WO2016052445A1 - 二相合金、該二相合金を用いた製造物、および該製造物の製造方法 - Google Patents

二相合金、該二相合金を用いた製造物、および該製造物の製造方法 Download PDF

Info

Publication number
WO2016052445A1
WO2016052445A1 PCT/JP2015/077398 JP2015077398W WO2016052445A1 WO 2016052445 A1 WO2016052445 A1 WO 2016052445A1 JP 2015077398 W JP2015077398 W JP 2015077398W WO 2016052445 A1 WO2016052445 A1 WO 2016052445A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase alloy
mass
alloy
product
Prior art date
Application number
PCT/JP2015/077398
Other languages
English (en)
French (fr)
Inventor
雅史 能島
青野 泰久
直也 沖崎
祐策 丸野
友則 木村
真 緒方
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/510,322 priority Critical patent/US10718038B2/en
Priority to JP2016552029A priority patent/JP6374520B2/ja
Priority to EP15845890.1A priority patent/EP3202934B1/en
Publication of WO2016052445A1 publication Critical patent/WO2016052445A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/622Comminution, shaping or abrasion of initially uncoated particles, possibly in presence of grinding aids, abrasives or chemical treating or coating agents; Particle solidification from melted or vaporised metal; Classification
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/052Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/006Amorphous alloys with Cr as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/11Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of chromium or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/006Powder metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/956Producing particles containing a dispersed phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/777Metallic powder or flake
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound

Definitions

  • the present invention relates to a technology for a high corrosion resistance and high strength alloy, and in particular, relates to a two-phase alloy in which two phases of an austenite phase and a ferrite phase are mixed, a product using the two-phase alloy, and a method for producing the product. Is.
  • SUS420 is susceptible to stress corrosion cracking (SCC) in an environment containing chloride and acidic gas (for example, carbon dioxide gas or hydrogen sulfide). For this reason, when drilling oil wells in such a severe corrosive environment, expensive nickel (Ni) -based alloys (for example, alloys containing 40% by mass or more of Ni) are often used in the past, and material costs (and therefore drilling costs) ) would rise significantly.
  • SCC stress corrosion cracking
  • Patent Document 1 Japanese Patent Laid-Open No. 04-3010408
  • Patent Document 2 Japanese Patent Laid-Open No. 04-301049 discloses a heat-resistant alloy having a chemical composition consisting of Cr: 70 to 95%, N: 0.1 to 1.5%, the balance Fe and an impurity. It is disclosed.
  • Patent Documents 1 and 2 it has excellent compression deformation resistance, oxidation resistance, etc. in a high-temperature atmosphere furnace, improved durability as a heated steel material support surface member, reduced maintenance, and associated furnace operation efficiency. It is said to contribute greatly to improvement.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 08-291355 contains, by mass%, Cr: more than 95%, N: 0.1-2.0% by weight, the balance of one or more of Fe, Ni and Co and unavoidable impurities.
  • a Cr-based heat-resistant alloy further containing 0.3% or more in total of one or more of Ti, Al, Zr, Nb, B, and V as desired is disclosed.
  • Patent Document 3 it is said that a Cr-based heat-resistant alloy excellent in high-temperature strength used for a member that requires strength, ductility, and corrosion resistance at an ultra-high temperature (for example, a heated steel material support member in a heating furnace) can be provided. ing.
  • Patent Document 4 Japanese Patent Laid-Open No. 07-258801 discloses that Cr: 15-50%, Ni: 6.1-50%, O + P + S: 200 ppm or less, the balance being Fe and unavoidable impurities, crystal grain size number: 8 As described above, an Fe—Cr—Ni alloy excellent in corrosion resistance of a processed portion, characterized by C + N: 400 to 1200 ppm, if desired, is disclosed. According to Patent Document 4, it is said that an Fe—Cr—Ni alloy can be provided which improves the corrosion resistance without reducing the workability and does not decrease the corrosion resistance even if processed.
  • High Cr-based alloys (alloys with a high Cr content) as described in Patent Documents 1 to 3 are intended for use in a high temperature environment of 1300 ° C. or higher, and are excellent even in the high temperature environment. Corrosion resistance and mechanical properties. However, such a high Cr-based alloy exhibits brittleness (insufficient toughness) in the temperature range of the oil well environment (room temperature to about 300 ° C.), and is therefore not considered suitable as an oil well equipment material.
  • the Fe—Cr—Ni alloy described in Patent Document 4 is intended for austenitic stainless steel, but austenitic stainless steel is stress-corrosion caused by hydrogen embrittlement in a high temperature and high pressure environment containing chloride. It is known that cracking (SCC) is likely to occur, and it is considered that it is not suitable as an oil well equipment material, as is the case with high Cr-based alloys.
  • SCC cracking
  • an object of the present invention is a metal material that can be suitably used even in a temperature range and highly corrosive environment such as an oil well, and has a high corrosion resistance equal to or higher than conventional ones and good mechanical properties, and is low in cost. It is an object to provide a two-phase alloy, a product using the two-phase alloy, and a method for producing the product.
  • One aspect of the present invention is a two-phase alloy in which Cr (chromium) is a main component and two phases of an austenite phase and a ferrite phase are mixed, and the chemical composition of the two-phase alloy is 34 mass% or more and 70 Cr (mass%) or less, Ni (nickel) of 17 mass% or more and 45 mass% or less, Fe (iron) of 10 mass% or more and 35 mass% or less, and Mn (manganese) of 0.1 mass% or more and 2 mass% or less
  • An alloy is provided.
  • the present invention can be modified or changed as follows in the above-described two-phase alloy (I) according to the present invention.
  • C carbon
  • N nitrogen
  • O oxygen
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • Ti titanium
  • Another aspect of the present invention provides a product using a two-phase alloy, wherein the two-phase alloy is the two-phase alloy described above. Is.
  • the present invention can add the following improvements and changes to the above-described two-phase alloy product (II) according to the present invention.
  • the product is a molded body having a forged structure.
  • the product is a composite in which a coating layer of the two-phase alloy is formed on a base material.
  • the ratio of the average Cr concentration of the austenite phase to the average Cr concentration of the ferrite phase in the coating layer is 1.3 or less.
  • the coating layer has a rapidly solidified structure.
  • the product is a rotating machine shaft or bearing.
  • the product is a powder.
  • the product is a rod-like body or a linear body.
  • the product is a welding material.
  • the product is a welded joint in which alloy members are welded to each other via a weld, and the weld is made of the two-phase alloy.
  • the ratio of the average Cr concentration of the austenite phase to the average Cr concentration of the ferrite phase in the weld is 1.3 or less.
  • the alloy member is made of the two-phase alloy.
  • Still another embodiment of the present invention is a method for producing the above two-phase alloy product, A raw material mixing and dissolving step for mixing and dissolving raw materials; A casting process for casting to form an ingot; A hot forging process for forming the compact by hot forging the ingot; And a solution heat treatment step of performing a solution treatment in a temperature range of 1050 ° C. or more and 1250 ° C. or less on the formed body.
  • the present invention can be improved or changed as follows in the method (III) for producing a two-phase alloy product according to the present invention.
  • (Xv) It further has an aging heat treatment step of performing an aging treatment in the temperature range of 800 ° C. or higher and 1000 ° C. or lower on the solution-treated molded body after the solution heat treatment step.
  • Still another embodiment of the present invention is a method for producing the above-described two-phase alloy product, A raw material mixing and melting step of mixing and melting the raw materials of the two-phase alloy to form a molten metal; An atomizing step of forming alloy powder from the molten metal;
  • the present invention provides a method for producing a two-phase alloy product, comprising: a layered manufacturing process for forming a coating layer of the two-phase alloy on the base material using the alloy powder.
  • Still another embodiment of the present invention is a method for producing the above-mentioned two-phase alloy product, A raw material mixing and melting step of mixing and melting the raw materials of the two-phase alloy; A casting process for casting to form an ingot; A hot working forming step of hot working the ingot to form a rod-like body or a linear body; and
  • the present invention provides a method for producing a two-phase alloy product, comprising a welding step of welding the alloy members using the rod-like body or linear body as a welding material.
  • the metal material As a metal material that can be suitably used even in a temperature range and highly corrosive environment such as an oil well, the metal material has high corrosion resistance equal to or higher than that of conventional ones and good mechanical properties, and is low in cost.
  • a two-phase alloy, a product using the two-phase alloy, and a method for producing the product can be provided.
  • the inventors of the present invention used a Cr—Ni—Fe alloy containing Cr as a main component, particularly a Cr—Ni—Fe alloy containing 34 mass% or more of Cr, a composition, a metallographic form, and a product using the alloy.
  • the present invention was completed by intensive investigation and examination on the relationship between mechanical properties and corrosion resistance.
  • the alloy of the present invention is a Cr—Ni—Fe alloy containing Cr, Ni and Fe as main components.
  • the metal structure of an alloy containing Fe as a main component is usually a ferrite structure having a body-centered cubic lattice crystal structure (also referred to as a ferrite phase or ⁇ phase) and an austenite structure having a face-centered cubic lattice crystal structure (austenite phase). , Also referred to as a ⁇ phase), and a martensite structure having a distorted body-centered cubic lattice crystal structure (also referred to as a martensite phase or an ⁇ ′ phase).
  • the ferrite phase has excellent corrosion resistance (for example, SCC resistance) and high mechanical strength (for example, 0.2% proof stress), but it is said that the ductility and toughness are relatively low compared to the austenite phase. ing.
  • the austenite phase has relatively high ductility and toughness compared to the ferrite phase, but is considered to have relatively low mechanical strength.
  • high corrosion resistance is shown in a normal environment, when the corrosive environment becomes severe, it is said that SCC resistance will fall rapidly.
  • the martensite phase has high mechanical strength (for example, hardness), but is considered to have relatively low corrosion resistance.
  • the two-phase alloy according to the present invention is an alloy in which two phases of an austenite phase and a ferrite phase are mixed as a metal structure.
  • Two-phase alloys are characterized by combining the advantages of an austenite phase (excellent ductility and toughness) with the advantages of a ferrite phase (high mechanical strength and excellent corrosion resistance including SCC resistance). Further, since Cr, which is cheaper than Ni, is used as a main component, there is an advantage that material costs can be reduced as compared with a Ni-based alloy having Ni as the maximum component.
  • the occupancy ratio of the ferrite phase (hereinafter sometimes simply referred to as “ferrite ratio”) is 10% or more and 90% or less, and the balance is the austenite phase.
  • the phase occupancy in the present invention is defined as the content (unit:%) of the phase when backscattered electron diffraction image (EBSP) analysis is performed on the polished surface of the alloy bulk sample.
  • EBSP backscattered electron diffraction image
  • the ferrite ratio is out of the range of 10% or more and 90% or less, the advantage as a two-phase alloy is hardly obtained (the weak point of the austenite phase single phase or the weak point of the ferrite phase single phase appears clearly).
  • the ferrite ratio is more preferably 20% or more and 70% or less, and further preferably 30% or more and 70% or less.
  • the product made of the two-phase alloy of the present invention preferably has a metal structure (for example, a forged structure or a rapidly solidified structure) having a small crystal grain size from the viewpoint of mechanical properties and corrosion resistance.
  • the product is preferably formed and shaped by forging or rapid solidification using the two-phase alloy of the present invention.
  • the metal structure may be a metal structure that has been subjected to a solution heat treatment after forging or rapid solidification modeling, or may be a metal structure that has been subjected to an aging heat treatment.
  • FIG. 1 is an example of a two-phase alloy material according to the present invention, and is an optical micrograph showing an example of a metal structure of a sample subjected to solution heat treatment after hot forging.
  • the two-phase alloy according to the present invention has a metal structure in which a bright austenite phase P1 and a dark ferrite phase P2 are dispersed and mixed with each other.
  • a structure in which a cast solidified structure for example, a dendritic crystal peculiar to the cast solidified structure
  • an equiaxed crystal grain is seen at least partially (so-called forged structure) ).
  • Other details will be described later.
  • the two-phase alloy according to the present invention is a Cr—Ni—Fe-based alloy containing Cr, Ni and Fe as main components. Further, it contains at least Mn and Si as subcomponents, additionally contains at least one of V, Nb, Ta and Ti, and further contains impurities.
  • the composition (each component) of the two-phase alloy according to the present invention will be described.
  • the Cr component is one of the main components of the two-phase alloy, and forms a high-strength ferrite phase and contributes to the improvement of corrosion resistance by forming a solid solution in the austenite phase.
  • the Cr component content is preferably 34% by mass to 70% by mass, more preferably 34% by mass to 65% by mass, and still more preferably 40% by mass to 60% by mass. When the Cr content is less than 34% by mass, the ferrite content is less than 10% (the austenite phase occupancy is more than 90%), and the mechanical strength of the two-phase alloy is lowered.
  • the Cr content exceeds 70% by mass, the ferrite ratio exceeds 90% (the austenite phase occupancy is less than 10%), and the ductility and toughness of the two-phase alloy are reduced. Further, from the viewpoint of corrosion resistance and material cost, it is preferable that the Cr content is the maximum content among the three main components (Cr, Ni, Fe).
  • Ni 17-45% by mass
  • the Ni component is one of the main components of this two-phase alloy, and contributes to maintaining the two-phase state of the alloy by stabilizing the austenite phase (for example, the two-phase state is maintained even when solution treatment is performed). It is a component that imparts ductility and toughness to the two-phase alloy.
  • the content of the Ni component is preferably 17% by mass or more and 45% by mass or less, and more preferably 20% by mass or more and 40% by mass or less. When the Ni content is less than 17% by mass, the occupancy ratio of the austenite phase is less than 10% (ferrite ratio is more than 90%), and the ductility and toughness of the two-phase alloy are lowered. On the other hand, when the Ni content exceeds 45% by mass, the ferrite ratio becomes less than 10% (the austenite phase occupancy exceeds 90%), and the mechanical strength of the two-phase alloy decreases.
  • the Fe component is also one of the main components of this two-phase alloy, and is a basic component for ensuring mechanical strength.
  • the content of the Fe component is preferably 10% by mass to 35% by mass, and more preferably 10% by mass to 32% by mass.
  • the Fe content is less than 10% by mass, the ductility and toughness of the two-phase alloy are lowered.
  • the Fe content exceeds 35% by mass the ⁇ phase of the intermetallic compound is likely to be generated in the temperature range near 800 ° C., and the ductility and toughness of the two-phase alloy are significantly reduced (so-called ⁇ phase embrittlement). ).
  • ⁇ phase embrittlement the ductility and toughness of the two-phase alloy
  • Ni + Fe 30-65 mass%
  • the total content of the Ni component and the Fe component is preferably 30% by mass to 65% by mass, more preferably 40% by mass to 62% by mass, and still more preferably 45% by mass to 55% by mass.
  • the total content is less than 30% by mass, the ductility / toughness of the two-phase alloy becomes insufficient.
  • the total content exceeds 65% by mass, the mechanical strength is greatly reduced.
  • Mn 0.1-2% by mass
  • the Mn component plays a role of desulfurization and deoxidation in this two-phase alloy, and is a subcomponent that contributes to improvement of mechanical strength and toughness and improvement of carbon dioxide gas corrosion resistance.
  • the content of the Mn component is preferably 0.1% by mass or more and 2% by mass or less, and more preferably 0.3% by mass or more and 1.8% by mass or less. When the Mn content is less than 0.1% by mass, the effect of the Mn component cannot be sufficiently obtained. On the other hand, when the Mn content exceeds 2 mass%, coarse particles of sulfide (for example, MnS) are formed, which causes deterioration of corrosion resistance and mechanical strength.
  • MnS coarse particles of sulfide
  • the Si component plays a role of deoxidation in the present two-phase alloy and is a subcomponent that contributes to improvement of mechanical strength and toughness.
  • the content of the Si component is preferably 0.1% by mass or more and 1% by mass or less, and more preferably 0.3% by mass or more and 0.8% by mass or less. When the Si content is less than 0.1% by mass, the effect of the Si component cannot be sufficiently obtained. On the other hand, when the Si content exceeds 1% by mass, coarse particles of oxide (for example, SiO 2 ) are formed, which causes a decrease in toughness.
  • Impurities in this two-phase alloy include P, S, C, N, and O. Hereinafter, these impurities will be described.
  • the P component is an impurity component that easily segregates at the crystal grain boundaries of the two-phase alloy and lowers the toughness of the alloy and the corrosion resistance of the grain boundaries.
  • the P content is more preferably 0.03% by mass or less.
  • S component more than 0% by mass and 0.01% by mass or less
  • S component is easy to form a relatively low melting point sulfide (for example, Fe sulfide) by combining with the components of this two-phase alloy, and the toughness and pore resistance of the alloy It is an impurity component that lowers food habits.
  • the S content is more preferably 0.003% by mass or less.
  • C More than 0% by mass and 0.03% by mass or less C component has the effect of hardening the alloy by solid solution, but combines with the components of this two-phase alloy to produce carbide (for example, Cr carbide). It is also an impurity component that easily precipitates at grain boundaries and lowers the corrosion resistance and toughness of the alloy.
  • carbide for example, Cr carbide
  • the C content is more preferably 0.02% by mass or less.
  • N component more than 0% by mass and 0.02% by mass or less N component has the effect of hardening the alloy by solid solution, while it combines with the components of this two-phase alloy to form nitride (eg Cr nitride) It is also an impurity component that easily forms and precipitates and lowers the toughness of the alloy.
  • the N content is more preferably 0.015% by mass or less.
  • O component is an impurity component that easily forms and precipitates an oxide (for example, Fe oxide) by combining with the constituent components of this two-phase alloy and lowers the toughness of the alloy. is there.
  • oxide for example, Fe oxide
  • the O content is more preferably 0.02% by mass or less.
  • the present two-phase alloy preferably further contains at least one of V, Nb, Ta, and Ti as an additional subcomponent.
  • V, Nb, Ta, and Ti as an additional subcomponent.
  • the V component, the Nb component, the Ta component, and the Ti component are components that play a role of decarburization, denitrification, and deoxidation in the two-phase alloy, respectively.
  • the toughness of the alloy can be improved (decrease in toughness can be suppressed).
  • the addition of a small amount of the V component has a secondary effect of improving the mechanical properties (for example, hardness and tensile strength) of the alloy.
  • the addition of a small amount of the Nb component also has a secondary effect of improving the mechanical properties (for example, toughness) of the alloy.
  • Addition of a small amount of Ta component or Ti component has a secondary effect of improving the corrosion resistance of the alloy.
  • the total content of the additional subcomponents is preferably controlled to be in the range of 0.8 to 2 times the total content of impurity components C, N, and O.
  • the total content of additional subcomponents is less than 0.8 times the total content of C, N, and O, the above-described effects cannot be obtained sufficiently.
  • the total content of additional subcomponents exceeds twice the total content of C, N, and O, the ductility and toughness of the alloy decrease.
  • FIG. 2 is a process diagram showing an example of a method for producing a two-phase alloy product according to the present invention.
  • the raw material of the two-phase alloy is mixed and melted so as to have a desired composition (main component + subcomponent + optional subcomponent if necessary).
  • the raw material mixing dissolution process (step 1: S1) which forms 10 is performed.
  • vacuum melting can be suitably used as a melting method.
  • step 2 a casting process for casting using a predetermined mold is performed (step 2: S2).
  • this casting process A two-phase alloy product according to the present invention may be used as a casting.
  • the ingot 20 is once produced.
  • a hot forging process (step 3: S3) is performed in which the ingot 20 is hot-forged and formed into a substantially final shape.
  • the hot forging / forming method there is no particular limitation on the hot forging / forming method, and a conventional method can be used, but the temperature of hot forging is preferably in the range of 1050 to 1250 ° C.
  • a solution heat treatment step for subjecting the forged formed body 30 to a solution treatment may be performed as necessary.
  • the temperature of the solution heat treatment is preferably in the range of 1050 to 1150 ° C, more preferably around 1100 ° C.
  • step 5 it is preferable to perform an aging heat treatment step (step 5: S5) after the solution heat treatment step S4.
  • the temperature of the aging heat treatment is preferably in the range of 800 to 1000 ° C, more preferably around 900 ° C.
  • the heat treatment time may be appropriately adjusted within a range of 0.5 to 6 hours.
  • the austenite phase when the ferrite phase is more than the expected ferrite ratio from the composition, by applying this aging heat treatment, a part of the ferrite phase is transformed into the austenite phase to adjust the elongation and toughness of the product. be able to.
  • the austenite phase is partly transformed into a ferrite phase to adjust the mechanical strength of the product. Can do.
  • the two-phase alloy material contains an additional subcomponent
  • compound formation of the additional subcomponent and impurity components (C, N, O) simultaneously with the above-mentioned phase ratio adjustment Is promoted, and the impurity components can be more aggregated and stabilized.
  • the toughness of the product can be further improved (a decrease in toughness can be further suppressed).
  • the product manufactured as described above is made of a two-phase alloy containing Cr as a main component, which is cheaper than Ni, the Ni-based alloy has high corrosion resistance and mechanical properties equal to or higher than conventional ones. Cost reduction can be achieved compared to a product made of an alloy.
  • the two-phase alloy product according to the present invention is an oil well equipment member (for example, a rotating machine (compressor, pump, etc.) member (shaft, bearing, etc.)) or seawater environment equipment used in a severe corrosive environment. It can be suitably used as a member (eg, seawater desalination plant equipment member, umbilical cable) or a chemical plant equipment member (eg, liquefied natural gas vaporizer member).
  • FIG. 3 is a process diagram showing another example of the method for producing a two-phase alloy product according to the present invention.
  • the manufacturing method of FIG. 3 is an example of the manufacturing method of the composite_body
  • a raw material for forming a molten metal 10 by mixing and melting raw materials of a two-phase alloy so as to have a desired composition (main component + subcomponent + additional subcomponent if necessary).
  • a mixing dissolution process (step 1: S1) is performed.
  • vacuum melting can be suitably used as a melting method.
  • an atomizing process for forming the alloy powder 40 from the molten metal 10 is performed (step 6: S6).
  • the atomizing method There is no particular limitation on the atomizing method, and a conventional method can be used.
  • a gas atomizing method capable of obtaining highly clean, homogeneous composition and spherical particles can be preferably used.
  • the average particle size of the alloy powder 40 is preferably 1 ⁇ m or more and 100 ⁇ m or less from the viewpoint of handling properties and filling properties.
  • the obtained alloy powder 40 can be the two-phase alloy product of the present invention even in this state.
  • it can be suitably used as a welding material, powder metallurgy material, and additive manufacturing material.
  • a layered manufacturing process (step 7: S7) is performed in which the alloy powder 40 prepared above is used to form a coating layer 52 of a two-phase alloy on a predetermined substrate 51.
  • the additive manufacturing method is not particularly limited, and a conventional method can be used.
  • a metal powder additive manufacturing method using electron beam irradiation heating or laser irradiation heating can be suitably used.
  • the additive manufacturing process includes an alloy powder deposition process in which a deposited layer of the alloy powder 40 is formed on the substrate 51, and a locally molten layer of the alloy is formed by locally heating the deposited layer.
  • a solution heat treatment process S4 similar to that in FIG. 2 may be performed as necessary.
  • the chemical composition can be homogenized in each phase of the austenite phase and the ferrite phase.
  • a hot isostatic pressing (HIP) method may be employed. By performing hot isostatic pressing, the solidified structure of the two-phase alloy coating layer 52 can be further densified, or defects in the solidified structure can be eliminated.
  • an aging heat treatment step S5 similar to FIG. 2 may be performed as necessary.
  • the phase ratio of the two phases can be adjusted.
  • FIG. 4a is a schematic perspective sectional view showing an example of the two-phase alloy coating layer obtained by the present invention
  • FIG. 4b is an enlarged schematic view of a part A of FIG. 4a.
  • the two-phase alloy coating layer 52 has a metal structure composed of a set of rapidly solidified structures 60 formed by rapid solidification of a micro weld pool due to the additive manufacturing method.
  • each rapidly solidified structure 60 has a substantially hemispherical outline derived from the outer edge shape (melting boundary 61) of the micro weld pool by local heating.
  • the rapidly solidified structure 60 is arranged in a two-dimensional manner with the arcs directed in the same direction, and a layered solidified layer 62 is formed. Further, a plurality of such solidified layers 62 are laminated in the thickness direction.
  • the rapidly solidified structure 60 becomes a metal structure arranged in a three-dimensional manner. Note that the melt boundary 61 may not be clearly observed depending on the conditions of the additive manufacturing method.
  • the crystal 65 is growing, and the columnar crystal 65 stands through the large tilt grain boundary 66.
  • a small tilt grain boundary 67 may be observed inside each columnar crystal 65.
  • a grain boundary having a tilt angle between adjacent crystal grains (a tilt angle between predetermined crystal orientations) of 15 ° or more is defined as a large tilt grain boundary, and a grain boundary less than 15 ° is defined as a low tilt grain boundary.
  • the tilt angle of the crystal grain boundary can be measured by backscattered electron diffraction image (EBSP) analysis.
  • EBSP backscattered electron diffraction image
  • the average crystal grain size of the columnar crystals 65 needs to be at least 100 ⁇ m or less. From the viewpoint of mechanical strength and corrosion resistance of the two-phase alloy material, the average crystal grain size of the columnar crystals 65 is more preferably 50 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the average crystal grain size in the present invention is obtained by reading an optical microscope observation image or an electron microscope observation image with an image analysis software (NIH Image, public domain software), binarizing, and then binarizing the minor axis of the crystal grain And the average value calculated from the major axis.
  • the ratio of the average Cr concentration of the austenite phase ( ⁇ phase) to the average Cr concentration of the ferrite phase ( ⁇ phase) “(Cr concentration of ⁇ phase)” / (Cr concentration of ⁇ phase) ”(referred to as solid-liquid partition coefficient) was investigated using an electron beam probe microanalyzer (EPMA), and the ratio (solid-liquid partition coefficient) was 1.3 or less. And it has been confirmed that the two-phase alloy material having such a composition ratio exhibits higher corrosion resistance than the two-phase alloy material having the composition ratio (solid-liquid distribution coefficient) exceeding 1.3. Details will be described later.
  • the two-phase alloy coating layer 52 formed according to the present embodiment exhibits high corrosion resistance, it can be suitably used as a corrosion-resistant coating.
  • the product of the present embodiment is an oil well equipment member (for example, a compressor member, a pump) used in a severe corrosive environment. Member), seawater environment equipment member (for example, seawater desalination plant equipment member, umbilical cable) and chemical plant equipment member (for example, liquefied natural gas vaporizer member).
  • this embodiment is not limited to it, It combines with a base material using an additive manufacturing method.
  • a molded body having a desired shape may be formed without this, and the molded body may be used as a corrosive environment equipment member.
  • FIG. 5 is a process diagram showing still another example of the method for producing a two-phase alloy product according to the present invention.
  • the manufacturing method shown in FIG. 5 shows that a rod-like material or wire-like material made of the two-phase alloy of the present invention is produced, and the alloy members are welded together using the rod-like material or wire-like material as a welding material.
  • the same raw material mixing and dissolving step S1 as in FIG. 2 is performed.
  • the method of mixing and melting the raw materials there are no particular limitations on the method of mixing and melting the raw materials, and conventional methods in the production of high corrosion resistance and high strength alloys can be used.
  • vacuum melting can be suitably used as a melting method.
  • the ingot 20 is produced by performing a casting step S2 similar to FIG.
  • a hot working forming step (step 3 ': S3') is performed in which the ingot 20 is hot worked to form a rod-like body or a linear body 70.
  • the hot working forming method for forming the rod-like body or linear body 70 and conventional methods (for example, extrusion processing, drawing processing) can be used, but the hot working temperature is 1050 to 1250 ° C. A range is preferred.
  • the obtained alloy rod-like body or alloy wire-like body 70 can be the two-phase alloy product of the present invention even in this state.
  • it can be suitably used as a welding material.
  • a welding step (step 8: S8) is performed in which a predetermined joint member 81 is welded together to form a weld joint 80 using the alloy rod-like body or alloy linear body 70 prepared above.
  • a conventional method can be used.
  • laser welding, electron beam welding, or arc welding can be suitably used.
  • the material of the alloy member 81 to be welded is not particularly limited. However, when the welded product (welded joint 80) is used as a corrosive environment equipment member, the material to be welded is a two-phase alloy material. It is preferable that the two-phase alloy material be the two-phase alloy material of the present invention.
  • a solution heat treatment step S4 similar to FIG. 2 may be performed as necessary.
  • the chemical composition can be homogenized in each phase of the austenite phase and the ferrite phase.
  • an aging heat treatment step S5 similar to FIG. 2 may be performed as necessary.
  • the phase ratio of the two phases can be adjusted.
  • the welded portion 82 of the welded joint 80 obtained according to the present embodiment has a metal structure composed of a rapidly solidified structure 60 similar to that of FIG. Specifically, it has columnar crystals 65 having an average crystal grain size of 100 ⁇ m or less, and has a microstructure in which the ratio of the average Cr concentration of the ⁇ phase to the average Cr concentration of the ⁇ phase (solid-liquid distribution coefficient) is 1.3 or less.
  • the microstructure shows high corrosion resistance as described above, a welded joint 80 with high corrosion resistance can be obtained.
  • the product of this embodiment (the welded joint 80 welded via the two-phase alloy welded portion 82 of the present invention) can provide a larger member as a corrosive environmental equipment member.
  • invention alloys IA 1 to IA 8 and comparative alloys CA 1 to CA 3 are Cr-based alloys containing Cr as a main component.
  • CA1 to CA3 are high Cr-based alloys containing more than 65% by mass of Cr.
  • the comparative alloy CA-4 is a Ni-based alloy containing Ni as a main component.
  • Comparative alloy CA-5 is a commercially available duplex stainless steel as described above, and is an Fe-based alloy containing Fe as a main component.
  • each alloy product (excluding Comparative Example 5) was performed according to the production method shown in FIG. First, the raw materials of each alloy were mixed, and vacuum melting (5 ⁇ 10 ⁇ 3 Pa or lower, 1600 ° C. or higher) was performed using a high-frequency vacuum melting furnace. Next, it casted using the predetermined
  • the hot forging conditions for Examples 1 to 14 and Comparative Example 4 were as follows: forging temperature: 1050 to 1250 ° C., strain rate: 8 mm / s or less, rolling reduction per forging: 10 mm or less, number of forgings: 6 times That is all.
  • the hot forging conditions for Comparative Examples 1 to 3 are the same as other conditions, but instead of reducing the amount of reduction per forging, the number of forgings is increased so that the total forging deformation amount is the same as that of the invention alloy material. It was.
  • the range of the forging temperature is determined as follows. Separately cut and test specimens for tensile test from each ingot, and perform high-temperature tensile tests (test temperature: 800-1350 ° C, tensile speed: 10 mm / s) using a greeble tester. went. As a result of the high-temperature tensile test, the temperature range where the drawing is 60% or more was defined as the forging temperature range.
  • Example 5 Each alloy sample subjected to hot forging was subjected to solution heat treatment (held at 1100 ° C. for 60 minutes and then water-cooled). Some samples were alloy products for testing and evaluation in this state (Examples 1, 3, 5, 9, 11 to 14 and Comparative Examples 1 to 4). Further, the same solution heat treatment was performed on the purchased CA-5 sample, and an alloy product for test and evaluation (Comparative Example 5) was obtained.
  • An aging heat treatment (holding at 800 to 1000 ° C. for 60 minutes and then water cooling) was applied to the other part of the sample subjected to the solution heat treatment.
  • the samples subjected to the aging heat treatment were used as test and evaluation alloy products (Examples 2, 4, 6 to 8, 10).
  • Example 5 (Test and evaluation for alloy products of Examples 1 to 14 and Comparative Examples 1 to 5) (1) Microstructure observation After specimens for microstructure observation were collected from each alloy product, the surface of the specimen was mirror-polished and subjected to electric field etching in an oxalic acid aqueous solution. The polished surface was observed with an optical microscope.
  • FIG. 1 shown above is an optical micrograph of the metal structure of Example 5.
  • the two-phase alloy material of the present invention has a metal structure in which a light austenite phase P1 and a dark ferrite phase P2 are dispersed and mixed with each other. Further, since hot forging is performed, a cast solidification structure (for example, dendritic crystals peculiar to the cast solidification structure) is destroyed, and a structure in which equiaxed crystal grains are observed at least partially (so-called forging) Organization). The other examples were the same.
  • Microstructure stability test Samples for microstructural stability test were collected from each alloy product of the examples, and then heat treatment was performed at 800 ° C for 60 minutes. X-ray diffraction measurement was performed on the surface of each test piece, and the presence or absence of the generation of ⁇ phase of the intermetallic compound was investigated. As a result of the investigation, it was confirmed that in all of Examples 1 to 14, no ⁇ phase was detected, and it was difficult to generate the ⁇ phase.
  • Room temperature tensile test A specimen for a tensile test (diameter: 4 mm, parallel part length: 20 mm) was taken from each of the prepared alloy products. As another mechanical property evaluation, a room temperature tensile test (strain rate: 3 ⁇ 10 -4 s -1 ) was performed on each specimen using a tensile tester, and 0.2% proof stress, tensile strength, and elongation at break were measured. It was measured. In addition, when the test piece broke before the clear tensile strength was measured, the breaking stress was measured. The results of these tensile tests were determined as the average of 3 measurements.
  • Comparative Example 4 (a product made of CA 4) was a Ni-based alloy material as described above, and showed a metal structure of an austenite phase single phase (ferrite ratio 0%). Mechanical strength (Vickers hardness, 0.2% proof stress, tensile strength) was difficult. Moreover, since the content rate of Ni component is high, there exists a difficulty also from a viewpoint of material cost.
  • Comparative Example 5 made of commercially available duplex stainless steel (CA-5) had a ferrite rate of 45%.
  • Examples 1 to 14 (products comprising IA 1 to IA 8) all had a metal structure of a two-phase alloy in which an austenite phase and a ferrite phase were mixed.
  • the ferrite ratio was changed from the examples where the aging heat treatment was not performed. That is, it was confirmed that the aging heat treatment after the solution heat treatment acts as a ferrite ratio adjusting heat treatment.
  • Examples 1 to 14 have good properties (for example, Vickers hardness of more than 250 Hv, 0.2% proof stress of more than 550 MPa, tensile strength of more than 900 MPa, rupture of 2% or more. (Elongation) was confirmed.
  • Examples 1 to 14 had good mechanical properties equivalent to or better than conventional materials and excellent corrosion resistance. Furthermore, since the content of Cr component is high, it can be said that the cost can be reduced as compared with the conventional Ni-based alloy material.
  • the invention alloys IA 9 to IA 17 include additional subcomponents (V, Nb, Ta, Ti) in addition to the main components (Cr, Ni, Fe) and subcomponents (Mn, Si). ).
  • the total content of additional subcomponents is in the range of 0.8 to 2 times the total content of C, N and O.
  • Each alloy product is manufactured in accordance with the manufacturing method shown in FIG. 1. After the solution heat treatment process (holding at 1100 ° C. for 60 minutes and water cooling), the aging heat treatment process (after holding at 800 to 1050 ° C. for 60 minutes) , Water cooling). The relationship between the alloy number and the heat treatment condition in the alloy products of Examples 15 to 32 is shown in Table 4 described later.
  • each of Examples 15 to 32 (products comprising IA 9 to IA 17) is a two-phase alloy in which an austenite phase and a ferrite phase are mixed, as in FIG. It had a metallographic structure. Moreover, the ferrite rate changed with the difference in the temperature of aging heat processing. That is, it was confirmed that the aging heat treatment after the solution heat treatment acts as a ferrite ratio adjusting heat treatment.
  • the pitting corrosion occurrence potential corresponding to a current density of 100 ⁇ A / cm 2 is 1.1 V in all samples (Examples 16, 18, 20, 22, 23, 25, 27, and 32) subjected to the pitting corrosion test. As described above, in the region above the pitting potential, oxygen was generated in the hyperpassive region. In all these samples, no pitting corrosion was observed. In the sulfuric acid resistance test, Examples 15 to 32 showed a corrosion current density of 1 to 10% as compared with Comparative Example 5. That is, it was confirmed that Examples 15 to 32 have extremely excellent corrosion resistance.
  • Examples 15 to 32 have good properties (for example, Vickers hardness of more than 200vHv, 0.2% proof stress of more than 550 MPa, tensile strength of more than 800 MPa, breakage of 5% or more. (Elongation) was confirmed. In Examples 15 to 32, the elongation at break was significantly improved. This was thought to be due to the fact that the impurities C, N and O were assembled and stabilized by adding additional subcomponents in an appropriate range.
  • FIG. 6 is a graph showing the relationship between the ferrite ratio and Vickers hardness in the two-phase alloy product of the present invention
  • FIG. 7 shows the relationship between the ferrite ratio and 0.2% proof stress in the two-phase alloy product of the present invention. It is a graph to show.
  • the two-phase alloy product comparison was made in Examples 1, 3, 5, 9, 16, 18, 20, and 22 in which the Fe concentration was around 20% by mass.
  • the Vickers hardness monotonously increased with the increase of the ferrite ratio, and when the ferrite ratio was larger than 40%, it was found to be approximately 400 mmHv or more.
  • the 0.2% proof stress also increased monotonously with the increase of the ferrite ratio, and it was found that when the ferrite ratio was larger than 40%, the yield was generally about 1000 MPa or more.
  • the Fe concentration is in the vicinity of 20% by mass, and the ferrite ratio increases as the Cr concentration increases.
  • the ferrite ratio increases, and the Vickers hardness and the 0.2% proof stress tend to increase.
  • the ferrite phase becomes a single phase as in Comparative Examples 1 to 3, since it is almost ductile and brittle. In other words, it is important to maintain the two-phase mixed state by controlling the ferrite ratio to 90% or less. Further, the addition of additional subcomponents (V, Nb, Ta, Ti) can greatly improve the elongation at break. Whether to give priority to mechanical strength or to ductility may be appropriately selected according to the characteristics required of the two-phase alloy product.
  • Examples 33 to 36 of alloy products Using the inventive alloys 1 to 4 (IA 1 to IA 4) shown in Table 1, an alloy powder (average particle size of 100 ⁇ m or less) is prepared according to the manufacturing method shown in FIG. Alloy products (Examples 33 to 36) were prepared by the method. In this experiment, a molded body that was not combined with the base material was modeled.
  • Fig. 8a is an optical micrograph showing the metal structure of Example 9
  • Fig. 8b is an optical micrograph showing the metal structure of Example 36.
  • Example 9 since hot forging is performed, as in Example 5 of FIG. 1, dendritic crystals peculiar to the cast solidification structure are destroyed, and equiaxed crystal grains are seen at least partially. It was confirmed that it has a structure (so-called forged structure).
  • Example 36 each of the ⁇ -phase and ⁇ -phase crystal grains was small and more evenly dispersed, and crystal grains like the initial shape of the dendrites were observed. It was confirmed to have.
  • Examples 33 to 36 have different ferrite ratios and higher mechanical strength (Vickers hardness) than Examples 1, 3, 5, and 9 having the same alloy composition. , 0.2% proof stress, tensile strength) and ductility equal to or higher than that. These results are thought to be strongly related to the refinement of crystal grains by rapid solidification and the uniform dispersion of ⁇ and ⁇ phases.
  • Example 36 was 1.28 smaller than 1.53 of Example 9. This means that the difference between the Cr concentration of the ⁇ phase and the Cr concentration of the ⁇ phase in Example 36 is smaller than that in Example 9, and that Example 36 was produced by rapid solidification. It will be a proof of.
  • Examples 33 to 36 each had a higher pitting corrosion generating potential than the corresponding Examples. Although the detailed mechanism of this result has not been elucidated, it is considered that a decrease in the solid-liquid partition coefficient (a decrease in the Cr concentration difference between the ⁇ phase and the ⁇ phase) is involved.
  • FIG. 9 is a chart showing the change over time of current density in constant potential polarization of 1000 mV (vs. SHE) in Examples 9 and 36. As shown in FIG. 9, in Example 36, the current density decreases with time, which means that the corrosion rate is lower than that in Example 9. That is, it was confirmed that Example 36 has higher corrosion resistance than Example 9.

Abstract

 本発明は、油井のような温度域・高腐食環境下においても好適に利用できる金属材料であって、従来と同等以上の高い耐食性と良好な機械的特性を有しかつ低コストの二相合金、その製造物、および該製造物の製造方法を提供することを目的とする。本発明に係る二相合金は、Crを主要成分としオーステナイト相およびフェライト相の二相が混在する二相合金であって、前記二相合金の化学組成は、34~70質量%のCrと、17~45質量%のNiと、10~35質量%のFeと、0.1~2質量%のMnと、0.1~1質量%のSiと、不純物とからなり、前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とする。

Description

二相合金、該二相合金を用いた製造物、および該製造物の製造方法
 本発明は、高耐食性・高強度合金の技術に関し、特に、オーステナイト相とフェライト相との二相が混在する二相合金および該二相合金を用いた製造物、ならびに該製造物の製造方法に関するものである。
 原油や天然ガス等の掘削に使用される油井用機器の材料として、かつては炭素鋼と腐食抑制剤(インヒビター)とを併用することが一般的であった。近年では、油井掘削における高深度化の進展に伴う掘削環境の変化のため、以前よりも高い耐食性や機械的特性(例えば、硬さ)が油井用機器材料に求められるようになり、耐食性に優れる鋼材(合金鋼)が用いられるようになった。例えば、クロム(Cr)の添加は鉄(Fe)の耐食性を著しく向上させるため、金属腐食成分を含む油井ではCrを13質量%含有したマルテンサイト系ステンレス鋼(例えば、SUS420)が多く用いられてきた。
 ただし、塩化物と酸性ガス(例えば、炭酸ガスや硫化水素)とを含む環境下では、SUS420は応力腐食割れ(SCC)を起こし易いという弱点がある。そのため、そのような厳しい腐食環境下で油井掘削する場合、従来は高価なニッケル(Ni)基合金(例えば、Niを40質量%以上含有する合金)を用いることが多く、材料コスト(ひいては掘削コスト)が大幅に上昇してしまうという問題があった。
 一方、Ni基合金に比して安価な耐食・耐熱合金としてCr基合金があり、種々のCr基合金が提案されている。例えば、特許文献1(特開平04-301048)には、Cr:65~80%,Co:10~15%,残部Feおよび不純分からなり、所望によりN:0.1~1.5%を含む化学組成を有するCr-Fe系耐熱合金が開示され、特許文献2(特開平04-301049)には、Cr:70~95%,N:0.1~1.5%,残部Feおよび不純分からなる化学組成を有する耐熱合金が開示されている。特許文献1,2によると、高温雰囲気炉中における圧縮変形抵抗性、耐酸化性等に優れており、被加熱鋼材支持面部材としての耐久性の向上、メンテナンスの軽減、それに伴う操炉効率の向上に大きくに寄与するとされている。
 特許文献3(特開平08-291355)には、質量%で、Cr:95%超え、N:0.1~2.0 %を含有し、残部Fe、NiおよびCoの一種または二種以上と不可避的不純物からなり、所望によりTi、Al、Zr、Nb、B、Vの内の一種または二種以上を合計で0.3%以上さらに含有するCr基耐熱合金が開示されている。特許文献3によると、超高温下で強度、延性および耐食性が必要な部材(例えば、加熱炉内の被加熱鋼材支持部材)に使用される高温強度に優れたCr基耐熱合金を提供できるとされている。
 また、特許文献4(特開平07-258801)には、Cr:15~50%、Ni:6.1~50%、O+P+S:200 ppm以下で残部がFeおよび不可避的不純物よりなり、結晶粒度番号:8以上であり、所望によりC+N:400~1200 ppmであることを特徴とする加工部分の耐食性に優れたFe-Cr-Ni合金が開示されている。特許文献4によると、加工性を低下させることなく耐食性を向上させ、かつ、加工されても耐食性の低下しないFe-Cr-Ni合金を提供できるとされている。
特開平04-301048号公報 特開平04-301049号公報 特開平08-291355号公報 特開平07-258801号公報
 特許文献1~3に記載されたような高Cr基合金(Crの含有率が高い合金)は、1300℃以上の高温環境下での使用を目的とするものであり、該高温環境下でも優れた耐食性と機械的特性とを有するとされている。しかしながら、そのような高Cr基合金は、油井環境の温度域(室温~300℃程度)において脆性を示す(靭性が不十分である)ため、油井用機器材料としては適していないと考えられる。
 また、特許文献4に記載されたFe-Cr-Ni合金は、オーステナイト系ステンレス鋼を意図したものであるが、オーステナイト系ステンレス鋼は、塩化物を含む高温高圧環境下で水素脆化による応力腐食割れ(SCC)を起こし易いことが知られており、高Cr基合金と同様に、油井用機器材料としては適していないと考えられる。
 前述したように、油井掘削における高深度化の進展により、従来と同等以上に高い耐食性や機械的特性を有する材料で、かつNi基合金よりも低コストの金属材料が強く求められている。
 したがって、本発明の目的は、油井のような温度域・高腐食環境下においても好適に利用できる金属材料であって、従来と同等以上の高い耐食性と良好な機械的特性を有しかつ低コストの二相合金および該二相合金を用いた製造物、ならびに該製造物の製造方法を提供することにある。
 (I)本発明の一態様は、Cr(クロム)を主要成分としオーステナイト相およびフェライト相の二相が混在する二相合金であって、前記二相合金の化学組成は、34質量%以上70質量%以下のCrと、17質量%以上45質量%以下のNi(ニッケル)と、10質量%以上35質量%以下のFe(鉄)と、0.1質量%以上2質量%以下のMn(マンガン)と、0.1質量%以上1質量%以下のSi(ケイ素)と、不純物とからなり、前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とする二相合金を提供するものである。
 本発明は、上記の本発明に係る二相合金(I)において、以下のような改良や変更を加えることができる。
(i)前記不純物として、0質量%超0.03質量%以下のC(炭素)と、0質量%超0.02質量%以下のN(窒素)と、0質量%超0.03質量%以下のO(酸素)とを含み、前記二相合金の構成成分として、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)およびTi(チタン)のうちの少なくとも一種を更に含み、前記V、Nb、TaおよびTiの合計含有率が、前記C、NおよびOの合計含有率の0.8倍以上2倍以下の範囲である。
(ii)前記不純物として、0質量%超0.04質量%以下のP(リン)と、0質量%超0.01質量%以下のS(硫黄)とを含む。
(iii)前記フェライト相の占有率が10%以上90%以下である。
 (II)本発明の他の一態様は、二相合金を用いた製造物であって、前記二相合金が、上記の二相合金であることを特徴とする二相合金製造物を提供するものである。
 本発明は、上記の本発明に係る二相合金製造物(II)において、以下のような改良や変更を加えることができる。
(iv)前記製造物は、鍛造組織を有する成形体である。
(v)前記製造物は、基材上に前記二相合金の被覆層が形成された複合体である。
(vi)前記被覆層中の前記フェライト相の平均Cr濃度に対する前記オーステナイト相の平均Cr濃度の比率が1.3以下である。
(vii)前記被覆層は、急冷凝固組織を有する。
(viii)前記製造物は、回転機械の軸または軸受である。
(ix)前記製造物は、粉体である。
(x)前記製造物は、棒状体または線状体である。
(xi)前記製造物は、溶接材料である。
(xii)前記製造物は、合金部材同士が溶接部を介して溶接された溶接継手であり、前記溶接部が前記二相合金からなる。
(xiii)前記溶接部における前記フェライト相の平均Cr濃度に対する前記オーステナイト相の平均Cr濃度の比率が1.3以下である。
(xiv)前記合金部材が前記二相合金からなる。
(III)本発明の更に他の一態様は、上記の二相合金製造物の製造方法であって、
原料を混合・溶解する原料混合溶解工程と、
鋳造して鋳塊を形成する鋳造工程と、
前記鋳塊を熱間鍛造して成形体を形成する熱間鍛造成形工程と、
前記成形体に対して1050℃以上1250℃以下の温度範囲で溶体化処理を施す溶体化熱処理工程とを有することを特徴とする二相合金製造物の製造方法を提供するものである。
 本発明は、上記の本発明に係る二相合金製造物の製造方法(III)において、以下のような改良や変更を加えることができる。
(xv)前記溶体化熱処理工程の後に、溶体化処理した前記成形体に対して800℃以上1000℃以下の温度範囲で時効処理を施す時効熱処理工程を更に有する。
(IV)本発明の更に他の一態様は、上記の二相合金製造物の製造方法であって、
前記二相合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から合金粉末を形成するアトマイズ工程と、
前記合金粉末を用いて前記基材上に前記二相合金の被覆層を形成する積層造形工程とを有することを特徴とする二相合金製造物の製造方法を提供するものである。
(V)本発明の更に他の一態様は、上記の二相合金製造物の製造方法であって、
前記二相合金の原料を混合・溶解する原料混合溶解工程と、
鋳造して鋳塊を形成する鋳造工程と、
前記鋳塊を熱間加工して棒状体または線状体を形成する熱間加工成形工程と、
前記棒状体または線状体を溶接材料として用いて前記合金部材同士を溶接する溶接工程とを有することを特徴とする二相合金製造物の製造方法を提供するものである。
 本発明によれば、油井のような温度域・高腐食環境下においても好適に利用できるような金属材料として、従来と同等以上の高い耐食性と良好な機械的特性とを有しかつ低コストの二相合金および該二相合金を用いた製造物、ならびに該製造物の製造方法を提供することができる。
本発明に係る二相合金材の一例で、熱間鍛造を行った後に溶体化熱処理を施した試料の金属組織例を示す光学顕微鏡写真である。 本発明に係る二相合金製造物の製造方法の一例を示す工程図である。 本発明に係る二相合金製造物の製造方法の他の一例を示す工程図である。 本発明によって得られる二相合金被覆層の一例を示す斜視断面模式図である。 図4aのA部の拡大模式図である。 本発明に係る二相合金製造物の製造方法の更に他の一例を示す工程図である。 本発明の二相合金製造物におけるフェライト率とビッカース硬さとの関係を示すグラフである。 本発明の二相合金製造物におけるフェライト率と0.2%耐力との関係を示すグラフである。 実施例9の金属組織を示す光学顕微鏡写真である。 実施例36の金属組織を示す光学顕微鏡写真である。 実施例9,36における1000 mV(vs. SHE)の定電位分極での電流密度の経時変化を示すチャートである。
 本発明者等は、Crを主要成分として含むCr-Ni-Fe系合金、特にCrを34質量%以上含むCr-Ni-Fe系合金において、組成、金属組織形態、該合金を用いた製造物、機械的特性、および耐食性の関係について鋭意調査検討し、本発明を完成させた。
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。
 (本発明の二相合金の金属組織)
 まず、本発明に係る二相合金の金属組織について説明する。
 本発明の合金は、主要成分としてCr、NiおよびFeを含むCr-Ni-Fe系合金である。主要成分にFeを含む合金の金属組織は、通常、体心立方格子の結晶構造を有するフェライト組織(フェライト相、α相とも言う)と、面心立方格子の結晶構造を有するオーステナイト組織(オーステナイト相、γ相とも言う)と、ひずんだ体心立方格子の結晶構造を有するマルテンサイト組織(マルテンサイト相、α’相とも言う)とに大別される。
 一般的に、フェライト相は、耐食性(例えば、耐SCC性)に優れ、高い機械的強度(例えば、0.2%耐力)を有するが、オーステナイト相に比して延性・靭性が相対的に低いとされている。オーステナイト相は、フェライト相に比して相対的に高い延性・靭性を有するが、機械的強度が相対的に低いとされている。また、通常環境において高い耐食性を示すが、腐食環境が厳しくなると耐SCC性が急激に低下するとされている。マルテンサイト相は、高い機械的強度(例えば、硬さ)を有するが、耐食性が比較的低いとされている。
 一方、本発明に係る二相合金は、金属組織としてオーステナイト相およびフェライト相の二相が混在する合金である。二相合金は、オーステナイト相の利点(優れた延性・靭性)とフェライト相の利点(高い機械的強度、耐SCC性を含む優れた耐食性)とを併せ持つ特徴がある。また、Niよりも安価なCrを主要成分とすることから、Niを最大成分とするNi基合金よりも材料コストを低減できる利点がある。
 本発明の二相合金は、フェライト相の占有率(以下、単純に「フェライト率」と称する場合がある)が10%以上90%以下であり、残部がオーステナイト相であることが好ましい。なお、本発明における相の占有率とは、合金バルク試料の研磨面に対して、後方散乱電子回折像(EBSP)解析を行ったときの当該相の含有率(単位:%)と定義する。
 フェライト率が10%以上90%以下の範囲を外れると、二相合金としての利点がほとんど得られない(オーステナイト相単相の弱点またはフェライト相単相の弱点が明確に現れる)。該フェライト率は、20%以上70%以下がより好ましく、30%以上70%以下が更に好ましい。
 また、本発明の二相合金からなる製造物は、機械的特性および耐食性の観点から、結晶粒径が小さい金属組織(例えば、鍛造組織、急冷凝固組織)を有することが好ましい。言い換えると、該製造物は、本発明の二相合金を用いて鍛造や急冷凝固により成形・造形されることが好ましい。結晶粒径が小さい金属組織を有することにより、結晶粒が粗大な鋳造凝固組織よりも良好な機械的特性・耐食性を得ることができる。なお、鍛造成形や急冷凝固造形した後に、溶体化熱処理を施した金属組織であってもよいし、更にその後に、時効熱処理を施した金属組織であってもよい。
 図1は、本発明に係る二相合金材の一例で、熱間鍛造を行った後に溶体化熱処理を施した試料の金属組織例を示す光学顕微鏡写真である。図1に示したように、本発明に係る二相合金は、明色のオーステナイト相P1と暗色のフェライト相P2とが互いに分散混合した金属組織を有していることが確認される。また、熱間鍛造を行っていることから、鋳造凝固組織(例えば、鋳造凝固組織特有の樹枝状晶)が破壊され少なくとも一部に等軸晶状の結晶粒が見られる組織(いわゆる、鍛造組織)を有していることが確認される。その他の詳細は後述する。
 (本発明の二相合金の組成)
 前述したように、本発明に係る二相合金は、Cr、NiおよびFeを主要成分とするCr-Ni-Fe系合金である。また、副成分として、MnおよびSiを少なくとも含み、追加的にV、Nb、TaおよびTiのうちの少なくとも一種を含み、更に不純物を含む。以下、本発明に係る二相合金の組成(各成分)について説明する。
 Cr:34~70質量%
 Cr成分は、本二相合金の主要成分の1つであり、高強度のフェライト相を形成すると共に、オーステナイト相に固溶して耐食性の向上に寄与する成分である。Cr成分の含有率は、34質量%以上70質量%以下が好ましく、34質量%以上65質量%以下がより好ましく、40質量%以上60質量%以下が更に好ましい。Cr含有率が34質量%未満になると、フェライト率が10%未満(オーステナイト相の占有率が90%超)となり、二相合金の機械的強度が低下する。一方、Cr含有率が70質量%超になると、フェライト率が90%超(オーステナイト相の占有率が10%未満)となり、二相合金の延性・靱性が低下する。また、耐食性と材料コストとの観点から、主要3成分(Cr、Ni、Fe)のうちでCr成分が最大含有率であることが好ましい。
 Ni:17~45質量%
 Ni成分は、本二相合金の主要成分の1つであり、オーステナイト相を安定化させて合金の二相状態の維持に寄与する(例えば、溶体化処理を施しても二相状態の維持が可能)と共に、二相合金に延性と靱性を付与する成分である。Ni成分の含有率は、17質量%以上45質量%以下が好ましく、20質量%以上40質量%以下がより好ましい。Ni含有率が17質量%未満になると、オーステナイト相の占有率が10%未満(フェライト率が90%超)となり、二相合金の延性・靱性が低下する。一方、Ni含有率が45質量%超になると、フェライト率が10%未満(オーステナイト相の占有率が90%超)となり、二相合金の機械的強度が低下する。
 Fe:10~35質量%
 Fe成分も、本二相合金の主要成分の1つであり、機械的強度を確保するための基本成分である。Fe成分の含有率は、10質量%以上35質量%以下が好ましく、10質量%以上32質量%以下がより好ましい。Fe含有率が10質量%未満になると、二相合金の延性・靱性が低下する。一方、Fe含有率が35質量%超になると、800℃近傍の温度域で金属間化合物のσ相が生成し易くなり、二相合金の延性・靱性が著しく低下する(いわゆる、σ相脆化)。言い換えると、Feの含有率を10~35質量%の範囲に制御することにより、二相合金の機械的強度を確保しながらσ相の生成を抑制して延性・靱性の低下を抑制することができる。
 Ni+Fe:30~65質量%
 Ni成分とFe成分との合計含有率は、30質量%以上65質量%以下が好ましく、40質量%以上62質量%以下がより好ましく、45質量%以上55質量%以下が更に好ましい。該合計含有率が30質量%未満になると、二相合金の延性・靱性が不十分になる。一方、該合計含有率が65質量%超になると、機械的強度が大きく低下する。
 Mn:0.1~2質量%
 Mn成分は、本二相合金において脱硫・脱酸の役割を担い、機械的強度・靱性の向上および耐炭酸ガス腐食性の向上に寄与する副成分である。Mn成分の含有率は、0.1質量%以上2質量%以下が好ましく、0.3質量%以上1.8質量%以下がより好ましい。Mn含有率が0.1質量%未満になると、Mn成分による作用効果が十分に得られない。また、Mn含有率が2質量%超になると、硫化物(例えば、MnS)の粗大粒子を形成して耐食性や機械的強度の劣化要因になる。
 Si:0.1~1質量%
 Si成分は、本二相合金において脱酸の役割を担い、機械的強度・靱性の向上に寄与する副成分である。Si成分の含有率は、0.1質量%以上1質量%以下が好ましく、0.3質量%以上0.8質量%以下がより好ましい。Si含有率が0.1質量%未満になると、Si成分による作用効果が十分に得られない。また、Si含有率が1質量%超になると、酸化物(例えば、SiO2)の粗大粒子を形成して靱性の低下要因になる。
 不純物
 本二相合金における不純物としては、P、S、C、N、およびOが挙げられる。以下、それら不純物について説明する。
 P:0質量%超0.04質量%以下
 P成分は、二相合金の結晶粒界に偏析し易く、合金の靱性や粒界の耐食性を低下させる不純物成分である。P成分の含有率を0.04質量%以下に制御することで、それらの負の影響を抑制することができる。P含有率は、0.03質量%以下がより好ましい。
 S:0質量%超0.01質量%以下
 S成分は、本二相合金の構成成分と化合して比較的低融点の硫化物(例えば、Fe硫化物)を生成し易く、合金の靱性や耐孔食性を低下させる不純物成分である。S成分の含有率を0.01質量%以下に制御することで、それらの負の影響を抑制することができる。S含有率は、0.003質量%以下がより好ましい。
 C:0質量%超0.03質量%以下
 C成分は、固溶することによって合金を硬化させる作用効果がある一方、本二相合金の構成成分と化合して炭化物(例えば、Cr炭化物)を生成・粒界析出し易く、合金の耐食性や靱性を低下させる不純物成分でもある。C成分の含有率を0.03質量%以下に制御することで、それらの負の影響を抑制することができる。C含有率は、0.02質量%以下がより好ましい。
 N:0質量%超0.02質量%以下
 N成分は、固溶することによって合金を硬化させる作用効果がある一方、本二相合金の構成成分と化合して窒化物(例えば、Cr窒化物)を生成・析出し易く、合金の靱性を低下させる不純物成分でもある。N成分の含有率を0.02質量%以下に制御することで、その負の影響を抑制することができる。N含有率は、0.015質量%以下がより好ましい。
 O:0質量%超0.03質量%以下
 O成分は、本二相合金の構成成分と化合して酸化物(例えば、Fe酸化物)を生成・析出し易く、合金の靱性を低下させる不純物成分である。O成分の含有率を0.03質量%以下に制御することで、その負の影響を抑制することができる。O含有率は、0.02質量%以下がより好ましい。
 追加的副成分
 本二相合金は、追加的副成分として、V、Nb、Ta、およびTiのうちの少なくとも一種を更に含むことが好ましい。以下、これら追加的副成分について説明する。
 V成分、Nb成分、Ta成分、およびTi成分は、それぞれ本二相合金において脱炭・脱窒素・脱酸の役割を担う成分である。C、NおよびOの不純物成分との化合物を形成し、該不純物成分を集合化・安定化することにより、合金の靱性を改善する(靱性低下を抑制する)ことができる。
 また、V成分の少量添加は、合金の機械的特性(例えば、硬さ、引張強さ)を向上させる副次的な作用効果がある。Nb成分の少量添加も、合金の機械的特性(例えば、靱性)を向上させる副次的な作用効果がある。Ta成分やTi成分の少量添加は、合金の耐食性を向上させる副次的な作用効果がある。
 上記の追加的副成分の合計含有率は、不純物成分のC、N、およびOの合計含有率の0.8倍以上2倍以下の範囲となるように制御されることが好ましい。追加的副成分の合計含有率が、C、NおよびOの合計含有率の0.8倍未満になると、上記の作用効果が十分に得られない。一方、追加的副成分の合計含有率が、C、NおよびOの合計含有率の2倍超になると、合金の延性・靭性が低下する。
 (本発明の二相合金製造物、および製造物の製造方法)
 次に、上記の二相合金を用いた製造物、および該製造物の製造方法について説明する。図2は、本発明に係る二相合金製造物の製造方法の一例を示す工程図である。
 図2に示したように、この製造方法では、まず、所望の組成(主要成分+副成分+必要に応じて追加的副成分)となるように二相合金の原料を混合・溶解して溶湯10を形成する原料混合溶解工程(ステップ1:S1)を行う。原料の混合方法や溶解方法に特段の限定はなく、高耐食性・高強度合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。また、真空炭素脱酸法などを併用して、溶湯10を精錬することが好ましい。
 次に、所定の鋳型を用いて鋳造する鋳造工程を行う(ステップ2:S2)。ここで、凝固時の結晶粒粗大化(粗大な鋳造凝固組織)を抑制できる冷却速度が確保でき、高い寸法精度でほぼ最終形状に鋳造できる場合(溶湯鍛造による鋳造を含む)、本鋳造工程による鋳物をもって本発明に係る二相合金製造物としてもよい。一方、粗大な鋳造凝固組織の抑制が困難な場合(例えば、最終的に大型製造物を製造しようとする場合)、一旦、鋳塊20を作製する。
 鋳塊20を作製した場合、次に、該鋳塊20に対して熱間鍛造を施してほぼ最終形状に成形する熱間鍛造成形工程(ステップ3:S3)を行う。熱間鍛造・成形方法に特段の限定はなく、従前の方法を利用できるが、熱間鍛造の温度は1050~1250℃の範囲が好ましい。熱間鍛造を施すことにより、鋳塊の鋳造欠陥を消失させ、粗大な鋳造凝固組織を壊すことができ、鍛造組織を有する二相合金の成形体30を得ることができる。
 熱間鍛造成形工程S3の後、必要に応じて、鍛造成形体30に対して溶体化処理を施すための溶体化熱処理工程(ステップ4:S4)を行ってもよい。溶体化熱処理の温度は、1050~1150℃の範囲が望ましく、1100℃前後がより望ましい。溶体化処理を施すことにより、オーステナイト相およびフェライト相の各相内で化学的組成を均質化することができる。
 加えて、溶体化熱処理工程S4の後に、時効熱処理工程(ステップ5:S5)を行うことは好ましい。時効熱処理の温度は、800~1000℃の範囲が望ましく、900℃前後がより望ましい。熱処理時間としては、0.5~6時間保持の範囲で適宜調整すればよい。時効熱処理を施すことにより、二相の相比調整(フェライト率調整)を行うことができる。
 例えば、配合組成から予定されるフェライト率よりもフェライト相が過剰な場合、本時効熱処理を施すことにより、フェライト相の一部をオーステナイト相に相変態させて、製造物の伸び・靱性を調整することができる。反対に、配合組成から予定されるフェライト率よりもフェライト相が過少(オーステナイト相が過剰)な場合、オーステナイト相の一部をフェライト相に相変態させて、製造物の機械的強度を調整することができる。
 また、二相合金材が追加的副成分を含有する場合、本時効熱処理を施すことにより、上記の相比調整と同時に、追加的副成分と不純物成分(C、N、O)との化合物形成が促進されて該不純物成分をより集合化・安定化することができる。その結果、製造物の靱性をより改善する(靱性低下をより抑制する)ことができる。
 上記のようにして製造した製造物は、Niに比して安価なCrを主要成分とする二相合金からなることから、従来と同等以上の高い耐食性・機械的特性を有しながら、Ni基合金からなる製造物よりも低コスト化を図ることができる。その結果、本発明に係る二相合金製造物は、厳しい腐食環境下において用いられる油井用機器部材(例えば、回転機械(圧縮機、ポンプなど)の部材(軸、軸受など))や海水環境機器部材(例えば、海水淡水化プラント機器部材、アンビリカルケーブル)や化学プラント機器部材(例えば、液化天然ガス気化装置部材)として好適に利用できる。
 (二相合金製造物およびその製造方法の他の実施形態)
 次に、本発明の二相合金製造物およびその製造方法の他の実施形態について説明する。図3は、本発明に係る二相合金製造物の製造方法の他の一例を示す工程図である。図3の製造方法は、基材上に二相合金の被覆層を形成した複合体の製造方法の例であり、合金粉末を用いた積層造形について示した。
 図3に示したように、まず、所望の組成(主要成分+副成分+必要に応じて追加的副成分)となるように二相合金の原料を混合・溶解して溶湯10を形成する原料混合溶解工程(ステップ1:S1)を行う。原料の混合方法や溶解方法に特段の限定はなく、高耐食性・高強度合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。また、真空炭素脱酸法などを併用して、溶湯10を精錬することが好ましい。
 次に、溶湯10から合金粉末40を形成するアトマイズ工程を行う(ステップ6:S6)。アトマイズ方法に特段の限定はなく、従前の方法を利用できる。例えば、高清浄・均質組成・球形状粒子が得られるガスアトマイズ法を好ましく用いることができる。合金粉末40の平均粒径は、ハンドリング性や充填性の観点から、1μm以上100μm以下が好ましい。
 なお、得られた合金粉末40は、その状態でも本発明の二相合金製造物となりえる。例えば、溶接材料、粉末冶金用材料、積層造形用材料として好適に用いることができる。
 次に、上記で用意した合金粉末40を用いて、所定の基材51上に二相合金の被覆層52を形成する積層造形工程(ステップ7:S7)を行う。積層造形方法に特段の限定はなく、従前の方法を利用できる。例えば、電子線照射加熱やレーザ照射加熱を用いた金属粉末積層造形法を好適に利用できる。
 積層造形工程は、より具体的には、基材51上に合金粉末40の堆積層を形成する合金粉末堆積工程と、該堆積層を局所加熱して合金の微小溶融池を形成すると共に該局所加熱を堆積層の面内で走査しながら微小溶融池を移動・逐次凝固させることにより、二相合金の凝固層を形成する局所溶融・凝固層形成工程とを有する。これら2工程(合金粉末堆積工程、局所溶融・凝固層形成工程)を繰り返すことにより、所望の形状・厚さを有する二相合金被覆層52が形成された複合体50を作製することができる。
 図3には図示していないが、積層造形工程S7の後、必要に応じて、図2と同様の溶体化熱処理工程S4を行ってもよい。溶体化処理を施すことにより、オーステナイト相およびフェライト相の各相内で化学的組成を均質化することができる。また、溶体化熱処理工程S4を行う際に、熱間等方圧加圧(HIP)法を採用してもよい。熱間等方圧加圧を行うことにより、二相合金被覆層52の凝固組織をより緻密化したり、凝固組織の欠陥を消滅させたりすることができる。
 加えて、溶体化熱処理工程S4の後に、必要に応じて、図2と同様の時効熱処理工程S5を行ってもよい。時効熱処理を施すことにより、二相の相比調整を行うことができる。
 次に、上記の二相合金被覆層の金属組織について説明する。図4aは、本発明によって得られる二相合金被覆層の一例を示す斜視断面模式図であり、図4bは、図4aのA部の拡大模式図である。
 図4aに示したように、本実施形態に係る二相合金被覆層52は、積層造形法に起因して微小溶融池が急速に凝固して形成される急冷凝固組織60の集合からなる金属組織を有している。詳細には、個々の急冷凝固組織60は、局所加熱による微小溶融池の外縁形状(溶融境界61)に由来する略半球状の輪郭を有している。また、急冷凝固組織60は、該円弧を同じ方向に向けて2次元状に配列しており、層状の凝固層62が形成されている。さらに、そのような凝固層62が厚さ方向に複数積層されている。結果、急冷凝固組織60が3次元状に配列した金属組織となる。なお、積層造形法の条件によっては、溶融境界61が明確に観察されない場合もある。
 積層造形法による急冷凝固組織60をより詳細に観察すると、図4bに示したように、凝固層62の積層方向(二相合金被覆層52の厚さ方向)に溶融境界61を跨いで延びる柱状晶65が成長しており、該柱状晶65が大傾角粒界66を介して林立している。また、各柱状晶65の内部には、小傾角粒界67が観察されることもある。なお、本発明において、隣接する結晶粒間の傾角(所定の結晶方位同士の傾角)が15°以上の粒界を大傾角粒界と定義し、15°未満の粒界を小傾角粒界と定義する。結晶粒界の傾角は、後方散乱電子回折像(EBSP)解析により測定することができる。
 急冷凝固組織60と称するには、柱状晶65の平均結晶粒径が少なくとも100μm以下である必要がある。二相合金材の機械的強度や耐食性の観点からは、柱状晶65の平均結晶粒径は、50μm以下がより好ましく、10μm以下が更に好ましい。なお、本発明における平均結晶粒径は、光学顕微鏡観察像または電子顕微鏡観察像を画像解析ソフト(NIH Image、パブリックドメインソフト)で読み込んで二値化した後、二値化した結晶粒の短径と長径とから算出される平均値と定義する。
 また、図4a~4bのような急冷凝固組織60を有する金属組織において、フェライト相(α相)の平均Cr濃度に対するオーステナイト相(γ相)の平均Cr濃度の比率「(γ相のCr濃度)/(α相のCr濃度)」(固液分配係数と称す)を、電子線プローブ微小分析器(EPMA)を用いて調査したところ、該比率(固液分配係数)が1.3以下であった。そして、そのような組成比を有する二相合金材は、該比率(固液分配係数)が1.3超の組成比を有する二相合金材よりも高い耐食性を示すことが確認されている。詳細は後述する。
 本実施形態により形成される二相合金被覆層52は、高い耐食性を示すことから、耐食コーティングとして好適に利用できる。言い換えると、本実施形態の製造物(基材51上に二相合金被覆層52が形成された複合体50)は、厳しい腐食環境下において用いられる油井用機器部材(例えば、圧縮機部材、ポンプ部材)や海水環境機器部材(例えば、海水淡水化プラント機器部材、アンビリカルケーブル)や化学プラント機器部材(例えば、液化天然ガス気化装置部材)として好適に利用できる。
 なお、上記では、基材上に二相合金被覆層が形成された複合体として説明したが、本実施形態はそれに限定されるものではなく、積層造形法を利用して、基材と複合すること無しに所望の形状を有する成形体を造形してもよいし、該成形体を腐食環境機器部材として利用してもよい。
 (二相合金製造物およびその製造方法の更に他の実施形態)
 次に、本発明の二相合金製造物およびその製造方法の更に他の実施形態について説明する。図5は、本発明に係る二相合金製造物の製造方法の更に他の一例を示す工程図である。図5の製造方法は、本発明の二相合金からなる棒状材または線状材を作製し、該棒状材または線状材を溶接材料として用いて合金部材同士を溶接することについて示した。
 図5に示したように、まず、図2と同様の原料混合溶解工程S1を行う。原料の混合方法や溶解方法に特段の限定はなく、高耐食性・高強度合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。また、真空炭素脱酸法などを併用して、溶湯10を精錬することが好ましい。
 次に、図2と同様の鋳造工程S2を行って、鋳塊20を作製する。
 次に、鋳塊20に対して熱間加工を施して棒状体または線状体70を形成する熱間加工成形工程(ステップ3’:S3’)を行う。棒状体または線状体70を形成する熱間加工成形方法に特段の限定はなく、従前の方法(例えば、押出加工、引抜加工)を利用できるが、熱間加工の温度は1050~1250℃の範囲が好ましい。熱間加工を施すことにより、鋳塊20の鋳造欠陥を消失させ、粗大な鋳造凝固組織を壊すことができ、緻密で微細な金属組織を有する二相合金成形体を得ることができる。
 なお、得られた合金棒状体または合金線状体70は、その状態でも本発明の二相合金製造物となりえる。例えば、溶接材料として好適に用いることができる。
 次に、上記で用意した合金棒状体または合金線状体70を用いて、所定の合金部材81同士を溶接して溶接継手80を形成する溶接工程(ステップ8:S8)を行う。溶接方法に特段の限定はなく、従前の方法を利用できる。例えば、レーザ溶接や電子ビーム溶接やアーク溶接を好適に利用できる。
 また、被溶接材となる合金部材81の材質に特段の限定はないが、溶接された製造物(溶接継手80)を腐食環境機器部材として用いる場合は、被溶接材を二相合金材とすることが好ましく、該二相合金材を本発明の二相合金材とすることがより好ましい。
 図5には図示していないが、溶接工程S8の後、必要に応じて、図2と同様の溶体化熱処理工程S4を行ってもよい。溶体化処理を施すことにより、オーステナイト相およびフェライト相の各相内で化学的組成を均質化することができる。
 加えて、溶体化熱処理工程S4の後に、必要に応じて、図2と同様の時効熱処理工程S5を行ってもよい。時効熱処理を施すことにより、二相の相比調整を行うことができる。
 本実施形態により得られる溶接継手80の溶接部82は、溶融凝固のメカニズムが基本的に前述の積層造形と同様であることから、図4bと類似の急冷凝固組織60からなる金属組織を有する。具体的には、平均結晶粒径が100μm以下の柱状晶65からなり、α相の平均Cr濃度に対するγ相の平均Cr濃度の比率(固液分配係数)が1.3以下の微細組織を有する。
 当該微細組織は、前述したように、高い耐食性を示すことから、耐食性の高い溶接継手80を得ることができる。言い換えると、本実施形態の製造物(本発明の二相合金溶接部82を介して溶接された溶接継手80)は、より大型の部材を腐食環境機器部材として提供することができる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 (合金製造物の実施例1~14および比較例1~5の作製)
 表1に示す化学組成を有する発明合金1~8(IA 1~IA 8)および比較合金1~5(CA 1~CA 5)を用いて合金製造物(実施例1~14および比較例1~5)を作製した。なお、比較合金CA 5は、スーパー二相鋼と称される市販の二相ステンレス鋼である。各成分の含有率(単位:質量%)は、表1に記載の化学組成の総和が100質量%となるように換算してある。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、発明合金IA 1~IA 8および比較合金CA 1~CA 3は、Crを主成分とするCr基合金である。その中でCA 1~CA 3は、Crを65質量%より多く含む高Cr基合金である。比較合金CA 4は、Niを主成分とするNi基合金である。比較合金CA 5は、上述したように市販の二相ステンレス鋼であり、Feを主成分とするFe基合金である。
 各合金製造物(比較例5を除く)の作製は、図1に示した製造方法に沿って行った。まず、各合金の原料を混合し、高周波真空溶解炉を用いて真空溶解(5×10-3 Pa以下、1600℃以上)を行った。次に、所定の鋳型を用いて鋳造し、各合金の鋳塊を作製した。
 次に、得られた各鋳塊に対して、鍛造割れが生じないように注意しながら熱間鍛造処理を行い、所定の形状に成形した。実施例1~14および比較例4に対する熱間鍛造条件は、鍛造温度:1050~1250℃、ひずみ速度:8 mm/s以下、鍛造1回あたりの圧下量:10 mm以下、鍛造回数:6回以上とした。比較例1~3に対する熱間鍛造条件は、トータルの鍛造変形量が発明合金材のそれと同じになるように、鍛造1回あたりの圧下量を減らす代わりに鍛造回数を増やし、他の条件を同じとした。
 なお、鍛造温度の範囲は、次のようにして決定したものである。各鋳塊から引張試験用の試験片を別途切り出し加工して、該試験片に対してグリーブル試験機を用いて高温引張試験(試験温度:800~1350℃、引張速度:10 mm/s)を行った。高温引張試験の結果、絞りが60%以上となる温度範囲を鍛造温度範囲とした。
 熱間鍛造成形を行った各合金試料に対して、溶体化熱処理(1100℃で60分間保持後、水冷)を施した。一部試料は、この状態で試験・評価用の合金製造物(実施例1,3,5,9,11~14および比較例1~4)とした。また、購入したCA 5試料に対して、同様の溶体化熱処理を施し、試験・評価用の合金製造物(比較例5)とした。
 溶体化熱処理を行った試料の他の一部に対して、時効熱処理(800~1000℃で60分間保持後、水冷)を施した。時効熱処理を行った試料を、試験・評価用の合金製造物(実施例2,4,6~8,10)とした。
 実施例1~14および比較例1~5の合金製造物における、合金番号と熱処理条件との関係を後述する表2に示す。
 (実施例1~14および比較例1~5の合金製造物に対する試験・評価)
 (1)組織観察
 各合金製造物から組織観察用の試験片を採取した後、該試験片の表面を鏡面研磨し、シュウ酸水溶液中で電界エッチングを行った。該研磨表面を光学顕微鏡で観察した。先に示した図1は、実施例5の金属組織の光学顕微鏡写真である。
 前述したように、本発明の二相合金材は、明色のオーステナイト相P1と暗色のフェライト相P2とが互いに分散混合した金属組織を有している。また、熱間鍛造を行っていることから、鋳造凝固組織(例えば、鋳造凝固組織特有の樹枝状晶)が破壊され、少なくとも一部に等軸晶状の結晶粒が見られる組織(いわゆる、鍛造組織)を有していることが確認される。他の実施例も同様であった。
 (2)フェライト率測定
 組織観察用試験片の研磨表面に対して後方散乱電子回折像(EBSP)解析を行い、フェライト相の占有率(フェライト率、単位:%)を測定した。該測定には、株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡(S-4300SE)に株式会社TSLソリューションズ製の結晶方位測定装置を付加した装置を用いた。結果を表2に併記する。
 (3)組織安定性試験
 実施例の各合金製造物から組織安定性試験用の試験片を採取した後、800℃で60分間保持する熱処理を行った。各試験片の表面に対してX線回折測定を行い、金属間化合物のσ相の生成の有無を調査した。調査の結果、実施例1~14は、いずれもσ相が検出されず、σ相が生成し難いことが確認された。
 (4)ビッカース硬さ試験
 機械的特性評価の一つとして、先の組織観察用試験片に対してビッカース硬度計を用いてビッカース硬さ試験(荷重:1 kg、荷重付加時間:15 s)を行った。ビッカース硬さは5測定の平均値として求めた。結果を表2に併記する。
 (5)室温引張試験
 用意した各合金製造物から引張試験用の試験片(直径:4 mm、平行部長さ:20 mm)を採取した。他の機械的特性評価として、各試験片に対して引張試験機を用いて室温引張試験(ひずみ速度:3×10-4 s-1)を行い、0.2%耐力、引張強さ、破断伸びを測定した。なお、明確な引張強さが測定される前に試験片が破断した場合は、破断応力を測定した。これら引張試験の結果は3測定の平均値として求めた。
 破断伸びの測定の結果、15%以上をAランクと評価し、5%以上15%未満をBランクと評価し、2%以上5%未満をCランクと評価し、2%未満をDランクと評価した。Cランク以上を合格と判定し、Dランクを不合格と判定した。室温引張試験の結果を表2に併記する。
 (6)孔食試験
 耐食性評価の一種として孔食試験を行った。用意した各合金製造物から孔食試験用の分極試験片を採取した。孔食試験は、各分極試験片に対してJIS G0577(2005)に準拠して行った。具体的には、分極試験片にすきま腐食防止電極を装着し、参照電極として飽和カロメル電極を用い、分極試験片のアノード分極曲線を測定して、電流密度100μA/cm2に対応する孔食発生電位を求めた。孔食試験の結果を表2に併記する。また、アノード分極曲線測定後、光学顕微鏡を用いて孔食の発生の有無を調査した。
 (7)耐硫酸性試験
 耐食性評価の他の一種として耐硫酸性試験を行った。孔食試験と同様に各合金製造物から耐硫酸性試験用の分極試験片を採取した。耐硫酸性試験は、具体的には、分極試験片にすきま腐食防止電極を装着し、硫酸水溶液(pH=2.0、30℃)中における分極試験片のアノード分極曲線(自然浸漬電位から掃引速度200μA/sの動電位法で電位1300 mV(vs. SHE)に達するまで)を測定した。得られた分極曲線から電位400 mV(vs. SHE)に対応する腐食電流密度を求めた。
 測定の結果、比較例5(市販の二相ステンレス鋼)における電位400 mV(vs. SHE)に対応する腐食電流密度は、1.32μA/cm2であった。これを100%として、各合金製造物の腐食電流密度の比率を算出した。耐硫酸性試験の結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 表1~2に示したように、比較例1~3(CA 1~CA 1からなる製造物)は、主要成分(Cr、Ni、Fe)の一つ以上の含有率が本発明の規定を外れており、フェライト相単相(フェライト率100%)の金属組織を示した。その結果、良好な耐食性を示すものの、延性をほとんど示さず(脆性的であり)機械的特性に難点があった。
 比較例4(CA 4からなる製造物)は、前述したようにNi基合金材であり、オーステナイト相単相(フェライト率0%)の金属組織を示した。機械的強度(ビッカース硬さ、0.2%耐力、引張強さ)に難点があった。また、Ni成分の含有率が高いことから、材料コストの観点でも難点がある。
 市販の二相ステンレス鋼(CA 5)からなる比較例5は、フェライト率45%であった。
 これら比較例に対し、実施例1~14(IA 1~IA 8からなる製造物)は、いずれもオーステナイト相とフェライト相とが混在する二相合金の金属組織を有していた。また、時効熱処理を行った実施例は、時効熱処理を行わなかった実施例からフェライト率が変化していた。すなわち、溶体化熱処理後の時効熱処理は、フェライト率調整熱処理として作用することが確認された。
 機械的特性としては、実施例1~14は、いずれも良好な特性(例えば、250 Hv超のビッカース硬さ、550 MPa超の0.2%耐力、900 MPa超の引張強さ、2%以上の破断伸び)を示すことが確認された。
 耐食性としては、孔食試験を行った全ての試料(実施例1,3,5,9,11~14)において、電流密度100μA/cm2に対応する孔食発生電位は1.1 V以上であり、該孔食発生電位以上の領域では、過不動態域における酸素発生となった。それら全ての試料において、孔食発生は認められなかった。また、耐硫酸性試験において、実施例1~14は、比較例5に比して5~20%の腐食電流密度を示した。すなわち、実施例1~14は、優秀な耐食性を有することが確認された。
 これらの試験結果から、実施例1~14は、従来材と同等以上の良好な機械的特性と優秀な耐食性とを兼ね備えることが確認された。さらに、Cr成分の含有率が高いことから、従来のNi基合金材よりも低コスト化が可能と言える。
 (合金製造物の実施例15~32の作製)
 表3に示す化学組成を有する発明合金9~17(IA 9~IA 17)を用いて合金製造物(実施例15~32)を作製した。なお、各成分の含有率(単位:質量%)は、表3に記載の化学組成の総和が100質量%となるように換算してある。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、発明合金IA 9~IA 17は、主要成分(Cr、Ni、Fe)および副成分(Mn、Si)に加えて、追加的副成分(V、Nb、Ta、Ti)の少なくとも一種を更に含むものである。追加的副成分の合計含有率は、C、NおよびOの合計含有率の0.8倍以上2倍以下の範囲内となっている。
 各合金製造物の作製は、図1に示した製造方法に沿って行い、溶体化熱処理工程(1100℃で60分間保持後、水冷)の後に時効熱処理工程(800~1050℃で60分間保持後、水冷)を行った。実施例15~32合金製造物における、合金番号と熱処理条件との関係は後述する表4に示す。
 (実施例15~32の合金製造物に対する試験・評価)
 用意した実施例15~32に対して、先と同様に、組織観察、フェライト率測定、組織安定性試験、ビッカース硬さ試験、室温引張試験、孔食試験、および耐硫酸性試験を行った。それぞれの試験・評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3~4に示したように、実施例15~32(IA 9~IA 17からなる製造物)は、いずれも、図1と同様に、オーステナイト相とフェライト相とが混在する二相合金の金属組織を有していた。また、時効熱処理の温度の違いによって、フェライト率が変化していた。すなわち、溶体化熱処理後の時効熱処理は、フェライト率調整熱処理として作用することが確認された。
 組織安定性(σ相の生成抑制性)としては、調査(800℃で60分間保持する熱処理、X線回折測定)の結果、実施例15~32は、いずれもσ相が検出されず、σ相が生成し難いことが確認された。
 耐食性としては、孔食試験を行った全ての試料(実施例16,18,20,22,23,25,27,32)において、電流密度100μA/cm2に対応する孔食発生電位は1.1 V以上であり、該孔食発生電位以上の領域では、過不動態域における酸素発生となった。それら全ての試料において、孔食発生は認められなかった。また、耐硫酸性試験において、実施例15~32は、比較例5に比して1~10%の腐食電流密度を示した。すなわち、実施例15~32は、極めて優秀な耐食性を有することが確認された。
 機械的特性としては、実施例15~32は、いずれも良好な特性(例えば、200 Hv超のビッカース硬さ、550 MPa超の0.2%耐力、800 MPa超の引張強さ、5%以上の破断伸び)を示すことが確認された。実施例15~32では、破断伸びが大幅に向上した。これは、追加的副成分を適切な範囲で添加したことにより、不純物のC、NおよびOが集合化・安定化されたことに起因すると考えられた。
 次に、フェライト率とビッカース硬さと0.2%耐力との関係について調査した。図6は、本発明の二相合金製造物におけるフェライト率とビッカース硬さとの関係を示すグラフであり、図7は、本発明の二相合金製造物におけるフェライト率と0.2%耐力との関係を示すグラフである。二相合金製造物としては、Fe濃度が20質量%付近にある実施例1,3,5,9,16,18,20,22で比較した。
 図6に示したように、ビッカース硬さは、フェライト率の増加に伴って単調増加しており、フェライト率が40%より大きくなると概ね400 Hv以上となることが判った。また、図7に示したように、0.2%耐力も、フェライト率の増加に伴って単調増加しており、フェライト率が40%より大きくなると概ね1000 MPa以上となることが判った。
 図6,7に示した実施例は、前述したようにFe濃度が20質量%付近にあり、Cr濃度の増加に伴ってフェライト率が増加している。言い換えると、本発明の二相合金では、Cr濃度を高めるとフェライト率が増加して、ビッカース硬さと0.2%耐力とが増加する傾向があると言える。
 ただし、表2に示したように、比較例1~3のようにフェライト相の単相になると、延性がほとんどなく脆性的になるため好ましくない。言い換えると、フェライト率を90%以下に制御して二相混合状態を保つことが重要である。また、追加的副成分(V、Nb、Ta、Ti)の添加により、破断伸びを大幅に向上することができる。機械的強度を優先するか延性を優先するかは、二相合金製造物に求められる特性に応じて適宜選択すればよい。
 (合金製造物の実施例33~36)
 表1に示した発明合金1~4(IA 1~IA 4)を用いて、図3に示した製造方法に沿って合金粉末(平均粒径100μm以下)を作製し、その後、金属粉末積層造形法により合金製造物(実施例33~36)を作製した。なお、本実験では、基材と複合していない成形体を造形した。
 (実施例33~36の合金製造物に対する試験・評価)
 用意した実施例33~36に対して、先と同様に、組織観察、フェライト率測定、組織安定性試験、ビッカース硬さ試験、室温引張試験、および孔食試験を行い、実施例1,3,5,9と比較した。それぞれの製造方法と試験・評価結果とを後述する表5に示す。組織観察結果は、後述する図8a,図8bに示す。
 上記試験に加えて、実施例36,9に対して、電子線プローブ微小分析器(EPMA)を用いて、フェライト相(α相)の平均Cr濃度に対するオーステナイト相(γ相)の平均Cr濃度の比率「(γ相のCr濃度)/(α相のCr濃度)」(固液分配係数)を調査した。結果を表5に併記する。
 また、実施例36,9に対して、JIS G0577(2005)の腐食試験環境(3.5%食塩水、30℃)において、1000 mV(vs. SHE)の定電位分極での腐食電流密度の経時変化を計測した。結果を後述する図9に示す。
Figure JPOXMLDOC01-appb-T000005
 図8aは、実施例9の金属組織を示す光学顕微鏡写真であり、図8bは、実施例36の金属組織を示す光学顕微鏡写真である。実施例9では、熱間鍛造を行っていることから、図1の実施例5と同様に、鋳造凝固組織特有の樹枝状晶が破壊され、少なくとも一部に等軸晶状の結晶粒が見られる組織(いわゆる、鍛造組織)を有していることが確認された。一方、実施例36では、α相とγ相との各結晶粒が小さくかつより均等に分散しており、樹枝状晶の初期形状のような結晶粒が見られたことから、急冷凝固組織を有していると確認された。
 組織安定性(σ相の生成抑制性)としては、調査(800℃で60分間保持する熱処理、X線回折測定)の結果、実施例33~36は、いずれもσ相が検出されず、σ相が生成し難いことが確認された。
 表5に示したように、実施例33~36は、それぞれ同じ合金組成を有する実施例1,3,5,9と比較して、異なるフェライト率を有すると共に、より高い機械的強度(ビッカース硬さ、0.2%耐力、引張強さ)と同等以上の延性とを示した。これらの結果は、急冷凝固による結晶粒の微細化とα相・γ相の均等分散化とが、強く関連していると考えられる。
 実施例36,9に対する固液分配係数の調査の結果、実施例9の1.53に対して、実施例36は1.28と小さくなっていた。これは、実施例36におけるγ相のCr濃度とα相のCr濃度との差が、実施例9におけるそれよりも小さくなっていることを意味し、実施例36が急冷凝固により作製されたことの傍証となる。
 また、耐食性としては、実施例33~36は、それぞれ対応する実施例よりも高い孔食発生電位を有していた。この結果の詳細なメカニズムは未解明であるが、固液分配係数の減少(γ相とα相との間のCr濃度差の減少)が関与していると考えられる。
 図9は、実施例9,36における1000 mV(vs. SHE)の定電位分極での電流密度の経時変化を示すチャートである。図9に示したように、実施例36は、時間の経過と共に電流密度が低下しており、実施例9よりも腐食速度が低いことを意味する。すなわち、実施例36は、実施例9よりも高い耐食性を有することが確認された。
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 P1…オーステナイト相、P2…フェライト相、10…溶湯、20…鋳塊、30…成形体、40…合金粉末、50…複合体、51…基材、52…二相合金被覆層、60…急冷凝固組織、61…溶融境界、62…凝固層、65…柱状晶、66…大傾角粒界、67…小傾角粒界、70…線状体、80…溶接継手、81…合金部材、82…溶接部。

Claims (20)

  1.  Crを主要成分としフェライト相およびオーステナイト相の二相が混在する二相合金であって、
    前記二相合金の化学組成は、
    34質量%以上70質量%以下のCrと、
    17質量%以上45質量%以下のNiと、
    10質量%以上35質量%以下のFeと、
    0.1質量%以上2質量%以下のMnと、
    0.1質量%以上1質量%以下のSiと、
    不純物とからなり、
    前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とする二相合金。
  2.  請求項1に記載の二相合金において、
    前記不純物として、
    0質量%超0.03質量%以下のCと、
    0質量%超0.02質量%以下のNと、
    0質量%超0.03質量%以下のOとを含み、
    前記二相合金の構成成分として、V、Nb、TaおよびTiのうちの少なくとも一種を更に含み、
    前記V、Nb、TaおよびTiの合計含有率が、前記C、NおよびOの合計含有率の0.8倍以上2倍以下の範囲であることを特徴とする二相合金。
  3.  請求項1又は請求項2に記載の二相合金において、
    前記不純物として、
    0質量%超0.04質量%以下のPと、
    0質量%超0.01質量%以下のSとを含むことを特徴とする二相合金。
  4.  請求項1乃至請求項3のいずれか一項に記載の二相合金において、
    前記フェライト相の占有率が10%以上90%以下であることを特徴とする二相合金。
  5.  二相合金を用いた製造物であって、
    前記二相合金が、請求項1乃至請求項4のいずれか一項に記載の二相合金であることを特徴とする二相合金製造物。
  6.  請求項5に記載の二相合金製造物において、
    前記製造物は、鍛造組織を有する成形体であることを特徴とする二相合金製造物。
  7.  請求項5に記載の二相合金製造物において、
    前記製造物は、基材上に前記二相合金の被覆層が形成された複合体であることを特徴とする二相合金製造物。
  8.  請求項7に記載の二相合金製造物において、
    前記被覆層中の前記フェライト相の平均Cr濃度に対する前記オーステナイト相の平均Cr濃度の比率が1.3以下であることを特徴とする二相合金製造物。
  9.  請求項7又は請求項8に記載の二相合金製造物において、
    前記被覆層は、急冷凝固組織を有することを特徴とする二相合金製造物。
  10.  請求項6乃至請求項9のいずれか一項に記載の二相合金製造物において、
    前記製造物は、回転機械の軸または軸受であることを特徴とする二相合金製造物。
  11.  請求項5に記載の二相合金製造物において、
    前記製造物は、粉体であることを特徴とする二相合金製造物。
  12.  請求項5に記載の二相合金製造物において、
    前記製造物は、棒状体または線状体であることを特徴とする二相合金製造物。
  13.  請求項11又は請求項12に記載の二相合金製造物において、
    前記製造物は、溶接材料であることを特徴とする二相合金製造物。
  14.  請求項5に記載の二相合金製造物において、
    前記製造物は、合金部材同士が溶接部を介して溶接された溶接継手であり、
    前記溶接部が前記二相合金からなることを特徴とする二相合金製造物。
  15.  請求項14に記載の二相合金製造物において、
    前記溶接部における前記フェライト相の平均Cr濃度に対する前記オーステナイト相の平均Cr濃度の比率が1.3以下であることを特徴とする二相合金製造物。
  16.  請求項14又は請求項15に記載の二相合金製造物において、
    前記合金部材が前記二相合金からなることを特徴とする二相合金製造物。
  17.  請求項5又は請求項6に記載の二相合金製造物の製造方法であって、
    前記二相合金の原料を混合・溶解する原料混合溶解工程と、
    鋳造して鋳塊を形成する鋳造工程と、
    前記鋳塊を熱間鍛造して成形体を形成する熱間鍛造成形工程と、
    前記成形体に対して1050℃以上1250℃以下の温度範囲で溶体化処理を施す溶体化熱処理工程とを有することを特徴とする二相合金製造物の製造方法。
  18.  請求項17に記載の二相合金製造物の製造方法において、
    前記溶体化熱処理工程の後に、溶体化処理した前記成形体に対して800℃以上1000℃以下の温度範囲で時効処理を施す時効熱処理工程を更に有することを特徴とする二相合金製造物の製造方法。
  19.  請求項7乃至請求項9のいずれか一項に記載の二相合金製造物の製造方法であって、
    前記二相合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
    前記溶湯から合金粉末を形成するアトマイズ工程と、
    前記合金粉末を用いて前記基材上に前記二相合金の被覆層を形成する積層造形工程とを有することを特徴とする二相合金製造物の製造方法。
  20.  請求項14乃至請求項16のいずれか一項に記載の二相合金製造物の製造方法であって、
    前記二相合金の原料を混合・溶解する原料混合溶解工程と、
    鋳造して鋳塊を形成する鋳造工程と、
    前記鋳塊を熱間加工して棒状体または線状体を形成する熱間加工成形工程と、
    前記棒状体または線状体を溶接材料として用いて前記合金部材同士を溶接する溶接工程とを有することを特徴とする二相合金製造物の製造方法。
PCT/JP2015/077398 2014-09-29 2015-09-28 二相合金、該二相合金を用いた製造物、および該製造物の製造方法 WO2016052445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/510,322 US10718038B2 (en) 2014-09-29 2015-09-28 Two-phase alloy, product using said two-phase alloy, and method for producing said product
JP2016552029A JP6374520B2 (ja) 2014-09-29 2015-09-28 二相合金、該二相合金を用いた製造物、および該製造物の製造方法
EP15845890.1A EP3202934B1 (en) 2014-09-29 2015-09-28 Two-phase alloy, product using said two-phase alloy, and method for producing said product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014198879 2014-09-29
JP2014-198879 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052445A1 true WO2016052445A1 (ja) 2016-04-07

Family

ID=55630475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077398 WO2016052445A1 (ja) 2014-09-29 2015-09-28 二相合金、該二相合金を用いた製造物、および該製造物の製造方法

Country Status (4)

Country Link
US (1) US10718038B2 (ja)
EP (1) EP3202934B1 (ja)
JP (1) JP6374520B2 (ja)
WO (1) WO2016052445A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168640A1 (ja) * 2016-03-30 2017-10-05 株式会社日立製作所 クロム基二相合金製造物およびその製造方法
WO2017168806A1 (ja) * 2016-03-30 2017-10-05 株式会社日立製作所 クロム基二相合金製造物およびその製造方法
WO2018066303A1 (ja) * 2016-10-03 2018-04-12 株式会社日立製作所 Cr基二相合金製造物およびその製造方法
WO2018186298A1 (ja) * 2017-04-03 2018-10-11 日立金属株式会社 Cr-Fe-Ni系合金製造物およびその製造方法
WO2019064641A1 (ja) * 2017-09-28 2019-04-04 株式会社日立製作所 合金部材及びそれを用いた製造物
JP2019065389A (ja) * 2017-09-29 2019-04-25 日立金属株式会社 Cr−Fe−Ni系合金製造物及びその製造方法
JP2019143192A (ja) * 2018-02-20 2019-08-29 株式会社日立製作所 Cr−Fe−Ni系合金製造物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441492A4 (en) * 2016-03-30 2019-09-25 Hitachi, Ltd. TWO-PHASE CHROMIUM-BASED ALLOY AND PRODUCT USING SAID TWO PHASE ALLOY

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180692A (ja) * 1984-12-20 1985-09-14 Showa Denko Kk フエライト系ステンレス鋼とニツケル系金属との溶接方法
JPS62260037A (ja) * 1986-05-06 1987-11-12 Nippon Kokan Kk <Nkk> 耐食性高クロム合金
JPH0364404A (ja) * 1989-08-01 1991-03-19 Ishikawajima Harima Heavy Ind Co Ltd ステンレス鋼のクラッド用材料
JPH0368737A (ja) * 1989-08-04 1991-03-25 Nippon Nuclear Fuel Dev Co Ltd オーステナイト系Ni―Cr―Fe合金
JPH09122957A (ja) * 1995-10-31 1997-05-13 Kawasaki Steel Corp マルテンサイト系ステンレス鋼のレーザ溶接用フィラー材料
JP2006152412A (ja) * 2004-12-01 2006-06-15 Mitsubishi Heavy Ind Ltd 耐食、耐酸化性鋳造合金

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415847B2 (ja) 1974-04-10 1979-06-18
US5196272A (en) 1989-08-01 1993-03-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Corrosion resistant stainless steel
JPH03114693A (ja) * 1989-09-28 1991-05-15 Kawasaki Steel Corp 高クロム二相ステンレス鋼溶接材料用素材
JPH04301049A (ja) 1991-03-27 1992-10-23 Kubota Corp 加熱炉内被加熱鋼材支持面部材用耐熱合金
JPH04301048A (ja) 1991-03-27 1992-10-23 Kubota Corp 加熱炉内被加熱鋼材支持面部材用耐熱合金
JPH0770681A (ja) * 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JP3247244B2 (ja) 1994-03-24 2002-01-15 川崎製鉄株式会社 耐食性と加工性に優れたFe−Cr−Ni系合金
JP3207082B2 (ja) 1995-02-21 2001-09-10 株式会社神戸製鋼所 Cr基耐熱合金
JPH08267275A (ja) 1995-03-28 1996-10-15 Kobe Steel Ltd 溶接用ニッケル合金材料
WO2017037851A1 (ja) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr基二相合金および該二相合金を用いた製造物
ES2866903T3 (es) * 2016-03-30 2021-10-20 Hitachi Ltd Aleación de dos fases basada en Cr y producto de la misma
EP3441492A4 (en) * 2016-03-30 2019-09-25 Hitachi, Ltd. TWO-PHASE CHROMIUM-BASED ALLOY AND PRODUCT USING SAID TWO PHASE ALLOY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180692A (ja) * 1984-12-20 1985-09-14 Showa Denko Kk フエライト系ステンレス鋼とニツケル系金属との溶接方法
JPS62260037A (ja) * 1986-05-06 1987-11-12 Nippon Kokan Kk <Nkk> 耐食性高クロム合金
JPH0364404A (ja) * 1989-08-01 1991-03-19 Ishikawajima Harima Heavy Ind Co Ltd ステンレス鋼のクラッド用材料
JPH0368737A (ja) * 1989-08-04 1991-03-25 Nippon Nuclear Fuel Dev Co Ltd オーステナイト系Ni―Cr―Fe合金
JPH09122957A (ja) * 1995-10-31 1997-05-13 Kawasaki Steel Corp マルテンサイト系ステンレス鋼のレーザ溶接用フィラー材料
JP2006152412A (ja) * 2004-12-01 2006-06-15 Mitsubishi Heavy Ind Ltd 耐食、耐酸化性鋳造合金

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168640A1 (ja) * 2016-03-30 2017-10-05 株式会社日立製作所 クロム基二相合金製造物およびその製造方法
WO2017168806A1 (ja) * 2016-03-30 2017-10-05 株式会社日立製作所 クロム基二相合金製造物およびその製造方法
WO2018066303A1 (ja) * 2016-10-03 2018-04-12 株式会社日立製作所 Cr基二相合金製造物およびその製造方法
WO2018186298A1 (ja) * 2017-04-03 2018-10-11 日立金属株式会社 Cr-Fe-Ni系合金製造物およびその製造方法
JP6481802B1 (ja) * 2017-04-03 2019-03-13 日立金属株式会社 Cr−Fe−Ni系合金製造物およびその製造方法
WO2019064641A1 (ja) * 2017-09-28 2019-04-04 株式会社日立製作所 合金部材及びそれを用いた製造物
JP2019065389A (ja) * 2017-09-29 2019-04-25 日立金属株式会社 Cr−Fe−Ni系合金製造物及びその製造方法
JP7302152B2 (ja) 2017-09-29 2023-07-04 株式会社プロテリアル Cr-Fe-Ni系合金製造物及びその製造方法
JP2019143192A (ja) * 2018-02-20 2019-08-29 株式会社日立製作所 Cr−Fe−Ni系合金製造物
WO2019163217A1 (ja) * 2018-02-20 2019-08-29 株式会社日立製作所 Cr-Fe-Ni系合金製造物
US11466347B2 (en) 2018-02-20 2022-10-11 Hitachi, Ltd. Cr—Fe—Ni-based alloy product

Also Published As

Publication number Publication date
JPWO2016052445A1 (ja) 2017-04-27
EP3202934A1 (en) 2017-08-09
EP3202934A4 (en) 2018-05-02
US20170292175A1 (en) 2017-10-12
US10718038B2 (en) 2020-07-21
JP6374520B2 (ja) 2018-08-15
EP3202934B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6374520B2 (ja) 二相合金、該二相合金を用いた製造物、および該製造物の製造方法
US20200290118A1 (en) Alloy article, product formed of said alloy article, and fluid machine having said product
TW201718897A (zh) 層合造形用Ni基超合金粉末
JP6602463B2 (ja) Cr基二相合金及びその製造物
EP3524705A1 (en) NiCrFe ALLOY
JP2011174183A (ja) 金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼
JP2008127590A (ja) オーステナイト系ステンレス鋼
JP2017095794A (ja) 二相ステンレス鋼材および二相ステンレス鋼管
JP6602462B2 (ja) クロム基二相合金および該二相合金を用いた製造物
JP6481802B1 (ja) Cr−Fe−Ni系合金製造物およびその製造方法
JP5412914B2 (ja) 破壊靭性に優れた高強度α+β型チタン合金およびその製造方法
WO2018066303A1 (ja) Cr基二相合金製造物およびその製造方法
WO2017168806A1 (ja) クロム基二相合金製造物およびその製造方法
WO2017037851A1 (ja) Cr基二相合金および該二相合金を用いた製造物
KR20170030567A (ko) 내부식성 물체 및 그 제조 방법
JP5164144B2 (ja) 生体用Co−Cr−Mo鋳造合金
WO2017168640A1 (ja) クロム基二相合金製造物およびその製造方法
JP7131332B2 (ja) オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品
JP6627662B2 (ja) オーステナイト系ステンレス鋼
JP7302152B2 (ja) Cr-Fe-Ni系合金製造物及びその製造方法
JP6965181B2 (ja) Cr−Fe−Ni系合金製造物
WO2024070784A1 (ja) ステンレス鋼粉末、ステンレス鋼部材およびステンレス鋼部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552029

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15510322

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE