WO2016047631A1 - バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置 - Google Patents

バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置 Download PDF

Info

Publication number
WO2016047631A1
WO2016047631A1 PCT/JP2015/076778 JP2015076778W WO2016047631A1 WO 2016047631 A1 WO2016047631 A1 WO 2016047631A1 JP 2015076778 W JP2015076778 W JP 2015076778W WO 2016047631 A1 WO2016047631 A1 WO 2016047631A1
Authority
WO
WIPO (PCT)
Prior art keywords
baffle
pas
baffles
polymerization
polyarylene sulfide
Prior art date
Application number
PCT/JP2015/076778
Other languages
English (en)
French (fr)
Inventor
龍一 横山
孔大 小市
道寿 宮原
小林 正則
孝一 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2016550322A priority Critical patent/JP6151869B2/ja
Priority to US15/513,507 priority patent/US9890222B2/en
Publication of WO2016047631A1 publication Critical patent/WO2016047631A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/86Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/002Scale prevention in a polymerisation reactor or its auxiliary parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/006Scale prevention in polymerisation reactors

Definitions

  • the present invention relates to an apparatus for producing polyarylene sulfide. More specifically, the present invention includes a baffle (also referred to as a “baffle plate”) and a baffle support disposed in a reaction tank in order to improve stirring efficiency. The present invention relates to an improvement in an apparatus for producing polyarylene sulfide.
  • a baffle also referred to as a “baffle plate”
  • a baffle support disposed in a reaction tank in order to improve stirring efficiency.
  • the present invention relates to an improvement in an apparatus for producing polyarylene sulfide.
  • PAS Polyarylene sulfides
  • PPS polyphenylene sulfide
  • polymerization is carried out using a two-stage polymerization method in which the polymerization reaction is carried out by changing the polymerization temperature and the amount of water present in the polymerization reaction system, and if necessary, using a phase separation agent.
  • the method of performing is known (Patent Document 3 and Patent Document 4).
  • a substantially cylindrical reaction tank (sometimes referred to as “polymerization tank” or “polymerization can”) equipped with a stirrer is often used.
  • the polymerization of PAS is performed using a reaction vessel provided with a stirring blade, and raw material monomer, solvent (polar organic solvent, water, etc.), polymerization aid from one or more supply pipes provided at the top of the reaction vessel.
  • the inside of the reaction vessel is adjusted to a predetermined temperature and pressure, and if necessary, the temperature and pressure are changed, or additional monomers and solvents are supplied, and the polymerization reaction is performed with sufficient stirring.
  • the produced PAS polymer is usually taken out from a discharge pipe provided at the bottom of the reaction tank, and a product PAS polymer is obtained through washing and purification.
  • baffles are widely inserted in order to convert the circumferential rotational flow into upper and lower circulation flows by preventing the circumferential flow.
  • baffles baffle plates
  • the upper and lower circulating flows are generated in the tank along with the circumferential rotational flow, resulting in improved stirring efficiency (increased stirring power number, improved shear performance, etc.), desired flow Formation of a pattern and securing of a heat transfer area can be realized, and the composition of the object to be stirred, uniform mixing, and further uniformization of a desired reaction can be achieved.
  • baffle in many cases, a plate-like member or a rod-like member extending in the upper limit direction of the tank in parallel with the tank wall in the vicinity of the tank wall is used.
  • the conditions such as the shape and size of the baffle (width, diameter, length, etc.), the length below the liquid level (sometimes referred to as “interface”), the gap with the tank wall, etc., the mixing effect, etc. are known to be different.
  • the baffle is also used as a temperature adjusting device.
  • Patent Document 5 As a method for attaching the baffle (baffle plate), (1) fixing to the body portion of the tank by welding or the like, (2) mounting brackets provided in the tank ("baffle support", “baffle support part”). ), And (3) a method of hanging and fixing with a nozzle or the like provided on the lid of the tank is known (Patent Document 5 and Patent Document 6). And, for example, in Patent Document 5, in the case of (1), welding or cutting of the welded portion is necessary for mounting or replacing the baffle plate, so that the work man-hours are long and the work time is long. In this case, it is easy to replace the baffle plates, but in order to increase the number of baffle plates to be installed, it is necessary to increase the number of mounting brackets by welding or the like. In this case, it is disclosed that baffle plates larger than the number of nozzles cannot be provided, and that the lid portion supports the force applied to the baffle plates, and thus there are problems such as restrictions in use conditions.
  • deposits may be deposited in the reaction tank due to a stirring operation or the like.
  • the composition of the deposit is mainly a PAS polymer as a product and NaCl as a by-product, but further, a low polymer of PAS (including oligomers), unreacted raw material monomers and alkaline substances ( NaOH etc. may also be contained.
  • the deposited deposits may be peeled off and fall, resulting in mixing with the product PAS resulting in a decrease in quality or from the reaction vessel. There is a risk that the discharge of PAS may be hindered.
  • Japanese Patent Publication No. 45-3368 Japanese Patent Publication No. 6-51793 JP 61-7332 A JP 63-39926 A JP 2011-83692 A Japanese Patent Publication No. 5-59782
  • An object of the present invention is to improve production efficiency by suppressing deposition of deposits on a baffle (baffle plate) or the like disposed in a reaction tank via a baffle support in order to improve stirring efficiency.
  • An object of the present invention is to provide a PAS manufacturing apparatus that contributes to reducing the object removal cost and improving the quality of the product PAS.
  • the present inventors have solved the problem by providing a baffle support having a through-opening in a PAS manufacturing apparatus including a baffle and a baffle support.
  • a baffle support having a through-opening in a PAS manufacturing apparatus including a baffle and a baffle support.
  • a PAS manufacturing apparatus including a reaction vessel including one or a plurality of baffles, Each of the baffles is supported by one or more baffle supports protruding from the inner wall of the reaction vessel, and At least one of the baffle supports has one or a plurality of openings penetrating the baffle support.
  • the PAS manufacturing apparatus is provided.
  • the following (2) to (13) PAS manufacturing apparatuses are provided as specific embodiments of the present invention.
  • the PAS manufacturing apparatus according to (1) further including a reaction tank including a plurality of baffles.
  • At least one of the baffle supports has the cross-sectional area in the horizontal plane that is larger than the cross-sectional area in the vertical plane with respect to the horizontal flow direction of the contents of the reaction vessel.
  • the total area of the opening ends of the openings penetrating the baffle support is a ratio of 5 to 95% with respect to the area surrounded by the outline of the surface including the opening ends of the surface on the baffle support.
  • (6) The PAS manufacturing apparatus according to any one of (1) to (5), wherein the plurality of intervals are 1 to 50 mm.
  • (7) The PAS manufacturing apparatus according to any one of (1) to (6), wherein the opening passing through the baffle support has a ladder shape or a lattice shape.
  • the radial length of the reaction tank having a cross section perpendicular to the longitudinal direction of each of the baffles is 0.4 to 15% with respect to the diameter of the reaction tank.
  • PAS manufacturing equipment (12) The PAS manufacturing apparatus according to any one of (1) to (11), wherein each length of the baffle is 50 to 80% with respect to a height of the reaction vessel.
  • an apparatus for producing a PAS comprising a reaction vessel comprising one or more baffles, Each of the baffles is supported by one or more baffle supports protruding from the inner wall of the reaction vessel, and At least one of the baffle supports has one or more openings penetrating the baffle support. Suppressing the accumulation of deposits on baffles (baffle plates) placed in the reaction tank via a baffle support to improve stirring efficiency, etc., thereby improving production efficiency and reducing deposit removal costs. And the effect that the manufacturing apparatus of PAS which contributes to improving the quality of product PAS can be provided is produced.
  • FIG. 1 It is a typical section front view showing one example of the reaction vessel with which the PAS manufacturing device of the present invention is equipped. It is a typical section top view showing one example of the reaction vessel with which the PAS manufacturing device of the present invention is equipped.
  • (A)-(e) is a typical partial cross-sectional top view which shows some specific examples of the baffle and baffle support with which the PAS manufacturing apparatus of this invention is equipped. It is a typical partial cross section top view which shows the comparative example of the baffle and baffle support with which a PAS manufacturing apparatus is equipped.
  • the production apparatus for PAS of the present invention is a known PAS, that is, as a raw material for producing PAS, a mixture of a sulfur source and a dihaloaromatic compound containing a polar organic solvent, It is an apparatus for producing PAS obtained by polymerization reaction under heating.
  • Sulfur source In the PAS production apparatus of the present invention, examples of the sulfur source used for producing PAS include known compounds used for the production of PAS. For example, alkali metal sulfide, alkali metal hydrosulfide, hydrogen sulfide and the like can be mentioned.
  • alkali metal hydrosulfide examples include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
  • sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • the alkali metal sulfide any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium sulfide is preferable because it can be obtained industrially at low cost. Those alkali metal sulfides that are commercially available as hydrates can also be used.
  • the alkali metal sulfide a small amount of alkali metal hydrosulfide may be contained.
  • a small amount of alkali metal sulfide may be contained in the alkali metal hydrosulfide.
  • the total molar amount of the sulfur source comprising the alkali metal sulfide and the alkali metal hydrosulfide is a sulfur source to be used for the polymerization reaction in the polymerization step after the dehydration step to be arranged, if necessary, that is, “charged sulfur” "Source”.
  • a mixture of both serves as a charged sulfur source.
  • an alkali metal hydroxide is used in combination.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
  • sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
  • dihaloaromatic compounds In the PAS production apparatus of the present invention, examples of the dihaloaromatic compound used for producing PAS include known compounds used for the production of PAS.
  • dihalobenzenes such as p-dihalobenzene; alkyl-substituted dihalobenzenes such as o-dihalotoluene, p-dihalotoluene, o-dihaloxylene, 1-ethyl-2,5-dihalobenzene; aryl such as 1-phenyl-2,5-dihalobenzene Substituted dihalobenzenes; dihalobiphenyls such as 4,4′-dihalobiphenyl; dihalonaphthalenes such as 1,4-dihalonaphthalene, 1,5-dihalonaphthalene, 2,6-dihalonaphthalene, etc. Can be mentioned.
  • the amount of the dihaloaromatic compound used is usually 0.9 to 1.5 mol, preferably 0.95 to 1.2 mol, relative to 1 mol of the sulfur source.
  • the branching agent described later is used, the total number of moles of the dihalogenated aromatic compound and the branching agent is usually 0.9 to 1.5 mol, preferably 0.95 to 1 mol per 1 mol of the sulfur source. 1.2 moles.
  • the polar organic solvent used as a solvent for the polymerization reaction to produce PAS includes amide compounds, lactam compounds, urea compounds, organic sulfur compounds that are aprotic polar organic solvents, Preferred examples include cyclic organic phosphorus compounds.
  • amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide
  • N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam
  • N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone
  • tetras such as tetramethylurea
  • Examples include alkylurea compounds; hexaalkylphosphoric triamide compounds such as hexamethylphosphoric triamide.
  • the organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone
  • examples of the cyclic organic phosphorus compound include 1-methyl-1-oxophosphorane.
  • the polar organic solvents can be used alone or in combination of two or more, and further mixed with other solvent components that do not hinder the object of the present invention.
  • aprotic polar organic solvents preferred are N-alkylcaprolactam compounds and N-alkylpyrrolidone compounds, and particularly preferred is N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the amount of the polar organic solvent used is usually 0.05 to 10 kg, preferably 0.1 to 1 kg, more preferably 0.2 to 0.8 kg, and still more preferably 0.25 with respect to 1 mol of the sulfur source. It is in the range of ⁇ 0.6 kg.
  • Molecular weight regulator, branching / crosslinking agent In the PAS production apparatus of the present invention, in order to produce PAS, a known molecular weight regulator or a known branching / crosslinking agent may be used in combination as desired.
  • Polymerization aid When the PAS is produced in the PAS production apparatus of the present invention, various polymerization aids can be used as necessary.
  • Phase separation agent In the PAS production apparatus of the present invention, when producing PAS, various phase separation agents can be used in order to cause phase separation and obtain granular PAS.
  • a phase separation agent is a compound that dissolves in a polar organic solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in a polar organic solvent.
  • the phase separation agent itself is a compound that is not a solvent for PAS.
  • phase separation agent a known compound known to function as a phase separation agent can be used.
  • the phase separation agent includes the compound used as the above-mentioned polymerization aid.
  • the phase separation agent is a step of performing a polymerization reaction in a phase separation state, that is, as a phase separation agent in the phase separation polymerization step. It means a compound used in a functional ratio that can function, or in a quantitative ratio that is sufficient to cause phase separation in its presence after the end of polymerization.
  • phase separation agent examples include organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, and alkali phosphates.
  • Preferable examples include at least one selected from the group consisting of metal salts, alcohols, paraffinic hydrocarbons, and water.
  • organic carboxylic acid metal salts include alkali metal carboxylic acids such as lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, and potassium p-toluate. Salts are preferred.
  • phase separation agents can be used alone or in combination of two or more.
  • water that is inexpensive and easy to perform after-treatment, or a combination of water and an organic carboxylic acid metal salt such as an alkali metal carboxylate is particularly preferable.
  • phase separation agent other than water can be used in combination as a polymerization aid from the viewpoint of efficiently performing the phase separation polymerization.
  • the total amount may be an amount capable of causing phase separation.
  • the phase separation agent may coexist at least partially from the time when the polymerization reaction component is charged, but the phase separation agent may be added during the polymerization reaction or to form phase separation after the polymerization reaction. It is desirable to adjust to a sufficient amount.
  • the amount of the phase separation agent used varies depending on the type of the phase separation agent, but it is a polar organic solvent.
  • the amount is generally 0.05 to 30 mol, preferably 0.1 to 20 mol, more preferably 0.15 to 15 mol, and still more preferably 0.2 to 12 mol, per 1 kg.
  • the method for producing PAS by applying the apparatus for producing PAS of the present invention is not particularly limited as long as the gist of the present invention is not impaired.
  • a charging process, a polymerization process (previous stage) It may be a two-stage polymerization process comprising a polymerization process and a post-polymerization process.), And is preferably a method further comprising a dehydration process.
  • Dehydration process When producing PAS, prior to the charging process, a mixture containing a polar organic solvent and a sulfur source, and optionally an alkali metal hydroxide is heated to distill water containing water from the system containing the mixture. It is preferable to arrange a dehydration step for discharging at least a part of the product out of the system.
  • the polymerization reaction between the sulfur source and the dihaloaromatic compound is affected by the amount of water present in the polymerization reaction system. Therefore, in general, it is preferable to arrange a dehydration step before the polymerization step to adjust the amount of water in the polymerization reaction system.
  • a distillate containing water from the system containing the mixture which is heated within a temperature range of usually 300 ° C. or less, preferably 100 to 250 ° C., usually for 15 minutes to 24 hours, preferably 30 minutes to 10 hours. At least a part of (usually including water and a polar organic solvent) is discharged out of the system.
  • the water to be dehydrated in the dehydration step includes hydration water contained in each raw material charged in the dehydration step, an aqueous medium of a mixture, water by-produced by a reaction between the raw materials, and the like.
  • the dehydration step may use a reaction vessel for carrying out the preparation step and the polymerization step, or may use another device, but is preferably carried out in the reaction vessel.
  • the sulfur source and water react by heating to produce hydrogen sulfide and alkali metal hydroxide, and gaseous hydrogen sulfide is volatilized. Therefore, the amount of the sulfur source in the mixture remaining in the system after the dehydration step is smaller than the amount of the introduced sulfur source.
  • the sulfur source in the mixture remaining in the system after the dehydration step is sometimes referred to as “effective sulfur source”.
  • the effective sulfur source is the “charged sulfur source” (hereinafter simply referred to as “sulfur source”) in the charging step and the subsequent polymerization step. ”).
  • the effective sulfur source after the dehydration step is a mixture containing alkali metal hydrosulfide, alkali metal sulfide and the like, and the specific form thereof is not particularly limited.
  • water such as hydrated water, aqueous medium and by-product water is dehydrated until it falls within the required range.
  • dehydration is preferably performed until the amount is preferably 0 to 2 mol, more preferably 0.5 to 1.8 mol with respect to 1 mol of the effective sulfur source.
  • the charging step is a step of preparing a charging mixture containing a polar organic solvent, the sulfur source and dihaloaromatic compound, and water, and an alkali metal hydroxide is further added to the components of the mixture as necessary.
  • a mixture of these predetermined compositions that is, a charged mixture is prepared.
  • the charging to the reaction vessel is generally performed within a temperature range of about 20 ° C. to about 300 ° C., preferably about 20 ° C. to about 200 ° C.
  • the content of the dihaloaromatic compound in the charged mixture is usually 0.9 to 1.5 mol, preferably 0.92 to 1.2 mol, more preferably 0.95 to 1. mol per mol of the sulfur source.
  • the ratio is 1 mol (hereinafter sometimes referred to as “feeding molar ratio”). If the charged molar ratio of the dihaloaromatic compound to the sulfur source is too large, it will be difficult to produce a high molecular weight PAS. On the other hand, if the charged molar ratio of the dihaloaromatic compound to the sulfur source is too small, a decomposition reaction tends to occur and it becomes difficult to carry out a stable polymerization reaction.
  • the charging step it is preferable to prepare a charging mixture containing 0.02 to 2 mol of water per mol of sulfur source, more preferably 0.05 to 1.9 mol, and still more preferably 0.5 to 1. Water is added as necessary so as to contain 8 mol of water.
  • the amount of the polar organic solvent is usually 0.05 to 10 kg, preferably 0.1 to 1 kg, more preferably 0.2 to 0.8 kg per mole of the sulfur source. desirable.
  • Polymerization Step A method for producing a PAS by applying the PAS production apparatus of the present invention performs a polymerization step following the preparation step.
  • the PAS production apparatus of the present invention can be applied to the dehydration process described above, the cooling process (granulation process, etc.) performed after the polymerization process, etc., but can be applied to the polymerization process following the preparation process. preferable.
  • the charging mixture prepared in the charging step is usually heated to a temperature of 170 to 290 ° C., preferably 180 to 280 ° C., more preferably 190 to 275 ° C. to initiate the polymerization reaction and allow the polymerization to proceed.
  • the polymerization reaction time is generally in the range of 10 minutes to 50 hours, preferably 20 minutes to 30 hours.
  • the PAS polymerization process performed by applying the PAS manufacturing apparatus of the present invention is not particularly limited as long as it is a polymerization process known in the PAS manufacturing method.
  • the PAS production apparatus of the present invention is applied to either the pre-stage polymerization process or the post-stage polymerization process in the two-stage polymerization in one-stage polymerization, two-stage polymerization (consisting of a pre-stage polymerization process and a post-stage polymerization process). can do.
  • a reaction tank having a specific configuration provided in the apparatus for producing a PAS of the present invention (1) one-stage polymerization is performed, (2) a two-stage polymerization pre-stage polymerization process and a post-stage polymerization process are performed, or (3) Either the pre-stage polymerization process or the post-stage polymerization process of the two-stage polymerization can be performed.
  • the reaction tank having a specific configuration provided in the apparatus for manufacturing a PAS of the present invention from the viewpoint of suppressing the accumulation of deposits on a baffle or the like disposed in the reaction tank via the baffle support, 1 It is preferable to perform step polymerization or to perform a pre-polymerization step in two-step polymerization.
  • the PAS polymerization step performed by applying the PAS production apparatus of the present invention is not essential, but can also be applied to a polymerization step performed in the presence of a phase separation agent.
  • a phase separation agent in the polymerization step, in the polar organic solvent, the dihaloaromatic compound and the sulfur source in the presence of the phase separation agent in the polymerization reaction system, the concentrated polymer phase and the diluted polymer phase. It can also be applied to a polymerization process in which a polymerization reaction is carried out in a phase-separated state.
  • the phase separation agent water described above, a compound known to function as a phase separation agent, or the like is preferably used.
  • the amount of water in the polymerization reaction system is 0.05 to 30 mol, preferably 0.1 to 20 mol, more preferably 0.15 to 15 mol, more preferably 0.1 to 15 mol, per kg of the polar organic solvent. Preferably, it is adjusted within the range of 0.2 to 12 mol.
  • the polymerization reaction can also be carried out by two-stage polymerization comprising a pre-stage polymerization process and a post-stage polymerization process.
  • the charged mixture is heated to a temperature of 170 to 270 ° C. to initiate the polymerization reaction, and the conversion rate of the dihaloaromatic compound is 50% or more, preferably 50 to 99.5%, More preferably, the prepolymerization step for producing 80 to 99.3% prepolymer and heating to a temperature of 245 to 290 ° C., more preferably a temperature of 255 to 285 ° C., usually 4 to 20 per kg of the polar organic solvent.
  • a post-stage polymerization step can be provided in which the polymerization reaction is continued in the presence of molar water.
  • the conversion rate of the dihaloaromatic compound becomes 50% or more.
  • a phase separation agent is added so that the phase separation agent is present in the polymerization reaction system, and then the polymerization reaction mixture is heated to the presence of the phase separation agent at a temperature of 245 to 290 ° C. It is possible to continue the polymerization reaction in a state where the produced polymer rich phase and the produced polymer dilute phase are separated in the lower polymerization reaction system.
  • the dihaloaromatic compound and a sulfur source are subjected to a polymerization reaction in a polar organic solvent, so that the conversion rate of the dihaloaromatic compound is 50% or more, preferably 50 to 99.
  • the polymerization reaction can be carried out by at least two polymerization steps including a subsequent polymerization step in which the polymerization reaction is continued.
  • the dihaloaromatic compound and the sulfur source are present in a polar organic solvent in a state where 0.02 to 2 mol of water per 1 mol of the sulfur source is present (usually polar).
  • the conversion of the dihaloaromatic compound is 80 to 99 by carrying out the polymerization reaction at a temperature of 170 to 270 ° C.
  • the polymerization reaction is carried out by at least two polymerization steps including a subsequent polymerization step in which the polymerization reaction is continued in a state separated into a polymer-rich phase and a polymer-diluted phase in the polymerization reaction system.
  • Door can be.
  • the conversion rate of the dihaloaromatic compound is a value calculated by the following equation.
  • conversion rate [[the amount of the dihaloaromatic compound charged (mol) ⁇ the amount of the dihaloaromatic compound remaining (mol)] ] / [Amount of dihaloaromatic compound charged (mole) ⁇ Excess amount of dihaloaromatic compound (mole)]] ⁇ 100 To calculate the conversion.
  • conversion rate [[dihaloaromatic compound feed amount (mol) ⁇ remaining dihaloaromatic compound residual amount (mol)] / [dihaloaromatic compound feed amount (mol)] )]] ⁇ 100 To calculate the conversion.
  • the amount of coexisting water in the reaction system in the pre-stage polymerization step is usually 0.02 to 2 mol, preferably 0.05 to 1.9 mol, more preferably 0.5 to 1 mol per mol of the sulfur source, as described above.
  • the range is 1.8 mol.
  • pre-stage polymerization step it is desirable to produce a polymer (sometimes referred to as “prepolymer”) having a melt viscosity of usually 0.1 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1216 sec ⁇ 1 .
  • the polymerization temperature in the subsequent polymerization step is in the range of 245 to 290 ° C.
  • the polymerization temperature is less than 245 ° C., it is difficult to obtain a high degree of polymerization, and when it exceeds 290 ° C., the PAS and the polar organic solvent are decomposed. There is a fear.
  • a temperature range of 250 to 270 ° C. is preferable because a PAS having a high degree of polymerization can be easily obtained.
  • water, an organic carboxylic acid metal salt, or a combination thereof is preferably used as the phase separation agent, water is particularly preferably used, and 4 to 20 per 1 kg of the polar organic solvent.
  • the amount of water in the polymerization reaction system by adding water as a phase separation agent so that a mole, preferably 4.1 to 15 moles, more preferably 4.2 to 10 moles of water is present. is preferably adjusted.
  • the degree of polymerization of the produced PAS may decrease.
  • Post-treatment process (cooling process, separation process, washing process, recovery process, etc.):
  • the post-treatment step after the polymerization reaction can be performed by a conventional method.
  • the produced slurry containing the PAS polymer may be kept in a high temperature state or may be cooled [cooling step (granulation step).
  • a washing step of repeating washing and filtration with an organic solvent such as alcohols (for example, methanol) and hot water and filtration, followed by drying, a collecting step of collecting PAS, and the like can be performed.
  • the produced PAS can be treated with a salt such as acid or ammonium chloride.
  • the PAS production apparatus of the present invention is a PAS production apparatus comprising a reaction vessel equipped with one or a plurality of baffles, each of the baffles protruding from the inner wall of the reaction vessel.
  • the PAS manufacturing apparatus is characterized in that it is supported by one or more baffle supports, and at least one of the baffle supports has one or more openings penetrating the baffle support.
  • description will be given with reference to the drawings.
  • drawing is a schematic drawing for helping to understand aspects, such as a reaction tank provided with the baffle and baffle support with which the manufacturing apparatus of PAS of this invention is equipped.
  • the PAS manufacturing apparatus of the present invention includes a reaction tank 1 illustrated in the schematic cross-sectional front view of FIG.
  • the reaction vessel 1 is used, and at least the charging step and the polymerization step are performed in the reaction vessel 1 (therefore, the reaction vessel 1 is Sometimes referred to as “polymerization tank” or “polymerization can”), and if desired, a dehydration step or a cooling step (granulation step) is performed.
  • the reaction vessel 1 provided in the PAS production apparatus of the present invention the same shape, structure, size, etc. as in the reaction vessel conventionally provided and used in the PAS production apparatus can be applied. It can be formed from similar materials. That is, the reaction tank 1 usually has a structure including a cylindrical body portion 11, a lid portion 12 and a bottom portion 13. In addition, the reaction vessel 1 is usually inserted with a stirring blade 41 and a stirring shaft 42, and one or a plurality of baffles (baffle plates) 2 are provided on the inner peripheral wall.
  • the agitation shaft 42 is connected to an electric motor (not shown) disposed above the reaction tank 1 and is driven to rotate.
  • the lid 12 of the reaction tank 1 is a generally bowl-shaped member that is connected to and attached to the upper part of the cylindrical body 11 and is provided with a hole through which a stirring shaft 42 of a stirring blade 41 described later is inserted. ing.
  • raw material monomers and other materials hereinafter, the raw material monomers and other materials may be collectively referred to as “various raw materials” in the reaction tank 1.
  • supply pipes 121 sometimes referred to as “supply nozzles” are provided.
  • the lid 12 has an openable lid opening (“manhole”, “manway” or “hand” depending on the size, etc.) so that the inside of the reaction tank 1 can be inspected and cleaned.
  • the lid opening is usually larger in diameter than the supply pipe 121.
  • the lid portion 12 there is a required number of baffle fixing portions for hanging and fixing a baffle (baffle plate) as required.
  • the lid portion 12 is provided with a required number.
  • the baffle fixing part to be used is usually unnecessary.
  • the bottom 13 of the reaction tank 1 is a generally bowl-shaped member that is connected to and attached to the lower part of the cylindrical body 11.
  • the bottom 13 is provided with a discharge pipe 131 (also referred to as a “discharge nozzle”) for discharging the PAS polymer that is normally generated by the polymerization reaction, and various raw materials and the like are further introduced into the reaction tank 1 as desired.
  • a discharge pipe 131 also referred to as a “discharge nozzle”
  • the cylindrical body 11 of the reaction tank 1 constitutes a main part of the reaction tank 1, and a charging process, a polymerization process, and a dehydration process are performed therein if desired.
  • a stirring shaft 42, a stirring blade 41, and one or a plurality of baffles 2 are arranged inside the cylindrical body 11.
  • the baffle 2 may be directly attached to the cylindrical body 11.
  • each of the baffles 2 is supported by one or a plurality of baffle supports 3 protruding from the inner wall of the reaction vessel 1, specifically, the inner wall of the cylindrical body 11. Therefore, the baffle support 3 is attached to the inner wall of the cylindrical body 11.
  • drum 11, the cover part 12, and the bottom part 13 is further provided with other required members connected.
  • the electric motor that rotates the agitation shaft 42 described above is an example.
  • a heat exchange jacket for adjusting the temperature of the reaction vessel 1, particularly the cylindrical body 11, has an outer peripheral surface of the reaction vessel 1.
  • various pipes may be provided for the purpose of transferring raw materials and PAS polymers, circulating heat medium and / or refrigerant, and the like.
  • a material excellent in strength and chemical resistance in a high temperature environment is required because the polymerization reaction of PAS is performed in a high temperature, high pressure and high alkali environment.
  • Specific examples include corrosion resistant metals such as titanium (which may be a titanium alloy; the same shall apply hereinafter), zirconium (which may be a zirconium alloy; the same shall apply hereinafter), special austenitic steel [Carpenter (registered trademark), etc.].
  • These laminates and laminates provided with an inner surface of the reaction tank 1 with a corrosion-resistant metal such as titanium and zirconium, for example, titanium-coated steel materials and clad steels are used.
  • the thickness and size of the corrosion-resistant metal plate (including clad steel) are appropriately determined as necessary. The same applies to the material forming the supply pipe 121 and the like installed in the reaction tank 1.
  • the PAS production apparatus of the present invention includes a reaction tank 1 including one or a plurality of baffles 2.
  • the baffle 2 has a uniform composition of raw materials (charged raw materials, etc.), and a uniform composition ratio between the polymer layer and the liquid phase, particularly in a PAS polymerization method using a phase separation agent. In order to ensure, it is used in order to make the liquid flow produced by the stirring by the stirring blade 41 described later cause an action of vertical stirring.
  • the optimum shape, number and arrangement of the baffles 2 provided in the reaction tank 1 can be selected in consideration of the polymerization conditions of PAS, the shape of the reaction tank 1, the shape of the stirring blade 41, the stirring conditions, and the like. it can.
  • a reaction vessel having a plurality of baffles 2 is preferably selected from the viewpoint of stirring efficiency, controllability of the polymerization reaction under various conditions, and the like.
  • a reaction vessel 1 having a baffle 2 is more preferably selected.
  • the predetermined number of baffles is formed by using 20 or more, further 30 or more, and if necessary, about 40 capillaries. It may be.
  • At least one of the baffles may have a cooling pipe or a heating pipe inside as a well-known structure.
  • FIG. 2 In the schematic cross-sectional plan view of FIG. 2, a plurality of baffles 2 (four in FIG. 2 are shown.
  • the arc-shaped arrows in FIG. 2 indicate the assumed rotation direction of stirring.
  • the baffle 2 is disposed at a position where it does not interfere with the stirring blade 41 and the stirring shaft 42.
  • the shape of the baffle 2 is not particularly limited, and is (flat) plate-like, rod-like, tubular, multi-tubular (as a single baffle by collecting and arranging a large number of thin tubes branched from a large-diameter tube.
  • Hairpin coil meaning one that functions as a single baffle by folding and arranging communicating narrow tubes having a substantially circular cross section.
  • “Hairpin baffle” or “ Hairpin coil baffle “), D-type and the like can be used.
  • the deposit accumulation suppressing effect, the flowability of the contents in the reaction tank, the strength, the ease of production (in particular, the cooling pipe inside) From the viewpoint of a heating tube or the like, it is often preferable to have a round bar shape (tubular or at least part of which may be hollow).
  • the cross-sectional shape orthogonal to the longitudinal direction of each baffle 2 is preferably substantially circular or elliptical, and more preferably substantially circular.
  • the radial length of the reaction tank 1 having a cross section perpendicular to the longitudinal direction of each baffle 2 is preferably 0.4 to 15% with respect to the diameter of the reaction tank 1, and preferably 0.5 to 12%. It is more preferable that In a reaction vessel having a plurality of baffles 2, all the baffles 2 may have the same shape, or at least one of them may have a different shape, and the cylindrical body portion 11 of the reaction vessel 1 may have a different shape. You may arrange
  • each of the baffles 2 provided in the reaction tank 1 is not particularly limited.
  • at least one of the baffles 2 from the viewpoints of the effect of suppressing deposit accumulation and the discharge of contents in the reaction tank.
  • Preferably has an upwardly convex shape, specifically, spherical, cone, rocket-pointed, etc., with an apex angle of 45 to 75 degrees, further 50 to 70 degrees at the upper end. More preferably, it has a pointed head.
  • a flat shape may be sufficient normally.
  • the baffle 2 provided in the reaction tank 1 it is preferable that at least one of the baffles 2 is provided with a cooling pipe or a heating pipe inside as known per se.
  • a corrosion-resistant metal such as titanium or zirconium is preferably used. Therefore, for example, the baffle 2 can be of a laminated structure in which the outer surface side is formed of a titanium alloy and the inner side is formed of carbon steel or stainless steel.
  • the length of the baffle 2 is not particularly limited, and from the viewpoint of stirring efficiency, controllability of the polymerization reaction under various conditions, etc., compatibility with the baffle support 3, and from the viewpoint of the effect of suppressing deposit accumulation, etc.
  • the upper end of each of the baffles 2 is assumed to be a stationary liquid surface, that is, before stirring the reaction solution in the reaction tank 1, particularly from the viewpoint of the effect of suppressing deposit accumulation. It is preferable that the liquid level is lower than the liquid level. Accordingly, the upper end of each of the baffles 2 is located sufficiently below the liquid level when the liquid level of the reaction liquid in the reaction tank 1 is changed by stirring, that is, the liquid level at the time of vortex generation. It is preferable.
  • the reaction tank 1 provided in the PAS production apparatus of the present invention includes the baffle 2, the rise in the liquid level at the time of vortex generation during stirring is small compared with the case where the baffle 2 is not provided. There is almost no possibility that the upper end of each of the two is exposed above the liquid level even during stirring.
  • each of the baffles 2 is positioned below the stationary liquid surface, so that the baffle can be used before starting stirring, during stirring, and after finishing stirring.
  • the upper end of each of 2 is located below the liquid level.
  • each upper end of the baffle 2 is positioned below the stationary liquid surface by a distance corresponding to 5% or more of the length along the longitudinal direction of the baffle 2.
  • each baffle 2 is preferably located at a distance equivalent to 7% or more and below the stationary liquid surface.
  • the upper end of each baffle 2 is preferably located at least 5 cm below the stationary liquid surface, more preferably at least 10 cm below.
  • each of the baffles 2 provided in the reaction tank 1 is disposed so as not to interfere with the supply pipe 121 and the like provided on the lid portion 12 and the bottom portion 13 of the reaction tank 1 and the stirring blade 41. Therefore, the length of each baffle 2 is usually in the range of 50 to 80%, and in many cases in the range of 55 to 75% with respect to the height of the reaction tank 1. When the length of each baffle 2 is too small, the stirring effect by the baffle may not be sufficient. When the length of each baffle 2 is too large, the upper end portion thereof is positioned below the stationary liquid level. Can be difficult.
  • the height of the reaction tank 1 refers to the distance between the inner walls of the stirring tank 1 (specifically, usually the lid part 12 and the bottom part 13) on the extension line in the longitudinal direction of the baffle 2, but for convenience.
  • the height of the cylindrical body 11 may be the height of the reaction tank 1.
  • the PAS manufacturing apparatus of the present invention includes a reaction tank 1 including one or a plurality of baffles 2, and each of the baffles 2 protrudes from an inner wall of a cylindrical body 11 of the reaction tank 1. 1 or a plurality of baffle supports 3 separated from the inner wall of the cylindrical body 11 of the reaction tank 1 by a predetermined distance, usually 4 mm or more, in many cases 1 cm or more, and depending on the size of the reaction tank, 3 cm or more. To be supported. That is, in the PAS manufacturing apparatus of the present invention, the baffle 2 is fixed directly to the inner wall of the cylindrical body portion 11 of the reaction tank 1 or is suspended and fixed from the baffle fixing portion provided on the lid portion 12. is not.
  • each of the baffles 2 is supported by one or a plurality of baffle supports 3 projectingly fixed to the inner wall of the cylindrical body 11 of the reaction tank 1 (in FIG. 1).
  • Each of the baffles 2 is supported by two baffle supports 3 that are vertically separated along the longitudinal direction of the baffle 2). At least one of the baffle supports 3 does not give excessive resistance to stirring of the contents in the reaction tank and can maintain the strength to support the baffle against the resistance force by stirring.
  • the cross-sectional area in the horizontal plane is preferably larger than its cross-sectional area in the vertical plane relative to the direction of the horizontal flow of the contents of the reactor, and the cross-sectional area in the horizontal plane is relative to its cross-sectional area in the vertical plane It is more preferable that it is 1.1 times or more.
  • the cross-sectional area of the baffle support in the horizontal plane refers to the area of the horizontal plane of projection when the baffle support is installed in the reaction vessel, and the cross-sectional area of the baffle support in the vertical plane.
  • the term “plane” refers to a plane perpendicular to the direction in which gravity acts, and the term “vertical plane” refers to a plane parallel to the direction in which gravity acts.
  • the baffle support 3 is arranged on the inner wall of the reaction vessel 1 so as to be parallel to the horizontal plane so that the horizontal length is 10 to 25 cm and the protruding length from the inner wall is about 15 to 30 cm. Is desirable.
  • the number of baffle supports 3 that support each of the baffles 2 is normally 1-6, and in many cases 2-4.
  • the method of supporting the baffle 2 by the baffle support 3 is not particularly limited, and the baffle 2 that has been conventionally employed is considered in consideration of the support function of the baffle 2, the function of preventing deposit accumulation, heat transfer performance, release of thermal stress, and the like.
  • the following supporting method can be employed, and for example, fixing by bolts and nuts as shown in FIGS. 3A to 3E and FIG. 4 can be used.
  • the baffle 2 can be easily adjusted or replaced as desired.
  • the baffle support 3 is disposed so as to be positioned below the normal liquid level and supports each of the baffles 2.
  • the baffle support 3 is downstream of the horizontal flow of the contents in the reaction vessel 1 with respect to the geometric center of gravity of the horizontal section of the baffle 2. It is preferable to arrange on the side.
  • the reaction tank 1 is used from the viewpoint of avoiding corrosion due to battery action between different metals and generation of thermal stress due to a difference in thermal expansion coefficient, and ease of processing such as welding. It is preferable to use the same material as the material forming the inner wall surface and the material forming the outer surface side of the baffle 2, and specifically, a corrosion-resistant metal such as titanium, zirconium, special austenitic steel is preferably used.
  • the baffle support 3 may have a conventionally employed shape. However, the accumulation of deposits, the workability, the reliability of the support of the baffle 2, and the cylindrical body 11 of the reaction tank 1 may be adopted.
  • the shape of a steel plate such as a groove shape, a plate shape or a rod shape is preferable. Further, it is more preferable to form from angle iron, H-shape steel, I-shape steel, square steel, or round steel.
  • At least one of the baffle supports 3 can be attached to and detached from the inner wall of the reaction tank 1, specifically, the inner wall of the cylindrical body 11 of the reaction tank 1 and can be exchanged.
  • the PAS manufacturing apparatus of the present invention is characterized in that at least one of the baffle supports 3 has one or a plurality of through-opening portions 31, thereby reducing the mass and heat capacity of the baffle support 3. It is assumed that the flow of the reaction liquid generated by stirring is complicatedly disturbed, and as a result, the accumulation of deposits on the baffle support 3 is suppressed, and the deposits of deposits on the baffle 2 are suppressed. Is done.
  • the baffle support 3 having the through-opening 31 includes all of the baffle supports 3 that support all the baffles 2, all of the baffle supports 3 that support at least one baffle 2, and all from the viewpoint of the effect of suppressing deposits.
  • the baffle support 3 that supports at least one baffle 2 or the baffle support 3 that supports at least one baffle 2 of the baffle support 3 that supports at least one baffle 2 may be used.
  • the baffle support 3 having the opening 31 passing therethrough is along the longitudinal direction of the baffle 2 of all the baffle supports 3 that support all the baffles 2 or the baffle support 3 that supports all the baffles 2.
  • At least one of the baffle supports 3 having an opening 31 passing therethrough has a cross-sectional area in a horizontal plane larger than that in a vertical plane. It is preferable from the viewpoint of not giving excessive resistance to the stirring of the contents, and the cross-sectional area in the horizontal plane may be 1.1 times or more, further 1.2 times or more than the cross-sectional area in the vertical plane.
  • a baffle support 3 having a U-shaped cross section formed of channel steel is provided on the inner wall of the reaction vessel 1 with a length of 10-25 cm in the horizontal direction and a length of 15-30 cm protruding from the inner wall as described above. It is desirable to arrange so as to be parallel to the horizontal plane.
  • the cross-sectional area of the baffle support 3 in the horizontal plane is usually within 5 times the cross-sectional area in the vertical plane.
  • the through-opening 31 provided in the baffle support 3 having the through-opening 31 is an opening through the baffle support 3 in the vertical direction.
  • vertical direction means a direction in which gravity works
  • horizontal direction means a direction perpendicular to the direction in which gravity works.
  • the through-opening 31 may be a single opening or a plurality of openings, and the shapes and sizes of the openings may be the same or different.
  • the shape of the opening 31 is not particularly limited, and may be a substantially square shape, a substantially hexagonal shape, a substantially circular shape, a substantially elliptical shape, or the like.
  • the total area of the opening ends of the openings 31 (one or more) in the baffle support 3 having the openings 31 is the baffle from the viewpoint of the effect of suppressing the deposition of deposits and the strength of the baffle support 3.
  • the area surrounded by the contour of the surface including the opening end the area including the area of the opening 31 of the surface including the opening end of the opening 31 that penetrates, ie, the opening 31.
  • the ratio of the opening end area and the non-opening area is preferably 5 to 95%, more preferably 10 to 92%, and more preferably 15 to 90%. More preferably, the ratio is From the same viewpoint, it is preferable that at least one of the baffle supports 3 has a plurality of openings 31 that are divided with a width of 1 to 50 mm, preferably 2 to 40 mm. If the distance is less than 1 mm, the strength of the baffle support 3 is insufficient, and the baffle 2 may not be sufficiently supported, particularly when stirring is performed in the reaction vessel. When the distance exceeds 50 mm, there is a possibility that the effect of suppressing deposition of deposits is not observed. From the same viewpoint, the region (non-opening portion) surrounding the opening 31 in the baffle support 3 is also preferably in the range of 1 to 50 mm in width, and more preferably in the range of 2 to 40 mm.
  • the baffle support 3 shown in FIG. 3A has two substantially square openings [specifically, openings that penetrate the baffle support 3 in the vertical direction.
  • the baffle support 3 shown in FIG. 3B is divided as an opening corresponding to the opening 312 shown in FIG. 3A with a relatively narrow interval, that is, an interval formed by the bridge 32.
  • the openings 312a and 312b are formed.
  • the width of the bridge 32 (corresponding to the interval between the openings) is preferably in the range of 1 to 50 mm, and more preferably in the range of 2 to 40 mm.
  • the baffle support 3 shown in FIG. 3C has a substantially circular relatively large-diameter opening 313 and a large number of substantially circular small-diameter openings 314 (explicitly nine openings). Only the figure shows the perforated plate.
  • the baffle support 3 which is a perforated plate can further have a plurality of openings 314 having a small diameter and a number of substantially circular shapes or other shapes. At that time, it is preferable that a large number of substantially circular or other openings 314 are divided at intervals of 1 to 50 mm.
  • the baffle support 3 has a ladder shape illustrated in FIG. 3D or a lattice shape illustrated in FIG. 3E (the ladder shape and the lattice shape may be collectively referred to as “grating structure”). It can have a large number of openings 31. That is, at least one of the baffle supports 3 can have a ladder-like or lattice-like opening 31. Further, in the baffle support 3 having the opening 31 of the grating structure, the width of the bridge or crosspiece corresponding to the interval separating the openings 31 is preferably in the range of 1 to 50 mm (the narrow-width bridge). Alternatively, it may be a perforated plate having grid-like openings 31 divided by bars.
  • the formation method of the opening 31 in each of the baffle supports 3 is not particularly limited, and can be based on a method usually employed for processing a corrosion-resistant metal such as titanium.
  • a corrosion-resistant metal such as titanium.
  • mechanical cutting such as shear cutting, plasma cutting, Thermal cutting such as electric discharge machining or laser cutting, water jet cutting, or the like can be used. From the viewpoint of application range and dimensional accuracy, an optimum method may be selected in consideration of economy.
  • the method for projecting and fixing the baffle support 3 to the inner wall of the cylindrical body 11 of the reaction tank 1 is not particularly limited, and a method for joining members usually formed of a corrosion-resistant metal such as titanium, for example, an inert gas arc Methods such as welding, electron beam welding, resistance welding, explosion welding, brazing, diffusion bonding, mechanical bonding, etc. can be adopted, and as shown in FIGS. 3 (a) to 3 (e), the baffle support 3 It is preferable to provide the attachment part 33 in each of these.
  • the stirring blade 41 that can be preferably combined with the baffle is not particularly limited, and is a propeller blade, paddle blade, pitched paddle blade, turbine blade, pitched turbine blade, anchor blade, screw.
  • a blade, a helical ribbon blade, or the like can be appropriately selected and used, and the number of blades constituting the stirring blade 41 can be appropriately selected.
  • four pitched paddle blades are preferably used.
  • the stirring blade 41 is rotated at a required rotational speed and stirring power by an electric motor (not shown) installed outside the reaction tank through the stirring shaft 41 and the stirring shaft 42, and according to a standard method, the rotational speed and stirring are performed as necessary. The power may be changed.
  • a granular PAS having excellent handleability can be produced efficiently. That is, in the PAS manufacturing apparatus of the present invention including a reaction tank having a baffle supported by a baffle support protruding from an inner wall of the reaction tank, at least one of the baffle supports is preferably the vertical direction. By having one or a plurality of openings penetrating into the baffle, accumulation of deposits on the baffle or baffle support is suppressed, so that the deposits may be mixed into the PAS polymer generated by peeling. And a high quality PAS polymer product is obtained.
  • a high molecular weight PAS polymer having a melt viscosity of 50 to 3000 Pa ⁇ s, preferably 100 to 2000 Pa ⁇ s at a temperature of 310 ° C. and a shear rate of 1216 sec ⁇ 1 can be obtained.
  • the PAS obtained by the production method of the PAS of the present invention is used as it is or after being oxidatively cross-linked, alone or optionally with various inorganic fillers, fibrous fillers, various synthetic resins, and various injection molded products. And can be formed into extruded products such as sheets, films, fibers and pipes.
  • the PAS obtained by the production method of the present invention has a good color tone.
  • the PAS compound obtained by the production method of the present invention is suitable for the field of electronic devices where the amount of volatile matter generated is small and volatile matter is expected to be suppressed.
  • the method for measuring the melt viscosity of the PAS polymer is as follows.
  • melt viscosity The melt viscosity of the PAS polymer was measured using a Capillograph 1-C manufactured by Toyo Seiki Co., Ltd. using about 20 g of the dry polymer. At this time, the capillary used a flat die of 1 mm ⁇ ⁇ 10 mmL, and the set temperature was 310 ° C. The polymer sample was introduced into the apparatus and held for 5 minutes, and then the melt viscosity at a shear rate of 1216 sec ⁇ 1 was measured (unit: Pa ⁇ s).
  • a cylindrical body 11 shown in FIG. 1 includes a stirring blade (a 45-degree pitched paddle four blades with two upper and lower stages) 41, a stirring shaft 42, a baffle 2, and a baffle support 3.
  • PAS equipped with a reaction tank 1 (diameter 130 cm, height 150 cm, volume about 2 m 3 ) equipped with a heat exchange jacket surrounding the outer peripheral surface. PAS was manufactured using a manufacturing apparatus.
  • the cross section perpendicular to the length direction is a circle having a diameter of 14.5 cm (11% with respect to the diameter of the reaction tank 1) and a length of 100 cm (about 67% with respect to the height of the reaction tank). 4) of the baffle 2 which is a titanium rod-like body having a rocket-shaped pointed head with an apex angle of 60 degrees at the upper end is attached to the inner wall of the cylindrical body 11 of the reaction tank 1. It was supposed to be provided at regular intervals (at symmetrical positions) along the circumference.
  • Each of the baffles 2 has an upper end portion of the baffle 2 positioned approximately 12 cm below the static liquid surface (the upper end portion of the baffle 2 is a distance corresponding to 12% of the length along the longitudinal direction of the baffle 2, and
  • two baffle supports 3 downstream from the midpoint between the upstream end of the baffle 2 and the downstream end of the baffle 2 with respect to the horizontal flow of the contents in the reaction vessel 1) And is fixed so as to be 5 cm away from the inner wall of the cylindrical body 11 of the reaction tank 1.
  • a cooling pipe was engraved inside the baffle 2 and connected to a refrigerant supply device outside the reaction tank 1.
  • baffle support 3 As the baffle support 3, two openings 311 and 312 penetrating the baffle support 3 in the vertical direction shown in FIG. 3A (the interval between the two openings is about 2.5 cm, and the openings 311 and 312 are arranged.
  • the total area of the baffle support 3 is about 20% of the area of the baffle support 3.
  • the width of the peripheral edge surrounding the openings 311 and 312 in the baffle support 3 was in the range of 1 to 50 mm.
  • baffle support 3 made of titanium having a height of 15 cm in the horizontal direction and a protruding length of 20 cm from the inner wall.
  • each baffle 2 is attached to the upper and lower baffle supports 3 (both located below the stationary liquid level during stirring) as shown in FIG. And fixed with bolts and nuts in the Suyo.
  • Pre-stage polymerization While stirring the stirring blade 41 provided in the reaction vessel 1 and stirring the mixture, the temperature was raised from 183 ° C. to 220 ° C. and reacted for 1 hour, and then the temperature was raised to 230 ° C. For 1.5 hours. When the reaction mixture containing the PAS prepolymer produced by the polymerization reaction was sampled and taken out from the reaction vessel 1, the conversion rate of PDCB was 95%.
  • Second-stage polymerization Next, the reaction mixture is discharged from a discharge pipe 131 provided at the bottom 13 of the reaction tank 1 and charged into another reaction tank for second-stage polymerization that is normally used. The resulting mixture was heated to 260 ° C. and reacted for 5 hours as a subsequent polymerization, which is a phase separation polymerization, to obtain a reaction mixture containing the produced PAS polymer.
  • Post-processing process After the completion of the polymerization reaction, the reaction mixture was cooled to room temperature, and then passed through a screen of 100 mesh (aperture 150 ⁇ m) to sieve the PAS polymer (granular polymer). The separated PAS polymer was washed with acetone three times, washed with water three times, then with 0.3% acetic acid, and further washed with water four times to obtain a washed polymer. The washed polymer was dried at 105 ° C. for 13 hours. The melt viscosity of the obtained granular polymer (100 mesh passed) was 1350 Pa ⁇ s.
  • the above-mentioned PAS comprising a new raw material charged into the reaction tank 1 and comprising a dehydration process, a charging process, a polymerization process (pre-stage polymerization in the reaction tank 1 and post-stage polymerization in another reaction tank) and a post-treatment process
  • the manufacturing operation was repeated 20 times. Thereafter, the presence or absence of deposits on the baffle 2 and the baffle support 3 in the reaction tank 1 was visually observed. No deposits were found on either the baffle 2 or the baffle support 3.
  • the baffle 2 which is a rod-shaped body made of titanium that does not have a rocket-shaped pointed head with an apex angle of 60 degrees (somewhat convex) at the upper end, and the baffle support 3, 3B, three openings 311, 312 a and 312 b penetrating the baffle support 3 in the vertical direction (the width of the bridge 32 between the openings 312 a and 312 b is 10 mm.
  • the openings 311, 312 a and The total area of 312b is about 18% of the area of the baffle support 3.
  • the width of the peripheral edge surrounding the openings 311, 312a and 312b in the baffle support 3 is in the range of 1 to 50 mm.
  • a rod-shaped body made of titanium having a circular cross section perpendicular to the length direction and having a diameter of 14.5cm and a length of 123cm (82% with respect to the height of the reaction tank) (a rocket at the upper end) Without any sharp pointed heads) along the inner wall of the cylindrical body 11 of the reaction tank 1 at regular intervals (symmetrical positions), and the upper end of each of the baffles 2 ' , Except that it was supported by two baffle supports 3 ′ so as to be located 11 cm above the static liquid surface, and that the baffle support 3 ′ was made of titanium but had no opening. In the same manner as in Example 1, the PAS production operation was repeated 20 times.
  • Example 1 From the results of Examples 1 and 2 and Comparative Example 1, it is an apparatus for producing polyarylene sulfide comprising a reaction vessel equipped with one or a plurality of baffles, each of the baffles protruding from the inner wall of the reaction vessel. And the at least one of the baffle supports has one or more openings, preferably penetrating vertically through the baffle support.
  • the PAS manufacturing apparatus according to the first and second embodiments in which the upper end of each of the baffles is located below the static liquid level may be repeated 20 times. It has been found that deposits on the baffle and baffle support are suppressed.
  • a polyarylene sulfide production apparatus including a reaction vessel having one or more baffles, each of the baffles being supported by one or more baffle supports protruding from the inner wall of the reaction vessel. Although supported, none of the baffle supports have one or more through openings. Specifically, the upper end of each of the baffles is not positioned below the static liquid level.
  • the PAS manufacturing apparatus of the present invention was found to have accumulated deposits on the baffle and the baffle support when the PAS manufacturing operation was repeated 20 times.
  • the present invention is a PAS manufacturing apparatus comprising a reaction vessel equipped with one or more baffles, Each of the baffles is supported by one or more baffle supports protruding from the inner wall of the reaction vessel, and At least one of the baffle supports is the apparatus for manufacturing a PAS, wherein the baffle support has one or more openings that penetrate the baffle support, preferably in a vertical direction, Suppressing the accumulation of deposits on baffles (baffle plates) placed in the reaction tank via a baffle support to improve stirring efficiency, etc., thereby improving production efficiency and reducing deposit removal costs.
  • a PAS manufacturing apparatus that contributes to improving the quality of the product PAS can be provided, so that the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 撹拌効率向上等のためにバッフルサポートを介して反応槽内に配置されるバッフル(邪魔板)等への付着物の堆積を抑制することにより、生産効率の向上や堆積物除去コストの削減及び製品ポリアリーレンスルフィド(PAS)の品質向上に寄与するPASの製造装置を提供すること。 1または複数、好ましくは複数のバッフルを具備する反応槽を備えるPASの製造装置であって、前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、前記バッフルサポートの少なくとも1つは、前記バッフルサポートを、好ましくは垂直方向に、貫通する1または複数の開口部を有する前記PASの製造装置。

Description

バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置
 本発明は、ポリアリーレンスルフィドの製造装置に関するものであり、更に詳しくは、撹拌効率向上等のために反応槽内に配置されるバッフル(「邪魔板」ということもある。)及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置の改良に関するものである。
 ポリフェニレンスルフィド(以下、「PPS」ということがある。)に代表されるポリアリーレンスルフィド(以下、「PAS」ということがある。」)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気・電子機器、自動車機器等の広範な分野において汎用されている。
 PASの代表的な製造方法としては、硫黄源と、p-ジクロロベンゼン(以下、「PDCB」ということがある。)等のジハロ芳香族化合物とを、N-メチル-2-ピロリドン(以下、「NMP」ということがある。)等の極性有機溶媒を含む混合物として、加熱下(例えば175~350℃程度の温度条件下)で重合反応させてPPS等のPASを得る方法が知られている(特許文献1及び特許文献2)。また、高分子量のPASを製造するために、重合温度及び重合反応系に存在する水分量を変更して重合反応を行う2段階重合法や、更に必要に応じて相分離剤を使用して重合を行う方法が知られている(特許文献3及び特許文献4)。
 PASの重合装置としては、撹拌装置を備える略円筒型の反応槽(「重合槽」または「重合缶」ということもある。)が使用されることが多く、重合装置内、具体的には反応槽内において、極性有機溶媒と、原料モノマー及び生成されるPASポリマーとの組成を精度よくコントロールすることが必要である。そこで、PASの重合は、撹拌翼が配置された反応槽を使用して、反応槽の上部に設けられた1または複数の供給管から原料モノマー、溶媒(極性有機溶媒や水等)、重合助剤等を供給した後、反応槽内を所定の温度と圧力に調整、必要に応じて温度と圧力を変更したり、原料モノマーや溶媒等を追加供給して、十分に撹拌しながら重合反応させることによって実施される。生成したPASポリマーは、通常反応槽の底部に設けられた排出管から取り出され、洗浄や精製等を経て、製品PASポリマーが得られる。
 ところで、略円筒型の槽内における撹拌においては、撹拌翼の回転に伴って液流が槽の壁に沿って渦巻き(voltex:ボルテックス)状に回る共回り現象が発生することが知られている。共回り現象が発生すると、周方向の回転流が支配的となり、上下方向の液流が発生しにくいため、槽内の被撹拌物の組成の均一化や均一混合が困難となる。この場合、撹拌翼とともに共回りする強制渦(固体的回転部)と、その外側の自由渦とが形成されるため、槽の中心部と槽壁部との間に圧力差が生じることにより、液表面の中央部に窪みが発生する。そこで、周方向の流れを妨げることにより、周方向の回転流を上下の循環流に変換するためにバッフル(邪魔板)を挿入することが広く行われている。バッフル(邪魔板)の挿入により、槽内においては、周方向の回転流とともに、上下の循環流が生じる結果、撹拌効率の向上(撹拌動力数の増加、せん断性能の向上等)、所望のフローパターンの形成、伝熱面積の確保を実現し、被撹拌物の組成の均一化や均一混合、更には所望の反応の均一化等が達成されるようになる。
 バッフル(邪魔板)としては、多くの場合、槽壁の近傍において槽壁に平行に槽の上限方向に延びる平板状、棒状等の部材が使用されている。バッフルの形状、大きさ(幅や径、長さ等)、液面(「界面」ということもある。)下の長さ、槽壁との隙間等の条件を変更することによって、混合効果等が異なることが知られている。なお、バッフル(邪魔板)の内部に冷媒または熱媒の通路を設けることにより、該バッフルを温度調整装置として利用することも行われている。バッフル(邪魔板)の取付方法としては、(1)槽の胴部分に溶接等により固定する、(2)槽に設けられる取り付け金具(「バッフルサポート」、「バッフル支持部」ということもある。)により固定する、(3)槽の蓋部に設けたノズル等により吊り下げ固定する等の方法が知られている(特許文献5及び特許文献6)。そして、例えば特許文献5には、(1)の場合、邪魔板の取り付けや交換のためには溶接や溶接部分の切断が必要なので、作業工数が多く、作業時間も長くなる、(2)の場合、邪魔板の交換等は容易だが、邪魔板の設置数を増やすためには、溶接等により取り付け金具を増設しなければならないので、作業工数が多くなる等の問題がある、(3)の場合、ノズルの数以上の邪魔板を設けることはできず、また、邪魔板に加わる力を蓋部が支持するので、使用条件が制約される等の問題があること等が開示されている。
 PASの製造装置においては、反応槽内で撹拌操作等に伴って、付着物の堆積が生じることがある。付着物の組成は、主に、生成物であるPASポリマーと副生物であるNaClであるが、更に、PASの低重合物(オリゴマー等を包含する。)や未反応の原料モノマーやアルカリ物質(NaOH等)も含有されることがある。バッフル、バッフルサポート、供給管等への付着物の堆積が進行すると、堆積した付着物が剥がれて落下することがあり、得られる製品PASに混入して品質の低下に繋がったり、反応槽からのPASの排出が妨げられたりするおそれがある。さらに、高温下で高濃度のアルカリ物質に接触する場合には、装置(供給管や槽壁等)の腐食が発生するおそれもある。付着物の堆積は、重合バッチ数を重ねるにしたがって顕著なものになっていくので、定期的に、重合反応を完全に停止し、過大な労力と時間を投入して反応槽の清掃(付着物の除去等)を行う必要があった。
 そこで、撹拌効率向上等のためにバッフルサポートを介して反応槽内に配置されるバッフル(邪魔板)等への付着物の堆積を抑制することによって、生産効率を向上し、堆積物除去コストを削減し、及び製品PASの品質を向上することに寄与するPASの製造装置を提供することが望まれていた。
特公昭45-3368号公報 特公平6-51793号公報 特開昭61-7332号公報 特開昭63-39926号公報 特開2011-83692号公報 特公平5-59782号公報
 本発明の課題は、撹拌効率向上等のためにバッフルサポートを介して反応槽内に配置されるバッフル(邪魔板)等への付着物の堆積を抑制することによって、生産効率を向上し、堆積物除去コストを削減し、及び製品PASの品質を向上することに寄与するPASの製造装置を提供することにある。
 本発明者らは、前記目的を達成するために鋭意研究した結果、バッフル及びバッフルサポートを備えるPASの製造装置において、バッフルサポートとして、貫通する開口部を有するものを具備することにより、課題を解決することができることを見いだし、本発明を完成した。
 すなわち、本発明によれば、(1)1または複数のバッフルを具備する反応槽を備えるPASの製造装置であって、
前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、
前記バッフルサポートの少なくとも1つは、前記バッフルサポートを貫通する1または複数の開口部を有する
ことを特徴とする前記のPASの製造装置が提供される。
 また、本発明によれば、発明の具体的な態様として、以下(2)~(13)のPASの製造装置が提供される。
(2)複数のバッフルを具備する反応槽を備える前記(1)のPASの製造装置。
(3)前記バッフルサポートの少なくとも1つは、水平面におけるその断面積が、前記反応槽の内容物の水平方向の流れの方向に対して垂直面におけるその断面積より大である前記(1)または(2)のPASの製造装置。
(4)前記バッフルサポートを貫通する開口部が垂直方向に前記バッフルサポートを貫通する開口部である前記(1)~(3)のいずれかのPASの製造装置。
(5)前記バッフルサポートを貫通する開口部の開口端の面積の合計は、該バッフルサポート上の面のうち、前記開口端を含む面の輪郭で囲まれる面積に対して5~95%の割合である前記(1)~(4)のいずれかのPASの製造装置。
(6)前記複数の間隔が1~50mmである前記(1)~(5)のいずれかのPASの製造装置。
(7)前記バッフルサポートを貫通する開口部が、梯子状または格子状である前記(1)~(6)のいずれかのPASの製造装置。
(8)バッフルサポートが、反応槽内の内容物の水平方向の流れに対して、バッフルの水平断面の幾何的重心を基準として下流側に配置される前記(1)~(7)のいずれかのPASの製造装置。
(9)前記バッフルの少なくとも1つは、上端に頂角45~75度の尖頭部を有する前記(1)~(8)のいずれかのPASの製造装置。
(10)前記バッフルの各々の長手方向に直交する断面形状は、略円形または楕円形である前記(1)~(9)のいずれかのPASの製造装置。
(11)前記バッフルの各々の長手方向に直交する断面の反応槽の径方向長さは、反応槽の径に対して0.4~15%である前記(1)~(10)のいずれかのPASの製造装置。
(12)前記バッフルの各々の長さは、反応槽の高さに対して50~80%である前記(1)~(11)のいずれかのPASの製造装置。
(13)前記バッフルの少なくとも1つは、内部に冷却管または加熱管を備える前記(1)~(12)のいずれかのPASの製造装置。
(14)前記(1)~(13)のいずれかの製造装置を使用するPASの製造方法。
 本発明によれば、1または複数のバッフルを具備する反応槽を備えるPASの製造装置であって、
前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、
前記バッフルサポートの少なくとも1つは、前記バッフルサポートを貫通する1または複数の開口部を有する
ことを特徴とする前記のPASの製造装置であることにより、
撹拌効率向上等のためにバッフルサポートを介して反応槽内に配置されるバッフル(邪魔板)等への付着物の堆積を抑制することによって、生産効率を向上し、堆積物除去コストを削減し、及び製品PASの品質を向上することに寄与するPASの製造装置を提供することができるという効果が奏される。
本発明のPAS製造装置に備えられる反応槽の1つの具体例を示す模式的な断面正面図である。 本発明のPAS製造装置に備えられる反応槽の1つの具体例を示す模式的な断面平面図である。 (a)~(e)は、本発明のPAS製造装置に備えられるバッフル及びバッフルサポートのいくつかの具体例を示す模式的な一部断面平面図である。 PAS製造装置に備えられるバッフル及びバッフルサポートの比較例を示す模式的な一部断面平面図である。
I.ポリアリーレンスルフィドの製造原料等
 本発明のPASの製造装置は、それ自体公知のPAS、すなわち、PASを製造する原料等として、硫黄源とジハロ芳香族化合物との、極性有機溶媒を含む混合物を、加熱下で重合反応させて得られるPASの製造装置である。
1.硫黄源:
 本発明のPASの製造装置において、PASを製造するために使用される硫黄源としては、PASの製造に用いられる公知の化合物が挙げられる。例えば、アルカリ金属硫化物、アルカリ金属水硫化物及び硫化水素等が挙げられる。
 アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物等を挙げることができる。これらの中でも、工業的に安価に入手できる点で、水硫化ナトリウム及び水硫化リチウムが好ましい。
 アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物等を挙げることができる。アルカリ金属硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手できる点で、硫化ナトリウムが好ましい。これらのアルカリ金属硫化物は、水和物として市販されているものも使用することができる。
 アルカリ金属硫化物の中には、少量のアルカリ金属水硫化物が含有されていてもよい。アルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。これらの場合、アルカリ金属硫化物とアルカリ金属水硫化物とからなる硫黄源の総モル量が、必要により配置する脱水工程後の、重合工程で重合反応に供される硫黄源、すなわち「仕込み硫黄源」になる。アルカリ金属硫化物とアルカリ金属水硫化物とを混合して用いる場合には、両者が混在したものが仕込み硫黄源となる。
 硫黄源がアルカリ金属水硫化物を含有するものである場合、アルカリ金属水酸化物を併用する。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの2種以上の混合物が挙げられる。これらの中でも、工業的に安価に入手できる点で水酸化ナトリウム及び水酸化リチウムが好ましい。
2.ジハロ芳香族化合物:
 本発明のPASの製造装置において、PASを製造するために使用されるジハロ芳香族化合物としては、PASの製造に用いられる公知の化合物が挙げられる。例えば、p-ジハロベンゼン等のジハロベンゼン類;o-ジハロトルエン、p-ジハロトルエン、o-ジハロキシレン、1-エチル-2,5-ジハロベンゼン等のアルキル置換ジハロベンゼン類;1-フェニル-2,5-ジハロベンゼン等のアリール置換ジハロベンゼン類;4,4’-ジハロビフェニル等のジハロビフェニル類;1,4-ジハロナフタレン,1,5-ジハロナフタレン,2,6-ジハロナフタレン等のジハロナフタレン類等が挙げられる。好ましくは、ハロゲン原子が塩素原子のp-ジハロベンゼンであるp-ジクロロベンゼン(PDCB)である。
 ジハロ芳香族化合物の使用量は、硫黄源1モルに対し、通常0.9~1.5モルであり、好ましくは0.95~1.2モルである。後述する分岐剤を使用する場合は、硫黄源1モルに対し、ジハロゲン化芳香族化合物と分岐剤との合計モル数が、通常0.9~1.5モルであり、好ましくは0.95~1.2モルである。
3.極性有機溶媒:
 本発明のPASの製造装置において、PASを製造するために重合反応の溶媒として使用される極性有機溶媒としては、非プロトン性極性有機溶媒であるアミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物等が好ましく挙げられる。
 具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(NMP)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物またはN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。また、有機硫黄化合物としては、ジメチルスルホキシド、ジフェニルスルホン等が、環式有機リン化合物としては、1-メチル-1-オキソホスホラン等が、それぞれ挙げられる。
 極性有機溶媒は、それぞれ1種を単独で、または2種以上を混合して、更には、本発明の目的に支障のない他の溶媒成分と混合して、使用することができる。前記各種の非プロトン性極性有機溶媒の中で、好ましいのはN-アルキルカプロラクタム化合物及びN-アルキルピロリドン化合物であり、特に好ましいのはN-メチル-2-ピロリドン(NMP)である。極性有機溶媒の使用量は、前記硫黄源1モルに対し、通常0.05~10kgであり、好ましくは0.1~1kg、より好ましくは0.2~0.8kg、更に好ましくは0.25~0.6kgの範囲である。
4.分子量調節剤、分岐・架橋剤:
 本発明のPASの製造装置において、PASを製造するために、所望によっては、公知の分子量調節剤や公知の分岐・架橋剤を併用してもよい。
5.重合助剤:
 本発明のPASの製造装置において、PASを製造するに際して、必要に応じて各種重合助剤を用いることができる。
6.相分離剤:
 本発明のPASの製造装置において、PASを製造するに際して、相分離を生起し粒状PASを得るために、各種相分離剤を用いることができる。相分離剤とは、それ自体でまたは少量の水の共存下に、極性有機溶媒に溶解し、PASの極性有機溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤自体は、PASの溶媒ではない化合物である。
 相分離剤としては、相分離剤として機能することが知られている公知の化合物を用いることができる。相分離剤には、前記の重合助剤として使用される化合物も含まれるが、ここでは、相分離剤とは、相分離状態で重合反応を行う工程、すなわち相分離重合工程で相分離剤として機能し得る量比、または重合終了後その存在下で相分離を生じさせるのに十分な量比、で用いられる化合物を意味する。相分離剤の具体例としては、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウム等のアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類、及び水から群より選ばれる少なくとも1種等が好ましく挙げられる。有機カルボン酸金属塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム等のアルカリ金属カルボン酸塩が好ましい。これらの相分離剤は、それぞれ単独で、または2種以上を組み合わせて使用することができる。これらの相分離剤の中でも、コストが安価で、後処理が容易な水、または水とアルカリ金属カルボン酸塩等の有機カルボン酸金属塩との組み合わせが、特に好ましい。
 相分離剤として水を使用する場合でも、相分離重合を効率的に行う観点から、水以外の他の相分離剤を重合助剤として併用することができる。相分離重合において、水と他の相分離剤とを併用する場合、その合計量は、相分離を起こすことができる量であればよい。相分離剤は、少なくとも一部は、重合反応成分の仕込み時から共存していてもかまわないが、重合反応の途中で相分離剤を添加して、または重合反応後に相分離を形成するのに充分な量に調整することが望ましい。
 本発明のPASの製造装置において、PASの製造方法が、相分離剤の存在下で行うものである場合、用いられる相分離剤の使用量は、相分離剤の種類により異なるが、極性有機溶媒1kgに対し、通常0.05~30モル、好ましくは0.1~20モル、より好ましくは0.15~15モル、更に好ましくは0.2~12モルの範囲である。
II.ポリアリーレンスルフィドの製造方法
 本発明のPASの製造装置を適用して、PASを製造する方法としては、本発明の趣旨を損なわない限り、特に限定されず、一般には、仕込み工程、重合工程(前段重合工程及び後段重合工程からなる2段階重合工程としてもよい。)を含むPASの製造方法であり、好ましくは更に脱水工程を備える方法である。
1.脱水工程
 PASを製造するに際しては、仕込み工程に先だって、極性有機溶媒と硫黄源、所望によりアルカリ金属水酸化物を含有する混合物を加熱して、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出する脱水工程を配置することが好ましい。硫黄源とジハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって影響を受ける。そこで、一般に、重合工程前に脱水工程を配置して、重合反応系内の水分量を調節することが好ましい。
 脱水工程では、望ましくは不活性ガス雰囲気下で、極性有機溶媒、硫黄源(好ましくはアルカリ金属水硫化物を含む硫黄源)、及び全仕込み量の一部のアルカリ金属水酸化物を含む混合物を、通常300℃以下、好ましくは100~250℃の温度範囲内で、通常15分間から24時間、好ましくは30分間~10時間、加熱し、該混合物を含有する系内から水を含む留出物(通常、水と極性有機溶媒とが含まれる。)の少なくとも一部を系外に排出する。脱水工程で脱水されるべき水分とは、脱水工程で仕込んだ各原料が含有する水和水、混合物の水媒体、各原料間の反応により副生する水等である。脱水工程は、仕込み工程及び重合工程を実施する反応槽を使用してもよいし、他の装置を使用してもよいが、好ましくは反応槽内で実施する。
 脱水工程では、加熱によって、硫黄源と水とが反応して、硫化水素とアルカリ金属水酸化物とが生成し、気体の硫化水素が揮散する。したがって、脱水工程後に系内に残存する混合物中の硫黄源の量は、投入した硫黄源の量よりも減少する。脱水工程後に系内に残存する混合物中の硫黄源を「有効硫黄源」と呼ぶことがあり、有効硫黄源は、仕込み工程とその後の重合工程における「仕込み硫黄源」(以下、単に「硫黄源」ということがある。)に該当する。脱水工程後の有効硫黄源は、アルカリ金属水硫化物、アルカリ金属硫化物等を含有する混合物であり、その具体的な形態については、特に限定されない。
 脱水工程では、水和水や水媒体、副生水等の水分を必要量の範囲内になるまで脱水する。脱水工程では、有効硫黄源1モルに対して、好ましくは0~2モル、より好ましくは0.5~1.8モルになるまで脱水することが望ましい。
2.仕込み工程
 本発明のPASの製造装置を適用して、PASを製造する方法は、所望により脱水工程を実施した後、以下の仕込み工程を経て実施する。仕込み工程は、極性有機溶媒、前記の硫黄源及びジハロ芳香族化合物、並びに水を含有する仕込み混合物を調製する工程であり、前記の混合物の成分に、更に必要に応じてアルカリ金属水酸化物を添加して、これらの所定組成の混合物、すなわち仕込み混合物を調製する。
 反応槽への仕込みは、一般に、約20℃から約300℃、好ましくは約20℃から約200℃の温度範囲内で行われる。
 仕込み混合物中のジハロ芳香族化合物の含有量は、硫黄源1モルに対し、通常0.9~1.5モル、好ましくは0.92~1.2モル、より好ましくは0.95~1.1モルの比率(以下、「仕込みモル比」ということがある。)である。硫黄源に対するジハロ芳香族化合物の仕込みモル比が大きすぎると、高分子量のPASを生成させることが困難になる。他方、硫黄源に対するジハロ芳香族化合物の仕込みモル比が小さすぎると、分解反応が生じやすくなり、安定的な重合反応の実施が困難となる。
 仕込み工程において、硫黄源1モル当り0.02~2モルの水を含有する仕込み混合物を調製することが好ましく、より好ましくは0.05~1.9モル、更に好ましくは0.5~1.8モルの水を含有するものとなるように、必要に応じて水を添加する。
 さらに、仕込み工程において、極性有機溶媒の量は、硫黄源1モル当り、通常0.05~10kg、好ましくは0.1~1kg、より好ましくは0.2~0.8kgの範囲とすることが望ましい。
3.重合工程
 本発明のPASの製造装置を適用して、PASを製造する方法は、仕込み工程に続いて重合工程を行う。本発明のPASの製造装置は、先に説明した脱水工程や、重合工程後に行う冷却工程(造粒工程等)等にも適用することができるが、仕込工程に続く重合工程に適用することが好ましい。重合工程では、仕込み工程により調製した仕込み混合物を、通常170~290℃、好ましくは180~280℃、より好ましくは190~275℃の温度に加熱して、重合反応を開始させ、重合を進行させる。重合反応時間は、一般に10分間~50時間の範囲であり、望ましくは20分間~30時間である。
 本発明のPASの製造装置を適用して行うPASの重合工程としては、PASの製造方法において知られている重合工程であれば特に限定されない。例えば、1段階重合、2段階重合(前段重合工程及び後段重合工程からなる。)、2段階重合における前段重合工程または後段重合工程のいずれかの重合工程に、本発明のPASの製造装置を適用することができる。すなわち、本発明のPASの製造装置に備えられる特有の構成を有する反応槽内において、(1)1段階重合を行う、(2)2段階重合の前段重合工程及び後段重合工程を行う、または、(3)2段階重合の前段重合工程または後段重合工程のいずれかを行う、ことができる。バッフルサポートを介して反応槽内に配置されるバッフル等への付着物の堆積を抑制する効果が大きい観点から、本発明のPASの製造装置に備えられる特有の構成を有する反応槽内において、1段階重合を行うか、または、2段階重合における前段重合工程を行うことが好ましい。なお、後者の場合、2段階重合の後段重合工程は、前記の特有の構成を有しない反応槽を使用してもよいが、該特有の構成を有する反応槽を使用してもよい。後者の場合、重合工程から冷却工程(造粒工程)に移行するときに、バッフル等への付着物の堆積を抑制する効果が奏されることがある。
 本発明のPASの製造装置を適用して行うPASの重合工程としては、必須ではないが、相分離剤の存在下で行う重合工程にも適用することができる。具体的には、重合工程において、極性有機溶媒中で、前記のジハロ芳香族化合物と、硫黄源とを、相分離剤の存在下で、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とに相分離した状態で重合反応を行う重合工程にも適用することができる。なお、相分離剤としては、先に述べた水や、相分離剤として機能することが知られている化合物等が好ましく用いられる。相分離剤として水を用いる場合は、重合反応系内の水量を、極性有機溶媒1kg当り0.05~30モル、好ましくは0.1~20モル、より好ましくは0.15~15モル、更に好ましくは0.2~12モルの範囲内に調整する。
 先に説明したように、重合反応は、前段重合工程と後段重合工程とからなる2段階重合で行うこともできる。2段階重合は、具体的には、仕込み混合物を170~270℃の温度に加熱して重合反応を開始させ、ジハロ芳香族化合物の転化率が50%以上、好ましくは50~99.5%、より好ましくは80~99.3%のプレポリマーを生成させる前段重合工程、及び、温度245~290℃、より好ましくは温度255~285℃に加熱して、通常は極性有機溶媒1kg当り4~20モルの水が存在する状態で、重合反応を継続する後段重合工程を備えることができる。
 また、重合工程において、極性有機溶媒中で、ジハロ芳香族化合物と、硫黄源とを、170~270℃の温度で重合反応させ、ジハロ芳香族化合物の転化率が50%以上となった時点で、重合反応混合物中に、相分離剤を添加して、重合反応系内に相分離剤を存在させ、次いで、重合反応混合物を昇温し、245~290℃の温度で、相分離剤の存在下の重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とに相分離した状態で重合反応を継続させることが、可能である。
 さらには、重合工程において、極性有機溶媒中で、前記のジハロ芳香族化合物と、硫黄源とを重合反応させて、前記のジハロ芳香族化合物の転化率が50%以上、好ましくは50~99.5%、より好ましくは80~99.3%のポリマーを生成させる前段重合工程;並びに、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とに相分離した状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことができる。
 より具体的には、重合工程において、極性有機溶媒中で、前記のジハロ芳香族化合物と、硫黄源とを、硫黄源1モル当り0.02~2モルの水が存在する状態(通常、極性有機溶媒1kg当り0.1~5.5モルの水が存在する状態に相当する。)で、170~270℃の温度で重合反応させて、前記のジハロ芳香族化合物の転化率が80~99.3%のポリマーを生成させる前段重合工程;並びに、極性有機溶媒1kg当り4~20モルの水が存在する状態となるように重合反応系内の水量を調整するとともに、245~290℃の温度に加熱することにより、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とに相分離した状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことができる。
 前記のジハロ芳香族化合物の転化率は、以下の式により算出した値である。前記のジハロ芳香族化合物を硫黄源よりモル比で過剰に添加した場合は、下記式
 転化率=〔〔前記のジハロ芳香族化合物仕込み量(モル)-前記のジハロ芳香族化合物残存量(モル)〕/〔前記のジハロ芳香族化合物仕込み量(モル)-前記のジハロ芳香族化合物過剰量(モル)〕〕×100
によって転化率を算出する。それ以外の場合には、下記式
 転化率=〔〔前記のジハロ芳香族化合物仕込み量(モル)-前記のジハロ芳香族化合物残存量(モル)〕/〔前記のジハロ芳香族化合物仕込み量(モル)〕〕×100
によって転化率を算出する。
 前段重合工程における反応系の共存水量は、先に説明したように、硫黄源1モル当り、通常0.02~2モル、好ましくは0.05~1.9モル、より好ましくは0.5~1.8モルの範囲である。
 前段重合工程において、温度310℃及びせん断速度1216sec-1で測定した溶融粘度が、通常0.1~30Pa・sのポリマー(「プレポリマー」ということがある。)を生成させることが望ましい。
 続いて、前段重合工程で生成したポリマー(プレポリマー)の重合度の上昇を起こさせるために、後段重合工程を行う。後段重合工程での重合温度は、245~290℃の範囲であり、重合温度が245℃未満では、高重合度のPASが得られにくく、290℃を超えると、PASや極性有機溶媒が分解するおそれがある。特に、250~270℃の温度範囲が高重合度のPASが得られやすいので好ましい。
 後段重合工程では、先に説明したように、相分離剤として、水、有機カルボン酸金属塩、またはこれらの併用が好ましく、水を使用することが特に好ましく、極性有機溶媒1kg当り、4~20モル、好ましくは、4.1~15モル、より好ましくは4.2~10モルの水が存在する状態となるように、相分離剤としての水を添加して重合反応系内の水の量を調整することが好ましい。後段重合工程において、重合反応系中の共存水分量が極性有機溶媒1kg当り、4モル未満または20モル超過になると、生成するPASの重合度が低下することがある。特に、共存水分量が4.3~9モルの範囲で後段重合を行うと、高重合度のPASが得られやすいので好ましい。
4.後処理工程(冷却工程、分離工程、洗浄工程、回収工程等):
 本発明のPASの製造装置を適用して行うPASの製造方法としては、重合反応後の後処理工程を、常法によって行うことができる。例えば、重合反応の終了後、生成したPASポリマーを含有するスラリーを高温状態のまま、または冷却〔冷却工程(造粒工程)を兼ねることもある。〕した後、所望により水等で希釈してから、篩分等によりPASポリマーをろ別する分離工程、次いで、分離したPASポリマーについて、重合溶媒と同じ極性有機溶媒やケトン類(例えば、アセトン)、アルコール類(例えば、メタノール)等の有機溶媒や高温水による洗浄とろ過を繰り返す洗浄工程、その後乾燥することにより、PASを回収する回収工程等を行うことができる。生成したPASを、酸や塩化アンモニウムのような塩で処理することもできる。この方法によれば、粒状ポリマーを生成させることもできるため、スクリーンを用いて篩分する方法により粒状ポリマーを反応液から分離することが、副生物やオリゴマー等から容易に分離することができるので好ましい。
III.ポリアリーレンスルフィドの製造装置
 本発明のPASの製造装置は、1または複数のバッフルを具備する反応槽を備えるPASの製造装置であって、前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、前記バッフルサポートの少なくとも1つは、前記バッフルサポートを貫通する1または複数の開口部を有することを特徴とする前記のPASの製造装置である。以下、図面を参照しながら説明する。なお、図面は、本発明のPASの製造装置に備えられるバッフル及びバッフルサポートを具備する反応槽等の態様を理解することに資するための略図面である。
1.反応槽
 本発明のPASの製造装置は、図1の模式的な断面正面図に例示する反応槽1を備える。本発明のPASの製造装置を適用して行うPASの製造方法としては、該反応槽1を使用し、該反応槽1内において、少なくとも仕込み工程及び重合工程を行い(したがって、反応槽1は、「重合槽」または「重合缶」ということがある。)、所望により脱水工程や冷却工程(造粒工程)を行う。
 本発明のPASの製造装置に備えられる反応槽1としては、従来PASの製造装置に備えられ使用されている反応槽におけると同様の形状、構造及び大きさ等を適用することができ、また、同様の材料から形成することができる。すなわち、反応槽1は、通常、円筒状の胴部11、蓋部12及び底部13を備える構造を有する。また、反応槽1には、通常、撹拌翼41及び撹拌軸42が挿通され、また、内周壁に1または複数のバッフル(邪魔板)2が備えられる。前記撹拌軸42は、反応槽1の上方に配される電動機(図示しない。)に接続され、回転駆動される。
〔蓋部〕
 反応槽1の蓋部12は、円筒状の胴部11の上部に接続して取り付けられる、通常椀状の部材であり、後に説明する撹拌翼41の撹拌軸42を挿通する孔部が設けられている。図1の反応槽1では、蓋部12に、原料モノマーやその他の材料(以下、原料モノマーやその他の材料を総称して「種々の原料等」ということがある。)を反応槽1の内部に投入するための供給管121(「供給ノズル」ということもある。)が、1または複数備えられている。また、蓋部12には、反応槽1の内部の点検、清掃等を行うことができるようにするため、開閉可能な蓋開口部(大きさ等により、「マンホール」、「マンウエイ」または「ハンドホール」ということもある。)等を設けてもよい。蓋開口部は通常、前記供給管121より大径である。なお、従来、蓋部12としては、所望によりバッフル(邪魔板)を吊り下げ固定するバッフル固定部が、所要数設けられるものもあるが、本発明の反応槽1においては、蓋部12に設けられるバッフル固定部は通常不要である。
〔底部〕
 反応槽1の底部13は、円筒状の胴部11の下部に接続して取り付けられる、通常椀状の部材である。底部13には、通常重合反応により生成するPASポリマーを排出する排出管131(「排出ノズル」ということもある。)が設けられ、更に所望により種々の原料等を反応槽1の内部に投入するための供給管が設けられることがある。本発明のPASの製造装置に備えられる特有の構成を有する反応槽1を、2段階重合における前段重合工程に適用する場合は、前段重合工程が終了した後に、生成したPASプレポリマーを含有する反応槽1内の内容物を、必要に応じて反応槽1内を所定の温度及び圧力に低下させた後に、前記排出管131から取り出して、2段階重合における後段重合工程を行う別の反応槽に移送する。
〔円筒状の胴部〕
 反応槽1の円筒状の胴部11は、反応槽1の主要部をなし、その内部において仕込み工程、重合工程及び所望により脱水工程が行われる。円筒状の胴部11の内部には、撹拌軸42及び撹拌翼41と、1または複数のバッフル2(邪魔板)が配置されている。従来の反応槽1においては、バッフル2は、円筒状の胴部11に直接取り付けられるものもある。しかし、本発明のPASの製造装置においては、バッフル2の各々は、反応槽1の内壁、具体的には円筒状の胴部11の内壁に突設される1または複数のバッフルサポート3によって支持されるので、円筒状の胴部11の内壁にはバッフルサポート3が取り付けられている。
〔その他の部材〕
 通常、円筒状の胴部11、蓋部12及び底部13を備える反応槽1は、更に所要のその他の部材が接続されて備えられる。先に説明した撹拌軸42を回転させる電動機はその一例であり、更に例えば、反応槽1、特に円筒状の胴部11の温度を調整するための熱交換ジャケットが、反応槽1の外周面を取り囲むように備えられることができる。また、種々の目的で、例えば、原料やPASポリマーの移送や、熱媒及び/または冷媒の循環等を目的として、種々の配管が備えられてもよい。
 PASの製造装置における反応槽1を形成する材料としては、PASの重合反応が、高温、高圧及び高アルカリ環境において実施されることから、高温環境における強度や耐薬品性に優れる材料が求められる。具体的にはチタン(チタン合金でもよい。以下同様である。)、ジルコニウム(ジルコニウム合金でもよい。以下同様である。)、特殊オーステナイト鋼〔カーペンター(登録商標)等〕等の耐食性金属が挙げられ、これらの板状材や、チタン、ジルコニウム等の耐食性金属を反応槽1の内面に備えるものとした積層体、例えばチタン被覆鋼材やクラッド鋼等が使用される。耐食性金属の板状材(クラッド鋼も包含する。)の厚みや大きさは、必要に応じて適宜定められる。反応槽1に設置される供給管121等を形成する材料についても同様である。
2.バッフル
 本発明のPASの製造装置は、1または複数のバッフル2を具備する反応槽1を備える。バッフル2は、先に説明したように、原料(仕込原料等)の組成の均一性や、特に相分離剤を使用するPASの重合方法においてはポリマー層と液相との組成比の均一性を確保するために、後に説明する撹拌翼41による撹拌によって生じる液流に、上下撹拌の作用を生じさせるために使用されるものである。反応槽1に備えられるバッフル2の形状や数、及び配置は、PASの重合条件、反応槽1の形状、撹拌翼41の形状等や撹拌条件等を考慮して最適のものを選定することができる。バッフル2の数に関しては、撹拌効率や種々の条件等における重合反応の制御可能性等の観点から、複数のバッフル2を具備する反応槽が好ましく選択され、2~12本、更には4~10本のバッフル2を具備する反応槽1がより好ましく選択される。なお、後に説明する多管状のバッフルやヘアピンコイルを使用する場合は、20本以上、更には30本以上、所望によっては40本程度の細管を使用して、前記所定本数のバッフルを形成するようにしてもよい。前記バッフルの少なくとも1つは、それ自体周知の構造として、内部に冷却管または加熱管を備えるものであってもよい。図2の模式的な断面平面図においては、複数のバッフル2(図2においては4本が図示されている。なお、図2中の円弧状の矢印は、想定する撹拌の回転方向を意味する。)は、反応槽1の筒状の胴部11の内壁に沿う周上において均等間隔で配置されているが、例えば、該内壁付近の流動性を改善することを目的として、複数のバッフル2を前記の周上において不均一な間隔で配置することが好ましいこともある。また、バッフル2は、撹拌翼41及び撹拌軸42と干渉しない位置に配置される。バッフル2の形状に関しては、特に制限がなく、(平)板状、棒状、管状、多管式(大径の管から分岐した多数の細管を集合して配置することにより1本のバッフルとしての機能を奏させるものをいう。)、ヘアピンコイル(連通する略円形断面の細管を折り曲げ集合して配置することにより1本のバッフルとしての機能を奏させるものを意味する。「ヘアピンバッフル」または「ヘアピンコイルバッフル」ということもある。)、D型等のものが採用できる。先に述べた観点及び後に説明するバッフルサポート3との適合性に加えて、付着物の堆積抑制効果、反応槽内の内容物の流動性、強度、製造の容易さ(特に、内部に冷却管または加熱管を備える場合)等の観点から、丸棒状(管状、または少なくとも一部が中空でもよい。)等であるものが好ましいことが多い。したがって、バッフル2の各々の長手方向に直交する断面形状は、略円形または楕円形であるものが好ましく、略円形であるものがより好ましい。また、バッフル2の各々の長手方向に直交する断面の反応槽1の径方向長さは、反応槽1の径に対して0.4~15%であることが好ましく、0.5~12%であることがより好ましい。複数のバッフル2を具備する反応槽においては、すべてのバッフル2が同一形状であってもよいし、少なくとも1つが異なる形状であってもよく、また、反応槽1の筒状の胴部11の内壁に沿う周上において対称に配置されてもよいし、非対称に配置されてもよい。
 反応槽1に備えられるバッフル2の各々の上端面の形状については、特に限定されないが、付着物の堆積抑制効果や反応槽内の内容物の排出性等の観点から、バッフル2の少なくとも1つは、上に凸の形状をなすことが好ましく、具体的には球面状、コーン状、ロケット尖頭状等の形状が挙げられ、上端に頂角45~75度、更には50~70度の尖頭部を有することがより好ましい。なお、バッフル2の各々の下端面の形状については、通常平坦状でよい。また、反応槽1に備えられるバッフル2については、それ自体従来から知られているようにバッフル2の少なくとも1つは、内部に冷却管または加熱管を備えるものとすることが好ましい。また、バッフル2を形成する材料、具体的にはバッフル2において反応槽1の反応液に接触する部分を形成する材料としては、チタン、ジルコニウム等の耐食性金属が好ましく使用される。したがって、例えば、バッフル2は、外表面側がチタン合金で形成され、内側が炭素鋼やステンレス鋼で形成される積層構造のものとすることもできる。
 バッフル2の長さは、特に限定されず、撹拌効率や種々の条件等における重合反応の制御可能性等の観点及びバッフルサポート3との適合性や、付着物の堆積抑制効果の観点等から、適宜選定することができるが、特に付着物の堆積抑制効果の観点から、バッフル2の各々の上端部は、静止液面、すなわち、反応槽1内にある反応液の撹拌を行う前に想定される液面、と比較して、これより下方に位置するものであることが好ましい。したがって、バッフル2の各々の上端部は、反応槽1内にある反応液が撹拌により液面が変動するときの液面、すなわち、ボルテックス発生時の液面より、十分下方に位置するものであることが好ましい。この点補足すると、本発明のPASの製造装置を適用してPASの重合を実施するとき、仕込み工程及び重合工程、更に必要に応じて行う脱水工程等、PASの重合反応に際しては、撹拌が行われることに伴って、渦巻き流(ボルテックス)が発生して、反応槽1の半径方向外側部(反応槽1の筒状の胴部11の内周面の近傍に該当する。)の液面が上昇する(半径方向中央部の液面は下降する。)。なお、本発明のPASの製造装置に備えられる反応槽1はバッフル2を具備しているため、バッフル2を具備しないときと比較して撹拌におけるボルテックス発生時の液面の上昇は小さいが、バッフル2の各々の上端部が撹拌時にも液面の上方に露出する可能性は、ほぼ皆無である。
 本発明のPASの製造装置においては、好ましくはバッフル2の各々の上端部が、前記静止液面より下方に位置することにより、撹拌の開始前、撹拌中及び撹拌終了後のいずれにおいても、バッフル2の各々の上端部は、液面下に位置する。この結果、反応槽1内にある反応液中に溶解している成分の一部が蒸発し、バッフル2の各々の上方部分に析出して堆積するおそれがない。確実な付着物の堆積抑制効果の観点等から、前記バッフル2の各々の上端部は、該バッフル2の長手方向に沿う長さの5%以上に当たる距離、前記静止液面より下方に位置することがより好ましく、同じく7%以上に当たる距離、前記静止液面より下方に位置することが更に好ましい。反応槽の大きさ等にもよるが、多くの場合、バッフル2の各々の上端部は、前記静止液面より5cm以上下方に位置することが好ましく、10cm以上下方に位置することがより好ましい。
 なお、反応槽1に備えられるバッフル2の各々は、反応槽1の蓋部12や底部13に設けられる供給管121等と干渉したり、撹拌翼41と干渉しないように配置される。したがって、バッフル2の各々の長さは、反応槽1の高さに対して、通常50~80%の範囲であり、多くの場合55~75%の範囲である。バッフル2の各々の長さが小さすぎる場合は、バッフルによる撹拌効果が十分でなくなるおそれがあり、バッフル2の各々の長さが大きすぎる場合は、その上端部を静止液面より下方に位置させることが難しくなることがある。なお、反応槽1の高さとは、バッフル2の長手方向の延長線上の撹拌槽1(具体的には、通常蓋部12及び底部13である。)の内壁間の距離をいうが、便宜的に筒状の胴部11の高さを反応槽1の高さとしてもよい。
3.バッフルサポート
 本発明のPASの製造装置は、1または複数のバッフル2を具備する反応槽1を備えるとともに、前記バッフル2の各々は、前記反応槽1の筒状の胴部11の内壁に突設される1または複数のバッフルサポート3によって、該反応槽1の筒状の胴部11の内壁から所定距離、通常4mm以上、多くの場合1cm以上、反応槽の大きさによっては3cm以上等、離隔するように支持される。すなわち、本発明のPASの製造装置は、バッフル2が、反応槽1の筒状の胴部11の内壁に直接固定されたり、蓋部12に設けられたバッフル固定部から吊り下げ固定されるものではない。本発明のPASの製造装置において、バッフル2の各々は、前記反応槽1の筒状の胴部11の内壁に突設固定される1または複数のバッフルサポート3によって支持される(図1においては、バッフル2の各々は、バッフル2の長手方向に沿い上下に離隔する2本のバッフルサポート3によって支持されている。)。反応槽内の内容物の撹拌に対して過度の抵抗を与えることがなく、また、撹拌による抵抗力に抗してバッフルを支える強度を保つことができるように、バッフルサポート3の少なくとも1つは、水平面におけるその断面積が、反応槽の内容物の水平方向の流れの方向に対する垂直面におけるその断面積より大であることが好ましく、水平面におけるその断面積が垂直面におけるその断面積に対して1.1倍以上であることがより好ましい。本明細書において、バッフルサポートの水平面における断面積とは、バッフルサポートを反応槽に設置した場合に、その水平投影面(horizontal plane of projection)が有する面積をいい、バッフルサポートの垂直面における断面積とは、バッフルサポートを反応槽に設置した場合に、反応槽の内容物の水平方向の流れの方向に対する垂直面に関する、バッフルサポートの垂直投影面(vertical plane of projection)が有する面積をいい、水平面とは、重力が働く方向に垂直な平面をいい、垂直面とは、重力が働く方向に平行な平面をいう。具体的には、バッフルサポート3を反応槽1の内壁に、水平方向の長さ10~25cm、内壁からの突出長さ15~30cm程度となるように、水平面に平行になるように配置することが望ましい。バッフル2の各々を支持するバッフルサポート3の数は、通常1~6本、多くの場合2~4本である。バッフルサポート3によるバッフル2の支持方法は、特に限定されず、バッフル2の支持機能、付着物の堆積防止機能、伝熱性能、熱応力の解放等を考慮しながら、従来採用されているバッフル2の支持方法を採用することができ、例えば図3(a)~(e)及び図4に示されるようなボルトとナットによる固定等によることができる。なお、所望によりバッフル2の位置調整や交換等を容易に行うことができる。また、バッフルサポート3は、通常静止液面より下方に位置するように配置されて、バッフル2の各々を支持することが好ましい。バッフル2の支持機能や付着物の堆積防止機能の観点から、バッフルサポート3は、反応槽内1の内容物の水平方向の流れに対して、バッフル2の水平断面の幾何的重心を基準として下流側に配置されることが好ましい。
 バッフルサポート3を形成する材料としては、異種金属間の電池作用による腐食や熱膨張率の相違による熱応力の発生を回避すること、また溶接等の加工の容易性等の観点から、反応槽1の内壁面を形成する材料やバッフル2の外表面側を形成する材料と同じものを使用することが好ましく、具体的には、チタン、ジルコニウム、特殊オーステナイト鋼等の耐食性金属が好ましく使用される。また、バッフルサポート3の形状は、従来採用されている形状を採用することができるが、付着物の堆積抑制、加工性、バッフル2の支持の確実性及び反応槽1の筒状の胴部11の内壁への固定の容易さや接合強度等の観点から、溝型状等の形鋼形状、板状または棒状が好ましく、強度及び重量のバランス等の観点から溝型状の溝形鋼(チャンネル)や、山形鋼、H形鋼、I形鋼、角形鋼、丸形鋼から形成することがより好ましい。バッフルサポート3の少なくとも1つは、反応槽1の内壁、具体的には反応槽1の筒状の胴部11の内壁に着脱可能とし、交換可能であるものとしてもよい。
 本発明のPASの製造装置は、前記バッフルサポート3の少なくとも1つは、1または複数の貫通する開口部31を有することを特徴とし、これにより、該バッフルサポート3の質量や熱容量が軽減するとともに、撹拌によって生じる反応液の流れを複雑に乱れさせる働き等が起こると推測され、その結果、該バッフルサポート3への付着物の堆積が抑制され、また、バッフル2への付着物の堆積が抑制される。貫通する開口部31を有するバッフルサポート3は、付着物の堆積抑制効果の観点から、すべてのバッフル2を支持するバッフルサポート3のすべて、少なくとも1つのバッフル2を支持するバッフルサポート3のすべて、すべてのバッフル2を支持するバッフルサポート3の少なくとも1つ、または、少なくとも1つのバッフル2を支持するバッフルサポート3の少なくとも1つのバッフル2を支持するバッフルサポート3のいずれであってもよい。好ましくは、貫通する開口部31を有するバッフルサポート3は、すべてのバッフル2を支持するバッフルサポート3のすべて、または、すべてのバッフル2を支持するバッフルサポート3のうちのバッフル2の長手方向に沿う上方に位置するバッフルサポート3のいずれかである。
 図1及び図2に示すように、貫通する開口部31を有するバッフルサポート3の少なくとも1つは、その水平面におけるその断面積が垂直面におけるその断面積より大であることが、反応槽内の内容物の撹拌に対して過度の抵抗を与えることがない観点から好ましく、水平面におけるその断面積が垂直面におけるその断面積に対して、1.1倍以上、更には1.2倍以上でもよく、例えば溝型鋼から形成した断面コの字状のバッフルサポート3を、先に説明したように反応槽1の内壁に、水平方向の長さ10~25cm、内壁からの突出長さ15~30cm程度となるように、水平面に平行になるように配置することが望ましい。バッフルサポート3にねじれや座屈が生じない等の観点から、バッフルサポート3の水平面におけるその断面積は、垂直面におけるその断面積に対して通常5倍以内である。また、付着物の堆積抑制効果の観点から、貫通する開口部31を有するバッフルサポート3が有する貫通する開口部31が垂直方向にバッフルサポート3を貫通する開口部であることが好ましい。本明細書において、「垂直方向」とは、重力が働く方向を意味し、「水平方向」とは、重力が働く方向に垂直な方向を意味する。該貫通する開口部31は、1つの開口部でもよいし、複数の開口部でもよく、複数の開口部の形状及び大きさは、同一でもよいし異なってもよい。開口部31の形状は、特に限定されず、略四角形、略六角形、略円形、略楕円状等々の形状とすることができる。開口部31を有するバッフルサポート3における開口部31(1つまたは複数である。)の開口端の面積の合計は、付着物の堆積の抑制効果及びバッフルサポート3の強度の観点等から、該バッフルサポート3上の面のうち、前記開口端を含む面の輪郭で囲まれる面積(貫通する開口部31の開口端を含む面の、該開口部31の面積を包含する面積、すなわち、開口部31の開口端の面積と非開口部の面積との合計をいう。)に対して5~95%の割合であることが好ましく、10~92%の割合であることがより好ましく、15~90%の割合であることが更に好ましい。また、同様の観点から、バッフルサポート3の少なくとも1つは、幅1~50mm、好ましくは2~40mmの間隔を置いて区分される複数の開口部31を有することが好ましい。該間隔が1mm未満であると、バッフルサポート3の強度が不足し、バッフル2を、特に反応槽内において撹拌が行われるときに、十分支持することができないおそれがある。該間隔が50mmを超えると、付着物の堆積の抑制効果がみられないおそれがある。同様の観点から、バッフルサポート3における開口部31を取り囲む領域(非開口部)についても幅1~50mmの範囲とすることが好ましく、2~40mmの範囲とすることがより好ましい。
 例えば、図3(a)に示すバッフルサポート3は、2つの略四角形の開口部〔具体的には、垂直方向にバッフルサポート3を貫通する開口部である。図3(b)~(e)についても同様である。〕311及び312を有し、それらの間隔は1~50mmの範囲であることが好ましい。図3(b)に示すバッフルサポート3は、図3(a)に示される開口部312に対応する開口部として、相対的に幅が狭い間隔、すなわちブリッジ32により形成される間隔を置いて区分される開口部312a及び312bを有する。該ブリッジ32の幅(開口部の間隔に相当する。)は1~50mmの範囲であることが好ましく、2~40mmの範囲であることがより好ましい。
 図3(c)に示すバッフルサポート3は、略円形の相対的に大径の開口部313と、略円形の小径の開口部314の多数個とを有する(明示的には9個の開口部のみを図示した。)多孔板に該当する。多孔板であるバッフルサポート3としては、更に小径かつ多数個の略円形その他の形状の開口部314を有するものとすることができる。その際、多数個の略円形その他の形状の開口部314は、1~50mmの間隔を置いて区分されるものであることが好ましい。
 さらに、バッフルサポート3は、図3(d)に例示する梯子状または図3(e)に例示する格子状(梯子状及び格子状を総称して、「グレーチング構造」ということがある。)の多数の開口部31を有するものとすることができる。すなわち、バッフルサポート3の少なくとも1つは、梯子状または格子状の開口部31を有するものとすることができる。また、グレーチング構造の開口部31を有するバッフルサポート3は、該開口部31を区分する間隔に相当するブリッジまたは桟の幅は、同様に1~50mmの範囲であることが好ましい(細い幅のブリッジまたは桟で区分される格子状の開口部31を有する多孔板とすることもできる。)。
 バッフルサポート3の各々における開口部31の形成方法は、特に限定されず、通常チタン等の耐食性金属の加工に採用される方法によることができ、例えば、シャー切断等の機械的切断、プラズマ切断、放電加工やレーザー切断等の熱的切断、更にはウオータージェット切断等によることができ、適用範囲及び寸法精度等の観点から経済性も参酌して最適方法を選択すればよい。バッフルサポート3を、反応槽1の筒状の胴部11の内壁に突設固定する方法は、特に限定されず、通常チタン等の耐食性金属から形成される部材の接合方法、例えば、不活性ガスアーク溶接、電子ビーム溶接、抵抗溶接、爆発溶接、ろう付け、拡散接合、機械的接合、等の方法を採用することができ、図3(a)~(e)に示されるように、バッフルサポート3の各々に取付部33を設けておくことが好ましい。
4.撹拌翼
 本発明のPASの製造装置において、上記バッフルと好ましく組み合わせることができる撹拌翼41は、特に限定されず、プロペラ翼、パドル翼、ピッチドパドル翼、タービン翼、ピッチドタービン翼、アンカー翼、スクリュー翼、ヘリカルリボン翼等から適宜選択して使用することができ、また、撹拌翼41を構成する翼の枚数は適宜選択することができる。例えばピッチドパドル4枚翼が好ましく用いられる。撹拌翼は41、撹拌軸42を介して、反応槽外に設置した電動機(図示しない)によって、所要の回転数及び撹拌動力で回転され、定法にしたがい必要に応じて工程中に回転数や撹拌動力を変更してもよい。
IV.ポリアリーレンスルフィド
 本発明のPAS製造装置によれば、粒状で取り扱い性に優れるPASを効率よく製造することができる。すなわち、反応槽の内壁に突設されるバッフルサポートによって支持されるバッフルを具備する反応槽を備える本発明のPAS製造装置は、バッフルサポートの少なくとも1つは、前記バッフルサポートを、好ましくは垂直方向に貫通する1または複数の開口部を有することを特徴とすることによって、バッフルやバッフルサポートへの付着物の堆積が抑制されるので、堆積物が剥離して生成するPASポリマーに混入するおそれがなく、高品質のPASポリマー製品が得られる。具体的には、温度310℃、せん断速度1216sec-1における溶融粘度が50~3000Pa・s、好ましくは100~2000Pa・sである高分子量のPASポリマーを得ることができる。
 本発明のPASの製造方法により得られるPASは、そのまま、または酸化架橋させた後、単独で、または所望により各種無機充填剤、繊維状充填剤、各種合成樹脂を配合し、種々の射出成形品やシート、フィルム、繊維、パイプ等の押出成形品に成形することができる。本発明の製造方法により得られたPASは、色調が良好である。また、本発明の製造方法により得られたPASのコンパウンドは、揮発分の発生量が少なく、揮発分の抑制が期待される電子機器等の分野にも好適である。
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。PASポリマーの溶融粘度の測定方法は、以下のとおりである。
〔溶融粘度〕
 PASポリマーの溶融粘度は、乾燥ポリマー約20gを用いて、東洋精機株式会社製キャピログラフ1-Cにより溶融粘度を測定した。この際、キャピラリーは、1mmφ×10mmLのフラットダイを使用し、設定温度は、310℃とした。ポリマー試料を装置に導入し、5分間保持した後、せん断速度1216sec-1での溶融粘度を測定した(単位:Pa・s)。
[実施例1]
 図1に示す、筒状の胴部11内に、撹拌翼(上下2段の45度ピッチドパドル4枚翼)41及び撹拌軸42、並びに、バッフル2及びバッフルサポート3を備え、蓋部12に原料の供給管121等と底部13に生成PASポリマーの排出管131等とを備え、外周面を取り囲む熱交換ジャケットを備える反応槽1(径130cm、高さ150cm。容積約2m)を具備するPAS製造装置を使用して、PASを製造した。
 バッフル2としては、長さ方向に直交する断面が径14.5cm(反応槽1の径に対して11%である。)の円形で長さ100cm(反応槽の高さに対して約67%である。)であり、上端部に頂角60度のロケット状の尖頭部を有するチタン製の棒状体であるバッフル2の4本を、反応槽1の筒状の胴部11の内壁に沿い周状に等間隔で(対称位置に)備えるものとした。バッフル2の各々は、それぞれの上端部が、静止液面より約12cm下方に位置する(バッフル2の上端部は、該バッフル2の長手方向に沿う長さの12%に当たる距離、静止液面より下方に位置する。)ようにして、それぞれ2つのバッフルサポート3(反応槽1内の内容物の水平方向の流れに対して、バッフル2の上流端とバッフル2の下流端との中点より下流側に配置される。)で支持し、反応槽1の筒状の胴部11の内壁から5cm離れるように固定した。なお、バッフル2の内部には冷却管が刻設され、反応槽1外の冷媒供給装置に連接するものとした。
 バッフルサポート3としては、図3(a)に示す垂直方向にバッフルサポート3を貫通する2つの開口部311及び312(2つの開口部の間隔は、約2.5cmであり、開口部311及び312の面積の合計は、バッフルサポート3の面積に対して約20%の割合である。また、バッフルサポート3における開口部311及び312を取り囲む周縁部の幅は1~50mmの範囲内であった。)を有するチタン製のバッフルサポート3を、取付部33を介して反応槽1の筒状の胴部11の内壁に突設させて(水平方向の長さ15cm、内壁からの突出長さ20cmとした。)取り付け、図1に示すように上下2枚の該バッフルサポート3(いずれも撹拌における静止液面より下方に位置する。)によって各々のバッフル2を、図3(a)に示すようにしてボルトとナットで固定した。
1.脱水工程:
 上記の反応槽1に、濃度62.4質量%水硫化ナトリウム200kg(NaSH換算で2229モル)、濃度73.6質量%水酸化ナトリウム110kg(2024モル)、及びN-メチル-2-ピロリドン(NMP)600kgとを、反応槽の蓋部12に設けた供給管121からそれぞれ投入し、反応槽1内を窒素ガスで置換した後、約2時間かけて、50rpmで撹拌しながら温度200℃まで昇温して、水90kgとNMP115kgとを留出させ脱水工程を行った。この脱水工程で揮散した硫化水素量は0.57kg(17モル)であった。この値を用いて、反応槽内の硫黄源(仕込み硫黄源)の量を算出したところ、2212モルであった。
2.仕込み工程:
 脱水工程の後、反応槽1を温度170℃まで冷却し、市販のp-ジクロロベンゼン(PDCB)331.5kg〔2255モル、PDCB/有効S=1.02(モル/モル)〕及び水17kgとNMP289kgを、反応槽1の蓋部12に設けた供給管121からそれぞれ投入して、仕込み混合物を得た。
3.重合工程:
(1)前段重合: 反応槽1に備え付けた撹拌翼41を回転させて仕込み混合物を撹拌しながら、温度183℃から220℃に昇温して1時間反応させた後、230℃に昇温して1.5時間反応させた。重合反応で生成したPASプレポリマーを含有する反応混合物をサンプリングして、反応槽1から取り出したところ、PDCBの転化率は95%であった。
(2)後段重合: 次いで、前記の反応混合物を、反応槽1の底部13に備える排出管131から排出して、通常使用される後段重合用の別の反応槽内に投入し、水50kgを供給し、260℃まで昇温して、相分離重合である後段重合として5時間反応させ、生成したPASポリマーを含有する反応混合物を得た。
4.後処理工程:
 重合反応終了後の反応混合物を室温まで冷却した後、100メッシュ(目開き150μm)のスクリーンに通して、PASポリマー(粒状ポリマー)を篩分した。分離したPASポリマーを、アセトンにより3回洗浄し、水洗を3回行った後、0.3%酢酸水洗を行い、さらに水洗を4回行って洗浄ポリマーを得た。洗浄ポリマーは、温度105℃で13時間乾燥した。得られた粒状ポリマー(100メッシュ通過)の溶融粘度は1350Pa・sであった。
 反応槽1に新たな原料を投入して、脱水工程、仕込み工程、重合工程(反応槽1内での前段重合、及び他の反応槽内での後段重合)及び後処理工程からなる上記したPASの製造操作を20回反復実施した。その後、反応槽1内のバッフル2及びバッフルサポート3のそれぞれについて、付着物の堆積の有無を目視で観察したところ、バッフル2及びバッフルサポート3のいずれにも付着物の堆積はみられなかった。
[実施例2]
 バッフル2として、上端部に頂角60度のロケット状の尖頭部を有しない(やや凸状とした。)チタン製の棒状体であるバッフル2を使用したこと、及び、バッフルサポート3として、図3(b)に示す垂直方向にバッフルサポート3を貫通する3つの開口部311、312a及び312b(開口部312a及び312bの間にあるブリッジ32の幅は10mmである。開口部311、312a及び312bの面積の合計は、バッフルサポート3の面積に対して約18%の割合である。また、バッフルサポート3における開口部311、312a及び312bを取り囲む周縁部の幅は1~50mmの範囲内であった。)を有するチタン製のバッフルサポート3を使用したことを除き、実施例1と同様に構成した反応槽1を使用して、実施例1と同様にして、PASの製造操作を20回反復実施した。その後、反応槽1内のバッフル2及びバッフルサポート3のそれぞれについて、付着物の堆積の有無を目視で観察したところ、バッフル2及びバッフルサポート3のいずれにも付着物の堆積はみられなかった。
[比較例1]
 バッフル2’として、長さ方向に直交する断面が径14.5cmの円形で長さ123cm(反応槽の高さに対して82%である。)であるチタン製の棒状体(上端部にロケット状の尖頭部を有しない。)を、反応槽1の筒状の胴部11の内壁に沿い周状に等間隔で(対称位置に)備え、かつ、バッフル2’の各々の上端部は、静止液面より11cm上方に位置するよう、それぞれ2つのバッフルサポート3’で支持したこと、及び、バッフルサポート3’として、チタン製であるが開口部を有しないものを使用したことを除いて、実施例1と同様にして、PASの製造操作を20回反復実施した。その後、反応槽1内のバッフル2’及びバッフルサポート3’のそれぞれについて、付着物の堆積の有無を目視で観察したところ、バッフル2’の上端面や裏面側(撹拌翼の回転により発生する周方向の液流に当接する面の反対側)、及びバッフルサポート3’の上端面や裏面側(上記した趣旨である。)に、付着物の堆積がみられた。
 実施例1及び2と比較例1との結果から、1または複数のバッフルを具備する反応槽を備えるポリアリーレンスルフィドの製造装置であって、前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、前記バッフルサポートの少なくとも1つは、前記バッフルサポートを、好ましくは垂直方向に貫通する1または複数の開口部を有する実施例1及び2のPASの製造装置、具体的には更に前記バッフルの各々の上端部は、静止液面より下方に位置する実施例1及び2のPASの製造装置は、PASの製造操作を20回反復実施しても、バッフル及びバッフルサポートへの付着物の堆積が抑制されることが分かった。
 これに対して、1または複数のバッフルを具備する反応槽を備えるポリアリーレンスルフィドの製造装置であって、前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持されるものの、前記バッフルサポートはいずれも、1または複数の貫通する開口部を有しない、具体的には更に、前記バッフルの各々の上端部は、静止液面より下方に位置しない比較例1のPASの製造装置は、PASの製造操作を20回反復実施すると、バッフル及びバッフルサポートへの付着物の堆積がみられることが分かった。
 本発明は、1または複数のバッフルを具備する反応槽を備えるPASの製造装置であって、
前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、
前記バッフルサポートの少なくとも1つは、前記バッフルサポートを、好ましくは垂直方向に貫通する1または複数の開口部を有する
ことを特徴とする前記のPASの製造装置であることにより、
撹拌効率向上等のためにバッフルサポートを介して反応槽内に配置されるバッフル(邪魔板)等への付着物の堆積を抑制することによって、生産効率を向上し、堆積物除去コストを削減し、及び製品PASの品質を向上することに寄与するPASの製造装置を提供することができるので、産業上の利用可能性が高い。
1  反応槽
11 筒状の胴部
12 蓋部
121 供給管
13 底部
131 排出管
2、2’  バッフル
3、3’  バッフルサポート
31、311、312、312a、312b、313、314  開口部
32 ブリッジ
33 (バッフルサポートの)取付部
41 撹拌翼
42 撹拌軸

Claims (14)

  1.  1または複数のバッフルを具備する反応槽を備えるポリアリーレンスルフィドの製造装置であって、
    前記バッフルの各々は、前記反応槽の内壁に突設される1または複数のバッフルサポートによって支持され、かつ、
    前記バッフルサポートの少なくとも1つは、前記バッフルサポートを貫通する1または複数の開口部を有する
    ことを特徴とする前記のポリアリーレンスルフィドの製造装置。
  2.  複数のバッフルを具備する反応槽を備える請求項1記載のポリアリーレンスルフィドの製造装置。
  3.  前記バッフルサポートの少なくとも1つは、水平面におけるその断面積が、前記反応槽の内容物の水平方向の流れの方向に対する垂直面におけるその断面積より大である請求項1または2記載のポリアリーレンスルフィドの製造装置。
  4.  前記バッフルサポートを貫通する開口部が垂直方向に前記バッフルサポートを貫通する開口部である請求項1乃至3のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  5.  前記バッフルサポートを貫通する開口部の開口端の面積の合計は、該バッフルサポート上の面のうち、前記開口端を含む面の輪郭で囲まれる面積に対して5~95%の割合である請求項1乃至4のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  6.  前記複数の開口部の間隔が1~50mmである請求項1乃至5のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  7.  前記バッフルサポートを貫通する開口部が、梯子状または格子状である請求項1乃至6のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  8.  バッフルサポートが、反応槽内の内容物の水平方向の流れに対して、バッフルの水平断面の幾何的重心を基準として下流側に配置される請求項1乃至7のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  9.  前記バッフルの少なくとも1つは、上端に頂角45~75度の尖頭部を有する請求項1乃至8のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  10.  前記バッフルの各々の長手方向に直交する断面形状は、略円形または楕円形である請求項1乃至9のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  11.  前記バッフルの各々の長手方向に直交する断面の反応槽の径方向長さは、反応槽の径に対して0.4~15%である請求項1乃至10のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  12.  前記バッフルの各々の長さは、反応槽の高さに対して50~80%である請求項1乃至11のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  13.  前記バッフルの少なくとも1つは、内部に冷却管または加熱管を備える請求項1乃至12のいずれか1項に記載のポリアリーレンスルフィドの製造装置。
  14.  請求項1乃至13のいずれか1項に記載の製造装置を使用するポリアリーレンスルフィドの製造方法。
     
PCT/JP2015/076778 2014-09-22 2015-09-18 バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置 WO2016047631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016550322A JP6151869B2 (ja) 2014-09-22 2015-09-18 バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置
US15/513,507 US9890222B2 (en) 2014-09-22 2015-09-18 Polyarylene sulfide production device provided with baffle and baffle support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-192648 2014-09-22
JP2014192648 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016047631A1 true WO2016047631A1 (ja) 2016-03-31

Family

ID=55581156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076778 WO2016047631A1 (ja) 2014-09-22 2015-09-18 バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置

Country Status (3)

Country Link
US (1) US9890222B2 (ja)
JP (1) JP6151869B2 (ja)
WO (1) WO2016047631A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164010A1 (ja) * 2017-03-06 2018-09-13 株式会社クレハ ポリアリーレンスルフィドの製造装置
JP2020012055A (ja) * 2018-07-18 2020-01-23 株式会社クレハ 反応装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056126A1 (en) * 2017-09-21 2019-03-28 Whistler Technologies Corp. APPARATUS AND METHODS FOR RESIN EXTRACTION
KR102395229B1 (ko) * 2018-09-11 2022-05-04 한화솔루션 주식회사 배플을 구비한 회분식 반응기
CN109467136B (zh) * 2018-12-26 2021-04-13 华友新能源科技(衢州)有限公司 一种改变微晶颗粒堆积方式的三元镍钴锰正极材料前驱体的制备方法
CN109806835B (zh) * 2019-01-31 2024-01-05 森松(江苏)重工有限公司 一种新型pta氧化反应器
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
JP2023508316A (ja) 2019-12-20 2023-03-02 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための方法
CN112246204A (zh) * 2020-10-09 2021-01-22 温州大学 一种用于化学实验液体加温混合反应设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114036A (ja) * 1990-09-05 1992-04-15 Toopuren:Kk 高分子量ポリアリーレンスルフィドの製造方法
JPH0559782B2 (ja) * 1986-02-13 1993-08-31 Denki Kagaku Kogyo Kk
JP2012183491A (ja) * 2011-03-07 2012-09-27 Canon Inc 混合装置及び混合粒子製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453368B1 (ja) 1964-11-27 1970-02-04
US4645826A (en) 1984-06-20 1987-02-24 Kureha Kagaku Kogyo Kabushiki Kaisha Process for production of high to ultra-high molecular weight linear polyarylenesulfides
JPH07121985B2 (ja) 1986-08-04 1995-12-25 呉羽化学工業株式会社 ポリアリ−レンスルフイドの製造法
US4767841A (en) 1987-02-24 1988-08-30 Phillips Petroleum Company Arylene sulfide polymer preparation from dehydrated admixture comprising sulfur source, cyclic amide solvent and water
JPH06107332A (ja) 1992-09-29 1994-04-19 Ebara Corp 真空チャック装置による平板状被吸着体の吸着方法
JP2011083692A (ja) 2009-10-15 2011-04-28 Sumitomo Chemical Co Ltd 邪魔板ユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559782B2 (ja) * 1986-02-13 1993-08-31 Denki Kagaku Kogyo Kk
JPH04114036A (ja) * 1990-09-05 1992-04-15 Toopuren:Kk 高分子量ポリアリーレンスルフィドの製造方法
JP2012183491A (ja) * 2011-03-07 2012-09-27 Canon Inc 混合装置及び混合粒子製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164010A1 (ja) * 2017-03-06 2018-09-13 株式会社クレハ ポリアリーレンスルフィドの製造装置
JP2020012055A (ja) * 2018-07-18 2020-01-23 株式会社クレハ 反応装置
JP7130480B2 (ja) 2018-07-18 2022-09-05 株式会社クレハ 反応装置

Also Published As

Publication number Publication date
US20170313790A1 (en) 2017-11-02
JPWO2016047631A1 (ja) 2017-08-17
US9890222B2 (en) 2018-02-13
JP6151869B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6151869B2 (ja) バッフル及びバッフルサポートを備えるポリアリーレンスルフィドの製造装置
JP5731196B2 (ja) 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法
KR101747618B1 (ko) 폴리아릴렌 설파이드의 제조방법 및 폴리아릴렌 설파이드의 제조장치
KR101970935B1 (ko) 폴리아릴렌 설파이드의 연속 제조 장치 및 폴리아릴렌 설파이드의 연속 제조 방법
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
CN109415311A (zh) 制备有机砜的方法
JP6479283B2 (ja) ポリアリーレンスルフィドの製造方法
JP3989785B2 (ja) ポリアリーレンスルフィドの製造方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
JP6473277B2 (ja) ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィドの連続製造装置
KR20170093935A (ko) 폴리아릴렌 설파이드의 제조 방법, 및 폴리아릴렌 설파이드
KR102327908B1 (ko) 용융 추출에 의한 폴리아릴 에테르의 탈염
JP6473279B2 (ja) ポリアリーレンスルフィドの製造方法
JP6153671B2 (ja) 供給管を備えるポリアリーレンスルフィドの製造装置
WO2019004169A1 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP6473278B2 (ja) ポリアリーレンスルフィドの製造方法
WO2019004170A1 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP2019073576A (ja) ポリアリーレンスルフィドの製造方法
JPH03258833A (ja) 高分子量ポリアリーレンスルフィドの製造法
JP2011093965A (ja) ポリエーテル類の製造方法
JP2022140911A (ja) ポリアリーレンスルフィドの製造方法
JP2002308989A (ja) ポリアリーレンスルフィドの製造方法および製造装置
JP2002308988A (ja) ポリアリーレンスルフィドの製造方法およびそれに用いる装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513507

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15843401

Country of ref document: EP

Kind code of ref document: A1