WO2017037851A1 - Cr基二相合金および該二相合金を用いた製造物 - Google Patents

Cr基二相合金および該二相合金を用いた製造物 Download PDF

Info

Publication number
WO2017037851A1
WO2017037851A1 PCT/JP2015/074786 JP2015074786W WO2017037851A1 WO 2017037851 A1 WO2017037851 A1 WO 2017037851A1 JP 2015074786 W JP2015074786 W JP 2015074786W WO 2017037851 A1 WO2017037851 A1 WO 2017037851A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy
phase
less
phase alloy
Prior art date
Application number
PCT/JP2015/074786
Other languages
English (en)
French (fr)
Inventor
友則 木村
雅史 能島
青野 泰久
山内 博史
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/074786 priority Critical patent/WO2017037851A1/ja
Publication of WO2017037851A1 publication Critical patent/WO2017037851A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/11Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of chromium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、油井のような温度域・高腐食環境下においても好適に利用できるような金属材料であって、従来と同等以上の高い耐食性と良好な機械的特性とを有しかつ低コストのCr基二相合金を提供することを目的とする。本発明に係るCr基二相合金は、オーステナイト相とフェライト相とを有するCr基二相合金であって、前記Cr基二相合金の化学組成は、34質量%以上70質量%以下のCrと、17質量%以上45質量%以下のNiと、10質量%以上35質量%以下のFeと、0.1質量%以上2質量%以下のMnと、0.1質量%以上3質量%以下のMoと、0.1質量%以上1質量%以下のSiと、不純物とを含み、前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とする。

Description

Cr基二相合金および該二相合金を用いた製造物
 本発明は、高耐食性合金の技術に関し、特に、オーステナイト相とフェライト相とを有する二相合金、および該二相合金を用いた製造物に関するものである。
 原油や天然ガス等の掘削に使用される油井用機器の材料として、かつては炭素鋼と腐食抑制剤(インヒビター)とを併用することが一般的であった。近年では、油井掘削における高深度化の進展に伴う掘削環境の変化のため、以前よりも高い耐食性や機械的特性(例えば、硬さ)が油井用機器材料に求められるようになり、耐食性に優れる鋼材(合金鋼)が用いられるようになった。例えば、クロム(Cr)の添加は鉄(Fe)の耐食性を著しく向上させるため、金属腐食成分を含む油井ではCrを13質量%含有したマルテンサイト系ステンレス鋼(例えば、SUS420)が多く用いられてきた。
 ただし、塩化物と酸性ガス(例えば、炭酸ガスや硫化水素)とを含む環境下では、SUS420は応力腐食割れ(SCC)を起こし易いという弱点がある。そして、そのような厳しい腐食環境下で油井掘削する場合、従来は高価なニッケル(Ni)基合金(例えば、Niを40質量%以上含有する合金)を用いることが多く、材料コスト(ひいては掘削コスト)が大幅に上昇してしまうという問題があった。
 一方、Ni基合金に比して安価な耐食・耐熱合金としてCr基合金があり、種々のCr基合金が提案されている。例えば、特許文献1(特開平04-301048)には、Cr:65~80%,Co:10~15%,残部Feおよび不純分からなり、所望によりN:0.1~1.5%を含む化学組成を有するCr-Fe系耐熱合金が開示されている。特許文献1によると、高温雰囲気炉中における圧縮変形抵抗性、耐酸化性等に優れており、被加熱鋼材支持面部材としての耐久性の向上、メンテナンスの軽減、それに伴う操炉効率の向上に大きくに寄与するとされている。
 また、特許文献2(特開平07-258801)には、Cr:15~50%、Ni:6.1~50%、O+P+S:200 ppm以下で残部がFeおよび不可避的不純物よりなり、結晶粒度番号:8以上であり、所望によりC+N:400~1200 ppmであることを特徴とする加工部分の耐食性に優れたFe-Cr-Ni合金が開示されている。特許文献2によると、加工性を低下させることなく耐食性を向上させ、かつ、加工されても耐食性の低下しないFe-Cr-Ni合金を提供できるとされている。
特開平04-301048号公報 特開平07-258801号公報
 特許文献1に記載されたような高Cr基合金(Crの含有率が高い合金)は、1300℃以上の高温環境下での使用を目的とするものであり、該高温環境下でも優れた耐食性と機械的特性とを有するとされている。しかしながら、そのような高Cr基合金は、油井環境の温度域(室温~300℃程度)において脆性を示す(靭性が不十分である)ため、油井用機器材料としては適していないと考えられる。
 また、特許文献2に記載されたFe-Cr-Ni合金は、オーステナイト系ステンレス鋼を意図したものであるが、オーステナイト系ステンレス鋼は、塩化物を含む高温高圧環境下で水素脆化による応力腐食割れ(SCC)を起こし易いことが知られており、高Cr基合金と同様に、油井用機器材料としては適していないと考えられる。
 前述したように、油井掘削における高深度化の進展により、従来と同等以上に高い耐食性や機械的特性を有する材料で、かつNi基合金よりも低コストの金属材料が強く求められている。したがって、本発明の目的は、油井のような温度域・高腐食環境下においても好適に利用できるような金属材料であって、従来と同等以上の高い耐食性と良好な機械的特性とを有しかつ低コストのCr基二相合金および該二相合金を用いた製造物を提供することにある。
 (I)本発明の一つの態様は、オーステナイト相とフェライト相とを有するCr(クロム)基二相合金であって、前記Cr基二相合金の化学組成は、34質量%以上70質量%以下のCrと、17質量%以上45質量%以下のNi(ニッケル)と、10質量%以上35質量%以下のFe(鉄)と、0.1質量%以上2質量%以下のMn(マンガン)と、0.1質量%以上3質量%以下のMo(モリブデン)と、0.1質量%以上1質量%以下のSi(ケイ素)と、不純物とを含み、前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とするCr基二相合金を提供するものである。
 本発明は、上記の本発明に係るCr基二相合金(I)において、以下のような改良や変更を加えることができる。
(i)前記不純物として、0質量%超0.03質量%以下のC(炭素)と、0質量%超0.02質量%以下のN(窒素)と、0質量%超0.03質量%以下のO(酸素)とを含み、前記Cr基二相合金の構成成分として、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)およびTi(チタン)のうちの少なくとも一種を更に含み、前記V、Nb、TaおよびTiの合計含有率が、前記C、NおよびOの合計含有率の0.8倍以上2倍以下の範囲である。
(ii)前記不純物として、0質量%超0.04質量%以下のP(リン)と、0質量%超0.01質量%以下のS(硫黄)とを含む。
(iii)前記フェライト相の占有率が10%以上90%以下である。
 (II)本発明の他の一つの態様は、二相合金を用いた製造物であって、前記二相合金が、上記のCr基二相合金であることを特徴とする二相合金を用いた製造物を提供するものである。
 本発明は、上記の本発明に係る二相合金を用いた製造物(II)において、以下のような改良や変更を加えることができる。
(iv)前記製造物が鍛造組織を有する鍛造品である。
 本発明によれば、油井のような温度域・高腐食環境下においても好適に利用できるような金属材料として、従来と同等以上の高い耐食性と良好な機械的特性とを有しかつ低コストのCr基二相合金および該二相合金を用いた製造物を提供することができる。
本発明に係るCr基二相合金を用いた製造物の製造方法の一例を示す工程図である。 本発明に係るCr基二相合金の一例(発明合金材IA 1-5)の鋳造材および鍛造材の金属組織を示す光学顕微鏡写真である。
 以下、本発明の実施形態について説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。
 (本発明のCr基合金の金属組織)
 まず、本発明に係るCr基合金の金属組織について説明する。
 本発明の合金は、主要成分としてCr、NiおよびFeを含むCr-Ni-Fe系合金である。主要成分にFeを含む合金の金属組織は、通常、体心立方格子の結晶構造を有するフェライト組織(フェライト相、α相とも言う)と、面心立方格子の結晶構造を有するオーステナイト組織(オーステナイト相、γ相とも言う)と、ひずんだ体心立方格子の結晶構造を有するマルテンサイト組織(マルテンサイト相、α’相とも言う)とに大別される。
 一般的に、フェライト相は、耐食性(例えば、耐SCC性)に優れ、高い機械的強度(例えば、0.2%耐力)を有するが、オーステナイト相に比して延性・靭性が相対的に低いとされている。オーステナイト相は、フェライト相に比して相対的に高い延性・靭性を有するが、機械的強度が相対的に低いとされている。また、通常環境において高い耐食性を示すが、腐食環境が厳しくなると耐SCC性が急激に低下するとされている。マルテンサイト相は、高い機械的強度(例えば、硬さ)を有するが、耐食性が比較的低いとされている。
 一方、本発明に係るCr基合金は、金属組織としてオーステナイト相とフェライト相とを有する二相合金である。二相合金は、オーステナイト相の利点(優れた延性・靭性)とフェライト相の利点(高い機械的強度、耐SCC性を含む優れた耐食性)とを併せ持つ特徴がある。また、Niよりも安価なCrを主要成分とすることから、Niを最大成分とするNi基合金よりも材料コストを低減できる利点がある。
 本発明のCr基二相合金は、フェライト相の占有率(以下、単純に「フェライト率」と称する場合がある)が10%以上90%以下であり、残部がオーステナイト相であることが好ましい。なお、本発明における相の占有率とは、合金バルク試料の研磨面に対して、後方散乱電子回折像(EBSP)解析を行ったときの当該相の含有率(単位:%)と定義する。
 フェライト率が10%以上90%以下の範囲を外れると、二相合金としての利点がほとんど得られない(オーステナイト相単相の弱点またはフェライト相単相の弱点が明確に現れる)。該フェライト率は、30%以上70%以下がより好ましい。
 また、本発明のCr基二相合金を用いた製造物は、鍛造組織を有することが好ましい。言い換えると、該製造物は、本発明のCr基二相合金を用いて鍛造により成形されることが好ましい。鍛造組織を有することにより、鋳造組織よりも高い機械的特性を得ることができる。なお、鍛造成形した後に溶体化熱処理を施した金属組織であってもよい。
 (本発明のCr基二相合金の組成)
 前述したように、本発明に係るCr基二相合金は、Cr、NiおよびFeを主要成分とするCr-Ni-Fe系合金である。また、副成分として、Mn、MoおよびSiを少なくとも含み、追加的にV、Nb、TaおよびTiのうちの少なくとも一種を含み、更に不純物を含む。以下、本発明に係るCr基二相合金の組成(各成分)について説明する。
 Cr:34~70質量%
 Cr成分は、本二相合金の主要成分の1つであり、高強度のフェライト相を形成すると共に、オーステナイト相に固溶して耐食性の向上に寄与する成分である。Cr成分の含有率は、34質量%以上70質量%以下が好ましく、34質量%以上60質量%以下がより好ましく、40質量%以上55質量%以下が更に好ましい。Cr含有率が34質量%未満になると、フェライト率が10%未満(オーステナイト相の占有率が90%超)となり、二相合金の機械的強度が低下する。一方、Cr含有率が70質量%超になると、フェライト率が90%超(オーステナイト相の占有率が10%未満)となり、二相合金の延性・靱性が低下する。また、耐食性と材料コストとの観点から、主要3成分(Cr、Ni、Fe)のうちでCr成分が最大含有率であることが好ましい。
 Ni:17~45質量%
 Ni成分は、本二相合金の主要成分の1つであり、オーステナイト相を安定化させて合金の二相状態の維持に寄与する(例えば、溶体化処理を施しても二相状態の維持が可能)と共に、二相合金に延性と靱性を付与する成分である。Ni成分の含有率は、17質量%以上45質量%以下が好ましく、20質量%以上40質量%以下がより好ましい。Ni含有率が17質量%未満になると、オーステナイト相の占有率が10%未満(フェライト率が90%超)となり、二相合金の延性・靱性が低下する。一方、Ni含有率が45質量%超になると、フェライト率が10%未満(オーステナイト相の占有率が90%超)となり、二相合金の機械的強度が低下する。
 Fe:10~35質量%
 Fe成分も、本二相合金の主要成分の1つであり、機械的強度を確保するための基本成分である。Fe成分の含有率は、10質量%以上35質量%以下が好ましく、10質量%以上32質量%以下がより好ましい。Fe含有率が10質量%未満になると、二相合金の延性・靱性が低下する。一方、Fe含有率が35質量%超になると、800℃近傍の温度域で金属間化合物のσ相が生成し易くなり、二相合金の延性・靱性が著しく低下する(いわゆる、σ相脆化)。言い換えると、Feの含有率を10~35質量%の範囲に制御することにより、二相合金の機械的強度を確保しながら延性・靱性の低下を抑制することができる。
 Ni+Fe:30~65質量%
 Ni成分とFe成分との合計含有率は、30質量%以上65質量%以下が好ましく、40質量%以上62質量%以下がより好ましく、45質量%以上55質量%以下が更に好ましい。該合計含有率が30質量%未満になると、二相合金の延性・靱性が不十分になる。一方、該合計含有率が65質量%超になると、機械的強度が大きく低下する。
 Mn:0.1~2質量%
 Mn成分は、本二相合金において脱硫・脱酸の役割を担い、機械的強度・靱性の向上および耐炭酸ガス腐食性の向上に寄与する副成分である。Mn成分の含有率は、0.1質量%以上2質量%以下が好ましく、0.3質量%以上1.8質量%以下がより好ましい。Mn含有率が0.1質量%未満になると、Mn成分による作用効果が十分に得られない。また、Mn含有率が2質量%超になると、硫化物(例えば、MnS)の粗大粒子を形成して耐食性や機械的強度の劣化要因になる。
 Mo:0.1~3質量%
 Mo成分は、本二相合金において耐食性の向上に寄与する副成分である。Mo成分の含有率は、0.1質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。Mo含有率が0.1質量%未満になると、Mo成分による作用効果が十分に得られない。また、Mo含有率が3質量%超になると、靭性が低下する。
 Si:0.1~1質量%
 Si成分は、本二相合金において脱酸の役割を担い、機械的強度・靱性の向上に寄与する副成分である。Si成分の含有率は、0.1質量%以上1質量%以下が好ましく、0.3質量%以上0.8質量%以下がより好ましい。Si含有率が0.1質量%未満になると、Si成分による作用効果が十分に得られない。また、Si含有率が1質量%超になると、酸化物(例えば、SiO2)の粗大粒子を形成して靱性の低下要因になる。
 不純物
 本二相合金における不純物としては、P、S、C、N、およびOが挙げられる。以下、それら不純物について説明する。
 P:0質量%超0.04質量%以下
 P成分は、二相合金の結晶粒界に偏析し易く、合金の靱性や粒界の耐食性を低下させる不純物成分である。P成分の含有率を0.04質量%以下に制御することで、それらの負の影響を抑制することができる。P含有率は、0.03質量%以下がより好ましい。
 S:0質量%超0.01質量%以下
 S成分は、本二相合金の構成成分と化合して比較的低融点の硫化物(例えば、Fe硫化物)を生成し易く、合金の靱性や耐孔食性を低下させる不純物成分である。S成分の含有率を0.01質量%以下に制御することで、それらの負の影響を抑制することができる。S含有率は、0.003質量%以下がより好ましい。
 C:0質量%超0.03質量%以下
 C成分は、固溶することによって合金を硬化させる作用効果がある一方、本二相合金の構成成分と化合して炭化物(例えば、Cr炭化物)を生成・粒界析出し易く、合金の耐食性や靱性を低下させる不純物成分でもある。C成分の含有率を0.03質量%以下に制御することで、それらの負の影響を抑制することができる。C含有率は、0.02質量%以下がより好ましい。
 N:0質量%超0.02質量%以下
 N成分は、固溶することによって合金を硬化させる作用効果がある一方、本二相合金の構成成分と化合して窒化物(例えば、Cr窒化物)を生成・析出し易く、合金の靱性を低下させる不純物成分でもある。N成分の含有率を0.02質量%以下に制御することで、その負の影響を抑制することができる。N含有率は、0.015質量%以下がより好ましい。
 O:0質量%超0.03質量%以下
 O成分は、本二相合金の構成成分と化合して酸化物(例えば、Fe酸化物)を生成・析出し易く、合金の靱性を低下させる不純物成分である。O成分の含有率を0.03質量%以下に制御することで、その負の影響を抑制することができる。O含有率は、0.02質量%以下がより好ましい。
 追加的副成分
 本二相合金は、追加的副成分として、V、Nb、Ta、およびTiのうちの少なくとも一種を更に含むことが好ましい。以下、これら追加的副成分について説明する。
 V成分、Nb成分、Ta成分、およびTi成分は、それぞれ本二相合金において脱炭・脱窒素・脱酸の役割を担う成分である。C、NおよびOの不純物成分との化合物を形成し、該不純物成分を集合化・安定化することにより、合金の靱性を改善する(靱性低下を抑制する)ことができる。
 また、V成分の少量添加は、合金の機械的特性(例えば、硬さ、引張強さ)を向上させる副次的な作用効果がある。Nb成分の少量添加も、合金の機械的特性(例えば、靱性)を向上させる副次的な作用効果がある。Ta成分やTi成分の少量添加は、合金の耐食性を向上させる副次的な作用効果がある。
 上記の追加的副成分の合計含有率は、不純物成分のC、N、およびOの合計含有率の0.8倍以上2倍以下の範囲となるように制御されることが好ましい。追加的副成分の合計含有率が、C、NおよびOの合計含有率の0.8倍未満になると、上記の作用効果が十分に得られない。一方、追加的副成分の合計含有率が、C、NおよびOの合計含有率の2倍超になると、合金の延性・靭性が低下する。
 (本発明のCr基二相合金を用いた製造物の製造方法)
 次に、本発明のCr基二相合金を用いた製造物の製造方法について説明する。図1は、本発明に係るCr基二相合金を用いた製造物の製造方法の一例を示す工程図である。
 図1に示したように、この製造方法では、まず、所望の組成(主要成分+副成分+必要に応じて追加的副成分)となるように原料を混合・溶解する原料混合溶解工程(ステップ1:S1)を行う。原料の混合方法や溶解方法に特段の限定はなく、高耐食性・高強度合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。
 次に、所定の鋳型を用いて鋳造する鋳造工程を行う(ステップ2:S2)。ここで、凝固時の結晶粒粗大化(粗大な鋳造凝固組織)を抑制できる冷却速度が確保でき、高い寸法精度でほぼ最終形状に鋳造できる場合(溶湯鍛造による鋳造を含む)、本鋳造工程による鋳物をもって本発明に係る製造物としてもよい。一方、粗大な鋳造凝固組織の抑制が困難な場合(例えば、最終的に大型製造物を製造しようとする場合)、一旦、鋳塊を作製する。
 鋳塊を作製した場合、次に、該鋳塊に対して熱間鍛造を施してほぼ最終形状に成形する熱間鍛造成形工程(ステップ3:S3)を行う。熱間鍛造・成形方法に特段の限定はなく、従前の方法を利用できるが、熱間鍛造の温度は1000~1250℃の範囲が好ましい。熱間鍛造を施すことにより、鋳塊の鋳造欠陥を消失させ、粗大な鋳造凝固組織を壊すことができ、鍛造組織を有する二相合金材を得ることができる。
 熱間鍛造成形工程の後、必要に応じて、鍛造物に対して溶体化処理を施すための溶体化熱処理工程(ステップ4:S4)を行ってもよい。溶体化熱処理の温度は、1050~1150℃の範囲が望ましく、1100℃前後がより望ましい。溶体化処理を施すことにより、オーステナイト相およびフェライト相の各相内で化学的組成を均質化することができる。
 また、二相合金材が追加的副成分を含有する場合、溶体化熱処理工程の後に、該二相合金材を析出強化するための時効熱処理工程(図1に表記せず)を行うことが好ましい。時効熱処理の温度は、800~1000℃の範囲が望ましく、900℃前後がより望ましい。
 上記のようにして製造した製造物は、Niに比して安価なCrを主要成分とする二相合金からなることから、従来と同等以上の高い耐食性・機械的特性を有しながら、Ni基合金からなる製造物よりも低コスト化を図ることができる。その結果、本発明に係るCr基二相合金の製造物は、厳しい腐食環境下において用いられる油井用機器部材(例えば、圧縮機部材、ポンプ部材)や海水環境機器部材(例えば、海水淡水化プラント機器部材、アンビリカルケーブル)や化学プラント機器部材(例えば、液化天然ガス気化装置部材)として好適に利用できる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 (発明合金材1-1~1-14および比較合金材1-1~1-5の用意)
 後述する表1に示す化学組成を有する発明合金材1-1~1-14(IA 1-1~IA 1-14)および比較合金材1-1~1-5(CA 1-1~CA 1-5)を用意した。各合金材の作製は、図1に示した製造方法に沿って行った。
 まず、各合金材の原料を混合し、高周波真空溶解炉を用いて真空溶解(10~102 Pa、1600℃以上)を行った。次に、所定の鋳型を用いて鋳造し、各合金材の鋳塊を作製した。
 次に、得られた各鋳塊に対して、鍛造割れが生じないように注意しながら熱間鍛造処理を行った。発明合金材1-1~1-14(IA 1-1~IA 1-14)および比較合金材1-4~1-5(CA 1-4~CA 1-5)に対する熱間鍛造条件は、鍛造温度:1000~1250℃、ひずみ速度:8 mm/s以下、鍛造1回あたりの圧下量:10 mm以下、鍛造回数:6回以上とした。比較合金材1-1~1-3(CA 1-1~CA 1-3)に対する熱間鍛造条件は、トータルの鍛造変形量が発明合金材のそれと同じになるように、鍛造1回あたりの圧下量を減らす代わりに鍛造回数を増やし、他の条件を同じとした。
 なお、鍛造温度の範囲は、次のようにして決定したものである。各鋳塊から引張試験用の試験片を別途切り出し加工して、該試験片に対してグリーブル試験機を用いて高温引張試験(試験温度:800~1350℃、引張速度:10 mm/s)を行った。高温引張試験の結果、絞りが60%以上となる温度範囲を鍛造温度範囲とした。
 熱間鍛造処理を行った各合金材に対して、溶体化処理(1100℃で60分間保持後、水冷)を施し、各種試験・評価用の合金材試料(IA 1-1~IA 1-14、およびCA 1-1~CA 1-5)を用意した。得られた各合金材試料の化学組成を表1に示す。なお、各成分の含有率(単位:質量%)は、表1に記載の化学組成の総和が100質量%となるように換算した。
Figure JPOXMLDOC01-appb-T000001
 (発明合金材1-1~1-14および比較合金材1-1~1-5に対する試験・評価)
 (1)組織観察
 各合金材の鋳塊試料および鍛造材試料から組織観察用の試験片を切り出した後、該試験片の表面を鏡面研磨し、シュウ酸水溶液中で電界エッチングを行った。該研磨表面を光学顕微鏡で観察した。また、各鍛造材試験片の研磨表面に対して後方散乱電子回折像(EBSP)解析を行い、フェライト相の占有率(フェライト率、単位:%)を測定した。結果を後述する表2、図2に示す。
 (2)組織安定性試験
 用意した各合金材試料から組織安定性試験用の試験片を切り出した後、800℃で60分間保持する熱処理を行った。各試験片の表面に対してX線回折測定を行い、金属間化合物のσ相の生成の有無を調査した。調査の結果、発明合金材試料IA 1-1~IA 1-14は、いずれもσ相が検出されず、σ相が生成し難いことが確認された。
 (3)ビッカース硬さ試験
 機械的特性評価の一つとして、先の組織観察用試験片に対してビッカース硬度計を用いてビッカース硬さ試験(荷重:1 kg、荷重付加時間:15 s)を行った。結果を表2に併記する。
 (4)室温引張試験
 用意した各合金材試料から引張試験用の試験片(直径:4 mm、平行部長さ:20 mm)を切り出し加工した。他の機械的特性評価として、各試験片に対して引張試験機を用いて室温引張試験(ひずみ速度:5×10-4 s-1)を行い、0.2%耐力(または降伏応力)、引張強さ、破断伸びを測定した。なお、0.2%耐力(または降伏応力)が測定される前に試験片が破断した場合は、破断応力を測定した。
 破断伸びの測定の結果、15%以上をAランクと評価し、5%以上15%未満をBランクと評価し、2%以上5%未満をCランクと評価し、2%未満をDランクと評価した。Cランク以上を合格と判定し、Dランクを不合格と判定した。室温引張試験の結果を表2に併記する。
 (5)腐食試験
 用意した各合金材試料から腐食試験用の分極試験片を切り出し加工した。腐食試験は、各分極試験片に対してJIS G0577(2005)に準拠して行った。具体的には、分極試験片にすきま腐食防止電極を装着し、参照電極として飽和カロメル電極を用い、分極試験片のアノード分極曲線を測定して、電流密度100μA/cm2に対応する孔食電位と、電位1000 mV(vs. SHE)に対応する腐食電流密度とを求めた。アノード分極曲線測定後、光学顕微鏡を用いて孔食の発生の有無を調査した。
 腐食試験の結果、全ての合金材試料において、孔食発生は認められなかった。また、全ての合金材試料において、電流密度100μA/cm2に対応する孔食電位は1.1 V以上であり、該孔食電位以上の領域では、過不動態域における酸素発生となった。
 電位1000 mV(vs. SHE)に対応する腐食電流密度に関しては、50μA/cm2未満をAランクと評価し、50μA/cm2以上75μA/cm2未満をBランクと評価し、75μA/cm2以上をCランクと評価した。Bランク以上を合格と判定し、Cランクを不合格と判定した。腐食電流密度の結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 表1~2に示したように、比較合金材CA 1-1~CA 1-3は、主要成分(Cr、Ni、Fe)の一つ以上の含有率が本発明の規定を外れており、フェライト相単相(フェライト率100%)の金属組織を示した。その結果、良好な耐食性を示すものの、延性をほとんど示さず(脆性的であり)機械的特性に難点があった。
 比較合金材CA 1-4は、本発明の規定よりもNiの含有率が高くCrの含有率が低い合金であり、実質的にNi基合金と言える試料である。その結果、オーステナイト相単相(フェライト率0%)の金属組織を示した。良好な耐食性を示すものの、機械的強度(ビッカース硬さ、0.2%耐力、引張強さ)に難点があった。また、Ni成分の含有率が高いことから、材料コストの観点でも難点がある。
 比較合金材CA 1-5は、本発明の規定よりもMo成分の含有率が高い合金である。良好な耐食性と良好な機械的強度(ビッカース硬さ、0.2%耐力、引張強さ)とを示したが、延性・靱性の観点において不合格であった。
 これら比較合金材に対し、発明合金材IA 1-1~IA 1-14は、いずれもオーステナイト相とフェライト相とを有する二相合金の金属組織を有していた。図2は、本発明に係るCr基二相合金の一例(発明合金材IA 1-5)の鋳造材および鍛造材の金属組織を示す光学顕微鏡写真である。
 図2に示したように、発明合金材IA 1-5は、明色のオーステナイト相P1と暗色のフェライト相P2とが互いに分散混合した金属組織を有していることが確認された。本実験の鋳造材においては、鋳造凝固組織特有の樹枝状晶(デンドライト)が確認された。一方、鍛造材においては、熱間鍛造処理を行っていることから、鋳造凝固組織が破壊され少なくとも一部に等軸晶状の結晶粒が見られる組織(いわゆる、鍛造組織)を有していることが確認された。
 また、発明合金材IA 1-1~IA 1-14は、従来材と同等以上の高い耐食性(例えば、電位1000 mV(vs. SHE)において75μA/cm2未満の腐食電流密度)と、良好な機械的特性(例えば、300 Hv程度以上のビッカース硬さ、500 MPa超の0.2%耐力、900 MPa超の引張強さ、2%以上の破断伸び)とを示した。さらに、Cr成分の含有率が高いことから、従来のNi基合金材よりも低コスト化が可能と言える。
 (発明合金材2-1~2-9および比較合金材2-1~2-6の用意)
 後述する表3に示す化学組成を有する発明合金材2-1~2-9(IA 2-1~IA 2-9)および比較合金材2-1~2-6(CA 2-1~CA 2-6)を用意した。本実験の各合金材の作製は、先のIA 1-1~IA 1-14と同様の製造方法に加えて、時効熱処理工程(900℃で60分間保持)を行った。なお、各成分の含有率(単位:質量%)は、表3に記載の化学組成の総和が100質量%となるように換算した。
Figure JPOXMLDOC01-appb-T000003
 (発明合金材2-1~2-9および比較合金材2-1~2-6に対する試験・評価)
 用意したIA 2-1~IA 2-9およびCA 2-1~CA 2-6に対して、先と同様に、組織観察、ビッカース硬さ試験、室温引張試験、および腐食試験を行った。それぞれの試験・評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示したように、発明合金材IA 2-1~IA 2-9および比較合金材CA 2-1~CA 2-6は、主要成分(Cr、Ni、Fe)および副成分(Mn、Mo、Si)の含有率が発明合金材IA 1-5の化学組成と近く、追加的副成分(V、Nb、Ta、Ti)の少なくとも一種を更に含むものである。発明合金材IA 2-1~IA 2-9は、追加的副成分の合計含有率がC、NおよびOの合計含有率の0.8倍以上2倍以下の範囲内となっており、比較合金材CA 2-1~CA 2-6は、追加的副成分の合計含有率が当該範囲を外れている。
 表4に示したように、発明合金材IA 2-1~IA 2-9は、発明合金材IA 1-5と比較して、ビッカース硬さと0.2%耐力と引張強さとがそれぞれ若干(5%程度)低下したが、フェライト率と腐食電流密度とが同等であり、破断伸びが大幅に向上した。これは、追加的副成分を適切な範囲で添加したことにより、不純物のC、NおよびOが集合化・安定化されたことに起因すると考えられた。
 追加的副成分を本発明の規定よりも多く添加した比較合金材CA 2-1~CA 2-3は、発明合金材IA 2-1~IA 2-9およびIA 1-5と比較して、フェライト率と腐食電流密度とが同等であり、ビッカース硬さと0.2%耐力と引張強さとがそれぞれ若干(3~5%程度)向上したが、破断伸びが大きく低下した。この結果から、追加的副成分の過剰添加は、合金の延性・靭性を低下させることが確認された。
 また、追加的副成分を本発明の規定よりも少なく添加した比較合金材CA 2-4~CA 2-6は、フェライト率、ビッカース硬さ、引張強さ、破断伸び、および腐食電流密度のいずれもが発明合金材IA 1-5のそれらと同等であった。この結果から、追加的副成分の過少添加は、追加的副成分添加の作用効果が十分得られないことが確認された。
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。

