WO2016072137A1 - ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液 - Google Patents

ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液 Download PDF

Info

Publication number
WO2016072137A1
WO2016072137A1 PCT/JP2015/074653 JP2015074653W WO2016072137A1 WO 2016072137 A1 WO2016072137 A1 WO 2016072137A1 JP 2015074653 W JP2015074653 W JP 2015074653W WO 2016072137 A1 WO2016072137 A1 WO 2016072137A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
digit
dispersion
suspension
nano
Prior art date
Application number
PCT/JP2015/074653
Other languages
English (en)
French (fr)
Inventor
木本訓弘
小嶋良太
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to RU2017119668A priority Critical patent/RU2700528C2/ru
Priority to US15/522,063 priority patent/US20170313590A1/en
Priority to KR1020177014996A priority patent/KR102482745B1/ko
Priority to CN201580058444.3A priority patent/CN107074555B/zh
Priority to EP15856245.4A priority patent/EP3216758B1/en
Priority to JP2016557476A priority patent/JP6483721B2/ja
Publication of WO2016072137A1 publication Critical patent/WO2016072137A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0076Methods for manipulating nanostructures not provided for in groups B82B3/0066 - B82B3/0071
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the present invention relates to a purified detonation nanodiamond aggregate suspension and a nanodiamond single-digit nanodispersion.
  • Nanodiamond particles have characteristics such as high mechanical strength, thermal conductivity, optical transparency, low refractive index, high electrical insulation, low dielectric constant, and low coefficient of friction. It is used as an abrasive, an insulating material for semiconductors and circuit boards. In addition, research on applications for glass replacement, electrical and electronic fields, energy fields, biomedical fields, and the like is also underway.
  • Nano diamond particles are manufactured by static high pressure method or detonation method. Nanodiamond particles produced by detonation are refined by subjecting explosives obtained by detonating the explosive in a sealed state to chemical treatment, and then pulverizing with a disperser such as a bead mill or an ultrasonic homogenizer while dispersed in water. From the aqueous dispersion obtained in this manner, the water is removed by ultracentrifugation, concentration drying, freeze drying, spray dryer, or the like.
  • a disperser such as a bead mill or an ultrasonic homogenizer
  • Patent Document 1 an explosive nanodiamond agglomerated powder is dispersed in pure water, and the agglomerated structure is peptized by a bead mill, whereby a primary particle colloid of 5 to 6 nm in diameter [zeta potential: ⁇ 39.2 mV ( 25 ° C.)] (Example 1).
  • the primary particle colloid (slurry) gradually aggregates when left for a long time at room temperature, and grows to an average particle size of 105 nm after several weeks (Example 1).
  • Patent Document 2 a 10% aqueous slurry of detonated nanodiamond agglomerate is peptized by a bead mill to obtain a pure black transparent colloidal solution. When left for several hours, a soft gel is formed. Water is added to this gel. When the concentration was reduced to 2% and filtered through a 400 micron PTFE filter, a stable storage colloid mother liquor was obtained, and this colloidal solution had an order of magnitude of 4.6 ⁇ 0.7 nm. It is described that ultra-fine particles having a diameter accounted for an overwhelming proportion, and the remainder was a group of particles with a wide distribution width having a size of two-digit nanometers (Example 1). However, this fine nanodiamond dispersion has a low concentration.
  • Patent Document 3 discloses a slurry [10 wt%, pH 10 (adjusted with aqueous ammonia)] using diamond particles produced by explosion method and subjected to pretreatment purification (average particle diameter D50: 89 nm), and ball mill After the dispersion treatment, the concentration was adjusted to obtain a fine diamond particle dispersion (2.0 wt%, pH 8), which was subjected to classification, and further purified water was added to add 1.0 wt% It is described that a diamond dispersion liquid [average particle diameter D50: 21.2 nm, zeta potential: ⁇ 40.5 mV (25 ° C.)] was obtained (Example 1). However, this fine diamond dispersion has a large nanodiamond particle size and a low concentration.
  • an object of the present invention is to provide a nano-diamond single-digit nano-dispersed liquid excellent in dispersion stability even when the concentration is high, and a method for producing the same.
  • Another object of the present invention is to provide a purified nanodiamond aggregate suspension that is useful in obtaining a nanodiamond single-digit nanodispersion having excellent characteristics as described above. .
  • the present invention is a suspension of detonated nanodiamond aggregates, and the suspension of nanodiamond aggregates satisfying the following conditions (1) or (2): Provide a suspension.
  • the solid content concentration is preferably 4% by weight or more.
  • the detonation nanodiamond aggregate is preferably an air-cooled detonation nanodiamond aggregate.
  • the present invention also provides a nano-diamond single-digit nano-dispersion (hereinafter sometimes referred to as “single-digit nano-dispersion I”) obtained by crushing the suspension of the nano-diamond aggregate.
  • single-digit nano-dispersion I a nano-diamond single-digit nano-dispersion obtained by crushing the suspension of the nano-diamond aggregate.
  • the solid concentration is preferably 4% by weight or more.
  • the present invention further provides a method for producing a nano-diamond single-digit nano-dispersion, which includes a step of crushing the suspension of nano-diamond aggregates.
  • the present invention further provides a single-digit nanodiamond dispersion (hereinafter referred to as “one”) having a solid content concentration of 5.2% by weight or more and an electric conductivity per solid content concentration of 1% by weight of 300 ⁇ S / cm or less. Sometimes referred to as “girder nanodispersion II”).
  • the solid content concentration is preferably 5.5% by weight or more.
  • the pH is preferably 8 or more.
  • the zeta potential (25 ° C.) of the nanodiamond particles is preferably ⁇ 42 mV or less.
  • the single-digit nanodispersion II is preferably derived from diamond synthesized by an air-cooled detonation method.
  • [7] A single-digit nanodiamond nanodispersion obtained by crushing a suspension of nanodiamond aggregates according to any one of [1] to [6] above.
  • [8] The nanodiamond single-digit nanodispersion according to the above [7], wherein the solid content concentration is 4% by weight or more.
  • a method for producing a nano-diamond single-digit nano-dispersion comprising a step of crushing a suspension of nano-diamond aggregates according to any one of [1] to [6] above.
  • a nanodiamond single-digit nanodispersion having excellent dispersion stability can be easily obtained even by high crushing treatment.
  • the nano-diamond single-digit nano-dispersed liquid of the present invention hardly aggregates even at a high concentration and is excellent in dispersion stability.
  • the method for producing a nanodiamond single-digit nanodispersion of the present invention it is possible to easily produce a nanodiamond single-digit nanodispersion that is difficult to aggregate even at a high concentration and has excellent dispersion stability by a simple operation. .
  • the suspension of nanodiamond aggregate of the present invention is a detonation nanodiamond aggregate suspension, and the pH and electrical conductivity of the suspension satisfy the following conditions (1) or (2): Satisfy.
  • (1) At pH 4-7 electrical conductivity per solid content concentration of 1% by weight is 50 ⁇ S / cm or less.
  • suspension of nanodiamond aggregate that satisfies the condition (1) may be referred to as “suspension A of nanodiamond aggregate”.
  • a suspension of nanodiamond aggregate that satisfies the condition (2) may be referred to as “suspension B of nanodiamond aggregate”.
  • Nano-diamond particles can be manufactured by using, for example, detonation method, flux method, static high-pressure method, high-temperature high-pressure method, etc. using elemental minerals made of carbon (for example, graphite) as a raw material.
  • nanodiamond particles having an extremely small average particle diameter of primary particles can be obtained. Therefore, nanodiamonds produced by a detonation method (particularly, an oxygen-deficient detonation method) are used.
  • the detonation method is a method in which a dynamic impact is applied by detonating explosives, and elemental minerals made of carbon are directly converted into particles having a diamond structure.
  • the explosive is not particularly limited, and examples thereof include cyclotrimethylenetrinitroamine (RDX), cyclotetramethylenetetranitramine (HMX), trinitrotoluene (TNT), trinitrophenylmethylnitroamine, and tetranitric acid. Pentaerythritol, tetranitromethane, and mixtures thereof (eg, TNT / HMX, TNT / RDX, etc.) can be used.
  • the present invention uses a detonation synthesized by an air-cooled detonation method as a raw material. It is particularly useful in cases.
  • the air-cooled detonation nanodiamond and the water-cooled detonation nanodiamond differ in the type and amount of surface functional groups, the average primary particle diameter, and the like.
  • air-cooled detonation nanodiamond Compared with water-cooled detonation nanodiamond, air-cooled detonation nanodiamond has an advantage of high wettability to water because it has many acidic functional groups and high hydrophilicity.
  • the average primary particle size is 5 to 6 nm in the water-cooled detonation method, but is as small as 4 to 5 nm in the air-cooled detonation method.
  • the strong acid used for the acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia. These can be used alone or in combination of two or more.
  • Acid treatment is usually performed in water.
  • the concentration of the strong acid (mineral acid or the like) in the acid treatment is, for example, 1 to 50% by weight, preferably 3 to 30% by weight, and more preferably 5 to 20% by weight.
  • the acid treatment time is, for example, 0.1 to 24 hours, preferably 0.2 to 10 hours, and more preferably 0.3 to 5 hours.
  • the acid treatment temperature is, for example, 70 to 150 ° C., preferably 90 to 130 ° C., more preferably 100 to 125 ° C.
  • the acid treatment may be performed under reduced pressure, normal pressure, or increased pressure, but is preferably performed under normal pressure in terms of operability and equipment.
  • the nanodiamond cage contains graphite.
  • the nano diamond soot preferably, the nano diamond soot subjected to the acid treatment
  • an oxidation treatment it is preferable to subject the nano diamond soot (preferably, the nano diamond soot subjected to the acid treatment) to an oxidation treatment.
  • Examples of the oxidizing agent used in the oxidation treatment include concentrated nitric acid, fuming nitric acid, fuming sulfuric acid; chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, or salts thereof; and hydrogen peroxide. . These can be used alone or in combination of two or more. Among these, as the oxidizing agent, it is preferable to use at least one selected from the group consisting of chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid or salts thereof, and hydrogen peroxide.
  • the oxidation treatment is usually performed in a solvent.
  • water is preferable.
  • the concentration of the oxidizing agent in the oxidation treatment is, for example, 3 to 50% by weight, preferably 6 to 30% by weight.
  • the amount of the oxidizing agent used is, for example, 300 to 5000 parts by weight, preferably 500 to 3000 parts by weight, and more preferably 800 to 2000 parts by weight with respect to 100 parts by weight of nanodiamond.
  • the oxidation treatment is preferably performed in the presence of a mineral acid from the viewpoint of graphite removal efficiency.
  • a mineral acid examples include those exemplified above.
  • a preferred mineral acid is sulfuric acid.
  • the concentration of the mineral acid is, for example, 5 to 80% by weight, preferably 10 to 70% by weight, and more preferably 20 to 60% by weight.
  • the treatment time in the oxidation treatment is, for example, 1 hour or more (eg 1 to 24 hours), preferably 2 hours or more (eg 2 to 15 hours), more preferably 3 hours or more (eg 3 to 10 hours).
  • the treatment temperature is, for example, 100 ° C. or higher (eg 100 to 200 ° C.), preferably 120 ° C. or higher (eg 120 to 180 ° C.), more preferably 130 ° C. or higher (eg 130 to 160 ° C.), particularly preferably 135. It is higher than or equal to ° C. (eg 135 to 150 ° C.).
  • the oxidation treatment may be performed under reduced pressure, normal pressure, or increased pressure, but is preferably performed under normal pressure from the viewpoint of operability and facilities, and also when performed under increased pressure, 5 MPa or less is preferable. Therefore, the pressure is preferably 0.1 to 5 MPa, more preferably 0.1 to 1 MPa, and still more preferably 0.1 to 0.5 MPa.
  • the nanodiamond particles obtained by subjecting the nanodiamond soot to acid treatment generally have a so-called aggregate structure in which a graphite layer settles and adheres to the nanodiamond primary particle surface, and the graphite layer entrains a plurality of primary particles. And exists as an aggregate (coagulum) showing a stronger aggregation state than van der Waals aggregation.
  • nanodiamond particles obtained by subjecting the nanodiamond cocoon or the acid-treated product to an oxidation treatment generally exist as an aggregate in which nanodiamond primary particles aggregate between particles (van der Waals aggregation).
  • nanodiamond aggregates In the present specification, the agglomerates and the van der Waals aggregates may be collectively referred to as “nanodiamond aggregates”.
  • the D50 (median diameter) of the nanodiamond aggregate is usually 20 nm or more, and is generally in the range of 100 nm to 10 ⁇ m.
  • nanodiamond particles (aggregates) can be obtained by washing with water (pure water, ion exchange water, etc.).
  • the surface of the nanodiamond particles thus obtained usually has an acidic functional group such as a carboxyl group.
  • the nanodiamond particles (aggregate) after the oxidation treatment with an alkaline solution (for example, an aqueous sodium hydroxide solution), acidic functional groups (for example, carboxyl groups) on the surface of the nanodiamond particles are converted into salts (for example, Carboxylate).
  • the concentration of alkali in the alkali treatment is, for example, 1 to 50% by weight, preferably 3 to 30% by weight, and more preferably 5 to 20% by weight.
  • the temperature of the alkali treatment is, for example, 70 to 150 ° C., preferably 90 to 130 ° C., more preferably 100 to 125 ° C.
  • the alkali treatment time is, for example, 0.1 to 24 hours, preferably 0.2 to 10 hours, and more preferably 0.3 to 5 hours.
  • the surface of the nanodiamond particles can be made free acidic functional groups again by treating the alkali-treated nanodiamond particles with an acid (for example, hydrochloric acid).
  • the acid treatment may be performed at room temperature or under heating.
  • the nanodiamond aggregate after the oxidation treatment By subjecting the nanodiamond aggregate after the oxidation treatment, the nanodiamond aggregate after the oxidation treatment to an alkali treatment, or the one subjected to further acid treatment, by repeatedly washing with water, an electrolyte (NaCl, etc.) that is an impurity Can be removed. By removing the electrolyte, the dispersibility and dispersion stability of the nanodiamond can be improved.
  • an electrolyte NaCl, etc.
  • the detonation nanodiamond aggregate suspension is a nanodiamond (aggregate) obtained by the above method (at least part of the acidic functional groups on the surface may form a salt, Further, it may be subjected to a classification treatment if necessary) and suspended in a dispersion medium.
  • the dispersion medium include water; alcohols such as methanol, ethanol and ethylene glycol; ketones such as acetone; polar organic solvents such as lactams and amides such as N-methylpyrrolidone; and mixed solvents thereof.
  • a dispersion medium containing at least water for example, containing 50% by weight or more of water is preferable, and water is particularly preferable.
  • the pH of the suspension A of nanodiamond aggregate is 4-7.
  • the pH of the suspension A of nanodiamond aggregates is preferably 4 to 6, and more preferably 4.1 to 5.5.
  • the electrical conductivity per 1% by weight of the solid content concentration (the concentration of nanodiamond) of the suspension A of nanodiamond aggregate is 50 ⁇ S / cm or less.
  • the electrical conductivity per 1% by weight of the solid content concentration of the suspension A of the nanodiamond aggregate is preferably 30 ⁇ S / cm or less, more preferably 20 ⁇ S / cm or less, and particularly preferably 10 ⁇ S / cm or less.
  • the electrical conductivity per 1% by weight of the solid content of the suspension A of nanodiamond aggregates is preferably low.
  • the lower limit of the electrical conductivity may be about 0.5 ⁇ S / cm.
  • the pH of the suspension of nanodiamond aggregate is less than 4 or more than 7 and less than 9.5, and even when the pH is in the range of 4 to 7, the electrical conductivity per 1% by weight of the solid content concentration is When it exceeds 50 ⁇ S / cm, it becomes difficult to obtain a nano-diamond single-digit nano-dispersed liquid excellent in dispersion stability even at a high concentration.
  • the pH of the suspension B of nanodiamond aggregate is 8 to 10.5.
  • the pH of the suspension B of nanodiamond aggregates is preferably 9 to 10.3, more preferably 9.5 to 10.2.
  • the electrical conductivity per 1% by weight of the solid content concentration of the suspension B of nanodiamond aggregate is 300 ⁇ S / cm or less.
  • the electric conductivity per 1% by weight of the solid content of the suspension B of the nanodiamond aggregate is preferably 200 ⁇ S / cm or less, more preferably 150 ⁇ S / cm or less, and particularly preferably 100 ⁇ S / cm or less.
  • the electrical conductivity per 1% by weight of the solid content of the suspension B of nanodiamond aggregate is preferably low.
  • the lower limit of the electrical conductivity may be about 5 ⁇ S / cm.
  • the pH of the suspension of nanodiamond aggregates is more than 7 and less than 8 or more than 10.5, and even when the pH is in the range of 8 to 10.5, the electric conductivity per 1% by weight of the solid content concentration Is more than 300 ⁇ S / cm, it becomes difficult to obtain a nano-diamond single-digit nano-dispersion having excellent dispersion stability even at a high concentration.
  • the suspension A of the nanodiamond aggregate in the case of (1) is, for example, treating the suspension of the nanodiamond aggregate after the treatment with the strong acid or the like with an alkali such as an aqueous sodium hydroxide solution (preferably Heat treatment), and after removing the supernatant, preferably by decantation, etc., adjust the pH by adding acid such as hydrochloric acid, adjust the electrical conductivity by repeating washing with water, ultrapure water, etc. if necessary It can manufacture by adding to and adjusting to a predetermined density
  • concentration By increasing the number of times of water washing and the amount of water used for water washing, the ionic component can be more completely removed and the electrical conductivity can be lowered.
  • the suspension B of nanodiamond aggregates in the case of (2) above is obtained by treating the suspension of nanodiamond aggregates after the treatment with the strong acid or the like with an alkali such as an aqueous sodium hydroxide solution (
  • an alkali such as an aqueous sodium hydroxide solution
  • it can be manufactured by adjusting the pH and electrical conductivity by repeating the washing with water while maintaining the alkalinity, and adjusting to a predetermined concentration by adding ultrapure water or the like as necessary.
  • the pH and electrical conductivity can be adjusted to desired values depending on the number of times of water washing and the amount of water used for water washing.
  • the solid content concentration is 4% by weight or more (for example, from the viewpoint of obtaining a single-digit nanodiamond dispersion liquid having a high concentration by dispersion treatment) 4 to 20% by weight) is preferable, more preferably 5.5% by weight or more (for example, 5.5 to 15% by weight), and still more preferably 7% by weight or more (for example, 7 to 12% by weight).
  • the nano-diamond single-digit nano-dispersion of the present invention (single-digit nano-dispersion I) is obtained by subjecting the suspension of the nano-diamond aggregate of the present invention to a crushing treatment (hereinafter sometimes referred to as dispersion treatment). This is a dispersion obtained.
  • the nano-diamond single-digit nano-dispersion is a dispersion in which diamond is dispersed in single-digit nano-size, and more specifically, a dispersion in which D50 of diamond particles in the dispersion is 1 to 9 nm.
  • “disintegration” is used in a broad sense including peptization.
  • This single-digit nano-dispersion I is characterized by excellent dispersion stability even when the solid content concentration is high.
  • the solid content concentration in the single-digit nano-dispersion I is, for example, 4% by weight or more (for example, 4 to 15% by weight).
  • the dispersion treatment can be performed, for example, by using a dispersing machine such as a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high pressure homogenizer, an ultrasonic homogenizer, a colloid mill, or a wet jet mill.
  • a dispersing machine such as a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high pressure homogenizer, an ultrasonic homogenizer, a colloid mill, or a wet jet mill.
  • a dispersing machine such as a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high pressure homogenizer, an ultrasonic homogenizer, a colloid mill, or a wet jet mill.
  • the method of dispersing using a bead mill or an ultrasonic homogenizer is preferable
  • the pH of the suspension is 8 or more (for example, 8 to 12), preferably 9 or more (for example, from the viewpoint of improving dispersibility and dispersion stability). 9 to 11), more preferably 9.5 to 10.5.
  • a classification process may be performed as necessary.
  • the present invention also has a solid content concentration (concentration of nanodiamond) of 5.2% by weight or more (for example, 5.2 to 15% by weight), and an electric conductivity per 1% by weight of the solid content of 300 ⁇ S /
  • a nano-diamond single-digit dispersion (single-digit nano-dispersion II) having a size of cm or less (for example, 50 to 300 ⁇ S / cm) is provided.
  • Such a nanodiamond single-digit nanodispersion can be easily produced by subjecting the suspension of the nanodiamond aggregate of the present invention to a dispersion treatment.
  • the nano-diamond single-digit nano-dispersion (single-digit nano-dispersion II) is characterized by excellent dispersion stability even when the solid concentration is high.
  • D50 of the nano-diamond particles is, for example, 3.5 to 9 nm, preferably 4 to 7 nm.
  • the dispersion medium for the dispersion examples include those exemplified as the dispersion medium for the detonation nanodiamond aggregate suspension.
  • a dispersion medium containing at least water for example, containing 50% by weight or more of water is preferable, and water is particularly preferable.
  • the solid concentration is preferably 5.5% by weight or more (for example, 5.5 to 12% by weight). ), More preferably 6% by weight or more (for example, 6 to 10% by weight).
  • the electrical conductivity per 1% by weight of the solid content is preferably 250 ⁇ S / cm or less (for example, 120 to 250 ⁇ S / cm), more preferably 210 ⁇ S / cm or less (for example, 160 to 210 ⁇ S / cm).
  • the pH of the nanodiamond single-digit nanodispersion of the present invention is preferably 8 or more (for example, 8 to 12) from the viewpoint of dispersion stability. It is preferably 8.3 or more (for example, 8.3 to 11), more preferably 8.6 or more (for example, 8.6 to 10).
  • the zeta potential (25 ° C.) of the nanodiamond particles in the nanodiamond single-digit nanodispersion of the present invention is, for example, ⁇ It is 30 mV or less (for example, ⁇ 70 mV to ⁇ 30 mV), preferably ⁇ 42 mV or less (for example, ⁇ 65 mV to ⁇ 42 mV), more preferably ⁇ 45 mV or less (for example, ⁇ 60 mV to ⁇ 45 mV).
  • the zeta potential of the nanodiamond particles in the nanodiamond single-digit nanodispersion is a value measured for a nanodiamond single-digit nanodispersion having a nanodiamond concentration of 0.2% by weight and 25 ° C.
  • ultrapure water is used as the diluent.
  • the nano-diamond single-digit nano-dispersion (single-digit nano-dispersion I, single-digit nano-dispersion II) of the present invention is preferably derived from diamond synthesized by an air-cooled detonation method.
  • the physical properties of the suspension, dispersion, and nanodiamond were measured by the following method.
  • the solid content of the suspension or dispersion was determined by heating 3 to 5 g of a precisely weighed liquid to 100 ° C. or higher to evaporate water, and accurately weighing the dried product with a precision balance.
  • the D50 of the nanodiamond particles and the zeta potential (25 ° C .; concentration 0.2% by weight) of the nanodiamond particles in the dispersion are the trade name “Zetasizer Nano ZS” manufactured by Spectris, Inc. [D50: Dynamic Light Scattering Method (non-contact backscattering method), zeta potential: laser Doppler electrophoresis method].
  • Preparation Example 1 (Oxidation treatment of air-cooled detonation nanodiamond) 200 g of air-cooled detonation nanodiamond cocoon (manufactured by Czech ALIT) having a primary particle size of 4-6 nm was weighed, 2 L of 10% hydrochloric acid aqueous solution was added, and heat treatment was performed under reflux for 1 hour. . After cooling, washing with water was carried out by decantation, and washing was performed until the pH of the precipitate became 2, and the supernatant was removed as much as possible. Next, 2 L of a 60% sulfuric acid aqueous solution and 2 L of a 50% aqueous chromic acid solution were added to the precipitate, and then heat treatment was performed under reflux for 5 hours. After cooling, washing with water was carried out by decantation, and washing was performed until the coloring of the supernatant disappeared, and the supernatant was removed as much as possible. D50 of the nano diamond aggregate obtained by this oxidation treatment was 2 ⁇ m.
  • Example 1 (dispersion pretreatment of air-cooled detonation nanodiamond-1) 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, the supernatant was removed by decantation, and 6N hydrochloric acid was added to adjust the pH to 2.5, followed by washing with water by centrifugal sedimentation. Ultrapure water was added to the final centrifugal precipitate to adjust the solid content concentration to 8%. The electric conductivity in this state was 64 ⁇ S / cm, and the pH was 4.3.
  • Example 2 (dispersion pretreatment of air-cooled detonation nanodiamond-2) 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, it was washed with water until the pH became 10 by centrifugal sedimentation while remaining alkaline. Ultrapure water was added to the final centrifugal precipitate to adjust the solid content concentration to 8%. The electric conductivity in this state was 400 ⁇ S / cm, and the pH was 10.3.
  • Example 3 (dispersion pretreatment-3 of air-cooled detonation nanodiamond) 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, the supernatant was removed by decantation, and hydrochloric acid was added to adjust the pH to 2.5, followed by washing with an ultrafiltration membrane. Ultrapure water was added to the final concentrated solution to adjust the solid concentration to 8%. The electric conductivity in this state was 50 ⁇ S / cm, and the pH was 5.2.
  • Example 4 (dispersion pretreatment of air-cooled detonation nanodiamond-4) 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, it was washed with water until it became pH 10 with an ultrafiltration membrane while remaining alkaline. Ultrapure water was added to the final concentrated solution to adjust the solid concentration to 8%. The electric conductivity in this state was 511 ⁇ S / cm and the pH was 9.8.
  • Example 5 (single-digit nanodispersion-1 of air-cooled detonation nanodiamond) Dispersion using an ultrasonic homogenizer was performed using the pre-dispersion slurry obtained in Example 1 and Example 3.
  • the apparatus used was UH-300 manufactured by SMT.
  • a standard horn was immersed in a solution in which pH was adjusted to 10 using sodium hydroxide for each slurry of Example 1 and Example 3, and ultrasonic waves were irradiated for 30 minutes. After irradiation, coarse particles were removed by a classification operation by centrifugation to obtain an air-cooled detonation nanodiamond dispersion.
  • the solid content concentration of the dispersion obtained from Example 1 was 6.4%, the D50 of the nanodiamond particles was 8.7 nm, the electrical conductivity was 1,260 ⁇ S / cm, the pH was 8.67, and the zeta of the nanodiamond particles.
  • the potential (25 ° C .; concentration 0.2% by weight) was ⁇ 47 mV.
  • the solid content concentration of the dispersion obtained from Example 3 is 6.2%, the D50 of the nanodiamond particles is 7.4 nm, the electric conductivity is 1,230 ⁇ S / cm, the pH is 8.55, and the zeta of the nanodiamond particles.
  • the potential (25 ° C .; concentration 0.2% by weight) was ⁇ 48 mV.
  • Example 6 single-digit nano-dispersion of air-cooled detonation nanodiamond-2
  • the same operation as in Example 5 was performed except that pH adjustment was not performed, to obtain an air-cooled detonation nanodiamond dispersion.
  • the solid content concentration of the dispersion obtained from Example 2 was 6.6%
  • the D50 of the nanodiamond particles was 6.8 nm
  • the electrical conductivity was 1,250 ⁇ S / cm
  • the pH was 9.04
  • the zeta of the nanodiamond particles The potential (25 ° C .; concentration 0.2% by weight) was ⁇ 48 mV.
  • the solid content concentration of the dispersion obtained from Example 4 was 6.4%, the D50 of the nanodiamond particles was 6.4 nm, the electrical conductivity was 1,280 ⁇ S / cm, the pH was 9.12, the zeta of the nanodiamond particles The potential (25 ° C .; concentration 0.2% by weight) was ⁇ 47 mV.
  • Example 7 (single-digit nanodispersion-3 of air-cooled detonation nanodiamond) Using the pre-dispersion slurry obtained in Example 1 and Example 3, bead mill dispersion was performed.
  • Ultra Apex Mill UAM-015 manufactured by Kotobuki Industries Co., Ltd. was used as the apparatus. After filling pulverization media with zirconia beads having a diameter of 0.03 mm to 60% of the volume of the pulverization vessel, 300 mL of each slurry of Example 1 and Example 3 adjusted to pH 10 was circulated at a flow rate of 10 L / h. The peripheral speed was set to 10 m / s, and crushing was performed for 90 minutes.
  • the crushed liquid was collected, and coarse particles were removed by a classification operation by centrifugation to obtain an air-cooled detonation nanodiamond dispersion.
  • the solid content concentration of the dispersion obtained from Example 1 was 7.4%
  • the D50 of the nanodiamond particles was 5.4 nm
  • the electrical conductivity was 1,410 ⁇ S / cm
  • the pH was 9.14
  • the nanodiamond particle zeta The potential (25 ° C .; concentration 0.2% by weight) was ⁇ 49 mV.
  • the solid content concentration of the dispersion obtained from Example 3 was 7.2%, the D50 of the nanodiamond particles was 5.8 nm, the electrical conductivity was 1,380 ⁇ S / cm, the pH was 9.05, and the zeta of the nanodiamond particles.
  • the potential 25 ° C .; concentration 0.2% by weight was ⁇ 48 mV.
  • Example 8 single-digit nano-dispersion of air-cooled detonation nanodiamond-4.
  • bead mill dispersion was performed. Except that the pH was not adjusted, the same operation as in Example 7 was performed to obtain an air-cooled detonation nanodiamond dispersion.
  • the solid content concentration of the dispersion obtained from Example 2 was 7.3%
  • the D50 of the nanodiamond particles was 5.2 nm
  • the electrical conductivity was 1,320 ⁇ S / cm
  • the pH was 8.78
  • the zeta of the nanodiamond particles The potential (25 ° C .; concentration 0.2% by weight) was ⁇ 48 mV.
  • the solid content concentration of the dispersion obtained from Example 3 was 7.2%, the D50 of the nanodiamond particles was 5.5 nm, the electrical conductivity was 1,350 ⁇ S / cm, the pH was 9.07, and the zeta of the nanodiamond particles.
  • the potential 25 ° C .; concentration 0.2% by weight was ⁇ 48 mV.
  • Comparative Example 1 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, the supernatant is removed by decantation, hydrochloric acid is added to adjust the pH to 2.5, and then water washing is performed by centrifugal sedimentation. The solid content concentration is 8% and the electric conductivity becomes 800 ⁇ S / cm. At that time, the washing was finished. Using the obtained slurry, a dispersion was obtained in the same manner as in Example 5. The solid content concentration of the dispersion was 1.2%, and the particle diameter was measured. As a result, the D50 of the nanodiamond particles was 22 nm. When the dispersion treatment was performed in a state where the electrical conductivity was high, only a part of the nanodiamond was dispersed (there are many coarse particles), and the primary particles were not dispersed.
  • Comparative Example 2 1 L of a 10% aqueous sodium hydroxide solution was added to the precipitate obtained in Preparation Example 1, followed by heat treatment under reflux for 1 hour. After cooling, it was washed with water until the pH was 11 by centrifugal sedimentation while remaining alkaline. Ultrapure water was added to the final centrifugal precipitate to adjust the solid content concentration to 8%. The electric conductivity in this state was 2,000 ⁇ S / cm. Using the obtained slurry, a dispersion was obtained in the same manner as in Example 5. The solid content concentration of the dispersion was 2.2%, and the particle diameter was measured. As a result, the D50 of the nanodiamond particles was 25 nm. When the dispersion treatment was performed in a state where the electrical conductivity was high, only a part of the nanodiamond was dispersed (there are many coarse particles), and the primary particles were not dispersed.
  • dispersion stability The dispersion stability of the dispersions obtained in Examples and Comparative Examples was evaluated by the following method. One month after the date of preparation of the dispersion, D50 of the nanodiamond particles was measured. As a result, the dispersion liquid of the example was the same as D50 of the nanodiamond particles immediately after preparation of the dispersion liquid, and there was no change. On the other hand, the dispersion liquid of the comparative example aggregated to form a precipitate and was clearly not nano-sized and dispersed.
  • nanodiamond aggregates of the present invention From the suspension of nanodiamond aggregates of the present invention, a single-digit nanodiamond dispersion having excellent dispersion stability can be easily obtained even at a high concentration.
  • the nano-diamond single-digit nano-dispersed liquid of the present invention hardly aggregates even at a high concentration and is excellent in dispersion stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明のナノダイヤモンド凝集体の懸濁液は、爆轟法ナノダイヤモンド凝集体の懸濁液であって、懸濁液のpH及び電気伝導度が下記(1)又は(2)の条件を充足することを特徴とする。 (1)pH4~7で、固形分濃度1重量%あたりの電気伝導度が50μS/cm以下である (2)pH8~10.5で、固形分濃度1重量%あたりの電気伝導度が300μS/cm以下である

Description

ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液
 本発明は、精製された爆轟法ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液に関する。本願は、2014年11月7日に日本に出願した特願2014-226655、及び2015年6月19日に日本に出願した特願2015-123758の優先権を主張し、その内容をここに援用する。
 ナノダイヤモンド粒子は高い機械的強度、熱伝導性、光学的透明性、低屈折率、高電気絶縁性、低誘電率性、低い摩擦係数等の特性を有することから、潤滑剤、表面改質剤、研磨剤、半導体や回路基板の絶縁材料等として利用されている。また、ガラス代替用途や、電気電子分野、エネルギー分野、バイオ医療分野等への応用研究も進められている。
 ナノダイヤモンド粒子は静的高圧法又は爆轟法により製造されている。爆轟法によるナノダイヤモンド粒子は、爆薬を密閉した状態で爆発させて得られる爆射煤を化学処理に付して精製し、水に分散した状態でビーズミルや超音波ホモジナイザー等の分散機で粉砕して得られる水分散体から、超遠心分離法、濃縮乾燥法、凍結乾燥法、スプレードライヤー法等により水分を除去して製造される。
 特許文献1には、爆発法ナノダイヤモンド凝膠体粉末を純水に分散させ、ビーズミルによって凝膠構造を解膠することにより、直径5~6nmの一次粒子コロイド[ゼータ電位:-39.2mV(25℃)]を得たことが記載されている(実施例1)。しかし、この一次粒子コロイド(スラリー)は、室温で長時間放置すると徐々に凝集が進み、数週間後には平均粒径105nmまで成長する(実施例1)。
 特許文献2には、爆轟法ナノダイヤモンド凝膠体の10%水性スラリーをビーズミルにより解膠すると、真黒色透明なコロイド溶液が得られ、数時間放置すると柔らかいゲルとなり、このゲルに水を加えて濃度を2%まで下げ、400ミクロンPTFEフィルターで濾過すると、安定な保存用コロイド母液が得られたこと、及び、このコロイド溶液には、一桁ナノサイズである4.6±0.7nmの直径を持つ極超微粒子が圧倒的な割合を占め、残りは二桁ナノの大きさを持つ、分布幅の広い粒子群であったことが記載されている(実施例1)。しかし、この微小ナノダイヤモンド分散液は濃度が低い。
 特許文献3には、爆射法で生成したダイヤモンド粒子に前処理精製を施したもの(平均粒径D50:89nm)を用いてスラリー[10重量%、pH10(アンモニア水により調整)]とし、ボールミルで分散処理を施した後、濃度を調整して微小ダイヤモンド粒子分散液(2.0重量%、pH8)を得、これを分級に付し、さらに純水を加えて1.0重量%の微小ダイヤモンド分散液[平均粒径D50:21.2nm、ゼータ電位:-40.5mV(25℃)]を得たことが記載されている(実施例1)。しかし、この微小ダイヤモンド分散液は、ナノダイヤモンドの粒径が大きく、しかも濃度が低い。
特開2005-001983号公報 特開2009-209027号公報 特開2010-126669号公報
 したがって、本発明の目的は、濃度が高くても分散安定性に優れたナノダイヤモンド一桁ナノ分散液とその製造方法を提供することにある。
 また、本発明の他の目的は、上記のような優れた特性を有するナノダイヤモンド一桁ナノ分散液を得る上で有用な、精製されたナノダイヤモンド凝集体の懸濁液を提供することにある。
 本発明者らは、爆轟法で合成された人工ダイヤモンドを含む爆轟煤から一桁ナノ分散を阻害する要因(金属不純物、グラファイトカーボン等)を除去する工程について詳細に検討を加えた結果、塩化ナトリウム等の電解質がナノダイヤモンドの一桁ナノ分散を阻害することを見いだし、それに基づいて電気伝導度を指標とした洗浄方法を見いだした。より具体的には、爆轟法ナノダイヤモンド凝集体の懸濁液を特定のpH及び電気伝導度に調整するという分散前処理(洗浄処理)を施した後、これを分散処理(解砕処理)に付すと、例えば4重量%以上という高い濃度であっても、長時間保存した場合にも凝集が生じにくい分散安定性に優れたナノダイヤモンド一桁ナノ分散液が得られることを見いだした。本発明はこれらの知見をもとに、さらに検討を重ねて完成したものである。
 すなわち、本発明は、爆轟法ナノダイヤモンド凝集体の懸濁液であって、懸濁液のpH及び電気伝導度が下記(1)又は(2)の条件を充足するナノダイヤモンド凝集体の懸濁液を提供する。
(1)pH4~7で、固形分濃度1重量%あたりの電気伝導度が50μS/cm以下である
(2)pH8~10.5で、固形分濃度1重量%あたりの電気伝導度が300μS/cm以下である
 前記ナノダイヤモンド凝集体の懸濁液において、固形分濃度は4重量%以上であることが好ましい。
 前記爆轟法ナノダイヤモンド凝集体は空冷爆轟法ナノダイヤモンド凝集体であることが好ましい。
 本発明は、また、前記ナノダイヤモンド凝集体の懸濁液を解砕して得られるナノダイヤモンド一桁ナノ分散液(以下、「一桁ナノ分散液I」と称する場合がある)を提供する。
 前記一桁ナノ分散液Iにおいて、固形分濃度は4重量%以上であるのが好ましい。
 本発明は、さらに、前記のナノダイヤモンド凝集体の懸濁液を解砕する工程を含むナノダイヤモンド一桁ナノ分散液の製造方法を提供する。
 このダイヤモンド一桁ナノ分散液の製造方法において、ナノダイヤモンド凝集体の懸濁液のpHを8以上とした状態で該懸濁液を解砕処理に付すのが好ましい。
 また、ナノダイヤモンド凝集体の懸濁液の解砕処理をビーズミル又は超音波を用いて行うことが好ましい。
 本発明は、さらにまた、固形分濃度が5.2重量%以上で、且つ固形分濃度1重量%あたりの電気伝導度が300μS/cm以下であるナノダイヤモンド一桁ナノ分散液(以下、「一桁ナノ分散液II」と称する場合がある)を提供する。
 この一桁ナノ分散液IIにおいて、固形分濃度は5.5重量%以上であるのが好ましい。   
 また、この一桁ナノ分散液IIにおいて、pHは8以上であることが好ましい。
 さらに、この一桁ナノ分散液IIにおいて、ナノダイヤモンド粒子のゼータ電位(25℃)が-42mV以下であることが好ましい。
 また、この一桁ナノ分散液IIは、空冷爆轟法で合成されたダイヤモンド由来のものであることが好ましい。
 すなわち、本発明は以下に関する。
[1]爆轟法ナノダイヤモンド凝集体の懸濁液であって、懸濁液のpH及び電気伝導度が下記(1)又は(2)の条件を充足するナノダイヤモンド凝集体の懸濁液。
(1)pH4~7で、固形分濃度1重量%あたりの電気伝導度が50μS/cm以下である
(2)pH8~10.5で、固形分濃度1重量%あたりの電気伝導度が300μS/cm以下である
[2]固形分濃度が4重量%以上である上記[1]記載のナノダイヤモンド凝集体の懸濁液。
[3]爆轟法ナノダイヤモンド凝集体が空冷爆轟法ナノダイヤモンド凝集体である上記[1]又は[2]記載のナノダイヤモンド凝集体の懸濁液。
[4]爆轟法ナノダイヤモンド凝集体が爆轟法で生成したナノダイヤモンド粒子を酸処理及び/又は酸化処理に付したものである上記[1]~[3]のいずれか1に記載のナノダイヤモンド凝集体の懸濁液。
[5]前記ナノダイヤモンド凝集体のD50が20nm~10μmである上記[1]~[4]のいずれか1に記載のナノダイヤモンド凝集体の懸濁液。
[6]懸濁液の分散媒が水を50重量%以上含む水性溶媒である上記[1]~[5]のいずれか1に記載のナノダイヤモンド凝集体の懸濁液。
[7]上記[1]~[6]のいずれか1に記載のナノダイヤモンド凝集体の懸濁液を解砕して得られるナノダイヤモンド一桁ナノ分散液。
[8]固形分濃度が4重量%以上である上記[7]記載のナノダイヤモンド一桁ナノ分散液。
[9]ナノダイヤモンド粒子のD50が3.5~9nmである上記[7]又は[8]記載のナノダイヤモンド一桁分散液。
[10]分散液の分散媒が水を50重量%以上含む水性溶媒である上記[7]~[9]のいずれか1に記載のナノダイヤモンド一桁ナノ分散液。
[11]上記[1]~[6]のいずれか1に記載のナノダイヤモンド凝集体の懸濁液を解砕する工程を含むナノダイヤモンド一桁ナノ分散液の製造方法。
[12]ナノダイヤモンド凝集体の懸濁液のpHを8以上とした状態で該懸濁液を解砕処理に付す上記[11]記載のナノダイヤモンド一桁ナノ分散液の製造方法。
[13]ナノダイヤモンド凝集体の懸濁液の解砕処理をビーズミル又は超音波を用いて行う上記[11]又は[12]記載のナノダイヤモンド一桁ナノ分散液の製造方法。
[14]固形分濃度が5.2重量%以上で、且つ固形分濃度1重量%あたりの電気伝導度が300μS/cm以下であるナノダイヤモンド一桁ナノ分散液。
[15]固形分濃度が5.5重量%以上である上記[14]記載のナノダイヤモンド一桁ナノ分散液。
[16]pHが8以上である上記[14]又は[15]記載のナノダイヤモンド一桁ナノ分散液。
[17]ナノダイヤモンド粒子のゼータ電位(25℃)が-42mV以下である上記[14]~[16]のいずれか1に記載のナノダイヤモンド一桁ナノ分散液。
[18]空冷爆轟法で合成されたダイヤモンド由来の上記[14]~[17]のいずれか1に記載のナノダイヤモンド一桁ナノ分散液。
[19]ナノダイヤモンド粒子のD50が3.5~9nmである上記[14]~[18]のいずれか1に記載のナノダイヤモンド一桁ナノ分散液。
[20]分散液の分散媒が水を50重量%以上含む水性溶媒である上記[14]~[19]のいずれか1に記載のナノダイヤモンド一桁ナノ分散液。
 本発明のナノダイヤモンド凝集体の懸濁液によれば、解砕処理することにより、高い濃度でも分散安定性に優れたナノダイヤモンド一桁ナノ分散液を容易に得ることができる。
 本発明のナノダイヤモンド一桁ナノ分散液は、高い濃度であっても凝集しにくく、分散安定性に優れる。
 本発明のナノダイヤモンド一桁ナノ分散液の製造方法によれば、高い濃度であっても凝集しにくい分散安定性に優れるナノダイヤモンド一桁ナノ分散液を簡易な操作で容易に製造することができる。
 [ナノダイヤモンド凝集体の懸濁液]
 本発明のナノダイヤモンド凝集体の懸濁液は、爆轟法ナノダイヤモンド凝集体の懸濁液であって、該懸濁液のpH及び電気伝導度が下記(1)又は(2)の条件を充足する。
(1)pH4~7で、固形分濃度1重量%あたりの電気伝導度が50μS/cm以下である
(2)pH8~10.5で、固形分濃度1重量%あたりの電気伝導度が300μS/cm以下である
 以下、前記(1)の条件を充足するナノダイヤモンド凝集体の懸濁液を、「ナノダイヤモンド凝集体の懸濁液A」と称する場合がある。また、前記(2)の条件を充足するナノダイヤモンド凝集体の懸濁液を、「ナノダイヤモンド凝集体の懸濁液B」と称する場合がある。
 ナノダイヤモンド粒子は炭素からなる元素鉱物(例えば、グラファイト等)を原料として、例えば、爆轟法、フラックス法、静的高圧法、高温高圧法等により製造することができる。本発明では、一次粒子の平均粒子径が極めて小さいナノダイヤモンド粒子を得ることができることから、爆轟法(特に、酸素欠乏爆轟法)で生成したナノダイヤモンドを用いる。
 前記爆轟法は爆薬を爆発させることによって動的な衝撃を加え、炭素からなる元素鉱物をダイヤモンド構造の粒子に直接変換する方法である。前記爆薬としては、特に制限されることがなく、例えば、シクロトリメチレントリニトロアミン(RDX)、シクロテトラメチレンテトラニトラミン(HMX)、トリニトロトルエン(TNT)、トリニトロフェニルメチルニトロアミン、四硝酸ペンタエリトリット、テトラニトロメタン、及びこれらの混合物(例えば、TNT/HMX、TNT/RDX等)を使用することができる。
 なお、爆轟法には、除熱法の違いから水冷爆轟法と空冷爆轟法とがある。従来、空冷爆轟法により合成された爆轟煤からナノダイヤモンド一桁ナノ分散液が得られた例はないことから、本発明は、空冷爆轟法により合成された爆轟煤を原料とする場合に特に有用である。なお、空冷爆轟法ナノダイヤモンドと水冷爆轟法ナノダイヤモンドとは、表面官能基の種類や量、平均一次粒子径などが異なる。空冷爆轟法ナノダイヤモンドは、水冷爆轟法ナノダイヤモンドと比較して、酸性官能基が多く、親水性が高いため、水への濡れ性が高いという利点がある。また、平均一次粒子径が、水冷爆轟法では5~6nmであるのに対し、空冷爆轟法では4~5nmと小さい点も、空冷爆轟法ナノダイヤモンドの利点である。
 上記方法で得られるナノダイヤモンド粒子(ナノダイヤモンド煤)には、製造装置等に含まれるFe、Co、Ni等の金属の酸化物(例えば、Fe23、Fe34、Co23、Co34、NiO、Ni23等)が混入し易い。そのため、上記方法で得られたナノダイヤモンド粒子(ナノダイヤモンド煤)は、強酸を使用して前記金属の酸化物(=金属酸化物)を溶解・除去することが好ましい(酸処理)。
 酸処理に用いる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水などが挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 酸処理は、通常、水中で行われる。酸処理における強酸(鉱酸等)の濃度は、例えば、1~50重量%、好ましくは3~30重量%、さらに好ましくは5~20重量%である。酸処理時間は、例えば、0.1~24時間、好ましくは0.2~10時間、さらに好ましくは0.3~5時間である。酸処理温度は、例えば、70~150℃、好ましくは90~130℃、さらに好ましくは100~125℃である。酸処理は減圧下、常圧下、加圧下の何れで行ってもよいが、操作性や設備等の点で、常圧下で行うのが好ましい。
 前記ナノダイヤモンド煤には、上記金属成分のほか、グラファイト(黒鉛)が含まれている。このグラファイトを除去するため、ナノダイヤモンド煤(好ましくは、該ナノダイヤモンド煤を前記酸処理に付したもの)を酸化処理に付すのが好ましい。
 酸化処理に用いる酸化剤としては、例えば、濃硝酸、発煙硝酸、発煙硫酸;クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸又はこれらの塩;過酸化水素などが挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。なかでも、酸化剤として、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸若しくはこれらの塩、及び過酸化水素からなる群より選択された少なくとも1種を用いるのが好ましい。
 前記酸化処理は、通常、溶媒中で行われる。溶媒としては、水が好ましい。酸化処理における酸化剤の濃度は、例えば、3~50重量%、好ましくは6~30重量%である。また、酸化剤の使用量は、ナノダイヤモンド100重量部に対して、例えば、300~5000重量部、好ましくは500~3000重量部、さらに好ましくは800~2000重量部である。
 上記酸化処理は、グラファイトの除去効率の点から、鉱酸の共存下で行うのが好ましい。鉱酸としては、前記例示のものが挙げられる。好ましい鉱酸は硫酸である。酸化処理に鉱酸を用いる場合、鉱酸(例えば硫酸)の濃度は、例えば、5~80重量%、好ましくは10~70重量%、さらに好ましくは20~60重量%である。
 酸化処理における処理時間は、例えば、1時間以上(例えば1~24時間)、好ましくは2時間以上(例えば2~15時間)、さらに好ましくは3時間以上(例えば3~10時間)である。また、処理温度は、例えば、100℃以上(例えば100~200℃)、好ましくは120℃以上(例えば120~180℃)、さらに好ましくは130℃以上(例えば130~160℃)、特に好ましくは135℃以上(例えば135~150℃)である。酸化処理は減圧下、常圧下、加圧下の何れで行ってもよいが、操作性や設備等の点で、常圧下で行うのが好ましく、加圧下で行う場合も、5MPa以下が好ましい。したがって、上記圧力は、好ましくは0.1~5MPa、より好ましくは0.1~1MPa、さらに好ましくは0.1~0.5MPaである。
 なお、上記ナノダイヤモンド煤を酸処理に付して得られるナノダイヤモンド粒子は、一般に、ナノダイヤモンド一次粒子表面に黒鉛層が沈降付着し、該黒鉛層が複数の一次粒子を巻き込んでいわゆるアグリゲート構造を生成し、ファンデルワールス凝集よりも強固な集合状態を示す集合体(凝膠体)として存在する。また、上記ナノダイヤモンド煤又はこの酸処理品を酸化処理に付して得られるナノダイヤモンド粒子は、一般に、ナノダイヤモンド一次粒子が粒子間凝集(ファンデルワールス凝集)した凝集体として存在する。本明細書においては、上記凝膠体と上記ファンデルワールス凝集した凝集体とをまとめて、「ナノダイヤモンド凝集体」と称する場合がある。ナノダイヤモンド凝集体のD50(メディアン径)は、通常20nm以上であり、一般には100nm~10μmの範囲である。
 上記酸化処理の後、水(純水、イオン交換水等)で洗浄することにより、ナノダイヤモンド粒子(凝集体)を得ることができる。こうして得られるナノダイヤモンド粒子の表面には、通常、カルボキシル基等の酸性官能基が存在する。
 なお、酸化処理後のナノダイヤモンド粒子(凝集体)をアルカリ溶液(例えば、水酸化ナトリウム水溶液等)で処理することにより、ナノダイヤモンド粒子表面の酸性官能基(例えば、カルボキシル基)を塩(例えば、カルボン酸塩)に変換することができる。アルカリ処理する際のアルカリの濃度は、例えば、1~50重量%、好ましくは3~30重量%、より好ましくは5~20重量%である。アルカリ処理の温度は、例えば、70~150℃、好ましくは90~130℃、さらに好ましくは100~125℃である。アルカリ処理の時間は、例えば、0.1~24時間、好ましくは0.2~10時間、さらに好ましくは0.3~5時間である。さらに、上記アルカリ処理したナノダイヤモンド粒子を酸(例えば、塩酸など)で処理することにより、ナノダイヤモンド粒子表面を再度、遊離の酸性官能基とすることができる。酸処理は、室温で行ってもよく、加熱下で行ってもよい。
 酸化処理後のナノダイヤモンド凝集体、酸化処理後のナノダイヤモンド凝集体をアルカリ処理したもの、或いはこれをさらに酸処理に付したものに対し、水洗を繰り返すことで、不純物である電解質(NaCl等)を除去できる。電解質を除去することにより、ナノダイヤモンドの分散性及び分散安定性を向上できる。
 本発明において、前記爆轟法ナノダイヤモンド凝集体の懸濁液は、上記方法で得られたナノダイヤモンド(凝集体)(表面の酸性官能基の少なくとも一部は塩を形成していてもよい、また、必要に応じて分級処理が施されたものであってもよい)を分散媒に懸濁したものである。分散媒としては、水;メタノール、エタノール、エチレングリコール等のアルコール、アセトン等のケトン、N-メチルピロリドン等のラクタム又はアミドなどの極性有機溶媒;これらの混合溶媒などが挙げられる。これらのなかでも、水を少なくとも含む(例えば、水を50重量%以上含む)分散媒が好ましく、特に水が好ましい。
 本発明において、上記(1)の場合において、ナノダイヤモンド凝集体の懸濁液AのpHは4~7である。ナノダイヤモンド凝集体の懸濁液AのpHは、好ましくは4~6、さらに好ましくは4.1~5.5である。また、ナノダイヤモンド凝集体の懸濁液Aの固形分濃度(ナノダイヤモンドの濃度)1重量%あたりの電気伝導度は50μS/cm以下である。ナノダイヤモンド凝集体の懸濁液Aの固形分濃度1重量%あたりの電気伝導度は、好ましくは30μS/cm以下、さらに好ましくは20μS/cm以下、特に好ましくは10μS/cm以下である。ナノダイヤモンド凝集体の懸濁液Aの固形分濃度1重量%あたりの電気伝導度は低い方が好ましい。前記電気伝導度の下限は0.5μS/cm程度であってもよい。pH及び電気伝導度が上記の範囲であると、ナノダイヤモンド凝集体の懸濁液を解砕することにより、高い濃度であっても分散安定性に優れたナノダイヤモンド一桁ナノ分散液を得ることができる。ナノダイヤモンド凝集体の懸濁液のpHが4未満或いは7を超え9.5未満である場合、及びpHが4~7の範囲内であっても固形分濃度1重量%あたりの電気伝導度が50μS/cmを超える場合は、高い濃度であっても分散安定性に優れたナノダイヤモンド一桁ナノ分散液を得ることが困難となる。
 また、上記(2)の場合において、ナノダイヤモンド凝集体の懸濁液BのpHは8~10.5である。ナノダイヤモンド凝集体の懸濁液BのpHは、好ましくは9~10.3、さらに好ましくは9.5~10.2である。また、ナノダイヤモンド凝集体の懸濁液Bの固形分濃度(ナノダイヤモンドの濃度)1重量%あたりの電気伝導度は300μS/cm以下である。ナノダイヤモンド凝集体の懸濁液Bの固形分濃度1重量%あたりの電気伝導度は、好ましくは200μS/cm以下、さらに好ましくは150μS/cm以下、特に好ましくは100μS/cm以下である。ナノダイヤモンド凝集体の懸濁液Bの固形分濃度1重量%あたりの電気伝導度は低い方が好ましい。前記電気伝導度の下限は5μS/cm程度であってもよい。pH及び電気伝導度が上記の範囲であると、ナノダイヤモンド凝集体の懸濁液を解砕することにより、高い濃度であっても分散安定性に優れたナノダイヤモンド一桁ナノ分散液を得ることができる。ナノダイヤモンド凝集体の懸濁液のpHが7を超え8未満或いは10.5を超える場合、及びpHが8~10.5の範囲内であっても固形分濃度1重量%あたりの電気伝導度が300μS/cmを超える場合は、高い濃度であっても分散安定性に優れたナノダイヤモンド一桁ナノ分散液を得ることが困難となる。
 上記(1)の場合のナノダイヤモンド凝集体の懸濁液Aは、例えば、上記強酸等で処理した後のナノダイヤモンド凝集体の懸濁液を、水酸化ナトリウム水溶液等のアルカリで処理(好ましくは、加熱処理)し、好ましくはデカンテーション等で上澄みを除いた後、塩酸等の酸を加えてpHを調整し、水洗を繰り返すことで電気伝導度を調整し、必要に応じて超純水等を添加して所定の濃度に調整することにより製造できる。水洗の回数、水洗に用いる水の使用量を増やすことにより、イオン成分がより完全に除去され、電気伝導度を低下させることができる。
 また、上記(2)の場合のナノダイヤモンド凝集体の懸濁液Bは、例えば、上記強酸等で処理した後のナノダイヤモンド凝集体の懸濁液を、水酸化ナトリウム水溶液等のアルカリで処理(好ましくは、加熱処理)し、アルカリ性のまま水洗を繰り返すことでpH及び電気伝導度を調整し、必要に応じて超純水等を添加して所定の濃度に調整することにより製造できる。水洗の回数や水洗に用いる水の使用量によって、pH及び電気伝導度を所望の値に調整できる。
 本発明のナノダイヤモンド凝集体の懸濁液において、固形分濃度(ナノダイヤモンドの濃度)は、分散処理により高濃度のナノダイヤモンド一桁ナノ分散液を得るという観点から、4重量%以上(例えば、4~20重量%)が好ましく、より好ましくは5.5重量%以上(例えば、5.5~15重量%)、さらに好ましくは7重量%以上(例えば、7~12重量%)である。
 [ナノダイヤモンド一桁ナノ分散液]
 本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I)は、上記本発明のナノダイヤモンド凝集体の懸濁液を解砕処理(以下、分散処理と称する場合がある)に付して得られる分散液である。ナノダイヤモンド一桁ナノ分散液とは、ダイヤモンドが一桁ナノサイズに分散した分散液であり、より具体的には、分散液中のダイヤモンド粒子のD50が1~9nmである分散液である。なお、本発明では、「解砕」を解膠をも含めた広い意味に用いる。この一桁ナノ分散液Iは、固形分濃度が高くても、分散安定性に優れるという特徴を有する。一桁ナノ分散液Iにおける固形分濃度は、例えば、4重量%以上(例えば、4~15重量%)である。
 前記分散処理は、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミル、湿式ジェットミル等の分散機を使用することにより行うことができる。これらのなかでも、効率の点で、ビーズミル、超音波ホモジナイザーを用いて分散する方法が好ましい。
 ナノダイヤモンド凝集体の懸濁液を分散処理に付す際、分散性及び分散安定性を向上させる点から、該懸濁液のpHを8以上(例えば、8~12)、好ましくは9以上(例えば、9~11)、さらに好ましくは9.5~10.5とした状態で分散処理に付すことが望ましい。分散処理の後、必要に応じて分級処理を施してもよい。
 本発明は、また、固形分濃度(ナノダイヤモンドの濃度)が5.2重量%以上(例えば、5.2~15重量%)で、且つ固形分濃度1重量%あたりの電気伝導度が300μS/cm以下(例えば、50~300μS/cm)であるナノダイヤモンド一桁分散液(一桁ナノ分散液II)を提供する。このようなナノダイヤモンド一桁ナノ分散液は、上記本発明のナノダイヤモンド凝集体の懸濁液を分散処理に付すことで容易に製造できる。該ナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液II)は、固形分濃度が高くても、分散安定性に優れるという特徴を有する。
 本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I、一桁ナノ分散液II)において、ナノダイヤモンド粒子のD50は、例えば3.5~9nm、好ましくは4~7nmである。
 分散液の分散媒としては、前記爆轟法ナノダイヤモンド凝集体の懸濁液の分散媒として例示したものが挙げられる。なかでも、水を少なくとも含む(例えば、水を50重量%以上含む)分散媒が好ましく、特に水が好ましい。
 本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I、一桁ナノ分散液II)において、固形分濃度は、好ましくは5.5重量%以上(例えば、5.5~12重量%)、より好ましくは6重量%以上(例えば、6~10重量%)である。また、固形分濃度1重量%あたりの電気伝導度は、好ましくは250μS/cm以下(例えば、120~250μS/cm)、さらに好ましくは210μS/cm以下(例えば、160~210μS/cm)である。
 また、本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I、一桁ナノ分散液II)のpHは、分散安定性の点から、好ましくは8以上(例えば、8~12)、好ましくは8.3以上(例えば、8.3~11)、さらに好ましくは8.6以上(例えば、8.6~10)である。
 さらに、本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I、一桁ナノ分散液II)におけるナノダイヤモンド粒子のゼータ電位(25℃)は、分散安定性の点から、例えば、-30mV以下(例えば、-70mV~-30mV)、好ましくは-42mV以下(例えば、-65mV~-42mV)、さらに好ましくは-45mV以下(例えば、-60mV~-45mV)である。ナノダイヤモンド一桁ナノ分散液におけるナノダイヤモンド粒子のゼータ電位とは、ナノダイヤモンド濃度が0.2重量%で25℃のナノダイヤモンド一桁ナノ分散液について測定される値とする。ナノダイヤモンド濃度0.2重量%のナノダイヤモンド一桁分散液の調製のためにナノダイヤモンド分散液の原液を希釈する必要がある場合には、希釈液として超純水を用いる。
 本発明のナノダイヤモンド一桁ナノ分散液(一桁ナノ分散液I、一桁ナノ分散液II)は、空冷爆轟法で合成されたダイヤモンド由来であることが好ましい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。「%」は重量%である。
 懸濁液、分散液、ナノダイヤモンドの物性は以下の方法により測定した。
 <pH>
 懸濁液、分散液のpHの測定は、HORIBA社製の商品名「pH METER D-51」を用いて行った。
 <電気伝導度>
 懸濁液、分散液の電気伝導度の測定は、HORIBA社製の商品名「LAQUAtwin」を用いて行った。
 <固形分濃度>
 懸濁液、分散液の固形分は、正確に秤量した3~5gの液を100℃以上に加熱して水分を蒸発させ、乾燥物を精密天秤により正確に秤量して求めた。
 <D50(メディアン径)およびゼータ電位>
 ナノダイヤモンド粒子のD50、及び、分散液中のナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は、スペクトリス社製の商品名「ゼータサイザー ナノZS」[D50:動的光散乱法(非接触後方散乱法)、ゼータ電位:レーザードップラー式電気泳動法]により求めた。
 調製例1(空冷爆轟ナノダイヤモンド煤の酸化処理)
 ナノダイヤモンドの一次粒子径が4-6nmである空冷式爆轟ナノダイヤモンド煤(チェコ ALIT社製)を200g秤量し、10%塩酸水溶液2Lを加えた後、還流下で1時間加熱処理を行った。冷却後、デカンテーションにより水洗を行い、沈殿液のpHが2になるまで洗浄を行い、上澄みをできるだけ除いた。
 次に、その沈殿液に、60%硫酸水溶液2L、50%クロム酸水溶液を2L加えた後、還流下で5時間加熱処理を行った。冷却後、デカンテーションにより水洗を行い、上澄みの着色が消えるまで洗浄を行い、上澄みをできるだけ除いた。この酸化処理で得られたナノダイヤモンド凝集体のD50は2μmであった。
 実施例1(空冷爆轟ナノダイヤモンドの分散前処理-1)
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、デカンテーションにより上澄みを除いた後、6N塩酸を加えてpHを2.5に調整した後、遠心沈降法により水洗を行った。最終の遠心沈殿物に超純水を加えて、固形分濃度が8%になるように調整した。この状態での電気伝導度は64μS/cm、pHは4.3であった。
 実施例2(空冷爆轟ナノダイヤモンドの分散前処理-2)
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、アルカリ性のまま遠心沈降法によりpHが10になるまで水洗を行った。最終の遠心沈殿物に超純水を加えて、固形分濃度が8%になるように調整した。この状態での電気伝導度は400μS/cm、pHは10.3であった。
 実施例3(空冷爆轟ナノダイヤモンドの分散前処理-3)
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、デカンテーションにより上澄みを除いた後、塩酸を加えてpHを2.5に調整した後、限外ろ過膜により水洗を行った。最終濃縮液に超純水を加えて、固形分濃度が8%になるように調整した。この状態での電気伝導度は50μS/cm、pHは5.2であった。
 実施例4(空冷爆轟ナノダイヤモンドの分散前処理-4)
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、アルカリ性のまま限外ろ過膜によりpH10になるまで水洗を行った。最終濃縮液に超純水を加えて、固形分濃度が8%になるように調整した。この状態での電気伝導度は511μS/cm、pHは9.8であった。
 実施例5(空冷爆轟ナノダイヤモンドの一桁ナノ分散-1)
 実施例1、実施例3で得られた分散前スラリーを用いて、超音波ホモジナイザーによる分散を行った。装置は、SMT製UH-300を使用した。実施例1および実施例3の各スラリーに水酸化ナトリウムを用いてpHを10に調整した液に、標準ホーンを浸漬させて超音波を30分間照射した。照射後、遠心分離による分級操作で粗大粒子を除去して、空冷爆轟ナノダイヤモンド分散液を得た。実施例1から得られた分散液の固形分濃度は6.4%、ナノダイヤモンド粒子のD50は8.7nm、電気伝導度は1,260μS/cm、pHは8.67、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-47mVであった。実施例3から得られた分散液の固形分濃度は6.2%、ナノダイヤモンド粒子のD50は7.4nm、電気伝導度は1,230μS/cm、pHは8.55、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-48mVであった。
 実施例6(空冷爆轟ナノダイヤモンドの一桁ナノ分散-2)
 実施例2、実施例4で得られた分散前スラリーを用いて、pH調整を行わなかった以外は実施例5と同様の操作を行い、空冷爆轟ナノダイヤモンド分散液を得た。実施例2から得られた分散液の固形分濃度は6.6%、ナノダイヤモンド粒子のD50は6.8nm、電気伝導度は1,250μS/cm、pHは9.04、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-48mVであった。実施例4から得られた分散液の固形分濃度は6.4%、ナノダイヤモンド粒子のD50は6.4nm、電気伝導度は1,280μS/cm、pHは9.12、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-47mVであった。
 実施例7(空冷爆轟ナノダイヤモンドの一桁ナノ分散-3)
 実施例1、実施例3で得られた分散前スラリーを用いて、ビーズミル分散を行った。装置は、寿工業株式会社製ウルトラアペックスミルUAM-015を使用した。解砕メディアである直径0.03mmのジルコニアビーズを粉砕容器体積の60%まで充填した後、pHを10に調整した実施例1及び実施例3の各スラリー300mLを流速10L/hで循環させ、周速を10m/sに設定して90分間の解砕を行った。解砕液を回収し、遠心分離による分級操作で粗大粒子を除去して、空冷爆轟ナノダイヤモンド分散液を得た。実施例1から得られた分散液の固形分濃度は7.4%、ナノダイヤモンド粒子のD50は5.4nm、電気伝導度は1,410μS/cm、pHは9.14、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-49mVであった。実施例3から得られた分散液の固形分濃度は7.2%、ナノダイヤモンド粒子のD50は5.8nm、電気伝導度は1,380μS/cm、pHは9.05、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-48mVであった。
 実施例8(空冷爆轟ナノダイヤモンドの一桁ナノ分散-4)
 実施例2、実施例4で得られた分散前スラリーを用いて、ビーズミル分散を行った。pHを調整しなかった以外は、実施例7と同様の操作を行い、空冷爆轟ナノダイヤモンド分散液を得た。実施例2から得られた分散液の固形分濃度は7.3%、ナノダイヤモンド粒子のD50は5.2nm、電気伝導度は1,320μS/cm、pHは8.78、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-48mVであった。実施例3から得られた分散液の固形分濃度は7.2%、ナノダイヤモンド粒子のD50は5.5nm、電気伝導度は1,350μS/cm、pHは9.07、ナノダイヤモンド粒子のゼータ電位(25℃;濃度0.2重量%)は-48mVであった。
 比較例1
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、デカンテーションにより上澄みを除いた後、塩酸を加えてpHを2.5に調整した後、遠心沈降法により水洗を行い、固形分濃度が8%で電気伝導度が800μS/cmになった時点で洗浄を終了した。得られたスラリーを用いて、実施例5と同様の操作で分散液を得た。分散液の固形分濃度は1.2%、粒子径を測定した結果、ナノダイヤモンド粒子のD50は22nmであった。電気伝導度が高い状態で分散処理すると、ナノダイヤモンドが一部しか分散しない(粗大粒子が多い)上、一次粒子で分散しなかった。
 比較例2
 調製例1で得られた沈殿液に、10%水酸化ナトリウム水溶液を1L加えた後、還流下で1時間加熱処理を行った。冷却後、アルカリ性のまま遠心沈降法によりpHが11になるまで水洗を行った。最終の遠心沈殿物に超純水を加えて、固形分濃度が8%になるように調整した。この状態での電気伝導度は2,000μS/cmだった。得られたスラリーを用いて、実施例5と同様の操作で分散液を得た。分散液の固形分濃度は2.2%、粒子径を測定した結果、ナノダイヤモンド粒子のD50は25nmであった。電気伝導度が高い状態で分散処理すると、ナノダイヤモンドが一部しか分散しない(粗大粒子が多い)上、一次粒子で分散しなかった。
 評価試験(分散安定性)
 実施例及び比較例で得られた分散液の分散安定性を以下の方法で評価した。
 分散液を調製した日より1ヶ月後にナノダイヤモンド粒子のD50を測定した。その結果、実施例の分散液は、分散液調製直後のナノダイヤモンド粒子のD50と同じで変化がなかった。これに対し、比較例の分散液は、凝集して沈殿を形成しており、明らかにナノサイズで分散していなかった。
 本発明のナノダイヤモンド凝集体の懸濁液からは、高い濃度でも分散安定性に優れたナノダイヤモンド一桁ナノ分散液を容易に得ることができる。
 本発明のナノダイヤモンド一桁ナノ分散液は、高い濃度であっても凝集しにくく、分散安定性に優れる。

Claims (13)

  1.  爆轟法ナノダイヤモンド凝集体の懸濁液であって、懸濁液のpH及び電気伝導度が下記(1)又は(2)の条件を充足するナノダイヤモンド凝集体の懸濁液。
    (1)pH4~7で、固形分濃度1重量%あたりの電気伝導度が50μS/cm以下である
    (2)pH8~10.5で、固形分濃度1重量%あたりの電気伝導度が300μS/cm以下である
  2.  固形分濃度が4重量%以上である請求項1記載のナノダイヤモンド凝集体の懸濁液。
  3.  爆轟法ナノダイヤモンド凝集体が空冷爆轟法ナノダイヤモンド凝集体である請求項1又は2記載のナノダイヤモンド凝集体の懸濁液。
  4.  請求項1~3のいずれか1項に記載のナノダイヤモンド凝集体の懸濁液を解砕して得られるナノダイヤモンド一桁ナノ分散液。
  5.  固形分濃度が4重量%以上である請求項4記載のナノダイヤモンド一桁ナノ分散液。
  6.  請求項1~3のいずれか1項に記載のナノダイヤモンド凝集体の懸濁液を解砕する工程を含むナノダイヤモンド一桁ナノ分散液の製造方法。
  7.  ナノダイヤモンド凝集体の懸濁液のpHを8以上とした状態で該懸濁液を解砕処理に付す請求項6記載のナノダイヤモンド一桁ナノ分散液の製造方法。
  8.  ナノダイヤモンド凝集体の懸濁液の解砕処理をビーズミル又は超音波を用いて行う請求項6又は7記載のナノダイヤモンド一桁ナノ分散液の製造方法。
  9.  固形分濃度が5.2重量%以上で、且つ固形分濃度1重量%あたりの電気伝導度が300μS/cm以下であるナノダイヤモンド一桁ナノ分散液。
  10.  固形分濃度が5.5重量%以上である請求項9記載のナノダイヤモンド一桁ナノ分散液。
  11.  pHが8以上である請求項9又は10記載のナノダイヤモンド一桁ナノ分散液。
  12.  ナノダイヤモンド粒子のゼータ電位(25℃)が-42mV以下である請求項9~11のいずれか1項に記載のナノダイヤモンド一桁ナノ分散液。
  13.  空冷爆轟法で合成されたダイヤモンド由来の請求項9~12のいずれか1項に記載のナノダイヤモンド一桁ナノ分散液。
PCT/JP2015/074653 2014-11-07 2015-08-31 ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液 WO2016072137A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2017119668A RU2700528C2 (ru) 2014-11-07 2015-08-31 Суспензия агрегатов наноалмазов и дисперсия наноалмазов одноцифрового наноразмера
US15/522,063 US20170313590A1 (en) 2014-11-07 2015-08-31 Suspension of nanodiamond aggregates and single-nano-sized nanodiamond dispersion
KR1020177014996A KR102482745B1 (ko) 2014-11-07 2015-08-31 나노다이아몬드 응집체의 현탁액 및 나노다이아몬드 한 자릿수 나노 분산액
CN201580058444.3A CN107074555B (zh) 2014-11-07 2015-08-31 纳米金刚石凝聚物的悬浮液、及纳米金刚石个位数纳米分散液
EP15856245.4A EP3216758B1 (en) 2014-11-07 2015-08-31 Suspension of nanodiamond aggregates and single-nano-sized nanodiamond dispersion
JP2016557476A JP6483721B2 (ja) 2014-11-07 2015-08-31 ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-226655 2014-11-07
JP2014226655 2014-11-07
JP2015123758 2015-06-19
JP2015-123758 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016072137A1 true WO2016072137A1 (ja) 2016-05-12

Family

ID=55908867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074653 WO2016072137A1 (ja) 2014-11-07 2015-08-31 ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液

Country Status (7)

Country Link
US (1) US20170313590A1 (ja)
EP (1) EP3216758B1 (ja)
JP (1) JP6483721B2 (ja)
KR (1) KR102482745B1 (ja)
CN (1) CN107074555B (ja)
RU (1) RU2700528C2 (ja)
WO (1) WO2016072137A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203763A1 (ja) * 2016-05-23 2017-11-30 株式会社ダイセル ナノダイヤモンド有機溶媒分散液製造方法およびナノダイヤモンド有機溶媒分散液
JP2018070411A (ja) * 2016-10-28 2018-05-10 株式会社ダイセル ナノダイヤモンド有機溶媒分散液、及びナノダイヤモンド有機溶媒分散液の製造方法
JP2018182120A (ja) * 2017-04-17 2018-11-15 株式会社ダイセル GaN基板のCMP用研磨材組成物
JP2020029472A (ja) * 2018-08-20 2020-02-27 株式会社ダイセル 多結晶yag研磨用スラリー組成物
WO2020195999A1 (ja) * 2019-03-26 2020-10-01 株式会社ダイセル 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法
RU2757049C1 (ru) * 2020-11-26 2021-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ создания суспензии на основе детонационного наноалмаза

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019041093A1 (zh) * 2017-08-28 2019-03-07 深圳先进技术研究院 一种超分散纳米金刚石分散液及其制备方法和应用
WO2019093141A1 (ja) * 2017-11-09 2019-05-16 株式会社ダイセル 初期なじみ剤組成物および当該組成物を含む初期なじみシステム
CN116589928A (zh) * 2023-05-17 2023-08-15 耐博检测技术(武汉)有限公司 超分散金刚石悬浮液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329252A (ja) * 2000-05-22 2001-11-27 Hiroshi Ishizuka 微細ダイヤモンド研磨材粒子及びその製法
JP2005001983A (ja) * 2003-05-20 2005-01-06 Futaba Corp 超分散状態ナノ炭素およびその製造方法
JP2008115303A (ja) * 2006-11-06 2008-05-22 Hiroshi Ishizuka 研磨工具用樹脂材料及びその製造方法
WO2009060613A1 (ja) * 2007-11-08 2009-05-14 Nippon Kayaku Kabushiki Kaisha ナノダイヤモンド有機溶媒分散体およびその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245310B2 (ja) * 2001-08-30 2009-03-25 忠正 藤村 分散安定性に優れたダイヤモンド懸濁水性液、このダイヤモンドを含む金属膜及びその製造物
WO2003086970A1 (fr) * 2002-04-18 2003-10-23 Nauchno-Proizvodstvennoe Zakrytoe Aktsionernoe Obschestvo 'sinta' Procede de fabrication de materiaux synthetiques contenant des diamants
DE102004025048A1 (de) * 2003-05-20 2004-12-23 Futaba Corp., Mobara Ultra-dispergierter Nano-Kohlenstoff und Verfahren zu seiner Herstellung
JP2009209027A (ja) 2008-02-29 2009-09-17 Nanocarbon Research Institute Co Ltd 改良された化学気相蒸着ダイヤモンド
JP2010126669A (ja) 2008-11-28 2010-06-10 Nihon Micro Coating Co Ltd 微小ダイヤモンド粒子分散液の製造方法及び微小ダイヤモンド粒子分散液
KR101313768B1 (ko) * 2010-02-12 2013-10-01 주식회사 네오엔비즈 나노 다이아몬드 분산액 및 그 제조 방법
FI126322B (en) * 2013-04-23 2016-09-30 Carbodeon Ltd Oy Process for preparing a zeta-negative nanodiamond dispersion and a zeta-negative nanodiamond dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329252A (ja) * 2000-05-22 2001-11-27 Hiroshi Ishizuka 微細ダイヤモンド研磨材粒子及びその製法
JP2005001983A (ja) * 2003-05-20 2005-01-06 Futaba Corp 超分散状態ナノ炭素およびその製造方法
JP2008115303A (ja) * 2006-11-06 2008-05-22 Hiroshi Ishizuka 研磨工具用樹脂材料及びその製造方法
WO2009060613A1 (ja) * 2007-11-08 2009-05-14 Nippon Kayaku Kabushiki Kaisha ナノダイヤモンド有機溶媒分散体およびその製造法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEKSENSKII,A.E. ET AL.: "Effect of Hydrogen on the Structure of Ultradisperse Diamond", PHYSICS OF THE SOLID STATE, vol. 42, no. 8, 2000, pages 1575 - 1578, XP019310048 *
See also references of EP3216758A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203763A1 (ja) * 2016-05-23 2017-11-30 株式会社ダイセル ナノダイヤモンド有機溶媒分散液製造方法およびナノダイヤモンド有機溶媒分散液
JP2018070411A (ja) * 2016-10-28 2018-05-10 株式会社ダイセル ナノダイヤモンド有機溶媒分散液、及びナノダイヤモンド有機溶媒分散液の製造方法
JP2021100912A (ja) * 2016-10-28 2021-07-08 株式会社ダイセル ナノダイヤモンド有機溶媒分散液
JP7074907B2 (ja) 2016-10-28 2022-05-24 株式会社ダイセル ナノダイヤモンド有機溶媒分散液
JP2018182120A (ja) * 2017-04-17 2018-11-15 株式会社ダイセル GaN基板のCMP用研磨材組成物
JP2020029472A (ja) * 2018-08-20 2020-02-27 株式会社ダイセル 多結晶yag研磨用スラリー組成物
WO2020195999A1 (ja) * 2019-03-26 2020-10-01 株式会社ダイセル 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法
JP7526164B2 (ja) 2019-03-26 2024-07-31 株式会社ダイセル 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法
RU2757049C1 (ru) * 2020-11-26 2021-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ создания суспензии на основе детонационного наноалмаза

Also Published As

Publication number Publication date
US20170313590A1 (en) 2017-11-02
RU2700528C2 (ru) 2019-09-17
KR102482745B1 (ko) 2022-12-30
JPWO2016072137A1 (ja) 2017-08-10
KR20170084137A (ko) 2017-07-19
CN107074555A (zh) 2017-08-18
JP6483721B2 (ja) 2019-03-13
EP3216758B1 (en) 2021-10-13
EP3216758A4 (en) 2018-06-20
RU2017119668A (ru) 2018-12-07
RU2017119668A3 (ja) 2019-01-11
CN107074555B (zh) 2021-06-08
EP3216758A1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6483721B2 (ja) ナノダイヤモンド凝集体の懸濁液、及びナノダイヤモンド一桁ナノ分散液
JP6483722B2 (ja) 酸性官能基を有するナノダイヤモンド、及びその製造方法
JP5384643B2 (ja) 酸化セリウム粒子の液体懸濁液および粉末、これらの製造方法ならびに研磨におけるこれらの使用
EP2989050B1 (en) A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
US7384560B2 (en) Method for reducing the size of metallic compound particles
JP2008115370A (ja) コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
JPWO2009060613A1 (ja) ナノダイヤモンド有機溶媒分散体およびその製造法
JP6802967B2 (ja) 表面修飾ナノダイヤモンドおよびナノダイヤモンド分散液
WO2021005371A1 (en) Dispersions
WO2017203763A1 (ja) ナノダイヤモンド有機溶媒分散液製造方法およびナノダイヤモンド有機溶媒分散液
JP6902015B2 (ja) ナノダイヤモンド分散液、及びその製造方法
JP2018070412A (ja) ナノダイヤモンド分散液製造方法およびナノダイヤモンド分散液
JP2017001916A (ja) ナノダイヤモンド粉体製造方法およびナノダイヤモンド粉体
JP2014205111A (ja) ナノ粒子の回収方法
JP2018070411A (ja) ナノダイヤモンド有機溶媒分散液、及びナノダイヤモンド有機溶媒分散液の製造方法
JP7468030B2 (ja) ニオブ酸アルカリ金属塩粒子
Akter et al. Hydrophilic ionic liquid-assisted control of the size and morphology of ZnO nanoparticles prepared by a chemical precipitation method
Regmi et al. Synthesis and microscopic study of zinc sulfide nanoparticles
WO2023182196A1 (ja) ジルコニア系粉末材料
Abbasian et al. Hydrothermal synthesis of monoclinic-cubic Li2TiO3 hybrid nanocomposite microspheres
JP5672572B2 (ja) 希土類フッ化物微粒子分散液の製造方法
JP2020089864A (ja) ナノダイヤモンドの製造方法及びナノダイヤモンド
JPH11292524A (ja) 非晶質リン酸カルシウムスラリーとその製造方法、および非晶質リン酸カルシウム粒子
JP2006076815A (ja) アルミナ粉末及びアルミナゾルの製造方法γ
Fazio et al. Colloidal behaviour of nanosized titania powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557476

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014996

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015856245

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017119668

Country of ref document: RU

Kind code of ref document: A