WO2016076344A1 - アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法 - Google Patents

アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法 Download PDF

Info

Publication number
WO2016076344A1
WO2016076344A1 PCT/JP2015/081691 JP2015081691W WO2016076344A1 WO 2016076344 A1 WO2016076344 A1 WO 2016076344A1 JP 2015081691 W JP2015081691 W JP 2015081691W WO 2016076344 A1 WO2016076344 A1 WO 2016076344A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum alloy
alloy material
adhesive resin
treatment
Prior art date
Application number
PCT/JP2015/081691
Other languages
English (en)
French (fr)
Inventor
高田 悟
佑輔 高橋
明彦 巽
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/519,941 priority Critical patent/US20170334171A1/en
Priority to EP15858755.0A priority patent/EP3219828A4/en
Priority to CN201580059993.2A priority patent/CN107075691A/zh
Priority to KR1020177010986A priority patent/KR20170060103A/ko
Publication of WO2016076344A1 publication Critical patent/WO2016076344A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Definitions

  • the present invention relates to an aluminum alloy material, a joined body, a member for an automobile, and a method for producing the aluminum alloy material. More specifically, the present invention relates to an aluminum alloy material in which an oxide film is formed at least in part, a joined body and an automobile member using the aluminum alloy material, and a method for producing the aluminum alloy material.
  • a JIS5000-based Al—Mg-based alloy material or a JIS6000-based Al—Mg—Si-based alloy plate or the like is used for automobile members.
  • a joining method of these aluminum alloy materials there are welding and adhesion by an adhesive, and these methods may be used in combination. Whereas welding joins an aluminum alloy material with dots or lines, bonding with an adhesive bonds the aluminum alloy material over the entire surface, which is advantageous in terms of high joint strength and impact safety. For this reason, in recent years, adhesion by an adhesive tends to increase in automobile members.
  • a composite of an aluminum alloy material and a resin is used to reduce the weight of an automobile.
  • Patent Document 1 proposes a method of removing the Mg concentrated layer on the surface of the aluminum alloy plate by pickling and simultaneously concentrating Cu on the surface of the aluminum alloy plate.
  • Patent Document 2 proposes a method in which the amount of Mg concentrated on the surface of an aluminum alloy plate and the OH absorption rate have a specific relationship.
  • Patent Document 3 proposes a method in which the Mg concentration, Si concentration, and OH concentration in the oxide film surface layer of the aluminum material are set to specific ranges by continuously performing solution treatment and hot water treatment. .
  • Japanese Unexamined Patent Publication No. 6-256881 Japanese Unexamined Patent Publication No. 2006-200007 Japanese Unexamined Patent Publication No. 2007-217750 Japanese Patent Laid-Open No. 8-144064 Japanese Laid-Open Patent Publication No. 7-188956
  • Patent Documents 1 to 3 described above are exposed to a high-temperature and humid environment in which moisture, oxygen, chloride ions, and the like permeate, the deterioration of the interface proceeds, and the interface peels off. There is a problem that the strength is lowered or the corrosion of Al is promoted.
  • the technique described in Patent Document 1 describes that the bonding with an adhesive is strengthened by concentration of Cu and the adhesiveness is improved.
  • an aluminum alloy plate to which this technique is applied is a resin in a wet environment. Decomposition may be accelerated, and high durability cannot be expected.
  • the techniques described in Patent Documents 4 and 5 cannot be expected to improve the adhesion durability.
  • the present invention provides an aluminum alloy material, a bonded body and an automotive member, and an aluminum alloy material manufacturing method that are less likely to decrease in adhesive strength even when exposed to a high-temperature and humid environment, and that have excellent adhesion durability.
  • the main purpose is to decrease in adhesive strength even when exposed to a high-temperature and humid environment, and that have excellent adhesion durability.
  • the present inventor has conducted extensive experiments to solve the above-described problems, and as a result, has obtained the following knowledge.
  • the interface is hydrated and bonding strength (hydrogen bonding) decreases when exposed to a high temperature and wet environment. To do.
  • the base of the aluminum alloy plate and the adhesive layer are basically bonded by hydrogen bonding, and when exposed to a high temperature and humidity environment where moisture, oxygen, chloride ions, etc. penetrate. , The interface is hydrated and the bond strength decreases.
  • the method of performing anodization complicates the apparatus and costs equipment, and further requires a long time for film formation, resulting in a reduction in production efficiency.
  • the interface deteriorates due to the hydration of the interface, and the interface peels off. Occurs and the adhesive strength decreases.
  • the inventor examines the bonding state between the base material surface and the adhesive resin layer, and forms a first film made of an oxide film on the surface of the aluminum alloy base material (first film forming step).
  • the amount of etching is controlled to be less than a specific amount, and after the first film is formed by treatment with an aqueous solution containing silicate as the final stage of film formation in this step, silane coupling treatment is performed.
  • second film forming step it was found that a decrease in adhesive strength when exposed to a high-temperature wet environment can be suppressed, and the present invention has been achieved.
  • the aluminum alloy material according to the present invention is formed on an aluminum alloy base material and at least a part of the surface of the aluminum alloy base material, Mg is 0.1 atomic% or more and less than 30 atomic% and Si is 12 atomic%.
  • a first film comprising an oxide film containing 80 atomic% or less and Cu controlled to less than 0.6 atomic%, and a first film having a siloxane bond formed on at least a part of the first film.
  • the Mg amount, Si amount, and Cu amount in the first film are values measured by a high-frequency glow discharge emission spectroscopic analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
  • the aluminum alloy substrate can be formed of, for example, an Al—Mg alloy, an Al—Cu—Mg alloy, an Al—Mg—Si alloy, or an Al—Zn—Mg alloy.
  • an adhesive resin layer made of an adhesive resin may be formed on the outermost surface of the portion where the first film and the second film are formed.
  • the joined body according to the present invention uses the above-described aluminum alloy material.
  • the aluminum alloy materials including the first film and the second film described above are arranged so that the portions where the first film and the second film are formed face each other. And it can be set as the structure joined through adhesive resin.
  • the first film and the second film are formed on the portion where the first film and the second film of the aluminum alloy material including the first film and the second film are formed via an adhesive resin. It can also be set as the structure which joined the other aluminum alloy material or resin molding in which the membrane
  • an aluminum alloy material that includes the first film and the second film described above and further includes an adhesive resin layer and an aluminum alloy material that includes the first film and the second film described above and does not include the adhesive resin layer. are arranged so that the portion where the adhesive resin layer is formed and the portion where the first film and the second film are formed face each other, and are joined via the adhesive resin layer It may be.
  • the first film and the second film are formed in a portion of the aluminum alloy material that includes the first film and the second film and further includes an adhesive resin layer. It is also possible to adopt a configuration in which other aluminum alloy materials or resin moldings that are not used are joined.
  • the resin molded body may be, for example, a fiber reinforced plastic molded body.
  • the automotive member according to the present invention uses the above-described joined body.
  • the method for producing an aluminum alloy material of the present invention includes a first film forming step of forming a first film made of an oxide film on at least a part of the surface of the aluminum alloy substrate, and at least the first film.
  • a second film forming step of forming a second film by silane coupling treatment wherein the first film forming step includes a heat treatment step, an etching treatment step after the heat treatment step, and silicic acid;
  • a salt treatment step wherein the silicate treatment step is after the etching treatment step or at the same time as the etching treatment step, the etching amount in the etching treatment step is controlled to be less than 700 nm, and the silicate In the treatment step, treatment is performed using an aqueous solution containing silicate.
  • the silicate treatment step may be after the etching treatment step, and at least one of acid treatment and alkaline solution treatment may be performed as the etching treatment step.
  • the silicate treatment stage is simultaneous with the etching treatment stage, and the aqueous solution containing the silicate is an acidic or alkaline aqueous solution containing silicate. Also good.
  • the method for producing an aluminum alloy material of the present invention may further include a step of forming an adhesive resin layer on the outermost surface of the portion where the first film and the second film are formed.
  • the aluminum alloy base material is, for example, an Al—Mg alloy, an Al—Cu—Mg alloy, an Al—Mg—Si alloy, or an Al—Zn—Mg alloy. It can be made of an alloy.
  • the present invention it is possible to realize an aluminum alloy material that is hardly deteriorated in adhesive strength and is excellent in adhesion durability even when exposed to a high-temperature and humid environment.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to a modification of the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing a method for manufacturing the aluminum alloy material shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of a joined body according to the second embodiment of the present invention.
  • FIG. 6A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum alloy material according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material shown in FIG.
  • FIG. 3 is
  • FIG. 6B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 8A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 8B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 9A is a side view schematically showing a method for measuring the cohesive failure rate.
  • FIG. 9B is a plan view schematically showing a method for measuring the cohesive failure rate.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the aluminum alloy material of the present embodiment.
  • an aluminum alloy material 10 of the present embodiment includes a first film 1 (hereinafter, referred to as an “oxidized film”) formed on at least a part of the surface of an aluminum alloy base material 3 (hereinafter also referred to as a base material 3).
  • a second film 2 (hereinafter also referred to as a film 2) having a siloxane bond is formed on at least a part of the first film 1.
  • the substrate 3 is made of an aluminum alloy.
  • the type of aluminum alloy that forms the base material 3 is not particularly limited, and various non-heat-treatable or heat-treated aluminums that are defined in JIS or approximate to JIS, depending on the use of the processed member. It can be used by appropriately selecting from alloys.
  • the non-heat treatment type aluminum alloy there are pure aluminum (1000 series), Al—Mn series alloy (3000 series), Al—Si series alloy (4000 series), and Al—Mg series alloy (5000 series).
  • the heat-treatable aluminum alloy there are an Al—Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series).
  • the base material 3 preferably has a 0.2% proof stress of 100 MPa or more from the viewpoint of strength.
  • Aluminum alloys that can form a base material that satisfies such characteristics include those containing relatively large amounts of magnesium, such as 2000 series, 5000 series, 6000 series, and 7000 series, and these alloys are necessary. Depending on the condition, it may be tempered. Among various aluminum alloys, it is preferable to use a 6000 series aluminum alloy because it has excellent age-hardening ability, has a relatively small amount of alloy elements, and is excellent in scrap recyclability and formability.
  • the first film 1 (also simply referred to as “film 1”) contains 0.1 atomic% or more and less than 30 atomic% of Mg and 12 atomic% or more and 80 atomic% or less of Si and 0.6 atomic% of Cu. It is desirable that the oxide film be regulated to less than (an oxide film containing aluminum, hereinafter also referred to as “oxide film”).
  • This coating 1 is provided in order to improve adhesion durability when exposed to a high-temperature and humid environment.
  • the suitable range of each component amount contained in the film 1 will be described.
  • the aluminum alloy constituting the base material of the aluminum alloy material usually contains magnesium as an alloy component, and when an oxide film that is a composite oxide of aluminum and magnesium is formed on the surface of such a base material 3, It exists in the state where magnesium was concentrated on the surface. For this reason, when an adhesive resin is formed on the oxide film, the surface magnesium becomes a weak boundary layer of the adhesive interface, and the initial adhesiveness is lowered.
  • Mg is a cause of hydration of the interface with the adhesive resin layer and dissolution of the base material in a high temperature and humid environment where moisture, oxygen, chloride ions, etc. penetrate, and the adhesion durability of the aluminum alloy material is reduced. Reduce. Specifically, when the Mg content in the oxide film is 30 atomic% or more, the adhesion durability of the aluminum alloy material tends to decrease. Therefore, in the aluminum alloy material 10 of the present embodiment, it is preferable to regulate the Mg content in the first film 1 made of an oxide film to less than 30 atomic%. Thereby, adhesion durability can be improved.
  • the Mg content of the film 1 is more preferably less than 25 atomic%, more preferably less than 20 atomic%, and still more preferably less than 10 atomic%, from the viewpoint of improving adhesion durability.
  • the lower limit of the Mg content of the coating 1 is preferably 0.1 atomic% or more from the viewpoint of economy.
  • the Mg content in the film 1 can be measured by a high-frequency glow discharge optical emission spectrometry (GD-OES).
  • the method for adjusting the Mg content of the film 1 is not particularly limited.
  • acids or mixed acids such as nitric acid, sulfuric acid and hydrofluoric acid, or potassium hydroxide, sodium hydroxide, silicate and carbonate
  • a method of surface treatment with an alkaline solution containing the above can be applied.
  • This method adjusts the Mg content of the film 1 (oxide film) by dissolving magnesium in an acid or alkali solution, and adjusts the treatment time, temperature, concentration and pH of the surface treatment solution.
  • the amount of Mg in the film 1 can be in the range described above.
  • Silicon has an effect of stabilizing the surface of the first film 1, and further, when the second film 2 is a film having a siloxane bond, it also has an effect of improving adhesion with the second film 2. is there. For this reason, it becomes possible to improve adhesion durability by making the 1st membrane
  • the Si content in the coating 1 is less than 12 atomic%, the above-described effects tend to be small, and when the Si content exceeds 80 atomic%, spot weldability and uniformity of chemical conversion treatment are reduced. Tend to. Therefore, in the aluminum alloy material 10 of the present embodiment, the Si content in the first film 1 made of an oxide film is preferably 12 to 80 atomic%.
  • the Si content in the coating 1 is preferably 12 atomic% or more, and more preferably 15 atomic% or more. Further, from the viewpoint of spot weldability and uniformity of chemical conversion treatment, the Si content in the film 1 is preferably 80 atomic% or less, more preferably 70 atomic% or less, and 60 atomic% or less. More preferably it is.
  • the oxide film may be treated with an aqueous solution containing a silicate such as sodium silicate or potassium silicate.
  • a silicate such as sodium silicate or potassium silicate.
  • the silicate concentration is not defined, it is desirable to treat with 0.001% by mass or more of an aqueous solution.
  • the pH of the treatment liquid is not particularly limited, but precipitation occurs in liquids other than alkaline.
  • ⁇ Cu content> When excessive etching is performed on the base material 3 by a degreasing process, a pickling process, or the like when forming the first film 1, Cu contained in the base material 3 is concentrated on the surface, and the first film 1 is formed. Cu content increases. When Cu is present on the surface of the first film 1, the adhesion with the film 2 having a siloxane bond as the second film is reduced.
  • the Cu content in the first film 1 is preferably restricted to less than 0.6 atomic%.
  • coat 1 is less than 0.5 atomic% from a viewpoint of an adhesive improvement with the membrane
  • the etching method is not limited, for example, the same as described in the numerical value limitation of Mg
  • the processing method can be applied. That is, for example, etching can be performed by treatment with an acid or alkali solution.
  • the etching amount in the etching treatment stage in the present specification is the dissolution amount of the oxide film or the base material including the oxide film, and the decrease in weight before and after the etching treatment is measured, and the thickness (film thickness) is measured. ).
  • the conversion from the weight reduction amount to the film thickness is performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience.
  • the total etching amount of the oxide film and the base material is defined as the etching amount.
  • MoO-Si bond amount When the film 2 having a siloxane bond is formed on the film 1 made of the oxide film, a MO—Si bond is formed between them.
  • M is an element contained in the aluminum alloy substrate 3, specifically, Al and Mg contained in the coating 1.
  • This M—O—Si bond is a main bond between the first film 1 made of an oxide film and the second film 2 having a siloxane bond. It is influenced by the structure of the oxide film.
  • the amount of M—O—Si bonds is analyzed by Fourier transform infrared spectroscopy with parallel polarized light having an incident angle of 75 ° incident on the surface on which the first film 1 and the second film 2 are formed.
  • the spectrum obtained in this way can be obtained from the area of the peak derived from the M—O—Si bond generated in the vicinity of 1057 cm ⁇ 1 with 1026 cm ⁇ 1 to 1084 cm ⁇ 1 as the baseline. Note that the position of the peak derived from the M—O—Si bond is shifted in the range of about 1045 to 1065 cm ⁇ 1 depending on the type and ratio of M.
  • the peak area generated in the vicinity of 1057 cm ⁇ 1 calculated by the above-described method is 0.019 or more.
  • the area of the peak derived from this M—O—Si bond is less than 0.019, the ratio of occurrence of interfacial peeling at the interface between the first film 1 and the second film 2 increases, and the desired adhesion durability. I can't get sex.
  • the peak area derived from the M—O—Si bond is preferably 0.022 or more, and more preferably 0.025 or more.
  • the film thickness of the film 1 is preferably 1 to 30 nm.
  • the film thickness of the film 1 in order to control the film thickness of the film 1 to be less than 1 nm, excessive acid cleaning or the like is required, so that productivity is inferior and practicality tends to be lowered. Further, excessive etching with alkali degreasing or acid causes the Cu contained in the base material 3 to be concentrated on the surface and causes a decrease in adhesion durability. Therefore, the etching amount in the pretreatment must be less than 700 nm. There is.
  • the film thickness of the film 1 exceeds 30 nm, the amount of the film becomes excessive and irregularities are easily formed on the surface.
  • the surface of the coating 1 is uneven, for example, chemical conversion spots are likely to occur during the chemical conversion treatment performed before the coating process in automobile applications, leading to a decrease in chemical conversion.
  • the film thickness of the film 1 is more preferably 2 nm or more and less than 20 nm from the viewpoints of chemical conversion and productivity.
  • the second film 2 (also simply referred to as “film 2”) is a film containing a siloxane bond treated with a silane coupling solution.
  • the second film 2 is preferably formed thinly and uniformly on the film 1, but may be applied in an island shape on the film 1.
  • the coating amount of the coating 2 is preferably 0.01 mg / m 2 or more and less than 30 mg / m 2 .
  • the coating amount of the coating 2 is more preferably less than 15 mg / m 2, and even more preferably less than 6 mg / m 2 .
  • FIG. 2 is a flowchart showing a method for manufacturing the aluminum alloy material 10 of the present embodiment. As shown in FIG. 2, when manufacturing the aluminum alloy material 10 of this embodiment, base material preparation process S1, 1st film formation process S2, and 2nd film formation process S3 are performed. Hereinafter, each step will be described.
  • the shape of the substrate is not particularly limited, and depending on the shape of a member produced using an aluminum alloy material, in addition to a plate shape, a cast material, a forged material, an extruded material (for example, a hollow bar shape), etc. Any shape that can be taken as In the base material manufacturing step S1, when a plate-shaped base material (substrate) is manufactured as an example, the substrate is manufactured by the following procedure, for example. First, an aluminum alloy having a predetermined composition is melted by continuous casting and cast to produce an ingot (melting casting process). Next, the produced ingot is subjected to homogenization heat treatment (homogenization heat treatment step).
  • the ingot subjected to homogenization heat treatment is hot-rolled to produce a hot-rolled sheet (hot-rolling step).
  • the hot-rolled sheet is subjected to rough annealing or intermediate annealing at 300 to 580 ° C., and cold rolling with a final cold rolling rate of 5% or more is performed at least once, so that a cold-rolled sheet (substrate) having a predetermined thickness is obtained. (Cold rolling process).
  • the temperature of rough annealing or intermediate annealing it is preferable to set the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, and thereby the effect of improving formability is more exhibited.
  • the temperature of rough annealing or intermediate annealing shall be 580 degrees C or less, and this becomes easy to suppress the fall of the moldability by generation
  • the final cold rolling rate is preferably 5% or more, and thereby, the effect of improving the formability is more exhibited.
  • the conditions of homogenization heat processing and hot rolling are not specifically limited, It can carry out on the conditions in the case of obtaining a hot rolled sheet normally. Further, intermediate annealing may not be performed.
  • Step S2 First film formation step>
  • the first film 1 made of an oxide film is formed on a part or all of the surface of the substrate 3 produced in the substrate production process of step S1.
  • the heat treatment stage which heat-processes the base material 3 and forms an oxide film, and the etching process stage and the silicate process stage after this heat treatment stage are provided.
  • the silicate treatment step is performed after the etching treatment step or simultaneously with the etching treatment step.
  • the etching amount is controlled to less than 700 nm, and the silicate treatment stage is treated with an aqueous solution containing silicate.
  • the MO—Si bond amount between the first film and the second film is in a specific range, and preferably the Mg amount, Si amount, and Cu amount in the first film.
  • the first film is formed so that is in a specific range.
  • the base material 3 is heated to 400 to 580 ° C., for example, to form an oxide film constituting the first film 1 on the surface of the base material 3. Further, the heat treatment also has an effect of adjusting the strength of the aluminum alloy material 10.
  • the heat treatment performed here is a solution treatment when the substrate 3 is formed of a heat-treatable aluminum alloy, and is annealed when the substrate 3 is formed of a non-heat-treatable aluminum alloy. It is heat processing in (final annealing).
  • This heat treatment is preferably rapid heating at a heating rate of 100 ° C./min or more from the viewpoint of improving the strength.
  • the strength of the aluminum alloy material 10 and the strength after heating (baking) of the aluminum alloy material 10 can be further increased by setting the heating temperature to 400 ° C. or higher and performing rapid heating.
  • the heating temperature is set to 580 ° C. or less and performing rapid heating, it is possible to suppress a decrease in formability due to the occurrence of burning.
  • the holding time in the heat treatment is preferably 3 to 30 seconds.
  • the surface treatment of the oxide film formed by the above-described method is performed so that the MO—Si bond amount between the first film and the second film falls within a specific range, and preferably the first film 1
  • the amount of Mg, the amount of Si, and the amount of Cu are adjusted to a specific range.
  • an acid such as nitric acid, sulfuric acid and hydrofluoric acid, or a mixed acid obtained by mixing two or more acids, sodium hydroxide, potassium hydroxide, silicate or carbonate is included.
  • the surface of the base material 3 is treated with an alkali solution or an alkali solution in which two or more kinds of alkalis are mixed, either alone or in combination, and an aqueous solution containing silicate is used as a silicate treatment step.
  • the oxide film formed on is processed.
  • the silicate treatment stage is performed as the final stage of the substantial film formation in the first film formation process, and no pickling is performed after the silicate treatment. However, when washing and / or drying is performed after the treatment with the aqueous solution containing silicate, the washing and / or drying is also included in the silicate treatment stage.
  • the treatment with the acid or alkali solution (etching treatment) and the treatment with the aqueous solution containing silicate (silicate treatment) in the first coating 1 are performed in one treatment. However, it can also be performed individually.
  • the oxide film may be treated using an acidic or alkaline aqueous solution containing silicate.
  • the oxide film may be pretreated with an acid or alkali solution and then treated with an aqueous solution containing a silicate. From the viewpoint of cost reduction, it is preferable to treat the oxide film using an acidic or alkaline aqueous solution containing silicate.
  • the processing conditions can be appropriately set in consideration of the alloy composition of the substrate 3, the thickness of the oxide film, and the like, and are not particularly limited.
  • the pH is 2 or less
  • Conditions of a processing temperature of 10 to 80 ° C. and a processing time of 1 to 60 seconds can be applied.
  • an alkaline solution for example, conditions of pH of 10 or more, treatment temperature of 10 to 80 ° C., and treatment time of 1 to 60 seconds can be applied.
  • Step S3 Second film forming step>
  • the second film 2 having a siloxane bond is formed as a second film forming process (second film forming process).
  • the second film 2 can be formed, for example, by using a silane coupling agent having a reactive functional group such as an amino group, an epoxy group, a methacryl group, a vinyl group, and a mercapto group.
  • the functional group of the silane coupling agent that forms the second film 2 is not limited to that described above, and a silane coupling agent having various functional groups is appropriately selected according to the adhesive resin to be used. Can be used.
  • the coating amount of the silane coupling agent from the viewpoint of the adhesion durability, coating amount after drying, per side, it is preferable to be 0.01 mg / m 2 or more 30 mg / m of less than 2.
  • the coating amount of the coating 2 is, for example, by diluting the silane coupling agent with a solvent (including organic solvent as well as water) to reduce the solid content concentration and viscosity, or by applying the wet coating amount by the coater count. It can be easily controlled by adjusting.
  • the application method of the silane coupling agent is not particularly limited, and an existing method can be applied. Specifically, a coating method by dipping, a method using various coating machines such as a roll coater, a bar coater, a gravure coater, a micro gravure coater, a reverse gravure coater, and a dip coater, a spray coating method, and the like can be applied.
  • the silane coupling agent After applying the silane coupling agent, the silane coupling agent is dried by heating.
  • the reason for drying by applying heat is to promote the bonding (MO—Si bonding) between the second film 2 and the first film 1, and the heating temperature is preferably 60 ° C. or more, more preferably. Is 75 ° C. or higher, more preferably 90 ° C. or higher.
  • the heating temperature is preferably 250 ° C. or less, more preferably 200 ° C. or less, still more preferably It is 150 degrees C or less.
  • the drying time is preferably 2 seconds or more, more preferably 5 seconds or more, and further preferably 10 seconds or more, although it depends on the heating temperature. Moreover, the said drying time becomes like this. Preferably it is 20 minutes or less, More preferably, it is 5 minutes or less, More preferably, it is 2 minutes or less.
  • ⁇ Other processes> In the manufacturing process of the aluminum alloy material 10 of the present embodiment, other processes may be included between or before and after each process as long as the processes described above are not adversely affected.
  • This preliminary aging treatment is preferably performed by heating at 40 to 120 ° C. within 72 hours at a low temperature of 8 to 36 hours.
  • pre-aging treatment By performing pre-aging treatment under these conditions, it is possible to improve moldability and strength after baking.
  • a foreign matter removing step for removing foreign matter on the surface of the aluminum alloy material 10 or a defective product removing step for removing defective products generated in each step may be performed.
  • the manufactured aluminum alloy material 10 is coated with press oil on the surface thereof before the fabrication of the joined body or before processing into the member for an automobile.
  • the press oil one containing an ester component is mainly used.
  • the method and conditions for applying the press oil to the aluminum alloy material 10 are not particularly limited, and methods and conditions for applying the normal press oil can be widely applied.
  • a press containing ethyl oleate as an ester component What is necessary is just to immerse the aluminum alloy material 10 in oil.
  • the ester component is not limited to ethyl oleate, and various materials such as butyl stearate and sorbitan monostearate can be used.
  • the etching amount is controlled to be less than 700 nm in the first film forming step of forming the first film made of the oxide film, and the substantial amount of this process is substantially reduced.
  • the first film 1 is formed by treatment with an aqueous solution containing silicate, and then the second film 2 is formed on at least a part of the first film 1 by silane coupling treatment. To do.
  • the amount of M—O—Si bonds formed at the interface between the first film 1 and the second film 2 can be obtained by entering parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy.
  • the aluminum alloy material 10 according to the preferred embodiment includes an oxide film (coating 1) containing a specific amount of Mg, the elution of the base material 3 can be suppressed, and the accompanying alkali on the surface of the base material 3 The deterioration of the adhesive resin can be suppressed.
  • the coating 1 contains a specific amount of Si and the amount of Cu in the coating 1 is regulated to be less than the specific amount, the adhesion between the coating 1 and the coating 2 is improved. As a result, even when the aluminum alloy material 10 of the present embodiment is exposed to a high-temperature and humid environment, the interfacial peeling is suppressed, and a decrease in adhesive strength can be suppressed over a long period of time.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the aluminum alloy material of this modification.
  • the same components as those of the aluminum alloy material 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the aluminum alloy material 11 of this modification is an adhesive made of an adhesive resin so as to cover the first film 1 and the second film 2 of the aluminum alloy material of the first embodiment described above.
  • a resin layer 4 is formed.
  • the adhesive resin layer 4 is made of an adhesive resin or the like, and the aluminum alloy material 11 of this modification is joined to another aluminum alloy material through the adhesive resin layer 4.
  • the adhesive resin that constitutes the adhesive resin layer 4 is not particularly limited, and adhesive resins that have been conventionally used for joining aluminum alloy materials such as thermosetting epoxy resins, acrylic resins, and urethane resins can be used. Can be used.
  • the thickness of the adhesive resin layer 4 is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 50 to 400 ⁇ m.
  • the thickness of the adhesive resin layer 4 is less than 10 ⁇ m, high adhesion durability is achieved when the aluminum alloy material 11 and an aluminum alloy material not provided with another adhesive resin layer are joined via the adhesive resin layer 4. Sexuality may not be obtained.
  • the thickness of the adhesive resin layer 4 exceeds 500 ⁇ m, the adhesive strength may be reduced.
  • FIG. 4 is a flowchart showing a method for manufacturing the aluminum alloy material 11 of this modification. As shown in FIG. 4, when manufacturing the aluminum alloy material 11 of this modification, an adhesive resin layer forming step S4 is performed in addition to the above-described steps S1 to S3.
  • Step S4 Adhesive resin layer forming step
  • the adhesive resin layer 4 made of an adhesive or the like is formed so as to cover the first film 1 and the second film 2.
  • the method for forming the adhesive resin layer 4 is not particularly limited. For example, when the adhesive resin is a solid, it is heated and pressure-bonded, or dissolved in a solvent to obtain a solution. In addition, when the adhesive resin is in a liquid state, a method of spraying or coating the surfaces of the film 1 and the film 2 as they are can be mentioned.
  • the adhesive resin layer is provided in advance, when manufacturing a joined body or a member for an automobile, operations such as applying an adhesive resin to the surface of the aluminum alloy material can be omitted.
  • the configuration and effects of the aluminum alloy material of this modification other than those described above are the same as those in the first embodiment described above.
  • the joined body of the present embodiment uses the aluminum alloy material of the first embodiment described above or its modification.
  • 5 to 8 are cross-sectional views schematically showing a configuration example of the joined body of this embodiment. 5 to 8, the same components as those of the aluminum alloy materials 10 and 11 shown in FIGS. 1 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first coating 1 and the second coating 2 are formed on the two aluminum alloy materials 10 shown in FIG. 1. It can arrange
  • the adhesive resin 5 in the joined body of the present embodiment the same adhesive resin as the adhesive resin layer 4 described above can be used.
  • the adhesive resin 5 can be a thermosetting epoxy resin, an acrylic resin, a urethane resin, or the like.
  • the thickness of the adhesive resin 5 is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 50 to 400 ⁇ m from the viewpoint of improving the adhesive strength.
  • both surfaces of the adhesive resin 5 are the film 1 and the film 2 of the aluminum alloy material 10 of the first embodiment. Even if it does, the adhesive strength of the interface of the adhesive resin 5 and the membrane
  • the other aluminum alloy material 6 in which the first film and the second film are not formed the same material as the base material 3 described above can be used. Or various non-heat treatment type or heat treatment type aluminum alloys similar to JIS can be used.
  • Examples of the resin molded body 7 include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic (A fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP) and Zylon reinforced plastic (ZFRP) can be used. By using these fiber-reinforced plastic molded bodies, it is possible to reduce the weight of the joined body while maintaining a certain strength.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • BFRP boron fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • KFRP polyethylene fiber reinforced plastic
  • a fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP
  • ZFRP Zylon reinforced plastic
  • the resin molded body 7 is made of polypropylene (PP), acrylic-butadiene-styrene copolymer (ABS) resin, polyurethane (PU), polyethylene (PE), polyvinyl chloride (PVC). , Nylon 6, nylon 6,6, polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyphthalamide (PPA), etc. Not engineering plastics can be used.
  • the joined bodies 21a and 21b shown in FIG. 6A and FIG. 6B since one surface of the adhesive resin 5 is joined to the first film 1 or the second film 2 side, When used for a member, even if it is exposed to a high temperature and humidity environment, it is not affected by the type of the adhesive resin, and adhesion durability at the interface is improved. Moreover, since the joined body 21b shown to FIG. 6B has joined the aluminum alloy material 10 and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, By using this joined body 21b, Further weight reduction of the automobile can be realized.
  • the other configurations and effects of the joined bodies 21a and 21b shown in FIGS. 6A and 6B are the same as those of the joined body 20 shown in FIG.
  • the aluminum alloy material 11 provided with the adhesive resin layer 4 shown in FIG. 3 and the aluminum alloy material 10 not provided with the adhesive resin layer 4 shown in FIG. It can also be configured. Specifically, the film 1 and the film 2 of the aluminum alloy material 10 are joined to the adhesive resin layer 4 side of the aluminum alloy material 11. As a result, the film 1 or the film 2 of the two aluminum alloy materials 10 and 11 are arranged so as to face each other through the adhesive resin layer 4 of the aluminum alloy material 11.
  • the first coating film and the first film are formed on the adhesive resin layer 4 side of the aluminum alloy material 11 provided with the adhesive resin layer 4 shown in FIG. It can also be set as the structure which joined resin moldings 7, such as another aluminum alloy material 6 in which the membrane
  • the joined bodies 23a and 23b since one surface of the adhesive resin layer 4 is joined to the coating 1 and the coating 2 side, when the joined body 23 is used as a member for an automobile as in the above-described joined body 20, it is wet at high temperature. Even when exposed to the environment, the adhesion durability at the interface is improved without being affected by the type of the adhesive resin.
  • the joined body 23b shown in FIG. 8B joins the aluminum alloy material 10 and the resin molded body 7, it is lighter than the joined body of aluminum alloy materials, and an automobile that is required to be lighter. It is suitable for a vehicle member.
  • the structures and effects of the joined bodies 23a and 23b shown in FIGS. 8A and 8B other than those described above are the same as those of the joined body 20 shown in FIG.
  • a manufacturing method of the joined bodies 20 to 23 particularly a joining method, a conventionally known joining method can be used.
  • the method for forming the adhesive resin 5 on the aluminum alloy material is not particularly limited.
  • an adhesive sheet prepared in advance with the adhesive resin 5 may be used, or the adhesive resin 5 has a siloxane bond. You may form by spraying or apply
  • FIG. The bonded bodies 20 to 23 may be coated with press oil on their surfaces before being processed into automobile members, like the aluminum alloy materials 10 and 11.
  • the adhesive resin 5 or the adhesive resin layer 4 is used.
  • the adhesive resin 5 or the adhesive resin layer 4 is used.
  • the etching amount is controlled to be less than 700 nm in the first film forming process for forming the first film made of the oxide film, and silicic acid is used at the final stage of film formation in this process.
  • a first film 1 is formed by treatment with an aqueous solution containing a salt, and then a second film 2 having a siloxane bond is formed on at least a part of the first film 1 by a silane coupling treatment.
  • An adhesive resin or an adhesive resin layer is bonded to the first film and the second film side of the aluminum alloy material.
  • the amount of M—O—Si bonds formed at the interface between the first film 1 and the second film 2 can be obtained by entering parallel polarized light with an incident angle of 75 ° by Fourier transform infrared spectroscopy.
  • the baseline from 1026cm -1 to 1084cm -1 can be 0.019 or more areas of the peaks occurring in the vicinity of 1057cm -1, it is possible to obtain an excellent bond durability.
  • the aluminum alloy material 10 according to the preferred embodiment includes an oxide film (coating 1) containing a specific amount of Mg, the elution of the base material 3 can be suppressed, and the accompanying alkali on the surface of the base material 3 The deterioration of the adhesive resin can be suppressed.
  • the coating 1 contains a specific amount of Si and the amount of Cu in the coating 1 is regulated to be less than the specific amount, the adhesion between the coating 1 and the coating 2 is improved.
  • the interface between the adhesive resin and the second film is chemically bonded to the second film even when exposed to a high-temperature and humid environment. Since the first film is also excellent in adhesiveness, it is hardly affected by the hydration of the first film, and the elution of the aluminum alloy substrate can be suppressed.
  • the member for motor vehicles of this embodiment uses the joined object of a 2nd embodiment mentioned above, for example, is a panel for motor vehicles.
  • the manufacturing method of the automobile member of the present embodiment is not particularly limited, but a conventionally known manufacturing method can be applied.
  • the joined members 20 to 23 shown in FIGS. 5 to 8 are cut or pressed to produce a predetermined-shaped automobile member.
  • the automobile member of the present embodiment is manufactured from the joined body of the second embodiment described above, the adhesive resin or the adhesive resin layer and the oxide film (first film) even when exposed to a high-temperature and humid environment. Elution of the aluminum alloy base material can be suppressed without being substantially affected by the hydration. As a result, in the automotive member of this embodiment, it is possible to suppress interfacial peeling when exposed to a high-temperature and humid environment, and to suppress a decrease in adhesive strength.
  • an aluminum alloy material was produced by the following method and conditions, and its adhesion durability and the like were evaluated.
  • the first film was formed as follows.
  • Examples 1 and 2> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • Examples 3 and 4> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a 6000 series aluminum alloy of JIS 6016 Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%
  • Examples 5 and 7> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a potassium hydroxide solution adjusted to pH 10 or higher under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, and then washed with water.
  • hydrofluoric acid and sulfuric acid at a concentration of 0.01 to 6 mol / L and adjusted to a pH of 2 or less, hydrofluoric acid and sulfuric acid at a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds.
  • a sulfuric acid solution treatment was performed, followed by washing with water.
  • an aqueous solution containing 0.1% by mass or more of sodium silicate the treatment was carried out under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, washed with water and dried to form a first film.
  • Examples 6 and 8> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a potassium hydroxide solution adjusted to pH 10 or higher under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, and then washed with water.
  • a nitric acid solution treatment was performed using a solution containing nitric acid adjusted to pH 2 or lower under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, followed by washing with water. Further, using an aqueous solution containing 0.1% by mass or more of sodium silicate, the treatment was carried out under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, washed with water and dried to form a first film.
  • Examples 9 and 10> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a potassium hydroxide solution adjusted to pH 10 or higher under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, and then washed with water.
  • hydrofluoric acid and sulfuric acid at a concentration of 0.01 to 6 mol / L and adjusted to a pH of 2 or less, hydrofluoric acid and sulfuric acid at a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds.
  • a sulfuric acid solution treatment was performed, followed by washing with water.
  • an aqueous solution containing 0.001% by mass or more of sodium silicate the treatment is carried out under the conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, and dried without washing to form a first film. did.
  • Examples 11 and 12 Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • the treatment was carried out under conditions of a temperature of 10 to 80 ° C. and a treatment time of 1 to 60 seconds, washed with water and dried to form a first film.
  • ⁇ Comparative Example 1> The first film was formed in the same manner as in Examples 5 and 7 except that the treatment with the aqueous solution containing sodium silicate was not performed, that is, the treatment with hydrofluoric acid / sulfuric acid solution was followed by washing and drying. .
  • ⁇ Comparative example 2> A first film was formed in the same manner as in Examples 5 and 7, except that the order of the hydrofluoric acid / sulfuric acid solution treatment and the treatment with the aqueous solution containing sodium silicate was changed.
  • ⁇ Comparative Example 3> A first film was formed in the same manner as in Examples 6 and 8, except that the treatment using the potassium hydroxide solution was performed for more than 60 seconds.
  • the silane coupling agent containing an amino group is diluted with pure water, the dilution rate is adjusted, and the coating amount after drying is adjusted by applying the method described in Table 1.
  • a second film was formed under control of 0.1 to 15 mg / m 2 to produce an aluminum alloy material.
  • coating of a silane coupling agent was performed for 1 minute at 100 degreeC.
  • the first film was measured while being sputtered in the film thickness direction by high-frequency glow discharge optical emission spectrometry (GD-OES: model JY-5000RF manufactured by Horiba Joban Yvon).
  • GD-OES high-frequency glow discharge optical emission spectrometry
  • the amount of ingredients was measured.
  • the maximum concentration of magnesium (Mg), copper (Cu) and silicon (Si) in the oxide film was defined as the film concentration in the film.
  • the concentration of the outermost surface is the aluminum (Al) film concentration.
  • oxygen (O) and carbon (C) are particularly susceptible to contamination on the outermost surface and in the vicinity thereof. From the above, in the concentration calculation of each element, the concentration was calculated excluding oxygen (O) and carbon (C). Note that oxygen (O) is likely to be affected by contamination at the outermost surface and in the vicinity thereof, and it is difficult to measure the exact concentration, but the film 1 of all samples contains oxygen (O). It was clear that
  • the amount of etching is the amount of dissolution of the oxide film and the base material including the oxide film, and the amount of decrease in weight before and after the etching treatment was measured and estimated as the thickness (film thickness).
  • the conversion from the decrease in weight to the film thickness was performed by calculating the aluminum thickness using the aluminum density of 2.7 g / cm 3 for convenience.
  • M-O-Si bond amount The amount of M—O—Si bond was quantified by FT-IR (Fourier transform infrared spectrophotometer: Magna-750 spectrometer manufactured by Nicolet) after forming the second film. Specifically, the FT-IR spectrum measured by the parallel polarization using the incident angle 75 °, when the baseline from 1026cm -1 to 1084cm -1, to M-O-Si bonds generated in the vicinity of 1057cm -1 The area of the peak derived was determined by the analysis software attached to this apparatus.
  • FT-IR Fastier transform infrared spectrophotometer: Magna-750 spectrometer manufactured by Nicolet
  • 9A and 9B are diagrams schematically showing a method of measuring the cohesive failure rate
  • FIG. 9A is a side view
  • FIG. 9B is a plan view.
  • the adhesive resin 35 used here is a thermosetting epoxy resin-based adhesive resin (bisphenol A type epoxy resin amount 40 to 50 mass%).
  • the prepared adhesion test specimen was held in a high temperature and humidity environment of 50 ° C. and a relative humidity of 95% for 30 days, and then pulled at a rate of 50 mm / min with a tensile tester to evaluate the cohesive failure rate of the adhesive resin at the adhesion portion.
  • the cohesive failure rate was calculated based on Equation 1 below.
  • the test specimen a was used as one side after the tension of the adhesion test specimen, and the test specimen b was used as the other side.
  • the cohesive failure rate was the average value of the three samples. Further, the evaluation criteria are that the cohesive failure rate is less than 80% as bad (x), 80% or more and less than 90% is good ( ⁇ ), 90% or more is excellent ( ⁇ ), and 80% or more is passed. .
  • the aluminum alloy materials of Comparative Examples 1 to 3 in which the amount of M—O—Si bonds is outside the scope of the present invention has a cohesive failure rate of less than 80%.
  • the adhesion durability was inferior.
  • the aluminum alloy materials of Examples 1 to 12 in which the amount of M—O—Si bonds is within the range of the present invention has a cohesive failure rate of 80% or more and good adhesion durability in a high-temperature and humid environment.
  • Met the aluminum alloy materials of Examples 5 to 12 in which the Mg amount was less than 10 atomic% had a cohesive failure rate of 90% or more, and had excellent adhesion durability in a high temperature and humid environment.
  • Comparative Example 1 since a silicate treatment was not performed, a sufficient amount of M—O—Si bonds could not be obtained, and a predetermined cohesive failure rate could not be obtained.
  • Comparative Example 2 since the hydrofluoric acid / sulfuric acid solution treatment was performed after the silicate treatment, the silicate treatment layer was dissolved, and a sufficient amount of M—O—Si bonds could not be obtained. The cohesive failure rate could not be obtained.
  • Comparative Example 3 Cu was concentrated on the substrate surface due to overetching, and a predetermined cohesive failure rate could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

 本発明は、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法を提供することを目的とする。本発明のアルミニウム合金材の製造方法においては、アルミニウム合金基材の表面に酸化皮膜からなる第1の皮膜を形成するにあたって(第1皮膜形成工程)、エッチング量を700nm未満に制御し、かつ、この工程の実質的な膜形成の最終段階としてケイ酸塩を含む水溶液で処理して第1の皮膜を形成した後に、シランカップリング処理を行ってシロキサン結合を有する第2の皮膜を形成する(第2皮膜形成工程)。

Description

アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法
 本発明は、アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法に関する。より詳しくは、少なくとも一部に酸化皮膜が形成されているアルミニウム合金材、このアルミニウム合金材を用いた接合体及び自動車用部材、及びアルミニウム合金材の製造方法に関する。
 自動車、船舶及び航空機などの輸送機の部材には、各種アルミニウム合金板材がその特性に応じて適宜選択されて用いられている。また、近年、CO排出抑制などの地球環境問題を意識して、部材の軽量化による燃費の向上が求められており、比重が鉄の約1/3であり、かつ優れたエネルギー吸収性を有するアルミニウム合金材の使用が増加している。
 例えば、自動車用部材には、JIS5000系のAl-Mg系合金材や、JIS6000系のAl-Mg-Si系合金板等のMg含有アルミニウム合金材が用いられている。これらのアルミニウム合金材の接合方法としては、溶接及び接着剤による接着があり、これらの方法が併用されることもある。溶接が点や線でアルミニウム合金材を接合するのに対し、接着剤による接着はアルミニウム合金材を面全体で接合するため、接合強度が高く、衝突安全性などの面で有利である。このため、近年、自動車用部材では、接着剤による接着が増加傾向にある。また、自動車の軽量化のためにアルミニウム合金材と樹脂の複合体が用いられる場合もある。
 一方、接着剤で接合したアルミニウム合金製自動車用部材は、使用中に水分、酸素及び塩化物イオンなどが接合部に浸入すると、次第に、接着剤層とアルミニウム合金板との界面が劣化し、界面剥離が生じて、接着強度が低下するという問題がある。そこで、従来、このような接着強度の低下を防止し、接着剤層を有するアルミニウム合金製自動車用部材の接着耐久性を向上させる方法が検討されている(例えば、特許文献1~3参照)。
 例えば、特許文献1には、酸洗処理によってアルミニウム合金板表面のMg濃化層を除去し、同時にアルミニウム合金板表面にCuを濃化させる方法が提案されている。また、特許文献2には、アルミニウム合金板の表面に濃化したMg量とOH吸収率とを特定の関係とする方法が提案されている。更に、特許文献3には、溶体化処理と温水処理を連続して行うことによって、アルミニウム材の酸化皮膜表面層中のMg濃度、Si濃度及びOH濃度を特定範囲とする方法が提案されている。
 また、従来、変色や糸錆を防止する目的で、ケイ酸塩を含む水溶液で処理し、表面にケイ素含有皮膜を形成した自動車用アルミニウム及びアルミニウム合金材も提案されている(特許文献4参照)。更に、自動車車体用Mg含有アルミニウム合金板において、優れた成形性を維持しつつ、リン酸亜鉛皮膜の均一性を得る方法として、弱エッチングの具体例としてケイ酸塩を使用する表面処理方法が提案されている(特許文献5参照)。
日本国特開平6-256881号公報 日本国特開2006-200007号公報 日本国特開2007-217750号公報 日本国特開平8-144064号公報 日本国特開平7-188956号公報
 しかしながら、前述した特許文献1~3に記載の技術は、水分、酸素及び塩化物イオンなどが浸透してくる高温湿潤環境に曝されると、界面の劣化が進み、界面剥離が発生し、接着強度が低下したり、Alの腐食が促進されたりするという問題がある。例えば、特許文献1に記載の技術は、Cuの濃化により接着剤との結合が強化されて接着性が向上すると記載されているが、この技術を適用したアルミニウム合金板は、湿潤環境において樹脂の分解が促進される虞があり、高い接着耐久性は期待できない。同様に、特許文献4及び5に記載の技術も、接着耐久性向上の効果は期待できない。
 そこで、本発明は、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材、接合体及び自動車用部材、及びアルミニウム合金材の製造方法を提供することを主目的とする。
 本発明者は、前述した課題を解決するために、鋭意実験検討を行った結果、以下に示す知見を得た。酸洗を行う方法は、アルミニウム合金板の素地と接着剤層が水素結合で結合されているため、高温湿潤の劣化環境に曝されると、界面は水和され結合力(水素結合)が低下する。
 陽極酸化を行う方法も、基本的にはアルミニウム合金板の素地と接着剤層は水素結合で結合されており、水分、酸素、塩化物イオンなどが浸透してくる高温湿潤環境に曝されると、界面が水和されて結合力が低下する。また、陽極酸化を行う方法は、装置が複雑となり設備コストがかかり、更に皮膜形成に長時間を要することから、生産効率が低下する。更に、温水処理を行う方法も、アルミニウム合金板の素地と接着剤層は水素結合で結合されているため、高温湿潤環境に曝されると界面の水和より、界面の劣化が進み、界面剥離が発生し、接着強度が低下する。
 そこで、本発明者は、基材表面と接着樹脂層との結合状態について検討を行い、アルミニウム合金基材の表面に酸化皮膜からなる第1の皮膜を形成するにあたって(第1皮膜形成工程)、エッチング量を特定量未満に制御し、かつ、この工程の実質的な膜形成の最終段階としてケイ酸塩を含む水溶液で処理して第1の皮膜を形成した後に、シランカップリング処理を行って第2の皮膜を形成することで(第2皮膜形成工程)、高温湿潤環境に曝されたときの接着強度低下を抑制できることを見出し、本発明に至った。
 即ち、本発明に係るアルミニウム合金材は、アルミニウム合金基材と、前記アルミニウム合金基材の表面の少なくとも一部に形成され、Mgを0.1原子%以上30原子%未満及びSiを12原子%以上80原子%以下含有すると共に、Cuが0.6原子%未満に規制された酸化皮膜からなる第1の皮膜と、前記第1の皮膜の少なくとも一部に形成された、シロキサン結合を有する第2の皮膜とを備え、前記第1の皮膜及び第2の皮膜が形成されている表面に、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られるスペクトルにおいて、1026cm-1から1084cm-1までをベースラインとしたとき、1057cm-1近傍に生じるピークの面積が0.019以上である。
 ここで、前記第1の皮膜中のMg量、Si量、及びCu量は、高周波グロー放電発光分光分析法(GD-OES:Glow Discharge-Optical Emission Spectroscopy)により測定した値である。
 前記アルミニウム合金基材は、例えば、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金で形成することができる。
 また、本発明のアルミニウム合金材は、前記第1の皮膜及び第2の皮膜が形成されている部分の最表面に接着樹脂からなる接着樹脂層が形成されていてもよい。
 本発明に係る接合体は、前述したアルミニウム合金材を用いたものである。本発明の接合体は、例えば、前述した第1の皮膜及び第2の皮膜を備えるアルミニウム合金材同士を、前記第1の皮膜及び第2の皮膜が形成されている部分が対向するように配置し、接着樹脂を介して接合した構成とすることができる。又は、前述した第1の皮膜及び第2の皮膜を備えるアルミニウム合金材の前記第1の皮膜及び第2の皮膜が形成されている部分に、接着樹脂を介して、前記第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材又は樹脂成形体を接合した構成とすることもできる。
 又は、前述した第1の皮膜及び第2の皮膜を備え、さらに接着樹脂層を備えるアルミニウム合金材と、前述した第1の皮膜及び第2の皮膜を備え、接着樹脂層を備えないアルミニウム合金材とを、前記接着樹脂層が形成されている部分と、前記第1の皮膜及び第2の皮膜が形成されている部分とが対向するように配置し、前記接着樹脂層を介して接合した構成にしてもよい。
 又は、前述した第1の皮膜及び第2の皮膜を備え、さらに接着樹脂層を備えるアルミニウム合金材の前記接着樹脂層が形成されている部分に、前記第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材又は樹脂成形体を接合した構成にすることもできる。
 また、前記樹脂成形体は、例えば、繊維強化プラスチック成形体であってもよい。
 本発明に係る自動車用部材は、前述した接合体を用いたものである。
 また、本発明のアルミニウム合金材の製造方法は、アルミニウム合金基材の表面の少なくとも一部に、酸化皮膜からなる第1の皮膜を形成する第1皮膜形成工程と、前記第1の皮膜の少なくとも一部に、シランカップリング処理により第2の皮膜を形成する第2皮膜形成工程とを備え、前記第1皮膜形成工程は、加熱処理段階と、前記加熱処理段階後のエッチング処理段階及びケイ酸塩処理段階とを含み、前記ケイ酸塩処理段階は前記エッチング処理段階より後あるいは前記エッチング処理段階と同時であり、前記エッチング処理段階におけるエッチング量を700nm未満に制御し、かつ、前記ケイ酸塩処理段階として、ケイ酸塩を含む水溶液を用いて処理を行うものである。
 前記第1皮膜形成工程においては、前記ケイ酸塩処理段階が前記エッチング処理段階より後であり、前記エッチング処理段階として、酸処理及びアルカリ溶液処理の少なくとも一つを行ってもよい。
 また、前記第1皮膜形成工程においては、前記ケイ酸塩処理段階が前記エッチング処理段階と同時であり、前記ケイ酸塩を含む水溶液は、ケイ酸塩を含む、酸性又はアルカリ性の水溶液であってもよい。
 また、本発明のアルミニウム合金材の製造方法は、前記第1の皮膜及び第2の皮膜が形成されている部分の最表面に接着樹脂層を形成する工程をさらに備えていてもよい。
 また、本発明のアルミニウム合金材の製造方法において、前記アルミニウム合金基材は、例えば、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金で形成することができる。
 本発明によれば、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材を実現することができる。
図1は、本発明の第1の実施形態に係るアルミニウム合金材の構成を模式的に示す断面図である。 図2は、図1に示すアルミニウム合金材の製造方法を示すフローチャート図である。 図3は、本発明の第1の実施形態の変形例に係るアルミニウム合金材の構成を模式的に示す断面図である。 図4は、図3に示すアルミニウム合金材の製造方法を示すフローチャート図である。 図5は、本発明の第2の実施形態に係る接合体の構成例を模式的に示す断面図である。 図6Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。 図6Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。 図7は、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。 図8Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。 図8Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。 図9Aは凝集破壊率の測定方法を模式的に示す側面図である。 図9Bは凝集破壊率の測定方法を模式的に示す平面図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
(第1の実施形態)
 先ず、本発明の第1の実施形態に係るアルミニウム合金材について説明する。図1は本実施形態のアルミニウム合金材の構成を模式的に示す断面図である。図1に示すように、本実施形態のアルミニウム合金材10は、アルミニウム合金基材3(以下、基材3ともいう)の表面の少なくとも一部に酸化皮膜からなる第1の皮膜1(以下、皮膜1ともいう)が形成されており、第1の皮膜1の少なくとも一部にシロキサン結合を有する第2の皮膜2(以下、皮膜2ともいう)が形成されている。
[基材3]
 基材3は、アルミニウム合金からなる。基材3を形成するアルミニウム合金の種類は、特に限定されるものではなく、加工される部材の用途に応じて、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型のアルミニウム合金から適宜選択して使用することができる。ここで、非熱処理型アルミニウム合金としては、純アルミニウム(1000系)、Al-Mn系合金(3000系)、Al-Si系合金(4000系)及びAl-Mg系合金(5000系)がある。また、熱処理型アルミニウム合金としては、Al-Cu-Mg系合金(2000系)、Al-Mg-Si系合金(6000系)及びAl-Zn-Mg系合金(7000系)がある。
 例えば、本実施形態のアルミニウム合金材10を自動車用部材に用いる場合は、強度の観点から、基材3は0.2%耐力が100MPa以上であることが好ましい。このような特性を満足する基材を形成可能なアルミニウム合金としては、2000系、5000系、6000系及び7000系などのように、マグネシウムを比較的多く含有するものがあり、これらの合金は必要に応じて調質してもよい。また、各種アルミニウム合金の中でも、時効硬化能に優れ、合金元素量が比較的少なくスクラップのリサイクル性や成形性にも優れていることから、6000系アルミニウム合金を用いることが好ましい。
[皮膜1]
 第1の皮膜1(単に「皮膜1」ともいう)は、Mgを0.1原子%以上30原子%未満及びSiを12原子%以上80原子%以下含有すると共に、Cuが0.6原子%未満に規制された酸化皮膜(アルミニウムを含む酸化皮膜、以下「酸化皮膜」ともいう)であることが望ましい。この皮膜1は、高温湿潤環境に曝された場合の接着耐久性の向上を図るために設けられている。以下、皮膜1に含まれる各成分量の好適な範囲について説明する。
<Mg含有量>
 アルミニウム合金材の基材を構成するアルミニウム合金には、通常、合金成分としてマグネシウムが含まれており、このような基材3の表面にアルミニウムとマグネシウムの複合酸化物である酸化皮膜を形成すると、表面にマグネシウムが濃化した状態で存在することとなる。このため、酸化皮膜上に接着樹脂を形成すると、表面のマグネシウムが接着界面の弱境界層となり、初期の接着性が低下する。
 また、Mgは、水分、酸素及び塩化物イオンなどが浸透してくる高温湿潤環境においては、接着樹脂層との界面の水和や基材の溶解の原因となり、アルミニウム合金材の接着耐久性を低下させる。具体的には、酸化皮膜中のMg含有量が30原子%以上になると、アルミニウム合金材の接着耐久性が低下する傾向がある。そこで、本実施形態のアルミニウム合金材10では、酸化皮膜からなる第1の皮膜1におけるMg含有量を30原子%未満に規制することが好ましい。これにより、接着耐久性を向上することができる。皮膜1のMg含有量は、接着耐久性向上の観点から、25原子%未満がより好ましく、20原子%未満がさらに好ましく、よりさらに好ましくは10原子%未満である。
 一方、皮膜1のMg含有量の下限値は、経済性の観点から0.1原子%以上とすることが好ましい。なお、ここでいう皮膜1中のMg含有量は、高周波グロー放電発光分光分析法(GD-OES)により測定することができる。
 皮膜1のMg含有量を調整する方法は、特に限定されるものではないが、例えば、硝酸、硫酸及びフッ酸などの酸若しくは混酸、又は水酸化カリウム、水酸化ナトリウム、ケイ酸塩及び炭酸塩などを含むアルカリ溶液で表面処理する方法を適用することができる。この方法は、マグネシウムを酸又はアルカリ溶液に溶解させることにより、皮膜1(酸化皮膜)のMg含有量を調整するものであり、処理時間、温度、表面処理液の濃度やpHを調整することで、皮膜1中のMg量を前述した範囲にすることができる。
<Si含有量>
 シリコンは、第1の皮膜1の表面を安定化させる効果があり、更に、第2の皮膜2がシロキサン結合を有する皮膜である場合は、第2の皮膜2との密着性を向上させる効果もある。このため、第1の皮膜1にシリコンを含有させることにより、接着耐久性を高めることが可能となる。
 ただし、皮膜1におけるSi含有量が12原子%未満の場合、前述した効果が小さくなる傾向があり、また、Si含有量が80原子%を超えると、スポット溶接性や化成処理の均一性が低下する傾向にある。そこで、本実施形態のアルミニウム合金材10では、酸化皮膜からなる第1の皮膜1におけるSi含有量を、好ましくは12~80原子%とする。
 接着耐久性向上の観点から、皮膜1におけるSi含有量は、12原子%以上であることが好ましく、15原子%以上であることがより好ましい。また、スポット溶接性や化成処理の均一性の観点からは、皮膜1におけるSi含有量は、80原子%以下であることが好ましく、70原子%以下であることがより好ましく、60原子%以下であることがさらに好ましい。
 第1の皮膜1中のSi含有量を制御するには、第2の皮膜2を形成する前に、酸化皮膜をケイ酸ナトリウムやケイ酸カリウムなどのケイ酸塩を含む水溶液で処理することが重要である。例えば、ケイ酸塩処理を行った後に酸洗を行うと、第1の皮膜1中のSi含有量が低下し、十分な接着耐久性が得られない。ケイ酸塩濃度は定めるものではないが、0.001質量%以上の水溶液で処理することが望ましい。ケイ酸塩処理後に水でリンスを施す場合は0.1質量%を超える水溶液で処理することが望ましく、処理液のpHについても特に限定されるものではないが、アルカリ性以外の液では沈殿を生じる可能性があるため、pH10.5以上とすることが好ましい。また、ケイ酸塩処理後にリンスを施さない場合は、濃度0.001質量%以上、1質量%以下の水溶液で処理することが望ましい。ケイ酸塩を含む水溶液による処理によれば、第1の皮膜1中のSi含有量を増加させ、また、後述するM-O-Si結合量を増加させやすい。
<Cu含有量>
 第1の皮膜1を形成する際に基材3に対して脱脂工程や酸洗工程などにより過剰なエッチングを行うと、基材3に含まれるCuが表面に濃化し、第1の皮膜1のCu含有量が増加する。第1の皮膜1の表面にCuが存在すると、第2の皮膜であるシロキサン結合を有する皮膜2との密着力が低下する。
 そこで、本実施形態のアルミニウム合金材では、第1の皮膜1中のCu含有量を好ましくは0.6原子%未満に規制する。なお、第1の皮膜1におけるCu量は、第2の皮膜であるシロキサン結合を有する皮膜2との密着性向上の観点から、0.5原子%未満であることがより好ましい。
 第1の皮膜1中のCu含有量の制御には、前処理によるエッチング量を調整する必要があるが、エッチング方法は限定されるものではなく、例えば、Mgの数値限定で記載したのと同様の処理方法を適用することができる。すなわち、例えば、酸又はアルカリ溶液による処理によりエッチングを行うことができる。
 ここで、本願明細書中におけるエッチング処理段階におけるエッチング量とは、酸化皮膜や酸化皮膜を含む基材の溶解量であり、エッチング処理前後の重量の減少量を測定し、それを厚み(膜厚)として見積もることができる。なお、重量の減少量から膜厚への換算は、便宜上、アルミニウムの密度:2.7g/cmを用い、アルミニウムの厚みとして計算することにより行うものとする。また、酸化皮膜に加えて、酸化皮膜下の基材の一部もエッチングされる場合には、酸化皮膜と基材のエッチング量の合計を、上記エッチング量とする。
[M-O-Si結合量]
 前述した酸化皮膜からなる皮膜1上に、シロキサン結合を有する皮膜2を形成する際に、これらの間にM-O-Si結合が形成される。ここで、「M」は、アルミニウム合金基材3に含まれる元素であり、具体的には、皮膜1中に含有されるAl及びMgなどである。
 このM-O-Si結合は、酸化皮膜からなる第1の皮膜1と、シロキサン結合を有する第2の皮膜2との間の主な結合であり、その結合量は、第1の皮膜1を構成する酸化皮膜の構造に影響される。また、M-O-Si結合量は、第1の皮膜1及び第2の皮膜2が形成されている表面に、入射角75°の平行偏光を入射してフーリエ変換式赤外分光法により分析して得たスペクトルにおいて、1026cm-1から1084cm-1までをベースラインとし、1057cm-1近傍に生じるM-O-Si結合に由来するピークの面積から求めることができる。なお、M-O-Si結合に由来するピークの位置は、Mの種類や割合によっておおよそ1045~1065cm-1の範囲でシフトする。
 そして、本実施形態のアルミニウム合金材10では、前述した方法で算出した1057cm-1近傍に生じるピークの面積が0.019以上となっている。このM-O-Si結合に由来するピークの面積が0.019未満の場合、第1の皮膜1と第2の皮膜2との界面で、界面剥離が生じる割合が大きくなり、所望の接着耐久性を得ることができない。なお、接着耐久性向上の観点から、M-O-Si結合に由来するピークの面積は、0.022以上が好ましく、より好ましくは0.025以上である。
<膜厚>
 皮膜1(酸化皮膜)の膜厚は、1~30nmであることが好ましい。皮膜1の膜厚が1nm未満の場合、基材3を作製する際に使用される防錆油やアルミニウム合金材10から接合体又は自動車用部材を製造する際に使用されるプレス油中のエステル成分の吸着が抑制される。このため、皮膜1(酸化皮膜)を設けなくても、アルミニウム合金材10の脱脂性、化成処理性及び接着耐久性を確保することができる。しかしながら、皮膜1の膜厚を1nm未満に制御するには、過度の酸洗浄などが必要となるため、生産性が劣り、実用性が低下しやすい。また、アルカリ脱脂や酸による過剰なエッチングは基材3に含有されるCuが表面濃化する原因となり、接着耐久性の低下の原因となるため、前処理でのエッチング量は700nm未満にする必要がある。
 一方、皮膜1の膜厚が30nmを超えると、皮膜量が過剰となり、表面に凹凸ができやすくなる。そして、皮膜1の表面に凹凸が生じると、例えば自動車用途において塗装工程の前に行う化成処理の際に化成斑が生じやすくなり、化成性の低下を招く。なお、皮膜1(酸化皮膜)の膜厚は、化成性及び生産性などの観点から、2nm以上20nm未満であることがより好ましい。
[皮膜2]
 第2の皮膜2(単に「皮膜2」ともいう)は、シランカップリング溶液で処理されたシロキサン結合を含む皮膜である。また、第2の皮膜2は、皮膜1上に薄く均一に形成されていることが好ましいが、皮膜1上に島状に塗布されてもよい。
 ただし、皮膜2の皮膜量が薄すぎると、基材3表面の元素の影響を受けやすくなり、また、皮膜2の皮膜量が多すぎると、皮膜2がそれ自体で凝集破壊し、接着耐久性が低下する虞がある。そこで、接着耐久性向上の観点から、皮膜2の皮膜量は0.01mg/m以上30mg/m未満とすることが好ましい。なお、皮膜2の皮膜量は、15mg/m未満とすることがより好ましく、更に好ましくは6mg/m未満である。
[製造方法]
 次に、本実施形態のアルミニウム合金材の製造方法について説明する。図2は本実施形態のアルミニウム合金材10の製造方法を示すフローチャート図である。図2に示すように、本実施形態のアルミニウム合金材10を製造する際は、基材作製工程S1と、第1皮膜形成工程S2、及び、第2皮膜形成工程S3を行う。以下、各工程について説明する。
<ステップS1:基材作製工程>
 基材の形状は特に限定されるものではなく、アルミニウム合金材を用いて作製する部材の形状等に応じて、板状の他、鋳造材、鍛造材、押し出し材(例えば、中空棒状等)等としてとりうる任意の形状であってもよい。基材作製工程S1では、例として板状の基材(基板)を作製する場合には、例えば下記の手順で、基板を作製する。先ず、所定の組成を有するアルミニウム合金を、連続鋳造により溶解し、鋳造して鋳塊を作製する(溶解鋳造工程)。次に、作製した鋳塊に均質化熱処理を施す(均質化熱処理工程)。その後、均質化熱処理された鋳塊に、熱間圧延を施して熱延板を作製する(熱間圧延工程)。そして、この熱延板に300~580℃で荒焼鈍又は中間焼鈍を行い、最終冷間圧延率5%以上の冷間圧延を少なくとも1回施して、所定の板厚の冷延板(基板)を得る(冷間圧延工程)。
 冷間圧延工程では、荒焼鈍又は中間焼鈍の温度を300℃以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。また、荒焼鈍又は中間焼鈍の温度は、580℃以下とすることが好ましく、これにより、バーニングの発生による成形性の低下を抑制しやすくなる。一方、最終冷間圧延率は、5%以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。なお、均質化熱処理及び熱間圧延の条件は、特に限定されるものではなく、熱延板を通常得る場合の条件で行うことができる。また、中間焼鈍は行わなくてもよい。
<ステップS2:第1皮膜形成工程>
 第1の皮膜の形成工程(第1皮膜形成工程)では、ステップS1の基材作製工程で作製された基材3の表面の一部または全部に、酸化皮膜からなる第1の皮膜1を形成する。具体的には、基材3を加熱処理して酸化皮膜を形成する加熱処理段階と、この加熱処理段階の後の、エッチング処理段階及びケイ酸塩処理段階とを備える。ここで、ケイ酸塩処理段階は、エッチング処理段階より後あるいはエッチング処理段階と同時に行われる。また、エッチング処理段階において、エッチング量を700nm未満に制御し、かつケイ酸塩処理段階としてケイ酸塩を含む水溶液で処理する。これにより、第1の皮膜と第2の皮膜の間のM-O-Si結合量が特定の範囲になるように、また、好ましくは第1の皮膜中のMg量、Si量、及びCu量が特定の範囲になるように、第1の皮膜を形成する。
 加熱処理では、基材3を、たとえば400~580℃に加熱して、基材3の表面に、第1の皮膜1を構成する酸化皮膜を形成する。また、加熱処理は、アルミニウム合金材10の強度を調整する効果もある。なお、ここで行う加熱処理は、基材3が熱処理型アルミニウム合金で形成されている場合には溶体化処理であり、基材3が非熱処理型アルミニウム合金で形成されている場合には、焼鈍(最終焼鈍)における加熱処理である。
 この加熱処理は、強度向上の観点から、加熱速度100℃/分以上の急速加熱とすることが好ましい。また、加熱温度を400℃以上に設定して急速加熱することで、アルミニウム合金材10の強度や、そのアルミニウム合金材10の塗装後加熱(ベーキング)した後の強度を、より高めることができる。一方、加熱温度を580℃以下に設定して急速加熱することにより、バーニングの発生による成形性の低下を抑制することができる。更に、強度を向上させる観点からは、加熱処理における保持時間は3~30秒とすることが好ましい。このように基材3を、加熱温度400~580℃で加熱すると、基材3の表面に、例えば、膜厚が1~30nmの酸化皮膜が形成される。
 前述した方法で形成した酸化皮膜の表面処理は、第1の皮膜と第2の皮膜の間のM-O-Si結合量が特定の範囲になるように、また、好ましくは第1の皮膜1中のMg量、Si量、及びCu量を特定の範囲になるように行う。具体的には、たとえば、エッチング処理段階として、硝酸、硫酸及びフッ酸などの酸、若しくは2種類以上の酸を混ぜた混酸、水酸化ナトリウム、水酸化カリウム、ケイ酸塩若しくは炭酸塩などを含むアルカリ溶液若しくは2種類以上のアルカリを混ぜたアルカリ溶液を、単独、あるいは組み合わせて用いて処理を行い、また、ケイ酸塩処理段階として、ケイ酸塩を含む水溶液を用いて、基材3の表面に形成された酸化皮膜を処理する。なお、ケイ酸塩処理段階は、第1皮膜形成工程の実質的な膜形成の最終段階として行われるものであり、ケイ酸塩処理の後に酸洗は行わない。ただし、ケイ酸塩を含む水溶液による処理の後に水洗及び/又は乾燥を行う場合には、当該水洗及び/又は乾燥も、当該ケイ酸塩処理段階に含まれるものとする。
 ステップS1の第1皮膜形成工程では、第1の皮膜1における酸またはアルカリ溶液による処理(エッチング処理)と、ケイ酸塩を含む水溶液による処理(ケイ酸塩処理)を、1回の処理で行ってもよいが、それぞれ個別に行うこともできる。具体的には、例えば、ケイ酸塩を含む、酸性又はアルカリ性の水溶液を用いて酸化皮膜を処理してもよい。また、例えば、酸化皮膜を、酸またはアルカリ溶液を用いて前処理した後に、ケイ酸塩を含む水溶液を用いて処理してもよい。コストの低減の観点からは、ケイ酸塩を含む、酸性又はアルカリ性の水溶液を用いて酸化皮膜を処理することが好ましい。
 なお、銅を含むアルミニウム合金の過多のエッチングは、基材3の表面において銅の濃化を引き起し、劣化環境である高温湿潤環境において、接着樹脂の劣化の原因となるため、酸化皮膜のエッチング量が700nm未満、好ましくは500nm未満となるように処理条件を調整する必要がある。処理条件は、基材3の合金組成や酸化皮膜の厚み等を考慮して適宜設定することができ、特に限定されないが、酸溶液を用いた処理の場合には、たとえば、pHが2以下、処理温度10~80℃、処理時間1~60秒の条件を適用することができる。また、アルカリ溶液を用いた処理の場合には、例えば、pHが10以上、処理温度10~80℃、処理時間1~60秒の条件を適用することができる。
<ステップS3:第2皮膜形成工程>
 ステップS3では、第2の皮膜の形成工程(第2皮膜形成工程)として、シロキサン結合を有する第2の皮膜2を形成する。この第2の皮膜2は、例えば、アミノ基、エポキシ基、メタクリル基、ビニル基及びメルカプト基などの反応性官能基をもつシランカップリング剤を使用することにより、形成することができる。なお、第2の皮膜2を形成するシランカップリング剤の官能基は、前述したものに限定されるものではなく、各種官能基を有するシランカップリング剤を、使用する接着樹脂に応じて適宜選択して使用することができる。
 シランカップリング剤の塗布量は、接着耐久性向上の観点から、乾燥後の皮膜量が、片面あたり、0.01mg/m以上30mg/m未満となるようにすることが好ましい。皮膜2の皮膜量は、例えば、溶媒(有機溶媒の他、水も含む)によりシランカップリング剤を希釈してその固形分濃度や粘度を低くしたり、コータ番手によるウエットでの塗工量を調整したりすることで、容易に制御することができる。
 また、シランカップリング剤の塗布方法は、特に限定されるものではなく、既存の方法を適用することができる。具体的には、浸漬による塗布方法、ロールコータ、バーコータ、グラビアコータ、マイクログラビアコータ、リバースグラビアコータ、ディップコータなどの各種塗布機を用いる方法、スプレーコートによる方法などを適用することができる。
 シランカップリング剤の塗布後には、加熱によりシランカップリング剤を乾燥させる。熱を加えて乾燥させるのは、第2の皮膜2と第1の皮膜1との結合(M-O-Si結合)を促進させるためであり、加熱温度は、好ましくは60℃以上、より好ましくは75℃以上、更に好ましくは90℃以上である。また、加熱温度が高すぎると、シランカップリング剤の官能基の分解やアルミニウム合金の特性に影響を及ぼすため、当該加熱温度は、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下である。また、乾燥時間は、加熱温度にもよるが、好ましくは2秒以上であり、より好ましくは5秒以上であり、さらに好ましくは10秒以上である。また、当該乾燥時間は、好ましくは20分以下、より好ましくは5分以下、さらに好ましくは2分以下である。
<その他の工程>
 本実施形態のアルミニウム合金材10の製造工程では、前述した各工程に悪影響を与えない範囲において、各工程の間又は前後に、他の工程を含めてもよい。例えば、第2皮膜形成工程S3後に、予備時効処理を施す予備時効処理工程を設けてもよい。この予備時効処理は、72時間以内に40~120℃で、8~36時間の低温加熱することにより行うことが好ましい。この条件で予備時効処理することにより、成形性及びベーキング後の強度向上を図ることができる。その他に、例えばアルミニウム合金材10の表面の異物を除去する異物除去工程や、各工程で発生した不良品を除去する不良品除去工程などを行ってもよい。
 そして、製造されたアルミニウム合金材10は、接合体の作製前又は自動車用部材への加工前に、その表面にプレス油が塗布される。プレス油は、エステル成分を含有するものが主に使用される。アルミニウム合金材10にプレス油を塗布する方法や条件は、特に限定されるものではなく、通常のプレス油を塗布する方法や条件が広く適用でき、例えば、エステル成分としてオレイン酸エチルを含有するプレス油に、アルミニウム合金材10を浸漬すればよい。なお、エステル成分もオレイン酸エチルに限定されるものではなく、ステアリン酸ブチルやソルビタンモノステアレートなど、様々なものを利用することができる。
 以上詳述したように、本実施形態のアルミニウム合金材10では、酸化皮膜からなる第1の皮膜を形成する第1皮膜形成工程において、エッチング量を700nm未満に制御し、かつこの工程の実質的な膜形成の最終段階としてケイ酸塩を含む水溶液で処理して第1の皮膜1を形成し、その後にシランカップリング処理により第1の皮膜1の少なくとも一部に第2の皮膜2を形成する。これにより、第1の皮膜1と第2の皮膜2の界面に形成されるM-O-Si結合量を、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られるスペクトルにおいて、1026cm-1から1084cm-1までをベースラインとしたとき、1057cm-1近傍に生じるピークの面積で0.019以上とすることができ、優れた接着耐久性を得ることができる。また、その好ましい一実施形態に係るアルミニウム合金材10では、Mgを特定量含有する酸化皮膜(皮膜1)を備えるため、基材3の溶出を抑制でき、またそれに伴う基材3の表面のアルカリ化を抑制して、接着樹脂の劣化を抑制できる。さらに、皮膜1に特定量のSiを含有させると共に、皮膜1中のCu量を特定量未満に規制しているため、皮膜1と皮膜2の接着性が向上する。その結果、本実施形態のアルミニウム合金材10は、高温湿潤環境に曝されても、界面剥離が抑制され、長期間に亘って接着強度の低下を抑制できる。
 なお、前述した特許文献4や5に記載の技術でも、ケイ酸塩を用いた表面処理を行っているが、その後工程でシランカップリング処理を行っていないため、このケイ酸塩処理による表面処理層が接着樹脂に直接接することになる。したがって、基本的には化学的な結合が形成されず、本発明のような接着耐久性向上の効果は得られない。
(第1の実施形態の変形例)
 次に、本発明の第1の実施形態の変形例に係るアルミニウム合金材について説明する。図3は本変形例のアルミニウム合金材の構成を模式的に示す断面図である。なお、図3においては、図1に示すアルミニウム合金材10の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。図3に示すように、本変形例のアルミニウム合金材11は、前述した第1の実施形態のアルミニウム合金材の第1の皮膜1及び第2の皮膜2を覆うように、接着樹脂からなる接着樹脂層4が形成されている。
[接着樹脂層4]
 接着樹脂層4は、接着樹脂などからなり、本変形例のアルミニウム合金材11は、この接着樹脂層4を介して他のアルミニウム合金材と接合される。接着樹脂層4を構成する接着樹脂は、特に限定されるものではなく、熱硬化型のエポキシ樹脂、アクリル樹脂及びウレタン樹脂など、従来からアルミニウム合金材を接合する際に用いられてきた接着樹脂を用いることができる。
 接着樹脂層4の厚さも、特に限定されるものではないが、10~500μmが好ましく、50~400μmがより好ましい。接着樹脂層4の厚さが10μm未満の場合には、アルミニウム合金材11と、他の接着樹脂層を備えていないアルミニウム合金材とを接着樹脂層4を介して接合する場合に、高い接着耐久性が得られないことがある。一方、接着樹脂層4の厚さが500μmを超える場合には、接着強度が小さくなる場合がある。
[製造方法]
 次に、本変形例のアルミニウム合金材11の製造方法について説明する。図4は本変形例のアルミニウム合金材11の製造方法を示すフローチャート図である。図4に示すように、本変形例のアルミニウム合金材11を製造する際は、前述したステップS1~S3に加えて、接着樹脂層形成工程S4を行う。
[ステップS4:接着樹脂層形成工程]
 接着樹脂層形成工程S4では、第1の皮膜1及び第2の皮膜2を覆うように、接着剤などからなる接着樹脂層4を形成する。接着樹脂層4の形成方法は、特に限定されるものではないが、例えば、接着樹脂が固体である場合には、熱を加えて圧着したり、これを溶剤に溶解させて溶液とした後に、また、接着樹脂が液状である場合にはそのまま、皮膜1及び皮膜2の表面に噴霧したり塗布する方法が挙げられる。
 また、本変形例のアルミニウム合金材11においても、前述した第1の実施形態と同様に、第1皮膜形成工程S1、第2皮膜形成工程S2及び/又は接着樹脂層形成工程S4の後に、予備時効処理を施す予備時効処理工程を設けてもよい。
 本変形例のアルミニウム合金材においては、接着樹脂層をあらかじめ備えるため、接合体や自動車用部材を作製する際に、アルミニウム合金材の表面に接着樹脂を塗布するなどの作業を省略することができる。なお、本変形例のアルミニウム合金材における上記以外の構成及び効果は、前述した第1の実施形態と同様である。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る接合体について説明する。本実施形態の接合体は、前述した第1の実施形態又はその変形例のアルミニウム合金材を用いたものである。図5~8は本実施形態の接合体の構成例を模式的に示す断面図である。なお、図5~8においては、図1及び3に示すアルミニウム合金材10,11の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。
[接合体の構成]
 本実施形態の接合体は、例えば、図5に示す接合体20のように、図1に示す2枚のアルミニウム合金材10を、第1の皮膜1及び第2の皮膜2が形成されている面同士が対向するように配置し、接着樹脂5を介して接合した構成とすることができる。即ち、接合体20では、接着樹脂5は、一面が一方のアルミニウム合金材10の皮膜2側に接合され、その他面が他方のアルミニウム合金材10の皮膜2側に接合されている。
 ここで、本実施形態の接合体における接着樹脂5は、前述した接着樹脂層4を構成する接着樹脂と同様のものを使用することができる。具体的には、接着樹脂5は、熱硬化型のエポキシ樹脂、アクリル樹脂及びウレタン樹脂などを使用することができる。また、接着樹脂5の厚さは、特に限定されるものではないが、接着強度向上の観点から、10~500μmが好ましく、より好ましくは50~400μmである。
 接合体20では、前述したように、接着樹脂5の両面が、第1の実施形態のアルミニウム合金材10の皮膜1及び皮膜2であるため、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂5と皮膜1や皮膜2との界面の接着強度が低下しにくく、接着耐久性が向上する。また、本実施形態の接合体20では、接着樹脂5の種類に影響されず、従来からアルミニウム合金材の接合に用いられている接着樹脂全般において界面での接着耐久性が向上する。
 また、図6Aに示す接合体21a又は図6Bに示す接合体21bのように、図1に示すアルミニウム合金材10の第1の皮膜1及び第2の皮膜2が形成されている面に、接着樹脂5を介して、第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材6又は樹脂成形体7を接合した構成とすることもできる。
 ここで、第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材6には、前述した基材3と同様のものを使用することができ、具体的には、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型アルミニウム合金からなるものを使用することができる。
 また、樹脂成形体7としては、例えば、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP,KFRP)、ポリエチレン繊維強化プラスチック(DFRP)及びザイロン強化プラスチック(ZFRP)などの各種繊維強化プラスチックにより形成した繊維強化プラスチック成形体を用いることができる。これらの繊維強化プラスチック成形体を用いることにより、一定の強度を維持しつつ、接合体を軽量化することが可能となる。
 なお、樹脂成形体7は、前述した繊維強化プラスチック以外に、ポリプロピレン(PP)、アクリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリウレタン(PU)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ナイロン6、ナイロン6,6、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)、ポリフタルアミド(PPA)などの繊維強化されていないエンジニアリングプラスチックを使用することもできる。
 図6A及び図6Bに示す接合体21a,21bでは、接着樹脂5の片面が第1の皮膜1又は第2の皮膜2側に接合されているため、前述した接合体20と同様に、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。また、図6Bに示す接合体21bは、アルミニウム合金材10と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、この接合体21bを用いることにより自動車の更なる軽量化を実現することができる。なお、図6A及び図6Bに示す接合体21a,21bにおける上記以外の構成及び効果は、図5に示す接合体20と同様である。
 更に、図7に示す接合体22のように、図3に示す接着樹脂層4を備えたアルミニウム合金材11と、図1に示す接着樹脂層4を備えていないアルミニウム合金材10とを接合した構成とすることもできる。具体的には、アルミニウム合金材11の接着樹脂層4側に、アルミニウム合金材10の皮膜1及び皮膜2が接合されたものである。その結果、2つのアルミニウム合金材10,11の皮膜1又は皮膜2は、それぞれアルミニウム合金材11の接着樹脂層4を介して、互いに対向するように配置された構成となっている。
 接合体22では、接着樹脂層4の両面が皮膜1及び皮膜2側に接合されているため、前述した接合体20と同様に、接合体22を自動車用部材に用いた際に、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。なお、図7に示す接合体22における上記以外の構成及び効果は、図5に示す接合体20と同様である。
 更に、図8Aに示す接合体23a又は図8Bに示す接合体23bのように、図3に示す
接着樹脂層4を備えたアルミニウム合金材11の接着樹脂層4側に、第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材6又は繊維強化プラスチック成形体などの樹脂成形体7を接合した構成とすることもできる。これら接合体23a,23bでは、接着樹脂層4の片面が皮膜1及び皮膜2側に接合されているため、前述した接合体20と同様に、接合体23を自動車用部材に用いる際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。
 また、図8Bに示す接合体23bは、アルミニウム合金材10と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、軽量化が求められている自動車や車両の部材に好適である。なお、図8A及び図8Bに示す接合体23a,23bにおける上記以外の構成及び効果は、図5に示す接合体20と同様である。
[製造方法]
 前述した接合体20~23の製造方法、特に接合方法は、従来公知の接合方法を用いることができる。そして、接着樹脂5をアルミニウム合金材に形成する方法は、特に限定されるものではないが、例えば、予め接着樹脂5によって作製した接着シートを用いてもよいし、接着樹脂5をシロキサン結合を有する皮膜2の表面に噴霧または塗布することによって形成してもよい。なお、接合体20~23は、アルミニウム合金材10,11と同様に、自動車用部材への加工前に、その表面にプレス油を塗布してもよい。
 また、図示しないが、本実施形態の接合体に、両面に酸化皮膜からなる皮膜1及びシロキサン結合を有する皮膜2が形成されたアルミニウム合金材を用いた場合、接着樹脂5又は接着樹脂層4を介して、これらのアルミニウム合金材又は皮膜1,2が形成されていない他のアルミニウム合金材6又は樹脂成形体7を、さらに接合することが可能となる。
 本実施形態の接合体では、酸化皮膜からなる第1の皮膜を形成する第1皮膜形成工程において、エッチング量を700nm未満に制御し、かつこの工程の実質的な膜形成の最終段階でケイ酸塩を含む水溶液で処理して第1の皮膜1を形成し、その後にシランカップリング処理により第1の皮膜1の少なくとも一部にシロキサン結合を有する第2の皮膜2を形成し、さらに、そのアルミニウム合金材の第1の皮膜及び第2の皮膜側に、接着樹脂又は接着樹脂層を接合している。これにより、第1の皮膜1と第2の皮膜2の界面に形成されるM-O-Si結合量を、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られるスペクトルにおいて、1026cm-1から1084cm-1までをベースラインとしたとき、1057cm-1近傍に生じるピークの面積で0.019以上とすることができ、優れた接着耐久性を得ることができる。また、その好ましい一実施形態に係るアルミニウム合金材10では、Mgを特定量含有する酸化皮膜(皮膜1)を備えるため、基材3の溶出を抑制でき、またそれに伴う基材3の表面のアルカリ化を抑制して、接着樹脂の劣化を抑制できる。さらに、皮膜1に特定量のSiを含有させると共に、皮膜1中のCu量を特定量未満に規制しているため、皮膜1と皮膜2の接着性が向上する。これにより、本実施形態の接合体を自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂と第2の皮膜との界面は化学的に結合すると共に、第2の皮膜と第1の皮膜も接着性に優れているため、第1の皮膜の水和の影響を受けにくく、またアルミニウム合金基材の溶出も抑制できる。
(第3の実施形態)
 次に、本発明の第3の実施形態に係る自動車用部材について説明する。本実施形態の自動車用部材は、前述した第2の実施形態の接合体を用いたものであり、例えば、自動車用パネルなどである。
 また、本実施形態の自動車用部材の製造方法は、特に限定されるものではないが、従来公知の製造方法を適用することができる。例えば、図5~8に示す接合体20~23に切断加工やプレス加工などを施して所定形状の自動車用部材を製造する。
 本実施形態の自動車用部材は、前述した第2の実施形態の接合体から製造されるため、高温湿潤環境に曝されても、接着樹脂又は接着樹脂層と、酸化皮膜(第1の皮膜)の水和の影響をほとんど受けることなく、アルミニウム合金基材の溶出も抑制できる。その結果、本実施形態の自動車用部材では、高温湿潤環境に曝された場合の界面剥離を抑制し、接着強度の低下を抑制することが可能となる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法及び条件で、アルミニウム合金材を作製し、その接着耐久性などを評価した。
 第一皮膜形成は以下の通り行った。
<実施例1、2>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH10以上に調整した水酸化カリウム溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、その後水洗を行った。
 その後、ケイ酸ナトリウムを0.1質量%以上含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗、乾燥し、第1の皮膜を形成した。
<実施例3、4>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH9以上に調整した水酸化カリウムとケイ酸ナトリウムを含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗、乾燥し、第1の皮膜を形成した。
<実施例5、7>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH10以上に調整した水酸化カリウム溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、その後水洗を行った。
 その後、弗酸と硫酸を0.01~6mol/Lの濃度で含み、pH2以下となるように調整した溶液を用いて、温度10~80℃、処理時間1~60秒の条件で弗酸・硫酸溶液処理を行い、その後水洗を行った。
 更に、ケイ酸ナトリウムを0.1質量%以上含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗、乾燥し、第1の皮膜を形成した。
<実施例6、8>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH10以上に調整した水酸化カリウム溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、その後水洗を行った。
 その後、pH2以下に調整した硝酸を含む溶液を用いて、温度10~80℃、処理時間1~60秒の条件で硝酸溶液処理を行い、その後水洗を行った。
 更に、ケイ酸ナトリウムを0.1質量%以上含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗、乾燥し、第1の皮膜を形成した。
<実施例9、10>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH10以上に調整した水酸化カリウム溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、その後水洗を行った。
 その後、弗酸と硫酸を0.01~6mol/Lの濃度で含み、pH2以下となるように調整した溶液を用いて、温度10~80℃、処理時間1~60秒の条件で弗酸・硫酸溶液処理を行い、その後水洗を行った。
 更に、ケイ酸ナトリウムを0.001質量%以上含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗することなく乾燥させ、第1の皮膜を形成した。
<実施例11、12>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基板とした。次に、この基板をアルカリ脱脂した後、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基板に、pH2以下に調整した硫酸を含む溶液を用いて、温度10~80℃、処理時間1~60秒の条件で硫酸溶液処理を行い、その後水洗を行った。
 更に、ケイ酸ナトリウムを0.1質量%以上含む水溶液を用いて、温度10~80℃、処理時間1~60秒の条件で処理を行い、水洗、乾燥し、第1の皮膜を形成した。
<比較例1>
 ケイ酸ナトリウムを含む水溶液による処理を行わなかったこと、すなわち、弗酸・硫酸溶液処理後に、水洗及び乾燥を行ったこと以外は実施例5、7と同様にして、第1の皮膜を形成した。
<比較例2>
 弗酸・硫酸溶液処理とケイ酸ナトリウムを含む水溶液による処理の順番を入れ替えたこと以外は実施例5、7と同様にして、第1の皮膜を形成した。
<比較例3>
 水酸化カリウム溶液を用いた処理を60秒を超えて行った以外は実施例6、8と同様にして、第1の皮膜を形成した。
 次に、各実施例及び比較例において、アミノ基を含むシランカップリング剤を純水で希釈し、希釈率を調整するとともに、表1記載の方法で塗布することにより、乾燥後の皮膜量を0.1~15mg/mに制御して第2の皮膜を形成し、アルミニウム合金材を作製した。なお、シランカップリング剤塗布後の乾燥は、100℃で、1分間行った。
<第1の皮膜成分の測定>
 第1の皮膜について、高周波グロー放電発光分光分析法(GD-OES:ホリバ・ジョバンイボン社製型式JY-5000RF)により膜厚方向にスパッタしながら測定し、アルミニウム(Al)、マグネシウム(Mg)、銅(Cu)、鉄(Fe)及びチタン(Ti)等の金属元素、及び酸素(O)、窒素(N)、炭素(C)、ケイ素(Si)及び硫黄(S)等の元素について、各成分量の測定を行った。マグネシウム(Mg)、銅(Cu)及びケイ素(Si)については、酸化皮膜中のマグネシウム(Mg)、銅(Cu)及びケイ素(Si)の最大濃度を、その皮膜中の皮膜濃度とした。アルミニウム(Al)については、基材と第1の皮膜との界面近傍では基材の影響を受けるため、最表面の濃度をアルミニウム(Al)の皮膜濃度とした。ここで、これら各元素の濃度の算出において、特に酸素(O)及び炭素(C)は最表面やその近傍でコンタミの影響を受けやすい。以上のことから、各元素の濃度計算では、酸素(O)及び炭素(C)を除いて、濃度を算出した。なお、酸素(O)は、最表面及びその近傍ではコンタミの影響を受ける可能性が高く、正確な濃度を測定することは難しいが、すべてのサンプルの皮膜1には酸素(O)が含まれていることは明確であった。
<エッチング量の測定>
 エッチング量は、酸化皮膜や酸化皮膜を含む基材の溶解量であり、エッチング処理前後の重量の減少量を測定し、それを厚み(膜厚)として見積もった。なお、重量の減少量から膜厚への換算は、便宜上、アルミニウムの密度:2.7g/cmを用い、アルミニウムの厚みとして計算することにより行った。
<M-O-Si結合量の測定>
 M-O-Si結合量は、第2の皮膜を形成後、FT-IR(フーリエ変換式赤外分光光度計:Nicolet社製Magna-750 spectrometer)分析により定量した。具体的には、入射角75°の平行偏光使用により測定したFT-IRスペクトルについて、1026cm-1から1084cm-1までをベースラインとしたとき、1057cm-1近傍に生じるM-O-Si結合に由来するピークの面積を、この装置付属の解析ソフトウエアにより求めた。
<凝集破壊率(接着耐久性)>
 図9A及び図9Bは凝集破壊率の測定方法を模式的に示す図であり、図9Aは側面図であり、図9Bは平面図である。図9A及び図9Bに示すように、構成が同じ2枚の供試材31a,31b(25mm幅)の端部を、熱硬化型エポキシ樹脂系接着樹脂によりラップ長13mm(接着面積:25mm×13mm)となるように重ね合わせ貼り付けた。ここで用いた接着樹脂35は熱硬化型エポキシ樹脂系接着樹脂(ビスフェノールA型エポキシ樹脂量40~50質量%)である。
 そして、接着樹脂35の厚さが150μmとなるように微量のガラスビーズ(粒径150μm)を接着樹脂35に添加して調節した。重ね合わせてから30分間、室温で乾燥させて、その後、170℃で20分間加熱し、熱硬化処理を実施した。その後、室温で24時間静置して接着試験体を作製した。
 作製した接着試験体を、50℃、相対湿度95%の高温湿潤環境に30日間保持後、引張試験機にて50mm/分の速度で引張り、接着部分の接着樹脂の凝集破壊率を評価した。凝集破壊率は下記数式1に基づいて算出した。なお、下記数式1においては、接着試験体の引張後の片側を試験片a、もう片方を試験片bとした。
Figure JPOXMLDOC01-appb-M000001
 各試験条件とも3本ずつ作製し、凝集破壊率は3本の平均値とした。また、評価基準は、凝集破壊率が80%未満を不良(×)、80%以上90%未満を良好(○)、90%以上を優れている(◎)とし、80%以上を合格とした。
 以上の結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 上記表1に示すように、M-O-Si結合量が本発明の範囲から外れている比較例1~3のアルミニウム合金材は、凝集破壊率が80%未満であり、高温湿潤環境での接着耐久性が劣っていた。これに対して、M-O-Si結合量が本発明の範囲である実施例1~12のアルミニウム合金材は、凝集破壊率が80%以上であり、高温湿潤環境での接着耐久性が良好であった。特に、Mg量が10原子%未満である実施例5~12のアルミニウム合金材は、凝集破壊率が90%以上であり、高温湿潤環境での接着耐久性に優れていた。
 比較例1では、ケイ酸塩処理を行わなかった為、十分なM-O-Si結合量を得ることができず、所定の凝集破壊率を得ることはできなかった。
 比較例2では、ケイ酸塩処理を行った後、弗酸・硫酸溶液処理を行ったため、ケイ酸塩処理層が溶解し、十分なM-O-Si結合量を得ることができず、所定の凝集破壊率を得ることはできなかった。
 比較例3では、過エッチングにより基材表面にCuの濃化がおこり、所定の凝集破壊率を得ることはできなかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年11月11日付けで出願された日本特許出願(特願2014-228982)に基づいており、その全体が引用により援用される。
 1 第1の皮膜
 2 第2の皮膜
 3 基材
 4 接着樹脂層
 5、35 接着樹脂
 6、10、11 アルミニウム合金材
 7 樹脂成形体
 20、21a、21b、22、23a、23b 接合体
 31a、31b 供試材

Claims (18)

  1.  アルミニウム合金基材と、
     前記アルミニウム合金基材の表面の少なくとも一部に形成され、Mgを0.1原子%以上30原子%未満及びSiを12原子%以上80原子%以下含有すると共に、Cuが0.6原子%未満に規制された酸化皮膜からなる第1の皮膜と、
     前記第1の皮膜の少なくとも一部に形成された、シロキサン結合を有する第2の皮膜と、
    を備え、
     前記第1の皮膜及び第2の皮膜が形成されている表面に、フーリエ変換式赤外分光法により入射角75°の平行偏光を入射して得られるスペクトルにおいて、1026cm-1から1084cm-1までをベースラインとしたとき、1057cm-1近傍に生じるピークの面積が0.019以上であるアルミニウム合金材。
  2.  前記アルミニウム合金基材は、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金からなる請求項1に記載のアルミニウム合金材。
  3.  前記第1の皮膜及び第2の皮膜が形成されている部分の最表面に接着樹脂からなる接着樹脂層が形成されている請求項1に記載のアルミニウム合金材。
  4.  請求項1に記載のアルミニウム合金材を用いた接合体。
  5.  請求項2に記載のアルミニウム合金材を用いた接合体。
  6.  請求項3に記載のアルミニウム合金材を用いた接合体。
  7.  請求項1に記載のアルミニウム合金材同士が、前記第1の皮膜及び第2の皮膜が形成されている部分が対向するように配置され、接着樹脂を介して接合されている接合体。
  8.  請求項1に記載のアルミニウム合金材の前記第1の皮膜及び第2の皮膜が形成されている部分に、接着樹脂を介して、前記第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材又は樹脂成形体が接合されている接合体。
  9.  請求項3に記載のアルミニウム合金材と、請求項1に記載のアルミニウム合金材とが、前記接着樹脂層が形成されている部分と、前記第1の皮膜及び第2の皮膜が形成されている部分とが対向するように配置され、前記接着樹脂層を介して接合されている接合体。
  10.  請求項3に記載のアルミニウム合金材の前記接着樹脂層が形成されている部分に、前記第1の皮膜及び第2の皮膜が形成されていない他のアルミニウム合金材又は樹脂成形体が接合されている接合体。
  11.  前記樹脂成形体は繊維強化プラスチック成形体である請求項8に記載の接合体。
  12.  前記樹脂成形体は繊維強化プラスチック成形体である請求項10に記載の接合体。
  13.  請求項4~12のいずれか1項に記載の接合体を用いた自動車用部材。
  14.  アルミニウム合金基材の表面の少なくとも一部に、酸化皮膜からなる第1の皮膜を形成する第1皮膜形成工程と、
     前記第1の皮膜の少なくとも一部に、シランカップリング処理により第2の皮膜を形成する第2皮膜形成工程とを備え、
     前記第1皮膜形成工程は、加熱処理段階と、前記加熱処理段階後のエッチング処理段階及びケイ酸塩処理段階とを含み、前記ケイ酸塩処理段階は前記エッチング処理段階より後あるいは前記エッチング処理段階と同時であり、
     前記エッチング処理段階におけるエッチング量を700nm未満に制御し、かつ、
     前記ケイ酸塩処理段階として、ケイ酸塩を含む水溶液を用いて処理を行うアルミニウム合金材の製造方法。
  15.  前記第1皮膜形成工程において、前記ケイ酸塩処理段階は前記エッチング処理段階より後であり、前記エッチング処理段階として、酸処理及びアルカリ溶液処理の少なくとも一つを行う請求項14に記載のアルミニウム合金材の製造方法。
  16.  前記第1皮膜形成工程において、前記ケイ酸塩処理段階は前記エッチング処理段階と同時であり、前記ケイ酸塩を含む水溶液が、ケイ酸塩を含む、酸性又はアルカリ性の水溶液である請求項14に記載のアルミニウム合金材の製造方法。
  17.  前記第1の皮膜及び第2の皮膜が形成されている部分の最表面に接着樹脂層を形成する工程をさらに備える請求項14~16のいずれか1項に記載のアルミニウム合金材の製造方法。
  18.  前記アルミニウム合金基材は、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金からなる請求項14~16のいずれか1項に記載のアルミニウム合金材の製造方法。
PCT/JP2015/081691 2014-11-11 2015-11-11 アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法 WO2016076344A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/519,941 US20170334171A1 (en) 2014-11-11 2015-11-11 Aluminum alloy material, bonded body, member for automobiles, and method for producing aluminum alloy material
EP15858755.0A EP3219828A4 (en) 2014-11-11 2015-11-11 Aluminum alloy material, bonded body, member for automobiles, and method for producing aluminum alloy material
CN201580059993.2A CN107075691A (zh) 2014-11-11 2015-11-11 铝合金材、接合体、汽车用构件及铝合金材的制造方法
KR1020177010986A KR20170060103A (ko) 2014-11-11 2015-11-11 알루미늄 합금재, 접합체, 자동차용 부재, 및 알루미늄 합금재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014228982A JP2016089261A (ja) 2014-11-11 2014-11-11 アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法
JP2014-228982 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016076344A1 true WO2016076344A1 (ja) 2016-05-19

Family

ID=55954423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081691 WO2016076344A1 (ja) 2014-11-11 2015-11-11 アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法

Country Status (6)

Country Link
US (1) US20170334171A1 (ja)
EP (1) EP3219828A4 (ja)
JP (1) JP2016089261A (ja)
KR (1) KR20170060103A (ja)
CN (1) CN107075691A (ja)
WO (1) WO2016076344A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038573A1 (ja) * 2015-09-02 2017-03-09 株式会社神戸製鋼所 アルミニウム合金材、接合体、自動車用部材、アルミニウム合金材の製造方法及び接合体の製造方法
WO2020067430A1 (ja) 2018-09-28 2020-04-02 日本製鉄株式会社 接着接合構造体及び自動車用部品
WO2021132148A1 (ja) * 2019-12-25 2021-07-01 三菱ケミカル株式会社 積層体及びその製造方法並びに自動車用外装材
US11417503B2 (en) * 2016-07-12 2022-08-16 Abm Co., Ltd. Metal component and manufacturing method thereof and process chamber having the metal component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283240B2 (ja) * 2013-05-23 2018-02-21 株式会社神戸製鋼所 アルミニウム合金板、接合体及び自動車用部材
MX2020003116A (es) * 2017-12-21 2020-07-28 Novelis Inc Articulos de aleacion de aluminio que tienen durabilidad de union mejorada y articulos de aleacion de aluminio de superficie inerte y metodos de fabricacion y uso de estos.
KR102508358B1 (ko) * 2017-12-21 2023-03-10 노벨리스 인크. 향상된 결합 내구성을 발휘하고 및/또는 인 함유 표면을 갖는 알루미늄 합금 제품, 및 이를 제조하는 방법
JP7167719B2 (ja) * 2019-01-09 2022-11-09 株式会社デンソー 接合構造体およびその製造方法
JP7311105B2 (ja) * 2020-02-05 2023-07-19 学校法人 芝浦工業大学 締結部材及びその製造方法
MX2022011453A (es) * 2020-03-18 2022-10-03 Novelis Inc Articulos de una aleacion de aluminio que exhiben una durabilidad de la adherencia mejorada y metodos para hacer los mismos.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147550A (ja) * 2001-07-23 2003-05-21 Mitsubishi Alum Co Ltd 表面処理アルミニウム缶用板材
JP2003342790A (ja) * 2002-05-27 2003-12-03 Mitsubishi Alum Co Ltd 表面処理アルミニウム材及び熱可塑性樹脂被覆アルミニウム材
JP2006251656A (ja) * 2005-03-14 2006-09-21 Fuji Photo Film Co Ltd 平版印刷版原版
JP2013159806A (ja) * 2012-02-03 2013-08-19 Kobe Steel Ltd アルミニウム合金板、これを用いた接合体および自動車用部材
JP2013166975A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 表面処理アルミニウム合金板およびその製造方法
WO2014007342A1 (ja) * 2012-07-06 2014-01-09 帝人株式会社 繊維強化複合材料-金属部材接合体の製造方法、およびそれに用いる繊維強化複合材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396338A (ja) * 1989-06-14 1991-04-22 Mitsubishi Heavy Ind Ltd 耐食材料
JPH0881784A (ja) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The 接着用アルミニウム及びアルミニウム合金材料の表面処理方法
JP4171141B2 (ja) * 1999-03-30 2008-10-22 株式会社神戸製鋼所 耐糸さび性に優れたアルミニウム合金材
JP3853702B2 (ja) * 2002-06-13 2006-12-06 三菱アルミニウム株式会社 表面処理アルミニウム材の製造方法
JP2011052292A (ja) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk アルミニウム合金物品、アルミニウム合金部材およびその製造方法
KR101362525B1 (ko) * 2010-10-18 2014-02-13 가부시키가이샤 고베 세이코쇼 알루미늄 합금판, 이것을 사용한 접합체 및 자동차용 부재
CN103057198B (zh) * 2011-10-05 2015-07-22 株式会社神户制钢所 铝合金板、使用该铝合金板的接合体以及汽车用构件
CN103059322B (zh) * 2011-10-21 2017-11-28 深圳富泰宏精密工业有限公司 铝件与树脂的接合方法及由该方法制得的复合体
JP6056213B2 (ja) * 2012-06-26 2017-01-11 東芝ライテック株式会社 発光モジュール及び照明装置
JP6143431B2 (ja) * 2012-09-20 2017-06-07 株式会社神戸製鋼所 アルミニウム合金板、これを用いた接合体および自動車用部材
WO2014170946A1 (ja) * 2013-04-15 2014-10-23 日本軽金属株式会社 樹脂接合用Al-Mg-Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al-Mg-Si系アルミ合金部材
JP2015157967A (ja) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 アルミニウム合金板、接合体及び自動車用部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147550A (ja) * 2001-07-23 2003-05-21 Mitsubishi Alum Co Ltd 表面処理アルミニウム缶用板材
JP2003342790A (ja) * 2002-05-27 2003-12-03 Mitsubishi Alum Co Ltd 表面処理アルミニウム材及び熱可塑性樹脂被覆アルミニウム材
JP2006251656A (ja) * 2005-03-14 2006-09-21 Fuji Photo Film Co Ltd 平版印刷版原版
JP2013159806A (ja) * 2012-02-03 2013-08-19 Kobe Steel Ltd アルミニウム合金板、これを用いた接合体および自動車用部材
JP2013166975A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 表面処理アルミニウム合金板およびその製造方法
WO2014007342A1 (ja) * 2012-07-06 2014-01-09 帝人株式会社 繊維強化複合材料-金属部材接合体の製造方法、およびそれに用いる繊維強化複合材料

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038573A1 (ja) * 2015-09-02 2017-03-09 株式会社神戸製鋼所 アルミニウム合金材、接合体、自動車用部材、アルミニウム合金材の製造方法及び接合体の製造方法
US11417503B2 (en) * 2016-07-12 2022-08-16 Abm Co., Ltd. Metal component and manufacturing method thereof and process chamber having the metal component
WO2020067430A1 (ja) 2018-09-28 2020-04-02 日本製鉄株式会社 接着接合構造体及び自動車用部品
WO2021132148A1 (ja) * 2019-12-25 2021-07-01 三菱ケミカル株式会社 積層体及びその製造方法並びに自動車用外装材

Also Published As

Publication number Publication date
US20170334171A1 (en) 2017-11-23
EP3219828A4 (en) 2018-06-27
JP2016089261A (ja) 2016-05-23
CN107075691A (zh) 2017-08-18
KR20170060103A (ko) 2017-05-31
EP3219828A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2016076344A1 (ja) アルミニウム合金材、接合体、自動車用部材、及びアルミニウム合金材の製造方法
JP6283240B2 (ja) アルミニウム合金板、接合体及び自動車用部材
JP7384958B2 (ja) 改善された接合耐久性を有するアルミニウム合金物品および不活性な表面のアルミニウム合金物品、ならびにそれらを作製および使用する方法
WO2015125897A1 (ja) アルミニウム合金板、接合体及び自動車用部材
WO2017006804A1 (ja) アルミニウム合金材の製造方法、アルミニウム合金材、及び接合体
JP6457193B2 (ja) 接着耐久性に優れたアルミニウム合金材および接合体、または自動車部材
JP2017203209A (ja) アルミニウム合金材の製造方法、アルミニウム合金材、及び接合体
WO2017195806A1 (ja) アルミニウム合金材の製造方法、アルミニウム合金材、及び接合体
WO2017195811A1 (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、アルミニウム合金材の製造方法、及び接着樹脂層付きアルミニウム合金材の製造方法
KR101469324B1 (ko) 자동차용 알루미늄 합금판, 및 이것을 이용한 접합체 및 자동차용 부재
JP5968956B2 (ja) アルミニウム合金板、これを用いた接合体および自動車用部材
JP2017203213A (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、接合体、及びアルミニウム合金材の製造方法
KR20210109590A (ko) 캔 뚜껑 원료를 라미네이트하기 위한 시스템 및 방법
JP2017048456A (ja) アルミニウム合金材、接合体、自動車用部材、アルミニウム合金材の製造方法及び接合体の製造方法
WO2017195808A1 (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、接合体、及びアルミニウム合金材の製造方法
JP2017203212A (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、アルミニウム合金材の製造方法、及び接着樹脂層付きアルミニウム合金材の製造方法
JP6721406B2 (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、アルミニウム合金材の製造方法、及び接着樹脂層付きアルミニウム合金材の製造方法
JP6290042B2 (ja) 接着耐久性に優れたアルミニウム合金材および接合体、または自動車部材
JP6705694B2 (ja) アルミニウム合金材、接着樹脂層付きアルミニウム合金材、接合体、及びアルミニウム合金材の製造方法
KR101362525B1 (ko) 알루미늄 합금판, 이것을 사용한 접합체 및 자동차용 부재
JP5661602B2 (ja) 自動車用アルミニウム合金板、これを用いた接合体および自動車用部材
WO2017038573A1 (ja) アルミニウム合金材、接合体、自動車用部材、アルミニウム合金材の製造方法及び接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858755

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015858755

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010986

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE