WO2016072231A1 - 耐水性セルロースシートおよび耐水性セルロースシートの製造方法 - Google Patents

耐水性セルロースシートおよび耐水性セルロースシートの製造方法 Download PDF

Info

Publication number
WO2016072231A1
WO2016072231A1 PCT/JP2015/079062 JP2015079062W WO2016072231A1 WO 2016072231 A1 WO2016072231 A1 WO 2016072231A1 JP 2015079062 W JP2015079062 W JP 2015079062W WO 2016072231 A1 WO2016072231 A1 WO 2016072231A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
cellulose
cnf
cellulose sheet
water
Prior art date
Application number
PCT/JP2015/079062
Other languages
English (en)
French (fr)
Inventor
橋本 斉和
晴貴 冨川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016072231A1 publication Critical patent/WO2016072231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a water-resistant cellulose sheet comprising cellulose nanofibers and a method for producing the same. Specifically, the present invention relates to a water-resistant cellulose sheet having good water resistance and transparency, and a method for producing the same.
  • a cellulose sheet made of cellulose nanofibers as a substrate for printed electronics or the like, a water-resistant sheet, an agricultural sheet, a gas barrier film, a gas separation membrane or the like has been studied.
  • Patent Document 1 describes a gas separation membrane mainly composed of cellulose nanofibers having a carboxylic acid type group on the surface as a gas separation membrane for mainly separating hydrogen gas from a mixed gas.
  • a step of preparing a first cellulose nanofiber dispersion by dispersing cellulose nanofibers having carboxylate type groups in a solvent By adding acid to the cellulose nanofiber dispersion, the carboxylate type group is replaced with the carboxylic acid type group, and the cellulose nanofiber gel is gelled, and the cellulose nanofiber gel is redispersed in the solvent.
  • a process for producing a gas separation membrane having a step of preparing a second cellulose nanofiber dispersion and a step of forming the second cellulose nanofiber dispersion into a membrane is described.
  • Patent Document 2 discloses a non-woven fabric made of cellulose nanofibers having a number average fiber diameter of 500 nm or less as a water-resistant cellulose sheet made of cellulose nanofibers used for filter media, blood separation membranes, polishing tapes, and the like.
  • Such a cellulose sheet made of cellulose nanofibers may be required to have excellent water resistance, low haze, and excellent transparency depending on the application. However, a cellulose sheet excellent in both water resistance and transparency has not been realized.
  • the cellulose sheet described in Patent Document 1 is formed into a sheet after gelling cellulose nanofibers by acid treatment, sufficient water resistance is obtained because the surface roughness is large and the surface area is large. I can't. Moreover, since the gelled material formed by the acid treatment remains in the cellulose sheet described in Patent Document 1, the gelled material diffuses light, and has high haze and low transparency.
  • the cellulose sheet described in patent document 2 improves the water resistance of the nonwoven fabric which consists of a cellulose nanofiber using a crosslinking agent. Therefore, a cellulose sheet having a smooth surface and high transparency cannot be crosslinked to the inside, and the effect of improving water resistance is hardly obtained. Further, even if the transparent cellulose sheet is swollen to the inside in a swollen state, it is difficult to return the swollen cellulose sheet to the original transparent cellulose sheet.
  • An object of the present invention is to solve such problems of the prior art, and is a water-resistant cellulose sheet comprising cellulose nanofibers, which not only has excellent water resistance, but also has low haze and transparency.
  • An object is to provide an excellent water-resistant cellulose sheet and a method for producing the same.
  • the water-resistant cellulose sheet of the present invention is a water-resistant cellulose sheet comprising cellulose nanofibers having a functional group represented by -COOA, The elongation at break is 3% or more, A in the functional group represented by —COOA represents any one of an alkali metal, an alkaline earth metal, and a hydrogen atom, and 20% or more and less than 90% of the functional group represented by —COOA is a —COOH group.
  • a water-resistant cellulose sheet is provided.
  • the surface roughness Ra is preferably 0.1 ⁇ m or less.
  • the thickness is preferably 5 to 100 ⁇ m.
  • a of the functional group represented by —COOA is H or Na.
  • the method for producing a water-resistant cellulose sheet of the present invention is a method for producing the water-resistant cellulose sheet of the present invention, An oxidation process for oxidizing cellulose nanofibers, A film forming process for forming the oxidized cellulose nanofibers into a sheet, and An acid treatment step of treating cellulose nanofibers formed into a sheet shape with an acidic aqueous solution is provided.
  • a method for producing a water-resistant cellulose sheet is provided.
  • the film forming step includes preparing a dispersion in which oxidized cellulose nanofibers are dispersed in an aqueous solvent, applying the dispersion to a substrate, and then cellulose nanofibers. It is preferable that the cellulose nanofibers peeled off from the substrate before drying are further dried. In addition, the cellulose nanofibers are preferably peeled from the substrate in a state where the residual solvent is 10 to 80% by mass. Moreover, it is preferable that pH of acidic aqueous solution is 4 or less. Furthermore, it is preferable to oxidize the cellulose nanofibers using an N-oxyl compound as a catalyst.
  • the present invention it is possible to provide a water-resistant cellulose sheet having not only excellent water resistance but also low haze and excellent transparency, and a method for producing the same.
  • the water-resistant cellulose sheet of the present invention comprises cellulose nanofibers having a functional group represented by —COOA, has a breaking elongation of 3% or more, and 20% or more of the functional group represented by —COOA. Less than% is —COOH group.
  • the water-resistant cellulose sheet is also simply referred to as “cellulose sheet”.
  • A represents an alkali metal, an alkaline earth metal, or a hydrogen atom (H).
  • the cellulose sheet of the present invention exhibits excellent water resistance when the elongation at break is 3% or more and 20% or more and less than 90% of the functional groups represented by -COOA are -COOH groups, Low haze and good transparency.
  • the reason why both the water resistance and the transparency are good is not clear in detail, but is estimated as follows. That is, as can be seen from Examples and Comparative Examples described later, when 20% or more and less than 90% of the functional groups represented by —COOA are —COOH groups, they become hydrophobic, and as a result, excellent water resistance is achieved. It is thought that it was expressed. In addition, it is considered that excellent transparency was exhibited by suppressing the formation of a gelled product or the like inside the sheet during sheet formation and having a breaking elongation of 3% or more.
  • “consisting of cellulose nanofibers having a functional group represented by —COOA” preferably means that the content of cellulose nanofibers having a functional group represented by —COOA in the cellulose sheet is 50 It shows that it is at least mass%.
  • the content of the cellulose nanofiber having a functional group represented by —COOA is more preferably 70% by mass or more, and particularly preferably 90% by mass or more.
  • Cellulose nanofibers are cellulose microfibrils constituting the basic skeleton of plant cell walls or the like, or fibers constituting the same.
  • the cellulose nanofiber is also referred to as “CNF”.
  • CNF Various known CNFs can be used in the cellulose sheet of the present invention. Examples of such CNF include plant-derived fibers contained in wood, bamboo, hemp, jute, kenaf, cotton, beet pulp, potato pulp, agricultural waste, cloth, paper and the like. These may be used alone or in combination of two or more. Examples of the wood include sitka spruce, cedar, cypress, eucalyptus, and acacia.
  • Examples of the paper include deinked waste paper, corrugated waste paper, magazines, and copy paper.
  • the pulp for example, chemical pulp (craft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically or using both in combination.
  • lignin is removed as much as possible in CNF in terms of preventing aggregation.
  • CNF is usually an aggregate of unit fibers having a fiber diameter of about 4 nm.
  • the fiber diameter of CNF is not particularly limited, but the average fiber diameter is preferably 2 to 40 nm, and more preferably 3 to 25 nm.
  • the average fiber diameter of CNF 2 nm or more it is preferable in terms of easy improvement of water resistance.
  • such CNF has a functional group represented by —COOA in which a part of primary hydroxyl groups of CNF are oxidized.
  • A is an alkali metal (Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Fr (francium))), alkaline earth metal 1 or more selected from (Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Ra (radium)), and H (hydrogen atom).
  • Na is preferably exemplified in terms of versatility, price, environmental load, and the like of an oxidizing agent used for the oxidation treatment of CNF described later.
  • the breaking elongation of the cellulose sheet of the present invention is 3% or more.
  • the cellulose sheet of the present invention is preferably produced by the production method of the present invention described later.
  • the primary hydroxyl group exposed on the surface of CNF as described above is oxidized to form an alkali metal salt of —COOH group or —COOH group such as —COONa group or —COOCa group.
  • Alkaline earth metal salt In the following description, these groups are also referred to as “—COONa groups”.
  • the oxidized CNF is defibrated using an aqueous solvent to prepare a CNF dispersion, and the CNF dispersion is applied to a substrate to form the oxidized CNF in a sheet form.
  • the cellulose sheet precursor of the present invention can be obtained by drying the CNF sheet on the substrate and then peeling it off, or, as a preferred embodiment, peeling the CNF sheet from the substrate and drying it in an undried state.
  • a CNF sheet is formed.
  • the CNF sheet used as a precursor is acid-treated with an acidic aqueous solution to produce the cellulose sheet of the present invention. By this acid treatment, most of the hydrophilic —COONa groups present on the sheet surface are converted to hydrophobic —COOH groups to impart water resistance to the cellulose sheet.
  • CNF can be sufficiently defibrated and formed into a sheet in a state in which the fibers are stretched satisfactorily without gelling CNF, and it has high water resistance.
  • a cellulose sheet having high transparency free from haze caused by aggregates, that is, having a high elongation at break can be obtained.
  • the CNF applied to the substrate is peeled off without drying and dried to prevent rapid —COOH group formation during the acid treatment, thereby lowering haze and lowering transparency.
  • a high cellulose sheet can be obtained.
  • the breaking elongation of the cellulose sheet is less than 3%, there are many aggregates, that is, the haze is high and sufficient transparency cannot be obtained, the smoothness is lowered, and a functional layer (for example, a conductive layer) is applied to the surface of the cellulose sheet. In the case of installation, inconveniences such as uneven coating occur. Basically, the higher the breaking elongation of the cellulose sheet, the less aggregates and the lower the haze. Considering this point, the breaking elongation of the cellulose sheet is preferably 5% or more, and more preferably 8% or more.
  • the breaking elongation of the cellulose sheet is, for example, a sample conditioned at 25 ° C. and a humidity of 50% RH for one day under the conditions of a sample width of 5 mm, a distance between chucks of 50 mm, and a pulling speed of 1 mm / min. What is necessary is just to measure using a tensile tester in the environment of 50% of humidity RH at 25 degreeC. Preferably, this measurement is performed three times, and the average value of the three measurement results is defined as the breaking elongation of the cellulose sheet.
  • CNF has a functional group represented by —COOA, and 20% or more and less than 90% of the functional group represented by —COOA is a —COOH group. That is, it is considered that most of the —COONa groups are —COOH groups on the surface of the cellulose sheet of the present invention, and more —COONa groups are present in the interior than the surface.
  • infrared spectroscopic analysis is performed by freeze-pulverizing a cellulose sheet, mixing the obtained powder and KBr powder, placing the sample in a mold and applying pressure, and measuring it. Good.
  • the COOH ratio is preferably 85% or less, more preferably 80% or less, and still more preferably 70% or less.
  • the COOH ratio is preferably 30% or more, more preferably 40% or more. Therefore, the COOH ratio is preferably 30 to 80%, more preferably 40 to 70%, because better heat resistance, that is, transparency and better water resistance can be obtained.
  • the surface roughness Ra of the cellulose sheet of the present invention is not particularly limited, and may be appropriately set according to the use of the cellulose sheet.
  • the surface roughness Ra of the cellulose sheet is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and particularly preferably 0.03 ⁇ m or less.
  • the haze can be reduced to improve the transparency, the smoothness is improved and the coating unevenness is applied when the functional layer is coated on the surface of the cellulose sheet. Is preferable in that it is difficult to occur.
  • surface roughness Ra arithmetic mean roughness Ra
  • the thickness of the cellulose sheet of the present invention is not particularly limited, and may be appropriately set according to the mechanical strength required for the cellulose sheet, the use of the cellulose sheet, and the like.
  • the thickness of the cellulose sheet is preferably 5 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, and particularly preferably 40 to 60 ⁇ m.
  • the mechanical strength can be improved, and the film can be folded during transportation or handling. It is preferable in terms of suppressing generation of wrinkles.
  • the thickness of the cellulose sheet By setting the thickness of the cellulose sheet to 100 ⁇ m or less, it is preferable in that the film forming time of the cellulose sheet can be shortened, the haze can be lowered to improve the transparency, and the material cost can be reduced.
  • Such a cellulose sheet of the present invention includes, in addition to CNF having a functional group represented by —COOA, unavoidable impurities such as moisture, impurities contained in the CNF raw material (lignin, hemicellulose, etc.), an oxidation step and an acid described later.
  • 50% by mass or more is preferably CNF, more preferably 70% by mass or more is CNF, and particularly preferably 90% by mass or more is CNF. Is as described above.
  • the manufacturing method of the cellulose sheet of this invention which manufactures such a cellulose sheet of this invention is demonstrated.
  • the CNF as described above is oxidized to oxidize the primary hydroxyl groups of CNF to form —COOH groups or —COONa groups.
  • the —COONa group is an alkali metal salt of a —COOH group or an alkaline earth metal salt of a —COOH group.
  • the oxidation treatment of CNF may be performed by a known method. Therefore, it may be chemically oxidized or physically oxidized.
  • an N-oxyl compound such as TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) is used as a catalyst in a reaction solution in which CNF is dispersed in an aqueous solvent.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • the CNF used as a raw material can be variously used for the above-mentioned CNF.
  • the aqueous solvent include a solvent that contains only water except unavoidable impurities, and a mixed solvent containing 20% by mass or less of alcohol having compatibility with water. What is necessary is just to set suitably the solid content density
  • concentration (absolute dryness) of CNF in the reaction liquid of an acidic treatment according to the oxidizing agent and N-oxyl compound to be used is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 0.1 to 4% by mass.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • TEMPO derivatives having various functional groups at the C4 position can be used.
  • the TEMPO derivative include 4-hydroxy TEMPO, 4-acetamido TEMPO, 4-carboxy TEMPO, 4-phosphonooxy TEMPO, and the like.
  • 4-hydroxy TEMPO derivatives imparted with hydrophobicity by etherification of the hydroxyl group of 4-hydroxy TEMPO with alcohol or esterification with carboxylic acid or sulfonic acid are also preferably used.
  • a catalytic amount is sufficient for the addition amount of the N-oxyl compound.
  • the content of the N-oxyl compound in the reaction solution is preferably 0.01 to 10 parts by mass and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of absolutely dry CNF.
  • the addition amount of the N-oxyl compound is preferably 0.01 parts by mass or more from the viewpoint of shortening the oxidation treatment time and reducing the storage facility.
  • hypohalous acid or a salt thereof such as hypochlorous acid or a salt thereof, hypobromite or a salt thereof, hypoiodous acid or a salt thereof
  • a halogenous acid or a salt thereof chlorite or a salt thereof
  • halogen chlorine, bromine, iodine, etc.
  • Halogen oxides ClO, ClO 2 , Cl 2 O 6 , BrO 2 , Br 3 O 7 etc.
  • nitrogen oxides NO, NO 2 , N 2 O 3 etc.
  • peracids hydrogen peroxide, excess Acetic acid, persulfuric acid, perbenzoic acid, etc.
  • alkali metal salts such as lithium hypochlorite, sodium hypochlorite, sodium hypochlorite, calcium hypochlorite, hypochlorous acid, etc.
  • examples include magnesium, alkaline earth metal salts such as strontium hypochlorite, and ammonium hypochlorite.
  • hypobromite and hypoiodite corresponding to these can also be used.
  • halous acid salts include, in the case of chlorous acid, alkali metal salts such as lithium chlorite, potassium chlorite, and sodium chlorite, calcium chlorite, magnesium chlorite, and strontium chlorite. Examples thereof include alkaline earth metal salts and ammonium chlorite.
  • bromite and iodate corresponding to these can also be used.
  • perhalogenates for example, in the case of perchlorates, alkali metal salts such as lithium perchlorate, potassium perchlorate, sodium perchlorate, calcium perchlorate, magnesium perchlorate, strontium perchlorate Examples thereof include alkaline earth metal salts such as ammonium perchlorate.
  • perbromate and periodate corresponding to these can also be used.
  • alkali metal hypohalous acid salts and alkali metal halous acid salts are preferably used, and among them, alkali metal hypochlorite and alkali metal chlorite salts are preferably used.
  • oxidizing agents can be used alone or in combination of two or more. Further, it may be used in combination with an oxidase such as laccase.
  • the addition amount of the oxidant may be appropriately set according to the oxidant to be used, the CNF concentration in the reaction solution, the target introduction amount of —COOA group, and the like. Specifically, 0.2 to 500 mmol is preferable and 0.2 to 50 mmol is more preferable per 1 g of absolutely dry CNF.
  • the efficiency of introducing the functional group represented by —COOA into CNF can be improved. Basically, the greater the amount of oxidizing agent used, the greater the amount of functional group introduced by -COOA into CNF.
  • a catalyst component in which a bromide or iodide is combined with an N-oxyl compound may be used.
  • bromides and iodides include ammonium salts (ammonium bromide and ammonium iodide), bromides and alkali metal iodides (bromides such as lithium bromide, potassium bromide and sodium bromide, lithium iodide and iodide).
  • These bromides and iodides can be used alone or in combination of two or more.
  • an alkali metal hypochlorite it is preferable to use a catalyst component in which an N-oxyl compound and bromide or iodide are combined.
  • an alkali metal chlorite is used as the oxidizing agent, it is preferable to use an N-oxyl compound alone as a catalyst component.
  • the amount of bromide and / or iodide added may be selected as appropriate within a range that can promote the oxidation reaction. Specifically, the amount is preferably 0.1 to 100 parts by mass, more preferably 1 to 60 parts by mass with respect to 100 parts by mass of absolutely dry CNF.
  • the addition amount of bromide and / or iodide 0.1 parts or more the oxidation reaction can be advanced efficiently.
  • the cost for the oxidation treatment can be reduced, the occurrence of yellowing of CNF during heating, which is considered to be caused by a reaction byproduct, can be prevented, etc. This is preferable.
  • the oxidation treatment of CNF can proceed smoothly even under mild temperature conditions. Therefore, the oxidation treatment temperature of CNF may be appropriately set from an appropriate temperature. Specifically, 0 to 50 ° C. is preferable, and 10 to 30 ° C. (room temperature) is more preferable.
  • the oxidation treatment time may be appropriately set according to the content of CNF, the type and content of the oxidizing agent, and the like. Here, if the oxidation treatment time is too long, the introduction amount of the functional group represented by —COOA becomes excessive and the strength of CNF may be lowered. Therefore, the oxidation treatment is terminated without water-solubilizing CNF. Is preferred. Considering this point, the oxidation treatment is preferably 30 minutes to 4 hours, more preferably about 2 hours.
  • the pH of the reaction solution may be adjusted by a known method such as a method of adding an alkali such as an aqueous sodium hydroxide solution to the reaction system.
  • oxidation treatment of CNF a treatment for converting CNF into CMC (carboxymethyl cellulose) can also be used.
  • CNF subjected to the above-described oxidation treatment can be used as the raw material CNF in converting CNF into CMC.
  • Conversion of CNF to CMC can be achieved by introducing a carboxyalkyl group into the hydroxyl group of CNF.
  • Preferred carboxyalkyl groups include a carboxymethyl group, a carboxyethyl group, a carboxypropyl group, and the like.
  • CNF can be converted to CMC by reacting CNF (oxidized CNF) with a chloroacetate such as chloroacetic acid or sodium chloroacetate using an alkali such as sodium hydroxide as a catalyst.
  • the amount of carboxymethyl group introduced can be increased by increasing the amount of chloroacetic acid, the amount of chloroacetate and the reaction time, and the amount of the functional group represented by —COOA to CMC-converted CNF can be increased.
  • a film forming process for forming a cellulose having a —COONa group formed into a sheet is then performed.
  • CNF is first defibrated.
  • a —COONa group in which a primary hydroxyl group is oxidized is generated in CNF. Since the —COONa group is ionic, the CNF having this functional group is suitably defibrated and each CNF is suitably stretched.
  • the —COONa group is an alkali metal salt of —COOH group or an alkaline earth metal salt of —COOH group.
  • the defibration of the oxidized CNF may be performed using the oxidized reaction solution as it is.
  • the oxidized CNF may be separated by filtration or centrifugation, washed with an aqueous solvent, etc., and then dispersed again in the aqueous solvent.
  • various known methods can be used. As an example, there is exemplified a method using various apparatuses commonly used for industrial and household purposes, such as a home mixer, an ultrasonic homogenizer, a high-pressure homogenizer, a twin-screw kneader, a roll mill, and a stone mill.
  • the dispersion liquid obtained by defibrating CNF is applied (cast) to the substrate to form a coating film of the CNF dispersion liquid.
  • Various known coating methods can be used to apply the CNF dispersion to the substrate.
  • a dispersion obtained by defibrating CNF is also referred to as a “CNF dispersion”.
  • the CNF dispersion applied to the substrate is preferably adjusted so that the solid content concentration is 0.1 to 2% by mass as necessary.
  • the CNF dispersion before applying the CNF dispersion to the substrate.
  • the surface roughness Ra of the cellulose sheet to be produced can be reduced, and a cellulose sheet having lower haze, better transparency, and better water resistance can be obtained.
  • various known methods for defoaming from an aqueous solution or a dispersion such as a method using stirring, a method using stirring under reduced pressure, ultrasonic treatment, heat treatment, and the like can be used.
  • the substrate various types of film and plate-like materials such as a resin plate-like material such as polyethylene terephthalate (PET), a film-like material, a glass plate, and a metal plate can be used. Further, the thickness of the coating film of the CNF dispersion may be appropriately set according to the thickness of the target cellulose sheet, the solid content concentration of CNF in the CNF dispersion, and the like.
  • the CNF dispersion applied to the substrate is dried to form a CNF sheet having a —COONa group, which is a precursor of the cellulose sheet of the present invention.
  • a CNF sheet having a —COONa group which is a precursor of the cellulose sheet of the present invention, is also referred to as a “precursor sheet”.
  • the drying of the CNF dispersion applied to the substrate may be finished on the substrate to form a dried precursor sheet on the substrate.
  • the CNF sheet is peeled off from the substrate before the drying of the CNF is finished, and further dried in the peeled state to finish the drying to obtain a precursor sheet.
  • the undried CNF sheet is peeled off from the substrate and further dried to obtain a precursor sheet, thereby greatly increasing the drying time of the CNF dispersion (precursor sheet). It can shorten and can improve the production efficiency of a cellulose sheet.
  • the acidic aqueous solution is brought into contact with the precursor sheet, for example, by dipping, coating, contact with steam, or the like. At this time, if the acidic aqueous solution suddenly enters the inside of the precursor sheet, the —COONa group of CNF may be rapidly oxidized to become —COOH group, thereby forming an aggregated structure.
  • the haze of the cellulose sheet is improved and the transparency is lowered.
  • this dense film on both surfaces of the sheet it is possible to prevent the acidic aqueous solution from rapidly entering the inside of the precursor sheet in the acid treatment step. As a result, it is possible to produce a cellulose sheet that is more stable and has low haze and excellent transparency.
  • the residual solvent remaining in the undried CNF sheet is preferably peeled off from the substrate in a state of 10 to 80% by mass. Peeling is more preferable when the amount is 15 to 75% by mass, and peeling is particularly preferable when the amount of residual solvent remaining on the sheet is 20 to 70% by mass.
  • a cellulose sheet with better moisture resistance can be obtained by forming a dense film.
  • seat after peeling can be shortened by peeling the sheet
  • Drying of the CNF sheet before and after peeling from the substrate may be performed by natural drying, or a heating means such as an oven may be used. Furthermore, natural drying and drying by a heating means may be used in combination, such as natural drying before peeling and drying using an oven after peeling.
  • the sheet can be dried usually in 2 to 3 days. If heated in an oven at 100 ° C., the sheet can be dried usually in 10 minutes to 3 hours.
  • Acid treatment process When a precursor sheet made of CNF having a —COONa group is produced in this manner, the precursor sheet is acid-treated with an acidic aqueous solution. By this acid treatment, the —COONa group of CNF on the surface of the precursor sheet is oxidized to form a hydrophobic —COOH group. Accordingly, it is composed of CNF having a functional group represented by —COOA, the elongation at break is 3% or more, and 20% or more and less than 90% of the functional group represented by —COOA is a —COOH group.
  • the (water resistant) cellulose sheet of the present invention having transparency and good water resistance is produced.
  • A is any one of an alkali metal, an alkaline earth metal, and a hydrogen atom.
  • the acid treatment of the precursor sheet is basically performed by peeling the precursor sheet from the substrate.
  • the precursor sheet may be acid-treated while the precursor sheet is adhered to the substrate.
  • the acid used in the acidic aqueous solution for acid treatment may be an organic acid or an inorganic acid. Inorganic acids are preferable, and hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid and the like are more preferable. A plurality of these acids may be used in combination.
  • the acidic aqueous solution may be prepared by dissolving these acids in water, preferably pure water.
  • the acidic aqueous solution preferably has a pH of 4 or less, more preferably a pH of 3 or less, and particularly preferably a pH of 2 or less.
  • the —COONa group of CNF on the surface of the precursor sheet can be suitably converted to —COOH group, and the water resistance can be improved.
  • Various methods can be used for the acid treatment of the precursor sheet with an acidic aqueous solution.
  • a method of immersing the precursor sheet in an acidic aqueous solution a method of applying an acidic aqueous solution to the surface of the precursor sheet, a method of exposing the precursor sheet to the vapor of the acidic aqueous solution, and the like are exemplified.
  • the temperature of the acidic aqueous solution By setting the temperature of the acidic aqueous solution to 60 ° C. or lower, it is possible to prevent the formation of excessive —COOH groups in CNF and obtain a cellulose sheet having good heat resistance. It is preferable in terms of obtaining a sheet.
  • the acid treatment time is preferably 0.1 seconds or more, more preferably 1 second to 1 day, and particularly preferably 3 seconds to 30 minutes.
