオロイソブチル基、フルオロ-sec-ブチル基、フルオロ-tert-ブチル基、フルオロ-n-ペンチル基、フルオロイソペンチル基、フルオロ-sec-ペンチル基、フルオロ-tert-ペンチル基、フルオロネオペンチル基、フルオロ-n-ヘキシル基、フルオロイソヘキシル基、フルオロ-sec-ヘキシル基、フルオロ-tert-ヘキシル基、フルオロ-3-メチルペンチル基、フルオロ-2-メチルペンチル基、フルオロ-1,2-ジメチルブチル基、フルオロシクロペンチル基、フルオロシクロヘキシル基;パークロロメチル基、パークロロエチル基、パークロロ-n-プロピル基、パークロロイソプロピル基、パークロロ-n-ブチル基、パークロロ-sec-ブチル基、パークロロ-tert-ブチル基、パークロロ-n-ペンチル基、パークロロイソペンチル基、パークロロ-sec-ペンチル基、パークロロ-tert-ペンチル基、パークロロネオペンチル基、パークロロ-n-ヘキシル基、パークロロイソヘキシル基、パークロロ-sec-ヘキシル基、パークロロ-tert-ヘキシル基、パークロロ-3-メチルペンチル基、パークロロ-2-メチルペンチル基、パークロロ-1,2-ジメチルブチル基、パークロロシクロペンチル基、パークロロシクロヘキシル基、クロロメチル基、クロロエチル基、クロロ-n-プロピル基、クロロイソプロピル基、クロロ-n-ブチル基、クロロイソブチル基、クロロ-sec-ブチル基、クロロ-tert-ブチル基、クロロ-n-ペンチル基、クロロイソペンチル基、クロロ-sec-ペンチル基、クロロ-tert-ペンチル基、クロロネオペンチル基、クロロ-n-ヘキシル基、クロロイソヘキシル基、クロロ-sec-ヘキシル基、クロロ-tert-ヘキシル基、クロロ-3-メチルペンチル基、クロロ-2-メチルペンチル基、クロロ-1,2-ジメチルブチル基、クロロシクロペンチル基、クロロシクロヘキシル基;パーブロモメチル基、パーブロモエチル基、パーブロモ-n-プロピル基、パーブロモイソプロピル基、パーブロモ-n-ブチル基、パーブロモ-sec-ブチル基、パーブロモ-tert-ブチル基、パーブロモ-n-ペンチル基、パーブロモイソペンチル基、パーブロモ-sec-ペンチル基、パーブロモ-tert-ペンチル基、パーブロモネオペンチル基、パーブロモ-n-ヘキシル基、パーブロモイソヘキシル基、パーブロモ-sec-ヘキシル基、パーブロモ-tert-ヘキシル基、パーブロモ-3-メチルペンチル基、パーブロモ-2-メチルペンチル基、パーブロモ-1,2-ジメチルブチル基、パーブロモシクロペンチル基、パーブロモシクロヘキシル基、ブロモメチル基、ブロモエチル基、ブロモ-n-プロピル基、ブロモイソプロピル基、ブロモ-n-ブチル基、ブロモイソブチル基、ブロモ-sec-ブチル基、ブロモ-tert-ブチル基、ブロモ-n-ペンチル基、ブロモイソペンチル基、ブロモ-sec-ペンチル基、ブロモ-tert-ペンチル基、ブロモネオペンチル基、ブロモ-n-ヘキシル基、ブロモイソヘキシル基、ブロモ-sec-ヘキシル基、ブロモ-tert-ヘキシル基、ブロモ-3-メチルペンチル基、ブロモ-2-メチルペンチル基、ブロモ-1,2-ジメチルブチル基、ブロモシクロペンチル基、ブロモシクロヘキシル基;パーヨードメチル基、パーヨードエチル基、パーヨード-n-プロピル基、パーヨードイソプロピル基、パーヨード-n-ブチル基、パーヨード-sec-ブチル基、パーヨード-tert-ブチル基、パーヨード-n-ペンチル基、パーヨードイソペンチル基、パーヨード-sec-ペンチル基、パーヨード-tert-ペンチル基、パーヨードネオペンチル基、パーヨード-n-ヘキシル基、パーヨードイソヘキシル基、パーヨード-sec-ヘキシル基、パーヨード-tert-ヘキシル基、パーヨード-3-メチルペンチル基、パーヨード-2-メチルペンチル基、パーヨード-1,2-ジメチルブチル基、パーヨードシクロペンチル基、パーヨードシクロヘキシル基、ヨードメチル基、ヨードエチル基、ヨード-n-プロピル基、ヨードイソプロピル基、ヨード-n-ブチル基、ヨードイソブチル基、ヨード-sec-ブチル基、ヨード-tert-ブチル基、ヨード-n-ペンチル基、ヨードイソペンチル基、ヨード-sec-ペンチル基、ヨード-tert-ペンチル基、ヨードネオペンチル基、ヨード-n-ヘキシル基、ヨードイソヘキシル基、ヨード-sec-ヘキシル基、ヨード-tert-ヘキシル基、ヨード-3-メチルペンチル基、ヨード-2-メチルペンチル基、ヨード-1,2-ジメチルブチル基、ヨードシクロペンチル基、ヨードシクロヘキシル基;メトキシメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、イソブトキシメチル基、sec-ブトキシメチル基、tert-ブトキシメチル基、n-ペンチルオキシメチル基、ネオペンチルオキシメチル基、n-ヘキシルオキシメチル基、メトキシエチル基、エトキシエチル基、n-プロポキシエチル基、イソプロポキシエチル基、n-ブトキシエチル基、イソブトキシエチル基、sec-ブトキシエチル基、tert-ブトキシエチル基、n-ペンチルオキシエチル基、ネオペンチルオキシエチル基、n-ヘキシルオキシエチル基、メトキシ-n-プロピル基、エトキシ-n-プロピル基、n-プロポキシ-n-プロピル基、イソプロポキシ-n-プロピル基、n-ブトキシ-n-プロピル基、イソブトキシ-n-プロピル基、sec-ブトキシ-n-プロピル基、tert-ブトキシ-n-プロピル基、n-ペンチルオキシ-n-プロピル基、ネオペンチルオキシ-n-プロピル基、n-ヘキシルオキシ-n-プロピル基、メトキシ-n-ブチル基、エトキシ-n-ブチル基、n-プロポキシ-n-ブチル基、イソプロポキシ-n-ブチル基、n-ブトキシ-n-ブチル基、イソブトキシ-n-ブチル基、sec-ブトキシ-n-ブチル基、tert-ブトキシ-n-ブチル基、n-ペンチルオキシ-n-ブチル基、ネオペンチルオキシ-n-ブチル基、n-ヘキシルオキシ-n-ブチル基等挙げられる。
 中でも、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロ-sec-ブチル基、パーフルオロ-tert-ブチル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基等が好ましい。
 一般式(I)で示される化合物におけるR及びRは、マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基;炭素数1~6のアルキル基;或いはハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基が好ましく、マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基;炭素数1~6のアルキル基;或いはアルキル基を置換基として有していてもよい炭素数6~10のアリール基がより好ましい。これらの好ましい具体例は、マグネシウムクロリドオキシ基(-OMgCl)、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、メチル基、エチル基、n-プロピル基、n-ブチル基、フェニル基、メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基;フルオロメチルフェニル基、クロロメチルフェニル基、ブロモメチルフェニル基、ヨードメチルフェニル基;メトキシフェニル基、エトキシフェニル基、n-プロポキシフェニル基、イソプロポキシフェニル基、tert-ブトキシフェニル基等が挙げられ、マグネシウムクロリドオキシ基(-OMgCl)、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、メチル基、エチル基、n-プロピル基、n-ブチル基、フェニル基、メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基等がより好ましい。
 一般式(I)で示される化合物の好ましい具体例としては、下記一般式(I-I)、(I-II)又は(I-III)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000005
(式中、R、R及びRは、それぞれ独立して、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を表し、n4、n5、及びn6は、それぞれ独立して0~5の整数を表す。X、Yは上記と同じ。)
Figure JPOXMLDOC01-appb-I000006
(式中、Rは、マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基又は炭素数1~6のアルキル基を表し、R、R、n4、n6及びX、Yは上記と同じ。)

Figure JPOXMLDOC01-appb-I000007
(式中、2つのRは、それぞれ独立して、マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基又は炭素数1~6のアルキル基を表し、R、n4、X及びYは上記と同じ。)
 (I-I)、(I-II)又は(I-III)で示される化合物において、Yはケイ素原子が好ましい。また、Xは塩素原子が好ましい。
 上記R、R及びRにおける、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基としては、ハロゲノ基、アルキル基、又はアルコキシ基が好ましい。その具体例は、上記R~Rにおける炭素数6~10のアリール基の置換基として記載したものと同じものが挙げられ、好ましいものも同じである。
 上記n4、n5、及びn6は、0~2が好ましい。
 上記R及びRにおける炭素数1~6のアルケニル基及び炭素数1~6のアルキル基の具体例は、それぞれ、R及びRにおける炭素数1~6のアルケニル基及び炭素数1~6のアルキル基と同じものが挙げられ、好ましいものも同じである。
 Rは、マグネシウムクロリドオキシ基(-OMgCl)又は炭素数1~6のアルケニル基が好ましい。Rは、炭素数1~6のアルキル基が好ましい。
[ルイス酸]
 本発明に係るルイス酸は、ベリリウム(Be)、ホウ素(B)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、チタン(Ti)、クロム(Cr)、鉄(Fe)、コバルト(Co)を元素として含むものである。具体的には、フッ化ベリリウム(II)、塩化ベリリウム(II)、臭化ベリリウム(II)等のベリリウム化合物;塩化ホウ素(III)、フッ化ホウ素(III)、臭化ホウ素(III)、トリフェノキシボラン、フェニルジクロロボラン、トリフェニルボラン等のホウ素化合物;塩化アルミニウム(III)、臭化アルミニウム(III)、ヨウ化アルミニウム(III)、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、トリメチルアルミニウム、トリエチルアルミニウム等のアルミニウム化合物;トリメチルシリルトリフラート、トリメチルシリルヨード、tert-ブチルジメチルシリルトリフラートまたはトリイソプロピルシリルトリフラート等のシリル化合物;塩化スズ(IV)、臭化スズ(IV)、塩化スズ(II)、スズ(II)トリフラート等のスズ化合物;塩化チタン(IV)、フッ化チタン(IV)、臭化チタン(IV)、ヨウ化チタン(IV)等のチタン化合物;フッ化クロム(II)、フッ化クロム(III)、塩化クロム(II)、塩化クロム(III)、臭化クロム(II)、臭化クロム(III)、ヨウ化クロム(II)、ヨウ化クロム(III)等のクロム化合物;フッ化鉄(II)、塩化鉄(II)、塩化鉄(III)、臭化鉄鉄(II)、ヨウ化鉄(II)等の鉄化合物;又は、フッ化コバルト(II)、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)等のコバルト化合物が挙げられる。
 中でも、ホウ素化合物又はアルミニウム化合物が好ましく、アルミニウム化合物がより好ましい。具体的には、塩化アルミニウム(III)、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、塩化ホウ素(III)等が好ましく、塩化アルミニウム(III)が特に好ましい。
[溶媒]
 本発明に係る溶媒としては、上記本発明に係る一般式(I)で示される化合物を溶解し得るものが好ましい。このような溶媒としては例えばエーテル系溶媒、ハロゲン化炭化水素系溶媒、カーボネート系溶媒、ニトリル系溶媒、スルホン系溶媒等が挙げられる。
 上記エーテル系溶媒としては例えば、ジエチルエーテル、ジグライム、トリグライム、テトラグライム、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジイソプロピルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン等が挙げられ;ハロゲン化炭化水素系溶媒としては例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等が挙げられ;カーボネート系溶媒としては例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸プロピレン等が挙げられ;ニトリル系溶媒としては例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、スクシノニトリル、ピメロニトリル、メトキシプロピオニトリル等が挙げられ、;スルホン系溶媒としては例えば、スルホラン、ジメチルスルホン、エチルメチルスルホン、メチル-n-プロピルスルホン、メチルイソプロピルスルホン、n-ブチル-メチルスルホン、イソブチルメチルスルホン、sec-ブチルメチルスルホン、tert-ブチルメチルスルホン、ジエチルスルホン、エチル-n-プロピルスルホン、エチルイソプロピルスルホン、n-ブチルエチルスルホン、イソブチルエチルスルホン、sec-ブチルエチルスルホン、tert-ブチルエチルスルホン、ジ-n-プロピルスルホン、ジイソプロピルスルホン、n-ブチル-n-プロピルスルホン、ジ-n-ブチルスルホン等が挙げられる。
 上記具体例の中でも、エーテル系溶媒、スルホン系溶媒等が好ましく、具体的には、1,2-ジメトキシエタン、ジグライム、トリグライム、テトラグライム、テトラヒドロフラン、スルホランが特に好ましく、ジグライム、トリグライム、テトラグライム、テトラヒドロフランが特に好ましい。
 本発明にかかる溶媒は、上記溶媒2種以上を混合したものであってもよい。
[電解液]
 本発明の電解液は、本発明に係る一般式(I)で示される化合物と本発明に係るルイス酸とを本発明にかかる溶媒に混合してなるものである。
 該電解液中の一般式(I)で示される化合物の濃度は、通常0.1~5mol/mL、好ましくは0.1~3mol/mL、より好ましくは0.2~2mol/mLである。
 本発明の電解液で用いられるルイス酸の量は、本発明に係る一般式(I)で示される化合物の通常0.1~5mol倍、好ましくは0.1~3mol倍である。
 本発明の電解液は、通常この分野で用いられる皮膜形成剤、過充電防止剤、脱酸素剤、脱水剤、難燃剤等の添加剤及びクラウンエーテル等の配位性の添加剤を含んでいてもよい。
 このような本発明の電解液は、マグネシウム電池に用いることができ、マグネシウム二次電池の場合、高い酸化分解電位を示し、安定に繰り返し用いることができる。
 本発明の電解液は、上記本発明に係る一般式(I)で示される化合物と本発明に係るルイス酸を本発明に係る溶媒に溶解(混合)することにより製造される。より具体的には、上記本発明に係る一般式(I)で示される化合物1molに対して本発明に係るルイス酸を0.1~5mol用いて、これらを上記濃度となるように本発明に係る溶媒に添加して混合することにより製造される。尚、混合時に必要に応じて-78~300℃の範囲で加熱又は冷却しても良く、好ましくは0~70℃である。
[電気化学デバイス]
 本発明の電気化学デバイスは、正極と負極と本発明の電解液を有するものである。具体的には、一次電池、二次電池、電気二重層キャパシタ等が挙げられ、中でも二次電池が好ましい。
 本発明の電気化学デバイスにおける正極は、マグネシウム又はマグネシウムイオンをその内部、又は表面及びその近傍に含有し得るものであれば特に限定されない。具体的には例えば、コバルト、マンガン、バナジウム、アルミニウム、鉄、ケイ素、リン、ニッケル、モリブデン、チタン等を含む酸化物、又は硫化物を活物質として含む電極などが挙げられる。
 また、該正極には、硫黄等のマグネシウム又はマグネシウムイオンを吸着貯蔵可能な活物質、酸化力の高い有機化学物質、多孔質炭素や活性炭等の電気二重層を形成する材料が含まれていてもよく、マグネシウムが酸化された形態で含まれていてもよい。
 本発明の電気化学デバイスにおける負極は、マグネシウム又はマグネシウムイオンをその内部、又は表面及びその近傍に含有し得るものであれば特に限定されない。具体的には例えば、マグネシウムの溶解析出が可能な金属マグネシウム、マグネシウム合金や、マグネシウムと合金化され得る金属、マグネシウム又はマグネシウムイオンのインターカレーションが可能なカーボン材料等が挙げられる。
 また、本発明の電気化学デバイスは、正極、負極及び本発明の電解液以外に、更にセパレータを有していてもよい。該セパレータとしては、正極と負極とを電気的に絶縁し、且つマグネシウムイオンが透過可能なものであればよく、例えば多孔性ポリオレフィンフィルム等の微多孔性高分子フィルムが挙げられる。多孔性ポリオレフィンフィルムの具体例としては、例えば多孔性ポリエチレンフィルム単独、又は多孔性ポリエチレンフィルムと多孔性ポリプロピレンフィルムとを重ね合わせて複層フィルムとしたもの等が挙げられる。
[一般式(I’)で示される化合物]
 一般式(I’)で示される化合物のXは、塩素原子又は臭素原子を表し、塩素原子が好ましい。
 一般式(I’)で示される化合物のR’は、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表し、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基の具体例及び好ましいものは、一般式(I)で示される化合物のRと同じものが挙げられる。
 一般式(I’)で示される化合物のR’及びR’は、それぞれ独立して、;マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表す。炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;並びに、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基の具体例及び好ましいものは、一般式(I)で示される化合物のR及びRと同じものが挙げられる。
 R’及びR’の好ましい具体例は、一般式(I)で示される化合物のR及びRと同じものが挙げられる。
 一般式(I’)で示される化合物の具体例としては、例えばマグネシウムブロミド化合物が挙げられ、具体的には、トリフェニルシロキシマグネシウムブロミド;トリス(2-メチルフェニル)シロキシマグネシウムブロミド、トリス(3-メチルフェニル)シロキシマグネシウムブロミド、トリス(4-メチルフェニル)シロキシマグネシウムブロミド、トリス(2,2-ジメチルフェニル)シロキシマグネシウムブロミド、トリス(3,3-ジメチルフェニル)シロキシマグネシウムブロミド、トリス(2,3-ジメチルフェニル)シロキシマグネシウムブロミド、トリス(2,4-ジメチルフェニル)シロキシマグネシウムブロミド、トリス(3,4-ジメチルフェニル)シロキシマグネシウムブロミド、トリス(2,4,6-トリメチルフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5-テトラメチルフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,6-テトラメチルフェニル)シロキシマグネシウムブロミド、トリス(2,3,5,6-テトラメチルフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5,6-ペンタメチルフェニル)シロキシマグネシウムブロミド;トリス(2-フルオロフェニル)シロキシマグネシウムブロミド、トリス(3-フルオロフェニル)シロキシマグネシウムブロミド、トリス(4-フルオロフェニル)シロキシマグネシウムブロミド、トリス(2,2-ジフルオロフェニル)シロキシマグネシウムブロミド、トリス(3,3-ジフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,3-ジフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,4-ジフルオロフェニル)シロキシマグネシウムブロミド、トリス(3,4-ジフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,4,6-トリフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5-テトラフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,6-テトラフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,3,5,6-テトラフルオロフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5,6-ペンタフルオロフェニル)シロキシマグネシウムブロミド;トリス(2-メトキシフェニル)シロキシマグネシウムブロミド、トリス(3-メトキシフェニル)シロキシマグネシウムブロミド、トリス(4-メトキシフェニル)シロキシマグネシウムブロミド、トリス(2,2-ジメトキシフェニル)シロキシマグネシウムブロミド、トリス(3,3-ジメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,3-ジメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,4-ジメトキシフェニル)シロキシマグネシウムブロミド、トリス(3,4-ジメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,4,6-トリメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5-テトラメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,6-テトラメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,3,5,6-テトラメトキシフェニル)シロキシマグネシウムブロミド、トリス(2,3,4,5,6-ペンタメトキシフェニル)シロキシマグネシウムブロミド;ジメチルフェニルシロキシマグネシウムブロミド、メチルジフェニルシロキシマグネシウムブロミド、ジエチルフェニルシロキシマグネシウムブロミド、エチルジフェニルシロキシマグネシウムブロミド、ジ(tert-ブチル)フェニルシロキシマグネシウムブロミド、tert-ブチルジフェニルシロキシマグネシウムブロミド;ジメチル(メチルフェニル)シロキシマグネシウムブロミド、メチルジ(メチルフェニル)シロキシマグネシウムブロミド、ジメチル(ジメチルフェニル)シロキシマグネシウムブロミド、メチルジ(ジメチルフェニル)シロキシマグネシウムブロミド、ジメチル(トリメチルフェニル)シロキシマグネシウムブロミド、メチルジ(トリメチルフェニル)シロキシマグネシウムブロミド、ジメチル(テトラメチルフェニル)シロキシマグネシウムブロミド、メチルジ(テトラメチルフェニル)シロキシマグネシウムブロミド、ジメチル(ペンタメチルフェニル)シロキシマグネシウムブロミド、メチルジ(ペンタメチルフェニル)シロキシマグネシウムブロミド;ジメチル(フルオロフェニル)シロキシマグネシウムブロミド、メチルジ(フルオロフェニル)シロキシマグネシウムブロミド、ジメチル(ジフルオロフェニル)シロキシマグネシウムブロミド、メチルジ(ジフルオロフェニル)シロキシマグネシウムブロミド、ジメチル(トリフルオロフェニル)シロキシマグネシウムブロミド、メチルジ(トリフルオロフェニル)シロキシマグネシウムブロミド、ジメチル(テトラフルオロフェニル)シロキシマグネシウムブロミド、メチルジ(テトラフルオロフェニル)シロキシマグネシウムブロミド、ジメチル(ペンタフルオロフェニル)シロキシマグネシウムブロミド、メチルジ(ペンタフルオロフェニル)シロキシマグネシウムブロミド;ジメチル(メトキシフェニル)シロキシマグネシウムブロミド、メチルジ(メトキシフェニル)シロキシマグネシウムブロミド、ジメチル(ジメトキシフェニル)シロキシマグネシウムブロミド、メチルジ(ジメトキシフェニル)シロキシマグネシウムブロミド、ジメチル(トリメトキシフェニル)シロキシマグネシウムブロミド、メチルジ(トリメトキシフェニル)シロキシマグネシウムブロミド、ジメチル(テトラメトキシフェニル)シロキシマグネシウムブロミド、メチルジ(テトラメトキシフェニル)シロキシマグネシウムブロミド、ジメチル(ペンタメトキシフェニル)シロキシマグネシウムブロミド、メチルジ(ペンタメトキシフェニル)シロキシマグネシウムブロミド;ジメチル(トリフルオロメチルフェニル)シロキシマグネシウムブロミド、メチルジ(トリフルオロメチルフェニル)シロキシマグネシウムブロミド、ジメチル(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリ、メチルジ(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジ(tert-ブチル)(トリフルオロメチルフェニル)シロキシマグネシウムブロミド、メチルジ(トリフルオロメチルフェニル)シロキシマグネシウムブロミド、ジメチル(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、ジメチル(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド、メチルジ(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムブロミド;ジフェニルシランジオキシビス(マグネシウムブロミド)、ジ(メチルフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ジメチルフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(トリメチルフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(テトラメチルフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ペンタメチルフェニル)シランジオキシビス(マグネシウムブロミド);ジ(フルオロフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ジフルオロフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(トリフルオロフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(テトラフルオロフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ペンタフルオロフェニル)シランジオキシビス(マグネシウムブロミド);ジ(メトキシフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ジメトキシフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(トリメトキシフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(テトラメトキシフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ペンタメトキシフェニル)シランジオキシビス(マグネシウムブロミド);ジ(トリフルオロメチルフェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ジ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムブロミド)、ジ(トリ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムブロミド)、ジ(テトラ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムブロミド)、ジ(ペンタ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムブロミド)等が挙げられる。
 また、一般式(I’)で示される化合物の具体例としては、例えばマグネシウムクロリド化合物が挙げられ、具体的には、トリフェニルシロキシマグネシウムクロリド;トリス(2-メチルフェニル)シロキシマグネシウムクロリド、トリス(3-メチルフェニル)シロキシマグネシウムクロリド、トリス(4-メチルフェニル)シロキシマグネシウムクロリド、トリス(2,2-ジメチルフェニル)シロキシマグネシウムクロリド、トリス(3,3-ジメチルフェニル)シロキシマグネシウムクロリド、トリス(2,3-ジメチルフェニル)シロキシマグネシウムクロリド、トリス(2,4-ジメチルフェニル)シロキシマグネシウムクロリド、トリス(3,4-ジメチルフェニル)シロキシマグネシウムクロリド、トリス(2,4,6-トリメチルフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5-テトラメチルフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,6-テトラメチルフェニル)シロキシマグネシウムクロリド、トリス(2,3,5,6-テトラメチルフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5,6-ペンタメチルフェニル)シロキシマグネシウムクロリド;トリス(2-フルオロフェニル)シロキシマグネシウムクロリド、トリス(3-フルオロフェニル)シロキシマグネシウムクロリド、トリス(4-フルオロフェニル)シロキシマグネシウムクロリド、トリス(2,2-ジフルオロフェニル)シロキシマグネシウムクロリド、トリス(3,3-ジフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,3-ジフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,4-ジフルオロフェニル)シロキシマグネシウムクロリド、トリス(3,4-ジフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,4,6-トリフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5-テトラフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,6-テトラフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,3,5,6-テトラフルオロフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5,6-ペンタフルオロフェニル)シロキシマグネシウムクロリド;トリス(2-メトキシフェニル)シロキシマグネシウムクロリド、トリス(3-メトキシフェニル)シロキシマグネシウムクロリド、トリス(4-メトキシフェニル)シロキシマグネシウムクロリド、トリス(2,2-ジメトキシフェニル)シロキシマグネシウムクロリド、トリス(3,3-ジメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,3-ジメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,4-ジメトキシフェニル)シロキシマグネシウムクロリド、トリス(3,4-ジメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,4,6-トリメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5-テトラメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,6-テトラメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,3,5,6-テトラメトキシフェニル)シロキシマグネシウムクロリド、トリス(2,3,4,5,6-ペンタメトキシフェニル)シロキシマグネシウムクロリド;ジメチルフェニルシロキシマグネシウムクロリド、メチルジフェニルシロキシマグネシウムクロリド、ジエチルフェニルシロキシマグネシウムクロリド、エチルジフェニルシロキシマグネシウムクロリド、ジ(tert-ブチル)フェニルシロキシマグネシウムクロリド、tert-ブチルジフェニルシロキシマグネシウムクロリド;ジメチル(メチルフェニル)シロキシマグネシウムクロリド、メチルジ(メチルフェニル)シロキシマグネシウムクロリド、ジメチル(ジメチルフェニル)シロキシマグネシウムクロリド、メチルジ(ジメチルフェニル)シロキシマグネシウムクロリド、ジメチル(トリメチルフェニル)シロキシマグネシウムクロリド、メチルジ(トリメチルフェニル)シロキシマグネシウムクロリド、ジメチル(テトラメチルフェニル)シロキシマグネシウムクロリド、メチルジ(テトラメチルフェニル)シロキシマグネシウムクロリド、ジメチル(ペンタメチルフェニル)シロキシマグネシウムクロリド、メチルジ(ペンタメチルフェニル)シロキシマグネシウムクロリド;ジメチル(フルオロフェニル)シロキシマグネシウムクロリド、メチルジ(フルオロフェニル)シロキシマグネシウムクロリド、ジメチル(ジフルオロフェニル)シロキシマグネシウムクロリド、メチルジ(ジフルオロフェニル)シロキシマグネシウムクロリド、ジメチル(トリフルオロフェニル)シロキシマグネシウムクロリド、メチルジ(トリフルオロフェニル)シロキシマグネシウムクロリド、ジメチル(テトラフルオロフェニル)シロキシマグネシウムクロリド、メチルジ(テトラフルオロフェニル)シロキシマグネシウムクロリド、ジメチル(ペンタフルオロフェニル)シロキシマグネシウムクロリド、メチルジ(ペンタフルオロフェニル)シロキシマグネシウムクロリド;ジメチル(メトキシフェニル)シロキシマグネシウムクロリド、メチルジ(メトキシフェニル)シロキシマグネシウムクロリド、ジメチル(ジメトキシフェニル)シロキシマグネシウムクロリド、メチルジ(ジメトキシフェニル)シロキシマグネシウムクロリド、ジメチル(トリメトキシフェニル)シロキシマグネシウムクロリド、メチルジ(トリメトキシフェニル)シロキシマグネシウムクロリド、ジメチル(テトラメトキシフェニル)シロキシマグネシウムクロリド、メチルジ(テトラメトキシフェニル)シロキシマグネシウムクロリド、ジメチル(ペンタメトキシフェニル)シロキシマグネシウムクロリド、メチルジ(ペンタメトキシフェニル)シロキシマグネシウムクロリド;ジメチル(トリフルオロメチルフェニル)シロキシマグネシウムクロリド、メチルジ(トリフルオロメチルフェニル)シロキシマグネシウムクロリド、ジメチル(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリ、メチルジ(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジ(tert-ブチル)(トリフルオロメチルフェニル)シロキシマグネシウムクロリド、メチルジ(トリフルオロメチルフェニル)シロキシマグネシウムクロリド、ジメチル(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(ジ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(トリ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(テトラ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、ジメチル(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド、メチルジ(ペンタ(トリフルオロメチル)フェニル)シロキシマグネシウムクロリド;ジフェニルシランジオキシビス(マグネシウムクロリド)、ジ(メチルフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ジメチルフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(トリメチルフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(テトラメチルフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ペンタメチルフェニル)シランジオキシビス(マグネシウムクロリド);ジ(フルオロフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ジフルオロフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(トリフルオロフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(テトラフルオロフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ペンタフルオロフェニル)シランジオキシビス(マグネシウムクロリド);ジ(メトキシフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ジメトキシフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(トリメトキシフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(テトラメトキシフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ペンタメトキシフェニル)シランジオキシビス(マグネシウムクロリド);ジ(トリフルオロメチルフェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ジ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムクロリド)、ジ(トリ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムクロリド)、ジ(テトラ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムクロリド)、ジ(ペンタ(トリフルオロメチル)フェニル)シランジオキシビス(マグネシウムクロリド)等が挙げられる。
 一般式(I’)で示される化合物は、上記マグネシウムクロリド化合物が好ましく、その中でも、トリフェニルシロキシマグネシウムクロリド、トリス(2-メチルフェニル)シロキシマグネシウムクロリド、トリス(3-メチルフェニル)シロキシマグネシウムクロリド、トリス(4-メチルフェニル)シロキシマグネシウムクロリド、トリス(2-フルオロフェニル)シロキシマグネシウムクロリド、トリス(3-フルオロフェニル)シロキシマグネシウムクロリド、トリス(4-フルオロフェニル)シロキシマグネシウムクロリド、トリス(2-メトキシフェニル)シロキシマグネシウムクロリド、トリス(3-メトキシフェニル)シロキシマグネシウムクロリド、トリス(4-メトキシフェニル)シロキシマグネシウムクロリド、ジメチルフェニルシロキシマグネシウムクロリド、ジフェニルシランジオキシビス(マグネシウムクロリド)等が好ましい。
 上記一般式(I’)で示される化合物は、配位体であってもよく、例えば上記本発明に係る溶媒と形成する配位体であってもよい。例えば、THFと配位体を形成する場合、下記のような二量体の配位体を形成すると推定される。
Figure JPOXMLDOC01-appb-I000008
(式中、X、R’、R’及びR’は、上記と同じ。)
[一般式(I’)で示される化合物の製造方法]
 一般式(I’)で示される化合物は、例えば下記一般式(II’)で示されるシラノール化合物とグリニャール試薬とを適当な溶媒中で反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-I000009
(式中、R’~R’は上記と同じ)
 一般式(II’)で示される化合物の具体例は、上記一般式(I’)で示される化合物の具体例に準じたものが挙げられ、好ましいものも一般式(I’)で示される化合物の好ましいものに準じたものが挙げられる。
 一般式(II’)で示される化合物は、市販品を用いても、自体公知の方法により製造したものを用いても構わない。自体公知の方法としては、例えばPaul D. Price et al, Dalton Tarnsactions, (2), 271-282, 2008に記載の方法に準じて、下記一般式(III’)で示される化合物を製造した後、該化合物を自体公知の酸化方法に付すことによりなされる。
Figure JPOXMLDOC01-appb-I000010
(式中、R’~R’は上記と同じ)
 一般式(III’)で示される化合物の具体例は、上記一般式(I’)で示される化合物の具体例に準じたものが挙げられ、好ましいものも一般式(I’)で示される化合物の好ましいものに準じたものが挙げられる。
 上記グリニャール試薬としては、例えばRMgXで示される化合物(Rは、置換基を有する炭素数1~6のアルキル基又は置換基を有するフェニル基を表し、Xは上記と同じ。)が挙げられる。
 Rにおける炭素数1~6のアルキル基としては、R及びRにおけるにおける炭素数1~6のアルキル基と同じものが挙げられる。Rにおけるアルキル基とフェニル基の置換基としては、例えば、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基等が挙げられ、その具体例としては、Rにおけるアリール基の置換基の項で説明した者と同じものが挙げられる。

 一般式(II’)で示されるシラノール化合物とグリニャール試薬の反応で用いられるグリニャール試薬の使用量は、一般式(II’)で示される化合物1モルに対して、通常0.5~2モル、好ましくは0.5~1モルである。
 一般式(II’)で示されるシラノール化合物とグリニャール試薬との反応温度は、通常-78~80℃であり、その反応時間は、通常5秒~5時間である。また、該反応は、アルゴン、窒素等の不活性ガス雰囲気下で行うのが好ましく、アルゴン雰囲気下で行うのがより好ましい。この際に用いられる溶媒としては、一般式(II’)で示されるシラノール化合物、又はグリニャール試薬の少なくとも一方が溶解するものであればよく、両者を溶解するものが好ましい。具体的には、例えば上記本発明に係る溶媒と同じものが挙げられ、中でも、ジエチルエーテル、ジグライム、トリグライム、テトラグライム、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジイソプロピルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン等のエーテル系溶媒が挙げられ、好ましくはテトラヒドロフランである。
 尚、得られた反応物は、濃縮乾燥後、必要に応じてジイソプロピルエーテル等の溶媒で洗浄しても構わない。
 一般式(I’)で示される化合物は、具体的には例えば以下の如く製造される。
 即ち、アルゴンガス雰囲気下、上記一般式(II’)で示されるシラノール化合物をテトラヒドロフラン等の溶媒に溶解する。更に、シラノール化合物1モルに対して0.1~2モルのフェニルマグネシウムクロリドを溶解したテトラヒドロフラン溶液等を滴下して、5秒~5時間反応させる。必要に応じて、反応溶液を濃縮乾燥等の固体を得る操作を行い、得られた固体をジイソプロピルエーテル等の溶媒で洗浄し、乾燥することにより、一般式(I’)で示される化合物は製造される。
 以下に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。
実施例1 電解液1の調製
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、ベンゾフェノン(和光純薬工業(株)製)7.29g(40mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)20mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 20ml(40mmol)を滴下した。4時間攪拌した後、結晶をろ取乾燥し、トリフェニルメトキシマグネシウムクロリド(Ph3COMgCl)を得た。
Figure JPOXMLDOC01-appb-I000011
(2)電解液の調製
 アルゴンガス雰囲気下、上記トリフェニルメトキシマグネシウムクロリド(Ph3COMgCl) 1.60g(5mmol)をTHF 20mlに混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) 0.67g(5mmol)を添加した。50℃で5分間維持した後、冷却ろ過して電解液1[トリフェニルメトキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例2 電解液2の調液
 アルゴンガス雰囲気下、実施例1の(1)で得たトリフェニルメトキシマグネシウムクロリド(Ph3COMgCl) 1.60g(5mmol)をトリグライム20mlに混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) 0.17g(1.25mmol)を添加した。50℃で5分間維持した後、冷却ろ過して電解液2[トリフェニルメトキシマグネシウムクロリド-塩化アルミニウム/トリグライム溶液]を得た。
実施例3 電解液3の調液
 アルゴンガス雰囲気下、実施例1の(1)で得たトリフェニルメトキシマグネシウムクロリド(Ph3COMgCl) 1.60g(5mmol)をTHF 20mlに混合し、35℃に加熱した後、ジメチルアルミニウムクロリド(Me2AlCl) (関東化学(株)製ヘキサン溶液を濃縮) 0.48g(5mmol)を添加した。50℃で5分間維持した後、冷却して電解液3[トリフェニルメトキシマグネシウムクロリド-ジメチルアルミニウムクロリド/THF溶液]を得た。 
実施例4 電解液4の調液
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 10ml(20mmol)にTHF(和光純薬工業(株)製)30mlを加え、アセトン(和光純薬工業(株)製)1.28g(22mmol)を滴下した。2時間攪拌した後、結晶をろ取乾燥し、ジメチルフェニルメトキシマグネシウムクロリド(Me2PhCOMgCl)を得た。
(2)電解液の調製
 アルゴンガス雰囲気下、ジメチルフェニルメトキシマグネシウムクロリド(Me2PhCOMgCl)0.97g(5mmol)にTHFを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3)0.17g(1.25mmol)を添加した。50℃で5分間維持した後、冷却して電解液4[ジメチルフェニルメトキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例5 電解液5の調液
 アルゴンガス雰囲気下、ベンゾフェノン(和光純薬工業(株)製)7.29g(40mmol)をTHF(和光純薬工業(株)製)20mlに溶解した後、濃度1Mのアリルマグネシウムクロリド((C3H5)MgCl)のTHF溶液(東京化成工業(株)製) 40ml(40mmol)を滴下して4時間攪拌した。得られた溶液12ml(8mmol)に対し、室温で塩化アルミニウム(AlCl3)0.17g(2mmol)を添加して1時間攪拌し、電解液5[1,1-ジフェニル-1-(2-プロペニル)メトキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例6 電解液6の調液
 アルゴンガス雰囲気下、4,4-ジフルオロベンゾフェノン(和光純薬工業(株)製)4.36g(20mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)15mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 10ml(20mmol)を滴下して4時間攪拌した。得られた溶液6.8ml(5mmol)を40℃に加熱した後、塩化アルミニウム(AlCl3)0.67g(5mmol)を添加して冷却し、電解液6[1,1-ジ(4-フルオロフェニル)-1-フェニルメトキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
比較例1 比較電解液1の調液
 アルゴンガス雰囲気下、濃度2Mのエチルマグネシウムクロリド(EtMgCl)のTHF溶液(東京化成工業(株)製) 10ml(20mmol)とTHF(和光純薬工業(株)製)10mlを混合し、tert-ブタノール(和光純薬工業(株)製)1.48g(20mmol)を滴下した。その後、塩化アルミニウム(和光純薬工業(株)製)0.44g(3.3mmol)を添加攪拌し、比較例電解液1[(tert-BuOMgCl)6-AlCl3/THF溶液]を得た。
比較例2 比較電解液2の調液
 アルゴンガス雰囲気下、塩化マグネシウム(和光純薬工業(株)製)0.5g(5.3mmol)をTHF(和光純薬工業(株)製)21mlに溶解し、ジメチルアルミニウムクロリド(Me2AlCl) (関東化学(株)製ヘキサン溶液を濃縮) 0.97g(10.5mmol)を滴下した後、テトラブチルアンモニウムクロリド(Bu4NCl)(東京化成工業(株)製)1.46g(5.3mmol)を加えた。60℃で2日間攪拌した後、冷却して比較電解液2[MgCl2-Me2AlCl-Bu4NCl/THF溶液]を得た。
実施例7/比較例3 各種電解液のサイクリックボルタンメトリー(CV)測定
 電解液1~6を用いて、サイクリックボルタンメトリー(CV)測定を行った(実施例7)。また、同様に、比較電解液1及び2を用いてCV測定を行った(比較例3)。
 CV測定は、具体的には以下の如く行った。即ち、3極式のビーカーセルを用い、作用極に白金電極(直径3mm ;BAS社製)、対極にMgロッド(直径1.6mm;ニラコ社製)、参照極にMgロッド(直径1.6mm;ニラコ社製)を使用した。ビーカーには電解液2mlを加え、室温下(25℃)、5mV/sの掃引速度で-1.5~3.5Vの範囲の測定を行った。該測定には、電気化学測定システム(BioLogic社製)を使用した。
 各電解液の酸化分解電位(10サイクル目)の結果を下記表に示す。
また、電解液1の10サイクル目の結果を図1に、電解液2の10サイクル目と40サイクル目の結果をそれぞれ図2及び図3に、比較電解液1及び2の10サイクル目の結果を図4及び5に示す。なお、図中の横軸は、参照極の電位を基準とした作用極の電位を表し、縦軸(mA/cm2)は各電位において観測された電流値を作用極の表面積で割った電流密度を表す。
Figure JPOXMLDOC01-appb-T000012
 表1の結果より、本願発明の電解液は、酸化分解電位が+2.8V~+3.4Vであり、従来法と同等又はそれ以上の高電圧で使用できることが分かった。さらに、図3の結果より、電解液2は、マグネシウムの溶解析出を40回繰り返しても劣化することなく安定して使用できることが分かった。
 一方、比較電解液2[(t-BuOMgCl)6-AlCl3のTHF溶液]は、J.Mater.Chem.A, 2014,2,581-584(非特許文献3)に記載されている電解液である。該電解液を用いてCV測定を行った結果、その酸化分解電位は、ほぼ文献値どおりの+2.4Vであることを確認した。
実験例1 走査電子顕微鏡(SEM)による銅板表面の確認
 電解液1のサイクリックボルタンメトリー(CV)測定における電流がMgの溶解析出に伴う結果なのかをSEM(日立ハイテクノロジーズ社製)で確認した。
 具体的には、3極式のビーカーセルを用い、作用極に銅板(厚さ0.1mm ;ニラコ社製)、対極にMgロッド(直径1.6mm;ニラコ社製)、参照極にMgロッド(直径1.6mm;ニラコ社製)を使用した。ビーカーには実施例1の電解液2mlを加え、室温下(25℃)、電流値0.1mAで5時間、銅板上へマグネシウムを析出させた。該実験には、電気化学測定システム(BioLogic社製)を使用した。
 析出させた後、銅板表面をSEMで確認した結果、マグネシウムの析出を確認した。また、マグネシウム、アルミニウム、銅、塩素、炭素、酸素の元素分析をEDS(エネルギー分散型X線分析)で行い、析出物がマグネシウムであることも確認した。
実施例8 電解液7の調製
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、トリフェニルシラノール(東京化成工業(株)製)11.1g(40mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)20mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 20ml(40mmol)を滴下して1時間攪拌した。その後、溶液を濃縮乾燥させて生じた粉体をジイソプロピルエーテル(和光純薬工業(株)製)70mlで洗浄した。粉体をろ取乾燥し、トリフェニルシロキシマグネシウムクロリド(Ph3SiOMgCl)を得た。
Figure JPOXMLDOC01-appb-I000013
以下に1H-NMRの測定結果を示す。
1H-NMR (400MHz, CDCl3) δ(ppm):7.25-7.80(m, 15H) 
(2)電解液の調製
 アルゴンガス雰囲気下、トリフェニルシロキシマグネシウムクロリド(Ph3SiOMgCl)3.35g(10mmol)にTHF(和光純薬工業(株)製)40mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)1.33g(10mmol)を添加した。50℃で10分間維持した後、冷却し、1週間後にろ過して電解液7[トリフェニルシロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例9 電解液8の調製
 アルゴンガス雰囲気下、実施例8(1)で得たトリフェニルシロキシマグネシウムクロリド(Ph3SiOMgCl)0.84g(2.5mmol)にTHF(和光純薬工業(株)製)10mlを混合し、室温で濃度1Mのトリクロロボラン(BCl3)のジクロロメタン(CH2Cl2)溶液(和光純薬工業製)0.5ml(0.5mmol)を滴下した。加熱して50℃で10分維持した後に濃縮し、テトラヒドロフラン(THF)(和光純薬工業(株)製)10mlを加えた。得られた溶液8ml(2mmol)を50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.21g(1.6mmol)を添加した。50℃で10分間維持した後、冷却して電解液8[トリフェニルシロキシマグネシウムクロリド-塩化アルミニウム-トリクロロボラン/THF溶液]を得た。
実施例10 電解液9の調製
 アルゴンガス雰囲気下、実施例8(1)で得たトリフェニルシロキシマグネシウムクロリド(Ph3SiOMgCl)0.84g(2.5mmol)にトリグライム(和光純薬工業(株)製)10mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.33g(2.5mmol)を添加した。50℃で10分間維持した後、冷却し、1週間後にろ過して電解液9[トリフェニルシロキシマグネシウムクロリド-塩化アルミニウム/トリグライム溶液]を得た。
実施例11 電解液10の調製
(1)トリス(4-メチルフェニル)シラノール
 窒素雰囲気下、1000 mLフラスコに4-メチルフェニルマグネシウムブロミドのTHF溶液(1.0 M, 東京化成工業(株)製)を288 mL (288 mmol) 加えた。その後、トリクロロシラン(東京化成工業(株)製)12.2 g (90 mmol)をTHF 302 mLに溶解した溶液を、フラスコ内の溶液の温度を35℃以下に保ちながら1時間掛けて滴下した。滴下終了後、さらに室温で2時間撹拌し、反応させた。反応終了後、塩酸(1.0 M)45 mLを滴下し中和した。次いで、ジイソプロピルエーテル(和光純薬工業(株)製)を450 mL加えて分液した。さらに有機層を塩酸(1.0 M)45 mLで洗浄し、分液した。有機層を硫酸マグネシウム 30 g (和光純薬工業(株)製)を加えて乾燥した。硫酸マグネシウムをろ過後、濾液を減圧濃縮し、トリス(4-メチルフェニル)シランの粗体を得た。さらに粗体をジイソプロピルエーテル 50 mLとエタノール 50 ml に溶解した後、減圧濃縮して晶析した。析出した白色固体を濾過後、エタノール(60 mL)で洗浄した。得られた固体を減圧乾燥することで、トリス(4-メチルフェニル)シラン 20.44 g (67.6 mmol, 収率75 %, 白色固体)を得た。
1H-NMR (400 MHz, CDCl3) 2.36 (s, 9H, Me), 5.41 (s, 1H, SiH), 7.18 (d, 6H, J=8.2 Hz, Ar), 7.46 (d, 6H, J=8.2 Hz, Ar)
Figure JPOXMLDOC01-appb-I000014
 次いで、窒素雰囲気下、得られたトリス(4-メチルフェニル)シラン6.05 g (20 mmol)とTHF 375 mLを1000 mLフラスコに加えた。さらに、過マンガン酸カリウム(和光純薬工業(株)製) 3.32 g (21 mmol)とイオン交換水 (3.8 ml)を加えた。超音波洗浄機(US-2, アズワン社製)を用いてフラスコに超音波を掛けながら、60℃で13時間撹拌し反応させた。反応終了後、混合液をシリカゲルC-200(和光純薬工業(株)製)60 gを通し、副生成物の酸化マンガンを濾過した。濾液を減圧濃縮し、トリス(4-メチルフェニル)シラノールの粗体を得た。得られた粗体をジクロロメタン(和光純薬工業(株)製)30 mLとn-ヘキサン(和光純薬工業社)60 mLに溶解後、減圧濃縮して晶析した。析出した白色固体を濾過後、n-ヘキサン(10 mL)で洗浄した。得られた固体を減圧乾燥することで、トリス(4-メチルフェニル)シラノール3.1 g (9.58 mmol, 収率 48 %, 白色固体)を得た。
1H-NMR (400 MHz, C6D6) (ppm) : 1.89 (s, 1H, SiOH), 2.10 (s, 9H, Me), 7.06 (d, 6H, J=8.2 Hz, Ar), 7.68 (d, 6H, J=8.2 Hz, Ar)
Figure JPOXMLDOC01-appb-I000015
(2)マグネシウム塩の合成
 アルゴンガス雰囲気下、得られたトリス(4-メチルフェニル)シラノール 2.55g(8mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)12mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 3.8ml(7.6mmol)を滴下して1時間攪拌した。その後、溶液を濃縮乾燥させて生じた粉体をジイソプロピルエーテル(和光純薬工業(株)製)30mlで洗浄した。粉体をろ取乾燥し、トリス(4-メチルフェニル)シロキシマグネシウムクロリド((4-Me-C6H4)3SiOMgCl) を得た。
Figure JPOXMLDOC01-appb-I000016
以下に1H-NMRの測定結果を示す。
1H-NMR (400MHz, CDCl3) δ(ppm) : 2.33(s,9H) 7.14-7.17 (d,6H,J=7.0Hz) 7.58-7.61 (d,6H,J=7.0Hz)
(3)電解液の調製
 アルゴンガス雰囲気下、トリス(4-メチルフェニル)シロキシマグネシウムクロリド((4-Me-C6H4)3SiOMgCl)0.94g(2.5mmol)にTHF(和光純薬工業(株)製)10mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3)(和光純薬工業(株)製)0.33g(2.5mmol)を添加した。50℃で10分間維持した後に冷却し、電解液10[トリス(4-メチルフェニル)シロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例12 電解液11の調製
(1)トリス(4-フルオロ)シラノールの合成
 窒素雰囲気下、1000 mLフラスコに4-フルオロフェニルマグネシウムブロミドのTHF溶液(1.0 M, 東京化成工業(株)製)を288 mL (288 mmol) 加えた。その後、トリクロロシラン(東京化成工業(株)製)12.2 g (90 mmol)をTHF 302 mLに溶解した溶液を、フラスコ内の溶液の温度を35℃以下に保ちながら1時間掛けて滴下した。滴下終了後、さらに室温で2時間撹拌し、反応させた。反応終了後、塩酸(1.0 M)45 mLを滴下し中和した。次いで、ジイソプロピルエーテルを450 mL加えて分液した。さらに有機層を塩酸(1.0 M)45 mLで洗浄し、分液した。得られた有機層に硫酸マグネシウム 30 g (和光純薬工業(株)製)を加えて乾燥した。硫酸マグネシウムをろ過後、濾液を減圧濃縮し、トリス(4-フルオロフェニル)シランの粗体を得た。さらに粗体にn-ペンタン(和光純薬工業(株)製) 30 mLを加え、オイルアウトした着色成分のみスポイトで除去した。残った溶液を減圧濃縮した。析出した固体を濾過し、エタノール30 mLで洗浄した。得られた白色固体を減圧乾燥し、トリス(4-フルオロフェニル)シラン 22.68 g (72.1 mmol, 収率 80 %, 白色固体)を得た。
1H-NMR (400 MHz, CDCl3) 5.44 (s, 1H, SiH), 7.05-7.11 (m, 6H, Ar), 7.47-7.52 (m, 6H,  Ar) 
Figure JPOXMLDOC01-appb-I000017
 次いで、窒素雰囲気下、得られたトリス(4-フルオロフェニル)シラン 6.29 g (20 mmol)とTHF 375 mLを1000 mLフラスコに加えた。さらに、過マンガン酸カリウム(和光純薬工業(株)製) 3.32 g (21 mmol)とイオン交換水 (3.8 ml)を加えた。超音波洗浄機(US-2, アズワン社製)を用いてフラスコに超音波を掛けながら、室温以下の温度を保ちつつ4時間撹拌し反応させた。反応終了後、混合液をシリカゲルC-200(和光純薬工業(株)製)60 gを通し、副生成物の酸化マンガンを濾過した。濾液を減圧濃縮し、トリス(4-フルオロフェニル)シラノールの粗体を得た。シリカゲルカラム(展開溶媒: 酢酸エチル/n-ヘキサン=1/9、(酢酸エチル、n-ヘキサン共に和光純薬工業(株)製))で精製後、減圧乾燥し、トリス(4-フルオロフェニル)シラノール 2.55 g (7.72 mmol, 収率39 %, 白色固体)を得た。
 1H-NMR (400 MHz, CDCl3) δ:2.50 (s, 1H, SiOH), 7.07-7.14 (m, 6H, Ar), 7.54-7.60 (m, 6H, Ar)
Figure JPOXMLDOC01-appb-I000018
(2)マグネシウム塩の合成
 アルゴンガス雰囲気下、得られたトリス(4-フルオロフェニル)シラノール 2.15g(6.5mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)19.5mlに溶解し、-78度で濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製) 3.1ml(6.2mmol)を滴下して1時間攪拌した。溶液を濃縮乾燥させて生じたオイルにヘキサン(和光純薬工業(株)製)50ml、ジイソプロピルエーテル(和光純薬工業(株)製)30mlを加え、粉体を生成させた。粉体をろ取乾燥し、トリス(4-フルオロフェニル)シロキシマグネシウムクロリド((4-F-C6H4)3SiOMgCl) を得た。
Figure JPOXMLDOC01-appb-I000019
以下に1H-NMRの測定結果を示す。
1H-NMR (400 MHz, CDCl3) δ(ppm) : 7.06-7.11 (t,6H,J=8.8Hz) 7.64-7.68 (t,6H,J=7.0Hz)
(3)電解液の調製
 アルゴンガス雰囲気下、トリス(4-フルオロフェニル)シロキシマグネシウムクロリド((4-F-C6H4)3SiOMgCl)0.86g(2.2mmol)にTHF(和光純薬工業(株)製)8.8mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.29g(2.2mmol)を添加した。50℃で10分間維持した後に冷却し、電解液11[トリス(4-フルオロフェニル)シロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例13 電解液12の調製
(1)トリス(3,5-ジメトキシフェニル)シラノールの合成
 2000 mLフラスコに、Mg削り状(和光純薬工業社製)6.36 g (0.262 mol)とヨウ素(和光純薬工業社製)10 mgを加えて1時間減圧乾燥した。さらに、窒素雰囲気下、テトラヒドロフラン(和光純薬工業社製)222 mLを加えた。次いで、1-ブロモ-3, 5-ジメトキシベンゼン(東京化成工業社製)52.1 g(0.240 mol)をテトラヒドロフラン(和光純薬工業社製)274 mLに溶解した溶液を、1.5時間掛けて滴下した。滴下終了後、室温で1時間撹拌した。さらにトリクロロシラン(東京化成工業社製)10.2 g (0.075 mol)をテトラヒドロフラン(和光純薬工業社製) 252 mLに溶解した溶液を、フラスコ内の温度を35℃以下に保ちながら1時間掛けて滴下した。滴下終了後、室温で1時間反応させた。反応終了後、塩酸(1.0 M, 和光純薬工業社製)45 mLを滴下し中和し、ジイソプロピルエーテル(和光純薬工業社製)を450 mL加えて分液した。さらに有機層を塩酸(1.0 M, 和光純薬工業社製)45 mLで洗浄し、分液した。有機層を硫酸マグネシウム 30 g (和光純薬工業社製)を加えて乾燥した。その後、硫酸マグネシウムをろ過後、濾液を減圧濃縮し、トリス(3, 5-ジメトキシフェニル)シランの粗体を得た。得られた粗体をジイソプロピルエーテル(和光純薬工業社製)50 mLとエタノール(和光純薬工業社製)30 ml に溶解し、減圧濃縮して晶析した。析出した白色固体を濾過後、エタノール(30 mL)で洗浄した。得られた固体を減圧乾燥することで、トリス(3, 5-ジメトキシフェニル)シラン 28.7 g (65.0 mmol, 収率87 %, 白色固体)を得た。
 1H-NMR (400 MHz, CDCl3) δ(ppm) : 3.75 (s,18H, OMe), 5.34 (s, 1H, SiH), 6.50 (t, 3H, J=2.4 Hz, Ar), 6.71 (d, 6H, J=2.4 Hz, Ar)
Figure JPOXMLDOC01-appb-I000020
 次いで、窒素雰囲気下、得られたトリス(3, 5-ジメトキシフェニル)シラン  8.81 g (20 mmol)とTHF 375 mLを1000 mLフラスコに加えた。さらに、過マンガン酸カリウム(和光純薬工業(株)製) 3.32 g (21 mmol)とイオン交換水 (3.8 ml)を加えた。超音波洗浄機(US-2, アズワン社製)を用いてフラスコに超音波を掛けながら、室温以下の温度を保ちつつ1時間撹拌し反応させた。反応終了後、混合液をシリカゲルC-200(和光純薬工業(株)製)60 gを通し、副生成物の酸化マンガンを濾過した。濾液を減圧濃縮し、トリス(3, 5-ジメトキシフェニル)シラノールの粗体を得た。得られた粗体をジクロロメタン(和光純薬工業社製)20 mLとn-ヘキサン(和光純薬工業社)30 mLに溶解後、濃縮して晶析した。析出した白色固体を濾過後、n-ヘキサン(30 mL)で洗浄した。得られた固体を減圧乾燥することで、トリス(3,5-ジメトキシフェニル)シラノール7.68 g (16.8 mmol, 収率84 %, 白色固体)を得た。
1H-NMR (400 MHz, CDCl3) δ(ppm) : 2.46 (s, 1H, SiOH), 3.75 (s, 18H, OMe), 6.52 (t, 3H, J=2.4 Hz, Ar), 6.76 (d, 6H, J=2.4 Hz, Ar)
Figure JPOXMLDOC01-appb-I000021
(2)マグネシウム塩の合成
 アルゴンガス雰囲気下、得られたトリス(3,5-ジメトキシフェニル)シラノール3.65g(8mmol)をTHF 30mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製)3.8ml(7.6mmol)を滴下して1時間攪拌した。その後、溶液を濃縮乾燥させて生じた粉体をジイソプロピルエーテル(和光純薬工業(株)製)36.5mlで洗浄した。粉体をろ取乾燥し、トリス(3,5-ジメトキシフェニル)シロキシマグネシウムクロリド((3,5-(MeO)2-C6H3)3SiOMgCl) を得た。
Figure JPOXMLDOC01-appb-I000022
以下に1H-NMRの測定結果を示す。
1H-NMR (400MHz, CDCl3) δ(ppm) :  3.75 (s,18H) 6.44-6.48 (t,3H,J=2.4Hz) 6.80-6.91 (d,6H,J=2.4Hz)
(3)電解液の調製
 アルゴンガス雰囲気下、トリス(3,5-ジメトキシフェニル)シロキシマグネシウムクロリド((3,5-(MeO)2-C6H3)3SiOMgCl) 1.29g(2.5mmol)にTHF 10mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.33g(2.5mmol)を添加した。50℃で10分間維持した後に冷却し、電解液12[トリス(3,5-ジメトキシフェニル)シロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例14 電解13の調製
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、ジメチルフェニルシラノール(和光純薬工業(株)製)4.57g(30mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)15mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製)15ml(30mmol)を滴下して1時間攪拌した。溶液を濃縮乾燥させて生じたオイルにヘキサン(和光純薬工業(株)製)30ml、t-ブチルメチルエーテル(和光純薬工業(株)製)85mlを加え、粉体を生成させた。粉体をろ取乾燥し、ジメチルフェニルシロキシマグネシウムクロリド(Me2PhSiOMgCl) を得た。
Figure JPOXMLDOC01-appb-I000023
以下に1H-NMRの測定結果を示す。
1H-NMR (400 MHz, CDCl3) δ(ppm) : 0.20-0.60 (m,6H) 7.20-7.40 (m,3H) 7.50-7.70 (m,2H)
(2)電解液の調製
アルゴンガス雰囲気下、ジメチルフェニルシロキシマグネシウムクロリド(Me2PhSiOMgCl)1.06g(5mmol)にTHF(和光純薬工業(株)製)20mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.67g(5mmol)を添加した。50℃で10分間維持した後に冷却し、電解液13[ジメチルフェニルシロキシマグネシウムクロリド-塩化アルミニウム/THF溶液]を得た。
実施例15 電解液14の調製
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、ジフェニルシランジオール(東京化成工業(株)製)8.65g(40mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)20mlに溶解し、濃度2Mのフェニルマグネシウムクロリド(PhMgCl)のTHF溶液(東京化成工業(株)製)40ml(80mmol)を滴下して1時間攪拌した。その後、溶液を濃縮乾燥させて生じた粉体をジイソプロピルエーテル(和光純薬工業(株)製)50mlで洗浄した。粉体をろ取乾燥し、ジフェニルシランジオキシビス(マグネシウムクロリド)(Ph2Si(OMgCl)2) を得た。
Figure JPOXMLDOC01-appb-I000024
以下に1H-NMRの測定結果を示す。
1H-NMR(400 MHz, CDCl3) δ(ppm) : 6.90-8.00 (m,10H)
(2)電解液の調製
 アルゴンガス雰囲気下、ジフェニルシランジオキシビス(マグネシウムクロリド)(Ph2Si(OMgCl)2)0.83g(2.5mmol)にTHF(和光純薬工業(株)製)20mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.67g(5mmol)を添加した。50℃で10分間維持した後に冷却し、電解液14[ジフェニルシランジオキシビス(マグネシウムクロリド)-塩化アルミニウム/THF溶液]を得た。
比較例4 比較電解液3の調製
 アルゴンガス雰囲気下、濃度2Mのエチルマグネシウムクロリド(EtMgCl)のTHF溶液(東京化成工業(株)製)5ml(10mmol)に対し、トリメチルシラノール(Me3SiOH)(アルドリッチ社製)0.90g(10mmol)を滴下して空冷した。室温下、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.22g(1.67mmol)を添加して1時間攪拌し、比較電解液3[(Me3SiOMgCl)6-AlCl3/THF溶液]を得た。
実施例16 電解液15の調製
(1)マグネシウム塩の合成
 アルゴンガス雰囲気下、トリフェニルシラノール(東京化成工業(株)製)5.53g(20mmol)をテトラヒドロフラン(THF)(和光純薬工業(株)製)20mlに溶解し、濃度1Mのフェニルマグネシウムブロミド(PhMgBr)のTHF溶液(東京化成工業(株)製) 10ml(10mmol)を滴下して1時間反応させた。その後、溶液を濃縮乾燥させて生じたオイルをジイソプロピルエーテル(和光純薬工業(株)製)40mlで粉末化させた。粉体をろ取乾燥し、トリフェニルシロキシマグネシウムブロミド(Ph3SiOMgBr)を得た。
Figure JPOXMLDOC01-appb-I000025
以下に1H-NMRの測定結果を示す。
1H-NMR (400MHz, CDCl3) δ(ppm) : 6.95-7.90(m,15H)
(2)電解液の調製
 アルゴンガス雰囲気下、トリフェニルシロキシマグネシウムブロミド(Ph3SiOMgBr)) 0.95gにTHF(和光純薬工業(株)製)10mlを混合し、50℃に加熱した後、塩化アルミニウム(AlCl3) (和光純薬工業(株)製)0.33g(2.5mmol)を添加した。50℃で10分間維持した後、冷却、ろ過して電解液15[トリフェニルシロキシマグネシウムブロミド-塩化アルミニウム/THF溶液]を得た。
実施例17/比較例5 各種電解液のサイクリックボルタンメトリー(CV)測定
 電解液7~15を用いて、実施例7と同様にして、サイクリックボルタンメトリー(CV)測定を行った(実施例17)。また、同様に、比較電解液3を用いて実施例7と同様にしてCV測定を行った(比較例5)。
 各電解液の酸化分解電位の結果を下記表2に示す。
 また、電解液7の10サイクル目の結果を図6に、比較電解液3の10サイクル目の結果を図7に示す。なお、図中の横軸は、参照極の電位を基準とした作用極の電位を表し、縦軸(mA/cm2)は各電位において観測された電流値を作用極の表面積で割った電流密度を表す。
Figure JPOXMLDOC01-appb-T000026
 表2の結果より、シリコン系化合物を用いた本願発明の電解液は、酸化分解電位が+2.8V~+3.2Vであり、従来法よりも高い値を示しており、高い電圧での使用が可能であることが分かった。
 また、電解液7については、1ヶ月保存後のものを用いてCV測定を行い、+3.2Vの酸化分解電位を示すことも確認した。よって、本願の電解液は、保存安定性に優れることも分かった。

Claims (10)

  1. 下記一般式(I)で示される化合物とルイス酸と溶媒を混合してなる、マグネシウム電池用電解液:
    Figure JPOXMLDOC01-appb-I000001
    (式中、Yは炭素原子又はケイ素原子を表し、Xは塩素原子又は臭素原子を表し、
    は、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表し、
    及びRは、それぞれ独立して、マグネシウムクロリドオキシ基(-OMgCl);マグネシウムブロミドオキシ基(-OMgBr);炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表す。)。
  2. ルイス酸が、ベリリウム、ホウ素、アルミニウム、ケイ素、スズ、チタン、クロム、鉄、又はコバルトを元素として含むものである、請求項1記載のマグネシウム電池用電解液。
  3. ルイス酸が、アルミニウムを元素として含むものである、請求項1記載のマグネシウム電池用電解液。
  4. ルイス酸が塩化アルミニウムである、請求項1記載のマグネシウム電池用電解液。
  5. マグネシウム化合物中のRが、ハロゲノ基、アルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基であり、
    及びRが、それぞれ独立して、マグネシウムクロリドオキシ基(-OMgCl);炭素数1~6のアルケニル基;炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基である、請求項1記載のマグネシウム電池用電解液。
  6. マグネシウム化合物中のRが、ハロゲノ基、アルキル基、又はアルコキシ基を置換基として有していてもよいフェニル基であり、
    及びRが、それぞれ独立して、-OMgCl;炭素数1~6のアルケニル基;炭素数1~6のアルキル基;或いは、アルキル基を置換基として有していてもよいフェニル基である、請求項1記載のマグネシウム電池用電解液。
  7. マグネシウム化合物中のXが塩素原子である、請求項1記載のマグネシウム電池用電解液。
  8. 溶媒が、エーテル系、ハロゲン化炭化水素系、カーボネート系、二トリル系である、請求項1記載のマグネシウム電池用電解液。
  9. 請求項1~8の何れかに記載の電解液、正極及び負極を含む電気化学デバイス。
  10. 下記一般式(I’)で示される化合物:
    Figure JPOXMLDOC01-appb-I000002
    (式中、Xは塩素原子又は臭素原子を表し、R’は、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表し、
    R’及びR’は、それぞれ独立して、マグネシウムクロリドオキシ基(-OMgCl);マグネシウムブロミドオキシ基(-OMgBr);炭素数1~6のアルケニル基;ハロゲノ基又はアルコキシ基を置換基として有していてもよい炭素数1~6のアルキル基;或いは、ハロゲノ基、アルキル基、ハロゲノアルキル基、又はアルコキシ基を置換基として有していてもよい炭素数6~10のアリール基を表す。)。
PCT/JP2015/083325 2014-11-28 2015-11-27 マグネシウム含有電解液 WO2016084924A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15864065.6A EP3226340B1 (en) 2014-11-28 2015-11-27 Magnesium-containing electrolytic solution
PL15864065T PL3226340T3 (pl) 2014-11-28 2015-11-27 Roztwór elektrolityczny zawierający magnez
CN201580064216.7A CN107004906B (zh) 2014-11-28 2015-11-27 含镁电解液
KR1020177016886A KR20170089890A (ko) 2014-11-28 2015-11-27 마그네슘 함유 전해액
JP2016561954A JP6575531B2 (ja) 2014-11-28 2015-11-27 マグネシウム含有電解液
US15/529,902 US10367231B2 (en) 2014-11-28 2015-11-27 Magnesium-containing electrolytic solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240753 2014-11-28
JP2014240753 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084924A1 true WO2016084924A1 (ja) 2016-06-02

Family

ID=56074471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083325 WO2016084924A1 (ja) 2014-11-28 2015-11-27 マグネシウム含有電解液

Country Status (8)

Country Link
US (1) US10367231B2 (ja)
EP (1) EP3226340B1 (ja)
JP (1) JP6575531B2 (ja)
KR (1) KR20170089890A (ja)
CN (1) CN107004906B (ja)
PL (1) PL3226340T3 (ja)
TW (1) TWI674692B (ja)
WO (1) WO2016084924A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170976A1 (ja) * 2016-04-01 2017-10-05 和光純薬工業株式会社 マグネシウムイオン含有電解液
JP2018533832A (ja) * 2015-12-28 2018-11-15 中国科学院蘇州納米技術与納米▲ファン▼生研究所 単核マグネシウムカチオン化塩、その調製方法及び応用
WO2020027079A1 (ja) 2018-07-31 2020-02-06 富士フイルム和光純薬株式会社 マグネシウム電池用正極活物質
WO2020138377A1 (ja) 2018-12-27 2020-07-02 富士フイルム和光純薬株式会社 硫黄系マグネシウム電池用電解液
JP2020533378A (ja) * 2017-09-14 2020-11-19 ダイソン・テクノロジー・リミテッド マグネシウム塩

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160294010A1 (en) * 2015-03-31 2016-10-06 The Trustees Of Princeton University Electrolytes for magnesium-ion batteries
CN109755647A (zh) * 2019-01-15 2019-05-14 麻城市天力科技有限公司 一种镁电池电解液
CN111934029B (zh) * 2020-07-01 2022-02-08 中山大学 一种高倍率、低自放电的锌-有机电池及其应用
CN112271334B (zh) * 2020-10-26 2022-01-25 哈尔滨工业大学 一种以金属镁为负极材料的镁金属电池用负极成膜添加剂及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026437A (ja) * 1998-03-13 2000-01-25 Sumitomo Chem Co Ltd 遷移金属化合物、オレフィン重合用触媒成分、オレフィン重合触媒、及びオレフィン系重合体の製造方法
JP2004107641A (ja) * 2002-07-23 2004-04-08 Nippon Soda Co Ltd 高分子固体電解質
JP2004213991A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 非水電池用電解質及びその製造方法並びに非水電池用電解液
JP2004265676A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 非水電解質電池
JP2007087938A (ja) * 2005-08-23 2007-04-05 Air Products & Chemicals Inc 電気化学デバイスのための安定な電解質対アニオン
JP2007157416A (ja) * 2005-12-02 2007-06-21 Sony Corp 電気化学デバイス
JP2009173870A (ja) * 2007-12-27 2009-08-06 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分およびその製造方法
JP2010015979A (ja) * 2008-06-05 2010-01-21 Sony Corp マグネシウムイオン含有非水電解液及びこれを用いた電気化学デバイス
JP2012182124A (ja) * 2011-02-28 2012-09-20 Toyota Motor Corp マグネシウム二次電池、電解液のマグネシウム二次電池における使用方法、及びマグネシウム二次電池用電解液
WO2012160587A1 (ja) * 2011-05-20 2012-11-29 株式会社 日立製作所 マグネシウム二次電池およびそれを搭載した電池システム
WO2013185562A1 (zh) * 2012-06-11 2013-12-19 丰田自动车株式会社 用于镁电池的电解液及含有该电解液的镁电池
JP2014022365A (ja) * 2012-12-03 2014-02-03 Dainippon Printing Co Ltd マグネシウムイオン二次電池およびこれを用いた電池パック

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727172A (en) * 1985-09-12 1988-02-23 Shin-Etsu Chemical Co., Ltd. Method for the preparation of an organosiloxane oligomer and a novel organosiloxane oligomer thereby
US6242377B1 (en) 1998-03-13 2001-06-05 Sumitomo Chemical Company, Limited Transition metal compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for producing olefinic polymer
US20040137324A1 (en) 2002-12-27 2004-07-15 Masaharu Itaya Electrolyte for nanaqueous battery, method for producing the same, and electrolytic solution for nonaqueous battery
JP2004259650A (ja) * 2003-02-27 2004-09-16 Kanegafuchi Chem Ind Co Ltd マグネシウム二次電池
US8187746B2 (en) * 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
JP5994779B2 (ja) * 2011-07-28 2016-09-21 和光純薬工業株式会社 電気化学デバイス用電解液
JP5861606B2 (ja) * 2012-09-28 2016-02-16 ソニー株式会社 電解液、電解液の製造方法および電気化学デバイス
KR101401062B1 (ko) * 2012-11-22 2014-05-29 한국과학기술연구원 마그네슘 이차전지용 전해질 및 이의 제조방법
CN103066326B (zh) * 2013-01-18 2015-07-15 上海交通大学 一种用于可充镁电池的电解液
KR102156524B1 (ko) * 2013-01-25 2020-09-16 후지필름 와코 준야꾸 가부시키가이샤 전기화학 디바이스용 전해액 및 전기화학 디바이스
KR20140122033A (ko) * 2013-04-09 2014-10-17 한국과학기술연구원 마그네슘 이차전지용 전해질 및 이의 제조방법
CN103367735B (zh) * 2013-07-15 2015-10-21 中国科学院化学研究所 一种镁二次电池负极材料及其应用
US9882245B2 (en) * 2013-08-23 2018-01-30 Ut-Battelle, Llc Alkoxide-based magnesium electrolyte compositions for magnesium batteries
CN103794815A (zh) * 2014-02-18 2014-05-14 上海交通大学 一种用于可充镁电池的电解液及应用方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026437A (ja) * 1998-03-13 2000-01-25 Sumitomo Chem Co Ltd 遷移金属化合物、オレフィン重合用触媒成分、オレフィン重合触媒、及びオレフィン系重合体の製造方法
JP2004107641A (ja) * 2002-07-23 2004-04-08 Nippon Soda Co Ltd 高分子固体電解質
JP2004213991A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 非水電池用電解質及びその製造方法並びに非水電池用電解液
JP2004265676A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 非水電解質電池
JP2007087938A (ja) * 2005-08-23 2007-04-05 Air Products & Chemicals Inc 電気化学デバイスのための安定な電解質対アニオン
JP2007157416A (ja) * 2005-12-02 2007-06-21 Sony Corp 電気化学デバイス
JP2009173870A (ja) * 2007-12-27 2009-08-06 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分およびその製造方法
JP2010015979A (ja) * 2008-06-05 2010-01-21 Sony Corp マグネシウムイオン含有非水電解液及びこれを用いた電気化学デバイス
JP2012182124A (ja) * 2011-02-28 2012-09-20 Toyota Motor Corp マグネシウム二次電池、電解液のマグネシウム二次電池における使用方法、及びマグネシウム二次電池用電解液
WO2012160587A1 (ja) * 2011-05-20 2012-11-29 株式会社 日立製作所 マグネシウム二次電池およびそれを搭載した電池システム
WO2013185562A1 (zh) * 2012-06-11 2013-12-19 丰田自动车株式会社 用于镁电池的电解液及含有该电解液的镁电池
JP2014022365A (ja) * 2012-12-03 2014-02-03 Dainippon Printing Co Ltd マグネシウムイオン二次電池およびこれを用いた電池パック

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533832A (ja) * 2015-12-28 2018-11-15 中国科学院蘇州納米技術与納米▲ファン▼生研究所 単核マグネシウムカチオン化塩、その調製方法及び応用
WO2017170976A1 (ja) * 2016-04-01 2017-10-05 和光純薬工業株式会社 マグネシウムイオン含有電解液
JPWO2017170976A1 (ja) * 2016-04-01 2019-02-07 富士フイルム和光純薬株式会社 マグネシウムイオン含有電解液
JP2020533378A (ja) * 2017-09-14 2020-11-19 ダイソン・テクノロジー・リミテッド マグネシウム塩
JP7071493B2 (ja) 2017-09-14 2022-05-19 ダイソン・テクノロジー・リミテッド マグネシウム塩
WO2020027079A1 (ja) 2018-07-31 2020-02-06 富士フイルム和光純薬株式会社 マグネシウム電池用正極活物質
WO2020138377A1 (ja) 2018-12-27 2020-07-02 富士フイルム和光純薬株式会社 硫黄系マグネシウム電池用電解液
KR20210107620A (ko) 2018-12-27 2021-09-01 후지필름 와코 준야쿠 가부시키가이샤 유황계 마그네슘 전지용 전해액

Also Published As

Publication number Publication date
US10367231B2 (en) 2019-07-30
US20170331154A1 (en) 2017-11-16
TW201628251A (zh) 2016-08-01
KR20170089890A (ko) 2017-08-04
CN107004906A (zh) 2017-08-01
PL3226340T3 (pl) 2019-05-31
CN107004906B (zh) 2020-04-21
JPWO2016084924A1 (ja) 2017-11-02
EP3226340B1 (en) 2018-11-07
JP6575531B2 (ja) 2019-09-18
EP3226340A4 (en) 2017-10-11
TWI674692B (zh) 2019-10-11
EP3226340A1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6575531B2 (ja) マグネシウム含有電解液
EP2712367B1 (en) Direct trifluoromethylations using trifluoromethane
US8871974B2 (en) Ionic liquid containing phosphonium cation having P—N bond and method for producing same
JP5339542B2 (ja) イオン液体
JP2016026991A (ja) 錯体中心形成剤、イオン性錯体及びこれらの製造方法
JP2001517205A (ja) 疎水性イオン液体の関連応用
KR20190021498A (ko) 마그네슘 이온 전달 매질로서의 마그네슘 보로하이드라이드 및 그 유도체
Belhocine et al. Azepanium ionic liquids
US20020160261A1 (en) Borate salts for use in electrochemical cells
US20190074548A1 (en) Chelating ionic liquids for magnesium battery electrolytes and systems
CN105720299B (zh) 用于镁蓄电池的官能化碳硼烷基镁电解质
TWI637961B (zh) Cyclic decane neutral complex, method for producing the same, and method for producing cyclic hydrogenated decane or cyclic organic decane
Tran et al. Synthesis of new fluorinated imidazolium ionic liquids and their prospective function as the electrolytes for lithium-ion batteries
JP6692033B2 (ja) ケイ素含有スルホン酸塩
EP2824751A1 (en) Bisamide-based electrolyte for magnesium battery
Mathur et al. Synthesis, structure and redox property of first 1, 2, 3-triselenole
JP6671709B2 (ja) 電解液の製造方法
JP5813472B2 (ja) テトラシアノボレート塩の製造方法
Beck et al. Boron‐Catalyzed Electrochemical Si− C Bond Formation for Safe and Controllable Benzylation and Allylation of Hydrosilanes
Zhang et al. Enabling Al sacrificial anodes in tetrahydrofuran electrolytes for reductive electrosynthesis
Nikonova et al. Electrochemical synthesis, structural characterization, and decomposition of rhenium oxoethoxide, Re4O4 (OEt) 12. Ligand influence on the structure and bonding in the high-valent tetranuclear planar rhenium alkoxide clusters
Garcia et al. Di-μ-aspirinato-copper (II): a redetermination
US20220380391A1 (en) Process for the synthesis of oligomeric siloxane having sulfone moiety, and silicon-containing compounds having sulfone moiety
Sasaki et al. Reaction of lithium (2, 4, 6-tri-tert-butylphenyl) silylphosphides with haloforms.
TW201607954A (zh) 兩性離子化合物及離子傳導體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15529902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016886

Country of ref document: KR

Kind code of ref document: A