WO2016084836A1 - ポリビニルアルコール系重合体フィルムおよびその製造方法 - Google Patents

ポリビニルアルコール系重合体フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2016084836A1
WO2016084836A1 PCT/JP2015/083042 JP2015083042W WO2016084836A1 WO 2016084836 A1 WO2016084836 A1 WO 2016084836A1 JP 2015083042 W JP2015083042 W JP 2015083042W WO 2016084836 A1 WO2016084836 A1 WO 2016084836A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer film
pva polymer
drying
polyvinyl alcohol
Prior art date
Application number
PCT/JP2015/083042
Other languages
English (en)
French (fr)
Inventor
保二郎 森
悠希 鈴木
良治 勝野
翔大朗 森
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016561908A priority Critical patent/JP6679496B2/ja
Priority to KR1020177003264A priority patent/KR102423946B1/ko
Priority to CN201580064659.6A priority patent/CN107001667B/zh
Publication of WO2016084836A1 publication Critical patent/WO2016084836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a polyvinyl alcohol polymer film (hereinafter, “polyvinyl alcohol” may be abbreviated as “PVA”), a method for producing the same, and an optical film such as a polarizing film produced from the PVA polymer film. .
  • PVA polyvinyl alcohol polymer film
  • a polarizing plate having a light transmission and shielding function is an important component of a liquid crystal display (LCD) together with a liquid crystal having a light switching function.
  • LCD liquid crystal display
  • the field of application of this liquid crystal display device is also used in small devices such as calculators and wristwatches in the early days of development, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, and measurements used indoors and outdoors. It has been extended to a wide range of devices, especially for LCD monitors and LCD TVs.
  • a polarizing plate is obtained by uniaxially stretching a PVA polymer film and then dyeing it with iodine or a dichroic dye, and then performing a fixing treatment with a boron compound after dyeing and uniaxially stretching the PVA polymer film.
  • a protective film such as a cellulose triacetate film or an acetic acid / butyric acid cellulose film is produced on one side or both sides of the polarizing film obtained by producing a polarizing film by the method, a method of performing fixing treatment simultaneously with dyeing in any of the above methods It is manufactured by pasting together.
  • Patent Document 1 A method of setting the speed of the drum located at the uppermost stream] to 0.8 to 1.3 is known (Patent Document 1).
  • a stretched film such as a polarizing film that is hard to break when stretched and has an optical performance equal to or higher than that of a conventional product with good workability, high yield, low cost, and high productivity.
  • a value ( ⁇ n (MD) Ave ) obtained by averaging the birefringence in the machine flow direction of the PVA polymer film in the thickness direction of the film and the birefringence in the width direction of the PVA polymer film A PVA polymer film is known in which a value ( ⁇ n (TD) Ave ) obtained by averaging the rate in the thickness direction of the film satisfies a specific relationship (see Patent Documents 2 and 3).
  • JP 2001-315141 A International Publication No. 2012/132984 International Publication No. 2013/137056
  • a method of stretching to a relatively high stretching ratio may be employed at the time of dyeing when producing the polarizing film.
  • a relatively high temperature may also be adopted in main stretching called stretching.
  • the PVA polymer films described in Patent Documents 1 to 3 have room for further improvement in that a high limit drawing ratio is expressed even in the above case.
  • the PVA polymer films described in Patent Documents 1 to 3 have a problem that the film width is narrowed by stretching to a high magnification, and the finally obtained polarizing film area is reduced.
  • the object of the present invention is that even when a method of stretching to a relatively high stretch ratio at the time of dyeing is employed or when a relatively high stretch temperature is employed, the limit stretch ratio is high and high without causing breakage.
  • the film can be stretched at a magnification, and by suppressing the decrease in the film width during stretching, a stretched film such as a polarizing film can be produced with good workability, high yield, low cost, and high productivity.
  • the objective of this invention is providing the method which can manufacture the PVA-type polymer film which has the above-mentioned outstanding characteristic smoothly and continuously with high productivity.
  • the objective of this invention is providing optical films, such as a polarizing film manufactured from the said PVA-type polymer film.
  • a stretched film such as a polarizing film having excellent optical performance can be produced with high yield, low cost and high productivity without interrupting the stretching operation.
  • the value obtained by averaging the birefringence in the machine flow direction (length direction) of the PVA polymer film in the thickness direction of the film and the birefringence in the width direction of the PVA polymer film in the thickness direction of the film are thinner than the PVA polymer film that has been conventionally used in the production of polarizing films.
  • the present inventors discharged the above-mentioned PVA polymer film having a high limit drawing ratio onto a first drying roll of a film forming apparatus including a plurality of drying rolls, as a film forming stock solution containing the PVA polymer. After that, the plurality of drying rolls are sequentially dried to form a film. At that time, the ratio of the peripheral speed of the final drying roll to the peripheral speed of the first drying roll is set to a specific range, and the volatile content ratio is specified. It was found that by making the shrinkage rate calculated from the film width of the PVA polymer film when the value reached a specific range, it can be produced smoothly and continuously with high productivity.
  • each drying roll when the volatile fraction of the PVA polymer film is in a specific range is in a specific range. It is preferable that these average values are in a specific range, that the volatile fraction of the film-forming stock solution is in a specific range, and the peripheral speed of the first drying roll is specified in a specific range. It was found that it is preferable to make the range.
  • the present inventors have further studied based on the above findings and completed the present invention.
  • the present invention [1] A PVA polymer film characterized by satisfying the following formulas (I) and (II): ⁇ n (MD) Ave ⁇ 1.3 ⁇ 10 ⁇ 3 (I) ⁇ n (TD) Ave ⁇ 1.3 ⁇ 10 ⁇ 3 (II) [In the above formula, ⁇ n (MD) Ave represents a value obtained by averaging the birefringence in the machine flow direction of the PVA polymer film in the thickness direction of the film, and ⁇ n (TD) Ave represents the PVA polymer. A value obtained by averaging the birefringence in the width direction of the film in the thickness direction of the film is shown.
  • the PVA polymer film of the present invention has a high limit stretch ratio even when a method of stretching to a relatively high stretch ratio at the time of dyeing is employed or when a relatively high stretch temperature is employed. Therefore, when producing a stretched film, even if it is uniaxially stretched at a high magnification, the film is not easily broken, and thus a stretched film such as a polarizing film can be produced at a high yield without interrupting the stretching operation. It can be manufactured with high cost and high productivity.
  • the PVA polymer film of the present invention has a thickness of about 10 to 65 ⁇ m, which is thinner than the thickness of the PVA polymer film conventionally used for producing a polarizing film or the like.
  • FIG. 1 is a schematic view showing a method for collecting a sample when measuring ⁇ n (MD) Ave of a PVA polymer film.
  • FIG. 2 is a schematic view showing a method of collecting a sample when measuring ⁇ n (TD) Ave of a PVA polymer film.
  • the present invention is described in detail below.
  • a transparent film manufactured using a transparent polymer such as a PVA polymer
  • the polymer chain is oriented in the flow direction (machine flow direction: length direction) due to plastic deformation or strain due to shear stress.
  • the polarization directions of the constituent atomic groups are macroscopically aligned, thereby causing the birefringence unique to the polymer.
  • the birefringence [ ⁇ n (MD)] in the machine flow direction in the PVA polymer film is obtained from the following formula [i]
  • the birefringence [ ⁇ n (TD)] in the width direction is given by the following formula [ii]. It is requested from.
  • ⁇ n (MD) nMD ⁇ nz [i]
  • ⁇ n (TD) nTD ⁇ nz [ii] [Where nMD is the refractive index in the machine flow direction (length direction) of the film, nTD is the refractive index in the width direction of the film, and nz is the refractive index in the thickness direction of the film. ]
  • the PVA polymer film of the present invention is different from conventional PVA polymer films in that the following formulas (I) and (II) are satisfied.
  • ⁇ n (MD) Ave ⁇ 1.3 ⁇ 10 ⁇ 3 (I)
  • ⁇ n (TD) Ave ⁇ 1.3 ⁇ 10 ⁇ 3 (II)
  • ⁇ n (MD) Ave represents a value obtained by averaging the birefringence in the machine flow direction of the PVA polymer film in the thickness direction of the film
  • ⁇ n (TD) Ave represents the PVA polymer. A value obtained by averaging the birefringence in the width direction of the film in the thickness direction of the film is shown.
  • the machine flow direction of the PVA polymer film (line when continuously forming the PVA polymer film) Direction) [hereinafter referred to as “length direction (MD)” birefringence averaged in the thickness direction of the film, “ ⁇ n (MD) Ave ”, and the width of the PVA polymer film “ ⁇ (TD) Ave ” which is a value obtained by averaging the birefringence of the direction (direction perpendicular to the length direction) [hereinafter sometimes referred to as “width direction (TD)”] in the thickness direction of the film, Each has the characteristic of being in the above range.
  • the PVA polymer film of the present invention employs a method of stretching to a relatively high stretching ratio during dyeing or a relatively high stretching temperature by satisfying the above formulas (I) and (II). Even when the film is made, it has a high limit draw ratio, which makes it difficult for the film to break even if it is uniaxially stretched at a high magnification during the production of a stretched film such as a polarizing film. Thus, a stretched film having a thin film and excellent optical performance such as polarization performance can be produced with high yield and high productivity.
  • the PVA polymer film of the present invention has a ⁇ n (MD) Ave of less than 1.3 ⁇ 10 ⁇ 3 from the viewpoints of the effects of the present invention being more remarkable and the ease of production thereof.
  • a ⁇ n (MD) Ave of less than 1.3 ⁇ 10 ⁇ 3 from the viewpoints of the effects of the present invention being more remarkable and the ease of production thereof.
  • it is 1.0 ⁇ 10 ⁇ 3 or less, more preferably 0.9 ⁇ 10 ⁇ 3 or less, particularly preferably 0.8 ⁇ 10 ⁇ 3 or less, Further, it is preferably 0.7 ⁇ 10 ⁇ 3 or more, and more preferably 0.75 ⁇ 10 ⁇ 3 or more.
  • the PVA polymer film of the present invention has a ⁇ n (TD) Ave of 1.2 ⁇ 10 ⁇ 3 from the viewpoints of the remarkable effects of the present invention and the ease of production thereof. Is preferably 1.15 ⁇ 10 ⁇ 3 or less, more preferably 1.1 ⁇ 10 ⁇ 3 or less, and 1.0 ⁇ 10 ⁇ 3 or more. Is preferably 1.05 ⁇ 10 ⁇ 3 or more.
  • the value of ⁇ n (MD) Ave and / or ⁇ n (TD) Ave often varies in the width direction (TD) of the film, and particularly ⁇ n (MD) at both ends in the width direction. Ave tends to be high, but at least the center of the width direction (TD) of the PVA polymer film should satisfy the formulas (I) and (II), and the width direction (TD) of the PVA polymer film It is preferable that the formulas (I) and (II) are satisfied in the entire region of 80% or more of the width direction (TD) centering on the center portion of. Both ends in the width direction (TD) of the PVA polymer film not satisfying the formulas (I) and (II) are removed by cutting before the PVA polymer film is stretched in the length direction (MD). Take).
  • ⁇ n (MD) Ave of the PVA polymer film [value obtained by averaging the birefringence in the length direction (MD) of the PVA polymer film in the thickness direction of the film] and “ ⁇ n (TD) Ave ”
  • the [value obtained by averaging the birefringence in the width direction (TD) of the PVA polymer film in the thickness direction of the film] can be measured by the following method.
  • an average value of retardation is adopted with a line width of 300 pixels.
  • V The value of retardation distribution in the thickness direction of the film obtained above is divided by the thickness measured with a microscope to obtain a birefringence ⁇ n (MD) distribution in the thickness direction of the film, and the thickness direction of the film is determined. The average value of the birefringence ⁇ n (MD) distribution is taken. The average value of the birefringence ⁇ n (MD) distribution in the thickness direction of each film obtained for the five slice pieces is further averaged to obtain “ ⁇ n (MD) Ave ”.
  • ⁇ n (TD) Ave Measurement Method (Here, a method for measuring ⁇ n (TD) Ave at the center in the width direction (TD) of the PVA polymer film is exemplified.)
  • MD ⁇ TD 10 mm ⁇ 2 mm from the center in the width direction (TD) of the film Is cut out, sandwiched on both sides with a 100 ⁇ m thick PET film, and further sandwiched between wooden frames and attached to a microtome apparatus.
  • the strips collected in the above are parallel to the width direction (TD) of the strips at intervals of 10 ⁇ m.
  • an average value of retardation is adopted with a line width of 300 pixels.
  • V The value of retardation distribution in the thickness direction of the film obtained above is divided by the thickness measured with a microscope to obtain the birefringence ⁇ n (TD) distribution in the thickness direction of the film, and the thickness direction of the film is determined. The average value of the birefringence ⁇ n (TD) distribution is taken. The average value of the birefringence ⁇ n (TD) distribution in the thickness direction of each film obtained for five slice pieces is further averaged to obtain “ ⁇ n (TD) Ave ”.
  • the thickness of the PVA polymer film of the present invention can be in the range of 5 to 150 ⁇ m, but is preferably 10 to 65 ⁇ m when used as a raw film for producing a polarizing film.
  • the PVA polymer film of the present invention has a high limit stretch ratio even when a method of stretching to a relatively high stretch ratio at the time of dyeing is employed or when a relatively high stretch temperature is employed.
  • the film thickness is 10 to 65 ⁇ m, which is thinner than the PVA polymer film having a thickness of about 75 ⁇ m, which is often used as a raw film for producing a polarizing film, the film does not break.
  • the thickness of the stretched film can be made thinner than before, and It is possible to shorten the drying time for forming a film, it is possible to improve the production rate of the polarizing film.
  • the thickness of the PVA polymer film is more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, and may be 40 ⁇ m or less, and further 30 ⁇ m or less.
  • the thickness of the PVA polymer film is 15 ⁇ m or more. Is more preferably 18 ⁇ m or more, and particularly preferably 20 ⁇ m or more.
  • the width of the PVA polymer film of the present invention is not particularly limited. However, since liquid crystal televisions and monitors have recently become larger, the width is preferably 2 m or more so that they can be used effectively. It is more preferably 3 m or more, and further preferably 4 m or more. Moreover, when manufacturing a polarizing plate with a realistic production machine, if the width of the film is too large, uniform uniaxial stretching may be difficult. Therefore, the width of the PVA polymer film may be 8 m or less. preferable.
  • the mass swelling degree of the PVA polymer film of the present invention is preferably 180 to 250%, more preferably 185 to 240%, still more preferably 190 to 230%. If the mass swelling degree of the PVA polymer film is too low, it tends to be difficult to stretch and it becomes difficult to produce a stretched film having excellent optical performance. On the other hand, if the mass swelling degree is too high, Process passability may deteriorate, or a highly durable polarizing film may not be obtained.
  • the mass swelling degree here is a value obtained by dividing the mass when the PVA polymer film is immersed in distilled water at 30 ° C. for 30 minutes by the mass after drying at 105 ° C. for 16 hours after the immersion. It can be measured by the method described in the following examples.
  • the PVA polymer for forming the PVA polymer film of the present invention for example, PVA obtained by saponifying polyvinyl ester obtained by polymerizing vinyl ester, and a comonomer is graft copolymerized on the main chain of PVA.
  • Modified PVA polymer modified PVA polymer produced by saponification of modified polyvinyl ester copolymerized with vinyl ester and comonomer, some of hydroxyl groups of unmodified PVA or modified PVA polymer are formalin, butyraldehyde And so-called polyvinyl acetal resins crosslinked with aldehydes such as benzaldehyde.
  • the PVA polymer forming the PVA polymer film of the present invention is a modified PVA polymer
  • the amount of modification in the PVA polymer is preferably 15 mol% or less, preferably 5 mol% or less. It is more preferable.
  • vinyl ester used for the production of the PVA polymer examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valelate, vinyl pivalate, vinyl laurate, vinyl stearate, vinyl benzoate. And vinyl versatate. These vinyl esters can be used alone or in combination. Of these vinyl esters, vinyl acetate is preferred from the viewpoint of productivity.
  • Examples of the comonomer described above include olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene (such as ⁇ -olefin); acrylic acid or a salt thereof; methyl acrylate, ethyl acrylate, Acrylic esters such as n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate ( For example, an acrylic ester having 1 to 18 carbon atoms of acrylic acid); methacrylic acid or a salt thereof; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-methacryl
  • the average degree of polymerization of the PVA polymer forming the PVA polymer film of the present invention is preferably 1000 or more, more preferably 1500 or more, and more preferably 2000 or more, from the viewpoint of the polarizing performance and durability of the obtained polarizing film. Further preferred.
  • the upper limit of the average degree of polymerization of the PVA polymer is preferably 8000 or less, particularly preferably 6000 or less, from the viewpoint of ease of production of a homogeneous PVA polymer film and stretchability.
  • the “average degree of polymerization” of the PVA polymer in the present specification refers to the average degree of polymerization measured according to JIS K6726-1994, and is 30 ° C. after re-saponifying and purifying the PVA polymer. It is obtained from the intrinsic viscosity measured in water.
  • the saponification degree of the PVA polymer forming the PVA polymer film of the present invention is preferably 95.0 mol% or more, and 98.0 mol% or more from the viewpoint of the polarizing performance and durability of the obtained polarizing film. Is more preferably 99.0 mol% or more, most preferably 99.3 mol% or more.
  • the “degree of saponification” of the PVA polymer in the present specification refers to the total number of moles of structural units (typically vinyl ester units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification. The percentage of the number of moles of the vinyl alcohol unit (mol%).
  • the degree of saponification of the PVA polymer can be measured according to the description of JIS K6726-1994.
  • the production method of the PVA polymer film of the present invention is not particularly limited, and any method may be used as long as it can produce a PVA polymer film satisfying the above-described formulas (I) and (II).
  • the PVA polymer film of the present invention is (A) A part in which a film forming apparatus including a plurality of drying rolls whose rotation axes are parallel to each other is used, and a film forming stock solution containing a PVA polymer is discharged into a film on the first drying roll of the film forming apparatus.
  • a film forming stock solution containing a PVA polymer film is prepared by mixing a PVA polymer with a liquid medium to form a solution, or by melting a PVA polymer pellet containing the liquid medium or the like into a melt. can do.
  • the dissolution of the PVA polymer in the liquid medium and the melting of the PVA polymer pellets including the liquid medium can be performed using a stirring mixer, a melt extruder, or the like.
  • the liquid medium used in this case include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylenediamine, diethylenetriamine, and the like. These liquid media can be used alone or in combination. More than one species can be used in combination. Among these, water, dimethyl sulfoxide, or a mixture of both are preferably used, and water is more preferably used.
  • a plasticizer is added to the film-forming stock solution from the viewpoints of accelerating dissolution and melting of the PVA polymer in a liquid medium, improving process passability during film production, and improving the stretchability of the resulting PVA polymer film. It is preferable.
  • polyhydric alcohol is preferably used, and examples thereof include ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the like. 1 type can be used individually or in combination of 2 or more types. Among these, one or more of glycerin, diglycerin and ethylene glycol are preferably used because they are excellent in the effect of improving stretchability.
  • the addition amount of the plasticizer is preferably 0 to 30 parts by mass, more preferably 3 to 25 parts by mass, and particularly preferably 5 to 20 parts by mass with respect to 100 parts by mass of the PVA polymer.
  • the addition amount of the plasticizer exceeds 30 parts by mass with respect to 100 parts by mass of the PVA polymer, the resulting PVA polymer film may become too soft and handleability may deteriorate.
  • a surfactant to the film-forming stock solution from the viewpoint of improving the peelability from the drying roll when producing the PVA polymer film and the handleability of the resulting PVA polymer film.
  • the type of the surfactant is not particularly limited, but an anionic surfactant or a nonionic surfactant is preferably used.
  • an anionic surfactant for example, a carboxylic acid type such as potassium laurate, a sulfate type such as octyl sulfate, and a sulfonic acid type anionic surfactant such as dodecylbenzene sulfonate are suitable.
  • nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether, alkylphenyl ether types such as polyoxyethylene octylphenyl ether, alkyl ester types such as polyoxyethylene laurate, and polyoxyethylene.
  • Alkylamine type such as laurylamino ether
  • alkylamide type such as polyoxyethylene lauric acid amide
  • polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether
  • alkanolamide type such as lauric acid diethanolamide, oleic acid diethanolamide
  • An allyl phenyl ether type nonionic surfactant such as polyoxyalkylene allyl phenyl ether is preferred.
  • These surfactants can be used alone or in combination of two or more.
  • the addition amount of the surfactant is preferably 0.01 to 1 part by mass, more preferably 0.02 to 0.5 part by mass, and 0.05 to 0.3 part by mass with respect to 100 parts by mass of the PVA polymer. Is particularly preferred. When the amount is less than 0.01 parts by mass, the effect of improving the film-forming property and the peelability may be difficult to appear. On the other hand, when the amount is more than 1 part by mass, the surfactant elutes on the film surface and causes blocking. , The handleability may be reduced.
  • the raw material for film formation is various additives such as stabilizers (for example, antioxidants, ultraviolet absorbers, heat stabilizers, etc.), compatibilizers as long as the properties of the PVA polymer film of the present invention are not impaired. Further, it may contain an antiblocking agent, a flame retardant, an antistatic agent, a lubricant, a dispersing agent, a fluidizing agent, an antibacterial agent and the like. These additives can be used alone or in combination of two or more.
  • stabilizers for example, antioxidants, ultraviolet absorbers, heat stabilizers, etc.
  • compatibilizers as long as the properties of the PVA polymer film of the present invention are not impaired.
  • it may contain an antiblocking agent, a flame retardant, an antistatic agent, a lubricant, a dispersing agent, a fluidizing agent, an antibacterial agent and the like.
  • the volatile fraction of the film-forming stock solution used for the production of the PVA polymer film is preferably 60 to 75% by mass, and more preferably 65 to 70% by mass. If the volatile fraction of the film-forming stock solution is less than 60% by mass, the viscosity of the film-forming stock solution becomes high, making filtration and defoaming difficult, and film-forming itself may be difficult. On the other hand, when the volatile fraction of the film-forming stock solution is larger than 75% by mass, the viscosity becomes too low and the thickness uniformity of the PVA polymer film may be impaired.
  • the volatile fraction of the film-forming stock solution refers to the volatile fraction determined by the following formula [iii].
  • Volatile fraction (% by mass) of the film-forming stock solution ⁇ (W a ⁇ W b ) / W a ⁇ ⁇ 100 [iii]
  • W a represents the mass (g) of the film-forming stock solution
  • W b represents the mass (g) after drying the film-forming stock solution of W a (g) for 16 hours in an electrothermal dryer at 105 ° C.
  • the number of drying rolls is preferably 3 or more, more preferably 4 or more. More preferably, the number is 5 to 30.
  • the plurality of drying rolls are preferably formed of a metal such as nickel, chromium, copper, iron, stainless steel, and the like, and in particular, the roll surface is hardly corroded and is formed of a metallic material having a specular gloss. It is more preferable.
  • a drying roll plated with a single layer or a combination of two or more layers such as a nickel layer, a chromium layer, and a nickel / chromium alloy layer.
  • the roll surface temperature of each drying roll in the plurality of drying rolls is preferably 65 ° C. or higher, more preferably 75 ° C. or higher, and still more preferably 85 ° C. or higher. Further, the roll surface temperature of each drying roll is preferably 90 to 130 ° C., preferably 100 to 120 ° C. with respect to the roll surface temperature of the drying roll that can be used as a heat treatment roll in the final step or a step close thereto. However, the roll surface temperature of the other drying rolls is preferably 100 ° C. or lower.
  • the film forming apparatus used in the above manufacturing method may have a hot air oven type hot air drying apparatus, a heat treatment apparatus, a humidity control apparatus, etc., if necessary, following a plurality of drying rolls.
  • a film-forming stock solution containing a PVA polymer on the first drying roll of the film-forming apparatus into a film shape
  • a T-type slit die, a hopper plate, an I-die, a lip coater die, etc. are known.
  • the film-forming stock solution containing the PVA polymer is discharged (cast) in the form of a film onto the first drying roll using the film-like discharge device (film-like casting device).
  • the film-forming stock solution containing the PVA polymer discharged in the form of a film on the first drying roll is dried on the first drying roll, and the volatile fraction of the PVA polymer film is preferably 16 to 30% by mass, More preferably 17 to 29% by mass, and still more preferably 18 to 28% by mass, when peeling from the first drying roll.
  • the volatile content rate of the PVA polymer film at the time of peeling from the first drying roll is not less than the above lower limit, it is possible to suppress the ⁇ n (MD) Ave value from becoming too large.
  • the volatile content ratio of the PVA polymer film when peeling from the first drying roll is too high, peeling from the first drying roll tends to be difficult, and in some cases, breakage or unevenness occurs. It may be easy to do.
  • the volatile fraction of the PVA polymer film or PVA polymer film in the present specification refers to the volatile fraction determined by the following formula [iv].
  • a (mass%) ⁇ (W c ⁇ W d ) / W c ⁇ ⁇ 100 [iv]
  • W c is the mass (g) of the sample taken from the PVA polymer film or PVA polymer film.
  • W d represents the mass (g) when the sample W c (g) is placed in a vacuum dryer at a temperature of 50 ° C. and a pressure of 0.1 kPa or less and dried for 4 hours.
  • a polyhydric alcohol (plasticizer) such as glycerin
  • glycerin a surfactant
  • water When dried under the conditions of “50 ° C., pressure of 0.1 kPa or less for 4 hours”, only water is volatilized, and most of the other components other than water are not volatilized, and PVA polymer film or PVA polymer film.
  • the volatile fraction of the PVA polymer film or PVA polymer film is determined by measuring the amount of water (moisture content) contained in the PVA polymer film or PVA polymer film. It can ask for.
  • the roll surface temperature of the first drying roll is preferably 80 to 120 ° C. from the viewpoint of uniform drying property, drying speed, etc., and the surface temperature is 85 ° C. or more. More preferably, it is 90 degreeC or more, It is more preferable that it is 105 degreeC or less, It is still more preferable that it is 99 degreeC or less. If the surface temperature of the first drying roll exceeds 120 ° C., the film tends to foam, whereas if it is less than 80 ° C., the drying on the first drying roll tends to be insufficient, which causes the peeling failure. It is easy to become.
  • the peripheral speed (S 1 ) of the first drying roll is uniform drying, drying speed, productivity of the PVA polymer film, etc., as well as easier production of the PVA polymer film of the present invention.
  • the peripheral speed (S 1 ) is preferably 10 m / min or more, more preferably 12 m / min or more, and 23 m / min or less. More preferably, it is 22 m / min or less.
  • productivity decreases and the birefringence tends to increase.
  • the peripheral speed (S 1 ) of the first drying roll exceeds 25 m / min, drying on the first drying roll tends to be insufficient.
  • the partial drying on the first drying roll of the film-forming stock solution containing the PVA polymer discharged in the form of a film may be performed only by the heat from the first drying roll. 1 Drying by blowing hot air to the film surface not in contact with the drying roll (hereinafter sometimes referred to as “first drying roll non-contact surface”) and applying heat from both sides of the PVA polymer film, It is preferable from the viewpoints of uniform drying property, drying speed and the like.
  • first drying roll non-contact surface the hot air with a wind speed of 1 to 10 m / sec is applied to the entire area of the first dry roll non-contact surface.
  • the temperature of the hot air blown to the non-contact surface of the first drying roll of the PVA polymer film is preferably 50 to 150 ° C., and preferably 70 to 120 ° C. from the viewpoints of drying efficiency and drying uniformity. More preferably, it is 80 to 95 ° C.
  • the dew point temperature of the hot air blown to the non-contact surface of the first drying roll of the PVA polymer film is preferably 10 to 15 ° C. If the temperature of the hot air blown on the non-contact surface of the first drying roll of the PVA polymer film is too low, the drying efficiency, uniform drying properties, etc. are likely to be lowered, while if too high, foaming is likely to occur.
  • the method for blowing hot air to the non-contact surface of the first dry roll of the PVA polymer film is not particularly limited, and hot air having a uniform wind speed and temperature is applied to the non-contact surface of the first dry roll of the PVA polymer film.
  • Any of the methods that can be sprayed uniformly on the entire surface can be preferably employed, and among them, the nozzle method, the current plate method, or a combination thereof is preferably employed.
  • the first drying roll non-contact surface of the PVA polymer film May be in a direction substantially along the circumferential shape (direction substantially along the circumference of the roll surface of the first drying roll) or in other directions.
  • the PVA polymer film when the PVA polymer film is dried on the first drying roll, it is preferable to exhaust the volatile matter generated from the PVA polymer film by drying and the hot air after spraying.
  • the exhaust method is not particularly limited, but it is preferable to employ an exhaust method that does not cause wind speed spots and temperature spots of hot air sprayed on the non-contact surface of the first drying roll of the PVA polymer film.
  • the PVA polymer film dried to a volatile content of 16 to 30% by mass on the first drying roll is preferably peeled off from the first drying roll, and this time, the first drying roll non-contact surface of the PVA polymer film It is preferable to dry with a 2nd drying roll facing a 2nd drying roll.
  • the ratio (S 2 / S 1 ) of the peripheral speed (S 2 ) of the second drying roll to the peripheral speed (S 1 ) of the first drying roll is preferably 1.005 to 1.090, and 1.010 More preferably, it is ⁇ 1.080.
  • the ratio (S 2 / S 1 ) is less than 1.005, the peeling point of the PVA polymer film from the first drying roll tends to be non-uniform, and the birefringence unevenness in the width direction tends to increase. .
  • the ratio (S 2 / S 1 ) exceeds 1.090, it tends to be difficult to satisfy the ratio (S L / S 1 ) described later.
  • the roll surface temperature of the second drying roll is preferably 65 to 100 ° C., and preferably 75 to 98 ° C. from the viewpoint of uniform drying property, drying speed, and the like. More preferably, the temperature is 85 to 96 ° C.
  • the PVA polymer film dried by the second drying roll is peeled from the second drying roll, and the third drying roll, the fourth drying roll, and the fifth drying are selected according to the number of drying rolls provided in the film forming apparatus.
  • a plurality of drying rolls such as rolls,.
  • the ratio (S L / S 1 ) of the peripheral speed (S L ) of the final drying roll to the peripheral speed (S 1 ) of the first drying roll is 0.955 to 0.980. Then, drying is performed while adjusting the tension applied to the PVA polymer film.
  • the ratio (S L / S 1 ) in the above-described range, the birefringence in the length direction (MD) can be obtained without causing problems such as sagging or winding of the film in the drying process of the PVA polymer film.
  • the value [ ⁇ n (MD) Ave ] obtained by averaging the rate in the thickness direction of the film and the value [ ⁇ n (TD) Ave ] obtained by averaging the birefringence in the width direction (TD) in the thickness direction of the film are the above formulas.
  • the PVA polymer film of the present invention that satisfies (I) and (II) can be produced smoothly.
  • the above-described ratio (S L / S 1 ) when producing the PVA polymer film is preferably 0.975 or less, more preferably 0.970 or less, and 0.960 or less. Is more preferable.
  • the volatile content of the PVA polymer film is 20% by mass.
  • the rate ((1-H 9 / H 20 ) ⁇ 100) (%) is set to 1% or more.
  • [ ⁇ n (TD) Ave ] can smoothly produce the PVA polymer film of the present invention satisfying the above formulas (I) and (II).
  • the shrinkage rate is preferably 1.5% or more, and more preferably 2% or more.
  • the shrinkage rate is too high, film sagging and wrapping tend to occur and process passability tends to be inferior.
  • the shrinkage rate is preferably 4% or less, and 3.5% or less. It is more preferable that it is 3% or less.
  • the method of setting the shrinkage rate in the above range for example, a method of gradually narrowing the film width while holding the end of the PVA film between adjacent drying rolls, improving the slipping of the drying roll surface, etc. Examples thereof include a method of shrinking in the width direction on a drying roll, a method of relatively increasing the distance between adjacent drying rolls, and the like.
  • the volatilization of the PVA polymer film from the drying roll when the volatile content of the PVA polymer film reaches 20% by mass.
  • the surface temperature of each drying roll (all the drying rolls existing in the section) up to the drying roll when the fraction becomes 9% by mass it is preferable to set these average values to 85 ° C. or higher, and 87 ° C. More preferably, it is more preferably 90 ° C. or more, particularly preferably 93 ° C. or more, more preferably 100 ° C. or less, and even more preferably 95 ° C. or less.
  • the drying roll when the volatile content of the PVA polymer film is 20% by mass and “the drying roll when the volatile content of the PVA polymer film is 20% by mass” It means the drying roll in which the PVA polymer film was located when the volatile fraction of the PVA polymer film was 20% by mass and 9% by mass, respectively.
  • the PVA polymer film usually has a reduced volatile content on the drying roll.
  • the upstream drying rolls were respectively designated as “drying rolls when the volatile fraction of the PVA polymer film was 20% by mass.
  • the final drying roll or the drying roll close to the final and the final drying roll may be used as a heat treatment roll by increasing the surface temperature.
  • the roll surface temperature is preferably 90 to 130 ° C, more preferably 100 to 120 ° C.
  • the PVA polymer film subjected to the above-described drying treatment is subjected to heat treatment, humidity conditioning treatment, etc., if necessary, and finally wound into a roll with a predetermined length, whereby the PVA polymer film of the present invention is used. Can be obtained.
  • the volatile content of the PVA polymer film finally obtained by the series of treatments described above is preferably in the range of 1 to 5% by mass, and more preferably in the range of 2 to 4% by mass.
  • PVA-type polymer film of this invention has high limit stretch ratio, and even if it is uniaxially stretched by high magnification at the time of manufacture of a stretched film The film is less likely to break, and the stretched film with excellent optical performance can be produced with high yield and high productivity without causing interruption of the stretching work accompanying the breakage of the film. It is preferably used as an original film for producing an optical film such as a retardation film. Such an optical film can be produced, for example, by subjecting the PVA polymer film of the present invention to a treatment such as uniaxial stretching.
  • a polarizing film from the PVA polymer film of the present invention it may be dyed and uniaxially stretched using the PVA polymer film of the present invention.
  • Dyeing, uniaxial stretching, fixing treatment, drying treatment, and heat treatment may be performed as necessary.
  • the order of dyeing and uniaxial stretching is not particularly limited, and the dyeing process may be performed before the uniaxial stretching process, the dyeing process may be performed simultaneously with the uniaxial stretching process, or the dyeing process may be performed after the uniaxial stretching process. You may go.
  • steps such as uniaxial stretching and dyeing may be repeated a plurality of times. In particular, it is preferable to divide the uniaxial stretching into two or more stages because uniform stretching is easily performed.
  • dyes used for dyeing PVA polymer films include iodine or dichroic organic dyes (for example, DirectBlack 17, 19, 154; DirectBrown 44, 106, 195, 210, 223; DirectRed 2, 23, 28, 31, 37, 39, 79, 81, 240, 242, 247; DirectBlue 1, 15, 22, 78, 90, 98, 151, 168, 202, 236, 249, 270; DirectViolet 9, 12, 51, 98; DirectGreen 1 85; Direct Yellow 8, 12, 44, 86, 87; Dichroic dyes such as Direct Orange 26, 39, 106, 107). These dyes can be used alone or in combination of two or more. Dyeing can usually be performed by immersing the PVA polymer film in a solution containing the dye, but the treatment conditions and treatment method are not particularly limited.
  • the PVA polymer film of the present invention has a high limit stretch ratio even when a method of stretching to a relatively high stretch ratio at the time of dyeing is adopted, the PVA polymer of the present invention is Such a case is particularly preferable.
  • the draw ratio at the end of dyeing is preferably 3 times or more based on the length of the initial PVA polymer film, from the viewpoint of improving the polarization performance of the obtained polarizing film, and 3.4 times or more. More preferably, it is 3.5 times or more, more preferably 5 times or less.
  • the uniaxial stretching may be performed by either a wet stretching method or a dry heat stretching method, but a wet stretching method is preferable from the viewpoint of the performance and quality stability of the obtained polarizing film.
  • a wet stretching method include a method of stretching a PVA polymer film in pure water, an aqueous solution containing various components such as an additive and an aqueous medium, or an aqueous dispersion in which various components are dispersed.
  • the uniaxial stretching method there are a method of uniaxial stretching in warm water containing boric acid, a method of uniaxial stretching in a solution containing the above-described dye or a fixing treatment bath described later, and the like.
  • Uniaxial stretching is preferably performed in the length direction (MD) of the PVA polymer film.
  • the stretching temperature in the uniaxial stretching treatment is not particularly limited, but in the case of the wet stretching method, it is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 70 ° C, and 45 to The temperature is more preferably in the range of 65 ° C., and in the case of the dry heat stretching method, the temperature is preferably in the range of 50 to 180 ° C.
  • the stretching ratio of the uniaxial stretching treatment (the total stretching ratio when performing uniaxial stretching in multiple stages) is preferably stretched as much as possible from the point of polarization performance until just before the film is cut, and specifically 4 times or more. Is preferably 5 times or more, more preferably 5.5 times or more.
  • the upper limit of the stretching ratio is not particularly limited as long as the film is not broken, but is preferably 8.0 times or less in order to perform uniform stretching.
  • the thickness of the stretched film (polarizing film) is preferably 1 to 35 ⁇ m, particularly 5 to 25 ⁇ m.
  • fixing treatment is often performed in order to strengthen the adsorption of the dye to the uniaxially stretched film.
  • a method of immersing a film in a treatment bath to which boric acid and / or a boron compound is added is generally widely adopted. In that case, you may add an iodine compound in a processing bath as needed.
  • the film subjected to the uniaxial stretching treatment or the uniaxial stretching treatment and the fixing treatment is then subjected to a drying treatment (heat treatment).
  • the temperature of the drying treatment (heat treatment) is preferably 30 to 150 ° C., particularly 50 to 140 ° C. If the temperature of the drying treatment (heat treatment) is too low, the dimensional stability of the obtained polarizing film tends to be lowered, while if too high, the polarizing performance is likely to deteriorate due to decomposition of the dye.
  • a polarizing plate can be obtained by attaching optically transparent protective films having mechanical strength to both surfaces or one surface of the polarizing film obtained as described above.
  • a cellulose triacetate (TAC) film, an acetic acid / cellulose butyrate (CAB) film, an acrylic film, a polyester film, or the like is used.
  • a PVA adhesive or a urethane adhesive is generally used, and among them, a PVA adhesive is preferably used.
  • the polarizing plate obtained as described above can be used as a component of a liquid crystal display device after being coated with an acrylic-based pressure-sensitive adhesive and then being bonded to a glass substrate. When the polarizing plate is bonded to the glass substrate, a retardation film, a viewing angle improving film, a brightness improving film, or the like may be bonded simultaneously.
  • the volatile fraction of the film-forming stock solution the volatile fraction (moisture content) of the PVA polymer film or PVA polymer film, and the physical properties of the PVA polymer film are as follows: Measured by the method.
  • ⁇ n (MD) Ave of PVA polymer film ⁇ n (MD) Ave at the center in the width direction (TD) of the PVA polymer film is obtained by the method described above in the section “ ⁇ 1 >> ⁇ n (MD) Ave Measurement Method”, and this is obtained. ⁇ n (MD) Ave.
  • ⁇ n (TD) Ave at the center in the width direction (TD) of the PVA polymer film is determined by the method described above in the section “ ⁇ 2 >> ⁇ n (TD) Ave Measurement Method”, and this is obtained. ⁇ n (TD) Ave.
  • the film was uniaxially stretched in the length direction (MD) to the original length of 2.2 times the original length (stretching at the first stage) at a stretching speed of 12 cm / min, and 0.03% by mass of iodine. And at a stretching rate of 12 cm / min up to 3.5 times the original length while immersed in an aqueous solution of iodine / potassium iodide at a temperature of 30 ° C. containing 3% by weight of potassium iodide for 90 seconds.
  • Neck-in degree of PVA polymer film From the limit draw ratio, polarizing film width, and pre-stretch film width (5 cm) obtained from the sample collected by the above method, the following formula [vii] The degree of neck-in of the polymer film was determined.
  • Neck-in degree Polarized film width ⁇ (Film width before stretching ⁇ ⁇ Limit stretching ratio) [vii]
  • the higher the numerical value of the neck-in degree the wider the polarizing film width with respect to the limit draw ratio, and the larger the polarizing film area that can be collected.
  • Example 1 Production of PVA polymer film: (I) 100 parts by mass of PVA (saponification degree 99.9 mol%, polymerization degree 2400) obtained by saponifying polyvinyl acetate, 12 parts by mass of glycerol, 0.1 part by mass of lauric acid diethanolamide and water
  • the first drying roll surface temperature 93 ° C., peripheral speed (S 1 ) 16.0 m
  • S 1 peripheral speed
  • a film-forming apparatus provided with a plurality of drying rolls having rotation axes parallel to each other from a T-die with a film-forming stock solution having a volatile content of 66 mass% / Min
  • the volatile fraction is 21% by mass while blowing hot air of 90 ° C.
  • Example 1 the ratio (S L / S 1 ) of the peripheral speed (S L ) of the final drying roll to the peripheral speed (S 1 ) of the first drying roll was 0.958, and the volatile fraction was 20% by mass.
  • Example 2 and 3 and Comparative Examples 1 to 3 (1)
  • the PVA polymer was prepared in the same manner as in Example 1 (1) by changing the film forming conditions for producing the PVA polymer film as described in Table 1 below. A film was produced. Table 1 below shows ⁇ n (MD) Ave , ⁇ n (TD) Ave , mass swelling degree, limit draw ratio, and neck-in degree of each PVA polymer film thus obtained. It was as follows.
  • the PVA polymer films of Examples 1 to 3 were found to have ⁇ n (MD) Ave [average birefringence in the machine flow direction of the PVA polymer film in the thickness direction of the film.
  • ⁇ n (TD) Ave value obtained by averaging the birefringence in the width direction of the PVA polymer film in the thickness direction of the film] satisfies the formulas (I) and (II).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 本発明は、下記の式(I)および(II): Δn(MD)Ave ≦ 1.3×10-3 (I) Δn(TD)Ave ≦ 1.3×10-3 (II) [上記式中、Δn(MD)Aveは、PVA系重合体フィルムの機械流れ方向の複屈折率を当該フィルム厚み方向に平均化した値を示し、Δn(TD)Aveは、PVA系重合体フィルムの幅方向の複屈折率を当該フィルム厚み方向に平均化した値を示す。]を満たすPVA系重合体フィルムである。 かかるPVA系重合体フィルムは、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であっても、破断を生じることなく高倍率で延伸することができ、それによって偏光フィルムなどの延伸フィルムを、良好な作業性で、高い歩留りで、低コストで、生産性よく製造できる。

Description

ポリビニルアルコール系重合体フィルムおよびその製造方法
 本発明は、ポリビニルアルコール系重合体フィルム(以下、「ポリビニルアルコール」を「PVA」と略記する場合がある)およびその製造方法、並びに当該PVA系重合体フィルムから製造した偏光フィルム等の光学フィルムに関する。
 光の透過および遮蔽機能を有する偏光板は、光のスイッチング機能を有する液晶などとともに液晶表示装置(LCD)の重要な構成要素である。この液晶表示装置の適用分野も、開発初期の頃の電卓および腕時計などの小型機器から、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広い範囲に拡がっており、特に液晶モニターや液晶テレビなどでは大画面化が進んでいる。
 偏光板は、一般に、PVA系重合体フィルムを一軸延伸した後にヨウ素や二色性染料を用いて染色処理する方法、PVA系重合体フィルムを染色して一軸延伸した後にホウ素化合物で固定処理を行う方法、前記いずれかの方法において染色と同時に固定処理を行う方法などによって偏光フィルムを製造し、それにより得られた偏光フィルムの片面または両面に三酢酸セルロースフィルムや酢酸・酪酸セルロースフィルムなどの保護膜を貼り合わせて製造される。
 近年、液晶表示装置の用途の拡大などに伴って、表示品質の高級化に加えて、一層のコストダウンや、取り扱い性の更なる向上が求められている。コストダウンの面からは、偏光フィルムを製造する際の生産スピードを向上させること、PVA系重合体フィルムを延伸する際の延伸切れ(破断)を防いで破断ロスを低減して歩留まりを向上させると共にフィルムの破断に伴う延伸作業や延伸・染色作業の中断を防ぐことなどが必要である。
 また、偏光フィルムを製造する際の生産性の向上の1つとして、偏光フィルムを製造する際の乾燥時間の短縮化が求められており、かかる点から、偏光フィルム製造用の原反フィルムとして、従来は厚みが75μm程度のPVA系重合体フィルムが一般に用いられてきたが、近年、厚みが70μmよりも薄い、一層薄膜化したPVA系重合体フィルムが求められている。
 しかしながら、PVA系重合体フィルムが薄くなるほど、高倍率で延伸したときに破断が生じ易いという問題があり、かかる点から、薄くても、破断を生ずることなく高倍率で延伸することができ、それによって従来品と同等以上の偏光性能を有する偏光フィルムを、良好な作業性で、高い歩留りで、低コストで、生産性よく製造することのできるPVA系重合体フィルムが求められている。
 従来、PVA系重合体フィルムの延伸性の向上や延伸時の均一性の向上、PVA系重合体フィルムを延伸して得られる偏光フィルムにおける偏光性能や耐久性の向上などを目的として、PVA系重合体を含む原液を用いて乾燥しながら製膜するに当って、製膜ドロー(製膜に用いるロール間におけるPVA系重合体膜の搬送速度の比)の調整、製膜時のPVA系重合体膜の水分率の調整などが行われてきた。
 そのような従来技術としては、例えば、ドラム製膜機を用いてPVA系重合体フィルムを製造する際に、[得られたPVA系重合体フィルムの巻き取り速度]/[製膜原料が供給される最上流に位置するドラムの速度]を、0.8~1.3にする方法(特許文献1)などが知られている。
 また、延伸する際に破断しにくく、従来品と同等以上の光学性能を有する偏光フィルムなどの延伸フィルムを、良好な作業性で、高い歩留まりで、低コストで、生産性よく製造することのできるPVA系重合体フィルムとして、PVA系重合体フィルムの機械流れ方向の複屈折率を当該フィルムの厚み方向に平均化した値(Δn(MD)Ave)およびPVA系重合体フィルムの幅方向の複屈折率を当該フィルムの厚み方向に平均化した値(Δn(TD)Ave)が特定の関係を満たすPVA系重合体フィルムが知られている(特許文献2および3を参照)。
特開2001-315141号公報 国際公開第2012/132984号 国際公開第2013/137056号
 ところで、近年、得られる偏光フィルムにおける偏光性能等の光学性能の向上などのため、偏光フィルムを製造する際の染色時に比較的高い延伸倍率まで延伸する方法が採用されることがあり、また、本延伸と呼ばれるメインの延伸においても比較的高い温度が採用されることがある。しかしながら、特許文献1~3に記載されたPVA系重合体フィルムでは、上記のような場合であっても高い限界延伸倍率を発現させるという点において、更なる改良の余地があった。また、特許文献1~3に記載されたPVA系重合体フィルムでは、高い倍率まで延伸することで、フィルム幅が狭くなり、最終的に得られる偏光フィルム面積が小さくなってしまう課題があった。
 本発明の目的は、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であっても限界延伸倍率が高くて、破断を生ずることなく高倍率で延伸することができ、また、延伸時のフィルム幅の減少を抑えることで、偏光フィルムなどの延伸フィルムを、良好な作業性で、高い歩留りで、低コストで、生産性よく製造することのできるPVA系重合体フィルムを提供することである。また、本発明の目的は、前記した優れた特性を有するPVA系重合体フィルムを高い生産性で円滑に連続して製造することのできる方法を提供することである。更に、本発明の目的は、前記PVA系重合体フィルムから製造した偏光フィルム等の光学フィルムを提供することである。
 上記の目的を達成すべく本発明者らが鋭意検討を重ねた結果、PVA系重合体フィルムの機械流れ方向(長さ方向)の複屈折率をフィルムの厚み方向に平均化した値、および、PVA系重合体フィルムの幅方向の複屈折率をフィルムの厚み方向に平均化した値をそれぞれ特定の範囲にすると、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であってもフィルムの限界延伸倍率が高くなって、高倍率で延伸してもフィルムの破断が生じにくく、また、延伸時のフィルム幅の減少を抑えて、偏光性能などの光学性能に優れる偏光フィルムなどの延伸フィルムを、延伸作業を中断することなく、高い歩留まりで、低コストで、生産性よく製造できることを見出した。
 特に、PVA系重合体フィルムの機械流れ方向(長さ方向)の複屈折率をフィルムの厚み方向に平均化した値、および、PVA系重合体フィルムの幅方向の複屈折率をフィルムの厚み方向に平均化した値がそれぞれ特定の範囲にある前記したPVA系重合体フィルムは、当該フィルムの厚みが、偏光フィルムの製造に従来一般に用いられてきたPVA系重合体フィルムの厚みよりも薄い、10~65μm程度の厚みであっても、高い限界延伸倍率を有しているために、破断を生ずることなく、高倍率で円滑に一軸延伸することができ、それによって偏光フィルムの製造時の一層の薄膜化が可能で、偏光フィルムを製造する際の乾燥時間を一層短縮できることを見出した。
 そして、本発明者らは、高い限界延伸倍率を有する前記したPVA系重合体フィルムは、PVA系重合体を含む製膜原液を複数の乾燥ロールを備える製膜装置の第1乾燥ロール上に吐出した後、当該複数の乾燥ロールで順次乾燥して製膜し、その際に、第1乾燥ロールの周速に対する最終乾燥ロールの周速の比を特定の範囲にし、且つ揮発分率が特定の値になったときのPVA系重合体膜の膜幅より計算される収縮率を特定の範囲にすることによって、高い生産性で円滑に連続して製造できることを見出した。
 また、本発明者らは、上記の方法で限界延伸倍率の高いPVA系重合体フィルムを製造するに当っては、PVA系重合体膜の揮発分率が特定の範囲にあるときの各乾燥ロールの表面温度について、これらの平均値を特定の範囲にすることが好ましいこと、製膜原液の揮発分率が特定の範囲にあることが好ましいこと、および、第1乾燥ロールの周速を特定の範囲にすることが好ましいことを見出した。
 本発明者らは、上記の知見に基づいて更に検討を重ねて本発明を完成した。
 すなわち、本発明は、
[1]下記の式(I)および(II)を満足することを特徴とするPVA系重合体フィルム、
  Δn(MD)Ave ≦ 1.3×10-3   (I)
  Δn(TD)Ave ≦ 1.3×10-3   (II)
[上記式中、Δn(MD)Aveは、PVA系重合体フィルムの機械流れ方向の複屈折率を当該フィルムの厚み方向に平均化した値を示し、Δn(TD)Aveは、PVA系重合体フィルムの幅方向の複屈折率を当該フィルムの厚み方向に平均化した値を示す。]
[2]厚みが10~65μmの範囲内にある、前記[1]のPVA系重合体フィルム、
[3]光学フィルム製造用原反フィルムである、前記[1]または[2]のPVA系重合体フィルム、
[4]光学フィルムが偏光フィルムである、前記[3]のPVA系重合体フィルム、
[5]PVA系重合体フィルムの製造方法であって、
(a) 回転軸が互いに平行な複数の乾燥ロールを備える製膜装置を使用し、当該製膜装置の第1乾燥ロール上にPVA系重合体を含む製膜原液を膜状に吐出して部分乾燥した後にそれに続く乾燥ロールで更に乾燥して製膜し;その際に、
(b) 第1乾燥ロールの周速(S)に対する最終乾燥ロールの周速(S)の比(S/S)を0.955~0.980にし;
(c) 揮発分率が20質量%になったときのPVA系重合体膜の膜幅(H20)および揮発分率が9質量%になったときのPVA系重合体膜の膜幅(H)より計算される収縮率((1-H/H20)×100)(%)を1%以上にする;ことを特徴とする製造方法、
[6]PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロールから、PVA系重合体膜の揮発分率が9質量%になったときの乾燥ロールまでの各乾燥ロールの表面温度について、これらの平均値を85℃以上にする、前記[5]の製造方法、
[7]製膜原液の揮発分率が60~75質量%である、前記[5]または[6]の製造方法、
[8]第1乾燥ロールの周速(S)を8~25m/分にする、前記[5]~[7]のいずれか1つの製造方法、
[9]前記[3]のPVA系重合体フィルムから製造した光学フィルム、
[10]偏光フィルムである、前記[9]の光学フィルム、
に関する。
 本発明のPVA系重合体フィルムは、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であっても高い限界延伸倍率を有しているため、延伸フィルムを製造する際に、高倍率で一軸延伸しても、フィルムの破断が生じにくく、それによって、偏光フィルムなどの延伸フィルムを、延伸作業を中断することなく、高い歩留まりで、低コストで、生産性よく製造することができる。
 特に、本発明のPVA系重合体フィルムは、フィルムの厚みが、偏光フィルムなどを製造するために従来一般に用いられてきたPVA系重合体フィルムの厚みよりも薄い、10~65μm程度の厚みであっても、高い限界延伸倍率を有しているために、破断を生ずることなく、高倍率で円滑に一軸延伸することができ、それに伴って延伸フィルムを製造する際の一層の薄膜化が可能になり、偏光フィルムなどを製造する際の乾燥時間の一層の短縮化およびそれによる生産性の向上が可能になる。
 また、近年、偏光フィルム製造用の原反フィルムとして、長さが5000mを超えるPVA系重合体フィルムも用いられているが、本発明のPVA系重合体フィルムは高い限界延伸倍率を有しているため、従来のものよりも一層高倍率で延伸することができ、それによってPVA系重合体フィルムからの偏光フィルムの取得量を従来よりも多くすることができる。
 更に、本発明の製造方法を採用することによって、上記した優れた特性を有する本発明のPVA系重合体フィルムを高い生産性で円滑に連続して製造することができる。
図1は、PVA系重合体フィルムのΔn(MD)Aveを測定する際の試料の採取方法を示す概略図である。 図2は、PVA系重合体フィルムのΔn(TD)Aveを測定する際の試料の採取方法を示す概略図である。
 以下に、本発明について詳細に説明する。
 一般に、PVA系重合体などの透明なポリマーを用いて製造した透明なフィルムでは、ポリマー鎖がずり応力による塑性変形や歪みなどによって流れ方向(機械流れ方向:長さ方向)に配向してポリマーを構成する原子団の分極方向がマクロ的に揃い、それによってポリマー特有の複屈折が生ずる。
 PVA系重合体フィルムにおける機械流れ方向の複屈折率[Δn(MD)]は下記の式
[i]から求められ、また幅方向の複屈折率[Δn(TD)]は下記の式[ii]から求められる。
  Δn(MD)=nMD-nz    [i]
  Δn(TD)=nTD-nz    [ii]
[式中、nMDはフィルムの機械流れ方向(長さ方向)の屈折率、nTDはフィルムの幅方向の屈折率、nzはフィルムの厚み方向の屈折率を示す。]
 本発明のPVA系重合体フィルムは、下記の式(I)および(II)を満足するという点で、従来のPVA系重合体フィルムとは異なっている。
  Δn(MD)Ave ≦ 1.3×10-3   (I)
  Δn(TD)Ave ≦ 1.3×10-3   (II)
[上記式中、Δn(MD)Aveは、PVA系重合体フィルムの機械流れ方向の複屈折率を当該フィルムの厚み方向に平均化した値を示し、Δn(TD)Aveは、PVA系重合体フィルムの幅方向の複屈折率を当該フィルムの厚み方向に平均化した値を示す。]
 すなわち、上記の式(I)および(II)にみるように、本発明のPVA系重合体フィルムでは、PVA系重合体フィルムの機械流れ方向(PVA系重合体フィルムを連続製膜する際のライン方向)[以下「長さ方向(MD)ということがある」の複屈折率を当該フィルムの厚み方向に平均化した値である「Δn(MD)Ave」、および、PVA系重合体フィルムの幅方向(長さ方向と直角の方向)[以下「幅方向(TD)」ということがある]の複屈折率を当該フィルムの厚み方向に平均化した値である「Δ(TD)Ave」が、それぞれ、上記範囲にあるという特徴を有している。
 本発明のPVA系重合体フィルムは、上記の式(I)および(II)を満足することによって、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であっても高い限界延伸倍率を有し、それによって、偏光フィルムなどの延伸フィルムの製造時に高倍率で一軸延伸してもフィルムの破断が生じにくくなり、フィルムの破断に伴う延伸作業の中断を招くことなく、偏光性能などの光学性能に優れる、薄膜化した延伸フィルムを、高い歩留まりで生産性よく製造することができる。
 本発明のPVA系重合体フィルムは、本発明の効果がより顕著に奏されることや、その製造のし易さなどの観点から、Δn(MD)Aveが1.3×10-3未満であることが好ましく、1.0×10-3以下であることがより好ましく、0.9×10-3以下であることが更に好ましく、0.8×10-3以下であることが特に好ましく、また、0.7×10-3以上であることが好ましく、0.75×10-3以上であることがより好ましい。
 また、本発明のPVA系重合体フィルムは、本発明の効果がより顕著に奏されることや、その製造のし易さなどの観点から、Δn(TD)Aveが1.2×10-3以下であることが好ましく、1.15×10-3以下であることがより好ましく、1.1×10-3以下であることが更に好ましく、また、1.0×10-3以上であることが好ましく、1.05×10-3以上であることがより好ましい。
 なお、PVA系重合体フィルムでは、フィルムの幅方向(TD)でΔn(MD)Aveおよび/またはΔn(TD)Aveの値に変動があることが多く、特に幅方向の両端部ではΔn(MD)Aveが高くなり易いが、少なくともPVA系重合体フィルムの幅方向(TD)の中央部で式(I)および(II)を満たしていればよく、PVA系重合体フィルムの幅方向(TD)の中心部を中心とする幅方向(TD)の8割以上の部分の全域で式(I)および(II)を満たすことが好ましい。式(I)および(II)を満たさないPVA系重合体フィルムの幅方向(TD)の両端部は、PVA系重合体フィルムを長さ方向(MD)に延伸する前に切断して除去(耳取り)することができる。
 PVA系重合体フィルムの「Δn(MD)Ave」[PVA系重合体フィルムの長さ方向(MD)の複屈折率を当該フィルムの厚み方向に平均化した値]および「Δn(TD)Ave」[PVA系重合体フィルムの幅方向(TD)の複屈折率を当該フィルムの厚み方向に平均化した値]は、以下の方法で測定することができる。
《1》Δn(MD)Aveの測定法:(ここでは、PVA系重合体フィルムの幅方向(TD)の中央部におけるΔn(MD)Aveの測定法を例示する。)
(i) PVA系重合体フィルムの長さ方向(MD)の任意の位置で、図1の(a)に示すように、フィルムの幅方向(TD)における中央部からMD×TD=2mm×10mmの大きさの細片を切り出し、その細片を厚み100μmのPETフィルムで両側を挟み、それを更に木枠に挟んでミクロトーム装置に取り付ける。
(ii) 次に、前記で採取した細片を、図1の(b)に示すように(PETフィルムおよび木枠は図示せず)、細片の長さ方向(MD)と平行に10μm間隔でスライスし、図1の(c)に示す観察用のスライス片(MD×TD=2mm×10μm)を10個作製する。このスライス片の中から、スライス面が平滑で且つスライス厚み斑のないスライス片5個を選び、それぞれをスライドガラス上に載せてマイクロスコープ(キーエンス社製)でスライス厚みを測定する。なお、観察は接眼10倍、対物20倍(トータル200倍)の視野で行う。
(iii) 次いで、スライス面が観察できるように、スライス片を図1の(d)のように倒してスライス面を上向きとしてスライドガラス上に載せてカバーガラスとシリコーンオイル(屈折率1.04)で封じ、二次元光弾性評価システム「PA-micro」(株式会社フォトニックラティス製)を用いてスライス片5個のレタデーションを測定する。
(iv) 各スライス片のレタデーション分布を「PA-micro」の測定画面に表示した状態で、スライス片を横切るように当初のフィルムの表面に垂直な線αを引き、その線分α上でライン解析を行ってフィルムの厚み方向のレタデーション分布データを取得する。なお、観察は接眼10倍、対物20倍(トータル200倍)の視野で行う。また、スライス片上で線分αの通る位置が変わることによる誤差を抑えるため、線幅を300画素としてレタデーションの平均値を採用する。
(v) 上記で得られたフィルムの厚み方向のレタデーション分布の値をマイクロスコープで測定した厚みで除してフィルムの厚み方向の複屈折率Δn(MD)分布を求め、当該フィルムの厚み方向の複屈折率Δn(MD)分布の平均値を採る。スライス片5個について求めたそれぞれのフィルムの厚み方向の複屈折率Δn(MD)分布の平均値を更に平均して、「Δn(MD)Ave」とする。
《2》Δn(TD)Aveの測定法:
(ここでは、PVA系重合体フィルムの幅方向(TD)の中央部におけるΔn(TD)Aveの測定法を例示する。)
(i) PVA系重合体フィルムの長さ方向(MD)の任意の位置で、図2の(a)に示すように、フィルムの幅方向(TD)における中央部からMD×TD=10mm×2mmの大きさの細片を切り出し、その細片を厚み100μmのPETフィルムで両側を挟み、それを更に木枠に挟んでミクロトーム装置に取り付ける。
(ii) 次に、前記で採取した細片を、図2の(b)に示すように(PETフィルムおよび木枠は図示せず)、細片の幅方向(TD)と平行に10μm間隔でスライスし、図2の(c)に示す観察用のスライス片(MD×TD=10μm×2mm)を10個作製する。このスライス片の中から、スライス面が平滑で且つスライス厚み斑のないスライス片5個を選び、それぞれをスライドガラス上に載せてマイクロスコープ(キーエンス社製)でスライス厚みを測定する。なお、観察は接眼10倍、対物20倍(トータル200倍)の視野で行う。
(iii) 次いで、スライス面が観察できるように、スライス片を図2の(d)のように倒してスライス面を上向きとしてスライドガラス上に載せてカバーガラスとシリコーンオイル(屈折率1.04)で封じ、二次元光弾性評価システム「PA-micro」(株式会社フォトニックラティス製)を用いてスライス片5個のレタデーションを測定する。
(iv) 各スライス片のレタデーション分布を「PA-micro」の測定画面に表示した状態で、スライス片を横切るように当初のフィルムの表面に垂直な線βを引き、その線分β上でライン解析を行ってフィルムの厚み方向のレタデーション分布データを取得する。なお、観察は接眼10倍、対物20倍(トータル200倍)の視野で行う。また、スライス片上で線分βの通る位置が変わることによる誤差を抑えるため、線幅を300画素としてレタデーションの平均値を採用する。
(v) 上記で得られたフィルムの厚み方向のレタデーション分布の値をマイクロスコープで測定した厚みで除してフィルムの厚み方向の複屈折率Δn(TD)分布を求め、当該フィルムの厚み方向の複屈折率Δn(TD)分布の平均値を採る。スライス片5個について求めたそれぞれのフィルムの厚み方向の複屈折率Δn(TD)分布の平均値を更に平均して、「Δn(TD)Ave」とする。
 本発明のPVA系重合体フィルムの厚みは、5~150μmの範囲にすることができるが、偏光フィルム製造用の原反フィルムとして用いる場合などにおいては、10~65μmにすることが好ましい。本発明のPVA系重合体フィルムは染色時に比較的高い延伸倍率まで延伸する方法が採用される場合や比較的高い延伸温度が採用される場合であっても高い限界延伸倍率を有しているため、フィルム厚を、従来偏光フィルム製造用原反フィルムとして用いられることの多かった厚みが75μm程度のPVA系重合体フィルムよりも薄い、前記10~65μmにした場合に、フィルムの破断を生ずることなく高倍率で延伸することができ、それによって従来品と同等以上の偏光性能などの光学特性を有する延伸フィルムを高い歩留りで、円滑に生産性よく製造することができ、しかも厚みが10~65μmのPVA系重合体フィルムを高倍率で延伸することによって、延伸後のフィルムの厚みを従来よりも一層薄くすることができるとともに、偏光フィルムを製造する際の乾燥時間を短くすることができ、偏光フィルムの製造速度を向上させることができる。上記のような観点から、PVA系重合体フィルムの厚みは、60μm以下であることがより好ましく、50μm以下であることが更に好ましく、40μm以下、更には30μm以下であってもよい。
 一方、PVA系重合体フィルムの厚みが薄すぎると、偏光フィルムを製造するための一軸延伸時にフィルムの破断が生じ易くなる傾向があることから、PVA系重合体フィルムの厚みは15μm以上であることがより好ましく、18μm以上であることが更に好ましく、20μm以上であることが特に好ましい。
 本発明のPVA系重合体フィルムの幅は特に制限されないが、近年、液晶テレビやモニターが大画面化しているので、それらに有効に用い得るようにするために幅は2m以上であることが好ましく、3m以上であることがより好ましく、4m以上であることが更に好ましい。また、現実的な生産機で偏光板を製造する場合に、フィルムの幅が大き過ぎると均一な一軸延伸が困難になることがあるので、PVA系重合体フィルムの幅は8m以下であることが好ましい。
 本発明のPVA系重合体フィルムは、その質量膨潤度が180~250%であることが好ましく、185~240%であることがより好ましく、190~230%であることが更に好ましい。PVA系重合体フィルムの質量膨潤度が低すぎると、延伸しにくくなり、光学性能に優れる延伸フィルムを製造することが困難になる傾向があり、一方、質量膨潤度が高すぎると、延伸時の工程通過性が悪化することや、高耐久性の偏光フィルムが得られなくなることがある。
 ここでいう質量膨潤度とは、PVA系重合体フィルムを30℃の蒸留水中に30分間浸漬した際の質量を、前記浸漬後105℃で16時間乾燥した後の質量で除して得られる値の百分率を意味し、具体的には以下の実施例に記載する方法により測定することができる。
 本発明のPVA系重合体フィルムを形成するPVA系重合体としては、例えば、ビニルエステルを重合して得られるポリビニルエステルをけん化して得られるPVA、PVAの主鎖にコモノマーをグラフト共重合させた変性PVA系重合体、ビニルエステルとコモノマーを共重合させた変性ポリビニルエステルをけん化することにより製造した変性PVA系重合体、未変性PVAまたは変性PVA系重合体の水酸基の一部をホルマリン、ブチルアルデヒド、ベンズアルデヒドなどのアルデヒド類で架橋したいわゆるポリビニルアセタール樹脂などを挙げることができる。
 本発明のPVA系重合体フィルムを形成するPVA系重合体が変性PVA系重合体である場合は、PVA系重合体における変性量は15モル%以下であることが好ましく、5モル%以下であることがより好ましい。
 PVA系重合体の製造に用いられる前記のビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、バレリン酸ビニル、ピバリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサティック酸ビニルなどを挙げることができる。これらのビニルエステルは、単独でまたは組み合わせて使用することができる。これらのビニルエステルのうち、酢酸ビニルが生産性の観点から好ましい。
 また、前記したコモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテンなどの炭素数2~30のオレフィン類(α-オレフィンなど);アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類(例えば、アクリル酸の炭素数1~18アルキルエステル);メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル類(例えば、メタクリル酸の炭素数1~18アルキルエステル);アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸またはその塩、アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールアクリルアミドまたはその誘導体などのアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸またはその塩、メタクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールメタクリルアミドまたはその誘導体などのメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドンなどのN-ビニルアミド類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのニトリル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンなどのハロゲン化ビニル類;酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸などの不飽和ジカルボン酸、その塩またはそのエステルなどの誘導体;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニル;不飽和スルホン酸またはその誘導体などを挙げることができる。これらの中でもα-オレフィンが好ましく、特にエチレンが好ましい。
 本発明のPVA系重合体フィルムを形成するPVA系重合体の平均重合度は、得られる偏光フィルムの偏光性能および耐久性などの点から、1000以上が好ましく、1500以上がより好ましく、2000以上が更に好ましい。一方、PVA系重合体の平均重合度の上限は、均質なPVA系重合体フィルムの製造の容易性、延伸性などの点から8000以下が好ましく、特に6000以下が好ましい。
 ここで、本明細書におけるPVA系重合体の「平均重合度」とは、JIS K6726-1994に準じて測定される平均重合度をいい、PVA系重合体を再けん化し、精製した後に30℃の水中で測定した極限粘度から求められる。
 本発明のPVA系重合体フィルムを形成するPVA系重合体のけん化度は、得られる偏光フィルムの偏光性能および耐久性などの点から、95.0モル%以上が好ましく、98.0モル%以上がより好ましく、99.0モル%以上が更に好ましく、99.3モル%以上が最も好ましい。
 ここで、本明細書におけるPVA系重合体の「けん化度」とは、けん化によりビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。PVA系重合体のけん化度は、JIS K6726-1994の記載に準じて測定することができる。
 本発明のPVA系重合体フィルムの製法は特に限定されず、上記した式(I)および(II)を満たすPVA系重合体フィルムを製造し得る方法であればいずれの方法で製造してもよいが、本発明のPVA系重合体フィルムは、
(a) 回転軸が互いに平行な複数の乾燥ロールを備える製膜装置を使用し、当該製膜装置の第1乾燥ロール上にPVA系重合体を含む製膜原液を膜状に吐出して部分乾燥した後にそれに続く乾燥ロールで更に乾燥して製膜し;その際に、
(b) 第1乾燥ロールの周速(S)に対する最終乾燥ロールの周速(S)の比(S/S)を0.955~0.980にし;
(c) 揮発分率が20質量%になったときのPVA系重合体膜の膜幅(H20)および揮発分率が9質量%になったときのPVA系重合体膜の膜幅(H)より計算される収縮率((1-H/H20)×100)(%)を1%以上にする;
本発明の製造方法によって、高い生産性で円滑に連続して製造することができる。
 上記した本発明のPVA系重合体フィルムの製造方法について、以下により具体的に説明する。
 PVA系重合体フィルムを含む製膜原液は、PVA系重合体を液体媒体と混合して溶液にしたり、液体媒体などを含むPVA系重合体ペレットなどを溶融して溶融液にしたりすることによって調製することができる。
 PVA系重合体の液体媒体への溶解、液体媒体などを含むPVA系重合体ペレットの溶融は、撹拌式混合装置、溶融押出機などを使用して行うことができる。
 その際に用いる液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらの液体媒体は、1種を単独でまたは2種以上を組み合わせて使用することができる。これらの中でも水、ジメチルスルホキシド、または両者の混合物が好ましく用いられ、特に水がより好ましく用いられる。
 PVA系重合体の液体媒体への溶解や溶融の促進、フィルム製造時の工程通過性の向上、得られるPVA系重合体フィルムの延伸性向上などの点から、製膜原液に可塑剤を添加することが好ましい。
 可塑剤としては多価アルコールが好ましく用いられ、例えば、エチレングリコール、グリセリン、ジグリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどを挙げることができ、これらの可塑剤は、1種を単独でまたは2種以上を組み合わせて使用することができる。これらの中でも延伸性の向上効果に優れる点から、グリセリン、ジグリセリンおよびエチレングリコールのうちの1種または2種以上が好ましく使用される。
 可塑剤の添加量は、PVA系重合体100質量部に対して0~30質量部が好ましく、3~25質量部がより好ましく、5~20質量部が特に好ましい。可塑剤の添加量がPVA系重合体100質量部に対して30質量部を超えると、得られるPVA系重合体フィルムが柔らかくなりすぎて取り扱い性が低下する場合がある。
 PVA系重合体フィルムを製造する際の乾燥ロールからの剥離性の向上、得られるPVA系重合体フィルムの取り扱い性などの点から、製膜原液に界面活性剤を添加することが好ましい。界面活性剤の種類としては特に限定はないが、アニオン性界面活性剤またはノニオン性界面活性剤が好ましく用いられる。
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウムなどのカルボン酸型、オクチルサルフェートなどの硫酸エステル型、ドデシルベンゼンスルホネートなどのスルホン酸型のアニオン性界面活性剤が好適である。
 また、ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテルなどのアルキルエーテル型、ポリオキシエチレンオクチルフェニルエーテルなどのアルキルフェニルエーテル型、ポリオキシエチレンラウレートなどのアルキルエステル型、ポリオキシエチレンラウリルアミノエーテルなどのアルキルアミン型、ポリオキシエチレンラウリン酸アミドなどのアルキルアミド型、ポリオキシエチレンポリオキシプロピレンエーテルなどのポリプロピレングリコールエーテル型、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミドなどのアルカノールアミド型、ポリオキシアルキレンアリルフェニルエーテルなどのアリルフェニルエーテル型のノニオン性界面活性剤が好適である。これらの界面活性剤は1種を単独でまたは2種以上を組み合わせて使用することができる。
 界面活性剤の添加量は、PVA系重合体100質量部に対して0.01~1質量部が好ましく、0.02~0.5質量部がより好ましく、0.05~0.3質量部が特に好ましい。0.01質量部より少ないと、製膜性、剥離性の向上効果が現れにくくなることがあり、一方、1質量部より多いと、界面活性剤がフィルム表面に溶出してブロッキングの原因になり、取り扱い性が低下する場合がある。
 製膜原料は、本発明のPVA系重合体フィルムの特性を阻害しない範囲で、各種添加剤、例えば、安定化剤(例えば、酸化防止剤、紫外線吸収剤、熱安定剤など)、相溶化剤、ブロッキング防止剤、難燃剤、帯電防止剤、滑剤、分散剤、流動化剤、抗菌剤などを含んでいてもよい。これらの添加剤は、1種を単独でまたは2種以上を組み合わせて使用することができる。
 PVA系重合体フィルムの製造に用いる製膜原液の揮発分率は、60~75質量%が好ましく、65~70質量%がより好ましい。製膜原液の揮発分率が60質量%より小さいと、製膜原液の粘度が高くなって濾過や脱泡が困難となる他、製膜自体が困難となる場合がある。一方、製膜原液の揮発分率が75質量%より大きいと、粘度が低くなり過ぎてPVA系重合体フィルムの厚みの均一性が損なわれる場合がある。
 ここで、本明細書でいう「製膜原液の揮発分率」とは、下記の式[iii]により求めた揮発分率をいう。
製膜原液の揮発分率(質量%) = {(W-W)/W}×100[iii]
[式中、Wは製膜原液の質量(g)、WはW(g)の製膜原液を105℃の電熱乾燥機中で16時間乾燥した後の質量(g)を示す。]
 PVA系重合体フィルムの製造に用いる、回転軸が互いに平行な複数の乾燥ロールを備える製膜装置では、乾燥ロールの数は3個以上であることが好ましく、4個以上であることがより好ましく、5~30個であることが更に好ましい。複数の乾燥ロールは、例えば、ニッケル、クロム、銅、鉄、ステンレススチールなどの金属から形成されていることが好ましく、特にロール表面が腐食しにくく、しかも鏡面光沢を有する金属材料から形成されていることがより好ましい。また、乾燥ロールの耐久性を高めるために、ニッケル層、クロム層、ニッケル/クロム合金層などを単層または2層以上組み合わせてメッキした乾燥ロールを用いることがより好ましい。
 複数の乾燥ロールにおける各乾燥ロールのロール表面温度は65℃以上であることが好ましく、75℃以上であることがより好ましく、85℃以上であることが更に好ましい。また、各乾燥ロールのロール表面温度は、最終工程またはそれに近い工程で熱処理ロールとして用いることのできる乾燥ロールのロール表面温度については90~130℃であることが好ましく、100~120℃であることがより好ましいが、それ以外の乾燥ロールのロール表面温度は100℃以下であることが好ましい。
 上記の製造方法で使用する製膜装置は、必要に応じて、複数の乾燥ロールに続いて、熱風炉式の熱風乾燥装置、熱処理装置、調湿装置などを有していてもよい。
 製膜装置の第1乾燥ロール上にPVA系重合体を含む製膜原液を膜状に吐出するに当っては、例えば、T型スリットダイ、ホッパープレート、I-ダイ、リップコーターダイなどの既知の膜状吐出装置(膜状流延装置)を使用して、PVA系重合体を含む製膜原液を第1乾燥ロール上に膜状に吐出(流延)する。
 第1乾燥ロール上に膜状に吐出したPVA系重合体を含む製膜原液は、第1乾燥ロール上で乾燥して、PVA系重合体膜の揮発分率が好ましくは16~30質量%、より好ましくは17~29質量%、更に好ましくは18~28質量%になった時点で第1乾燥ロールから剥離する。
 第1乾燥ロールから剥離する際のPVA系重合体膜の揮発分率が上記下限以上であることにより、Δn(MD)Aveの値が大きくなりすぎるのを抑制することができる。一方、第1乾燥ロールから剥離する際のPVA系重合体膜の揮発分率があまりに高すぎると、第1乾燥ロールからの剥離が困難になる傾向があり、場合によっては破断したりムラが発生し易くなったりすることがある。
 ここで、本明細書における「PVA系重合体膜またはPVA系重合体フィルムの揮発分率」とは、下記の式[iv]により求めた揮発分率をいう。
  A(質量%) = {(W-W)/W}×100   [iv]
[式中、Aは、PVA系重合体膜またはPVA系重合体フィルムの揮発分率(質量%)、WはPVA系重合体膜またはPVA系重合体フィルムから採取したサンプルの質量(g)、Wは前記サンプルW(g)を温度50℃、圧力0.1kPa以下の真空乾燥機中に入れて4時間乾燥した時の質量(g)を示す。]
 PVA系重合体、グリセリンなどの多価アルコール(可塑剤)、界面活性剤および水を用いて調製した製膜原液から形成されるPVA系重合体膜またはPVA系重合体フィルムでは、前記した「温度50℃、圧力0.1kPa以下で4時間」という条件下で乾燥したときには主として水のみが揮発し、水以外の他の成分の殆どは揮発せずにPVA系重合体膜またはPVA系重合体フィルム中に残留するので、PVA系重合体膜またはPVA系重合体フィルムの揮発分率は、PVA系重合体膜またはPVA系重合体フィルム中に含まれている水分量(水分率)を測定することにより求めることができる。
 第1乾燥ロールでの乾燥に当っては、均一乾燥性、乾燥速度などの点から、第1乾燥ロールのロール表面温度は80~120℃であることが好ましく、当該表面温度は、85℃以上であることがより好ましく、90℃以上であることが更に好ましく、また、105℃以下であることがより好ましく、99℃以下であることが更に好ましい。第1乾燥ロールの表面温度が120℃を超えるとフィルムが発泡し易くなる傾向があり、一方、80℃未満では第1乾燥ロール上での乾燥が不十分となる傾向があり、剥離不良の原因となり易い。
 第1乾燥ロールの周速(S)は、均一乾燥性、乾燥速度およびPVA系重合体フィルムの生産性などの他、本発明のPVA系重合体フィルムの製造がより容易になることなどから、8~25m/分であることが好ましく、当該周速(S)は、10m/分以上であることがより好ましく、12m/分以上であることが更に好ましく、また、23m/分以下であることがより好ましく、22m/分以下であることが更に好ましい。第1乾燥ロールの周速(S)が8m/分未満であると生産性が低下するとともに、複屈折率が大きくなる傾向がある。一方、第1乾燥ロールの周速(S)が25m/分を超えると第1乾燥ロール上での乾燥が不十分となる傾向がある。
 膜状に吐出したPVA系重合体を含む製膜原液の第1乾燥ロール上での部分乾燥は、第1乾燥ロールからの熱のみによって行ってもよいが、第1乾燥ロールで加熱すると同時に第1乾燥ロールに接触していない膜面(以下「第1乾燥ロール非接触面」ということがある)に熱風を吹き付けて、PVA系重合体膜の両面から熱を与えて乾燥を行うことが、均一乾燥性、乾燥速度などの点から好ましい。
 第1乾燥ロール上にあるPVA系重合体膜の第1乾燥ロール非接触面に熱風を吹き付けるに当っては、第1乾燥ロール非接触面の全領域に対して風速1~10m/秒の熱風を吹き付けることが好ましく、風速2~8m/秒の熱風を吹き付けることがより好ましく、風速3~8m/秒の熱風を吹き付けることが更に好ましい。
 第1乾燥ロール非接触面に吹き付ける熱風の風速が小さ過ぎると、本発明で目的としている限界延伸倍率の高いPVA系重合体フィルムが得られにくくなるとともに、第1乾燥ロール上での乾燥時に水蒸気などの結露が発生し、その水滴がPVA系重合体膜に滴下して最終的に得られるPVA系重合体フィルムにおける欠陥が生じ易くなる。一方、第1乾燥ロール非接触面に吹き付ける熱風の風速が大き過ぎると、本発明で目的としている限界延伸倍率の高いPVA系重合体フィルムが得られにくくなるとともに、最終的に得られるPVA系重合体フィルムに厚み斑が発生し、それに伴って染色斑の発生などのトラブルが発生し易くなる。
 PVA系重合体膜の第1乾燥ロール非接触面に吹き付ける熱風の温度は、乾燥効率、乾燥の均一性などの点から、50~150℃であることが好ましく、70~120℃であることがより好ましく、80~95℃であることが更に好ましい。またPVA系重合体膜の第1乾燥ロール非接触面に吹き付ける熱風の露点温度は10~15℃であることが好ましい。PVA系重合体膜の第1乾燥ロール非接触面に吹き付ける熱風の温度が低すぎると、乾燥効率、均一乾燥性などが低下し易く、一方、高すぎると発泡が生じ易くなる。
 PVA系重合体膜の第1乾燥ロール非接触面に熱風を吹き付けるための方式は特に制限されず、風速が均一で且つ温度が均一な熱風をPVA系重合体膜の第1乾燥ロール非接触面、好ましくはその全体に均一に吹き付け得る方式のいずれもが採用でき、そのうちでもノズル方式、整流板方式またはそれらの組み合わせなどが好ましく採用される。PVA系重合体膜の第1乾燥ロール非接触面への熱風の吹き付け方向は、第1乾燥ロール非接触面に対向する方向であっても、PVA系重合体膜の第1乾燥ロール非接触面の円周形状にほぼ沿った方向(第1乾燥ロールのロール表面の円周にほぼ沿った方向)であっても、またはそれ以外の方向であってもよい。
 また、第1乾燥ロール上でのPVA系重合体膜の乾燥時に、乾燥によってPVA系重合体膜から発生した揮発分と吹き付けた後の熱風を排気することが好ましい。排気の方法は特に制限されないが、PVA系重合体膜の第1乾燥ロール非接触面に吹き付ける熱風の風速斑および温度斑が生じない排気方法を採用することが好ましい。
 第1乾燥ロール上で好ましくは揮発分率16~30質量%にまで乾燥したPVA系重合体膜を第1乾燥ロールから剥離し、今度は、PVA系重合体膜の第1乾燥ロール非接触面を第2乾燥ロールに対向させて第2乾燥ロールで乾燥するのが好ましい。
 第1乾燥ロールの周速(S)に対する第2乾燥ロールの周速(S)の比(S/S)は、1.005~1.090であることが好ましく、1.010~1.080であることがより好ましい。比(S/S)が1.005未満であると、第1乾燥ロールからのPVA系重合体膜の剥離点が不均一となり易く、幅方向の複屈折率斑が大きくなる傾向がある。また、比(S/S)が1.090を超えると、後述する比(S/S)を満足するのが困難になる傾向がある。
 第2乾燥ロールでの乾燥に当っては、均一乾燥性、乾燥速度などの点から、第2乾燥ロールのロール表面温度は65~100℃であることが好ましく、75~98℃であることがより好ましく、85~96℃であることが更に好ましい。
 第2乾燥ロールで乾燥したPVA系重合体膜を、第2乾燥ロールから剥離し、製膜装置に設けた乾燥ロールの数などに応じて、第3乾燥ロール、第4乾燥ロール、第5乾燥ロール、・・・などの複数の乾燥ロールによって順次乾燥する。
 上記の製造方法では、第1乾燥ロールの周速(S)に対する、最終乾燥ロールの周速(S)の比(S/S)が0.955~0.980になるようにして、PVA系重合体膜にかかる張力を調節しながら乾燥を行う。比(S/S)を前記した範囲にすることによって、PVA系重合体膜の乾燥工程において、フィルムのたるみや巻き付きなどのトラブルを発生することなく、長さ方向(MD)の複屈折率をフィルムの厚み方向に平均化した値[Δn(MD)Ave]および幅方向(TD)の複屈折率をフィルムの厚み方向に平均化した値[Δn(TD)Ave]が、上記の式(I)および(II)を満足する本発明のPVA系重合体フィルムを円滑に製造することができる。
 PVA系重合体フィルムを製造する際の前記した比(S/S)は、0.975以下であることが好ましく、0.970以下であることがより好ましく、0.960以下であることが更に好ましい。
 上記の製造方法では、第1乾燥ロール上に膜状に吐出された製膜原液を複数の乾燥ロールで順次乾燥するにあたり、PVA系重合体膜の揮発分率が20質量%になったときの当該PVA系重合体膜の膜幅(H20)およびPVA系重合体膜の揮発分率が9質量%になったときの当該PVA系重合体膜の膜幅(H)より計算される収縮率((1-H/H20)×100)(%)を1%以上にする。これにより、長さ方向(MD)の複屈折率をフィルムの厚み方向に平均化した値[Δn(MD)Ave]および幅方向(TD)の複屈折率をフィルムの厚み方向に平均化した値[Δn(TD)Ave]が、上記の式(I)および(II)を満足する本発明のPVA系重合体フィルムを円滑に製造することができる。本発明のPVA系重合体フィルムをより円滑に製造する観点から、当該収縮率は、1.5%以上であることが好ましく、2%以上であることがより好ましい。一方、当該収縮率があまりに高すぎるとフィルムのたるみや巻きつきが生じ易くなって工程通過性が劣る傾向があることから、当該収縮率は4%以下であることが好ましく、3.5%以下であることがより好ましく、3%以下であることが更に好ましい。収縮率を上記範囲にする方法に特に制限はなく、例えば、隣り合う乾燥ロール間においてPVA膜の端部を保持しながら膜幅を徐々に狭める方法、乾燥ロール表面の滑りを向上させるなどして乾燥ロール上で幅方向に収縮するようにする方法、隣り合う乾燥ロール間の距離を比較的長くする方法などが挙げられる。
 また、本発明のPVA系重合体フィルムをより円滑に製造することができることから、PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロールから、PVA系重合体膜の揮発分率が9質量%になったときの乾燥ロールまでの各乾燥ロール(当該区間に存在する全ての乾燥ロール)の表面温度について、これらの平均値を85℃以上にすることが好ましく、87℃以上にすることがより好ましく、90℃以上にすることが更に好ましく、93℃以上にすることが特に好ましく、また、100℃以下にすることが好ましく、95℃以下にすることがより好ましい。ここで「PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロール」および「PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロール」とは、PVA系重合体膜の揮発分率が、それぞれ、20質量%および9質量%になったときにそのPVA系重合体膜が位置していた乾燥ロールを意味する。複数の乾燥ロールを備える製膜装置を使用してPVA系重合体フィルムを製膜する際には、PVA系重合体膜は、通常、乾燥ロール上でその揮発分率が低下するが、乾燥ロール間で揮発分率が20質量%または9質量%になった場合には、上流側の乾燥ロールを、それぞれ、「PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロール」または「PVA系重合体膜の揮発分率が9質量%になったときの乾燥ロール」とみなせばよい。
 上記の製造方法において、最終乾燥ロールまたは最終に近い乾燥ロールと最終乾燥ロールは、その表面温度を高くして熱処理ロールとして用いてもよい。乾燥ロールを熱処理ロールとして使用する場合は、ロール表面温度は90~130℃であることが好ましく、100~120℃であることがより好ましい。
 上記の乾燥処理を行ったPVA系重合体フィルムは、必要に応じて、熱処理、調湿処理などを行い、最後に所定の長さでロール状に巻き取ることにより本発明のPVA系重合体フィルムを得ることができる。
 上記した一連の処理によって最終的に得られるPVA系重合体フィルムの揮発分率は1~5質量%の範囲にあることが好ましく、2~4質量%の範囲にあることがより好ましい。
 本発明のPVA系重合体フィルムの用途に特に制限はないが、本発明のPVA系重合体フィルムは高い限界延伸倍率を有し、それによって、延伸フィルムの製造時に高倍率で一軸延伸してもフィルムの破断が生じにくくなり、フィルムの破断に伴う延伸作業の中断を招くことなく、光学性能に優れる、薄膜化した延伸フィルムを、高い歩留まりで生産性よく製造することができることから、偏光フィルムや位相差フィルム等の光学フィルム製造用の原反フィルムとして用いることが好ましい。このような光学フィルムは、例えば、本発明のPVA系重合体フィルムを用いて一軸延伸などの処理を施すことにより製造することができる。
 本発明のPVA系重合体フィルムから偏光フィルムを製造するには、本発明のPVA系重合体フィルムを用いて染色および一軸延伸すればよく、例えば、本発明のPVA系重合体フィルムを用いて、染色、一軸延伸、固定処理、乾燥処理、更に必要に応じて熱処理を行えばよい。染色と一軸延伸の順序は特に限定されず、一軸延伸処理の前に染色処理を行ってもよいし、一軸延伸処理と同時に染色処理を行ってもよいし、または一軸延伸処理の後に染色処理を行ってもよい。また、一軸延伸、染色などの工程は複数回繰り返してもよい。特に一軸延伸を2段以上に分けると均一な延伸を行い易くなるため、好ましい。
 PVA系重合体フィルムの染色に用いる染料としては、ヨウ素または二色性有機染料(例えば、DirectBlack 17、19、154;DirectBrown 44、106、195、210、223;DirectRed 2、23、28、31、37、39、79、81、240、242、247;DirectBlue 1、15、22、78、90、98、151、168、202、236、249、270;DirectViolet 9、12、51、98;DirectGreen 1、85;DirectYellow 8、12、44、86、87;DirectOrange 26、39、106、107などの二色性染料)などが使用できる。これらの染料は、1種を単独でまたは2種以上を組み合わせて使用することができる。染色は、通常、PVA系重合体フィルムを上記染料を含有する溶液中に浸漬させることにより行うことができるが、その処理条件や処理方法は特に制限されるものではない。
 本発明のPVA系重合体フィルムは、染色時に比較的高い延伸倍率まで延伸する方法が採用される場合であっても高い限界延伸倍率を有しているため、本発明のPVA系重合体はこのような場合に特に好ましい。染色終了時の延伸倍率としては、得られる偏光フィルムの偏光性能の向上などの観点から、当初のPVA系重合体フィルムの長さに基づいて3倍以上であることが好ましく、3.4倍以上であることがより好ましく、3.5倍以上であることが更に好ましく、また、5倍以下であることが好ましい。
 一軸延伸は、湿式延伸法または乾熱延伸法のいずれで行ってもよいが、得られる偏光フィルムの性能および品質の安定性の観点から湿式延伸法が好ましい。湿式延伸法としては、PVA系重合体フィルムを、純水、添加剤や水性媒体等の各種成分を含む水溶液、または各種成分が分散した水分散液中で延伸する方法が挙げられ、湿式延伸法による一軸延伸方法の具体例としては、ホウ酸を含む温水中で一軸延伸する方法、前記した染料を含有する溶液中や後記固定処理浴中で一軸延伸する方法などが挙げられる。一軸延伸はPVA系重合体フィルムの長さ方向(MD)に行うのが好ましい。
 一軸延伸処理の際の延伸温度は特に限定されないが、湿式延伸法の場合は、30~90℃の範囲内であることが好ましく、40~70℃の範囲内であることがより好ましく、45~65℃の範囲内であることが更に好ましく、また、乾熱延伸法の場合は、50~180℃の範囲内であることが好ましい。
 一軸延伸処理の延伸倍率(多段で一軸延伸を行う場合は合計の延伸倍率)は、偏光性能の点からフィルムが切断する直前までできるだけ延伸することが好ましく、具体的には4倍以上であることが好ましく、5倍以上であることがより好ましく、5.5倍以上であることが更に好ましい。延伸倍率の上限はフィルムが破断しない限り特に制限はないが、均一な延伸を行うためには8.0倍以下であることが好ましい。
 延伸後のフィルム(偏光フィルム)の厚みは、1~35μm、特に5~25μmであることが好ましい。
 偏光フィルムの製造に当っては、一軸延伸されたフィルムへの染料の吸着を強固にするために、固定処理を行うことが多い。固定処理は、ホウ酸および/またはホウ素化合物を添加した処理浴中にフィルムを浸漬する方法が一般に広く採用されている。その際に、必要に応じて処理浴中にヨウ素化合物を添加してもよい。
 一軸延伸処理、または一軸延伸処理と固定処理を行ったフィルムを次いで乾燥処理(熱処理)するのが好ましい。乾燥処理(熱処理)の温度は30~150℃、特に50~140℃であることが好ましい。乾燥処理(熱処理)の温度が低過ぎると、得られる偏光フィルムの寸法安定性が低下し易くなり、一方、高すぎると染料の分解などに伴う偏光性能の低下が発生し易くなる。
 以上のようにして得られた偏光フィルムの両面または片面に、光学的に透明で、且つ機械的強度を有する保護膜を貼り合わせて偏光板にすることができる。その場合の保護膜としては、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、保護膜を貼り合わせるための接着剤としては、PVA系接着剤やウレタン系接着剤などが一般に使用されており、そのうちでもPVA系接着剤が好ましく用いられる。
 以上のようにして得られた偏光板は、アクリル系などの粘着剤を被覆した後、ガラス基板に貼り合わせて液晶ディスプレー装置の部品として使用することができる。偏光板をガラス基板に貼り合わせる際に、位相差フィルム、視野角向上フィルム、輝度向上フィルムなどを同時に貼り合わせてもよい。
 以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。
 以下の実施例および比較例において、製膜原液の揮発分率、PVA系重合体膜またはPVA系重合体フィルムの揮発分率(水分率)、および、PVA系重合体フィルムの各物性は以下の方法により測定した。
(1)製膜原液の揮発分率:
 上記した方法にしたがって、上記の式[iii]により求めた。
(2)PVA系重合体膜またはPVA系重合体フィルムの揮発分率(水分率):
 上記した方法にしたがって、上記の式[iv]により求めた。なお、PVA系重合体膜またはPVA系重合体フィルムの揮発分率(水分率)の測定は、乾燥ロールから取り出したPVA系重合体膜またはPVA系重合体フィルムの幅方向(TD)中央部から採取したサンプルを用いて行った。
(3)PVA系重合体フィルムのΔn(MD)Ave
 PVA系重合体フィルムの幅方向(TD)の中央部におけるΔn(MD)Aveを「《1》Δn(MD)Aveの測定法」の項目において上記した方法により求め、これをPVA系重合体フィルムのΔn(MD)Aveとした。
(4)PVA系重合体フィルムのΔn(TD)Ave
 PVA系重合体フィルムの幅方向(TD)の中央部におけるΔn(TD)Aveを「《2》Δn(TD)Aveの測定法」の項目において上記した方法により求め、これをPVA系重合体フィルムのΔn(TD)Aveとした。
(5)PVA系重合体フィルムの質量膨潤度:
 PVA系重合体フィルムを1.5gとなるようにカットし、30℃の蒸留水1000g中に30分間浸漬し、30分間浸漬後にPVA系重合体フィルムを取り出し、濾紙で表面の水を吸い取った後、その質量(W)を測定した。続いてそのPVA系重合体フィルムを105℃の乾燥機で16時間乾燥した後、その質量(W)を測定した。得られた質量WおよびWから、以下の式[vi]によって、PVA系重合体フィルムの質量膨潤度を求めた。
  質量膨潤度(%) = (W/W)×100   [vi]
(6)PVA系重合体フィルムの限界延伸倍率と偏光フィルム幅:
 以下の実施例または比較例で得られた延伸前のPVA系重合体フィルムの幅方向(TD)の中央部から長さ方向(MD)×幅方向(TD)=10cm×5cmの試験片を採取し、当該試験片の長さ方向の両端を、延伸部分のサイズが長さ方向(MD)×幅方向(TD)=5cm×5cmとなるように延伸治具に固定し、30℃の水中に38秒間浸漬している間に12cm/分の延伸速度で元の長さの2.2倍に長さ方向(MD)に一軸延伸(1段目延伸)した後、ヨウ素を0.03質量%およびヨウ化カリウムを3質量%の濃度で含有する温度30℃のヨウ素/ヨウ化カリウム水溶液中に90秒間浸漬している間に12cm/分の延伸速度で元の長さの3.5倍まで長さ方向(MD)に一軸延伸(2段目延伸)し、次いでホウ酸を3質量%およびヨウ化カリウムを3質量%の濃度で含有する温度30℃のホウ酸/ヨウ化カリウム水溶液中に約20秒間浸漬している間に12cm/分の延伸速度で元の長さの3.9倍まで長さ方向(MD)に一軸延伸(3段目延伸)し、続いてホウ酸を4質量%およびヨウ化カリウムを約5質量%の濃度で含有する温度約63℃のホウ酸/ヨウ化カリウム水溶液中に浸漬しながら12cm/分の延伸速度で試験片が破断するまで長さ方向(MD)に一軸延伸し、試験片が破断したときの延伸倍率(元の長さに対する破断時の長さの比)と、破断時の試験片幅を読み取った。
 同じPVA系重合体フィルムについて、上記した延伸試験を5回行って、その平均値をとってPVA系重合体フィルムの限界延伸倍率(倍)と、偏光フィルム幅とした。
(7)PVA系重合体フィルムのネックイン度
上記の方法で採取したサンプルより得られた限界延伸倍率、偏光フィルム幅、延伸前フィルム幅(5cm)から、以下の式[vii]によって、PVA系重合体フィルムのネックイン度を求めた。
ネックイン度 = 偏光フィルム幅 ÷(延伸前フィルム幅 ÷ √限界延伸倍率) [vii]
ここで、ネックイン度の数値が高くなる程、限界延伸倍率に対する偏光フィルム幅が広いことを示しており、採取できる偏光フィルム面積が大きくなることを表す。
[実施例1]
(1)PVA系重合体フィルムの製造:
(i) ポリ酢酸ビニルをけん化することにより得られたPVA(けん化度99.9モル%、重合度2400)100質量部、グリセリン12質量部、ラウリン酸ジエタノールアミド0.1質量部および水からなる揮発分率66質量%の製膜原液をTダイから、回転軸が互いに平行な複数の乾燥ロールを備える製膜装置の第1乾燥ロール(表面温度93℃、周速(S)16.0m/分)上に膜状に吐出し、当該第1乾燥ロール上で、第1乾燥ロール非接触面の全体に90℃の熱風を5m/秒の風速で吹き付けながら揮発分率21質量%になるまで乾燥し、次いで第1乾燥ロールから剥離して、第2乾燥ロール以降の乾燥ロールで更に乾燥し、その後、表面温度102℃の乾燥ロール(熱処理ロール)で熱処理を行った後、巻き取ってPVA系重合体フィルム(厚み60μm、幅3m、揮発分率3質量%)を得た。
 この実施例1では、第1乾燥ロールの周速(S)に対する最終乾燥ロールの周速(S)の比(S/S)を0.958とし、揮発分率が20質量%になったときのPVA系重合体膜の膜幅(H20)および揮発分率が9質量%になったときのPVA系重合体膜の膜幅(H)より計算される収縮率((1-H/H20)×100)を2.03%とし、PVA系重合体膜の揮発分率が20質量%になったときの乾燥ロールからPVA系重合体膜の揮発分率が9質量%になったときの乾燥ロールまでの各乾燥ロールの表面温度について、これらの平均値を90.0℃とした。
(ii) 上記(i)で得られたPVA系重合体フィルムのΔn(MD)Ave、Δn(TD)Ave、質量膨潤度、限界延伸倍率およびネックイン度を上記した方法で測定したところ、下記の表1に示すとおりであった。
[実施例2、3および比較例1~3]
(1) 実施例1において、PVA系重合体フィルムを製造する際の製膜条件を、下記の表1に記載するように変えて、実施例1の(1)と同様にしてPVA系重合体フィルムを製造した。
 これにより得られた各PVA系重合体フィルムのΔn(MD)Ave、Δn(TD)Ave、質量膨潤度、限界延伸倍率およびネックイン度を上記した方法で測定したところ、下記の表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 
 上記の表1にみるように、実施例1~3のPVA系重合体フィルムは、Δn(MD)Ave[PVA系重合体フィルムの機械流れ方向の複屈折率を当該フィルムの厚み方向に平均化した値]およびΔn(TD)Ave[PVA系重合体フィルムの幅方向の複屈折率を当該フィルムの厚み方向に平均化した値]が式(I)および(II)を満たしていることにより、染色時に比較的高い延伸倍率3.5倍まで延伸し、さらに3段目延伸終了後の延伸時における温度を比較的高い約63℃としたにもかかわらず、いずれも、高い限界延伸倍率を示すと共に、高いネックイン度を示しており、当該PVA系重合体フィルムを用いることにより、偏光性能などの光学性能に優れる偏光フィルムなどの延伸フィルムを、延伸作業を中断することなく、高い歩留まりで、低コストで、生産性よく製造できることが分かる。
 それに対して、比較例1~3のPVA系重合体フィルムは式(I)および(II)を満たしていないために、実施例1~3のPVA系重合体フィルムに比べて、いずれも、限界延伸倍率およびネックイン度が低かった。

Claims (10)

  1.  下記の式(I)および(II)を満足することを特徴とするポリビニルアルコール系重合体フィルム。
      Δn(MD)Ave ≦ 1.3×10-3   (I)
      Δn(TD)Ave ≦ 1.3×10-3   (II)
    [上記式中、Δn(MD)Aveは、ポリビニルアルコール系重合体フィルムの機械流れ方向の複屈折率を当該フィルムの厚み方向に平均化した値を示し、Δn(TD)Aveは、ポリビニルアルコール系重合体フィルムの幅方向の複屈折率を当該フィルムの厚み方向に平均化した値を示す。]
  2.  厚みが10~65μmの範囲内にある、請求項1に記載のポリビニルアルコール系重合体フィルム。
  3.  光学フィルム製造用原反フィルムである、請求項1または2に記載のポリビニルアルコール系重合体フィルム。
  4.  光学フィルムが偏光フィルムである、請求項3に記載のポリビニルアルコール系重合体フィルム。
  5.  ポリビニルアルコール系重合体フィルムの製造方法であって、
    (a) 回転軸が互いに平行な複数の乾燥ロールを備える製膜装置を使用し、当該製膜装置の第1乾燥ロール上にポリビニルアルコール系重合体を含む製膜原液を膜状に吐出して部分乾燥した後にそれに続く乾燥ロールで更に乾燥して製膜し;その際に、
    (b) 第1乾燥ロールの周速(S)に対する最終乾燥ロールの周速(S)の比(S/S)を0.955~0.980にし;
    (c) 揮発分率が20質量%になったときのポリビニルアルコール系重合体膜の膜幅(H20)および揮発分率が9質量%になったときのポリビニルアルコール系重合体膜の膜幅(H)より計算される収縮率((1-H/H20)×100)(%)を1%以上にする;
    ことを特徴とする製造方法。
  6.  ポリビニルアルコール系重合体膜の揮発分率が20質量%になったときの乾燥ロールから、ポリビニルアルコール系重合体膜の揮発分率が9質量%になったときの乾燥ロールまでの各乾燥ロールの表面温度について、これらの平均値を85℃以上にする、請求項5に記載の製造方法。
  7.  製膜原液の揮発分率が60~75質量%である、請求項5または6に記載の製造方法。
  8.  第1乾燥ロールの周速(S)を8~25m/分にする、請求項5~7のいずれか1項に記載の製造方法。
  9.  請求項3に記載のポリビニルアルコール系重合体フィルムから製造した光学フィルム。
  10.  偏光フィルムである、請求項9に記載の光学フィルム。

     
PCT/JP2015/083042 2014-11-26 2015-11-25 ポリビニルアルコール系重合体フィルムおよびその製造方法 WO2016084836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561908A JP6679496B2 (ja) 2014-11-26 2015-11-25 ポリビニルアルコール系重合体フィルムおよびその製造方法
KR1020177003264A KR102423946B1 (ko) 2014-11-26 2015-11-25 폴리비닐알코올계 중합체 필름 및 그 제조 방법
CN201580064659.6A CN107001667B (zh) 2014-11-26 2015-11-25 聚乙烯醇系聚合物膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238851 2014-11-26
JP2014238851 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016084836A1 true WO2016084836A1 (ja) 2016-06-02

Family

ID=56074388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083042 WO2016084836A1 (ja) 2014-11-26 2015-11-25 ポリビニルアルコール系重合体フィルムおよびその製造方法

Country Status (5)

Country Link
JP (1) JP6679496B2 (ja)
KR (1) KR102423946B1 (ja)
CN (1) CN107001667B (ja)
TW (2) TWI711635B (ja)
WO (1) WO2016084836A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199138A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
CN110462468A (zh) * 2017-04-26 2019-11-15 三菱化学株式会社 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜的制造方法
KR20200053523A (ko) 2017-09-15 2020-05-18 주식회사 쿠라레 폴리비닐알코올 필름 및 그 제조 방법
WO2020138444A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
WO2020138440A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
WO2020138437A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルム、その製造方法および包装体
WO2020138438A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルム、その製造方法および包装体
JPWO2020050394A1 (ja) * 2018-09-07 2021-08-30 株式会社クラレ 人工大理石成型用ポリビニルアルコール離型フィルム、およびそれを用いた人工大理石の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096700B2 (ja) * 2017-09-13 2022-07-06 日東電工株式会社 偏光膜、偏光板、偏光板ロール、および偏光膜の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031541A (ja) * 1999-07-19 2001-02-06 Lion Corp 口腔用組成物
JP2002030164A (ja) * 2000-07-18 2002-01-31 Kuraray Co Ltd ポリビニルアルコール系フィルムおよび偏光フィルム
JP2004102094A (ja) * 2002-09-12 2004-04-02 Kuraray Co Ltd 偏光フィルム
JP2009024076A (ja) * 2007-07-19 2009-02-05 Nippon Synthetic Chem Ind Co Ltd:The 光学用ポリビニルアルコール系フィルム、偏光膜、及び偏光板
WO2009028141A1 (ja) * 2007-08-24 2009-03-05 Kuraray Co., Ltd. ポリビニルアルコールフィルムおよびその製造法
JP2012032789A (ja) * 2010-07-02 2012-02-16 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルム、ポリビニルアルコール系フィルムの製造方法、偏光フィルム及び偏光板
WO2012132984A1 (ja) * 2011-03-29 2012-10-04 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法
WO2013137056A1 (ja) * 2012-03-15 2013-09-19 株式会社クラレ エチレン変性ポリビニルアルコール系重合体フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480920B2 (ja) 2000-05-10 2003-12-22 株式会社クラレ ポリビニルアルコールフィルムの製造法
JP4433462B2 (ja) * 2004-05-12 2010-03-17 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法
CN103209583B (zh) * 2010-09-28 2014-08-20 可乐丽股份有限公司 植物栽培用膜
JP6257512B2 (ja) * 2012-09-26 2018-01-10 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031541A (ja) * 1999-07-19 2001-02-06 Lion Corp 口腔用組成物
JP2002030164A (ja) * 2000-07-18 2002-01-31 Kuraray Co Ltd ポリビニルアルコール系フィルムおよび偏光フィルム
JP2004102094A (ja) * 2002-09-12 2004-04-02 Kuraray Co Ltd 偏光フィルム
JP2009024076A (ja) * 2007-07-19 2009-02-05 Nippon Synthetic Chem Ind Co Ltd:The 光学用ポリビニルアルコール系フィルム、偏光膜、及び偏光板
WO2009028141A1 (ja) * 2007-08-24 2009-03-05 Kuraray Co., Ltd. ポリビニルアルコールフィルムおよびその製造法
JP2012032789A (ja) * 2010-07-02 2012-02-16 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルム、ポリビニルアルコール系フィルムの製造方法、偏光フィルム及び偏光板
WO2012132984A1 (ja) * 2011-03-29 2012-10-04 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法
WO2013137056A1 (ja) * 2012-03-15 2013-09-19 株式会社クラレ エチレン変性ポリビニルアルコール系重合体フィルム

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462468B (zh) * 2017-04-26 2021-10-26 三菱化学株式会社 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜的制造方法
WO2018199138A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
CN110462468A (zh) * 2017-04-26 2019-11-15 三菱化学株式会社 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜的制造方法
KR20230074825A (ko) 2017-04-26 2023-05-31 미쯔비시 케미컬 주식회사 폴리비닐알코올계 필름, 편광막 및 편광판, 및 폴리비닐알코올계 필름의 제조 방법
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
KR20200053523A (ko) 2017-09-15 2020-05-18 주식회사 쿠라레 폴리비닐알코올 필름 및 그 제조 방법
US11883988B2 (en) 2018-09-07 2024-01-30 Kuraray Co., Ltd. Poly(vinyl alcohol) mold release film for artificial marble molding use, and method for producing artificial marble using same
JP7165740B2 (ja) 2018-09-07 2022-11-04 株式会社クラレ 人工大理石成型用ポリビニルアルコール離型フィルム、およびそれを用いた人工大理石の製造方法
EP3848174A4 (en) * 2018-09-07 2022-06-08 Kuraray Co., Ltd. POLYVINYL ALCOHOL RELEASE FILM FOR USE IN MOLDING ARTIFICIAL MARBLE AND METHOD FOR PRODUCTION OF ARTIFICIAL MARBLE USING THE SAME
JPWO2020050394A1 (ja) * 2018-09-07 2021-08-30 株式会社クラレ 人工大理石成型用ポリビニルアルコール離型フィルム、およびそれを用いた人工大理石の製造方法
JPWO2020138437A1 (ja) * 2018-12-28 2021-11-11 株式会社クラレ 水溶性フィルム、その製造方法および包装体
JP7240421B2 (ja) 2018-12-28 2023-03-15 株式会社クラレ 水溶性フィルム、その製造方法および包装体
CN113226941A (zh) * 2018-12-28 2021-08-06 株式会社可乐丽 水溶性膜以及包装体
JPWO2020138440A1 (ja) * 2018-12-28 2021-11-11 株式会社クラレ 水溶性フィルムおよび包装体
JPWO2020138438A1 (ja) * 2018-12-28 2021-11-11 株式会社クラレ 水溶性フィルム、その製造方法および包装体
WO2020138438A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルム、その製造方法および包装体
WO2020138437A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルム、その製造方法および包装体
JPWO2020138444A1 (ja) * 2018-12-28 2021-11-04 株式会社クラレ 水溶性フィルムおよび包装体
JP7240422B2 (ja) 2018-12-28 2023-03-15 株式会社クラレ 水溶性フィルムおよび包装体
JP7240420B2 (ja) 2018-12-28 2023-03-15 株式会社クラレ 水溶性フィルム、その製造方法および包装体
WO2020138440A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
JP7336464B2 (ja) 2018-12-28 2023-08-31 株式会社クラレ 水溶性フィルムおよび包装体
CN113226941B (zh) * 2018-12-28 2023-10-27 株式会社可乐丽 水溶性膜以及包装体
WO2020138444A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体

Also Published As

Publication number Publication date
KR102423946B1 (ko) 2022-07-21
TWI711635B (zh) 2020-12-01
CN107001667B (zh) 2021-05-28
TW201627332A (zh) 2016-08-01
TW201943744A (zh) 2019-11-16
KR20170091082A (ko) 2017-08-08
JP6679496B2 (ja) 2020-04-15
CN107001667A (zh) 2017-08-01
TWI701264B (zh) 2020-08-11
JPWO2016084836A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5117639B2 (ja) ポリビニルアルコール系重合体フィルムおよびその製造方法
WO2016084836A1 (ja) ポリビニルアルコール系重合体フィルムおよびその製造方法
JP6030528B2 (ja) 偏光フィルムの製造方法
JP5405700B1 (ja) エチレン変性ポリビニルアルコール系重合体フィルム
TWI765093B (zh) 聚乙烯醇薄膜及其製造方法
WO2014050696A1 (ja) ポリビニルアルコール系重合体フィルムおよびその製造方法
WO2016190235A1 (ja) ポリビニルアルコール系重合体フィルム及びその製造方法
JP7375042B2 (ja) 光学用ポリビニルアルコールフィルムの製造方法
JP7335698B2 (ja) ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561908

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003264

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862155

Country of ref document: EP

Kind code of ref document: A1