  • the cellulose sheet is washed with a polar solvent such as water or alcohol to wash away the acidic aqueous solution. That is, the acid treatment time of the precursor sheet is the time from when the precursor sheet is brought into contact with the acidic aqueous solution until the start of cleaning. Washing is preferably performed using alcohol or water, and more preferably using water.
  • Example 1 To 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide was dissolved, 5 g of CNF was added in an absolutely dry weight, and the mixture was stirred until the pulp was uniformly dispersed.
  • CNF bleached unbeaten sulfite pulp (manufactured by Nippon Paper Chemical Co., Ltd.) derived from conifers was used.
  • reaction solution After adding 18 ml of aqueous sodium hypochlorite solution (effective chlorine 5%) to the reaction solution, the reaction solution was adjusted to pH 10.3 with 0.5N aqueous hydrochloric acid solution, and oxidation treatment was started. During the reaction, the pH of the reaction solution was measured, and the reaction solution was adjusted to pH 10 by appropriately adding a 0.5N sodium hydroxide solution. After performing the oxidation treatment for 2 hours, it was filtered through a glass filter and washed thoroughly with water to obtain an oxidized CNF.
  • aqueous sodium hypochlorite solution effective chlorine 5%
  • CNF dispersion A was prepared by adding the oxidized CNF to pure water so that the solid concentration (absolute dryness) was 1% by mass. Next, this CNF dispersion A was treated with a homogenizer, so that the oxidized CNF was defibrated. Furthermore, defoaming treatment was performed by stirring the CNT dispersion liquid A that had been defibrated for 10 minutes at 1000 rpm using a stirring type defoaming apparatus.
  • the CNF dispersion A subjected to defoaming treatment was applied on a PET film, dried in an oven at 100 ° C. for 20 minutes, and dried.
  • the sheet made of oxidized CNF formed by drying the CNF dispersion A was peeled from the PET film.
  • a sample was obtained from the peeled sheet, and the amount of residual solvent in the sheet was measured.
  • the amount of residual solvent in the sheet was 50% by mass.
  • the amount of residual solvent was measured as follows. First, a sample is obtained from the CNF sheet peeled from the PET film, the sample is put in a screw mouth bottle, and the screw mouth bottle is weighed. Let this mass be W1. Next, the screw cap bottle is unplugged, placed in a 100 ° C. air constant temperature bath for 2 hours, and dried.
  • the sheet made of oxidized CNF peeled from the PET film was further heated in an oven at 100 ° C. for 22 minutes. Thus, a precursor sheet A made of oxidized CNF was formed.
  • Precursor sheet A was peeled from the PET film and immersed in an aqueous hydrochloric acid solution at a temperature of 25 ° C. and a pH of 3.5 for 1 minute to perform acid treatment of precursor sheet A.
  • the precursor sheet A subjected to acid treatment was sufficiently washed with water and dried to prepare a cellulose sheet.
  • the thickness of the cellulose sheet was 50 ⁇ m.
  • the thickness of the cellulose sheet was measured with a stylus type thickness measuring machine.
  • the produced cellulose sheet was conditioned at 25 ° C. in an environment of 50% RH for one day, and the elongation at break was measured by a tensile tester (manufactured by A & D, RTG-1310).
  • the breaking elongation was carried out under the conditions of a sample width of 5 mm, a distance between chucks of 50 mm, and a pulling speed of 1 mm / min in an environment of 25 ° C. and a humidity of 50% RH. As a result, the breaking elongation of the cellulose sheet was 6%.
  • Infrared spectroscopic analysis was performed by preparing a measurement sample by freeze-pulverizing a cellulose sheet, mixing the obtained powder and KBr powder, putting the mixture in a mold, and applying pressure. As a result, the COOH ratio of the cellulose sheet was 26%.
  • the surface roughness Ra of the produced cellulose sheet was measured with a surface shape measuring machine (manufactured by Zygo, New View 7100).
  • the measurement conditions were a measurement area of 0.14 ⁇ 0.11 mm, and the magnification of the objective lens was 50 times.
  • the surface roughness Ra of the cellulose sheet was 0.02 ⁇ m.
  • Example 2 A cellulose sheet was prepared in the same manner as in Example 1 except that the hydrochloric acid aqueous solution for acid treatment of the precursor sheet A was changed to pH 1. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 8%, a COOH ratio of 58%, and a surface roughness Ra of 0.02 ⁇ m.
  • Example 3 A cellulose sheet was produced in the same manner as in Example 1 except that the aqueous hydrochloric acid solution for acid treatment of the precursor sheet A was adjusted to pH 0.3.
  • Example 4 A cellulose sheet was prepared in the same manner as in Example 1 except that the hydrochloric acid aqueous solution for acid treatment of the precursor sheet A was adjusted to pH 0.1 and a temperature of 80 ° C. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 15%, a COOH ratio of 88%, and a surface roughness Ra of 0.04 ⁇ m.
  • Example 5 The solid content concentration of CNF dispersion A is 0.1% by mass, the drying time of CNF dispersion A applied to the PET film is 16 minutes, the drying time of the sheet peeled from the PET film is 6 minutes, and the precursor A cellulose sheet was prepared in the same manner as in Example 1 except that the hydrochloric acid aqueous solution for acid treatment of the body sheet A was adjusted to pH 1. In the same manner as in Example 1, when the amount of the residual solvent of the sheet peeled from the PET film was measured, it was 25% by mass. Moreover, the thickness of the cellulose sheet was 5 ⁇ m.
  • Example 6 As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 8%, a COOH ratio of 59%, and a surface roughness Ra of 0.01 ⁇ m.
  • the solid content concentration of CNF dispersion A was 0.6% by mass
  • the drying time of CNF dispersion A applied to the PET film was 14 minutes
  • the drying time of the sheet peeled from the PET film was 10 minutes.
  • a cellulose sheet was prepared in the same manner as in Example 5. In the same manner as in Example 1, when the amount of the residual solvent of the sheet peeled from the PET film was measured, it was 25% by mass. Moreover, the thickness of the cellulose sheet was 30 ⁇ m.
  • Example 7 Except that the solid content concentration of CNF dispersion A was 2% by mass, the drying time of CNF dispersion A applied to the PET film was 35 minutes, and the drying time of the sheet peeled from the PET film was 15 minutes.
  • a cellulose sheet was prepared in the same manner as in Example 5. In the same manner as in Example 1, when the amount of the residual solvent of the sheet peeled from the PET film was measured, it was 25% by mass. Moreover, the thickness of the cellulose sheet was 100 ⁇ m. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 9%, a COOH ratio of 44%, and a surface roughness Ra of 0.04 ⁇ m.
  • Example 8 The solid content concentration of CNF dispersion A is 2% by mass, the drying time of CNF dispersion A applied to the PET film is 50 minutes, the drying time of the sheet peeled from the PET film is 6 minutes, and the precursor sheet A cellulose sheet was produced in the same manner as in Example 1 except that the aqueous hydrochloric acid solution for acid treatment A was adjusted to pH 1. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 10% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 3%, a COOH ratio of 44%, and a surface roughness Ra of 0.1 ⁇ m.
  • Example 9 A cellulose sheet was prepared in the same manner as in Example 8, except that the drying time of the CNF dispersion A applied to the PET film was 40 minutes and the drying time of the sheet peeled from the PET film was 10 minutes. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 15% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 8%, a COOH ratio of 44%, and a surface roughness Ra of 0.05 ⁇ m.
  • Example 10 A cellulose sheet was prepared in the same manner as in Example 8, except that the drying time of the CNF dispersion A applied to the PET film was 30 minutes and the drying time of the sheet peeled from the PET film was 14 minutes. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 30% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 15%, a COOH ratio of 44%, and a surface roughness Ra of 0.03 ⁇ m.
  • Example 11 A cellulose sheet was prepared in the same manner as in Example 8, except that the drying time of the CNF dispersion A applied to the PET film was 14 minutes and the drying time of the sheet peeled from the PET film was 30 minutes. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 75% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 10%, a COOH ratio of 44%, and a surface roughness Ra of 0.04 ⁇ m.
  • Example 12 A cellulose sheet was prepared in the same manner as in Example 8, except that the drying time of the CNF dispersion A applied to the PET film was 8 minutes and the drying time of the sheet peeled from the PET film was 40 minutes. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 80% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 5%, a COOH ratio of 44%, and a surface roughness Ra of 0.06 ⁇ m.
  • Example 1 A CNF dispersion A was prepared in the same manner as in Example 1 and defibrated. With the defibrated CNF dispersion A kept at 25 ° C., 1M hydrochloric acid was added to adjust the pH to 2, and stirring was continued for 30 minutes to obtain a CNF dispersion B obtained by acid-treating the CNF dispersion A. . This acid treatment gelled CNF. Thereafter, the CNF dispersion B was centrifuged to recover the gelled CNT.
  • Example 1 After the gelled CNF was sufficiently washed with water, it was poured into pure water so that the solid content concentration was 1% by mass to prepare CNF dispersion C. Next, the CNF dispersion C was defoamed in the same manner as in Example 1. The CNF dispersion C subjected to the defoaming treatment was applied onto a PET film, heated in an oven at 100 ° C. for 120 minutes and dried to form a cellulose sheet. After drying the CNF dispersion C, the cellulose sheet was peeled from the PET film. When the amount of residual solvent in the cellulose sheet was measured in the same manner as in Example 1, it was 0% by mass. Moreover, the thickness of the cellulose sheet was 50 ⁇ m. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 1%, a COOH ratio of 28%, and a surface roughness Ra of 0.3 ⁇ m.
  • [Comparative Example 2] A cellulose sheet was produced in the same manner as in Comparative Example 1 except that the amount of 1M hydrochloric acid added in the acid treatment of CNF dispersion A was changed to pH 1 of CNF dispersion B. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 2%, a COOH ratio of 55%, and a surface roughness Ra of 0.6 ⁇ m.
  • [Comparative Example 3] A cellulose sheet was prepared in the same manner as in Comparative Example 1 except that the amount of 1M hydrochloric acid added in the acid treatment of CNF dispersion A was changed to pH 0.5 of CNF dispersion B. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 2%, a COOH ratio of 82%, and a surface roughness Ra of 0.7 ⁇ m.
  • Example 4 A cellulose sheet was produced in the same manner as in Example 1 except that the aqueous hydrochloric acid solution for acid treatment of the precursor sheet A was adjusted to pH 5. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 5%, a COOH ratio of 15%, and a surface roughness Ra of 0.02 ⁇ m.
  • Example 5 A CNF dispersion A was applied to a PET film and dried in the same manner as in Example 1 except that the solid content concentration of the CNF dispersion A was changed to 2% by mass. The drying time of CNF dispersion A on the PET film was 6 minutes. As in Example 1, the amount of residual solvent in the sheet peeled from the PET film was measured and found to be 85% by mass. This sheet peeled off from the PET film and broke during drying, and subsequent processing could not be performed.
  • Example 6 CNF used as a raw material in Example 1 was put into pure water so as to have a solid content concentration of 1% by mass without being oxidized, and defibrated and degassed in the same manner as in Example 1.
  • CNF dispersion D was prepared. Using this CNF dispersion D, it was applied to a PET film and dried at 100 ° C. for 90 minutes to prepare a precursor sheet D. When the amount of the residual solvent of the precursor sheet D peeled from the PET film was measured in the same manner as in Example 1, it was 0% by mass.
  • This precursor sheet D was immersed in an aqueous hydrochloric acid solution and washed in the same manner as in Example 1 to produce a cellulose sheet.
  • the produced cellulose sheet since the oxidation treatment of CNF as a raw material is not performed, the produced cellulose sheet does not have Na and COOH groups. Moreover, as a result of measuring similarly to Example 1, the produced cellulose sheet had a breaking elongation of 5% and a surface roughness Ra of 0.1 ⁇ m.
  • Example 7 the precursor sheet A was directly used as a cellulose sheet without being immersed in an aqueous hydrochloric acid solution. However, the CNF dispersion A applied to the PET film was dried at 100 ° C. for 90 minutes, and was not dried after peeling. When the amount of the residual solvent of the precursor sheet A peeled from the PET film was measured in the same manner as in Example 1, it was 0% by mass. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 4%, a COOH ratio of 0%, and a surface roughness Ra of 0.02 ⁇ m.
  • Example 8 A CNF sheet was prepared in the same manner as in Example 1 except that the hydrochloric acid aqueous solution for acid treatment of the precursor sheet A was adjusted to pH 0.05 and the acid treatment time was set to 60 minutes. As a result of measurement in the same manner as in Example 1, the produced cellulose sheet had a breaking elongation of 18%, a COOH ratio of 91%, and a surface roughness Ra of 0.07 ⁇ m.
  • the cellulose sheet of the present invention satisfying the range where the elongation at break is 3% or more and the COOH ratio is 20% or more and less than 90% is independent of the pH and film thickness of the acid treatment. Also show good water resistance and low haze.
  • the COOH ratio is slightly higher, which is inferior in heat resistance, but all others are also excellent in heat resistance.
  • Comparative Example 6 in which CNF oxidation treatment is not performed, CNF remains having a primary hydroxyl group and does not have a functional group represented by —COOA, and therefore has low water resistance and slightly high haze. Further, Comparative Example 7 in which acid treatment is not performed has low water resistance because CNF on the surface of the CNF sheet has a hydrophilic —COONa group. Further, Comparative Example 8 having a COOH ratio exceeding 90% was inferior in heat resistance, yellowed by heat treatment, and the old light intensity was remarkably increased. From the above results, the effects of the present invention are clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 -COOAで示される官能基を有するセルロースナノファイバからなるものであり、破断伸度が3%以上で、-COOAで示される官能基におけるAが、アルカリ金属、アルカリ土類金属および水素原子のいずれかを表し、かつ、-COOAで示される官能基の20%以上90%未満が-COOH基である耐水性セルロースシート。これにより、良好な耐水性および透明性を有する耐水性セルロースシートを提供する。

Description

耐水性セルロースシートおよび耐水性セルロースシートの製造方法
 本発明は、セルロースナノファイバからなる耐水性セルロースシート、および、その製造方法に関する。詳しくは、良好な耐水性および透明性を有する耐水性セルロースシート、および、その製造方法に関する。
 セルロースナノファイバをシート化したセルロースシートを、プリンテッドエレクトロニクス等の基板、耐水性シート、農業用シート、ガスバリアフィルム、ガス分離膜等として利用することが検討されている。
 例えば、特許文献1には、混合ガスから主に水素ガスを分離するガス分離膜として、表面にカルボン酸型の基を有するセルロースナノファイバを主成分とするガス分離膜が記載されている。
 この特許文献1には、このガス分離膜の製造方法として、カルボン酸塩型の基を有するセルロースナノファイバを溶剤に分散させて第1のセルロースナノファイバ分散液を調製する工程と、第1のセルロースナノファイバ分散液に酸を加えることにより、カルボン酸塩型の基をカルボン酸型の基に置換して、セルロースナノファイバをゲル化する工程と、セルロースナノファイバのゲルを溶剤に再分散させて第2のセルロースナノファイバ分散液を調製する工程と、第2のセルロースナノファイバ分散液を膜状に成形する工程と、を有するガス分離膜の製造方法が記載されている。
 特許文献2には、濾過材、血液分離膜、研磨テープ等に利用されるセルロースナノファイバからなる耐水性セルロースシートとして、数平均繊維径が500nm以下のセルロースナノファイバからなる不織布で、セルロースナノファイバの重量比率が1~99重量%、空孔率が50%以上、目付10g/m2相当の引張り強度が6N/15mm以上、引張り強度の乾湿強度比が50%以上である耐水性セルロースシートが記載されている。
特開2014-14791号公報 特開2012-46843号公報
 このようなセルロースナノファイバからなるセルロースシートには、用途に応じて、耐水性に優れることや、ヘイズが低く透明性に優れることが要求される場合が有る。しかしながら、耐水性および透明性が、共に優れるセルロースシートは、実現されていない。
 例えば、特許文献1に記載されるセルロースシートは、セルロースナノファイバを酸処理することでゲル化した後にシートに成形するため、表面粗さが大きく、表面積が大きいことから、十分な耐水性が得られない。また、特許文献1に記載されるセルロースシートは、酸処理によって形成したゲル化物が残存しているため、このゲル化物が光を拡散してしまい、ヘイズが高く透明性も低い。
 また、特許文献2に記載されるセルロースシートは、架橋剤を用いてセルロースナノファイバからなる不織布の耐水性を向上するものである。そのため、表面が平滑である透明性が高いセルロースシートでは、内部まで架橋することができず、耐水性の向上効果は、殆ど得られない。
 さらに、透明なセルロースシートを膨潤させた状態で内部まで架橋処理を行っても、膨潤したセルロースシートを元の透明なセルロースシートに戻すのは、困難である。
 本発明の目的は、このような従来技術の問題点を解決することにあり、セルロースナノファイバからなる耐水性セルロースシートであって、優れた耐水性を有するのみならず、ヘイズが低く透明性に優れる耐水性セルロースシート、および、その製造方法を提供することにある。
 この目的を達成するために、本発明の耐水性セルロースシートは、-COOAで示される官能基を有するセルロースナノファイバからなる耐水性セルロースシートであって、
 破断伸度が3%以上であり、
 -COOAで示される官能基におけるAが、アルカリ金属、アルカリ土類金属および水素原子のいずれかを表し、かつ、-COOAで示される官能基の20%以上90%未満が-COOH基であることを特徴とする耐水性セルロースシートを提供する。
 このような本発明の耐水性セルロースシートにおいて、表面粗さRaが0.1μm以下であるのが好ましい。
 また、厚さが5~100μmであるのが好ましい。
 さらに、-COOAで示される官能基のAが、HまたはNaであるのが好ましい。
 また、本発明の耐水性セルロースシートの製造方法は、本発明の耐水性セルロースシートの製造方法であって、
 セルロースナノファイバを酸化処理する酸化工程、
 酸化処理したセルロースナノファイバをシート状に製膜する製膜工程、および、
 シート状に成形したセルロースナノファイバを酸性水溶液で処理する酸処理工程、を有することを特徴とする耐水性セルロースシートの製造方法を提供する。
 このような本発明の耐水性セルロースシートの製造方法において、製膜工程は、酸化処理したセルロースナノファイバを水系溶剤に分散した分散液を調製して、分散液を基板に塗布し、セルロースナノファイバが乾燥する前に基板から剥離して、基板から剥離したセルロースナノファイバを、さらに乾燥するものであるのが好ましい。
 また、基板からのセルロースナノファイバの剥離を、残留溶剤が10~80質量%の状態で行うのが好ましい。
 また、酸性水溶液のpHが4以下であるのが好ましい。
 さらに、セルロースナノファイバの酸化処理を、触媒としてN-オキシル化合物を用いて行うのが好ましい。
 本発明によれば、優れた耐水性を有するのみならず、ヘイズが低く透明性に優れる耐水性セルロースシート、および、その製造方法を提供することができる。
 以下、本発明の耐水性セルロースシート、および、耐水性セルロースシートの製造方法について、詳細に説明する。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む。
 本発明の耐水性セルロースシートは、-COOAで示される官能基を有するセルロースナノファイバからなるものであり、破断伸度が3%以上で、かつ、-COOAで示される官能基の20%以上90%未満が-COOH基である。以下の説明では、耐水性セルロースシートを単に『セルロースシート』とも言う。
 なお、-COOAで示される官能基において、Aは、アルカリ金属、アルカリ土類金属および水素原子(H)のいずれかを表す。
 本発明のセルロースシートは、破断伸度が3%以上であり、かつ、-COOAで示される官能基の20%以上90%未満が-COOH基であることにより、優れた耐水性を発現し、ヘイズが低く透明性も良好となる。
 このように耐水性および透明性がいずれも良好となる理由は、詳細には明らかではないが、およそ以下のとおりと推測される。
 すなわち、後述する実施例や比較例からも分かるように、-COOAで示される官能基の20%以上90%未満が-COOH基であることにより、疎水性となり、その結果、優れた耐水性を発現したと考えられる。また、シート形成時にシート内部にゲル化物等が生成することが抑制され、破断伸度が3%以上となることにより、優れた透明性を発現したと考えられる。
 なお、本発明において、『-COOAで示される官能基を有するセルロースナノファイバからなる』とは、好ましくは、セルロースシートにおける、-COOAで示される官能基を有するセルロースナノファイバの含有量が、50質量%以上であることを示す。また、本発明のセルロースシートにおける、-COOAで示される官能基を有するセルロースナノファイバの含有量は、70質量%以上であるのがより好ましく、90質量%以上であるのが特に好ましい。
 セルロースナノファイバとは、植物細胞壁の基本骨格などを構成するセルロースのミクロフィブリル、または、これを構成する繊維のことである。以下の説明では、セルロースナノファイバを『CNF』とも言う。本発明のセルロースシートにおいては、公知の各種のCNFが利用可能である。
 このようなCNFとしては、木材、竹、麻、ジュート、ケナフ、綿、ビートパルプ、ポテトパルプ、農産物残廃物、布、紙等に含まれる植物由来の繊維が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 木材としては、例えば、シトカスプルース、スギ、ヒノキ、ユーカリ、アカシア等が挙げられる。
 紙としては、例えば、脱墨古紙、段ボール古紙、雑誌、コピー用紙等が挙げられる。
 パルプとしては、例えば、植物原料を化学的もしくは機械的にまたは両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、セミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。
 CNFにおいてリグニンはできるだけ取り除かれていることが凝集を防ぐことができるという点で好ましい。
 CNFは、通常、繊維径4nm程度の単位繊維の集合体である。本発明のセルロースシートにおいて、CNFの繊維径には特に限定は無いが、平均繊維径が2~40nmであるのが好ましく、3~25nmであるのがより好ましい。
 CNFの平均繊維径を2nm以上とすることにより、耐水性を向上させ易い等の点で好ましい。
 また、CNFの平均繊維径を40nm以下とすることにより、セルロースシートの透明性、製膜性(凝集物の低減)等の点で好ましい。
 本発明のセルロースシートにおいて、このようなCNFは、CNFの一部の1級水酸基が酸化された、-COOAで示される官能基を有する。
 -COOAで示される官能基において、Aは、アルカリ金属(Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Fr(フランシウム))、アルカリ土類金属(Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム))から選択される1以上、および、H(水素原子)を表す。
 アルカリ金属およびアルカリ土類金属としては、後述するCNFの酸化処理に用いる酸化剤等の汎用性や価格、環境負荷等の点で、Naが好適に例示される。
 ここで、本発明のセルロースシートは、破断伸度が3%以上である。
 本発明のセルロースシートは、好ましくは、後述する本発明の製造方法で製造される。
 本発明の製造方法では、前述のようなCNFの表面に露出している1級水酸基を酸化処理して、-COONa基や-COOCa基等の、-COOH基のアルカリ金属塩もしくは-COOH基のアルカリ土類金属塩とする。以下の説明では、これらの基を『-COONa基』とも言う。
 次いで、酸化処理したCNFを水系溶剤を用いて解繊してCNFの分散液を調製し、このCNFの分散液を基板に塗布することで、酸化処理したCNFをシート状にする。基板上でCNFのシートを乾燥した後、剥離することにより、あるいは、好ましい態様として、未乾燥の状態でCNFのシートを基板から剥離して、乾燥することにより、本発明のセルロースシートの前駆体となるCNFのシートを製膜する。
 さらに、前駆体となるCNFのシートを酸性水溶液で酸処理して、本発明のセルロースシートを作製する。この酸処理によって、シート表面に存在する親水性の-COONa基の殆どを、疎水性の-COOH基として、セルロースシートに耐水性を付与する。
 特許文献1に記載されるように、酸化処理を行ったCNFの分散液に酸を添加する酸処理を行って、-COONa基を-COOH基にすると、CNFが凝集(ゲル化)する。そのため、このCNFをシート化すると、作製したCNFシートの内部にCNFの凝集物が存在する。セルロースシートの内部にCNFの凝集物が存在すると、このCNFの凝集物によってヘイズが大きくなって透明性が低下すると共に、伸張した際に、凝集したCNFが起点となって破断してしまう。
 これに対し、本発明のセルロースシートは、CNFを凝集することなく、表面の親水性の-COONa基を、疎水性の-COOH基としている。そのため、CNFを十分に解繊し、かつ、CNFをゲル化することなく、良好な繊維状のまま、繊維が良好に伸びた状態で、シート化することができ、しかも、高い耐水性を有し、かつ、凝集物に起因するヘイズが無い高い透明性を有する、すなわち、高い破断伸度を有するセルロースシートにできる。さらに、後述するが、好ましくは、基板に塗布したCNFを乾燥することなく剥離して、乾燥することにより、酸処理の際における急激な-COOH基化を防止して、よりヘイズが低く透明性が高いセルロースシートを得られる。
 セルロースシートの破断伸度が3%未満では、凝集物が多く、すなわちヘイズが高く十分な透明性が得られない、平滑性が低下しセルロースシートの表面に機能層(例えば導電層など)を塗設する場合に塗布ムラが発生する等の不都合が生じる。
 セルロースシートの破断伸度は、基本的に、高い程、凝集物が少なく、ヘイズが低くなる。この点を考慮すると、セルロースシートの破断伸度は、5%以上が好ましく、8%以上がより好ましい。
 なお、セルロースシートの破断伸度は、一例として、25℃で湿度50%RHの環境下で1日調湿したサンプルを用い、サンプル幅5mm、チャック間距離50mm、引張り速度1mm/分の条件で、25℃で湿度50%RHの環境下において引っ張り試験機を用いて測定すればよい。
 好ましくは、この測定を3回行ない、3回の測定結果の平均値をセルロースシートの破断伸度とする。
 本発明のセルロースシートは、CNFが-COOAで示される官能基を有し、この-COOAで示される官能基の20%以上90%未満が-COOH基である。
 すなわち、本発明のセルロースシートの表面は殆どの-COONa基が-COOH基になっており、内部には表面に比して多くの-COONa基が存在していると考えられる。
 本発明において、-COOAで示される官能基の20%以上90%未満が-COOH基であるとは、赤外分光分析によって得られる、1733cm-1±50cm-1の吸光度の極大値であるA[COOH]と、1636cm-1±50cm-1の吸光度の極大値であるA[COO]とから得られるCOOH比率が、20%以上90%未満であることを示す。
 COOH比率とは、具体的には、『COOH比率[%]=
     (A[COOH]/(A[COOH]+A[COO]))×100』である。
 なお、赤外分光分析は、一例として、セルロースシートを凍結粉砕し、得られた粉末とKBr粉末とを混合して、型に入れて圧力を掛けることによって測定用サンプルを作成して測定すればよい。
 COOH比率が20%未満では、十分な耐水性が得られない等の不都合を生じる。
 COOH比率が90%以上では、耐熱性が低下して加熱によって黄変が発生し易い等の不都合を生じる。加熱によって黄変が発生し易いとは、すなわち、加熱によって透明性が低下し易いということである。
 ここで、-COOAで示される官能基に占める-COOH基の量が多いと、高温下に曝された際に黄変してしまうなど高温下における透明性の点で不利である。この点を考慮すると、COOH比率は85%以下であるのが好ましく、80%以下であるのがより好ましく、70%以下であるのが更に好ましい。また、耐水性を考慮すると、COOH比率は30%以上であるのが好ましく、40%以上がより好ましい。
 よって、より良好な耐熱性すなわち透明性、および、より良好な耐水性が得られる理由から、COOH比率は30~80%が好ましく、40~70%がより好ましい。
 本発明のセルロースシートの表面粗さRaには特に限定は無く、セルロースシートの用途等に応じて、適宜、設定すればよい。ここで、セルロースシートの表面粗さRaは、0.1μm以下であるのが好ましく、0.05μm以下であるのがより好ましく、0.03μm以下であるのが特に好ましい。
 セルロースシートの表面粗さRaを0.1μm以下とすることにより、ヘイズを低減して透明性を良好にできる、平滑性を向上してセルロースシートの表面に機能層を塗設する際に塗布ムラが発生し難い等の点で好ましい。
 なお、表面粗さRa(算術平均粗さRa)は、JIS B 0601(1994)に準拠して測定すればよい。
 本発明のセルロースシートの厚さにも、特に限定はなく、セルロースシートに要求される機械的強度、セルロースシートの用途等に応じて、適宜、設定すればよい。ここで、セルロースシートの厚さは5~100μmが好ましく、20~80μmがより好ましく、40~60μmが特に好ましい。
 セルロースシートの厚さを5μm以上とすることにより、後述するCNF分散液を用いた製膜を好適に行うことが可能である、機械的強度を良好にできる、搬送中や取り扱い中などに折れや皺が生じることを抑制できる等の点で好ましい。
 セルロースシートの厚さを100μm以下とすることにより、セルロースシートの製膜時間を短くできる、ヘイズを低くして透明性を良好にできる、材料コストを低減できる等の点で好ましい。
 このような本発明のセルロースシートは、-COOAで示される官能基を有するCNFに加え、水分等の不可避的な不純物、CNF原料に含まれる不純物(リグニン、ヘミセルロースなど)、後述する酸化工程や酸処理工程などで添加される薬剤、必要に応じて添加される界面活性剤や樹脂(ラテックスや水溶性樹脂など)等を含有してもよい。
 しかしながら、本発明のセルロースシートは、基本的に、50質量%以上がCNFであるのが好ましく、70質量%以上がCNFであるのがより好ましく、90質量%以上がCNFであるのが特に好ましいのは、前述のとおりである。
 以下、このような本発明のセルロースシートを製造する、本発明のセルロースシートの製造方法について説明する。
 [酸化工程]
 本発明のセルロースシートの製造方法においては、まず、前述のようなCNFに対して酸化処理を行い、CNFの1級水酸基を酸化して、-COOH基もしくは-COONa基とする。-COONa基は、前述のように、-COOH基のアルカリ金属塩もしくは-COOH基のアルカリ土類金属塩である。
 CNFの酸化処理は、公知の方法で行えばよい。従って、化学的に酸化しても物理的に酸化してもよい。
 CNFの酸化処理の具体的な一例として、CNFを水系溶剤に分散した反応液中において、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のN-オキシル化合物を触媒として用いて、酸化剤を作用させることでCNFを酸化する方法が例示される。
 原料となるCNFは、前述のCNFが、各種利用可能である。また、水系溶剤としては、不可避的不純物を除いて水のみである溶剤、水と相溶性を有するアルコール等が20質量%以下含まれる混合溶剤が例示される。
 酸性処理の反応液中におけるCNFの固形分濃度(絶乾)は、使用する酸化剤やN-オキシル化合物に応じて、適宜、設定すればよい。具体的には、酸化反応効率の点で、10質量%以下が好ましく、5質量%以下がより好ましく、0.1~4質量%が特に好ましく例示される。
 N-オキシル化合物としては、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)、および、C4位に各種の官能基を有するTEMPO誘導体を用いることができる。TEMPO誘導体としては、4-ヒドロキシTEMPO、4-アセトアミドTEMPO、4-カルボキシTEMPO、4-フォスフォノオキシTEMPOなどを挙げることができる。
 また、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、または、カルボン酸あるいはスルホン酸でエステル化して、疎水性を付与した4-ヒドロキシTEMPO誘導体も、好適に利用される。
 N-オキシル化合物の添加量は、触媒量で十分である。具体的には、反応液におけるN-オキシル化合物の含有量は、絶乾CNF100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましく例示される。
 N-オキシル化合物の添加量を0.01質量部以上とすることにより、酸化処理の時間を短縮できる、貯蔵施設を小さくできる等の点で好ましい。N-オキシル化合物の添加量を10質量部以下とすることにより、酸化処理にかかるコストを低減できる、反応の副産物に起因すると考えられる加熱時のCNFの黄変発生を防止できる等の点で好ましい。
 酸化剤は、目的とする酸化反応を促進できる物質が、各種利用可能である。
 具体的には、次亜ハロゲン酸またはその塩(次亜塩素酸またはその塩、次亜臭素酸またはその塩、次亜ヨウ素酸またはその塩など)、亜ハロゲン酸またはその塩(亜塩素酸またはその塩、亜臭素酸またはその塩、亜ヨウ素酸またはその塩など)、過ハロゲン酸またはその塩(過塩素酸またはその塩、過ヨウ素酸またはその塩など)、ハロゲン(塩素、臭素、ヨウ素など)、ハロゲン酸化物(ClO、ClO2、Cl26、BrO2、Br37など)、窒素酸化物(NO、NO2、N23など)、過酸(過酸化水素、過酢酸、過硫酸、過安息香酸など)が含まれる。
 次亜ハロゲン酸塩としては、次亜塩素酸の場合に、次亜塩素酸リチウム、次亜塩素酸ウム、次亜塩素酸ナトリウムなどのアルカリ金属塩や、次亜塩素酸カルシウム、次亜塩素酸マグネシウム、次亜塩素酸ストロンチウムなどのアルカリ土類金属塩、次亜塩素酸アンモニウムなどを例示することができる。また、これらに対応する次亜臭素酸塩、次亜ヨウ素酸塩を用いることもできる。
 亜ハロゲン酸塩としては、例えば亜塩素酸の場合、亜塩素酸リチウム、亜塩素酸カリウム、亜塩素酸ナトリウムなどのアルカリ金属塩や、亜塩素酸カルシウム、亜塩素酸マグネシウム、亜塩素酸ストロンチウムなどのアルカリ土類金属塩、亜塩素酸アンモニウムなどを例示することができる。また、これらに対応する亜臭素酸塩、亜ヨウ素酸塩を用いることもできる。
 過ハロゲン酸塩としては、例えば過塩素酸塩の場合、過塩素酸リチウム、過塩素酸カリウム、過塩素酸ナトリウムなどのアルカリ金属塩や、過塩素酸カルシウム、過塩素酸マグネシウム、過塩素酸ストロンチウムなどのアルカリ土類金属塩、過塩素酸アンモニウムなどを例示することができる。また、これらに対応する過臭素酸塩、過ヨウ素酸塩を用いることもできる。
 中でも、次亜ハロゲン酸アルカリ金属塩、亜ハロゲン酸アルカリ金属塩は好適に利用され、中でも特に、次亜塩素酸アルカリ金属塩、亜塩素酸アルカリ金属塩を用は好適に利用される。
 これらの酸化剤は単独または2種以上の組み合わせで使用することができる。また、ラッカーゼなどの酸化酵素と組み合わせて用いてもよい。
 酸化剤の添加量は、使用する酸化剤や反応液におけるCNF濃度、目的とする-COOA基の導入量等に応じて、適宜、設定すればよい。
 具体的には、絶乾CNF1g当たり、0.2~500mmolが好ましく、0.2~50mmolがより好ましく例示される。酸化剤の添加量を、絶乾CNF1g当たり0.2~500mmolとすることにより、CNFへの-COOAで示される官能基の導入効率を向上できる。なお、基本的に、酸化剤の使用量が多い程、CNFへの-COOAで示される官能基の導入量を増加できる。
 使用する酸化剤の種類によっては、N-オキシル化合物に、臭化物やヨウ化物を組み合わせた触媒成分を用いてもよい。
 臭化物やヨウ化物としては、例えば、アンモニウム塩(臭化アンモニウム、ヨウ化アンモニウム)、臭化またはヨウ化アルカリ金属(臭化リチウム、臭化カリウム、臭化ナトリウムなどの臭化物、ヨウ化リチウム、ヨウ化カリウム、ヨウ化ナトリウムなどのヨウ化物)、臭化またはヨウ化アルカリ土類金属(臭化カルシウム、臭化マグネシウム、臭化ストロンチウム、ヨウ化カルシウム、ヨウ化マグネシウム、ヨウ化ストロンチウムなど)を用いることができる。これらの臭化物及びヨウ化物は、単独または2種以上の組み合わせで使用することができる。
 具体的には、例えば、次亜塩素酸アルカリ金属塩を酸化剤とする場合には、N-オキシル化合物と、臭化物またはヨウ化物とを組み合わせた触媒成分を用いることが好ましい。また、亜塩素酸アルカリ金属塩を酸化剤とする場合には、N-オキシル化合物を単独で触媒成分として用いることが好ましい。
 臭化物および/またはヨウ化物の添加量は、酸化反応を促進できる範囲で選択で、適宜、設定すればよい。
 具体的には、絶乾CNF100質量部に対して0.1~100質量部が好ましく、1~60質量部がより好ましい。
 臭化物および/またはヨウ化物の添加量を0.1部以上とすることで、酸化反応を効率良く進めることができる。また、臭化物および/またはヨウ化物の添加量を100質量部以下とすることにより、酸化処理にかかるコストを低減できる、反応の副産物に起因すると考えられる加熱時のCNFの黄変発生を防止できる等の点で好ましい。
 CNFの酸化処理は、穏和な温度条件でも円滑に進行できる。従って、CNFの酸化処理温度は、適当な温度から、適宜、設定すればよい。具体的には、0~50℃が好ましく、10~30℃(室温)がより好ましく例示される。
 酸化処理時間も、CNFの含有量、酸化剤の種類や含有量等に応じて、適宜、設定すればよい。ここで、酸化処理時間が長過ぎると、-COOAで示される官能基の導入量が過剰になり、CNFの強度が低下する場合が有るため、CNFを水溶化させることなく、酸化処理を終了するのが好ましい。この点を考慮すると、酸化処理は、30分~4時間が好ましく、2時間程度がより好ましい。
 ここで、酸化処理では、反応の進行に伴って、CNFに-COOAで示される官能基が生成し、反応液のpHが低下する。
 そのため酸化反応を効率よく進行させるために、酸化処理中は、反応液のpHを9~12に保つのが好ましく、反応液のpHを10~11に保つのがより好ましい。なお、反応液のpH調節は、水酸化ナトリウム水溶液などのアルカリを反応系に添加する方法等、公知の方法で行えばよい。
 前述のように、本発明の製造方法において、CNFの酸化処理は、これ以外にも、公知の方法が、各種利用可能である。
 一例として、国際公開第2009/107637号、国際公開第2009/084566号、国際公開第2010/116826号、特開2009-228186号公報、特開2009-173909号公報、特開2010-209510号公報、特開2009-243014号公報等に記載される方法が、例示される。
 また、CNFの酸化処理としては、CNFをCMC(カルボキシメチルセルロース)化する処理も利用可能である。
 CNFのCMC化において、原料となるCNFは、前述の各種のCNFに加え、先に説明した酸化処理を施したCNFも利用可能である。
 CNFのCMC化は、CNFの水酸基へのカルボキシアルキル基の導入により達成できる。好ましいカルボキシアルキル基は、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。
 CNFのCMC化は、水酸化ナトリウム等のアルカリを触媒として、CNF(酸化処理したCNF)と、クロロ酢酸やクロロ酢酸ナトリウム等のクロロ酢酸塩との反応によって、行うことができる。ここで、クロロ酢酸量やクロロ酢酸塩量の増加、反応時間の増加によりカルボキシメチル基の導入量を増加でき、CMC化したCNFへの-COOAで示される官能基の量を増加できる。
 [製膜工程]
 酸化工程を終了したら、次いで、-COONa基が生成されたセルロースをシート状に製膜する製膜工程を行う。
 製膜工程では、好ましくは、最初にCNFの解繊を行う。
 酸化処理によって、CNFには、1級水酸基が酸化された-COONa基が生成されている。この-COONa基は、イオン性であるため、この官能基を有するCNFは、好適に解繊され、かつ、各CNFが好適に伸びた状態となる。前述のように、-COONa基は、-COOH基のアルカリ金属塩もしくは-COOH基のアルカリ土類金属塩である。
 酸化処理したCNFの解繊は、酸化処理の反応液を、そのまま使用して行ってもよい。あるいは、酸化処理したCNFを濾別や遠心分離等によって分離して、水系溶剤等で洗浄した後、再度、水系溶剤に分散して行ってもよい。
 解繊の方法も、公知の方法が、各種利用可能である。一例として、家庭用ミキサ、超音波ホモジナイザー、高圧ホモジナイザー、二軸混練機、ロールミル、石臼等の工業用や家庭用で汎用される各種の装置を用いる方法が例示される。
 次いで、CNFを解繊した分散液を、基板に塗布(キャスト)して、CNF分散液の塗膜を形成する。基板へのCNF分散液の塗布は、公知の塗布方法が、各種利用可能である。以下の説明では、CNFを解繊した分散液を『CNF分散液』とも言う。
 なお、基板に塗布するCNF分散液は、必要に応じて固形分濃度が0.1~2質量%となるように調節するのが好ましい。
 また、CNF分散液を基板に塗布する前に、CNF分散液の脱泡処理を行うのが好ましい。CNF分散液の脱泡を行うことにより、製造するセルロースシートの表面粗さRaを小さくして、よりヘイズが低く透明性にすぐれ、かつ、耐水性も良好なセルロースシートが得られる。
 脱泡処理は、攪拌による方法、減圧攪拌による方法、超音波処理、加熱処理等、水溶液や分散液からの脱泡を行う公知の各種の方法が利用可能である。
 基板は、ポリエチレンテレフタレート(PET)等の樹脂の板状物やフィルム状物、ガラス板、金属板等、各種のフィルム状物や板状物が利用可能である。
 また、CNF分散液の塗膜の厚さは、目的とするセルロースシートの厚さ、CNF分散液におけるCNFの固形分濃度等に応じて、適宜、設定すればよい。
 基板に塗布したCNF分散液を乾燥することにより、本発明のセルロースシートの前駆体となる、-COONa基を有するCNFのシートが製膜される。以下の説明では、本発明のセルロースシートの前駆体となる、-COONa基を有するCNFのシートを『前駆体シート』とも言う。
 ここで、基板に塗布したCNF分散液の乾燥は、基板上で終了して、基板上に乾燥済の前駆体シートを形成してもよい。しかしながら、好ましくは、CNFの乾燥を終了する前に基板からCNFのシートを剥離し、剥離した状態で、さらに乾燥を行って、乾燥を終了させて前駆体シートとするのが好ましい。
 このように、乾燥を終了する前に、未乾燥のCNFのシートを基板から剥離して、さらに乾燥して前駆体シートとすることにより、CNF分散液(前駆体シート)の乾燥時間を大幅に短くして、セルロースシートの生産効率を向上できる。
 また、本発明者らの検討によれば、空気に接触した状態でCNFシートの乾燥を行うことで、シートの表面には表皮のような緻密な膜が形成される。この緻密な膜は、乾燥後も残る。従って、未乾燥のCNFのシートを基板から剥離して、さらに乾燥することにより、シートの両面に、この緻密な膜が形成される。
 後述する酸処理工程では、例えば、浸漬、塗布、蒸気との接触等によって、酸性水溶液を前駆体シートに接触させる。この際において、酸性水溶液が急激に前駆体シートの内部に侵入すると、CNFの-COONa基が急激に酸化されて-COOH基となって、凝集構造を生成してしまう場合が有る。このような凝集構造を有すると、セルロースシートのヘイズが向上して、透明性が低下してしまう。
 これに対し、シートの両面に、この緻密な膜を有することにより、酸処理工程において、酸性水溶液が急激に前駆体シートの内部に侵入することを防止できる。その結果、より安定して、ヘイズの低い、透明性に優れたセルロースシートを製造できる。
 未乾燥のCNFのシートを基板から剥離するタイミングは、作製するセルロースシートの厚さや、セルロースシートの大きさ等に応じて、安定して剥離できるタイミングを、適宜、設定すればよい。
 具体的には、未乾燥のCNFのシートに残留する残留溶剤(残留する水溶性溶剤)の量が10~80質量%の状態で基板から剥離するのが好ましく、同シートに残留する残留溶剤の量が15~75質量%の状態で剥離するのがより好ましく、同シートに残留する残留溶剤の量が20~70質量%の状態で剥離するのが特に好ましい。
 未乾燥のCNFのシートに残留する残留溶剤の量が10質量%以上の状態で、シートを基板から剥離することにより、シートの表面に前述の緻密な膜を確実に形成できヘイズの低いセルロースシートが得られる、緻密な膜の形成によってより耐湿性に優れるセルロースシートが得られる等の点で好ましい。
 また、未乾燥のCNFのシートに残留する残留溶剤の量が80質量%以下の状態で、シートを基板から剥離することにより、剥離後のシートの乾燥時間を短くできる、剥離後のシートの乾燥において安定した取り扱いが可能になる等の点で好ましい。さらに、未乾燥のCNFのシートに残留する残留溶剤の量があまりに多い状態で剥離して乾燥すると、シートの強度が低すぎて、搬送中や乾燥中に破断し易くなってしまう。これに対し、未乾燥のCNFのシートに残留する残留溶剤の量が80質量%以下の状態で、シートを基板から剥離することにより、このような不都合も好適に防止できる。
 未乾燥のCNFのシートに残留する残留溶剤の量は、一例として、下記の方法で測定すればよい。
 まず、剥離した直後の未乾燥のCNFのシートからサンプルを取得して、サンプルをネジ口瓶に入れて、ネジ口瓶を秤量する。この質量をW1とする。
 次いで、ネジ口瓶の栓を外して、100℃の空気恒温槽に2時間入れて、乾燥する。これにより、サンプル(CNFのシート)を完全に乾燥する。
 2時間の乾燥を終了したら、空気恒温槽から取り出して、直ちにネジ口瓶に栓をし、ネジ口瓶を秤量する。この質量をW2とする。
 さらに、ネジ口瓶からサンプルを取り出して、サンプルを秤量し、この質量をW3とする。さらに、下記式によって、基板から剥離した際に未乾燥のCNFのシートに残留していた残留溶剤の量[質量%]を算出する。
   残留溶剤の量[質量%]=100×((W1-W2)/W3)
 基板からの剥離前および剥離後における、CNFのシートの乾燥は、自然乾燥で行ってもよく、あるいは、オーブン等の加熱手段を用いてもよい。さらに、剥離前は自然乾燥を行い、剥離後はオーブンを用いる乾燥を行うなど、自然乾燥と加熱手段による乾燥とを併用してもよい。
 自然乾燥の場合には、通常2~3日でシートを乾燥できる。また、100℃のオーブンで加熱すれば、通常10分~3時間でシートを乾燥できる。
 [酸処理工程]
 このようにして-COONa基を有するCNFからなる前駆体シートを作製したら、前駆体シートを酸性水溶液で酸処理する。この酸処理により、前駆体シート表面のCNFの-COONa基を酸化して、疎水性の-COOH基とする。
 これにより、-COOAで示される官能基を有するCNFからなり、破断伸度が3%以上で、-COOAで示される官能基の20%以上90%未満が-COOH基である、ヘイズが低く高い透明性を有し、かつ、耐水性も良好な本発明の(耐水性)セルロースシートを製造する。前述のように、-COOAで示される官能基において、Aは、アルカリ金属、アルカリ土類金属および水素原子のいずれかである。
 なお、前駆体シートの酸処理は、基本的に、前駆体シートを基板から剥離して行う。しかしながら、セルロースシートの用途等に応じて、基板に前駆体シートを貼着したまま、前駆体シートの酸処理を行ってもよい。
 酸処理を行う酸性水溶液に用いる酸は、有機酸でも無機酸でもよい。好ましくは無機酸が例示され、より好ましくは、塩酸、硝酸、リン酸、硫酸等が例示される。これらの酸は複数を併用してもよい。
 酸性水溶液は、これらの酸を、水、好ましくは純水に溶解して調製すればよい。ここで、酸性水溶液は、pHが4以下であるのが好ましく、pHが3以下であるのがより好ましく、pHが2以下であるのが特に好ましい。
 pH4以下の酸性水溶液を用いて有する前駆体シートを処理することにより、前駆体シート表面のCNFの-COONa基を好適に-COOH基にできる、耐水性を向上できる等の点で好ましい。
 酸性水溶液による前駆体シートの酸処理方法は、各種の方法が利用可能である。一例として、前駆体シートを酸性水溶液に浸漬する方法、酸性水溶液を前駆体シートの表面に塗布する方法、酸性水溶液の蒸気に前駆体シートを曝す方法等が例示される。
 前駆体シートを酸処理する酸性水溶液の温度は、酸性水溶液に含まれる酸やpH等に応じて、十分に反応が進む温度を、適宜、設定すればよい。
 具体的には、0~60℃が好ましく、0~55℃がより好ましく、0~50℃が特に好ましい。
 酸処理を行う酸性水溶液の温度を0℃以上とすることにより、前駆体シート表面のCNFの-COONa基を好適に-COOH基にできる、酸処理を均一かつ短時間で行うことが可能になり品質の安定化や生産効率の向上が図れる等の点で好ましい。
 酸性水溶液の温度を60℃以下にすることにより、CNFに過剰な-COOH基が形成されることを防止して耐熱性の良好なセルロースシートが得られる、着色を防止して透明性が高いセルロースシートが得られる等の点で好ましい。
 酸性水溶液による前駆体シートの酸処理時間も、酸性水溶液に含まれる酸やpH等に応じて、十分な処理を行える時間を、適宜、設定すればよい。
 具体的には、酸処理時間は、0.1秒以上が好ましく、1秒~1日がより好ましく、3秒~30分が特に好ましい。酸性水溶液による前駆体シートの酸処理時間を0.1秒以上とすることにより、前駆体シート表面のCNFの-COONa基を好適に-COOH基にできる、耐水性を向上できる等の点で好ましい。
 なお、酸性水溶液による酸処理が終了したら、水やアルコール等の極性溶剤でセルロースシートを洗浄して、酸性水溶液を洗い流す。すなわち、前駆体シートの酸処理時間とは、前駆体シートを酸性水溶液に接触させた後、洗浄を開始するまでの時間である。
 洗浄は、アルコールあるいは水を用いて行うのが好ましく、水を用いて行うのがより好ましい。
 以上、本発明の耐水性セルロースシートおよび耐水性セルロースシートの製造方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
 [実施例1]
 TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)とを溶解した水溶液500mlに、CNFを絶乾重量で5g加え、パルプが均一に分散するまで攪拌した。CNFは、針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社製)を用いた。
 反応液に次亜塩素酸ナトリウム水溶液(有効塩素5%)18mlを添加した後、0.5N塩酸水溶液で反応液をpH10.3に調節し、酸化処理を開始した。反応中は反応液のpHを測定し、0.5Nの水酸化ナトリウム溶液を、適宜、添加することにより、反応液をpH10に調節した。
 2時間の酸化処理を行った後、ガラスフィルタで濾過し、十分に水洗することで、酸化処理を施したCNFを得た。
 酸化処理を施したCNFを、固形分濃度(絶乾)が1質量%となるように純水に投入してCNF分散液Aを調製した。次いで、このCNF分散液Aをホモジナイザーで処理することで、酸化処理を施したCNFを解繊した。
 さらに、解繊を行ったCNT分散液Aを、攪拌式脱泡装置を用いて1000rpmで10分間攪拌することで、脱泡処理を行った。
 脱泡処理を行ったCNF分散液Aを、PETフィルム上に塗布して、100℃のオーブンで20分加熱して、乾燥した。
 次いで、CNF分散液Aの乾燥で形成された、酸化処理したCNFからなるシートをPETフィルムから剥離した。剥離したシートから、サンプルを取得して、シートの残留溶剤の量を測定した。その結果、シートの残留溶剤の量は50質量%であった。
 残留溶剤の量の測定は、以下のように行った。
 まず、PETフィルムから剥離したCNFのシートからサンプルを取得して、サンプルをネジ口瓶に入れて、ネジ口瓶を秤量する。この質量をW1とする。
 次いで、ネジ口瓶の栓を外して、100℃の空気恒温槽に2時間入れて、乾燥する。
 2時間の乾燥を終了したら、空気恒温槽から取り出して、直ちにネジ口瓶に栓をし、ネジ口瓶を秤量する。この質量をW2とする。
 さらに、ネジ口瓶からサンプルを取り出して、サンプルを秤量し、この質量をW3とし、下記式によって、基板から剥離した際にCNFのシートに残留していた残留溶剤の量[質量%]を算出する。
   残留溶剤の量[質量%]=100×((W1-W2)/W3)
 PETフィルムから剥離した酸化処理したCNFからなるシートを、さらに、100℃のオーブンで22分加熱した。これにより、酸化処理したCNFからなる前駆体シートAを製膜した。
 前駆体シートAをPETフィルムから剥離し、温度25℃、pH3.5の塩酸水溶液に1分浸漬して、前駆体シートAの酸処理を行った。
 酸処理を行った前駆体シートAに、十分な水洗を行い、乾燥して、セルロースシートを作製した。セルロースシートの厚さは50μmであった。セルロースシートの厚さは、触針式の厚さ測定機で測定した。
 作製したセルロースシートを、25℃で湿度50%RHの環境下で1日調湿して、引張り試験機(エーアンドデイ社製、RTG-1310)によって、破断伸度を測定した。
 破断伸度は、サンプル幅5mm、チャック間距離50mm、引張り速度1mm/分の条件で、25℃で湿度50%RHの環境下で行った。
 その結果、セルロースシートの破断伸度は6%であった。
 また、赤外分光分析装置(日本分光社製、FT-IR4000)によって、作製したセルロースシートのCOOH比率を測定した。
 前述のように、COOH比率とは、赤外分光分析によって得られる、1733cm-1±50cm-1の吸光度の極大値であるA[COOH]と、1636cm-1±50cm-1の吸光度の極大値であるA[COO]とから、下記式
COOH比率[%]=(A[COOH]/(A[COOH]+A[COO]))×100によって算出する。
 赤外分光分析は、セルロースシートを凍結粉砕し、得られた粉末とKBr粉末とを混合して、型に入れて圧力を掛けることによって測定用サンプルを作成して行った。
 その結果、セルロースシートのCOOH比率は26%であった。
 さらに、表面形状測定機(Zygo社製、New View7100)によって、作製したセルロースシートの表面粗さRaを測定した。
 測定条件は、測定面積0.14×0.11mmで、対物レンズの倍率は50倍とした。
 その結果、セルロースシートの表面粗さRaは0.02μmであった。
 [実施例2]
 前駆体シートAの酸処理を行う塩酸水溶液をpH1にした以外は、実施例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が8%、COOH比率が58%、表面粗さRaが0.02μmであった。
 [実施例3]
 前駆体シートAの酸処理を行う塩酸水溶液をpH0.3にした以外は、実施例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が10%、COOH比率が76%、表面粗さRaが0.03μmであった。
 [実施例4]
 前駆体シートAの酸処理を行う塩酸水溶液をpH0.1、温度80℃にした以外は、実施例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が15%、COOH比率が88%、表面粗さRaが0.04μmであった。
 [実施例5]
 CNF分散液Aの固形分濃度を0.1質量%にし、PETフィルムに塗布したCNF分散液Aの乾燥時間を16分にし、PETフィルムから剥離したシートの乾燥時間を6分にし、さらに、前駆体シートAの酸処理を行う塩酸水溶液をpH1にした以外には、実施例1と同様にセルロースシートを作製した。
 実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、25質量%であった。
 また、セルロースシートの厚さは5μmであった。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が8%、COOH比率が59%、表面粗さRaが0.01μmであった。
 [実施例6]
 CNF分散液Aの固形分濃度を0.6質量%にし、PETフィルムに塗布したCNF分散液Aの乾燥時間を14分にし、PETフィルムから剥離したシートの乾燥時間を10分にした以外には、実施例5と同様にセルロースシートを作製した。
 実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、25質量%であった。
 また、セルロースシートの厚さは30μmであった。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が7%、COOH比率が53%、表面粗さRaが0.02μmであった。
 [実施例7]
 CNF分散液Aの固形分濃度を2質量%にし、PETフィルムに塗布したCNF分散液Aの乾燥時間を35分にし、PETフィルムから剥離したシートの乾燥時間を15分にした以外には、実施例5と同様にセルロースシートを作製した。
 実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、25質量%であった。
 また、セルロースシートの厚さは100μmであった。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が9%、COOH比率が44%、表面粗さRaが0.04μmであった。
 [実施例8]
 CNF分散液Aの固形分濃度を2質量%にし、PETフィルムに塗布したCNF分散液Aの乾燥時間を50分にし、PETフィルムから剥離したシートの乾燥時間を6分にし、さらに、前駆体シートAの酸処理を行う塩酸水溶液をpH1にした以外には、実施例1と同様にセルロースシートを作製した。実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、10質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が3%、COOH比率が44%、表面粗さRaが0.1μmであった。
 [実施例9]
 PETフィルムに塗布したCNF分散液Aの乾燥時間を40分にし、PETフィルムから剥離したシートの乾燥時間を10分にした以外には、実施例8と同様にセルロースシートを作製した。実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、15質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が8%、COOH比率が44%、表面粗さRaが0.05μmであった。
 [実施例10]
 PETフィルムに塗布したCNF分散液Aの乾燥時間を30分にし、PETフィルムから剥離したシートの乾燥時間を14分にした以外には、実施例8と同様にセルロースシートを作製した。実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、30質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が15%、COOH比率が44%、表面粗さRaが0.03μmであった。
 [実施例11]
 PETフィルムに塗布したCNF分散液Aの乾燥時間を14分にし、PETフィルムから剥離したシートの乾燥時間を30分にした以外には、実施例8と同様にセルロースシートを作製した。実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、75質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が10%、COOH比率が44%、表面粗さRaが0.04μmであった。
 [実施例12]
 PETフィルムに塗布したCNF分散液Aの乾燥時間を8分にし、PETフィルムから剥離したシートの乾燥時間を40分にした以外には、実施例8と同様にセルロースシートを作製した。実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、80質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が5%、COOH比率が44%、表面粗さRaが0.06μmであった。
 [比較例1]
 実施例1と同様にCNF分散液Aを調製して、解繊した。
 解繊したCNF分散液Aを25℃に保った状態で、1M塩酸を加えてpH2に調節して、30分間、攪拌を継続し、CNF分散液Aを酸処理したCNF分散液Bを得た。この酸処理によって、CNFがゲル化した。
 その後、CNF分散液Bを遠心分離することで、ゲル化したCNTを回収した。
 ゲル化したCNFを十分に水洗した後、固形分濃度が1質量%となるように純水に投入してCNF分散液Cを調製した。次いで、CNF分散液Cを実施例1と同様に脱泡処理した。
 脱泡処理を行ったCNF分散液Cを、PETフィルム上に塗布して、100℃のオーブンで120分加熱して、乾燥し、セルロースシートを製膜した。
 CNF分散液Cを乾燥した後、PETフィルムからセルロースシートを剥離した。実施例1と同様にセルロースシートの残留溶剤の量を測定したところ、0質量%であった。また、セルロースシートの厚さは、50μmであった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が1%、COOH比率が28%、表面粗さRaが0.3μmであった。
 [比較例2]
 CNF分散液Aの酸処理における1M塩酸の添加量を変えて、CNF分散液BをpH1にした以外は、比較例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が2%、COOH比率が55%、表面粗さRaが0.6μmであった。
 [比較例3]
 CNF分散液Aの酸処理における1M塩酸の添加量を変えて、CNF分散液BをpH0.5にした以外は、比較例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が2%、COOH比率が82%、表面粗さRaが0.7μmであった。
 [比較例4]
 前駆体シートAの酸処理を行う塩酸水溶液をpH5にした以外は、実施例1と同様にセルロースシートを作製した。実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が5%、COOH比率が15%、表面粗さRaが0.02μmであった。
 [比較例5]
 CNF分散液Aの固形分濃度を2質量%にした以外は、実施例1と同様にして、PETフィルムにCNF分散液Aを塗布して、乾燥した。PETフィルム上でのCNF分散液Aの乾燥時間は、6分にした。
 実施例1と同様に、PETフィルムから剥離したシートの残留溶剤の量を測定したところ、85質量%であった。
 このシートは、PETフィルムから剥離して、乾燥している途中で破断してしまい、これ以降の処理はできなかった。
 [比較例6]
 実施例1で原料として用いたCNFを、酸化処理を施さずに、固形分濃度が1質量%となるように純水に投入して、実施例1と同様に解繊、および脱泡して、CNF分散液Dを調製した。
 このCNF分散液Dを用いて、PETフィルムに塗布して、100℃で90分乾燥することで、前駆体シートDを作製した。PETフィルムから剥離した前駆体シートDの残留溶剤の量を実施例1と同様に測定したところ、0質量%であった。
 この前駆体シートDを、実施例1と同様に塩酸水溶液に浸漬、洗浄してセルロースシートを作製した。
 本例は、原料となるCNFの酸化処理を行っていないので、作製したセルロースシートには、NaおよびCOOH基は存在しない。また、実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が5%、表面粗さRaが0.1μmであった。
 [比較例7]
 実施例1において、塩酸水溶液に浸漬せずに、前駆体シートAを、そのままセルロースシートとした。但し、PETフィルムに塗布したCNF分散液Aの乾燥は、100℃で90分とし、剥離後の乾燥は行わなかった。PETフィルムから剥離した前駆体シートAの残留溶剤の量を実施例1と同様に測定したところ、0質量%であった。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が4%、COOH比率が0%、表面粗さRaが0.02μmであった。
 [比較例8]
 前駆体シートAの酸処理を行う塩酸水溶液をpH0.05とし、酸処理の時間を60分とした以外は、実施例1と同様にCNFシートを作製した。
 実施例1と同様に測定した結果、作製したセルロースシートは、破断伸度が18%、COOH比率が91%、表面粗さRaが0.07μmであった。
 [耐水性評価]
 作製したセルロースシートを、24時間、純水に浸漬して、浸漬前後の厚さから、下記式で膨潤率を算出して、耐水性を評価した。
   [膨潤率]=[浸漬後の厚さ]/[浸漬前の厚さ]
 [ヘイズ]
 作製したセルロースシートのヘイズを、濁度計(日本電色工業社製、NDH2000の測定方法3)によってD65光源を用いて測定した。
 [耐熱性]
 作製したセルロースシートの400nmの吸光度を分光光度計(島津製作所製、UV-2600)によって測定した(吸光度A0)。
 次いで、セルロースシートを150℃の恒温槽に2時間入れた。
 恒温槽から取り出したセルロースシートの400nmの吸光度を、同様に測定した(吸光度A1)。
 測定した吸光度A0およびA1と、セルロースシートの厚さT[μm]とから、下記式によって、耐熱性の指標となる100μm当たりの400nmの吸光度の増加量(黄変)を算出した。
   吸光度増加量=(100/T)×(A1-A0)
 結果を、下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、破断伸度が3%以上で、かつ、COOH比率が20%以上90%未満の範囲を満たす本発明のセルロースシートは、酸処理のpHおよび膜厚によらず、いずれも、良好な耐水性および低いヘイズを示している。なお、実施例4は、COOH比率が、若干、高めであるために、耐熱性に劣るが、他は、全て、耐熱性も良好である。
 これに対し、酸処理をCNF分散液で行ない、その後、セルロースシートを製膜するための塗布を行った比較例1~3は、いずれも、CNFがゲル状になっていたため、これに起因して、破断伸度が低く、ヘイズが大きく、さらに、耐水性が低い。
 比較例4は、COOH比率が低いため、耐水性に劣る。CNFの酸化処理を行わない比較例6は、CNFが1級水酸基を有したままで、-COOAで示される官能基を有さないので、耐水性が低く、ヘイズも若干高い。さらに、酸処理を行わない比較例7は、CNFシート表面のCNFが親水性の-COONa基を有しているので、耐水性が低い。
 さらに、COOH比率が90%を超える比較例8は、耐熱性に劣り、熱処理で黄変して旧光度が著しく増加した。
 以上の結果より、本発明の効果は明らかである。
 プリンテッドエレクトロニクスの基板、ガスバリアフィルム、農業用シート等に、好適に利用可能である。

Claims (9)

  1.  -COOAで示される官能基を有するセルロースナノファイバからなる耐水性セルロースシートであって、
     破断伸度が3%以上であり、
     前記-COOAで示される官能基におけるAが、アルカリ金属、アルカリ土類金属および水素原子のいずれかを表し、かつ、前記-COOAで示される官能基の20%以上90%未満が-COOH基であることを特徴とする耐水性セルロースシート。
  2.  表面粗さRaが0.1μm以下である請求項1に記載の耐水性セルロースシート。
  3.  厚さが5~100μmである請求項1または2に記載の耐水性セルロースシート。
  4.  前記-COOAで示される官能基のAが、HまたはNaである請求項1~3のいずれか1項に記載の耐水性セルロースシート。
  5.  請求項1~4のいずれか1項に記載の耐水性セルロースシートの製造方法であって、
     セルロースナノファイバを酸化処理する酸化工程、
     前記酸化処理したセルロースナノファイバをシート状に製膜する製膜工程、および、
     前記シート状に成形したセルロースナノファイバを酸性水溶液で処理する酸処理工程、を有することを特徴とする耐水性セルロースシートの製造方法。
  6.  前記製膜工程は、前記酸化処理したセルロースナノファイバを水系溶剤に分散した分散液を調製して、前記分散液を基板に塗布し、前記セルロースナノファイバが乾燥する前に前記基板から剥離して、前記基板から剥離したセルロースナノファイバを、さらに乾燥するものである請求項5に記載の耐水性セルロースシートの製造方法。
  7.  前記基板からのセルロースナノファイバの剥離を、残留溶剤が10~80質量%の状態で行う請求項6に記載の耐水性セルロースシートの製造方法。
  8.  前記酸性水溶液のpHが4以下である請求項5~7のいずれか1項に記載の耐水性セルロースシートの製造方法。
  9.  前記セルロースナノファイバの酸化処理を、触媒としてN-オキシル化合物を用いて行う請求項5~8のいずれか1項に記載の耐水性セルロースシートの製造方法。
PCT/JP2015/079062 2014-11-06 2015-10-14 耐水性セルロースシートおよび耐水性セルロースシートの製造方法 WO2016072231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-225844 2014-11-06
JP2014225844 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072231A1 true WO2016072231A1 (ja) 2016-05-12

Family

ID=55908958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079062 WO2016072231A1 (ja) 2014-11-06 2015-10-14 耐水性セルロースシートおよび耐水性セルロースシートの製造方法

Country Status (1)

Country Link
WO (1) WO2016072231A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210830A (ja) * 2015-04-30 2016-12-15 国立大学法人 東京大学 セルロースフィルム、及びその製造方法
WO2017022848A1 (ja) * 2015-08-05 2017-02-09 王子ホールディングス株式会社 シート、シートの製造方法、および積層体
JP2017031538A (ja) * 2015-08-05 2017-02-09 王子ホールディングス株式会社 シート、シートの製造方法、および積層体
CN110041438A (zh) * 2019-04-15 2019-07-23 中国科学院理化技术研究所 一种疏水性纤维素纳米片及其制备方法
JP2020512488A (ja) * 2017-03-20 2020-04-23 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコ由来ナノセルロース材料
WO2020128996A1 (en) 2018-12-21 2020-06-25 Stora Enso Oyj Method for treating a fibrous material comprising nanocellulose with an organic acid or organic acid salt

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132140A (ja) * 1993-11-09 1995-05-23 Kyoritsu Yogyo Genryo Kk 医療用補綴材料
JP2003512540A (ja) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー カルボキシル化セルロース繊維を製造する方法及び該方法の製品
JP2009530440A (ja) * 2006-03-13 2009-08-27 ザイロス コーポレイション 酸化微生物セルロースおよびその使用
JP2010168716A (ja) * 2008-12-26 2010-08-05 Oji Paper Co Ltd 微細繊維状セルロースシートの製造方法
JP2010168572A (ja) * 2008-12-26 2010-08-05 Kao Corp ガスバリア用材料及びガスバリア性成形体とその製造方法
WO2010134357A1 (ja) * 2009-05-22 2010-11-25 国立大学法人東京大学 セルロースナノファイバー分散液の製造方法、セルロースナノファイバー分散液、セルロースナノファイバー成形体、及びセルロースナノファイバー複合体
WO2011121858A1 (ja) * 2010-03-31 2011-10-06 株式会社ホギメディカル 癒着防止材
JP2011202010A (ja) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
JP2013516553A (ja) * 2009-12-31 2013-05-13 ウーペーエム−キュンメネ コーポレイション 繊維含有製品を製造する方法およびシステム
JP2014136775A (ja) * 2013-01-18 2014-07-28 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2014196580A (ja) * 2013-03-29 2014-10-16 凸版印刷株式会社 耐水耐油紙およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132140A (ja) * 1993-11-09 1995-05-23 Kyoritsu Yogyo Genryo Kk 医療用補綴材料
JP2003512540A (ja) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー カルボキシル化セルロース繊維を製造する方法及び該方法の製品
JP2009530440A (ja) * 2006-03-13 2009-08-27 ザイロス コーポレイション 酸化微生物セルロースおよびその使用
JP2010168716A (ja) * 2008-12-26 2010-08-05 Oji Paper Co Ltd 微細繊維状セルロースシートの製造方法
JP2010168572A (ja) * 2008-12-26 2010-08-05 Kao Corp ガスバリア用材料及びガスバリア性成形体とその製造方法
WO2010134357A1 (ja) * 2009-05-22 2010-11-25 国立大学法人東京大学 セルロースナノファイバー分散液の製造方法、セルロースナノファイバー分散液、セルロースナノファイバー成形体、及びセルロースナノファイバー複合体
JP2013516553A (ja) * 2009-12-31 2013-05-13 ウーペーエム−キュンメネ コーポレイション 繊維含有製品を製造する方法およびシステム
JP2011202010A (ja) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
WO2011121858A1 (ja) * 2010-03-31 2011-10-06 株式会社ホギメディカル 癒着防止材
JP2014136775A (ja) * 2013-01-18 2014-07-28 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2014196580A (ja) * 2013-03-29 2014-10-16 凸版印刷株式会社 耐水耐油紙およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210830A (ja) * 2015-04-30 2016-12-15 国立大学法人 東京大学 セルロースフィルム、及びその製造方法
WO2017022848A1 (ja) * 2015-08-05 2017-02-09 王子ホールディングス株式会社 シート、シートの製造方法、および積層体
JP2017031538A (ja) * 2015-08-05 2017-02-09 王子ホールディングス株式会社 シート、シートの製造方法、および積層体
JP2020512488A (ja) * 2017-03-20 2020-04-23 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコ由来ナノセルロース材料
JP2023017835A (ja) * 2017-03-20 2023-02-07 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコ由来ナノセルロース材料
JP7464676B2 (ja) 2017-03-20 2024-04-09 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコ由来ナノセルロース材料
WO2020128996A1 (en) 2018-12-21 2020-06-25 Stora Enso Oyj Method for treating a fibrous material comprising nanocellulose with an organic acid or organic acid salt
EP3899138A4 (en) * 2018-12-21 2022-08-24 Stora Enso Oyj METHOD FOR TREATING FIBROUS MATERIAL COMPRISING NANOCELLULOSE WITH ORGANIC ACID OR ORGANIC ACID SALT
US11920297B2 (en) 2018-12-21 2024-03-05 Stora Enso Oyj Method for treating a fibrous material comprising nanocellulose with an organic acid or organic acid salt
CN110041438A (zh) * 2019-04-15 2019-07-23 中国科学院理化技术研究所 一种疏水性纤维素纳米片及其制备方法
CN110041438B (zh) * 2019-04-15 2021-06-25 中国科学院理化技术研究所 一种疏水性纤维素纳米片及其制备方法

Similar Documents

Publication Publication Date Title
WO2016072231A1 (ja) 耐水性セルロースシートおよび耐水性セルロースシートの製造方法
WO2010134357A1 (ja) セルロースナノファイバー分散液の製造方法、セルロースナノファイバー分散液、セルロースナノファイバー成形体、及びセルロースナノファイバー複合体
WO2017022848A1 (ja) シート、シートの製造方法、および積層体
JP7142702B2 (ja) 酸化セルロース、酸化セルロースおよびナノセルロースの製造方法ならびにナノセルロース分散液
JPWO2009069641A1 (ja) セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
JP7120009B2 (ja) シート
JP5857881B2 (ja) 微細繊維状セルロース及びその製造方法、不織布
JP2011046793A (ja) セルロースナノファイバーの製造方法
JP6575128B2 (ja) セルロースナノファイバーシートの製造方法
JP6189659B2 (ja) 防曇剤および防曇用フィルム
JP7120010B2 (ja) シート
JP2012001626A (ja) 物理ゲルの製造方法および物理ゲル
WO2016125497A1 (ja) 含金属酸化セルロースナノファイバー分散液およびその製造方法
WO2016125498A1 (ja) 消臭剤およびその製造方法
WO2013176102A1 (ja) 微細繊維状セルロース及びその製造方法、微細繊維状セルロース分散液、不織布
JP2017031548A (ja) シート、シートの製造方法、および積層体
JP2013253200A (ja) 微細繊維状セルロース及びその製造方法、微細繊維状セルロース分散液、不織布
JP6574601B2 (ja) セルロースフィルム、及びその製造方法
JP6569369B2 (ja) シート、シートの製造方法、および積層体
WO2016072230A1 (ja) 耐水性セルロースシートおよび耐水性セルロースシートの製造方法
JP6100534B2 (ja) セルロースナノファイバーの製造方法
JP6374277B2 (ja) セルロースエステル成形品
JP6015232B2 (ja) 酸化セルロース及びセルロースナノファイバーの製造方法
WO2017057710A1 (ja) セルロースナノファイバー分散液及びその製造方法
JP7266235B2 (ja) セルロースナノファイバー及びハロイサイトナノチューブを含む組成物、それを含むフィルム及び複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15856456

Country of ref document: EP

Kind code of ref document: A1