WO2012160587A1 - マグネシウム二次電池およびそれを搭載した電池システム - Google Patents

マグネシウム二次電池およびそれを搭載した電池システム Download PDF

Info

Publication number
WO2012160587A1
WO2012160587A1 PCT/JP2011/002811 JP2011002811W WO2012160587A1 WO 2012160587 A1 WO2012160587 A1 WO 2012160587A1 JP 2011002811 W JP2011002811 W JP 2011002811W WO 2012160587 A1 WO2012160587 A1 WO 2012160587A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
secondary battery
battery
group
organic acid
Prior art date
Application number
PCT/JP2011/002811
Other languages
English (en)
French (fr)
Inventor
雅浩 米元
西村 勝憲
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2011/002811 priority Critical patent/WO2012160587A1/ja
Publication of WO2012160587A1 publication Critical patent/WO2012160587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a magnesium secondary battery and a battery system equipped with the same.
  • Magnesium secondary batteries that use abundant resources of magnesium as a material for secondary batteries are gradually gaining attention both at home and abroad.
  • Magnesium is cheaper than lithium and is about 2/3 that of lithium, but has a high electric capacity density (2.21 Ah / kg).
  • the battery cost per capacity can be reduced.
  • the magnesium secondary battery includes a positive electrode material and a negative electrode material capable of reversibly oxidizing and reducing magnesium ions, and an electrolyte solution in which a magnesium salt is dissolved at a sufficient concentration.
  • a magnesium salt is dissolved at a sufficient concentration.
  • magnesium ions are divalent cations, the degree of dissociation of the electrolyte is low, and there are few solvents that can sufficiently dissolve the magnesium salt.
  • an aprotic organic solvent for example, propylene carbonate, ethylene carbonate, acetonitrile, etc.
  • Mg salts for example, Patent Document 3, Patent Document 4, and Patent Document 5
  • An object of the present invention is to increase the solubility of an electrolyte to increase the conductivity of an electrolytic solution and improve the charge / discharge characteristics of a magnesium secondary battery.
  • a magnesium secondary battery includes a positive electrode capable of storing and releasing magnesium ions, a negative electrode capable of depositing and dissolving magnesium ions, and capable of storing and releasing magnesium ions, and an electrolyte containing magnesium ions.
  • the "absorption and desorption" the reduction reaction from Mg 2+ ions to Mg metal, or from Mg metal to include an oxidation reaction of the Mg 2+ ions.
  • a feature of the present invention that solves the above-described problems is that an organic acid magnesium is used as an electrolyte.
  • organic acid magnesium organic acid magnesium having an aromatic ring, particularly those having a carboxylic acid group, a sulfuric acid group and a nitric acid group in the molecule are preferable. Further, it is more preferable that a part of the aromatic ring has a functional group having a stronger electron donating property than hydrogen.
  • Lithium ion batteries are widely used as power sources for consumer devices such as mobile phones, portable information terminal devices, notebook computers, and electric tools as secondary batteries having high energy density. Furthermore, it is also expected as a power source for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, nighttime power and renewable energy power storage systems. Lithium secondary batteries are considered to be the most promising key devices that can reduce environmental burden and solve environmental problems. Lithium is mined as a lithium compound from salt lakes, etc., and it has been reported that it has a reserve of more than 100 years even if electric vehicles and the like have spread, recognizing that the amount of resources necessary for its spread has been secured Has been.
  • the amount of lithium resources expected at the present time is not enough to spread the secondary battery for use in large-scale power supplies other than electric vehicles.
  • New battery materials need to be found in order to spread secondary batteries to larger power sources. Therefore, it is desired to develop a secondary battery using magnesium, which has a more stable raw material supply than lithium and has no price fluctuation factor.
  • a magnesium electrolyte soluble in a non-aqueous solvent magnesium salt
  • a non-aqueous electrolyte solution in which magnesium salt is dissolved in a non-aqueous solvent a positive electrode capable of storing and releasing magnesium ions, and precipitation and dissolution of magnesium ions
  • An organic acid magnesium having a plurality of aromatic rings may be used as long as it dissolves in a non-aqueous solvent.
  • a plurality of magnesium organic acids may be mixed and used, and if the electrolyte of the present invention is a main component (if the molar ratio is larger than 50% of the total electrolyte), a known magnesium salt may be used simultaneously. It may be used.
  • the aromatic ring has a function of forming a resonance structure having a negative charge when the organic acid magnesium of the present invention becomes an organic acid anion and stabilizing the organic acid anion.
  • the ionization degree of the organic acid magnesium can be increased, and the magnesium ion concentration in the electrolytic solution can be increased.
  • magnesium ions in the electrolyte solution move quickly, and the charge / discharge characteristics of the magnesium secondary battery are improved.
  • the “known magnesium salt” refers to halides, halogen-containing oxo acid salts (for example, magnesium perchlorate), sulfates, nitrates, phosphates, organic acid salts having no aromatic ring, and the like.
  • water it is possible to add water to the electrolytic solution of the present invention and use a mixed solvent of a non-aqueous solvent and water.
  • water By adding water, the solubility of the magnesium salt is improved, and the conductivity of the electrolytic solution can be further increased. Addition of 100 ppm or more of water is preferable because the solubility of the organic acid magnesium of the present invention is improved.
  • magnesium metal or a magnesium alloy since reductive decomposition of water on the negative electrode proceeds, in that case, it is desirable to limit the amount of water added to 1000 ppm or less.
  • FIG. 1 schematically shows the internal structure of the magnesium secondary battery 101.
  • an electrode group including a positive electrode 107, a negative electrode 108, and a separator 109 inserted between both electrodes is housed in the battery container 102.
  • a separator 109 is impregnated with a non-aqueous electrolyte solution in which an organic acid magnesium having an aromatic ring is dissolved.
  • separator 109 a porous film made of an organic material such as polyolefin, cellulose, polyacrylic acid, polyacrylamide, or polyacrylimide can be used. Any material can be selected as long as the electrolyte of the present invention is wettable.
  • the separator 109 may be a solid electrolyte polymer containing an electrolyte inside the polymer. If it does in this way, separator 109 will also serve as a function of electrolyte solution, it becomes possible to simplify battery structure and to reduce manufacturing cost. Further, since no electrolyte solution containing an organic solvent is used, the risk of ignition of the electrolyte solution can be eliminated.
  • an organic solvent such as acetonitrile, dimethylacetamide, 1-methyl-2-pyrrolidone (NMP), or a carbonic acid ester such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, vinylene carbonate, or the like should be used.
  • the solvent is not limited to these solvents, and any polar solvent that can dissolve the organic acid magnesium can be selected. It is further desirable that a flame retardant such as phosphate ester or phosphite ester is added to these solvents to make the electrolyte difficult to burn.
  • organic acid magnesium examples include magnesium benzoate (Magnesium dibenzoate), magnesium o-fluorobenzoate (Magnesium di (o-fluorobenzoate)), magnesium m-fluorobenzoate (Magnesium di (m-fluorobenzoate)), p- Magnesium fluorodibenzoate (Magnesium di (p-fluorobenzoate)), magnesium o-chlorobenzoate (Magnesium di (o-chlorobenzoate)), magnesium m-chlorobenzoate (Magnesium di (m-chlorobenzoate)), p-chlorobenzoate Magnesium di (p-chrorobenzoate), 2,3-dichlorobenzoate magnesium (Magnesium di (2,3-dichlorobenzoate)) 3,4,5-trichloromagnesium benzoate (Magnesium di (3,4) 5-trichlorobenzoate)), magnesium o-bromobenzoate (Magnesium di (o-bromobenzoate)
  • the portion of the organic acid magnesium forming an acid includes a carboxylic acid group (—COO ⁇ ), a sulfonic acid group (—SO 3 ⁇ , a nitric acid group (—NO 3 ⁇ ), a phenolic acid group (—O—) bonded to an aromatic ring. -), thiol group (-S -.. is any functional group that can become the anion, etc.) these functional groups, the organic acid magnesium to form the magnesium ions and salts of these functional groups include alone
  • the organic acid molecule may have two or more functional groups to form a magnesium salt having a chelate structure, and may have two or more functional groups. If it does, the formula amount of the organic acid magnesium with respect to magnesium of a unit mole number will become small, and the weight of electrolyte solution will also become small, and it is suitable.
  • the number of aromatic rings may be 2 (naphthalene structure), 3 (anthracene structure), or a larger number of rings. This is because these structures form a resonance structure between the aromatic rings.
  • the number of aromatic rings contained in the organic acid magnesium when dissolved in a low molecular weight polar solvent is preferably 1 to 2 in order to increase the solubility. This is because as the number of aromatic rings increases, the polarity of the organic acid anion decreases and it becomes difficult to dissolve in the polar solvent.
  • the number of moles of magnesium ions is 0.1 mol / liter or more, preferably 0.5 mol / liter or more, assuming that the electrolyte is 100% ionized.
  • the viscosity of the electrolytic solution decreases, and the migration rate of magnesium ions at a low temperature may decrease, that is, the low temperature characteristics of the magnesium secondary battery may decrease. Therefore, it is preferable to set it to 0.8 or more and 1.5 mol / liter or less.
  • the aromatic ring has a function of forming a resonant structure having a negative charge when the organic acid magnesium of the present invention becomes an organic acid anion and stabilizing the organic acid anion.
  • the organic acid magnesium of the present invention becomes an organic acid anion and stabilizing the organic acid anion.
  • magnesium o-fluorobenzoate it becomes o-fluorobenzoate ion in the electrolyte (formula 1).
  • the anion forms the resonance structure shown in FIG. 2 and the anion is considered to be stable.
  • + charges are formed at the ortho and para positions with reference to the position where the carboxylic acid group is bonded. When an electron donating functional group is bonded to the ortho or para position, the resonance structure is stabilized.
  • the hydrogen at the ortho-position or para-position based on the position of the aromatic ring to which the acidic functional group is bonded is an alkyl group (some hydrogens may be substituted with halogen), an alkoxy group ( Some hydrogens may be substituted with halogens), aryl groups (some hydrogens may be substituted with halogens), electron-donating functional groups such as phenol groups and thiol groups. It is desirable that
  • the fact that the anion becomes stable in the electrolytic solution makes the organic acid magnesium of the present invention easy to ionize, and the concentration of magnesium ions in the electrolytic solution increases. As a result, magnesium ions in the electrolytic solution easily move between the positive electrode and the negative electrode, and the charge / discharge characteristics of the magnesium secondary battery are improved.
  • the positive electrode 107 any material having a function of dissolving or releasing magnesium ions during charging and precipitating or occluding magnesium ions during discharging can be selected as the positive electrode active material.
  • a powdery active material it is desirable to use a binder for forming the powder into an electrode sheet.
  • a fine-particle positive electrode active material it is necessary to quickly exchange electrons between particles.
  • the positive electrode 107 may be manufactured by adding materials such as conductive fine particles and fibers, for example, carbon powder and carbon fibers, or powder and fibers made of corrosion-resistant metals and carbides.
  • a carbon material having a high specific surface area is further mixed as a conductive agent, the conductivity between the positive electrode catalyst and the conductive fiber is improved.
  • a positive electrode mixture slurry containing an active material, a conductive agent, and the like is applied to a positive electrode current collector and dried to manufacture the positive electrode 107.
  • a known production method such as a doctor blade method, a dipping method, or a spray method can be employed, and there is no limitation on the means.
  • the organic solvent is dried, and the positive electrode 107 can be manufactured by pressure forming with a roll press.
  • a plurality of positive electrode active material layers can be stacked by performing a plurality of times from application to drying.
  • the binder for integrating the powdered positive electrode active material a known material such as a fluorine-based binder, a rubber-based binder, or a polyacrylic binder can be used. If necessary, an additive for adjusting dispersibility and viscosity (for example, carboxymethylcellulose) is added and mixed well to prepare a smooth positive electrode slurry.
  • a porous carbon felt or sheet having a thickness of 10 to 100 ⁇ m can be used as the positive electrode current collector.
  • a carbon sheet having perforations with a pore diameter of 0.1 to 10 mm may be used.
  • the material is not limited to carbon, and a corrosion-resistant material such as aluminum, stainless steel, or titanium can be applied.
  • any material can be used for the negative electrode 108 as long as it has a function of precipitating or occluding magnesium ions during charging and dissolving or releasing magnesium ions during discharging.
  • an alloy containing magnesium and a different element such as magnesium metal, aluminum, or zinc, and an intercalation compound such as a metal oxide can be used.
  • the negative electrode active material can be a sheet or powder. In general, the powder shape makes it easier to increase the reaction area, and a high-performance secondary battery can be obtained.
  • a binder is mixed with it to bind the powders to each other and simultaneously hold the negative electrode current collector. It is desirable to make the particle size of the negative electrode active material not more than the thickness of the mixture layer. When there are coarse particles having a diameter equal to or greater than the thickness of the mixture layer in the negative electrode active material powder, the coarse particles are removed in advance by sieving classification, wind classification or the like.
  • Any substrate can be selected as the negative electrode current collector without being limited by the material, shape, manufacturing method, and the like. Copper foil with a thickness of 10 to 100 ⁇ m, copper perforated foil with a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, expanded metal, foam metal plate, etc. are used. Nickel and the like are also applicable.
  • a conductive material to the negative electrode 108 when manufacturing a high output electrode or when high rate charge / discharge is required.
  • a conductive material is added more than necessary, the volume of the negative electrode 108 increases and the energy density of the battery may be reduced.
  • Examples of conductive materials include natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch carbonaceous material, needle coke, petroleum coke, polyacrylonitrile carbon fiber, carbon black, etc.
  • Carbonaceous materials carbon materials such as amorphous carbon materials synthesized by thermal decomposition of 5-membered or 6-membered cyclic hydrocarbons or cyclic oxygen-containing organic compounds can be used. Further, a material such as a metal or a semiconductor may be added.
  • a conductive high molecular material made of polyacene, polyparaphenylene, polyaniline, or polyacetylene can be used as the conductive material of the negative electrode 108. These materials may be combined with a carbon material having a graphene structure such as graphite, graphitizable carbon, and non-graphitizable carbon.
  • the negative electrode 108 is prepared by adhering a negative electrode slurry in which a negative electrode active material, a binder, and an organic solvent are mixed to a negative electrode current collector by a doctor blade method, a dipping method, a spray method, and the like, and then drying the organic solvent and performing a roll press
  • the negative electrode can be produced by pressure molding.
  • the positive electrode 107 and the negative electrode 108 are alternately laminated through the separator 109 to produce a laminate.
  • Magnesium ions move between the positive electrode 107 and the negative electrode 108 facing each other during charge and discharge.
  • the structure of the laminated body can be various shapes such as those obtained by laminating the strip-shaped electrodes shown in FIG. 1, or those wound in an arbitrary shape such as a cylindrical shape or a flat shape.
  • the laminate is stored in the battery container 102.
  • the material of the battery container 102 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • a cylindrical shape, a flat oval shape, a rectangular shape, or the like can be selected according to the shape of the electrode group.
  • the lid 103 there is a lid 103 at the top of the battery container 102, and the lid 103 has a positive external terminal 104, a negative external terminal 105, and a liquid injection port 106.
  • the cover 103 was placed on the battery container 102, the outer periphery of the cover 103 was welded to be integrated with the battery container 102, and the entire battery was sealed.
  • other known methods such as caulking and adhesion can be adopted in addition to welding.
  • the positive electrode 107 is connected to the positive electrode external terminal 104
  • the negative electrode 108 is connected to the negative electrode external terminal 105, so that a current flows between the positive electrode 107 and the negative electrode 108.
  • an insulating sealing material 112 is inserted between the positive electrode external terminal 104 or the negative electrode external terminal 105 and the battery container 102 so that both terminals are not short-circuited.
  • the insulating sealing material 112 can be selected from a fluororesin, a thermosetting resin, a glass hermetic seal, etc., and does not react with the positive electrode catalyst, the negative electrode active material, hydrogen, or water, and is any material that has excellent airtightness. Can be used.
  • each electrode is directly connected to each external terminal.
  • a method of connecting via a linear, plate-like, or foil-like lead in the middle may be used.
  • the lead shape and material are arbitrary as long as the material can reduce ohmic loss when a current is passed and the material does not react with the electrolyte.
  • the lid 103 is made of an insulating material, the insulating sealing material 112 may be omitted, and the positive external terminal 104 and the negative external terminal 105 may be inserted into the lid 103 and fixed.
  • a current interruption mechanism using a positive temperature coefficient (PTC) resistance element is provided in the middle of the positive electrode 107 and the positive electrode external terminal 104 or in the middle of the negative electrode 108 and the negative electrode external terminal 105, the temperature inside the battery increases. When it becomes, it becomes possible to stop charging / discharging of the magnesium secondary battery 101 and to protect the magnesium secondary battery 101. Further, a pressure valve may be provided on the lid 103 for releasing the internal pressure when the internal pressure of the battery becomes larger than a specified value.
  • PTC positive temperature coefficient
  • a magnesium secondary battery using an electrolytic solution in which magnesium benzoate is dissolved in NMP will be described.
  • the amount of electrolyte added was such that the magnesium ion concentration was 0.7 mol / liter, assuming that the total amount of magnesium benzoate was ionized.
  • As the separator a cellulose nonwoven fabric having a thickness of 50 ⁇ m was used.
  • the positive electrode was manufactured by adding acetylene black to manganese dioxide (positive electrode active material) having an average particle diameter of 5 ⁇ m and using styrene-butadiene rubber (SBR) as a binder.
  • a 0.2 mm thick magnesium alloy (model: AM60) was used for the negative electrode.
  • the positive electrode 107, the negative electrode 108, and the separator 109, the rectangular magnesium secondary battery 101 of FIG. This battery is designated as B1.
  • the magnesium alloy AM60 is changed to another alloy such as AZ31 or AZ61 to which aluminum, zinc, or the like is added, equivalent battery performance is obtained.
  • the battery was initially aged at room temperature. First, charging was started at a current (0.2 A) corresponding to a 5-hour rate from the open circuit state, and after reaching 3.5 V, constant voltage charging was performed for 120 minutes. After a 30-minute pause, 0.2 A constant current discharge was performed until the battery voltage reached 0.8 V, and a 30-minute pause was provided. This series of cycles was performed three times to complete the initial aging.
  • the discharge capacity of the last cycle was 1.0 ⁇ 0.1 Ah, which was taken as the rated capacity of the battery.
  • the discharge capacity relative to the charge capacity at the third cycle was defined as the charge / discharge efficiency.
  • the measured values are shown in the columns of initial capacity and charge / discharge efficiency in Table 1.
  • the charge / discharge efficiency of the secondary battery B1 of this example was as high as about 99%, and it was found that the charge / discharge characteristics were excellent.
  • the electrolyte of the magnesium secondary battery of Example 1 was changed, and a plurality of types of prismatic secondary batteries B2, B3, B4, and B5 having different electrolyte solutions were manufactured.
  • Table 1 shows the types of electrolytes. The concentration of each electrolyte was 0.5 mol / liter.
  • the positive electrode 107, the negative electrode 108, and the separator 109 are the same as those in the first embodiment.
  • Each battery was subjected to initial aging under the same conditions described in Example 1, and the initial capacity and charge / discharge efficiency were measured. Furthermore, 50 cycles of charge / discharge tests were performed at room temperature. Test conditions are as described in Example 1. Table 1 shows the capacity retention calculated from the initial capacity, charge / discharge efficiency, and discharge capacity at the 50th cycle.
  • All the batteries had a large initial capacity and high charge / discharge efficiency. Further, the capacity retention characteristics after 50 cycles were excellent, and the characteristics of B2, B3, and B5 using an electrolyte anion in which an electron donating functional group was bonded to the ortho or para position were particularly good.
  • This embodiment is an example of a battery system that has a function of storing or using electrical energy in a secondary battery that is equipped with a magnesium secondary battery.
  • a plurality of rectangular magnesium secondary batteries 101 having the same specifications as B2 of Example 2 were prepared.
  • the rated capacity of the battery was 1 Ah under 5 hour rate discharge conditions.
  • FIG. 3 shows a battery system S1 in which two magnesium secondary batteries 301a and a magnesium secondary battery 301b are connected in series.
  • the number of batteries in series and the number in parallel can be arbitrarily set according to the amount of power required by the system S1.
  • the capacity per one secondary battery may be made larger than 1 Ah by increasing the size or the number of stacked electrodes.
  • Each of the magnesium secondary battery 301 a and the magnesium secondary battery 301 b has a laminated body having the same specifications including a positive electrode 307, a negative electrode 308, and a separator 309, and a positive electrode external terminal 304 and a negative electrode external terminal 305 are provided on a lid 303.
  • An insulating sealing material 312 is inserted between each external terminal and the battery case 302 so that the external terminals are not short-circuited.
  • the lid 303 was provided with a liquid injection port 306 for injecting the electrolytic solution of the present invention.
  • the negative external terminal 305 of the magnesium secondary battery 301 a is connected to the negative input terminal of the charge / discharge controller 316 by the power cable 313.
  • the positive external terminal 304 is connected to the negative external terminal 305 of the magnesium secondary battery 301b via the power cable 314.
  • a positive external terminal 304 of another magnesium secondary battery 301 b is connected to a positive input terminal of the charge / discharge controller 316 by a power cable 315.
  • the charge / discharge controller 316 exchanges power with an externally installed device (hereinafter referred to as an external device) 319 via the power cable 317 and the power cable 318.
  • the external device 319 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge controller 316, and an inverter, a converter, and a load that supply power from the system.
  • An inverter or the like may be provided in accordance with the types of AC and DC that the external device 319 supports. As these devices, known devices can be arbitrarily applied.
  • a power generation device 322 simulating the operating conditions of a wind power generator was installed as a device that generates renewable energy, and connected to the charge / discharge controller 316 via the power cable 320 and the power cable 321.
  • the charge / discharge controller 316 shifts to the charging mode, supplies power to the external device 319, and charges surplus power to the magnesium secondary battery 301a and the magnesium secondary battery 301ab.
  • the charge / discharge controller 316 operates to discharge the magnesium secondary battery 301a and the magnesium secondary battery 301b.
  • the power generation device 322 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator.
  • the charge / discharge controller 316 stores a program capable of automatic operation so as to perform the above-described operation.
  • the power generation device 322 can be replaced with any power generation system that uses renewable energy such as sunlight, geothermal heat, or wave energy.
  • the magnesium secondary battery 301a and the magnesium secondary battery 301b are charged normally to obtain a rated capacity. For example, it is possible to perform constant voltage charging in which the voltage of each battery is 3.5 V with a charging current of 5 hours.
  • the charging conditions are determined by the design of the material and usage of the secondary battery, so the optimum conditions are set for each battery specification.
  • the charge / discharge controller 316 is switched to the discharge mode to discharge each battery. Normally, the discharge is stopped when a certain lower limit voltage is reached.
  • the system S1 was activated, and the external device 319 supplied power during charging and consumed power during discharging. In this example, the discharge was performed up to 1 hour rate discharge, and a high capacity of 90% was obtained with respect to the capacity during 2 hour rate discharge.
  • a drive device such as an electric motor, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, a transport device, a construction machine, a care device, a light vehicle, an electric tool, a game machine
  • a power storage system connected to a photovoltaic power generation or a fuel cell system with a power cable.
  • Such a system can be used for power supply to hospitals and buildings or small-scale areas (communities), and power supply to remote islands and mountainous areas that do not have system power. It can also be used as a power source for submarine submarines and space stations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 マグネシウム二次電池の充放電特性を向上させる。 マグネシウムイオンを吸蔵・放出可能な正極と、マグネシウムイオンを析出・溶解可能または吸蔵・放出可能な負極と、マグネシウムイオンを含有する電解液と、を有するマグネシウム二次電池であって、電解液に芳香族環を有する有機酸マグネシウムが含まれ、有機酸マグネシウムはマグネシウムイオンと塩を形成する官能基を分子内に有し、マグネシウムイオンと塩を形成する官能基は、カルボン酸基、硫酸基、硝酸基、フェノール基、チノール基のいずれか一つ以上であるマグネシウム二次電池。

Description

マグネシウム二次電池およびそれを搭載した電池システム
 本発明は、マグネシウム二次電池およびそれを搭載した電池システムに関する。
 資源量の豊富なマグネシムを二次電池の材料として利用するマグネシウム二次電池が、国内外で徐々に注目を集めつつある。マグネシウムは、リチウムより安価で、リチウムの約2/3となるが、高い電気容量密度(2.21Ah/kg)を有している。マグネシウム二次電池の性能をリチウムイオン電池に近づけることによって、容量当たりの電池コストを削減することが可能となる。
 マグネシウム二次電池は、マグネシウムイオンを可逆的に酸化還元可能な正極材料、負極材料と、マグネシウム塩を十分な濃度で溶解した電解液とを備える。しかしながら、マグネシウムイオンが2価の陽イオンであるために、電解質の解離度が低く、マグネシウム塩を十分に溶解させる溶媒が少ない。
 マグネシウムまたはその合金を負極に用いる場合、充放電によって負極表面にマグネシウムイオンを通さない不働態膜が生じ、マグネシウム負極の充放電反応の可逆性が悪化する。この不動態膜には電解液の分解生成物が関与しているので、マグネシウムとの反応性の低い安定な電解液を使用する必要がある。
 マグネシウム二次電池の非水電解液としては、一般的に非プロトン系有機溶剤(例えばプロピレンカーボネート、エチレンカーボネート、アセトニトリルなど)が使用されている(特許文献1、特許文献2)。また、Mg塩として常温溶融塩であるハロゲン化マグネシウムやイミド塩、スルホン酸塩が提案されている(例えば、特許文献3、特許文献4、特許文献5)。
 2000年にオーバッハ(Aurbach)らは電解質がMg[AXnR′n′R″n″]2(A=BまたはAl、R′及びR″は炭化水素基、X=ClまたはBr、n+n′+n″=4、n(1)溶媒がテトラヒドロフランの電解液を用いて、正極をシェブレル相Mo68として1000回以上の充放電サイクルが可能なマグネシウム二次電池を報告している(特許文献6)。
 マグネシウム二次電池用電解液については、種々検討されているが、電解液の導電率が高く、かつ電気化学的にも熱的にも安定な電解液は、未だ開発途上にある。
特開2002-025555号公報 米国特許4894302号 特開2004-259650号公報 特開2004-265675号公報 特開2004-265676号公報 米国特許6316141号
 本発明では、電解質の溶解度を高めて電解液の導電率を増大させ、マグネシウム二次電池の充放電特性を向上させることを目的とする。
 マグネシウム二次電池は、マグネシウムイオンを吸蔵・放出可能な正極と、マグネシウムイオンを析出・溶解可能または吸蔵・放出可能な負極と、マグネシウムイオンを含有する電解液を備える。ここで、「吸蔵・放出」とは、Mg2+イオンからMg金属への還元反応、あるいはMg金属からMg2+イオンへの酸化反応を含むものとする。上記課題を解決する本発明の特徴は、電解質として有機酸マグネシウムを用いることにある。
 有機酸マグネシウムとしては、芳香族環を有する有機酸マグネシウム、特にカルボン酸基、硫酸基、硝酸基を分子内に有するものが好ましい。また、芳香族環の一部に、水素よりも電子供与性の強い官能基を有するものであることが、さらに好ましい。
 本発明の電解液を用いることにより、マグネシウム二次電池の充放電特性が向上する。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
マグネシウム二次電池の断面構造を示す図である。 有機酸マグネシウム内の芳香族環における共鳴構造の形成を説明する図である。 マグネシウム二次電池を適用した電池システムの例を示す図である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 リチウムイオン電池は、高エネルギー密度を有する二次電池として、携帯電話、携帯用情報端末機器、ノートパソコン、電動工具などの民生機器電源として普及している。さらに、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、夜間電力や再生可能エネルギーの電力貯蔵システムの電源としても期待されている。リチウム二次電池は、環境負荷を低減し、環境問題を解決しうるキーデバイスの最有力候補であると考えられている。リチウムは塩湖などからリチウム化合物として採掘され、電気自動車等の普及があっても100年以上の埋蔵量を有していると報告され、その普及に必要な資源量は確保されていると認識されている。しかしながら、電気自動車以外の大規模電源の用途に二次電池を普及させていくためには、現時点で見込まれているリチウム資源量では不十分である。より大規模電源への二次電池の普及には、新たな電池材料を見出す必要がある。そこで、原料供給量がリチウムより安定で、価格変動要因のないマグネシウムを用いた二次電池の開発が望まれている。
 そこで、非水溶媒に可溶なマグネシウム電解質(マグネシウム塩)と、マグネシウム塩を非水溶媒に溶解させた非水系電解液と、マグネシウムイオンを吸蔵・放出可能な正極と、マグネシウムイオンを析出・溶解可能または吸蔵・放出可能な負極と、を備えるマグネシウム二次電池であって、電解質として有機酸マグネシウム、特に芳香族環を有する有機酸マグネシウムを用いた。非水溶媒に溶解すれば、複数の芳香族環を有する有機酸マグネシウムでもよい。また、複数の有機酸マグネシウムを混合して使用しても良いし、本発明の電解質が主成分であれば(全電解質の50%よりも大きなモル比率であれば)、公知のマグネシウム塩を同時に用いても良い。芳香族環は、本発明の有機酸マグネシウムが有機酸アニオンになった際に、負電荷を有する共鳴構造を形成し、有機酸アニオンを安定化する作用を有する。その結果、有機酸マグネシウムの電離度が増し、電解液中のマグネシウムイオン濃度を高くすることができる。その結果、電解液中のマグネシウムイオンが速やかに移動するようになって、マグネシウム二次電池の充放電特性が向上する。なお、「公知のマグネシウム塩」とは、ハロゲン化物、ハロゲンを含むオキソ酸塩(例えば過塩素酸マグネシウム)、硫酸塩、硝酸塩、リン酸塩、芳香族環を有しない有機酸塩などを指す。
 また、本発明の電解液には、水を添加し、非水溶媒と水の混合溶媒を用いることも可能である。水が添加されることによって、マグネシウム塩の溶解度が向上し、電解液の導電率をさらに高めることができる。水を100ppm以上添加すると、本発明の有機酸マグネシウムの溶解度が向上するので好適である。ただし、マグネシウム金属またはマグネシウム合金を用いる場合には、負極上での水の還元分解が進行するので、その場合には水の添加量を1000ppm以下になるように制限させることが望ましい。
 図1は、マグネシウム二次電池101の内部構造を模式的に示している。マグネシウム二次電池101の電池容器102の内部には、正極107、負極108、および両電極の間に挿入されたセパレータ109からなる電極群を、電池容器102に収納している。芳香族環を有する有機酸マグネシウムを溶解させた非水電解液はセパレータ109に含浸されている。
 セパレータ109は、ポリオレフィン、セルロース、ポリアクリル酸、ポリアクリルアミド、ポリアクリルイミドなどの有機系材料からなる多孔質フィルムを用いることができる。本発明の電解液が濡れる材質であれば、任意の材料を選択することができる。また、セパレータ109は、ポリマーの内部に電解質を含有する固体電解質ポリマーとしてもよい。このようにすると、セパレータ109が電解液の機能を兼用することになり、電池構造を簡易とし、製造コストを削減することが可能となる。また、有機溶媒を含む電解液を用いないため、電解液に着火する危険性を排除することができる。
 非水溶媒には、アセトニトリル、ジメチルアセトアミド、1-メチル-2-ピロリドン(NMP)などの有機溶媒、あるいはエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニレンカーボネートなどの炭酸エステルなどを用いることができる。これらの溶媒に限定されず、有機酸マグネシウムを溶解可能な極性溶媒であれば任意に選択することができる。これらの溶媒に、リン酸エステルあるいは亜リン酸エステル等の難燃剤を添加し、電解液が燃焼されにくくするとさらに望ましい。
 有機酸マグネシウムの例としては、安息香酸マグネシウム(Magnesium dibenzoate)、o-フルオロ安息香酸マグネシウム(Magnesium di(o-fluorobenzoate))、m-フルオロ安息香酸マグネシウム(Magnesium di(m-fluorobenzoate))、p-フルオロ安息香酸マグネシウム(Magnesium di(p-fluorobenzoate))、o-クロロ安息香酸マグネシウム(Magnesium di(o-chlorobenzoate))、m-クロロ安息香酸マグネシウム(Magnesium di(m-chlorobenzoate))、p-クロロ安息香酸マグネシウム(Magnesium di(p-chrorobenzoate))、2、3-ジクロロ安息香酸マグネシウム(Magnesium di(2、3-dichlorobenzoate))、3、4、5-トリクロロ安息香酸マグネシウム(Magnesium di(3、4、5-trichlorobenzoate))、o-ブロモ安息香酸マグネシウム(Magnesium di(o-bromobenzoate))、m-ブロモ安息香酸マグネシウム(Magnesium di(m-bromobenzoate))、p-ブロモ安息香酸マグネシウム(Magnesium di(p-bromobenzoate))、2 2、3-ジブロモ安息香酸マグネシウム(Magnesium di(2、3-dibromobenzoate))、o-ヨード安息香酸マグネシウム(Magnesium di(o-iodobenzoate))、m-ヨード安息香酸マグネシウム(Magnesium di(m-iodobenzoate))、p-ヨード安息香酸マグネシウム(Magnesium di(p-iodobenzoate))、フタル酸マグネシウム(Magnesium diphthalate)、3-クロロフタル酸マグネシウム(Magnesium di(3-Chlorophthalate))、3、6-ジクロロフタル酸マグネシウム(Magnesium di(3、6-dichlorophthalate))、テトラクロロフタル酸マグネシウム(Magnesium di(tetrachlorophthalate))、o-フルオロ安息香酸マグネシウム(Magnesium di(o-fluorobenzoate))、m-フルオロ安息香酸マグネシウム(Magnesium di(m-fluorobenzoate))、p-フルオロ安息香酸マグネシウム(Magnesium di(p-fluorobenzoate))、o-クロロ安息香酸マグネシウム(Magnesium di(o-chlorobenzoate))、m-クロロ安息香酸マグネシウム(Magnesium di(m-chlorobenzoate))、p-クロロ安息香酸マグネシウム(Magnesium di(p-chlorobenzoate))、2、3-ジクロロ安息香酸マグネシウム(Magnesium di(2、3-dichlorobenzoate))、3、4、5-トリクロロ安息香酸マグネシウム(Magnesium di(2、4、5-trichlorobenzoate))、o-ブロモ安息香酸マグネシウム(Magnesium di(o-bromobenzoate))、m-ブロモ安息香酸マグネシウム(Magnesium di(m-bromobenzoate))、p-ブロモ安息香酸マグネシウム(Magnesium di(p-bromobenzoate))、2、3-ジブロモ安息香酸マグネシウム(Magnesium di(2、3-dibromobenzoate))、o-ヨード安息香酸マグネシウム(Magnesium di(o-iodobenzoate))、m-ヨード安息香酸マグネシウム(Magnesium di(m-iodobenzoate))、p-ヨード安息香酸マグネシウム(Magnesium di(p-iodobenzoate))、3-クロロフタル酸マグネシウム(Magnesium di(3-chlorophalate))、3、6-ジクロロフタル酸マグネシウム(Magnesium di(dichlorophalate))、テトラクロロフタル酸マグネシウム(Magnesium di(tetrachlorophalate))、4-ニトロ安息香酸マグネシウム(Magnesium di(p-Nitrobenzoate))、サリチル酸マグネシウム(Magnesium disulfosalicylate)、3、5-ジニトロサリチル酸マグネシウム(Magnesium di(3、5-dinitrosalicylate))、5-スルホサリチル酸マグネシウム(Magnesium di(5-sulfosalicylate))、2、6-ナフタレンジカルボン酸マグネシウム(Magnesium 2、6-naphthalenedicarboxylate)などが列挙される。少なくとも1以上の芳香族環を有しているマグネシウム化合物から、本発明に利用可能なマグネシウム塩を選択することができる。
 有機酸マグネシウムの酸を形成する部分は、芳香族環に結合したカルボン酸基(-COO-)、スルホン酸基(-SO3 -、硝酸基(-NO3 -)、フェノール酸基(-O-)、チオール基(-S-)などのアニオンになりうる任意の官能基である。これらの官能基は、マグネシウムイオンと塩を形成する。有機酸マグネシウムにこれらの官能基が単独で含まれていてもよく、複数種類含まれていても良い。なお、有機酸の分子内に2以上の官能基を有し、キレート構造のマグネシウム塩を形成しても良い。2以上の官能基を有していれば、単位モル数のマグネシウムに対する有機酸マグネシウムの式量が小さくなり、電解液の重量も小さくなり、好適である。
 また、芳香族環の数は2個(ナフタレン構造)、3個(アントラセン構造)、さらに多数の環を有していても良い。これらの構造は、芳香族環の間で共鳴構造を形成するからである。ただし、低分子量の極性溶媒に溶解させるときの有機酸マグネシウムに含まれる芳香族環の数は、その溶解度を高めるために、1ないし2が良い。芳香族環の数が増加すると、有機酸アニオンの極性が低下し、極性溶媒に溶解しにくくなるからである。
 電解質の添加量は、電解質が100%電離したと仮定して、マグネシウムイオンのモル数を0.1モル/リットル以上、望ましくは0.5モル/リットル以上が好ましい。また、電解質量が増大すると電解液の粘度が低下し、低温でのマグネシウムイオンの移動速度が低下する、すなわち、マグネシウム二次電池の低温特性が低下する可能性がある。従って、0.8以上1.5モル/リットル以下とすることが好適である。
 芳香族環は、本発明の有機酸マグネシウムが有機酸アニオンになった際に、負電荷を有する共鳴構造を形成し、有機酸アニオンを安定化する作用を有する。例えば、o-フルオロ安息香酸マグネシウムの場合は、電解液中にてo-フルオロ安息香酸イオンとなる(式1)。そのアニオンは、図2に示した共鳴構造を形成し、アニオンが安定になると考えている。図2に示す共鳴構造の中で、カルボン酸基が結合している位置を基準に、オルト位、パラ位に+電荷が形成されている。オルト位またはパラ位に電子供与性の官能基が結合していると、共鳴構造が安定化される。
  (C65COO)2Mg → 2C65COO-+Mg2+   (式1)
 また、図2において芳香族環に水素よりも電子供与性の強い電子供与性の官能基が結合していると、芳香族環内のプラス電荷をやや小さくする作用があり、共鳴構造のエネルギーレベルを小さくする、すなわちアニオンが安定になる。特に、酸性を示す官能基が結合した芳香族環の位置を基準としたオルト位またはパラ位の水素が、アルキル基(一部の水素がハロゲンに置換されていても良い。)、アルコキシ基(一部の水素がハロゲンに置換されていても良い。)、アリール基(一部の水素がハロゲンに置換されていても良い。)、フェノール基、チオール基などの電子供与性官能基が置換されていることが望ましい。
 図2に示すように、アニオンが電解液中に安定になることは、本発明の有機酸マグネシウムが電離しやすくなり、電解液中のマグネシウムイオンの濃度が増加する。その結果、電解液でのマグネシウムイオンが正極と負極の間を移動しやすくなり、マグネシウム二次電池の充放電特性が向上する。
 正極107には、充電時にはマグネシウムイオンを溶解または放出し、放電時にはマグネシウムイオンを析出または吸蔵する機能を有する任意の材料を正極活物質として選択することができる。粉末状の活物質を用いる場合には、粉末から電極シートへ成形するためのバインダを用いることが望ましい。さらに、微粒子の正極活物質を用いた場合は、粒子間の電子の授受を速やかに行う必要がある。高出力な電極を製造するためには、導電性材料を添加することが望ましい。そのために、導電性の微粒子、繊維などの材料、例えば炭素粉末や炭素繊維、あるいは耐食性の金属や炭化物からなる粉末や繊維を添加して、正極107を製作しても良い。高比表面積の炭素材料をさらに導電剤として混合すると、正極触媒と導電性繊維との導電性を向上させる。例えば、カーボンブラックや活性炭を用いることが好ましい。
 活物質や導電剤などを含む正極合剤スラリを正極集電体に塗布し、乾燥することによって正極107を製造する。正極スラリの製造には、ドクターブレード法、ディッピング法、スプレー法などの既知の製法を採ることができ、手段に制限はない。また、正極スラリを集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって加圧成形することにより、正極107を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の正極活物質の層を積層することも可能である。
 粉末の正極活物質を一体化するためのバインダには、フッ素系バインダ、ゴム系バインダ、ポリアクリル系バインダなどの公知の材料を用いることができる。必要に応じて、分散性や粘度を調製するための添加剤(例えば、カルボキシメチルセルロース)を添加し、十分に混ぜ合わせて、なめらかな正極スラリを調製する。
 正極集電体には、厚さが10~100μmの多孔質炭素フェルト、シートなどを用いることができる。孔径0.1~10mmの穿孔を有する炭素シートであっても良い。なお、材質は炭素に限定されず、アルミニウム、ステンレス鋼、チタンなどの耐食性材料を適用可能である。
 負極108には、充電時にはマグネシウムイオンを析出または吸蔵し、放電時にはマグネシウムイオンを溶解または放出する機能を有する材料であれば用いることが可能である。例えば、マグネシウム金属、アルミニウム、亜鉛等の異種元素とマグネシウムを含む合金、さらには金属酸化物等のインターカレーション化合物を適用できる。負極活物質はシート状、粉末のものを使用できる。一般的には、粉末形状の方が反応面積を増大させることが容易で、高性能な二次電池にすることができる。
 粉末状の負極活物質を用いる場合は、それにバインダを混合して、粉末同士を結合させると同時に負極集電体へ保持させる。負極活物質の粒径を合剤層の厚さ以下にすることが望ましい。負極活物質粉末中に合剤層厚さ以上の直径を有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去する。
 負極集電体には、材質、形状、製造方法などに制限されることなく、任意の基体を選択することができる。厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質も銅の他に、ステンレス鋼、チタン、ニッケルなども適用可能である。
 さらに、高出力な電極を製造する場合や、高レート充放電が必要な場合には、負極108に導電性材料を添加することが望ましい。ただし、必要以上に導電性材料を添加すると、負極108の体積が増大し、電池のエネルギー密度が低下する可能性がある。
 導電性材料には、天然黒鉛、人造黒鉛、メソフェーズ炭素、膨張黒鉛、炭素繊維、気相成長法炭素繊維、ピッチ系炭素質材料、ニードルコークス、石油コークス、ポリアクリロニトリル系炭素繊維、カーボンブラックのなどの炭素質材料、あるいは5員環または6員環の環式炭化水素または環式含酸素有機化合物を熱分解によって合成した非晶質炭素材料、カーボンナノチューブなどを利用することができる。また、金属や半導体のような材料を添加しても良い。また、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンからなる導電性高分子材料を、負極108の導電性材料として用いることができる。これらの材料と黒鉛、易黒鉛化炭素、難黒鉛化炭素等のグラフェン構造を有する炭素材料と組み合わせてもよい。
 負極108は、負極活物質、バインダ、および有機溶媒を混合した負極スラリを、ドクターブレード法、ディッピング法、スプレー法などによって負極集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって負極を加圧成形することにより作製することができる。また、塗布から乾燥までを複数回行うことにより、多層合剤層を集電体に形成させることも可能である。
 セパレータ109を介し、正極107と負極108とを交互に積層して、積層体を製作する。対向する正極107と負極108の間では、充放電時にマグネシウムイオンが移動する。積層体の構造は、図1に示した短冊状電極の積層したもの、あるいは円筒状、扁平状などの任意の形状に捲回したものなど、種々の形状にすることができる。
 積層体は電池容器102に収納する。電池容器102の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、非水電解質に対し耐食性のある材料から選択される。電池容器の形状は、電極群の形状に合わせ、円筒型、偏平長円形状、角型などの形状を選択できる。
 電池容器102の上部に蓋103があり、その蓋103に正極外部端子104、負極外部端子105、注液口106を有する。電池容器102に電極群を収納した後に、蓋103を電池容器102に被せ、蓋103の外周を溶接して電池容器102と一体にし、電池全体を密閉した。電池容器102への蓋103の取り付けには、溶接の他に、かしめ、接着などの他の公知の方法を採ることができる。正極107は正極外部端子104に接続され、負極108は負極外部端子105に接続されており、正極107と負極108の間に電流を流す構造になっている。
 また、正極外部端子104または負極外部端子105と、電池容器102の間には絶縁性シール材料112を挿入し、両端子が短絡しないようにしている。絶縁性シール材料112にはフッ素樹脂、熱硬化性樹脂、ガラスハーメチックシールなどから選択することができ、正極触媒、負極活物質、水素、あるいは水と反応せず、気密性に優れた任意の材質を使用することができる。
 なお、図1では各電極がそれぞれの外部端子に直結されているが、途中に線状、板状、箔状のリードを介して連結する方法であっても良い。電流を流したときにオーム損失を小さくすることのできる構造であり、かつ電解液と反応しない材質であれば、リード形状、材質は任意である。蓋103が絶縁性材料で製作すれば、絶縁性シール材料112を省き、蓋103に正極外部端子104と負極外部端子105を挿入し固定しても良い。
 正極107と正極外部端子104の途中、あるいは負極108と負極外部端子105の途中に、正温度係数(PTC;Positive temperature coefficient)抵抗素子を利用した電流遮断機構を設けると、電池内部の温度が高くなったときに、マグネシウム二次電池101の充放電を停止させ、マグネシウム二次電池101を保護することが可能となる。また、電池内部の圧力が規定値よりも大きくなったときに、その内部の圧力を解放するための圧力弁を蓋103に設けても良い。
 以下、実施例を用いてさらに詳細を説明する。なお、本発明は下記の実施例に限定されず、要旨を変更しない範囲で、具体的な構成材料、部品などは適宜変更が可能であり、公知の技術を追加し、あるいは公知の技術で置き換えることができる。
 本実施例では、安息香酸マグネシウムをNMPに溶解させた電解液を用いたマグネシウム二次電池について説明する。電解質の添加量は、安息香酸マグネシウムの全量が電離したと仮定して、マグネシウムイオン濃度が0.7モル/リットルになるようにした。セパレータは、厚さ50μmのセルロース系不織布を用いた。正極は、平均粒径5μmの二酸化マンガン(正極活物質)に、アセチレンブラックを添加し、スチレン・ブタジエンゴム(SBR)をバインダとして製造した。各材料の重量組成は、MnO2:アセチレンブラック:SBR=85:12:3とした。なお、SBRはエチレン-ブタジエン共重合体からなるゴムに変更することが可能で、後者のバインダを用いて同等の性能が得られた。
 本実施例では、厚さ0.2mmのマグネシウム合金(型式:AM60)を負極に使用した。これらの電解液、正極107、負極108、セパレータ109を用いて、図1の角型マグネシウム二次電池101を製作した。この電池をB1とする。マグネシウム合金AM60は、他の合金、例えばアルミニウム、亜鉛等を添加したAZ31やAZ61に変更しても、同等の電池性能が得られた。
 電池を組み立てた後に、室温にて電池の初期エージングを実施した。まず、開回路の状態より5時間率に相当する電流(0.2A)にて充電を開始し、3.5Vに到達した後に、120分の定電圧充電を行った。その後30分の休止を経て、電池電圧が0.8Vに達するまで0.2Aの定電流放電を行い、30分の休止を設けた。この一連のサイクルを3回行って、初期エージングを終了した。最後のサイクルの放電容量は1.0±0.1Ahであり、これを電池の定格容量とした。また、3サイクル目の充電容量に対する放電容量を充放電効率とした。それぞれの測定値を表1の初期容量と充放電効率の欄に記載した。本実施例の二次電池B1の充放電効率は約99%と高く、充放電特性に優れていることがわかった。
 さらに、室温にて50サイクルの充放電試験を行った。開回路の状態より5時間率に相当する電流(0.2A)にて充電を開始し、3.5Vに到達した後に、120分の定電圧充電を行った。その後30分の休止を経て、電池電圧が0.8Vに達するまで0.2Aの定電流放電を行い、30分の休止を設けた。この一連のサイクルを50回行って、初期容量に対する50サイクル目の放電容量の比率を容量維持率とした。この値を表1の50サイクル後の容量維持率の欄に記載した。本実施例の電池B1は、91±3%の高い容量維持率を示した。本発明の電解液を用いることによって、電解液中のマグネシウムイオン濃度が増大し、電池の充放電特性を向上させることができた。
 実施例1のマグネシウム二次電池の電解質を変更し、電解液の異なる複数種類の角型二次電池B2、B3、B4、B5を製作した。電解質の種類を表1に示す。各電解質の濃度は、0.5モル/リットルとした。正極107、負極108、セパレータ109は、実施例1と同一である。各電池について、実施例1に記載した同一条件の初期エージングを行い、初期容量と充放電効率を測定した。さらに、室温にて50サイクルの充放電試験を行った。試験条件は、実施例1に記載した通りである。初期容量、充放電効率、50サイクル目の放電容量から計算した容量維持率を表1に示した。いずれの電池も、初期容量が大きく、充放電効率が高かった。また、50サイクル後の容量維持特性も優れており、特にオルト位またはパラ位に電子供与性官能基を結合させた電解質アニオンを用いたB2、B3、B5の特性が良好であった。
Figure JPOXMLDOC01-appb-T000001
 本実施例は、マグネシウム二次電池を搭載し、その二次電池に電気エネルギーを貯蔵し、あるいは利用する機能を有する電池システムの例である。実施例2のB2と同一仕様の角型のマグネシウム二次電池101を複数個作成した。電池の定格容量は5時間率放電条件にて1Ahであった。
 図3は2個のマグネシウム二次電池301a、マグネシウム二次電池301bを直列に接続した電池システムS1を示す。なお、電池の直列数と並列数は、システムS1が要求される電力量に応じて、任意に設定することが可能である。電極のサイズまたは積層数を増大させて、二次電池1個当たりの容量を1Ahよりも大きくしても良い。各マグネシウム二次電池301a、マグネシウム二次電池301bは、正極307、負極308、セパレータ309からなる同一仕様の積層体を有し、蓋303に正極外部端子304、負極外部端子305を設けている。各外部端子と電池容器302の間には絶縁性シール材料312を挿入し、外部端子同士が短絡しないようにしている。蓋303には、本発明の電解液を注入するための注液口306を設けた。
 マグネシウム二次電池301aの負極外部端子305は、電力ケーブル313により充放電制御器316の負極入力ターミナルに接続されている。正極外部端子304は、電力ケーブル314を介して、マグネシウム二次電池301bの負極外部端子305に連結されている。別のマグネシウム二次電池301bの正極外部端子304は、電力ケーブル315により充放電制御器316の正極入力ターミナルに接続されている。このような配線構成によって、2個のマグネシウム二次電池301a、マグネシウム二次電池301bの充電または放電をすることができる。二次電池の直列数または並列数を増減させることによって、複数の電池からなる組電池の電力量を変更させることは任意である。
 充放電制御器316は、電力ケーブル317、電力ケーブル318を介して、外部に設置した機器(以下では外部機器と称する。)319との間で電力の授受を行う。外部機器319は、充放電制御器316に給電するための外部電源や回生モータ等の各種電気機器、ならびに本システムが電力を供給するインバータ、コンバータおよび負荷が含まれている。外部機器319が対応する交流、直流の種類に応じて、インバータ等を設ければ良い。これらの機器類は、公知のものを任意に適用することができる。
 また、再生可能エネルギーを生み出す機器として風力発電機の動作条件を模擬した発電装置322を設置し、電力ケーブル320、電力ケーブル321を介して充放電制御器316に接続した。発電装置322が発電するときには、充放電制御器316が充電モードに移行し、外部機器319に給電するとともに、余剰電力をマグネシウム二次電池301aとマグネシウム二次電池301abに充電する。また、風力発電機を模擬した発電量が外部機器319の要求電力よりも少ないときには、マグネシウム二次電池301aとマグネシウム二次電池301bを放電させるように充放電制御器316が動作する。なお、発電装置322は他の発電装置、すなわち太陽電池、地熱発電装置、燃料電池、ガスタービン発電機などの任意の装置に置換することができる。充放電制御器316は上述の動作をするように自動運転可能なプログラムを記憶させておく。なお、発電装置322は、太陽光、地熱、波動エネルギーなどの再生可能なエネルギーを利用する任意の発電システムに置き換えることができる。
 マグネシウム二次電池301a、マグネシウム二次電池301bを定格容量が得られる通常の充電を行う。例えば、5時間率の充電電流にて、各電池の電圧が3.5Vの定電圧充電を実行することができる。充電条件は、二次電池の材料の種類、使用量などの設計で決まるので、電池の仕様ごとに最適な条件とする。マグネシウム二次電池301a、マグネシウム二次電池301bを充電した後には、充放電制御器316を放電モードに切り替えて、各電池を放電させる。通常は、一定の下限電圧に到達したときに放電を停止させる。システムS1を起動させ、外部機器319は充電時に電力を供給し、放電時に電力を消費させた。本実施例では、1時間率放電まで実施し、2時間率放電時の容量に対して90%の高い容量を得た。
 上記のシステムは、外部機器319を電気モータなどの駆動装置に置き換えると、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、運搬機器、建設機械、介護機器、軽車両、電動工具、ゲーム機、映像機、テレビ、掃除機、ロボット、携帯端末情報機器などに適用できる。太陽光発電や燃料電池システムと電力ケーブルで接続した電力貯蔵システムを製造することができる。このようなシステムは、病院やビルあるいは小規模の地域(コミュニティ)への電力供給、系統電力を持たない離島や山間部への電力供給に利用することができる。また、海底探索潜水艦や宇宙ステーションなどの電源としても利用可能である。
101、301a、301b マグネシウム二次電池
102、302 電池容器
103、303 蓋
104、304 正極外部端子
105、305 負極外部端子
106、306 注液口
107、307 正極
108、308 負極
109、309 セパレータ
112、312 絶縁性シール材料
313、314、315、317、318、320、321 電力ケーブル
316 充放電制御器
319 外部機器
322 発電装置

Claims (7)

  1.  マグネシウムイオンを吸蔵・放出可能な正極と、
     マグネシウムイオンを析出・溶解可能または吸蔵・放出可能な負極と、
     マグネシウムイオンを含有する電解液と、を有するマグネシウム二次電池であって、
     前記電解液に芳香族環を有する有機酸マグネシウムが含まれることを特徴とするマグネシウム二次電池。
  2.  請求項1において、
     前記有機酸マグネシウムはマグネシウムイオンと塩を形成する官能基を分子内に有し、 前記マグネシウムイオンと塩を形成する官能基は、カルボン酸基、硫酸基、硝酸基、フェノール基、チノール基のいずれか一つ以上であるマグネシウム二次電池。
  3.  請求項2において、
     前記有機酸マグネシウムの芳香族環の水素が水素よりも電子供与性の強い電子供与性官能基で置換されているマグネシウム二次電池。
  4.  請求項3において、
     前記電子供与性官能基は、前記マグネシウムイオンと塩を形成する官能基が結合している前記芳香族環の位置を基準としたオルト位またはパラ位に形成されているマグネシウム二次電池。
  5.  請求項1において、
     前記有機酸マグネシウムに含まれる前記芳香族環は一つまたは二つであるマグネシウム二次電池。
  6.  請求項2において、
     前記電解液に100ppm以上1000ppm以下の水が含まれるマグネシウム二次電池。
  7.  請求項1に記載のマグネシウム二次電池を搭載した電池システムであって、
     前記マグネシウム二次電池に電気エネルギーを貯蔵する機能を有する電池システム。
PCT/JP2011/002811 2011-05-20 2011-05-20 マグネシウム二次電池およびそれを搭載した電池システム WO2012160587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002811 WO2012160587A1 (ja) 2011-05-20 2011-05-20 マグネシウム二次電池およびそれを搭載した電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002811 WO2012160587A1 (ja) 2011-05-20 2011-05-20 マグネシウム二次電池およびそれを搭載した電池システム

Publications (1)

Publication Number Publication Date
WO2012160587A1 true WO2012160587A1 (ja) 2012-11-29

Family

ID=47216697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002811 WO2012160587A1 (ja) 2011-05-20 2011-05-20 マグネシウム二次電池およびそれを搭載した電池システム

Country Status (1)

Country Link
WO (1) WO2012160587A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066326A (zh) * 2013-01-18 2013-04-24 上海交通大学 一种用于可充镁电池的电解液
JP2015230830A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 活物質、それを用いたナトリウムイオン電池およびリチウムイオン電池
WO2016084924A1 (ja) * 2014-11-28 2016-06-02 和光純薬工業株式会社 マグネシウム含有電解液
CN110197929A (zh) * 2019-05-22 2019-09-03 佛山科学技术学院 镁离子电池负极材料的预处理方法及镁离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353543A (ja) * 1999-06-08 2000-12-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2001076721A (ja) * 1999-08-31 2001-03-23 Sony Corp 非水電解質電池
JP2007280627A (ja) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd マグネシウム二次電池
JP2009064730A (ja) * 2007-09-07 2009-03-26 Sony Corp マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353543A (ja) * 1999-06-08 2000-12-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2001076721A (ja) * 1999-08-31 2001-03-23 Sony Corp 非水電解質電池
JP2007280627A (ja) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd マグネシウム二次電池
JP2009064730A (ja) * 2007-09-07 2009-03-26 Sony Corp マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066326A (zh) * 2013-01-18 2013-04-24 上海交通大学 一种用于可充镁电池的电解液
JP2015230830A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 活物質、それを用いたナトリウムイオン電池およびリチウムイオン電池
WO2016084924A1 (ja) * 2014-11-28 2016-06-02 和光純薬工業株式会社 マグネシウム含有電解液
JPWO2016084924A1 (ja) * 2014-11-28 2017-11-02 和光純薬工業株式会社 マグネシウム含有電解液
US10367231B2 (en) 2014-11-28 2019-07-30 Fujifilm Wako Pure Chemical Corporation Magnesium-containing electrolytic solution
CN110197929A (zh) * 2019-05-22 2019-09-03 佛山科学技术学院 镁离子电池负极材料的预处理方法及镁离子电池

Similar Documents

Publication Publication Date Title
Patel et al. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems
JP5954179B2 (ja) 非水系二次電池用電極、それを備えた非水系二次電池及び組電池
WO2017026269A1 (ja) 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2010128584A1 (ja) 非水溶媒、並びにそれを用いた非水電解液および非水系二次電池
JP5682209B2 (ja) リチウムイオン二次電池
JP2015118841A (ja) 二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2010010095A (ja) 非水電解液および非水電解液二次電池
JP2008103596A (ja) リチウムイオンキャパシタ
JP5696008B2 (ja) 被覆活物質およびそれを用いたリチウム二次電池
CN106025177A (zh) 非水电解质二次电池
JP2012221670A (ja) マグネシウム二次電池およびそれを用いた電池システム
JP6966422B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CA2850708A1 (en) Organic electrolyte and organic electrolyte storage battery
US20190058209A1 (en) Negative electrode for magnesium secondary batteries and method for producing same, and magnesium secondary battery
TW201721941A (zh) 非水電解質二次電池用負極活性物質的製造方法、及非水電解質二次電池的製造方法
WO2012160587A1 (ja) マグネシウム二次電池およびそれを搭載した電池システム
JP2016105366A (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US20230411693A1 (en) Non-aqueous electrolyte and secondary battery, battery module, battery pack and electrical device containing the same
JP6346733B2 (ja) 電極、非水系二次電池及び電極の製造方法
CN112534621B (zh) 电解液及电化学器件
JP7166115B2 (ja) 二次電池、電池パック、車両及び定置用電源
JP2014160608A (ja) リチウムイオン電池
JP6874777B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2021028957A (ja) 蓄電デバイス及び電極
JP4732074B2 (ja) リチウムイオンキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP