WO2016072346A1 - 車両用ブレーキシステム及び車両用ブレーキ制御方法 - Google Patents

車両用ブレーキシステム及び車両用ブレーキ制御方法 Download PDF

Info

Publication number
WO2016072346A1
WO2016072346A1 PCT/JP2015/080539 JP2015080539W WO2016072346A1 WO 2016072346 A1 WO2016072346 A1 WO 2016072346A1 JP 2015080539 W JP2015080539 W JP 2015080539W WO 2016072346 A1 WO2016072346 A1 WO 2016072346A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
stroke
required deceleration
brake
map
Prior art date
Application number
PCT/JP2015/080539
Other languages
English (en)
French (fr)
Inventor
圭亮 石野
周一 岡田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112015005057.4T priority Critical patent/DE112015005057T5/de
Priority to CN201580056571.XA priority patent/CN107074216B/zh
Priority to JP2016557733A priority patent/JP6279096B2/ja
Priority to US15/522,181 priority patent/US10011255B2/en
Publication of WO2016072346A1 publication Critical patent/WO2016072346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/82Brake-by-Wire, EHB

Definitions

  • the present invention relates to a vehicle brake system and a vehicle brake control method.
  • a by-wire type vehicle brake system that generates brake fluid pressure according to the brake pedal stroke in a slave cylinder is known.
  • the following technologies are known as techniques for improving the brake feel for a driver (a sense of security with respect to the effectiveness of the brake and the actual feeling that the brake is working well). Yes.
  • Patent Document 1 any one of a normal map and a build-up map for setting a brake fluid pressure reference value larger than the normal map is selected, and the brake fluid is selected based on the selected map. It describes that the pressure reference value is set.
  • Patent Document 1 when the brake pedal is depressed, the braking force is gradually increased based on the build-up map, thereby giving the driver an increased feeling of braking mainly in the late braking period. It is like that.
  • Patent Document 1 does not describe a technique for realizing the driver's effectiveness in the first half of braking (immediately after the depression of the brake), and there is room for further improving the brake feel. is there.
  • an object of the present invention is to provide a vehicular brake system and a vehicular brake control method that have a good brake feel for the driver.
  • the present invention provides a stroke detecting means for detecting a stroke of a brake pedal, a brake hydraulic pressure generating means for generating a brake hydraulic pressure by driving the motor actuator, and a motor actuator.
  • a vehicle brake system comprising: a control unit that performs drive control of the motor actuator based on a detection value of the stroke detection unit; wherein the control unit corresponds to a detection value corresponding to the detection value of the stroke detection unit.
  • phase lag processing means for performing phase lag processing for deceleration, and the first required deceleration, Said the phase lag processing is performed second request deceleration, based on, and performs drive control of the motor actuator.
  • the control means performs the phase lag process using the phase lag processing means for the second required deceleration obtained based on the second map. Therefore, after the brake pedal is depressed, the second required deceleration increases after the first required deceleration, and the braking force increases accordingly. As a result, since the braking effect is increased after the brake pedal is held, it is possible to give the driver a sense of security (brake feel) that the braking is working. Further, the braking force can be generated without a response delay during sudden braking by the first required deceleration obtained based on the first map.
  • control means shortens the delay time when performing the phase delay process as the vehicle speed is lower.
  • the delay time for generating the second required deceleration is set shorter as the vehicle speed is lower.
  • the amount of depression (stroke) of the brake pedal is often small, and if the delay time of the second required deceleration is too long, the driver may feel uncomfortable.
  • control means gradually increases a third required deceleration when the stroke of the brake pedal is maintained, and the second required deceleration subjected to the first required deceleration and the phase delay processing is performed. It is preferable to perform drive control of the motor actuator based on the third required deceleration.
  • the third required deceleration is gradually increased when the stroke of the third brake pedal is maintained, and based on the first required deceleration, the second required deceleration, and the third required deceleration.
  • the motor actuator is driven.
  • the present invention provides a stroke detecting means for detecting a brake pedal stroke, a motor actuator, a brake hydraulic pressure generating means for generating a brake hydraulic pressure by driving the motor actuator, and a detection value of the stroke detecting means.
  • a vehicle brake control method executed by a vehicle brake system comprising: a control means for performing drive control of the motor actuator based on the control means, wherein the control means corresponds to a detection value corresponding to the detection value of the stroke detection means.
  • the first required deceleration is obtained based on the first map
  • the second required deceleration corresponding to the detection value of the stroke detecting means is obtained based on the second map
  • the first required deceleration and the phase delay processing means are obtained.
  • the braking effect is enhanced after the brake pedal is held, it is possible to give the driver a sense of security that the braking is working effectively. Further, the braking force can be generated without delay in response during sudden braking.
  • FIG. 1 is a schematic configuration diagram of a vehicle brake system according to an embodiment of the present invention. It is a functional block diagram of a control device with which a brake system for vehicles is provided. It is a flowchart which shows the process sequence which the control apparatus with which the brake system for vehicles is provided. It is explanatory drawing which shows the time-dependent change characteristic of the stroke of a brake pedal. It is explanatory drawing which shows the time-dependent characteristic of the request
  • FIG. 1 is a schematic configuration diagram of a vehicle brake system 1 according to the present embodiment.
  • the vehicle brake system 1 according to the present embodiment is mounted on an automobile, an electric automobile, a hybrid automobile, a fuel cell automobile, or the like driven by an internal combustion engine, and has a function of generating a braking force applied to each wheel of the vehicle.
  • the vehicle brake system 1 is a by-wire brake system that operates a slave cylinder 30 according to the stroke of the brake pedal 3 and brakes the vehicle with the brake fluid pressure generated by the slave cylinder 30.
  • master cut valves 60a and 60b which will be described later, are opened, and a braking force is applied to each wheel by the hydraulic pressure from the master cylinder 10.
  • the vehicle brake system 1 includes a master cylinder 10, a stroke simulator 20, a slave cylinder 30, sensors (such as a stroke sensor 41), a VSA (registered trademark) device 50, master cut valves 60a and 60b, and a control.
  • Device 90 see FIG. 2).
  • the master cylinder 10 is a device that generates a hydraulic pressure corresponding to the depression force of the brake pedal 3 at least in the pipe tubes 81a and 81b.
  • the master cylinder 10 is, for example, a tandem cylinder shown in FIG. 1 and includes a cylinder body 11, a push rod 12, pistons 13a and 13b, and spring members 15a and 15b.
  • a piston 13a, a spring member 15a, a piston 13b, and a spring member 15b are accommodated substantially coaxially in this order from the right side of the drawing.
  • the depression force acts on the piston 13a via the push rod 12, and hydraulic pressure is generated in the pressure chambers Fa and Fb.
  • the pressure chamber Fa communicates with the supply port Sa and the back chamber Ea via the relief port Ra, and also communicates with the interior of the reservoir 14. (The same applies to the pressure chamber Fb).
  • the output port Ta of the pressure chamber Fa is connected to the wheel cylinders 71FR (right front wheel) and 71RL (left rear wheel) via the piping tube 81a, the master cut valve 60a, the piping tube 82a, and the VSA device 50. Yes.
  • the output port Tb of the pressure chamber Fb is connected to the wheel cylinders 71FL (left front wheel) and 71RR (right rear wheel) via the piping tube 81b, the master cut valve 60b, the piping tube 82b, and the VSA device 50. Yes.
  • the stroke simulator 20 is a device that generates an operation reaction force corresponding to the depression force of the brake pedal 3, and includes a cylinder body 21, a piston 22, spring members 23 and 24, and a spring seat 25.
  • a piston 22, a spring member 23, a spring seat 25, and a spring member 24 are accommodated substantially coaxially in this order from the left side of the drawing.
  • the opening of the cylinder body 21 is connected to the piping tube 81b through a piping tube 85 provided with a normally closed simulator valve 60c.
  • the slave cylinder 30 (brake fluid pressure generating means) is a device that generates brake fluid pressure by driving the motor actuator 31 and operates the wheel cylinders 71FR, 71RL, 71FL, 71RR.
  • the slave cylinder 30 mainly includes a motor actuator 31, a gear mechanism 32, a ball screw structure 33, a cylinder body 34, pistons 35a and 35b, and spring members 37a and 37b.
  • the motor actuator 31 is an electric motor that is driven in response to a command signal Q input from the control device 90 (see FIG. 2).
  • the gear mechanism 32 is a mechanism that transmits the rotational driving force of the motor actuator 31 to the ball screw structure 33.
  • the ball screw structure 33 includes a ball 33a that rolls by the rotation of the gear mechanism 32, and a ball screw shaft 33b that advances and retreats by the rolling of the ball 33a.
  • a ball screw shaft 33b In the cylinder main body 34, a ball screw shaft 33b, a piston 35a, a spring member 37a, a piston 35b, and a spring member 37b are accommodated in substantially the same order from the right side of the drawing.
  • the pistons 35a and 35b have a cylindrical shape and are accommodated in the cylinder body 34 so as to be slidable in the axial direction.
  • the slave cylinder 30 is provided with restriction members 38 and 39 for setting the maximum stroke and the minimum stroke by restricting the relative movement of the pistons 35a and 35b.
  • the configuration of the slave cylinder 30 is not limited to that shown in FIG. 1, and may be another configuration capable of generating a hydraulic pressure by driving the motor actuator 31.
  • the back chamber Ja of the piston 35a communicates with the inside of the reservoir 36 via the reservoir port Va. Further, the back chamber Jb of the piston 35b communicates with the interior of the reservoir 36 via the reservoir port Vb.
  • the reservoir 36 is connected to the reservoir 14 of the master cylinder 10 through a piping tube 86.
  • the output port Wa of the pressure chamber Ha is connected to the wheel cylinders 71FR and 71RL via the piping tubes 83a and 82a (part) and the VSA device 50. Further, the output port Wb of the pressure chamber Hb is connected to the wheel cylinders 71FL and 71RR via the piping tubes 83b and 82b (part) and the VSA device 50.
  • the wheel cylinder 71FR applies a braking force according to the brake fluid pressure to the disc brake 70FR to brake the right front wheel (the same applies to the other wheel cylinders 71RL, 71FL, 71RR).
  • the stroke sensor 41 (stroke detection means) is a sensor that detects the stroke (depression amount) of the brake pedal 3.
  • a sensor such as a potentiometer type or an optical type can be used.
  • the stroke S detected by the stroke sensor 41 is output to the control device 90 (see FIG. 2).
  • the angle sensor 42 is a sensor that detects a mechanical angle of a rotor (not shown) included in the motor actuator 31 and is built in the motor actuator 31.
  • a hall sensor, a resolver, or the like can be used as the angle sensor 42.
  • the stroke of the ball screw shaft 33b (the amount of movement from a predetermined reference position) may be detected using a position sensor.
  • the mechanical angle ⁇ detected by the angle sensor 42 is output to the control device 90 (see FIG. 2).
  • the hydraulic pressure sensor 43 is a sensor that detects the hydraulic pressure on the master cylinder 10 side of the master cut valves 60a and 60b, and is installed in the piping tube 81a.
  • the hydraulic pressure sensor 44 is a sensor that detects the hydraulic pressure on the slave cylinder 30 side of the master cut valves 60a and 60b, and is installed in the piping tube 82b.
  • the hydraulic pressure detected by the hydraulic pressure sensors 43 and 44 is output to the control device 90 (see FIG. 2).
  • the wheel speed sensor 45 shown in FIG. 2 is a sensor that detects the rotational speed of the wheel, and is installed in each wheel. The rotational speeds of the wheels detected by the wheel speed sensor 45 are output to the control device 90, respectively.
  • VSA device 50 Vehicle Stability Assist
  • FIG. 1 A VSA device 50 (Vehicle Stability Assist) shown in FIG. 1 is a device for generating a hydraulic pressure regardless of a brake operation by a driver and stabilizing vehicle behavior.
  • the VSA device 50 has various brake actuators and is connected to the wheel cylinders 71FR, 71RL, 71FL, 71RR.
  • the configuration of the VSA device 50 is well known and will not be described in detail.
  • the hydraulic pressure generated in the slave cylinder 30 is kept as it is (or adjusted appropriately) via the VSA device 50. It acts on 71FR, 71RL, 71FL, 71RR.
  • the master cut valve 60a is a normally open type electromagnetic valve that blocks / communicates the piping tubes 81a and 82a in accordance with a command from the control device 90 (see FIG. 2).
  • the master cut valve 60b is a normally open solenoid valve that shuts off / communicates the piping tubes 81b and 82b in accordance with a command from the control device 90 (see FIG. 2).
  • the master cut valves 60a and 60b are closed so that the vehicle is braked with the brake hydraulic pressure generated by the slave cylinder 30 while applying a pseudo reaction force from the stroke simulator 20 to the brake pedal 3. It has become.
  • FIG. 2 is a functional block diagram of the control device 90 provided in the vehicle brake system 1 (see FIG. 1 as appropriate).
  • the control device 90 includes an electronic circuit such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces, and reads a program stored in the ROM. The data is expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control device 90 includes a vehicle speed calculation unit 91, a base request deceleration calculation unit 92, a suction feeling request deceleration calculation unit 93, a buildup request deceleration calculation unit 94, and a request reduction.
  • a speed calculation unit 95, a required hydraulic pressure calculation unit 96, and a drive control unit 97 are provided.
  • Vehicle speed calculating unit 91 based on the wheel speed V R detected by the wheel speed sensor 45 has a function of calculating the vehicle speed V C (vehicle speed when the brake pedal 3 is depressed). Vehicle speed calculating unit 91, for example, based on an average value of the wheel speeds V R inputted from the wheel speed sensor 45, and calculates the vehicle speed V C at a predetermined period. Vehicle speed V C calculated by the vehicle speed calculating unit 91 is output based required deceleration calculating unit 92, intake with a sense demand deceleration calculating section 93, and the build-up request deceleration calculating unit 94.
  • a vehicle speed V C inputted from the vehicle speed calculating section 91 on the basis, based required deceleration G B (first demand deceleration) It has a function to calculate.
  • base required deceleration G B is a deceleration that reflects the depression of the brake pedal 3 as it is, and is a base deceleration among the required deceleration G described later (see FIG. 4B). Note that the deceleration and the braking force are in a proportional relationship, and when a large braking force is generated, the required value for the deceleration also increases.
  • the base required deceleration calculating unit 92 has a base required deceleration map 92M (first map).
  • the base required deceleration map 92M is a map for determining the base required deceleration G B that correspond to the stroke S of the brake pedal 3, is stored in advance in the storage unit (not shown). Based required deceleration map 92M, as the stroke S of the brake pedal 3 is large, is set so as be greater based required deceleration G B. That is, the base required deceleration map 92M is set so that the braking effect becomes stronger as the depression amount of the brake pedal 3 by the driver is larger.
  • the base required deceleration map 92M when the stroke S of the brake pedal 3 is constant, the vehicle speed V C is set as the base required deceleration G B The more fast increases. In other words, the brakes are applied smoothly and smoothly when driving at low speeds, and the brakes are applied firmly at high speeds to give the driver a sense of security.
  • Based required deceleration G B which is calculated at a predetermined cycle by the base required deceleration calculating unit 92 is outputted to the build-up request deceleration calculating unit 94 and the demand deceleration calculating unit 95.
  • the base required deceleration calculation unit 92 does not have a phase delay filter unlike the suction feeling required deceleration calculation unit 93 described later.
  • the base required deceleration G B calculated at a predetermined cycle increases rapidly, that the base required deceleration G B retards timing And output to the requested deceleration calculation unit 95.
  • response delay during sudden braking can be prevented.
  • the “sucking feeling required deceleration G LF ” refers to a feeling of sucking the brake for the driver (a firm braking force) by generating a braking force with a slight delay in timing with respect to the depression of the brake pedal 3. This is a deceleration to increase the sense of security that is effective.
  • the suction feeling required deceleration calculation unit 93 includes a suction feeling required deceleration map 93M (second map) and a phase delay filter 93F (phase delay processing means).
  • the suction feeling required deceleration map 93M is a map for obtaining the suction feeling required deceleration GL corresponding to the stroke S of the brake pedal 3, and is stored in advance in storage means (not shown).
  • the suction feeling required deceleration map 93M is set so that, for example, the suction feeling required deceleration GL increases as the stroke S of the brake pedal 3 increases.
  • the suction feeling required deceleration map 93M is not limited to this, and a map having other characteristics may be used as long as the braking force corresponding to the depression of the brake pedal 3 can be generated.
  • the suction feeling required deceleration GL is linearly increased as the stroke S of the brake pedal 3 increases, and the suction feeling required deceleration GL is constant in a region where the stroke S is a predetermined value or more. It may be.
  • absorption with feeling required deceleration map 93M when the stroke S of the brake pedal 3 is constant, the vehicle speed V C is set to suction the feeling requested deceleration G L as is faster increases. To reduce the variation in the braking force by reducing the intake with feeling requested deceleration G L when the vehicle speed V C is low, it is possible to smooth the braking effectiveness. Further, when the vehicle speed V C is high, the driver can be provided with a sense of security that the brake is working effectively by increasing the suction feeling required deceleration GL . Suction the feeling requested deceleration G L which is calculated at a predetermined cycle by suction with a sense demand deceleration calculating unit 93 is output to the phase lag filter 93F.
  • the phase lag filter 93F is, for example, a low pass filter (LPF), and performs phase lag processing on the suction feeling required deceleration GL obtained based on the suction feeling required deceleration map 93M. It has a function. Therefore, after the stroke S is input to the suction feeling required deceleration calculating section 93, the suction feeling required deceleration GLF is output to the required deceleration calculating section 95 with a time delay.
  • the delay time (time constant) of the phase delay filter 93 ⁇ / b> F is set so that the driver feels a feeling of sucking the brake (a sense of security with respect to the effectiveness of the brake) and does not feel a sense of incongruity due to this time delay.
  • phase delay filter 93F it is preferable to shorten the delay time as the vehicle speed V C (vehicle speed when the brake pedal 3 is depressed) input from the vehicle speed calculation unit 91 is lower.
  • V C vehicle speed when the brake pedal 3 is depressed
  • the amount of depression of the brake pedal 3 also often small, too long the the delay time, because rather more likely that a driver feels discomfort.
  • the suction feeling required deceleration G LF after the phase delay processing by the phase delay filter 93F is output to the required deceleration calculation unit 95.
  • Build-up request deceleration calculating unit 94 and the stroke S of the brake pedal 3, the vehicle speed V C, and the base required deceleration G B, based on the build-up request deceleration G U (third request deceleration) It has a function to calculate.
  • the “build-up request deceleration G U ” is a deceleration for gradually increasing the braking force while the brake pedal 3 is depressed and held.
  • the build-up request deceleration calculation unit 94 gradually increases the build-up request deceleration G U (third request deceleration) when the stroke S of the brake pedal 3 is held. For example, build as the build-up request deceleration calculating unit 94 during the amount of change per unit time of the stroke S (> 0) is within a predetermined range, based on a predetermined map or function, the vehicle speed V C is decelerated up request deceleration G U is increased.
  • Requested deceleration calculating unit 95 includes a base request deceleration G B, and adsorption with feeling requested deceleration G LF after phase lag processing, and build-up request deceleration G U, by adding the request deceleration G It has a function to calculate.
  • an adder 95b for adding The required deceleration G calculated by the required deceleration calculation unit 95 is output to the required hydraulic pressure calculation unit 96.
  • the required hydraulic pressure calculation unit 96 calculates a required hydraulic pressure P that is a required value of the brake hydraulic pressure based on the required deceleration G input from the required deceleration calculation unit 95.
  • the required hydraulic pressure calculation unit 96 calculates the required hydraulic pressure P by, for example, multiplying the required deceleration G by a predetermined coefficient, and outputs the required hydraulic pressure P to the drive control unit 97.
  • the drive control unit 97 performs drive control of the motor actuator 31 included in the slave cylinder 30 (see FIG. 1) based on the required hydraulic pressure P input from the required hydraulic pressure calculation unit 96. That is, the drive control unit 97 calculates a target value of the rotation angle (mechanical angle) of the motor actuator 31 corresponding to the required hydraulic pressure P. Then, the drive control unit 97 outputs a command signal Q based on feedback control to the motor actuator 31 so that the detection value ⁇ of the angle sensor 42 approaches the target value described above. The drive control unit 97 calculates the target value of the stroke of the ball screw shaft 33b (see FIG. 1), and performs feedback control based on the detection value of a sensor (not shown) that detects this stroke. Also good.
  • FIG. 3 is a flowchart showing a processing procedure (vehicle brake control method) executed by the control device 90 (see FIGS. 1 and 2 as appropriate).
  • “START” shown in FIG. 3 it is assumed that the depression of the brake pedal 3 is started.
  • Controller 90 in step S101 based on the wheel speed V R supplied from each of the wheel speed sensor 45, and calculates the vehicle speed V C by the vehicle speed calculation unit 91.
  • a phase lag process by the phase lag filter 94 is performed on the suction feeling required deceleration GL , and the suction feeling required deceleration G LF is calculated.
  • step S104 Controller in step S104 90, based vehicle speed V C calculated in step S101, and the stroke S of the brake pedal 3, to a base required deceleration G B calculated in step S103, the build-up request deceleration calculating unit 94 calculating a build-up request deceleration G U by.
  • Controller in step S105 90 includes a base request deceleration G B calculated in step S102, the intake-conditioned feeling requested deceleration G LF (after the phase lag processing) calculated in step S103, the build-up request computed in step S104 a deceleration G U, calculates the required deceleration G by adding the.
  • the control device 90 calculates the required hydraulic pressure P by the required hydraulic pressure calculation unit 96 based on the required deceleration G calculated in step S105.
  • step S107 the control device 90 drives the motor actuator 31 by the drive control unit 97 based on the required hydraulic pressure P calculated in step S106. Note that the series of processing in steps S101 to S107 is repeated at a predetermined cycle.
  • FIG. 4A is an explanatory diagram showing the temporal change characteristic of the stroke S of the brake pedal 3.
  • the brake pedal 3 is depressed from time t0 to t1
  • the stroke S of the brake pedal 3 is maintained from time t1 to t3
  • the brake pedal 3 is returned from time t3 to t4.
  • FIG. 4B is an explanatory diagram showing the time-dependent change characteristic of the required deceleration G corresponding to the time-dependent change characteristic of the stroke S of the brake pedal 3 shown in FIG. 4A.
  • the base required deceleration G B the suction feeling required deceleration G LF , the build-up required deceleration G U included in the required deceleration G, and the hysteresis amount deceleration described later are illustrated separately. did.
  • Based required deceleration G B as described above, based on the base required deceleration map 92M (see FIG. 2) is a deceleration which is calculated to correspond to the stroke S of the brake pedal 3.
  • the suction feeling required deceleration G LF is calculated corresponding to the stroke S of the brake pedal 3 based on the suction feeling required deceleration map 93M (see FIG. 2), and further, phase delay processing is performed. Is the deceleration applied. Therefore, the timing at which intake the feeling requested deceleration G LF to peak (time t2), see portions indicated by circles K of (dashed line lags behind the time t1 the holding of the brake pedal 3 is started ).
  • time t2 the timing at which intake the feeling requested deceleration G LF to peak
  • a suction feeling required deceleration calculating section 93 (see FIG. 2) is provided separately from the base required deceleration calculating section 92, and the suction feeling required deceleration calculating section 93 is a phase delay filter. 93F (see FIG. 2). Therefore, when the vehicle is suddenly braked, the base required deceleration calculation unit 92 can immediately generate a braking force. Further, at the time of normal braking, as described above, a good brake feel can be given to the driver by the processing of the suction feeling required deceleration calculation unit 93.
  • the delay time of the phase lag filter 93F is set as the vehicle speed V C is shorter as is slow. Therefore, at the time of the low speed of the vehicle, it is almost never feel driver (the sense of discomfort that abruptly braking force is increased) delay of the braking force based on the intake with a sense of demand deceleration G LF.
  • the time t1 ⁇ t3 the build-up request deceleration G U the stroke S is held in the brake pedal 3 has gradually increased, demand deceleration G along with this gradual Is getting bigger.
  • the driver can be provided with a sense of security that the braking effect is good by gradually increasing the braking force during the period in which the brake pedal 3 is held.
  • the deceleration of the hysteresis component shown in FIG. 4B is a deceleration of the braking force with a decrease in such build-up request deceleration G U is prevented from sharply.
  • Deceleration hysteresis amount after the base required deceleration G B, absorption with feeling requested deceleration G LF, and the sum of the build-up request deceleration G U is turned to decrease, the base request deceleration G B, with absorption based sensitivity required deceleration G LF, and the build-up request deceleration G U, is calculated to mitigate this reduction.
  • the vehicle brake system 1 has been described with the embodiment.
  • the present invention is not limited to these descriptions, and various modifications can be made.
  • the required deceleration G is calculated by adding the base required deceleration G B , the suction feeling required deceleration G LF , and the buildup required deceleration G U.
  • omitting the build-up request deceleration calculating unit 94, and the base required deceleration G B, based on the sum of the phase lag processing is made the intake with feeling requested deceleration G LF, to drive the motor actuator 31 It may be. Even in such a configuration, it is possible to increase the brake feeling for the driver by increasing the braking force after the depression of the brake pedal 3 is maintained (immediately after).
  • the case has been described where the base required deceleration G B and absorption the feeling requested deceleration G L is calculated based on the stroke S and the like of the brake pedal 3 is not limited thereto.
  • the depression force corresponding to the stroke S of the brake pedal 3 to predetermined map it may be obtained based required deceleration G B and absorption the feeling requested deceleration G L in response to the depression force.
  • the present invention is not limited thereto.
  • the base required deceleration G B , the suction feeling required deceleration G L, etc. may be calculated based only on the stroke S input from the stroke sensor 41.
  • each required deceleration may be calculated based on each map that is set so as to increase the braking effect compared to the normal time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

 車両用ブレーキシステム(1)は、ブレーキペダル(3)のストロークを検出するストロークセンサ(41)と、モータアクチュエータ(31)の駆動によってブレーキ液圧を発生させるスレーブシリンダ(30)と、ストロークセンサ(41)の検出値に基づいてモータアクチュエータ(31)を駆動する制御装置(90)と、を備える。制御装置(90)は、ベース要求減速度マップ(92M)と、吸付き感要求減速度マップ(93M)と、吸付き感要求減速度Gに対して位相遅れ処理を行う位相遅れフィルタ(93F)と、を備え、ベース要求減速度Gと、位相遅れ処理が行われた吸付き感要求減速度GLFと、に基づいてモータアクチュエータ(31)の駆動制御を行う。運転者にとってのブレーキフィールが良好な車両用ブレーキシステム(1)を提供することができる。

Description

車両用ブレーキシステム及び車両用ブレーキ制御方法
 本発明は、車両用ブレーキシステム及び車両用ブレーキ制御方法に関する。
 ブレーキペダルのストロークに応じたブレーキ液圧をスレーブシリンダで発生させるバイ・ワイヤ式の車両用ブレーキシステムが知られている。このような車両用ブレーキシステムに関して、運転者にとってのブレーキフィール(ブレーキの効きに対する安心感、ブレーキがよく効いているという実感)を向上させるための技術として、例えば、以下に示すものが知られている。
 すなわち、特許文献1には、通常マップ、及び、この通常マップよりも大きい値のブレーキ液圧規範値を設定するためのビルドアップマップのうちいずれかを選択し、選択したマップに基づいてブレーキ液圧規範値を設定することが記載されている。
特開2012-144059号公報
 特許文献1に記載の技術では、ブレーキペダルの踏込みが保持された場合、ビルドアップマップに基づいて制動力を徐々に大きくすることで、主に制動後期において運転者にブレーキの効き増し感を与えるようになっている。
 しかしながら、特許文献1には、制動前期(ブレーキの踏込みが保持された直後)において、運転者の効きのよさを実感させるための技術については記載されておらず、ブレーキフィールを更に向上させる余地がある。
 そこで本発明は、運転者にとってのブレーキフィールが良好な車両用ブレーキシステム及び車両用ブレーキ制御方法を提供すること課題とする。
 前記課題を解決するための手段として、本発明は、ブレーキペダルのストロークを検出するストローク検出手段と、モータアクチュエータを有し、前記モータアクチュエータの駆動によってブレーキ液圧を発生させるブレーキ液圧発生手段と、前記ストローク検出手段の検出値に基づいて、前記モータアクチュエータの駆動制御を行う制御手段と、を備える車両用ブレーキシステムであって、前記制御手段は、前記ストローク検出手段の検出値に対応する第1要求減速度を求めるための第1マップと、前記ストローク検出手段の検出値に対応する第2要求減速度を求めるための第2マップと、前記第2マップに基づいて求められる前記第2要求減速度に対して位相遅れ処理を行う位相遅れ処理手段と、を備え、前記第1要求減速度と、前記位相遅れ処理が行われた前記第2要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うことを特徴とする。
 このような構成によれば、制御手段は、第2マップに基づいて求められる第2要求減速度に対し、位相遅れ処理手段を用いて位相遅れ処理を行う。したがって、ブレーキペダルの踏み込まれた後、第1要求減速度よりも遅れて第2要求減速度が増加し、それに伴って制動力も増加する。その結果、ブレーキペダルの保持後にブレーキの効きが強くなるため、ブレーキがしっかり効いているという安心感(ブレーキフィール)を運転者に与えることができる。また、第1マップに基づいて求められる第1要求減速度によって、急制動時には応答遅れなく制動力を発生させることができる。
 また、前記制御手段は、車速が低速であるほど、前記位相遅れ処理を行う際の遅れ時間を短くすることが好ましい。
 このような構成によれば、車速が低速であるほど、第2要求減速度を発生させる際の遅れ時間が短く設定される。なお、車速が低速である場合にはブレーキペダルの踏込量(ストローク)が小さいことが多く、第2要求減速度の遅れ時間が長過ぎると運転者が違和感を覚える可能性がある。前記したように、車速が低速であるほど第2要求減速度の遅れ時間を短くすることで、運転者が違和感を覚えることを防止できる。
 また、前記制御手段は、前記ブレーキペダルのストロークが保持されている場合に第3要求減速度を漸増させ、前記第1要求減速度と、前記位相遅れ処理が行われた前記第2要求減速度と、前記第3要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うことが好ましい。
 このような構成によれば、第ブレーキペダルのストロークが保持されている場合に第3要求減速度が漸増され、第1要求減速度、第2要求減速度、及び第3要求減速度に基づいてモータアクチュエータが駆動される。第3要求減速度に基づいてブレーキの効きを徐々に強めることによって、ブレーキがよく効いているという安心感を運転者に与えることができる。
 また、本発明は、ブレーキペダルのストロークを検出するストローク検出手段と、モータアクチュエータを有し、前記モータアクチュエータの駆動によってブレーキ液圧を発生させるブレーキ液圧発生手段と、前記ストローク検出手段の検出値に基づいて、前記モータアクチュエータの駆動制御を行う制御手段と、を備える車両用ブレーキシステムが実行する車両用ブレーキ制御方法であって、前記制御手段は、前記ストローク検出手段の検出値に対応する第1要求減速度を第1マップに基づいて求めるとともに、前記ストローク検出手段の検出値に対応する第2要求減速度を第2マップに基づいて求め、前記第1要求減速度と、位相遅れ処理手段による位相遅れ処理が行われた前記第2要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うことを特徴とする。
 このような構成によれば、ブレーキペダルの保持後にブレーキの効きが強くなるため、ブレーキがしっかり効いているという安心感を運転者に与えることができる。また、急制動時には応答遅れなく制動力を発生させることができる。
 本発明によれば、運転者にとってのブレーキフィールが良好な車両用ブレーキシステム及び車両用ブレーキ制御方法を提供できる。
本発明の実施形態に係る車両用ブレーキシステムの概略構成図である。 車両用ブレーキシステムが備える制御装置の機能ブロック図である。 車両用ブレーキシステムが備える制御装置が実行する処理手順を示すフローチャートである。 ブレーキペダルのストロークの経時変化特性を示す説明図である。 図4Aに示すブレーキペダルのストロークの経時変化特性に対応する要求減速度の経時変化特性を示す説明図である。
 以下、本発明の実施形態に係る車両用ブレーキシステム及び車両用ブレーキ制御方法について、図面を参照して詳細に説明する。
≪実施形態≫
<車両用ブレーキシステムの構成>
 図1は、本実施形態に係る車両用ブレーキシステム1の概略構成図である。
 本実施形態に係る車両用ブレーキシステム1は、内燃機関により駆動される自動車、電気自動車、ハイブリッド自動車、燃料電池自動車等に搭載され、車両の各車輪に付与する制動力を発生させる機能を有する。
 車両用ブレーキシステム1は、ブレーキペダル3のストロークに応じてスレーブシリンダ30を作動させ、このスレーブシリンダ30によって発生するブレーキ液圧で車両を制動するバイ・ワイヤ式のブレーキシステムである。なお、システム異常時には、後記するマスタカットバルブ60a,60bを開弁し、マスタシリンダ10からの液圧によって各車輪に制動力を付与するようになっている。
 車両用ブレーキシステム1は、マスタシリンダ10と、ストロークシミュレータ20と、スレーブシリンダ30と、センサ類(ストロークセンサ41等)と、VSA(登録商標)装置50と、マスタカットバルブ60a,60bと、制御装置90(図2参照)と、を備えている。
(マスタシリンダ)
 マスタシリンダ10は、少なくとも配管チューブ81a,81b内において、ブレーキペダル3の踏力に応じた液圧を発生させる装置である。マスタシリンダ10は、例えば、図1に示すタンデム型のシリンダであり、シリンダ本体11と、プッシュロッド12と、ピストン13a,13bと、ばね部材15a,15bと、を有している。
 シリンダ本体11には、紙面右側から順にピストン13a、ばね部材15a、ピストン13b、及びばね部材15bが略同軸で収容されている。運転者によってブレーキペダル3が踏み込まれると、その踏力がプッシュロッド12を介してピストン13aに作用し、圧力室Fa,Fbにおいて液圧が生じるようになっている。
 また、ブレーキペダル3が戻されてピストン13a,13bが後退すると、圧力室Faが、リリーフポートRaを介してサプライポートSa及び背室Eaに連通し、また、リザーバ14内にも連通するようになっている(圧力室Fbについても同様)。
 なお、圧力室Faの出力ポートTaは、配管チューブ81a、マスタカットバルブ60a、配管チューブ82a、及びVSA装置50を介して、ホイールシリンダ71FR(右側前輪),71RL(左側後輪)に接続されている。
 また、圧力室Fbの出力ポートTbは、配管チューブ81b、マスタカットバルブ60b、配管チューブ82b、及びVSA装置50を介して、ホイールシリンダ71FL(左側前輪),71RR(右側後輪)に接続されている。
(ストロークシミュレータ)
 ストロークシミュレータ20は、ブレーキペダル3の踏力に応じた操作反力を発生させる装置であり、シリンダ本体21と、ピストン22と、ばね部材23,24と、ばね座25と、を有している。
 シリンダ本体21には、紙面左側から順にピストン22、ばね部材23、ばね座25、及びばね部材24が略同軸で収容されている。なお、シリンダ本体21の開口は、常閉型のシミュレータバルブ60cが設置された配管チューブ85を介して、配管チューブ81bに接続されている。
(スレーブシリンダ)
 スレーブシリンダ30(ブレーキ液圧発生手段)は、モータアクチュエータ31の駆動によってブレーキ液圧を発生させ、ホイールシリンダ71FR,71RL,71FL,71RRを作動させる装置である。スレーブシリンダ30は、主に、モータアクチュエータ31と、ギヤ機構32と、ボールねじ構造体33と、シリンダ本体34と、ピストン35a,35bと、ばね部材37a,37bと、を有している。
 モータアクチュエータ31は、制御装置90(図2参照)から入力される指令信号Qに応じて駆動する電動機である。ギヤ機構32は、モータアクチュエータ31の回転駆動力をボールねじ構造体33に伝達する機構である。ボールねじ構造体33は、ギヤ機構32の回転によって転動するボール33aと、このボール33aの転動によって進退するボールねじ軸33bと、を有している。
 シリンダ本体34には、紙面右側から順に、ボールねじ軸33b、ピストン35a、ばね部材37a、ピストン35b、及びばね部材37bが略同軸で収容されている。ピストン35a,35bは円柱状を呈しており、軸線方向で摺動可能となるようにシリンダ本体34に収容されている。
 その他、スレーブシリンダ30には、ピストン35a,35bの相対的な移動を規制することで最大ストローク及び最小ストロークを設定するための規制部材38,39が設けられている。
 モータアクチュエータ31が駆動すると、その回転駆動力がギヤ機構32を介してボールねじ構造体33に伝達され、ボールねじ軸33bが紙面左向きに前進するようになっている。これによって、シリンダ本体34内でピストン35a,35bが前進し、圧力室Ha,Hbにおいてブレーキ液圧が発生する。
 なお、スレーブシリンダ30の構成は図1に示すものに限定されず、モータアクチュエータ31の駆動によって液圧を発生可能な他の構成であってもよい。
 図1に示すように、ピストン35aの背室Jaは、リザーバポートVaを介してリザーバ36内に連通している。また、ピストン35bの背室JbはリザーバポートVbを介してリザーバ36内に連通している。このリザーバ36は、配管チューブ86を介してマスタシリンダ10のリザーバ14に接続されている。
 また、圧力室Haの出力ポートWaは、配管チューブ83a,82a(一部)、及びVSA装置50を介して、ホイールシリンダ71FR,71RLに接続されている。
 また、圧力室Hbの出力ポートWbは、配管チューブ83b,82b(一部)、及びVSA装置50を介して、ホイールシリンダ71FL,71RRに接続されている。
 なお、ホイールシリンダ71FRは、ブレーキ液圧に応じた制動力をディスクブレーキ70FRに作用させ、右側前輪を制動するようになっている(他のホイールシリンダ71RL,71FL,71RRについても同様)。
(センサ類)
 ストロークセンサ41(ストローク検出手段)は、ブレーキペダル3のストローク(踏込量)を検出するセンサである。なお、ストロークセンサ41として、ポテンショメータ式、光学式等のセンサを用いることができる。ストロークセンサ41によって検出されたストロークSは、制御装置90(図2参照)に出力される。
 角度センサ42は、モータアクチュエータ31が有する回転子(図示せず)の機械角を検出するセンサであり、モータアクチュエータ31に内蔵されている。角度センサ42として、ホールセンサ、レゾルバ等を用いることができる。なお、位置センサを用いてボールねじ軸33bのストローク(所定の基準位置からの移動量)を検出するようにしてもよい。角度センサ42によって検出された機械角θは、制御装置90(図2参照)に出力される。
 液圧センサ43は、マスタカットバルブ60a,60bよりもマスタシリンダ10側の液圧を検出するセンサであり、配管チューブ81aに設置されている。
 液圧センサ44は、マスタカットバルブ60a,60bよりもスレーブシリンダ30側の液圧を検出するセンサであり、配管チューブ82bに設置されている。
 液圧センサ43,44によって検出された液圧は、制御装置90(図2参照)に出力される。
 図2に示す車輪速センサ45は、車輪の回転速度を検出するセンサであり、各車輪それぞれに設置されている。車輪速センサ45によって検出された車輪の回転速度は、それぞれ、制御装置90に出力される。
(VSA装置)
 図1に示すVSA装置50(Vehicle Stability Assist)は、運転者によるブレーキ操作に関わらず液圧を発生させ、車両挙動の安定化を図るための装置である。VSA装置50は、各種のブレーキアクチュエータを有しており、ホイールシリンダ71FR,71RL,71FL,71RRに接続されている。
 VSA装置50の構成については、周知であるため詳細な説明を省略するが、通常時にはスレーブシリンダ30で発生した液圧がVSA装置50を介してそのまま(又は適宜調圧された上で)ホイールシリンダ71FR,71RL,71FL,71RRに作用するようになっている。
(マスタカットバルブ)
 マスタカットバルブ60aは、制御装置90(図2参照)からの指令に従って配管チューブ81a,82aを遮断/連通する常開型の電磁弁である。マスタカットバルブ60bは、制御装置90(図2参照)からの指令に従って配管チューブ81b,82bを遮断/連通する常開型の電磁弁である。
 なお、通常時においてマスタカットバルブ60a,60bは閉弁され、ストロークシミュレータ20からブレーキペダル3に疑似的な反力を作用させつつ、スレーブシリンダ30によって発生したブレーキ液圧で車両を制動するようになっている。
(制御装置)
 図2は、車両用ブレーキシステム1が備える制御装置90の機能ブロック図である(適宜、図1参照)。
 制御装置90(制御手段)は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェースなどの電子回路を備えて構成され、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。
 図2に示すように、制御装置90は、車速演算部91と、ベース要求減速度演算部92と、吸付き感要求減速度演算部93と、ビルドアップ要求減速度演算部94と、要求減速度演算部95と、要求液圧演算部96と、駆動制御部97と、を備えている。
 車速演算部91は、車輪速センサ45によって検出される車輪速Vに基づいて、車速V(ブレーキペダル3が踏み込まれたときの車速)を演算する機能を有している。車速演算部91は、例えば、車輪速センサ45から入力される各車輪速Vの平均値に基づいて、所定周期で車速Vを演算する。車速演算部91によって演算された車速Vは、ベース要求減速度演算部92、吸付き感要求減速度演算部93、及びビルドアップ要求減速度演算部94に出力される。
 なお、ブレーキペダル3が踏み込まれたときに車速Vを算出することによって、車速Vに応じた吸付き感要求減速度演算部93、及びビルドアップ要求減速度演算部94によるブレーキフィールを向上させることができる。
 ベース要求減速度演算部92は、ストロークセンサ41から入力されるストロークSと、車速演算部91から入力される車速Vと、に基づいて、ベース要求減速度G(第1要求減速度)を演算する機能を有している。ここで「ベース要求減速度G」とは、ブレーキペダル3の踏込みをそのまま反映させた減速度であり、後記する要求減速度Gのうちベースとなる減速度である(図4B参照)。なお、減速度と制動力とは比例関係にあり、大きな制動力を発生させる際には、減速度の要求値も大きくなる。
 図2に示すように、ベース要求減速度演算部92は、ベース要求減速度マップ92M(第1マップ)を有している。このベース要求減速度マップ92Mは、ブレーキペダル3のストロークSに対応するベース要求減速度Gを求めるためのマップであり、予め記憶手段(図示せず)に格納されている。
 ベース要求減速度マップ92Mは、ブレーキペダル3のストロークSが大きくなるにつれて、ベース要求減速度Gも大きくなるように設定されている。つまり、運転者によるブレーキペダル3の踏込量が大きいほどブレーキの効きが強くなるように、ベース要求減速度マップ92Mが設定されている。
 また、ベース要求減速度マップ92Mは、ブレーキペダル3のストロークSを一定とした場合、車速Vが高速であるほどベース要求減速度Gが大きくなるように設定されている。つまり、低速運転時には唐突感なく滑らかにブレーキが効くようにし、また、高速運転時にはしっかりとブレーキを効かせて運転者に安心感を与えるようになっている。
 ベース要求減速度演算部92によって所定周期で演算されるベース要求減速度Gは、ビルドアップ要求減速度演算部94及び要求減速度演算部95に出力される。
 ちなみに、ベース要求減速度演算部92は、後記する吸付き感要求減速度演算部93のように位相遅れフィルタを有していない。したがって、例えば、運転者が車両を急制動しようとしてブレーキペダル3を急激に踏み込むと、所定周期で算出されるベース要求減速度Gが急上昇し、このベース要求減速度Gがタイミングを遅らせることなく要求減速度演算部95に出力される。これによって、急制動時の応答遅れを防止できる。
 吸付き感要求減速度演算部93は、ストロークセンサ41から入力されるストロークSと、車速演算部91から入力される車速Vと、に基づいて、吸付き感要求減速度GLF(第2要求減速度)を演算する機能を有している。なお、「吸付き感要求減速度GLF」とは、ブレーキペダル3の踏込みに対して、タイミングを若干遅らせて制動力を発生させることによって、運転者にとってのブレーキの吸付き感(しっかりとブレーキが効いているという安心感)を高めるための減速度である。
 図2に示すように、吸付き感要求減速度演算部93は、吸付き感要求減速度マップ93M(第2マップ)と、位相遅れフィルタ93F(位相遅れ処理手段)と、を有している。吸付き感要求減速度マップ93Mは、ブレーキペダル3のストロークSに対応する吸付き感要求減速度Gを求めるためのマップであり、予め記憶手段(図示せず)に格納されている。
 吸付き感要求減速度マップ93Mは、例えば、ブレーキペダル3のストロークSが大きくなるにつれて、吸付き感要求減速度Gも大きくなるように設定されている。なお、吸付き感要求減速度マップ93Mはこれに限定されず、ブレーキペダル3の踏込みに応じた制動力を発生可能であれば、他の特性のマップを用いてもよい。例えば、ブレーキペダル3のストロークSの増加に伴って吸付き感要求減速度Gを線形的に増加させ、ストロークSが所定値以上の領域では吸付き感要求減速度Gが一定となるようにしてもよい。
 また、吸付き感要求減速度マップ93Mは、ブレーキペダル3のストロークSを一定とした場合、車速Vが高速であるほど吸付き感要求減速度Gが大きくなるように設定されている。車速Vが低速であるときには吸付き感要求減速度Gを小さくすることによって制動力の変動を小さくし、ブレーキの効きを滑らかにすることができる。また、車速Vが高速であるときには吸付き感要求減速度Gを大きくすることによって、ブレーキがしっかり効いているという安心感を運転者に与えることができる。
 吸付き感要求減速度演算部93によって所定周期で演算される吸付き感要求減速度Gは、位相遅れフィルタ93Fに出力される。
 位相遅れフィルタ93Fは、例えば、ローパスフィルタ(Low Pass Filter:LPF)であり、吸付き感要求減速度マップ93Mに基づいて求められた吸付き感要求減速度Gに対して位相遅れ処理を行う機能を有している。したがって、吸付き感要求減速度演算部93にストロークSが入力された後、時間的な遅れを伴って、吸付き感要求減速度GLFが要求減速度演算部95に出力される。位相遅れフィルタ93Fの遅れ時間(時定数)は、この時間的な遅れによって運転者がブレーキの吸付き感(ブレーキの効きに対する安心感)を覚え、また、違和感を感じないように設定される。
 また、位相遅れフィルタ93Fにおいて、車速演算部91から入力される車速V(ブレーキペダル3が踏み込まれたときの車速)が低速であるほど、遅れ時間を短くすることが好ましい。車速Vが低速である場合には、ブレーキペダル3の踏込量も小さいことが多く、前記した遅れ時間を長くし過ぎると、かえって運転者に違和感を与える可能性が高くなるからである。
 位相遅れフィルタ93Fによる位相遅れ処理が行われた後の吸付き感要求減速度GLFは、要求減速度演算部95に出力される。
 ビルドアップ要求減速度演算部94は、ブレーキペダル3のストロークSと、車速Vと、ベース要求減速度Gと、に基づいて、ビルドアップ要求減速度G(第3要求減速度)を演算する機能を有している。なお、「ビルドアップ要求減速度G」とは、ブレーキペダル3が踏み込まれて保持されている間、徐々に制動力を大きくするための減速度である。
 ビルドアップ要求減速度演算部94は、ブレーキペダル3のストロークSが保持されている場合にビルドアップ要求減速度G(第3要求減速度)を漸増させる。例えば、ビルドアップ要求減速度演算部94は、ストロークS(>0)の単位時間当たりの変化量が所定範囲内である期間中、所定のマップ又は関数に基づき、車速Vが減速するにつれてビルドアップ要求減速度Gを大きくする。
 このようにブレーキペダル3の踏込みが保持されて車両が減速している期間に制動力を徐々に大きくすることによって、ブレーキの効きがよいという安心感を運転者に与えることができる。ビルドアップ要求減速度演算部94によって所定周期で演算されるビルドアップ要求減速度Gは、要求減速度演算部95に出力される。
 要求減速度演算部95は、ベース要求減速度Gと、位相遅れ処理後の吸付き感要求減速度GLFと、ビルドアップ要求減速度Gと、を加算することで、要求減速度Gを算出する機能を有している。
 要求減速度演算部95は、ベース要求減速度Gと吸付き感要求減速度GLFとを加算する加算器95aと、加算器95aから入力される値とビルドアップ要求減速度Gとを加算する加算器95bと、を有している。
 要求減速度演算部95によって演算された要求減速度Gは、要求液圧演算部96に出力される。
 要求液圧演算部96は、要求減速度演算部95から入力される要求減速度Gに基づいて、ブレーキ液圧の要求値である要求液圧Pを演算する。要求液圧演算部96は、例えば、要求減速度Gに所定の係数を乗ずることで要求液圧Pを演算し、この要求液圧Pを駆動制御部97に出力する。
 駆動制御部97は、要求液圧演算部96から入力される要求液圧Pに基づいて、スレーブシリンダ30(図1参照)が有するモータアクチュエータ31の駆動制御を行う。すなわち、駆動制御部97は、要求液圧Pに対応してモータアクチュエータ31の回転角(機械角)の目標値を演算する。そして、駆動制御部97は、角度センサ42の検出値θを、前記した目標値に近づけるように、フィードバック制御に基づく指令信号Qをモータアクチュエータ31に出力する。
 なお、駆動制御部97によって、ボールねじ軸33b(図1参照)のストロークの目標値を演算し、このストロークを検出するセンサ(図示せず)の検出値に基づいてフィードバック制御を行うようにしてもよい。
<車両用ブレーキシステムの動作>
 図3は、制御装置90が実行する処理手順(車両用ブレーキ制御方法)を示すフローチャートである(適宜、図1、図2参照)。なお、図3に示す「START」において、ブレーキペダル3の踏込みが開始されたものとする。
 ステップS101において制御装置90は、それぞれの車輪速センサ45から入力される車輪速Vに基づき、車速演算部91によって車速Vを演算する。
 ステップS102において制御装置90は、ステップS101で演算した車速Vと、ブレーキペダル3のストロークSと、に基づき、ベース要求減速度演算部92によってベース要求減速度Gを演算する。
 ステップS103において制御装置90は、ステップS101で演算した車速Vと、ブレーキペダル3のストロークSと、に基づき、吸付き感要求減速度演算部93によって吸付き感要求減速度Gを演算する。なお、この吸付き感要求減速度Gに対して、位相遅れフィルタ94による位相遅れ処理が行われ、吸付き感要求減速度GLFが演算される。
 ステップS104において制御装置90は、ステップS101で演算した車速Vと、ブレーキペダル3のストロークSと、ステップS103で算出したベース要求減速度Gと、に基づき、ビルドアップ要求減速度演算部94によってビルドアップ要求減速度Gを演算する。
 ステップS105において制御装置90は、ステップS102で演算したベース要求減速度Gと、ステップS103で演算した吸付き感要求減速度GLF(位相遅れ処理後)と、ステップS104で演算したビルドアップ要求減速度Gと、を加算することで要求減速度Gを演算する。
 ステップS106において制御装置90は、ステップS105で演算した要求減速度Gに基づき、要求液圧演算部96によって要求液圧Pを演算する。
 ステップS107において制御装置90は、ステップS106で演算した要求液圧Pに基づき、駆動制御部97によってモータアクチュエータ31を駆動する。
 なお、ステップS101~S107の一連の処理は、所定周期で繰り返し行われる。
<作用・効果>
 図4Aは、ブレーキペダル3のストロークSの経時変化特性を示す説明図である。図4Aに示す例では、時刻t0~t1においてブレーキペダル3が踏み込まれ、時刻t1~t3においてブレーキペダル3のストロークSが保持され、時刻t3~t4においてブレーキペダル3が戻されている。
 図4Bは、図4Aに示すブレーキペダル3のストロークSの経時変化特性に対応する要求減速度Gの経時変化特性を示す説明図である。なお、図4Bでは、要求減速度Gに含まれるベース要求減速度G、吸付き感要求減速度GLF、ビルドアップ要求減速度G、及び、後記するヒステリシス分の減速度を区別して図示した。
 ベース要求減速度Gは、前記したように、ベース要求減速度マップ92M(図2参照)に基づき、ブレーキペダル3のストロークSに対応して演算される減速度である。したがって、ベース要求減速度Gは、ブレーキペダル3のストロークSに対応して増加し(時刻t0の直後~時刻t1)、さらに略一定(時刻t1~t3)になった後、減少している(時刻t3以後)。
 また、吸付き感要求減速度GLFは、前記したように、吸付き感要求減速度マップ93M(図2参照)に基づき、ブレーキペダル3のストロークSに対応して演算され、さらに位相遅れ処理が施された減速度である。したがって、吸付き感要求減速度GLFがピークに達するタイミング(時刻t2)は、ブレーキペダル3の踏込みの保持が開始された時刻t1よりも遅れている(破線の丸印Kで示す部分を参照)。このように、ブレーキペダル3の踏込みが保持された後にブレーキの効きをさらに強めることで、ブレーキがしっかりと効いているという安心感を運手者に与えることができる。
 ちなみに、図2に示す吸付き感要求減速度演算部93を省略し、ベース要求減速度演算部92(図2参照)に位相遅れフィルタを設けることも考えられる。しかしながら、このような構成では、運転者がブレーキペダル3を勢いよく踏み込んで急制動を行いたい場合でも、前記した位相遅れフィルタによって応答遅れが生じてしまう。
 これに対して本実施形態では、ベース要求減速度演算部92とは別に吸付き感要求減速度演算部93(図2参照)を設け、この吸付き感要求減速度演算部93が位相遅れフィルタ93F(図2参照)を有する構成になっている。したがって、車両の急制動時には、ベース要求減速度演算部92によって、即座に制動力を発生させることができる。また、通常の制動時には、前記したように、吸付き感要求減速度演算部93の処理によって良好なブレーキフィールを運転者に与えることができる。
 また、位相遅れフィルタ93Fでの遅れ時間は、車速Vが低速であるほど短くなるよう設定される。したがって、車両の低速時において、吸付き感要求減速度GLFに基づく制動力の遅れ(唐突に制動力が増したという違和感)を運転者が感じることはほとんどない。
 また、図4Bに示すように、ブレーキペダル3のストロークSが保持されている時刻t1~t3ではビルドアップ要求減速度Gが徐々に大きくなっており、これに伴って要求減速度Gも徐々に大きくなっている。このようにブレーキペダル3が保持されている期間では制動力を徐々に強めることで、ブレーキの効きがよいという安心感を運転者に与えることができる。
 ちなみに、図4Bに示すヒステリシス分の減速度は、ビルドアップ要求減速度G等の減少に伴って制動力が急減しないようにするための減速度である。ヒステリシス分の減速度は、ベース要求減速度G、吸付き感要求減速度GLF、及びビルドアップ要求減速度Gの和が減少に転じた後、このベース要求減速度G、吸付き感要求減速度GLF、及びビルドアップ要求減速度Gに基づいて、この減少を緩和するように演算される。
≪変形例≫
 以上、本発明に係る車両用ブレーキシステム1について実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態では、ベース要求減速度G、吸付き感要求減速度GLF、及びビルドアップ要求減速度Gを加算することで、要求減速度Gを演算する場合について説明したが、これに限らない。すなわち、ビルドアップ要求減速度演算部94を省略し、ベース要求減速度Gと、位相遅れ処理がなされた吸付き感要求減速度GLFとの和に基づいて、モータアクチュエータ31を駆動するようにしてもよい。このような構成でも、ブレーキペダル3の踏込みが保持された後(直後)に制動力を増加させることで、運転者にとってのブレーキフィールを高めることができる。
 また、実施形態では、ブレーキペダル3のストロークS等に基づいてベース要求減速度G及び吸付き感要求減速度Gが演算される場合について説明したが、これに限らない。例えば、ブレーキペダル3のストロークSに対応する踏力を所定のマップに基づいて求め、この踏力に対応してベース要求減速度G及び吸付き感要求減速度Gを求めるようにしてもよい。
 また、実施形態では、ストロークセンサ41から入力されるストロークSと、車速演算部91から入力される車速Vと、に基づいて、ベース要求減速度G、吸付き感要求減速度G等が演算される場合について説明したが、これに限らない。例えば、ストロークセンサ41から入力されるストロークSのみに基づいて、ベース要求減速度G、吸付き感要求減速度G等を演算するようにしてもよい。
 また、ジョイスティック(図示せず)などの操作によってスポーツモードが選択された場合、ベース要求減速度G、吸付き感要求減速度G、及びビルドアップ要求減速度Gを求める際のマップをそれぞれ変更するようにしてもよい。例えば、力強く加速されるスポーツモードにおいて、通常時よりもブレーキの効きを強めるように設定された各マップに基づいて各要求減速度を演算するようにすればよい。
  1  車両用ブレーキシステム
  3  ブレーキペダル
 10  マスタシリンダ
 20  ストロークシミュレータ
 30  スレーブシリンダ(ブレーキ液圧発生手段)
 31  モータアクチュエータ
 41  ストロークセンサ(ストローク検出手段)
 45  車輪速センサ
 50  VSA装置
 90  制御装置(制御手段)
 91  車速演算部
 92  ベース要求減速度演算部
 92M ベース要求減速度マップ(第1マップ)
 93  感要求減速度演算部
 93M 吸付き感要求減速度マップ(第2マップ)
 93F 位相遅れフィルタ(位相遅れ処理手段)
 94  ビルドアップ要求減速度演算部
 95  要求減速度演算部
 96  要求液圧演算部
 97  駆動制御部

Claims (4)

  1.  ブレーキペダルのストロークを検出するストローク検出手段と、
     モータアクチュエータを有し、前記モータアクチュエータの駆動によってブレーキ液圧を発生させるブレーキ液圧発生手段と、
     前記ストローク検出手段の検出値に基づいて、前記モータアクチュエータの駆動制御を行う制御手段と、を備える車両用ブレーキシステムであって、
     前記制御手段は、
     前記ストローク検出手段の検出値に対応する第1要求減速度を求めるための第1マップと、前記ストローク検出手段の検出値に対応する第2要求減速度を求めるための第2マップと、前記第2マップに基づいて求められる前記第2要求減速度に対して位相遅れ処理を行う位相遅れ処理手段と、を備え、
     前記第1要求減速度と、前記位相遅れ処理が行われた前記第2要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うこと
     を特徴とする車両用ブレーキシステム。
  2.  前記制御手段は、
     車速が低速であるほど、前記位相遅れ処理を行う際の遅れ時間を短くすること
     を特徴とする請求項1に記載の車両用ブレーキシステム。
  3.  前記制御手段は、
     前記ブレーキペダルのストロークが保持されている場合に第3要求減速度を漸増させ、
     前記第1要求減速度と、前記位相遅れ処理が行われた前記第2要求減速度と、前記第3要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うこと
     を特徴とする請求項1又は請求項2に記載の車両用ブレーキシステム。
  4.  ブレーキペダルのストロークを検出するストローク検出手段と、モータアクチュエータを有し、前記モータアクチュエータの駆動によってブレーキ液圧を発生させるブレーキ液圧発生手段と、前記ストローク検出手段の検出値に基づいて、前記モータアクチュエータの駆動制御を行う制御手段と、を備える車両用ブレーキシステムが実行する車両用ブレーキ制御方法であって、
     前記制御手段は、
     前記ストローク検出手段の検出値に対応する第1要求減速度を第1マップに基づいて求めるとともに、前記ストローク検出手段の検出値に対応する第2要求減速度を第2マップに基づいて求め、
     前記第1要求減速度と、位相遅れ処理手段による位相遅れ処理が行われた前記第2要求減速度と、に基づいて、前記モータアクチュエータの駆動制御を行うこと
     を特徴とする車両用ブレーキ制御方法。
PCT/JP2015/080539 2014-11-07 2015-10-29 車両用ブレーキシステム及び車両用ブレーキ制御方法 WO2016072346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015005057.4T DE112015005057T5 (de) 2014-11-07 2015-10-29 Fahrzeugbremssystem und Fahrzeugbremssteuerungsverfahren/Fahrzeugbremsregelungsverfahren
CN201580056571.XA CN107074216B (zh) 2014-11-07 2015-10-29 车辆用制动系统及车辆用制动控制方法
JP2016557733A JP6279096B2 (ja) 2014-11-07 2015-10-29 車両用ブレーキシステム及び車両用ブレーキ制御方法
US15/522,181 US10011255B2 (en) 2014-11-07 2015-10-29 Vehicle brake system and vehicle brake system control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-226559 2014-11-07
JP2014226559 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072346A1 true WO2016072346A1 (ja) 2016-05-12

Family

ID=55909072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080539 WO2016072346A1 (ja) 2014-11-07 2015-10-29 車両用ブレーキシステム及び車両用ブレーキ制御方法

Country Status (5)

Country Link
US (1) US10011255B2 (ja)
JP (1) JP6279096B2 (ja)
CN (1) CN107074216B (ja)
DE (1) DE112015005057T5 (ja)
WO (1) WO2016072346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177658A1 (de) * 2017-03-28 2018-10-04 Audi Ag Bremsanlage für ein kraftfahrzeug

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102480676B1 (ko) * 2015-12-04 2022-12-23 에이치엘만도 주식회사 전자식 브레이크 시스템
CN110395234B (zh) * 2018-08-12 2021-10-08 京西重工(上海)有限公司 电液制动系统
CN111497802B (zh) * 2019-01-31 2021-08-17 宏碁股份有限公司 刹车控制方法、刹车系统及车辆
CN111348025B (zh) 2019-04-26 2021-11-19 京西重工(上海)有限公司 电液制动系统及使用其来防止车辆的车轮滑移的方法
CN112193225B (zh) * 2020-09-04 2022-01-18 浙江杭拖实业投资有限公司 一种车辆制动方法、系统及农用机械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076376A (ja) * 2004-09-08 2006-03-23 Honda Motor Co Ltd ブレーキ装置
JP2010006182A (ja) * 2008-06-25 2010-01-14 Toyota Motor Corp ブレーキ制御装置
JP2014129055A (ja) * 2012-12-28 2014-07-10 Honda Motor Co Ltd 液圧発生装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8366210B2 (en) * 2006-04-03 2013-02-05 Advics Co., Ltd. Braking apparatus for vehicle
JP5107075B2 (ja) * 2008-01-31 2012-12-26 トヨタ自動車株式会社 制動装置
RU2510337C2 (ru) * 2009-10-05 2014-03-27 Хонда Мотор Ко., Лтд. Транспортная приводная система
JP5776153B2 (ja) * 2010-08-30 2015-09-09 株式会社アドヴィックス 車両の制御装置及び車両の制御方法
US8998352B2 (en) * 2010-11-08 2015-04-07 Nissan Motor Co., Ltd. Vehicle brake control device for an electrically driven vehicle
JP5691453B2 (ja) * 2010-12-03 2015-04-01 日産自動車株式会社 電動車両のブレーキ制御装置
JP5685088B2 (ja) 2011-01-06 2015-03-18 本田技研工業株式会社 車両用制動装置
JP5352602B2 (ja) * 2011-01-31 2013-11-27 本田技研工業株式会社 車両用ブレーキ装置
US9358964B2 (en) * 2011-01-31 2016-06-07 Honda Motor Co., Ltd. Brake device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076376A (ja) * 2004-09-08 2006-03-23 Honda Motor Co Ltd ブレーキ装置
JP2010006182A (ja) * 2008-06-25 2010-01-14 Toyota Motor Corp ブレーキ制御装置
JP2014129055A (ja) * 2012-12-28 2014-07-10 Honda Motor Co Ltd 液圧発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177658A1 (de) * 2017-03-28 2018-10-04 Audi Ag Bremsanlage für ein kraftfahrzeug
CN110461663A (zh) * 2017-03-28 2019-11-15 奥迪股份公司 用于机动车的制动设备
CN110461663B (zh) * 2017-03-28 2022-03-01 奥迪股份公司 用于机动车的制动设备

Also Published As

Publication number Publication date
US20170313294A1 (en) 2017-11-02
JP6279096B2 (ja) 2018-02-14
CN107074216A (zh) 2017-08-18
JPWO2016072346A1 (ja) 2017-07-06
US10011255B2 (en) 2018-07-03
CN107074216B (zh) 2019-07-26
DE112015005057T5 (de) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6279096B2 (ja) 車両用ブレーキシステム及び車両用ブレーキ制御方法
JP5672430B2 (ja) ブレーキ制御装置
JP6219186B2 (ja) ブレーキ制御装置
JP5411118B2 (ja) 車両用ブレーキ装置
JP6258504B2 (ja) ブレーキ倍力装置を制御する方法、この方法を実施するための制御装置、および、ブレーキシステム
JP5884245B2 (ja) 車両用ブレーキ液圧制御装置
JP5815183B2 (ja) 車両用ブレーキ装置
KR101922299B1 (ko) 전기 기계식 브레이크 부스터
JP2015123842A (ja) ブレーキシステム
AU2013392317B2 (en) Vehicle brake device
JP5702769B2 (ja) 車両用ブレーキ液圧制御システム
JP5798153B2 (ja) 車両用ブレーキ液圧制御装置
JP5673028B2 (ja) 電動ブレーキ制御システム
JP5566873B2 (ja) 車両用ブレーキ装置
JP6358626B2 (ja) 車両用ブレーキ液圧制御装置
JP2012179961A (ja) ブレーキ装置
JP5769787B2 (ja) ブレーキ制御装置
JP2015110361A (ja) 車両のブレーキ装置
JP6358627B2 (ja) 車両用ブレーキ液圧制御装置
WO2019054189A1 (ja) 車両制動制御装置、車両制動制御方法及び車両制動システム
JP6338047B2 (ja) ブレーキシステム
JP6406278B2 (ja) 自動車の制動装置
JP6161363B2 (ja) 車両用ブレーキ液圧制御装置
JP6406279B2 (ja) 自動車の制動装置
JP6088364B2 (ja) 車両用ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557733

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522181

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005057

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856950

Country of ref document: EP

Kind code of ref document: A1