WO2016052915A1 - 아크릴 시럽의 제조방법 및 아크릴 시럽 - Google Patents

아크릴 시럽의 제조방법 및 아크릴 시럽 Download PDF

Info

Publication number
WO2016052915A1
WO2016052915A1 PCT/KR2015/010038 KR2015010038W WO2016052915A1 WO 2016052915 A1 WO2016052915 A1 WO 2016052915A1 KR 2015010038 W KR2015010038 W KR 2015010038W WO 2016052915 A1 WO2016052915 A1 WO 2016052915A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic syrup
acrylic
composition
irradiation
syrup
Prior art date
Application number
PCT/KR2015/010038
Other languages
English (en)
French (fr)
Inventor
최준만
김장순
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to CN201580051953.3A priority Critical patent/CN106795246B/zh
Priority to US15/509,693 priority patent/US10131728B2/en
Priority to JP2017516849A priority patent/JP6523442B2/ja
Publication of WO2016052915A1 publication Critical patent/WO2016052915A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate

Definitions

  • It relates to a process for producing acrylic syrup and acrylic syrup.
  • Acrylic syrup has transparency, and the cured product cured thereon is easy to control adhesion to various substrates, and is used in various applications such as adhesive sheets, adhesive films, protective coatings, foams, and adhesives.
  • Polymerization methods for producing such acrylic syrups include, for example, solution polymerization, emulsion polymerization, and, in the case of solution polymerization, an organic solvent may remain in the acrylic syrup to cause odor, fire, explosion, and the like. If it is removed by evaporation in the middle, it causes air pollution, which is harmful to the environment.
  • organic solvents are not used, but the polymers may not be used as they are, but additives such as neutralizers, wetting agents, thickeners, and fungicides should be added in a large amount. Since a large amount of water is used in the process of washing the reactor is generated a lot of waste water.
  • bulk polymerization can be used for eco-friendliness, high yield, and economic efficiency.
  • Such bulk polymerization includes thermal thermal polymerization or bulk photopolymerization initiated by light.
  • the reaction rate is high and the productivity is high.
  • the aforementioned molecular weight regulators remain in the prepared acrylic syrup, and remain even after the acrylic syrup is applied to the product as an adhesive film, a protective coating or a foam, so that the molecular weight regulator having fluidity moves to the surface. Migration (migration) may occur, the steaming, dirt, etc. of the adhesive may occur, there is a problem that the surface appearance and the performance of the product may be reduced.
  • an acrylic syrup that can implement excellent environmental friendliness, excellent productivity, excellent storage stability, excellent surface appearance and uniform performance.
  • initiating the irradiation of ultraviolet rays to the composition comprising at least one acrylic monomer and photoinitiator to advance the bulk photopolymerization; Discontinuing the irradiation of the ultraviolet light at a time when about 5 ° C. to about 40 ° C. is increased from the temperature at which the ultraviolet light is irradiated to the composition; And purging the composition with an oxygen-containing inert gas after stopping the irradiation of the ultraviolet rays.
  • the oxygen containing inert gas may contain about 10% by volume to about 30% by volume of oxygen.
  • Agitation can be performed while purging at least the composition with an oxygen-containing inert gas.
  • the composition may be purged with an oxygen-containing inert gas until the temperature of the composition reaches at least about 20 ° C to about 50 ° C.
  • the composition may not include a molecular weight modifier.
  • the acrylic monomer may be polymerized at a conversion rate of about 4% to about 20% until the irradiation of the ultraviolet rays is stopped.
  • the acrylic polymer having a weight average molecular weight of about 1,000,000 g / mol to about 20,000,000 g / mol may be formed by the time of stopping the irradiation of the ultraviolet rays.
  • Nitrogen purging may be performed on the composition before the irradiation of the ultraviolet rays.
  • Agitation can be performed while purging at least the composition with nitrogen.
  • the temperature of the composition may be formed at about ⁇ 10 ° C. to about 80 ° C. at the time when the irradiation of the ultraviolet rays is initiated.
  • the method may further include preparing the composition by mixing about 0.001 part by weight to about 1 part by weight of the photoinitiator based on about 100 parts by weight of the at least one acrylic monomer.
  • (Meth) acrylic acid ester monomers in which the at least one acrylic monomer comprises an alkyl group having 1 to 15 carbon atoms; (Meth) acrylic acid ester monomers including a hydroxy group, a carboxyl group and an amine group; And at least one selected from the group consisting of a combination thereof.
  • the photoinitiator may absorb light in a wavelength of about 100 nm to about 400 nm.
  • an acrylic syrup which does not include a molecular weight modifier and is prepared by bulk photopolymerization by the method of preparing the acrylic syrup.
  • an acrylic polymer having a weight average molecular weight of about 1,000,000 g / mol to about 20,000,000 g / mol.
  • the polydispersity of the acrylic polymer may be about 1.98 to about 10.
  • the acrylic syrup may have a conversion of about 4% to about 20%.
  • the viscosity may be from about 1,000 cps to about 100,000 cps at about 20 ° C.
  • the manufacturing method of the acrylic syrup can implement excellent environmental friendliness, excellent productivity, excellent storage stability, excellent surface appearance and uniform performance.
  • FIG. 1 is a schematic process flow diagram of a method of manufacturing an acrylic syrup according to an embodiment of the present invention.
  • initiating the irradiation of ultraviolet rays to the composition comprising at least one acrylic monomer and a photoinitiator to advance the bulk photopolymerization; Discontinuing the irradiation of the ultraviolet light at a time when about 5 ° C. to about 40 ° C. is increased from the temperature at which the ultraviolet light is irradiated to the composition; And purging the composition with an oxygen-containing inert gas after stopping the irradiation of the ultraviolet rays.
  • bulk polymerization volatile organic compounds and the like are not discharged, and such bulk polymerization includes bulk thermal polymerization in which the bulk polymerization reaction is started by heat or bulk photopolymerization in which the bulk polymerization reaction is started by light.
  • the temperature change amount is appropriately controlled from the time point at which the irradiation of the ultraviolet rays is started without including the molecular weight modifier and the like, so that the reaction does not occur explosively, Acrylic syrups having a desired level of conversion can be prepared at uniform levels.
  • the preparation method includes purging with an oxygen-containing inert gas, even if the acrylic syrup prepared is exposed to light to generate radicals from the photoinitiator, the radicals can be consumed by reacting with the oxygen present in the acrylic syrup. And, accordingly, the polymerization reaction does not proceed, the acrylic syrup prepared by the above production method has an advantage of excellent storage stability for light as well as temperature.
  • the manufacturing method can implement excellent surface appearance and uniform performance without using a molecular weight modifier while being able to implement excellent environmental friendliness, excellent productivity and excellent storage stability using bulk photopolymerization.
  • Figure 1 shows a schematic process flow diagram of the manufacturing method.
  • the manufacturing method includes the step of proceeding the bulk photopolymerization by initiating the irradiation of ultraviolet rays to the composition comprising at least one acrylic monomer and a photoinitiator (S1); Discontinuing the irradiation of the ultraviolet rays at a time point of about 5 ° C. to about 40 ° C. increase from the temperature at which the composition is irradiated with ultraviolet light (S2); And purging the composition with an oxygen-containing inert gas after stopping the irradiation of ultraviolet rays (S3).
  • the above production method it is possible to proceed with the bulk photopolymerization by initiating the irradiation of ultraviolet rays to the composition comprising at least one acrylic monomer and a photoinitiator.
  • the productivity is improved because the reaction rate is high compared to the bulk thermal polymerization and the manufacturing efficiency is high.
  • the polymerization is no longer progressed from the time when the irradiation of the ultraviolet rays can maintain the physical properties of the prepared acrylic syrup more constant level, the storage stability against temperature can be effectively improved.
  • the composition may not include a molecular weight modifier, and thus, since no molecular weight modifier is included in the prepared acrylic syrup, a migration phenomenon in which a molecular weight modifier having fluidity, etc., moves to the surface does not occur, Steaming, dirt, etc. do not occur, the surface appearance is excellent, long-term performance of the product can be realized at a uniform level.
  • the molecular weight regulator includes all kinds known in the art, and may include, for example, dodecyl mercaptan, isodecyl mulcaptan, and the like, but is not limited thereto.
  • the composition may be prepared by mixing about 0.001 part by weight to about 1 part by weight of the photoinitiator with respect to about 100 parts by weight of the at least one acrylic monomer.
  • (Meth) acrylic acid ester monomers wherein the at least one acrylic monomer includes, for example, an alkyl group having 1 to 15 carbon atoms; (Meth) acrylic acid ester monomers including a hydroxy group, a carboxyl group and an amine group; And at least one selected from the group consisting of a combination thereof.
  • the at least one acrylic monomer is methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate, pentyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, n-octyl (meth ) Acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydrate Hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth)
  • the photoinitiator may absorb light in a wavelength of about 100 nm to about 400 nm. By absorbing light having a wavelength in the above range, the radicals can be easily formed by irradiation of ultraviolet rays so that polymerization can proceed effectively.
  • Such photoinitiators are, for example, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1-one, diphenyl- (2,4,6-trimethylbenzoyl) -force Pin oxide, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 1-hydroxy-cyclohexylphenyl-ketone, benzophenone, 4-benzoyl-4'-methyldiphenyl Sulfide, methyl-2-benzoyl benzoate, isopropyl thioxanthone, ethyl-4- (dimethylamino) benzoate, 2-ethylhexyl-4-dimethylaminobenzoate, hydroxy dimethyl acetophenone, 2,4-diethyl It may include at least one selected from the group consisting of thioxanthone, 4-phenylbenzophenone, and combinations thereof.
  • the irradiation of the ultraviolet light may be stopped at a time when about 5 ° C. to about 40 ° C. is increased from the temperature at which the composition is irradiated with ultraviolet light.
  • the temperature may increase as the reaction proceeds, and as the temperature rapidly increases, the reaction proceeds explosively and the risk may increase.
  • an acrylic syrup having a desired level of conversion can be obtained by appropriately controlling the amount of temperature change from the time point at which the irradiation of the ultraviolet ray is started so that the reaction does not occur explosively without including a molecular weight modifier.
  • nitrogen purging may be performed on the composition before the irradiation of the ultraviolet rays. Accordingly, the oxygen present in the composition is replaced with nitrogen, so that radicals generated from the photoinitiator by the irradiation of ultraviolet light cannot react with oxygen, and thus, the polymerization reaction can be efficiently performed.
  • agitation may be performed while purging at least the composition with nitrogen.
  • the oxygen in the composition can be replaced with nitrogen more easily, so that the polymerization reaction can proceed more efficiently.
  • Nitrogen purging and stirring of the composition may be performed continuously until the termination of the irradiation of the ultraviolet light, that is, until the end of the reaction, and may be performed even after the irradiation of the ultraviolet light as necessary.
  • the temperature of the composition may be formed at about -10 ° C to about 80 ° C at the time when the irradiation of the ultraviolet rays.
  • the weight average molecular weight of the acrylic polymer formed by the bulk photopolymerization can be appropriately adjusted to a desired level by forming at a temperature within the above range, and the lower the temperature of the composition, the lower the weight average molecular weight of the acrylic polymer formed by the bulk photopolymerization. Can be implemented at a relatively larger level.
  • the bulk photopolymerization may proceed from the time point at which the irradiation of the ultraviolet rays is started to the time point at which the irradiation of the ultraviolet rays is stopped, and thus the conversion rate of the acrylic monomer from about 4% to about 20% from the time point at which the irradiation of the ultraviolet rays is stopped. It can be polymerized with. In the subsequent application to the product by polymerization at a low level of conversion within the above range, it is possible to control the extent to which the photocuring of the prepared acrylic syrup proceeds in a wider range, and accordingly, photocuring when the acrylic syrup is applied to the product By applying a variety of conditions, it can be given a variety of physical properties.
  • the conversion rate is less than about 4%, the performance as an acrylic syrup cannot be sufficiently exhibited, and additional mixtures of other compounds must be used.
  • the conversion rate is higher than about 20%, the curing conditions cannot be varied due to the high solid content and high viscosity. .
  • the bulk photopolymerization may proceed from the time point at which the irradiation of the ultraviolet rays is started to the time point at which the irradiation of the ultraviolet rays is stopped, and accordingly, the weight average molecular weight is about 1,000,000 by the bulk photopolymerization until the time point at which the irradiation of the ultraviolet rays is stopped.
  • Acrylic polymers may be formed that are from g / mol to about 20,000,000 g / mol.
  • the weight average molecular weight of the acrylic polymer can be appropriately adjusted to the above range by forming the temperature at the time of starting the irradiation of ultraviolet rays at about ⁇ 10 ° C. to about 80 ° C., whereby the viscosity of the acrylic syrup By adjusting appropriately, it can apply to various uses, such as an OCA adhesive film, an acrylic foam, an industrial adhesive film, and an adhesive film for household appliances, for example.
  • the acrylic polymer may be an acrylic resin.
  • the composition may be purged with an oxygen-containing inert gas after the irradiation of the ultraviolet light is stopped.
  • oxygen may be dissolved and included in the acrylic syrup prepared by the manufacturing method.
  • the acrylic syrup is exposed to light such as ultraviolet rays to generate radicals from a photoinitiator, the radicals may be contained in the acrylic syrup. It can be consumed by reacting with dissolved oxygen.
  • the acrylic syrup prepared by the manufacturing method by exhausting the radicals does not proceed with polymerization even when exposed to light such as ultraviolet rays, so that the acrylic syrup is excellent in storage stability not only for temperature but also for light. Even through the distribution process, it is possible to maintain more constant physical properties until they are applied to the actual product regardless of temperature change and exposure to light.
  • the oxygen containing inert gas may contain about 10% by volume to about 30% by volume of oxygen.
  • the oxygen-containing inert gas may include at least one selected from the group consisting of nitrogen, argon, helium, neon, and combinations thereof.
  • Agitation can be performed while purging at least the composition with an oxygen-containing inert gas.
  • an oxygen-containing inert gas As a result, when the oxygen is sufficiently evenly dissolved in the acrylic syrup prepared as a whole, the progress of the polymerization reaction can be effectively suppressed when exposed to light.
  • the composition may be purged with an oxygen-containing inert gas until the temperature of the composition reaches at least about 20 ° C to about 50 ° C, and purged with an oxygen-containing inert gas even after it reaches about 20 ° C. can do.
  • the bulk photopolymerization which is an exothermic reaction, is stopped from the time when the irradiation of the ultraviolet rays is stopped, so that the temperature decreases during the purging process. At least, purging must be continued until the temperature is reached within the above range, so that oxygen does not escape to the atmosphere.
  • the composition may be sufficiently dissolved in the composition, and thus, the composition may be sufficiently consumed when the composition is exposed to light, so that the storage stability against light may be more excellent.
  • an acrylic syrup which does not include a molecular weight modifier and is prepared by bulk photopolymerization by the method of preparing the acrylic syrup.
  • the composition does not contain a molecular weight regulator, so when the acrylic syrup is applied to various applications, a migration phenomenon in which a molecular weight regulator having fluidity is moved to the surface It does not occur, no steaming, dirt, etc. of the pressure-sensitive adhesive, excellent surface appearance, it is possible to implement a long-term product performance at a uniform level.
  • the acrylic syrup may maintain more constant physical properties even when the acrylic syrup is applied to the actual product regardless of temperature change and exposure to light.
  • the molecular weight regulator includes all kinds known in the art, and may include, for example, dodecyl mercaptan, isodecyl mulcaptan, and the like, but is not limited thereto.
  • the acrylic syrup may include at least one acrylic monomer, an acrylic polymer having a weight average molecular weight of about 1,000,000 g / mol to about 20,000,000 g / mol, and a photoinitiator.
  • the acrylic polymer may be formed by polymerizing the one or more acrylic monomers as described above in one embodiment.
  • the viscosity of the said acrylic syrup is adjusted suitably, for example, it can apply to various uses, such as an OCA adhesive film, an acrylic foam, an industrial adhesive film, and the adhesive film for household appliances.
  • the polydispersity index (PDI) of the acrylic polymer may be about 1.98 to about 10.
  • the polydispersity (Mw / Mn) may be defined as a value obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
  • the acrylic syrup may have a conversion of about 4% to about 20%, that is, the acrylic monomer may be polymerized at a conversion of about 4% to about 20%.
  • the acrylic monomer may be polymerized at a conversion of about 4% to about 20%.
  • the viscosity of the acrylic syrup may be about 1,000 cps to about 100,000 cps at about 20 ° C.
  • By having a viscosity within the above range can be more uniformly mixed with other other additives and the like in the post-application process to the product, for example, it is possible to more easily form a film, coating, foam and the like.
  • the acrylic monomer containing EHA (ethylhexylacrylate) and AA (acrylic acid) and 0.05 parts by weight of the photoinitiator IRG were prepared to prepare a composition, and the composition was formed at 25 ° C., followed by stirring the composition with nitrogen 1 Purge for hours. Subsequently, while continuing the stirring and purging, the composition was irradiated with ultraviolet rays at 40 mW / cm 2 using a metal halide lamp, and the temperature at which the irradiation of the ultraviolet rays was started was 25 ° C. .
  • an acrylic monomer including EHA (ethylhexylacrylate) and AA (acrylic acid), a photoinitiator IRG 184, 0.05 parts by weight, and 0.005 parts by weight of a molecular weight regulator n-DODECYL MERCAPTAN were prepared to prepare a composition, and the metal halide lamp Acrylic syrup was prepared by irradiating UV light at 40 mW / cm 2 for 5 minutes using a (metal halide lamp).
  • An acrylic syrup was prepared under the same conditions and methods as in Example 1 except that the irradiation of the ultraviolet rays was stopped when the temperature was increased by 4 ° C. from the temperature at which the irradiation of the ultraviolet rays was started.
  • Acrylic syrup was prepared under the same conditions and methods as in Example 1 except that the irradiation of the ultraviolet rays was stopped when the temperature of 50 ° C. was increased from the temperature at which the irradiation of the ultraviolet rays was started.
  • Measuring method 10.000 g of the acrylic syrup according to Example 1 and Comparative Example 1-4 was added dropwise to methanol, and the acrylic polymer precipitated in the methanol was filtered and dried in a vacuum oven at 60 ° C. and 24 hours. Then, the mass of the solid formed by drying was measured. The conversion rate was calculated according to the following equation 1 using the mass of the solid content.
  • M 1 is the mass of the acrylate syrup was added dropwise to methanol
  • M 2 is the mass of the dried solid formed.
  • Measurement method Measured using a viscometer (Brookfield, DV-II + Pro) under the condition of 20 °C.
  • Measuring method After keeping each acrylic syrup at 60 ° C. for 24 hours in a high-temperature chamber (Zeotech, ON-22), and measuring the change of the conversion rate, the case where there is no change in conversion rate is indicated by “ ⁇ ”, Increased conversion rates are marked with “X”.
  • Measuring method After exposing each of the acrylic syrups to sunlight (UVA standard 10mw / cm 2 or more) for 10 minutes, the change of the conversion rate is measured, and if no change in the conversion rate is indicated as “ ⁇ ”, and the conversion rate is Increased cases are marked with “X”.
  • Measuring method Degassing each of the acrylic syrup, and then coated on a PET (polyethyleneterephthalate) substrate film and then irradiated with ultraviolet light to prepare a pressure-sensitive adhesive film, and left for 120 hours after the steaming, dirt, etc. of the adhesive on the surface Is observed by the naked eye, and the steaming or dirt of the adhesive is not generated.
  • the adhesive performance is maintained as “ ⁇ ”, and the steaming and dirt of the adhesive is generated, resulting in deterioration of the adhesive performance.
  • the case where the film shape was not fully realized because the viscosity of the acrylic syrup itself was not appropriate is indicated by “X”.
  • Measuring method Each solid was dissolved in chloroform at a concentration of 0.25% by weight, and gel permeation chromatography (manufacturer: Agilent 1200, column: Mixed-A * 2ea, PLgel 10 ⁇ m Guard * 1ea, detector: RID) The weight average molecular weight and the number average molecular weight were measured. Subsequently, the measured weight average molecular weight (Mw) was divided by the measured number average molecular weight (Mn) to calculate the molecular weight distribution (Mw / Mn).
  • the photocuring of the prepared acrylic syrup proceeds in the course of application to the product.
  • the degree can be adjusted in a wider range, and accordingly, it can be clearly confirmed that various properties of photocuring can be applied when the acrylic syrup is applied to a product.
  • the polymerization is stopped by blocking light, so that the storage stability against temperature is excellent, and in particular, since the migration phenomenon of the molecular weight regulator does not occur by not including the molecular weight regulator, Steaming and dirt does not occur, so the surface appearance is excellent and uniform performance can be realized.
  • the polymerization does not proceed even when exposed to light, there is also an advantage of excellent storage stability for light.
  • the acrylic syrup according to Comparative Example 1 includes a molecular weight modifier, the movement phenomenon of the molecular weight modifier occurs after being applied as a product, resulting in steaming, dirt, etc. of the pressure-sensitive adhesive, resulting in poor surface appearance and poor performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시키는 단계; 상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 5℃ 내지 40℃가 증가된 시점에 상기 자외선의 조사를 중단하는 단계; 및 상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 단계;를 포함하는 아크릴 시럽의 제조방법을 제공한다.

Description

아크릴 시럽의 제조방법 및 아크릴 시럽
아크릴 시럽의 제조방법 및 아크릴 시럽에 관한 것이다.
아크릴계 시럽은 투명성을 가지고, 이를 경화시킨 경화물은 다양한 기재에 대한 점착력 조절이 쉬우며, 점착 시트, 점착 필름, 보호코팅, 폼(form) 및 점착제 등 여러 용도에 사용되고 있다.
이러한 아크릴 시럽을 제조하기 위한 중합방법은 예를 들어, 용액 중합, 에멀젼 중합 등이 있고, 용액 중합의 경우 유기 용제가 아크릴 시럽 내에 남아 있게 되어 악취, 화재, 폭발 등을 발생시킬 수 있고, 이를 대기 중으로 증발시켜 제거하는 경우 대기 오염을 일으켜 환경에 유해한 문제가 있다. 또한, 에멀젼 중합의 경우 유기 용제를 사용하지 않으나, 중합체를 합성한 이후 그대로 사용할 수 있는 것이 아니라, 중화제, 습윤제, 증점제, 살균제 등의 첨가제가 다량으로 첨가되어야 하며 그러한 첨가 공정 또한 복잡하고, 합성 완료 이후 반응기를 세척하는 과정에서 다량의 물이 사용되어 폐수가 많이 발생하게 된다.
이로 인하여 벌크 중합을 사용하여 친환경성, 높은 수율 및 경제성을 도모할 수 있는데 이러한 벌크 중합에는 열에 의해 개시되는 벌크 열중합 또는 광에 의해 개시되는 벌크 광중합이 있다.
벌크 열중합의 경우 반응 속도가 상대적으로 작아 생산성이 보다 작고 온도를 낮춘 이후에도 상온에서 중합이 어느 정도 계속 진행되어 물성이 달라지 수 있다.
한편, 벌크 광중합의 경우 반응 속도가 빨라 생산성이 크지만, 반응이 폭발적으로 일어날 수 있고 원하는 수준의 전환율을 갖는 아크릴 시럽을 균일하게 제조하기 어려워, 이를 해결하기 위해 분자량 조절제 등을 필수적으로 사용하고 있다. 다만, 전술한 분자량 조절제 등은 제조된 아크릴 시럽 내에 잔류하게 되고, 아크릴 시럽을 점착 필름, 보호코팅, 폼(form)으로서 제품에 적용한 이후에도 여전히 잔류하게 되므로 유동성을 가지는 분자량 조절제 등이 표면으로 이동하는 이동(migration) 현상이 발생하고, 점착제의 찐, 오물 등이 발생할 수 있어 표면 외관 및 제품의 성능이 저하될 수 있는 문제가 있다.
본 발명의 일 구현예에서는, 우수한 친환경성, 우수한 생산성, 우수한 저장안정성, 우수한 표면 외관 및 균일한 성능을 구현할 수 있는 아크릴 시럽의 제조방법을 제공한다.
본 발명의 다른 구현예에서는 상기 제조방법에 의해 제조된 아크릴 시럽을 제공한다.
본 발명의 일구현예에서, 1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시키는 단계; 상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 약 5℃ 내지 약 40℃가 증가된 시점에 상기 자외선의 조사를 중단하는 단계; 및 상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 단계;를 포함하는 아크릴 시럽의 제조방법을 제공한다.
상기 산소 함유 비활성 기체가 약 10 부피% 내지 약 30 부피%의 산소를 함유할 수 있다.
적어도 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 동안 교반을 수행할 수 있다.
상기 조성물의 온도가 적어도 약 20℃ 내지 약 50℃에 도달하는 시점까지 상기 조성물을 산소 함유 비활성 기체로 퍼징할 수 있다.
상기 조성물이 분자량 조절제를 포함하지 않을 수 있다.
상기 자외선의 조사를 중단한 시점까지 상기 아크릴계 모노머가 약 4% 내지 약 20%의 전환율로 중합될 수 있다.
상기 자외선의 조사를 중단한 시점까지 상기 벌크 광중합에 의해 중량평균 분자량이 약 1,000,000g/mol 내지 약 20,000,000g/mol인 아크릴계 중합체가 형성될 수 있다.
상기 자외선의 조사를 개시하기 이전부터 상기 조성물에 대하여 질소 퍼징을 시작하여 수행할 수 있다.
적어도 상기 조성물을 질소로 퍼징하는 동안 교반을 수행할 수 있다.
상기 자외선의 조사를 개시한 시점에서 상기 조성물의 온도를 약 -10℃ 내지 약 80℃로 형성할 수 있다.
상기 1종 이상의 아크릴계 모노머 약 100 중량부에 대하여 상기 광개시제 약 0.001 중량부 내지 약 1 중량부를 혼합하여 상기 조성물을 준비하는 단계;를 더 포함할 수 있다.
상기 1종 이상의 아크릴계 모노머가 탄소수 1개 내지 15개의 알킬기를 포함하는 (메타)아크릴산 에스테르계 모노머; 히드록시기, 카르복실기, 아민기를 포함하는 (메타)아크릴산 에스테르계 모노머; 및 이들의 조합으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.
상기 광개시제가 약 100nm 내지 약 400nm 파장의 광을 흡수할 수 있다.
본 발명의 다른 구현예에서, 분자량 조절제를 포함하지 않고, 상기 아크릴 시럽의 제조방법에 의해 벌크 광중합으로 제조된 아크릴 시럽을 제공한다.
중량평균 분자량이 약 1,000,000g/mol 내지 약 20,000,000g/mol인 아크릴계 중합체를 포함할 수 있다.
상기 아크릴계 중합체의 다분산도가 약 1.98 내지 약 10일 수 있다.
상기 아크릴 시럽이 약 4% 내지 약 20%의 전환율을 가질 수 있다.
또한, 점도가 약 20℃에서 약 1,000cps 내지 약 100,000cps일 수 있다.
상기 아크릴 시럽의 제조방법은 우수한 친환경성, 우수한 생산성, 우수한 저장안정성, 우수한 표면 외관 및 균일한 성능을 구현할 수 있다.
도 1은 본 발명의 일 구현예에 따른 아크릴 시럽의 제조방법의 개략적인 공정흐름도이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서, 1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시키는 단계; 상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 약 5℃ 내지 약 40℃가 증가된 시점에 상기 자외선의 조사를 중단하는 단계; 및 상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 단계;를 포함하는 아크릴 시럽의 제조방법을 제공한다.
통상 벌크 중합의 경우 휘발성 유기 화합물 등을 배출시키지 않고, 이러한 벌크 중합에는 열에 의해 벌크 중합 반응이 개시되는 벌크 열중합 또는 광에 의해 벌크 중합 반응이 개시되는 벌크 광중합이 있다.
벌크 열중합의 경우 반응 속도가 상대적으로 느려서 생산성이 보다 저하되고 온도를 낮춘 이후에도 상온에서 중합이 어느 정도 계속 진행되어 물성이 서서히 달라지게 되므로 저장안정성이 낮다.
이에, 벌크 광중합을 사용하는 경우 반응 속도가 빨라 생산성이 크면서도 광을 차단하면 상온에서 중합이 더 이상 진행되지 않으므로 온도에 대한 저장안정성이 우수하지만, 반응이 폭발적으로 일어날 수 있고 원하는 수준의 전환율을 갖는 아크릴 시럽을 균일하게 제조하기 어려워, 이를 해결하기 위해 분자량 조절제 등을 필수적으로 사용하고 있다.
다만, 이러한 분자량 조절제 등은 제조된 아크릴 시럽 내에 잔류하게 되고, 아크릴 시럽을 예를 들어, 점착 필름, 보호코팅, 폼(form) 등으로서 제품에 적용한 이후에도 여전히 잔류하게 되므로 유동성을 가지는 분자량 조절제 등이 표면으로 이동하는 이동(migration) 현상이 발생하고, 점착제의 찐, 오물 등이 발생할 수 있어 표면 외관 및 제품의 성능이 저하될 수 있는 문제가 있다.
이에, 본 발명의 일 구현예에 따른 아크릴 시럽의 제조방법을 사용함으로써 분자량 조절제 등을 포함하지 않고서도 상기 자외선의 조사를 개시한 시점으로부터 온도 변화량을 적절히 제어하여 반응이 폭발적으로 일어나지 않도록 함과 동시에 원하는 수준의 전환율을 갖는 아크릴 시럽을 균일한 수준으로 제조할 수 있다.
또한, 상기 제조방법은 산소 함유 비활성 기체로 퍼징하는 단계를 포함함으로써 제조된 아크릴 시럽이 광에 노출되어 광개시제로부터 라디칼이 생성되는 경우라도 상기 라디칼이 상기 아크릴 시럽 내에 존재하는 산소와 반응하여 소모될 수 있고, 그에 따라 중합 반응이 진행되지 않음으로써 상기 제조방법에 의해 제조된 아크릴 시럽은 온도 뿐만 아니라 광에 대해서도 저장안정성이 더욱 우수한 이점이 있다.
그 결과, 상기 제조방법은 벌크 광중합을 사용하여 우수한 친환경성, 우수한 생산성 및, 우수한 저장안정성을 구현할 수 있으면서 분자량 조절제를 포함하지 않아 우수한 표면 외관 및 균일한 성능을 구현할 수 있다.
도 1은 상기 제조방법의 개략적인 공정흐름도를 나타낸다.
상기 제조방법은 1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시키는 단계(S1); 상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 약 5℃ 내지 약 40℃가 증가된 시점에 상기 자외선의 조사를 중단하는 단계(S2); 및 상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 단계(S3);를 포함한다.
상기 제조방법에서, 1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시킬 수 있다. 이와 같이 벌크 광중합을 사용하여 휘발성 유기 용제 등을 배출시키지 않아 친환경적이면서도 벌크 열중합에 비하여 반응 속도가 빨라 제조 효율이 높으므로 생산성이 더욱 향상될 수 있다. 또한, 자외선의 조사를 중단한 시점으로부터 더 이상 중합이 진행되지 않으므로 제조된 아크릴 시럽의 물성을 보다 일정한 수준으로 유지할 수 있어 온도에 대한 저장안정성이 효과적으로 향상될 수 있다.
상기 조성물이 분자량 조절제를 포함하지 않을 수 있고, 그에 따라, 제조된 아크릴 시럽 내에 분자량 조절제가 포함되지 않음으로써 유동성을 가지는 분자량 조절제 등이 표면으로 이동하는 이동(migration) 현상이 발생하지 않고, 점착제의 찐, 오물 등이 발생하지 않아, 표면 외관이 우수하고, 장기간 제품의 성능을 균일한 수준으로 구현할 수 있다.
상기 분자량 조절제는 이 기술분야에서 공지된 종류를 모두 포함하는 의미로서, 예를 들어, 도데실멀캅탄, 이소데실멀캅탄 등을 포함할 수 있고, 이에 제한되는 것이 아니다.
상기 제조방법에서, 상기 1종 이상의 아크릴계 모노머 약 100 중량부에 대하여 상기 광개시제 약 0.001 중량부 내지 약 1 중량부를 혼합하여 상기 조성물을 준비할 수 있다.
상기 범위 내의 함량으로 광개시제를 포함함으로써 벌크 광중합에 필요한 라디칼을 적절히 발생시켜 반응이 폭발적으로 일어나는 현상을 방지하여, 상기 아크릴게 모노머의 전환율을 용이하게 제어할 수 있다.
상기 1종 이상의 아크릴계 모노머가 예를 들어, 탄소수 1개 내지 15개의 알킬기를 포함하는 (메타)아크릴산 에스테르계 모노머; 히드록시기, 카르복실기, 아민기를 포함하는 (메타)아크릴산 에스테르계 모노머; 및 이들의 조합으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.
구체적으로, 상기 1종 이상의 아크릴계 모노머가 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴(메타)아크릴레이트, 테트라데실 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메타)아크릴레이트, 4-히드록시부틸 (메타)아크릴레이트, 6-히드록시헥실 (메타)아크릴레이트, 8-히드록시옥틸 (메타)아크릴레이트, 2-히드록시에틸렌글리콜 (메타)아크릴레이트 또는 2-히드록시프로필렌글리콜 (메타)아크릴레이트, 메타크릴산, 아크릴산 및 이들의 조합을 포함하는 그룹에서 선택된 적어도 하나를 포함할 수 있다.
상기 광개시제가 약 100nm 내지 약 400nm 파장의 광을 흡수할 수 있다. 상기 범위의 파장을 갖는 광을 흡수함으로써 자외선의 조사에 의해 라디칼을 용이하게 형성하여 중합이 효과적으로 진행될 수 있다.
상기 광개시제가 예를 들어, 2-메틸-1-[4-(메틸티오)페닐]-2-모르폴리노-프로판-1-온, 디페닐-(2,4,6-트리메틸벤조일)-포스핀 옥사이드, 벤질 디메틸 케탈, 2-하이드록시-2-메틸-1-페닐-프로판-1-온, 1-하이드록시-시클로헥실페닐-케톤, 벤조페논, 4-벤조일-4'-메틸디페닐 설파이드, 메틸-2-벤조일 벤조에이트, 이소프로필 티오잔톤, 에틸-4-(디메틸아미노)벤조에이트, 2-에틸헥실-4-디메틸아미노벤조에이트, 하이드록시 디메틸 아세토페논, 2,4-디에틸티오잔톤, 4-페닐벤조페논 및 이들의 조합으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.
상기 제조방법에서, 상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 약 5℃ 내지 약 40℃가 증가된 시점에 상기 자외선의 조사를 중단할 수 있다.
상기 벌크 광중합은 발열 반응이므로 반응이 진행됨에 따라 온도가 증가할 수 있고, 시간이 지남에 따라 급격히 온도가 증가하면서 폭발적으로 반응이 진행되어 위험성이 증가할 수 있다.
상기 제조방법은 전술한 바와 같이, 상기 자외선의 조사를 개시한 시점으로부터 온도 변화량을 적절히 제어하여 분자량 조절제 등을 포함하지 않고서도 반응이 폭발적으로 일어나지 않도록 함과 동시에 원하는 수준의 전환율을 갖는 아크릴 시럽을 균일한 수준으로 제조할 수 있는 이점이 있다.
또한, 상기 제조방법에서, 상기 자외선의 조사를 개시하기 이전부터 상기 조성물에 대하여 질소 퍼징을 시작하여 수행할 수 있다. 그에 따라, 상기 조성물 내에 존재하는 산소가 질소로 대체되어 자외선의 조사에 의해 광개시제로부터 발생하는 라디칼 등이 산소와 반응할 수 없으므로 소모되지 않아 중합 반응이 효율적으로 진행될 수 있다.
또한, 적어도 상기 조성물을 질소로 퍼징하는 동안 교반을 수행할 수 있다. 이와 같이, 교반을 함께 수행함으로써 상기 조성물 내의 산소를 더욱 용이하게 질소로 대체시킬 수 있어 중합 반응이 더욱 효율적으로 진행될 수 있다.
상기 조성물에 대한 질소 퍼징 및 교반은 상기 자외선의 조사를 중단하는 시점 즉, 반응의 종료시까지 계속하여 수행할 수 있고, 필요에 따라 상기 자외선의 조사를 중단한 이후에도 수행할 수 있다.
상기 제조방법에서, 상기 자외선의 조사를 개시한 시점에서 상기 조성물의 온도를 약 -10℃ 내지 약 80℃로 형성할 수 있다. 상기 범위 내의 온도로 형성함으로써 상기 벌크 광중합에 의해 형성되는 아크릴계 중합체의 중량평균 분자량을 원하는 수준으로 적절히 조절할 수 있고, 상기 조성물의 온도를 낮게 형성할수록 상기 벌크 광중합에 의해 형성되는 아크릴계 중합체의 중량평균 분자량을 상대적으로 더 큰 수준으로 구현할 수 있다.
상기 자외선의 조사를 개시한 시점으로부터 상기 자외선의 조사를 중단한 시점까지 상기 벌크 광중합이 진행될 수 있고, 그에 따라 상기 자외선의 조사를 중단한 시점까지 상기 아크릴계 모노머가 약 4% 내지 약 20%의 전환율로 중합될 수 있다. 상기 범위 내의 낮은 수준의 전환율로 중합됨으로써 이후 제품에 적용하는 과정에서, 제조된 아크릴 시럽의 광경화가 진행되는 정도를 더욱 넓은 범위에서 조절할 수 있고, 그에 따라, 상기 아크릴 시럽을 제품에 적용시 광경화의 조건을 다양하게 적용하여, 다양한 물성을 부여할 수 있다.
상기 전환율이 약 4% 미만인 경우 아크릴 시럽으로서의 성능을 충분히 발휘할 수 없어 다른 추가적인 화합물을 더 혼합하여 사용해야 하고, 약 20% 초과인 경우 높은 고형분의 함량 및 높은 점도로 인해 경화 조건을 다양하게 조절할 수 없다.
또한, 상기 자외선의 조사를 개시한 시점으로부터 상기 자외선의 조사를 중단한 시점까지 상기 벌크 광중합이 진행될 수 있고, 그에 따라 상기 자외선의 조사를 중단한 시점까지 상기 벌크 광중합에 의해 중량평균 분자량이 약 1,000,000g/mol 내지 약 20,000,000g/mol인 아크릴계 중합체가 형성될 수 있다. 전술한 바와 같이, 상기 자외선의 조사를 개시한 시점의 온도를 약 -10℃ 내지 약 80℃로 형성함으로써 상기 아크릴계 중합체의 중량평균 분자량을 상기 범위로 적절히 조절할 수 있고, 그에 따라 상기 아크릴 시럽의 점도를 적절히 조절하여 예를 들어, OCA 점착 필름, 아크릴 폼, 공업용 점착 필름, 가전용 점착 필름 등의 다양한 용도로 적용할 수 있다.
상기 아크릴계 중합체는 아크릴계 수지일 수 있다.
일 구현예에서, 상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징할 수 있다.
그에 따라, 전술한 바와 같이 상기 제조방법에 의해 제조된 아크릴 시럽 내에 산소가 용해되어 포함될 수 있어, 상기 아크릴 시럽이 자외선 등과 같은 광에 노출되어 광개시제로부터 라디칼이 생성되는 경우 상기 라디칼이 상기 아크릴 시럽 내에 용해된 산소와 반응하여 소모될 수 있다.
이와 같이, 상기 라디칼이 소모됨으로써 상기 제조방법에 의해 제조된 아크릴 시럽은 자외선 등과 같은 광에 노출되더라도 중합 반응이 더 이상 진행되지 않음으로써 온도 뿐만 아니라 광에 대해서도 저장안정성이 더욱 우수하므로 상기 아크릴 시럽이 유통 과정을 거치더라도 온도 변화 및 광에 대한 노출 여부와 무관하게 실제 제품에 적용되기 전까지 더욱 일정한 물성을 유지할 수 있다.
상기 산소 함유 비활성 기체가 약 10 부피% 내지 약 30 부피%의 산소를 함유할 수 있다. 상기 범위 내의 함량으로 함유함으로써 퍼징하는 시간을 단축하여 시간 및 비용을 절감할 수 있으면서 폭발성을 방지하여 우수한 경제성 및 우수한 안정성을 동시에 구현할 수 있다.
또한, 상기 산소 함유 비활성 기체는 질소, 아르곤, 헬륨, 네온 및 이들의 조합을 포함하는 군에서 선택된 적어도 하나를 포함할 수 있다.
적어도 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 동안 교반을 수행할 수 있다. 그에 따라, 상기 제조된 아크릴 시럽 내에 전체적으로 산소를 충분히 고르게 용해시켜 광에 노출되는 경우 중합 반응의 진행을 효과적으로 억제할 수 있다.
상기 제조방법에서, 상기 조성물의 온도가 적어도 약 20℃ 내지 약 50℃에 도달하는 시점까지 상기 조성물을 산소 함유 비활성 기체로 퍼징할 수 있고, 약 20℃에 도달한 시점 이후에도 산소 함유 비활성 기체로 퍼징할 수 있다.
상기 자외선의 조사를 중단한 시점부터 발열 반응인 벌크 광중합이 중단되므로 퍼징하는 과정에서 온도가 낮아지게 되는데 적어도 상기 범위 내의 온도에 도달하는 시점까지 퍼징을 계속하여 수행해야 산소가 대기 중으로 이탈하지 않고, 상기 조성물 내에 충분해 용해될 수 있고, 그에 따라, 상기 조성물이 광에 노출되는 경우 생성된 라디칼을 충분히 소모시킬 수 있어 광에 대한 저장안정성이 더욱 우수할 수 있다.
본 발명의 다른 구현예에서, 분자량 조절제를 포함하지 않고, 상기 아크릴 시럽의 제조방법에 의해 벌크 광중합으로 제조된 아크릴 시럽을 제공한다.
상기 제조방법에 의해 벌크 광중합으로 제조됨에도 불구하고, 상기 조성물이 분자량 조절제를 포함하지 않음으로써 상기 아크릴 시럽이 다양한 용도에 적용하는 경우 유동성을 가지는 분자량 조절제 등이 표면으로 이동하는 이동(migration) 현상이 발생하지 않고, 점착제의 찐, 오물 등이 발생하지 않아, 표면 외관이 우수하고, 장기간 제품의 성능을 균일한 수준으로 구현할 수 있다.
또한, 상기 벌크 광중합에 의해 제조되어 전술한 바와 같이, 우수한 친환경성, 우수한 생산성, 및 우수한 저장안정성을 구현할 수 있다.
그에 따라, 상기 아크릴 시럽은 유통 과정을 거치더라도 온도 변화 및 광에 대한 노출 여부와 무관하게 실제 제품 등에 적용되기 전까지 더욱 일정한 물성을 유지할 수 있다.
상기 분자량 조절제는 이 기술분야에서 공지된 종류를 모두 포함하는 의미로서, 예를 들어, 도데실멀캅탄, 이소데실멀캅탄 등을 포함할 수 있고, 이에 제한되는 것이 아니다.
상기 아크릴 시럽은 1종 이상의 아크릴계 모노머, 중량평균 분자량이 약 1,000,000g/mol 내지 약 20,000,000g/mol인 아크릴계 중합체 및 광개시제를 포함할 수 있다.
상기 아크릴계 중합체는 일 구현예에서 전술한 바와 같이, 상기 1종 이상의 아크릴계 모노머가 중합되어 형성될 수 있다. 상기 범위 내의 중량평균 분자량을 가짐으로써 상기 아크릴 시럽의 점도를 적절히 조절하여 예를 들어, OCA 점착 필름, 아크릴 폼, 공업용 점착 필름, 가전용 점착 필름 등의 다양한 용도로 적용할 수 있다.
또한, 상기 아크릴계 중합체의 다분산도(polydispersity index, PDI)가 약 1.98 내지 약 10일 수 있다. 상기 범위 내의 다분산도를 가짐으로써 상기 아크릴 시럽의 점도가 적절히 조절되어 이를 제품에 적용하는 경우 점착 성능 등을 포함하는 물성이 우수한 수준으로 용이하게 구현될 수 있다.
상기 다분산도(Mw/Mn)란 중량평균 분자량(Mw)을 수평균 분자량(Mn)으로 나눈 값으로 정의될 수 있다.
상기 아크릴 시럽이 약 4% 내지 약 20%의 전환율을 가질 수 있고, 즉, 상기 아크릴계 모노머가 약 4% 내지 약 20%의 전환율로 중합될 수 있다. 상기 범위 내의 낮은 수준의 전환율로 중합됨으로써 이후 제품에 적용하는 과정에서, 제조된 아크릴 시럽의 광경화가 진행되는 정도를 더욱 넓은 범위에서 조절할 수 있고, 그에 따라, 상기 아크릴 시럽을 제품에 적용시 광경화의 조건을 다양하게 적용하여, 다양한 물성을 부여할 수 있다.
상기 아크릴 시럽의 점도가 약 20℃에서 약 1,000cps 내지 약 100,000cps일 수 있다. 상기 범위 내의 점도를 가짐으로써 이를 제품에 적용하는 후 공정에 있어서 다른 기타 첨가제 등과 더욱 균일하게 혼합될 수 있으면서 예를 들어, 필름, 코팅, 폼 등을 더욱 용이하게 형성할 수 있다.
이하 본 발명의 실시예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예)
실시예 1
EHA(ethylhexylacrylate), AA(acrylic acid)을 포함하는 아크릴계 모노머 100 중량부 및 광개시제 IRG 184, 0.05 중량부를 혼합하여 조성물을 준비하고, 상기 조성물을 25℃로 형성한 후 상기 조성물을 교반하면서 질소로 1시간 동안 퍼징하였다. 이어서, 상기 교반 및 퍼징을 계속 수행하면서 상기 조성물에 메탈 할라이드 램프(metal halide lamp)를 사용하여 40mW/cm2로 자외선의 조사를 개시하였고, 상기 자외선의 조사를 개시한 시점의 온도는 25℃였다. 상기 조성물의 온도를 계속하여 측정하면서 상기 자외선 조사를 개시한 시점의 온도로부터 15℃가 증가된 시점에 상기 자외선의 조사를 중단하고, 질소 퍼징도 중단하였다. 이어서, 상기 조성물의 교반은 계속하여 수행하면서 상기 조성물의 온도가 30℃에 도달한 시점까지 산소 함유 비활성 기체 (산소: 15 부피%, 질소 85 부피%)로 퍼징함으로써 아크릴 시럽을 제조하였다. 상기 산소 함유 비활성 기체 퍼징을 중단하면서 교반도 중단하였다.
비교예 1 (분자량 조절제를 포함한 경우)
EHA(ethylhexylacrylate), AA(acrylic acid)을 포함하는 아크릴계 모노머 100 중량부, 광개시제 IRG 184, 0.05 중량부 및, 분자량 조절제 n-DODECYL MERCAPTAN 0.005 중량부를 혼합하여 조성물을 준비하고, 상기 조성물에 메탈 할라이드 램프(metal halide lamp)를 사용하여 40mW/cm2로 자외선을 5분 동안 조사하여 아크릴 시럽을 제조하였다.
비교예 2 (벌크 열중합을 사용한 경우)
EHA(ethylhexylacrylate), AA(acrylic acid)을 포함하는 아크릴계 모노머 100 중량부 및 열개시제의 AIBN 0.005 중량부를 혼합하여 조성물을 준비하고, 80℃로 5시간 동안 열처리를 함으로써 벌크 열중합에 의한 아크릴 시럽을 제조하였다.
비교예 3 (온도변화량이 미만인 경우)
자외선의 조사를 개시한 시점의 온도로부터 4℃가 증가된 시점에 상기 자외선의 조사를 중단한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 아크릴 시럽을 제조하였다.
비교예 4 (온도변화량이 초과인 경우)
자외선의 조사를 개시한 시점의 온도로부터 50℃가 증가된 시점에 상기 자외선의 조사를 중단한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 아크릴 시럽을 제조하였다.
평가
상기 실시예 1 및 상기 비교예 1-4에 따른 아크릴 시럽에 대하여 각 물성을 평가하여 하기 표 1에 기재하였다. 또한, 각 아크릴 시럽에 포함된 아크릴계 중합체의 중량평균 분자량 및 다분산도를 측정하여 하기 표 2에 기재하였다.
실험예
실험예 1: 전환율
측정방법: 상기 실시예 1 및 상기 비교예 1-4에 따른 아크릴 시럽 중 10.000g을 메탄올에 적하하고, 상기 메탄올 내에 침전된 아크릴계 중합체를 여과한 후 진공 오븐에서 60℃ 및 24시간의 조건에서 건조시키고, 이어서 건조되어 형성된 고형분의 질량을 측정하였다. 상기 고형분의 질량을 사용하여 하기 식 1에 따라 전환율을 계산하였다.
[식 1]
전환율(%) = M2/M1 Ⅹ 100
상기 식 1에서, M1은 메탄올에 적하한 아크릴 시럽의 질량이고, M2는 건조되어 형성된 고형분의 질량이다.
실험예 2: 점도
측정방법: 20℃의 조건에서, 점도계( Brookfield, DV-II+ Pro)을 사용하여 측정하였다.
실험예 3: 온도에 대한 저장 안정성
측정방법: 상기 각 아크릴 시럽을 고온 챔버(제이오텍, ON-22)에서 60℃로 24시간 동안 유지시킨 후 상기 전환율의 변화 여부를 측정하여 전환율의 변화가 없는 경우를 “○”로 표시하고, 전환율이 증가한 경우를 “Ⅹ”로 표시하였다.
실험예 4: 광에 대한 저장 안정성
측정방법: 상기 각 아크릴 시럽을 태양 광 (UVA 기준 10mw/cm2 이상)에 10분 동안 노출시킨 이후 상기 전환율의 변화 여부를 측정하여 전환율의 변화가 없는 경우를 “○”로 표시하고, 전환율이 증가한 경우를 “Ⅹ”로 표시하였다.
실험예 5: 표면 외관 및, 균일한 성능 구현 가능 여부
측정방법: 상기 각 아크릴 시럽을 탈포하고, 이어서 PET(polyethyleneterephthalate) 기재 필름 상에 도포한 후 자외선을 조사하여 광경화시킴으로써 점착 필름을 제조하고, 120시간 동안 방치한 후 표면에서 점착제의 찐, 오물 등이 발생하는지 여부를 육안으로 관측하여 점착제의 찐, 오물 등이 발생하지 않아 점착 성능이 균일하게 유지된 경우를 “○”로 표시하고, 점착제의 찐, 오물 등이 발생하여 점착 성능이 저하되거나, 아크릴 시럽 자체의 점도 등이 적절하지 않아 필름 형상이 온전히 구현되지 못한 경우를 “Ⅹ”로 표시하였다.
실험예 6: 중량평균 분자량 및 다분산도
측정방법: 각각의 고형분을 Chloroform에 0.25 중량% 농도로 용해하고, Gel permeation chromatography (제조사: Agilent사 1200, 칼럼(Column): Mixed-A *2ea, PLgel 10㎛ Guard*1ea, 검출기: RID)를 사용하여 중량평균 분자량 및 수평균 분자량을 측정하였다. 이어서, 상기 측정한 중량평균 분자량(Mw)을 상기 측정한 수평균 분자량(Mn)으로 나누어 분자량 분포도(Mw/Mn)를 계산하였다.
유속: 1.0mL/분, 용매: THF, 표준물질: 폴리스타이렌.
표 1
전환율(%) 점도(cps) 온도에 대한 저장안정성 광에 대한 저장안정성 표면 외관 및 균일한 성능 구현 여부
실시예1 9.71 12000
비교예1 9.22 1600
비교예2 24.12 2400
비교예3 2.12 400
비교예4 31.15 측정불가
표 2
중량평균분자량(g/mol) 다분산도
실시예1 2,890,000 2.12
비교예1 1,800,000 3.15
비교예2 620,000 3.20
비교예3 2,920,000 2.03
비교예4 2,720,000 4.28
실시예 1에 따른 아크릴 시럽에 포함된 아크릴계 중합체의 중량평균 분자량 및 다분산도가 모두 적절하면서 상기 아크릴 시럽의 전환율 및 점도도 적절하여 제품에 적용하는 과정에서, 제조된 아크릴 시럽의 광경화가 진행되는 정도를 더욱 넓은 범위에서 조절할 수 있고, 그에 따라, 상기 아크릴 시럽을 제품에 적용시 광경화의 조건을 다양하게 적용하여, 다양한 물성을 부여할 수 있음을 명확히 확인할 수 있다. 또한, 실시예 1에 따른 아크릴 시럽의 경우 광의 차단에 의해 중합이 중지되어 온도에 대한 저장안정성이 우수하고, 특히, 분자량 조절제를 포함하지 않음으로써 분자량 조절제의 이동(migration) 현상이 일어나지 않으므로 점착제의 찐, 오물 등이 발생하지 않아 표면 외관이 우수함과 동시에 균일한 성능을 구현할 수 있다. 특히, 실시예 1에 따른 아크릴 시럽의 경우 광에 노출되더라도 중합이 진행되지 않아 광에 대한 저장안정성도 우수한 이점이 있다.
반면, 비교예 1에 따른 아크릴 시럽은 분자량 조절제를 포함하기 때문에 제품으로서 적용된 이후 분자량 조절제의 이동 현상이 일어나, 점착제의 찐, 오물 등이 발생하여 표면 외관이 열등하면서 성능이 저하됨을 명확히 확인하였다.
또한, 비교예 2에 따른 아크릴 시럽은 열 처리를 중단한 이후에도 서서히 중합이 진행되어 전환율이 변화되므로 온도에 대한 저장안정성이 현저히 열등함을 명확히 확인하였다.
또한, 비교예 3에 따른 아크릴 시럽의 경우 전환율 및 점도가 너무 작아 흘러내리는 등의 문제가 있고, 비교예 4에 따른 아크릴 시럽의 경우 전환율 및 점도가 너무 높아 뭉치는 등의 문제가 있어, 코팅을 형성하는 것이 어려우므로 제품에 적용하는 과정에서 예를 들어, 필름 형상 등을 용이하게 구현할 수 없어 표면 외관이 열등하고 필름의 각 부분에서 균일하게 성능이 구현되지 않았다. 게다가, 비교예 4의 경우 전술한 문제를 해결하기 위해 아크릴계 모노머를 추가로 첨가할 수 있으나, 이러한 첨가 공정이 복잡하여 시간 및 비용이 매우 소모되므로 비경제적이다.

Claims (18)

1종 이상의 아크릴계 모노머 및 광개시제를 포함하는 조성물에 자외선의 조사를 개시하여 벌크 광중합을 진행시키는 단계;
상기 조성물에 자외선의 조사를 개시한 시점의 온도로부터 5℃ 내지 40℃가 증가된 시점에 상기 자외선의 조사를 중단하는 단계; 및
상기 자외선의 조사를 중단한 이후 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 단계;
를 포함하는 아크릴 시럽의 제조방법.
제1항에 있어서,
상기 산소 함유 비활성 기체가 10 부피% 내지 30 부피%의 산소를 함유하는
아크릴 시럽의 제조방법.
제1항에 있어서,
적어도 상기 조성물을 산소 함유 비활성 기체로 퍼징하는 동안 교반을 수행하는 아크릴 시럽의 제조방법.
제1항에 있어서,
상기 조성물의 온도가 적어도 20℃ 내지 50℃에 도달하는 시점까지 상기 조성물을 산소 함유 비활성 기체로 퍼징하는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 조성물이 분자량 조절제를 포함하지 않는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 자외선의 조사를 중단한 시점까지 상기 아크릴계 모노머가 4% 내지 20%의 전환율로 중합되는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 자외선의 조사를 중단한 시점까지 상기 벌크 광중합에 의해 중량평균 분자량이 1,000,000g/mol 내지 20,000,000g/mol인 아크릴계 중합체가 형성되는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 자외선의 조사를 개시하기 이전부터 상기 조성물에 대하여 질소 퍼징을 시작하여 수행하는
아크릴 시럽의 제조방법.
제8항에 있어서,
적어도 상기 조성물을 질소로 퍼징하는 동안 교반을 수행하는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 자외선의 조사를 개시한 시점에서 상기 조성물의 온도를 -10℃ 내지 80℃로 형성하는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 1종 이상의 아크릴계 모노머 100 중량부에 대하여 상기 광개시제 0.001 중량부 내지 1 중량부를 혼합하여 상기 조성물을 준비하는 단계;를 더 포함하는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 1종 이상의 아크릴계 모노머가 탄소수 1개 내지 15개의 알킬기를 포함하는 (메타)아크릴산 에스테르계 모노머; 히드록시기, 카르복실기, 아민기를 포함하는 (메타)아크릴산 에스테르계 모노머; 및 이들의 조합으로 이루어진 군에서 선택된 적어도 하나를 포함하는
아크릴 시럽의 제조방법.
제1항에 있어서,
상기 광개시제가 100nm 내지 400nm 파장의 광을 흡수하는
아크릴 시럽의 제조방법.
분자량 조절제를 포함하지 않고, 제1항 내지 제13항 중 어느 한 항에 따른 아크릴 시럽의 제조방법에 의해 벌크 광중합으로 제조된 아크릴 시럽.
제14항에 있어서,
중량평균 분자량이 1,000,000g/mol 내지 20,000,000g/mol인 아크릴계 중합체를 포함하는
아크릴 시럽.
제14항에 있어서,
상기 아크릴계 중합체의 다분산도가 1.98 내지 10인
아크릴 시럽.
제14항에 있어서,
4% 내지 20%의 전환율을 갖는
아크릴 시럽.
제14항에 있어서,
점도가 20℃에서 1,000cps 내지 100,000cps인
아크릴 시럽.
PCT/KR2015/010038 2014-09-29 2015-09-23 아크릴 시럽의 제조방법 및 아크릴 시럽 WO2016052915A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051953.3A CN106795246B (zh) 2014-09-29 2015-09-23 丙烯酸类浆料的制备方法和丙烯酸类浆料
US15/509,693 US10131728B2 (en) 2014-09-29 2015-09-23 Acrylic syrup preparation method and acrylic syrup
JP2017516849A JP6523442B2 (ja) 2014-09-29 2015-09-23 アクリルシロップの製造方法及びアクリルシロップ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0130550 2014-09-29
KR1020140130550A KR101948686B1 (ko) 2014-09-29 2014-09-29 아크릴 시럽의 제조방법 및 아크릴 시럽

Publications (1)

Publication Number Publication Date
WO2016052915A1 true WO2016052915A1 (ko) 2016-04-07

Family

ID=55630888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010038 WO2016052915A1 (ko) 2014-09-29 2015-09-23 아크릴 시럽의 제조방법 및 아크릴 시럽

Country Status (6)

Country Link
US (1) US10131728B2 (ko)
JP (1) JP6523442B2 (ko)
KR (1) KR101948686B1 (ko)
CN (1) CN106795246B (ko)
TW (1) TWI660973B (ko)
WO (1) WO2016052915A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070007974A (ko) * 1999-12-22 2007-01-16 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 아크릴 폴리머 조성물, 아크릴 압력 민감성 접착테이프 및그의 제조방법
US20100112201A1 (en) * 2008-11-04 2010-05-06 Mcguire Jr James E Method for Continuous Production of (Meth)acrylate Syrup and Adhesives Therefrom
JP2014009314A (ja) * 2012-06-29 2014-01-20 Daido Kasei Kogyo Kk 光重合性硬化型粘着剤組成物
WO2014013028A1 (en) * 2012-07-18 2014-01-23 Arkema France Impregnation process for a fibrous substrate, a liquid (meth) acrylic syrup for the impregnation process, its method of polymerization and structured article obtained thereof
KR20140035360A (ko) * 2011-05-10 2014-03-21 데쿠세리아루즈 가부시키가이샤 양면 점착 테이프 및 그의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303485A (en) * 1979-08-20 1981-12-01 Minnesota Mining And Manufacturing Company Ultraviolet polymerization of acrylate monomers using oxidizable tin compounds
US4391687A (en) * 1980-02-14 1983-07-05 Minnesota Mining And Manufacturing Company Photoactive mixture of acrylic monomers and chromophore-substituted halomethyl-1-triazine
JPH073212A (ja) * 1993-06-21 1995-01-06 Sekisui Chem Co Ltd 光重合性組成物及び接着テープもしくはシート
JP3460307B2 (ja) * 1994-06-16 2003-10-27 住友化学工業株式会社 サニタリー用メタクリル樹脂板の製造方法
JP3004571B2 (ja) * 1995-10-06 2000-01-31 株式会社日本触媒 (メタ)アクリルシラップおよびその製造方法並びに(メタ)アクリルシラップを含む成形材料
WO1997012918A1 (fr) 1995-10-06 1997-04-10 Nippon Shokubai Co., Ltd. Sirop (meth)acrylique, procede d'elaboration de ce sirop et procede d'elaboration d'un materiau de moulage contenant un tel sirop
JP2001305733A (ja) * 2000-04-18 2001-11-02 Sumitomo Chem Co Ltd 感光性組成物の保存方法
JP5260136B2 (ja) * 2007-09-06 2013-08-14 日東電工株式会社 光重合反応とレドックス重合反応とを併用するアクリル系粘弾性体層の製造方法、及び粘着テープ又はシート
JP2011202012A (ja) * 2010-03-25 2011-10-13 Nitto Denko Corp アクリル系粘着剤組成物およびアクリル系粘着テープ
JP5527596B2 (ja) * 2010-04-26 2014-06-18 東レ・ファインケミカル株式会社 アクリルシラップ
KR20120050068A (ko) * 2010-11-10 2012-05-18 동우 화인켐 주식회사 수지형 도광판용 조성물, 이로 형성된 도광판을 포함하는 백라이트 유닛 및 상기 백라이트 유닛을 구비하는 액정표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070007974A (ko) * 1999-12-22 2007-01-16 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 아크릴 폴리머 조성물, 아크릴 압력 민감성 접착테이프 및그의 제조방법
US20100112201A1 (en) * 2008-11-04 2010-05-06 Mcguire Jr James E Method for Continuous Production of (Meth)acrylate Syrup and Adhesives Therefrom
KR20140035360A (ko) * 2011-05-10 2014-03-21 데쿠세리아루즈 가부시키가이샤 양면 점착 테이프 및 그의 제조 방법
JP2014009314A (ja) * 2012-06-29 2014-01-20 Daido Kasei Kogyo Kk 光重合性硬化型粘着剤組成物
WO2014013028A1 (en) * 2012-07-18 2014-01-23 Arkema France Impregnation process for a fibrous substrate, a liquid (meth) acrylic syrup for the impregnation process, its method of polymerization and structured article obtained thereof

Also Published As

Publication number Publication date
CN106795246B (zh) 2019-04-30
US10131728B2 (en) 2018-11-20
CN106795246A (zh) 2017-05-31
JP6523442B2 (ja) 2019-05-29
JP2017529445A (ja) 2017-10-05
KR101948686B1 (ko) 2019-02-18
TW201612196A (en) 2016-04-01
US20170283535A1 (en) 2017-10-05
KR20160038198A (ko) 2016-04-07
TWI660973B (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2013165207A1 (ko) 신규한 옥심에스테르 플로렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2012111964A2 (ko) 무용제형 조성물 및 그의 제조방법
JP2017141343A (ja) 硬化性粘着剤組成物、粘着シートおよび保護フィルム
WO2013176457A1 (ko) 광학부재, 점착제 조성물 및 액정표시장치
WO2018155989A1 (ko) 아크릴계 점착제의 제조 방법 및 이로부터 제조된 점착 필름
WO2021006593A1 (ko) 기능성 핫멜트 점착제의 제조방법 및 그에 따른 기능성 핫멜트 점착제
KR101997581B1 (ko) (메타)아크릴계 시럽의 제조방법 및 (메타)아크릴계 시럽
WO2014021562A1 (ko) 광중합 수지 조성물 및 이를 포함하는 광중합 수지
WO2016052915A1 (ko) 아크릴 시럽의 제조방법 및 아크릴 시럽
WO2015142009A1 (ko) 점착 필름용 광경화성 수지 조성물 및 점착 필름
KR20190098761A (ko) 광-경화성 접착제 조성물, 그의 경화물 및 용도
CN115093567B (zh) 一种基于硫醇-烯反应的紫外光固化树脂组合物及其制备方法和应用
WO2019139396A1 (ko) 저분자량 아크릴계 수지의 제조방법
WO2012064133A2 (ko) 전도성 투명 접착 조성물 및 이를 이용하여 제조한 전도성 투명 접착제
KR20130032658A (ko) 자외선 경화성 코팅조성물 및 이를 이용한 고 경도 코팅막
KR20190079476A (ko) 광 경화성 아크릴계 수지, 이를 포함하는 접착제 조성물 및 이를 이용하여 형성된 접착 필름
KR20160038197A (ko) 아크릴 시럽의 제조방법 및 아크릴 시럽
WO2013022282A2 (ko) 광변색 필름 및 이의 제조방법
KR102171979B1 (ko) 점착 필름 및 이의 제조방법
KR101804598B1 (ko) 광중합에 의한 용제형 점착제 조성물 제조방법
WO2019132211A1 (ko) 광 경화성 아크릴계 수지, 이를 포함하는 접착제 조성물 및 이를 이용하여 형성된 접착 필름
CN111187590A (zh) 一种耐候耐水的光固化压敏胶
WO2018124371A1 (ko) 경화수축율이 작은 자외선 경화형 점착 조성물을 포함하는 점착 테이프 및 이의 제조방법
CN116987468B (zh) 一种无迁移快速uv减粘高分子组合物及其制备方法
WO2023177255A1 (ko) 저탄소 배출 공정을 이용하여 제조되는 친환경 점착제 수지, 이를 포함하는 점착제 조성물 및 이를 이용하여 형성된 점착제층

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509693

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017516849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846946

Country of ref document: EP

Kind code of ref document: A1