Claims (6)

  1.  オーステナイト相とフェライト相とを有するCr基二相合金であって、
    前記Cr基二相合金の化学組成は、
    34質量%以上70質量%以下のCrと、
    17質量%以上45質量%以下のNiと、
    10質量%以上35質量%以下のFeと、
    0.1質量%以上2質量%以下のMnと、
    0.1質量%以上3質量%以下のMoと、
    0.1質量%以上1質量%以下のSiと、
    不純物とを含み、
    前記Niと前記Feとの合計含有率が30質量%以上65質量%以下であることを特徴とするCr基二相合金。
  2.  請求項1に記載のCr基二相合金において、
    前記不純物として、
    0質量%超0.03質量%以下のCと、
    0質量%超0.02質量%以下のNと、
    0質量%超0.03質量%以下のOとを含み、
    前記Cr基二相合金の構成成分として、V、Nb、TaおよびTiのうちの少なくとも一種を更に含み、
    前記V、Nb、TaおよびTiの合計含有率が、前記C、NおよびOの合計含有率の0.8倍以上2倍以下の範囲であることを特徴とするCr基二相合金。
  3.  請求項1又は請求項2に記載のCr基二相合金において、
    前記不純物として、
    0質量%超0.04質量%以下のPと、
    0質量%超0.01質量%以下のSとを含むことを特徴とするCr基二相合金。
  4.  請求項1乃至請求項3のいずれか一項に記載のCr基二相合金において、
    前記フェライト相の占有率が10%以上90%以下であることを特徴とするCr基二相合金。
  5.  二相合金を用いた製造物であって、
    前記二相合金が、請求項1乃至請求項4のいずれか一項に記載のCr基二相合金であることを特徴とする二相合金を用いた製造物。
  6.  請求項5に記載の二相合金を用いた製造物において、
    前記製造物が鍛造組織を有する鍛造品であることを特徴とする二相合金を用いた製造物。
PCT/JP2015/074786 2015-08-31 2015-08-31 Cr基二相合金および該二相合金を用いた製造物 WO2017037851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074786 WO2017037851A1 (ja) 2015-08-31 2015-08-31 Cr基二相合金および該二相合金を用いた製造物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074786 WO2017037851A1 (ja) 2015-08-31 2015-08-31 Cr基二相合金および該二相合金を用いた製造物

Publications (1)

Publication Number Publication Date
WO2017037851A1 true WO2017037851A1 (ja) 2017-03-09

Family

ID=58187114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074786 WO2017037851A1 (ja) 2015-08-31 2015-08-31 Cr基二相合金および該二相合金を用いた製造物

Country Status (1)

Country Link
WO (1) WO2017037851A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292175A1 (en) * 2014-09-29 2017-10-12 Hitachi, Ltd. Two-phase alloy, product using said two-phase alloy, and method for producing said product
WO2018066303A1 (ja) * 2016-10-03 2018-04-12 株式会社日立製作所 Cr基二相合金製造物およびその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133114A (ja) * 1974-04-10 1975-10-22
JPS5554553A (en) * 1979-07-17 1980-04-21 Mitsubishi Metal Corp High temperature corrosion and oxidation resistant, high strength alloy
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS57207149A (en) * 1981-06-17 1982-12-18 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
JPS586927A (ja) * 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS589922A (ja) * 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPH03264641A (ja) * 1985-05-30 1991-11-25 Nkk Corp 高温耐食性、高温強度に優れた熱間加工高クロム合金鋼
JPH0770681A (ja) * 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH07331390A (ja) * 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH08127848A (ja) * 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133114A (ja) * 1974-04-10 1975-10-22
JPS5554553A (en) * 1979-07-17 1980-04-21 Mitsubishi Metal Corp High temperature corrosion and oxidation resistant, high strength alloy
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS57207149A (en) * 1981-06-17 1982-12-18 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
JPS586927A (ja) * 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS589922A (ja) * 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPH03264641A (ja) * 1985-05-30 1991-11-25 Nkk Corp 高温耐食性、高温強度に優れた熱間加工高クロム合金鋼
JPH0770681A (ja) * 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH07331390A (ja) * 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH08127848A (ja) * 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292175A1 (en) * 2014-09-29 2017-10-12 Hitachi, Ltd. Two-phase alloy, product using said two-phase alloy, and method for producing said product
US10718038B2 (en) * 2014-09-29 2020-07-21 Hitachi, Ltd. Two-phase alloy, product using said two-phase alloy, and method for producing said product
WO2018066303A1 (ja) * 2016-10-03 2018-04-12 株式会社日立製作所 Cr基二相合金製造物およびその製造方法

Similar Documents

Publication Publication Date Title
RU2731924C1 (ru) Обладающий высоким содержанием азота, содержащий несколько основных элементов высокоэнтропийный коррозионно-стойкий сплав
US11085093B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
JP6374520B2 (ja) 二相合金、該二相合金を用いた製造物、および該製造物の製造方法
WO2018066579A1 (ja) NiCrFe合金
WO2018151222A1 (ja) Ni基耐熱合金およびその製造方法
JP2006274443A (ja) 非磁性高硬度合金
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
WO2017169056A1 (ja) Cr基二相合金及びその製造物
JP2008127590A (ja) オーステナイト系ステンレス鋼
WO2012132679A1 (ja) オーステナイト系ステンレス鋳鋼
US20170275743A1 (en) Method for manufacturing martensite-based precipitation strengthening stainless steel
US10633717B2 (en) Low thermal expansion superalloy and manufacturing method thereof
JP6602462B2 (ja) クロム基二相合金および該二相合金を用いた製造物
WO2014157146A1 (ja) オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法
WO2017037851A1 (ja) Cr基二相合金および該二相合金を用いた製造物
WO2017168806A1 (ja) クロム基二相合金製造物およびその製造方法
WO2018066303A1 (ja) Cr基二相合金製造物およびその製造方法
WO2017168640A1 (ja) クロム基二相合金製造物およびその製造方法
JP7131332B2 (ja) オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品
JP6848519B2 (ja) 高圧水素用オーステナイト系ステンレス鋼
JP2021514029A (ja) 新しい二相ステンレス鋼
JP2015004125A (ja) 析出硬化型Fe−Ni合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP