WO2016041189A1 - Method for evaluating shale gas reservoir and seeking desert area - Google Patents

Method for evaluating shale gas reservoir and seeking desert area Download PDF

Info

Publication number
WO2016041189A1
WO2016041189A1 PCT/CN2014/086906 CN2014086906W WO2016041189A1 WO 2016041189 A1 WO2016041189 A1 WO 2016041189A1 CN 2014086906 W CN2014086906 W CN 2014086906W WO 2016041189 A1 WO2016041189 A1 WO 2016041189A1
Authority
WO
WIPO (PCT)
Prior art keywords
shale
parameters
data
seismic
curve
Prior art date
Application number
PCT/CN2014/086906
Other languages
French (fr)
Chinese (zh)
Inventor
杨顺伟
Original Assignee
杨顺伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201480002782.0A priority Critical patent/CN104853822A/en
Application filed by 杨顺伟 filed Critical 杨顺伟
Priority to PCT/CN2014/086906 priority patent/WO2016041189A1/en
Publication of WO2016041189A1 publication Critical patent/WO2016041189A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention belongs to an applied geophysical exploration method, and is a comprehensive geophysical exploration technology such as petrophysical, well logging data, omnidirectional or wide-azimuth 3D seismic data for shale gas reservoir evaluation and searching for shale gas exploration and development dessert. District method.
  • shale gas resources are abundant, and shale gas exploration and development is expected to alleviate the energy crisis.
  • shale gas is an oil and gas resource.
  • its accumulation model is different from conventional oil and gas reservoirs, exploration and development are in the exploration stage, mainly concentrated on the page.
  • the research on the accumulation model and geological characteristics of rock gas, the role of geophysical technology in the exploration and development of shale gas has yet to be developed.
  • rock geophysics, geophysical logging and seismic exploration play a vital role in conventional oil and gas exploration
  • shale gas reservoirs are concentrated only in shale accumulation models and geological features, and are rarely used in shale.
  • a comprehensive geophysical exploration method for gas, geophysical technology is marginalized in shale gas exploration and development research.
  • the present invention provides a method for comprehensively applying petrophysical, well logging data, omnidirectional or wide-azimuth three-dimensional seismic data for evaluating shale gas reservoirs and finding a dessert zone.
  • the invention is achieved by the following steps:
  • the different directions are perpendicular to the formation of the formation, horizontal and at an angle of 45 degrees.
  • the core column is 2.5 cm in diameter and 5 cm in length.
  • the combination of sensitive elastic parameters or sensitive elastic parameters and shale gas dessert zone parameters are obtained.
  • the multi-mineral analysis method and the core test analysis method are used to calculate the mineral composition and content of the formation, the formation density, the longitudinal and transverse wave velocity and the porosity, and establish a petrophysical model from the surface to the bottom of the well according to the geophysical logging curve of the whole well;
  • the optimal logging curve is to eliminate the variation of the bore diameter, the well deviation, the well fluid change, the well temperature change, the logging speed is uneven, the downhole instrument is stuck, the non-uniform rotation and the logging instrument error factors.
  • the optimal logging curve that reflects changes in the physical properties of the formation.
  • the disturbance analysis is a corresponding logging curve obtained by changing the formation fluid, porosity or lithology, and finds the variation law of the corresponding logging curve.
  • the minerals are minerals such as clay, calcite, quartz, pyrite, total organic carbon content (TOC) and dolomite.
  • the optimal logging curve is a clay mineral curve, a bulk density curve, a formation uranium content curve, a neutron porosity curve, a resistivity curve, a longitudinal wave time difference curve and a transverse wave time difference curve in the log data.
  • the rock component disturbance analysis is to calculate the corresponding logging curve by changing the percentage of different minerals in the rock physics model, and find the most sensitive property of the corresponding mineral change according to the calculated variation of the logging curve.
  • the parameter or parameter combination is elastic modulus, Young's modulus of elasticity, density, shear modulus, product of elastic modulus and density, product of shear modulus and density, and Young's modulus of elasticity.
  • the product of the density is elastic modulus, Young's modulus of elasticity, density, shear modulus, product of elastic modulus and density, product of shear modulus and density, and Young's modulus of elasticity. The product of the density.
  • step 6 Using the rock physics model of the whole well established in step 6), obtain the synthetic records or gathers of the original logging model and the petrophysical model, perform the well seismic calibration process, and perform AVO near the shale reservoir depth (amplitude Aircraft offset variation) and AVA (amplitude versus azimuth variation) analysis;
  • the 2D or 3D VSP (Vertical Seismic Profile) data in the exploration area is obtained according to the depth of the downhole detector and the travel time of the seismic wave from the ground to the downhole detector for velocity analysis, migration imaging and inversion to obtain accurate formation velocity. , formation attenuation coefficient (Q value) and anisotropic parameters of the velocity of each layer;
  • the surface integrated modeling static correction is: static correction processing, prestack denoising, amplitude compensation, Q value (formation attenuation) compensation, surface consistent deconvolution, and predicted deconvolution amplitude relative fidelity processing.
  • Seismic high-resolution processing method based on statistical adaptive signal theory for non-parametric spectrum analysis and high-resolution subsurface reflection information estimation method with fidelity, high resolution of 3D prestack depth migration processed data Rate processing.
  • the method for estimating reflection information is based on statistical signal adaptive processing, using a non-parametric spectrum analysis method and a high-resolution subsurface reflection information estimation method with fidelity to maximize the original seismic data information and not lose the original Under the premise of micro geological information in the data, a high-resolution complex seismic gather is obtained.
  • the reflection information estimation method adaptively processes the non-parametric spectrum analysis theory based on the statistical signal, and adaptively estimates the reflection amplitude of different time positions stably and accurately by simulating the statistical characteristics of the relative interference, thereby improving the section resolution and widening.
  • the frequency band can maximize the original seismic data information and not lose the micro geological information in the original data, and obtain the complex seismic gathers with high fidelity.
  • KSOM unsupervised adaptive statistical model
  • the fault picking is to automatically calculate the section based on the coherence body, the eigenvalue similarity or the curvature body, and determine the macro crack and the small fault.
  • the elliptical velocity inversion is an elliptical velocity analysis of the azimuth data volume of the RMS (root mean square) velocity, and the crack orientation and longitudinal anisotropy parameters are obtained.
  • AVO amplitude variation with offset
  • longitudinal and transverse wave synchronous wave impedance inversion is to calculate the gradient of AVO (amplitude varies with offset) Attributes, and inversion angles are superimposed on seismic data, and longitudinal wave impedance, shear wave impedance and other derived elastic properties are obtained synchronously, especially ⁇ (product of elastic modulus and density, ⁇ (product of shear elastic modulus and density), E ⁇ ( The product of Young's modulus of elasticity and density).
  • the ellipse inversion is an ellipse inversion of the azimuth gradient and velocity to obtain the Thomsen parameter, and transform the Thomson parameter into the geomechanical anisotropy parameter of the target layer by rock physics transformation, such as Yang. Modulus, Poisson's ratio;
  • the reservoir parameters are rock brittleness, lithology, porosity, fluid, high total organic carbon (TOC) content, and the like.
  • the joint geological interpretation and calibration of the reservoir rock characteristic parameters are calibrated with logging curves, the fractures are calibrated with wellbore imaging data and/or core analysis data, and the fracturing microseismic monitoring results and wellbore imaging data for large-scale faults and micro-faults are used.
  • Calibration, stress anisotropy is partially calibrated using fracturing microseismic monitoring results.
  • the calibration process compares the calculated value with the measured result, finds the difference value or correlation coefficient between the two, and then systematically corrects or corrects the calculated value to ensure that the calculated value of the measured part in the underground is consistent with the measured result. .
  • the completion and fracturing scheme of the optimized horizontal well is designed to lay horizontal wells in shale with high total organic carbon which is brittle and easy to fracturing, and optimize the spacing of each fracturing section.
  • the advantageous parameters include, but are not limited to, high total organic carbon content of shale, brittleness of shale reservoirs, azimuth and density of faults, cracks and fissures, orientation and strength of local geostress, local high pressure zone and porosity distributed.
  • the invention can analyze the relationship between reservoir parameters and rock geophysical properties, accurately determine the exact depth, thickness, occurrence and plane distribution of shale reservoirs, and accurately evaluate the total organic carbon content in shale gas reservoirs. Or the distribution of organic matter abundance, predicting the development degree of fault fissures in the exploration area, the macroscopic and microscopic azimuthal distribution of geostress, calculating the brittleness and toughness characteristics of the strata, and predicting local pressure anomalies and porosity in shale reservoirs.
  • the invention according to the characteristics of accurate burial depth, thickness, occurrence, plane spread, TOC (total organic carbon content) or organic abundance distribution, development degree of fault cracks and the like, etc. Evaluate the gas-bearing prospects of shale gas reservoirs and predict the distribution of sweet spots, guide the design of shale gas horizontal well trajectory and optimize the fracturing scheme, and provide important geophysical technical support for large-scale exploration and development of shale gas.
  • Figure 1 is a schematic flow chart of a method for evaluating shale gas reservoirs and searching for dessert zones using integrated geophysical exploration techniques.
  • Drilling core columns of different directions on the core columns of different drilling depths in the exploration area vacuuming the core columns and pressure-saturating them with mineralized water with the same resistivity of the mineralized water of the formation.
  • the different directions are perpendicular to the formation of the formation, horizontal and at an angle of 45 degrees.
  • the core column is 2.5 cm in diameter and 5 cm in length.
  • Steps 1) and 2) are the measurement and analytical calculations of the core dynamic and static elastic parameters on the left side of Figure 1.
  • 3) Obtain all logging data in the exploration area, correct the logging data of all boreholes in the survey area, and eliminate factors such as wellbore environment, well deviation, well fluid change, well temperature change and logging instrument error. For the influence of the logging curve, obtain the optimal logging curve that can truly reflect the changes in the physical properties of the formation.
  • the multi-mineral analysis method and core test analysis method were used to calculate the mineral composition and content of the formation, the formation density, the longitudinal and transverse wave velocity and the porosity, and the rock physical model from the surface to the bottom of the well was established based on the geophysical logging curve of the whole well.
  • the optimal logging curve is to eliminate the variation of bore diameter, well deviation, well fluid change, well temperature change, uneven logging speed, stuck downhole instrument, non-uniform rotation and logging instrument error factors.
  • the optimal logging curve that reflects changes in the physical properties of the formation.
  • Disturbance analysis is to find the corresponding logging curve by changing the corresponding logging curve obtained by the formation fluid, porosity or lithology.
  • the optimized logging principle and the matrix solving method are used to analyze the mineral composition, and the mineral content and distribution law in the whole well are obtained, and the mineral composition and total saturation of the formation are calculated.
  • Minerals are minerals such as clay, calcite, quartz, pyrite, total organic carbon (TOC) and dolomite.
  • the optimal logging curve is the clay mineral curve, volume density curve, formation uranium content curve, neutron porosity curve, resistivity curve, longitudinal wave time difference curve and transverse wave time difference curve in the logging data.
  • the rock component disturbance analysis is to calculate the corresponding logging curve by changing the percentage of different minerals in the rock physics model. According to the calculated variation of the logging curve, find the most sensitive attribute parameter or sensitivity of the corresponding mineral change. A combination of attribute parameters.
  • the parameter or parameter combination is the product of elastic modulus, Young's modulus of elasticity, density, shear modulus, product of elastic modulus and density, product of shear modulus and density, and product of Young's modulus of elasticity and density. .
  • step 6 Using the rock physics model of the whole well established in step 6), obtain the synthetic records or gathers of the original logging model and the petrophysical model, perform the well seismic calibration process, and perform AVO near the shale reservoir depth (amplitude The offset of the offset is analyzed) and the AVA (amplitude varies with azimuth).
  • Steps 3) through 10) are the calibration of logging data, mineral composition calculations, geophysical logging data analysis and petrophysical modeling, rock composition and attribute replacement disturbance analysis, synthetic recording and AVO/ AVA gather analysis and other work.
  • the 2D or 3D VSP (Vertical Seismic Profile) data in the exploration area is obtained according to the depth of the downhole detector and the travel time of the seismic wave from the ground to the downhole detector for velocity analysis, migration imaging and inversion to obtain accurate formation velocity. , formation attenuation coefficient (Q value) and anisotropy parameters of the velocity of each layer.
  • the surface integrated modeling static correction is: static correction processing, prestack denoising, amplitude compensation, Q value (formation attenuation) compensation, surface consistent deconvolution, and predicted deconvolution amplitude relative fidelity processing.
  • Steps 11) to 14) are to collect omnidirectional or wide-azimuth 3D seismic data and 2D moving offset vertical seismic profile or 3D vertical seismic profile data, and process vertical seismic profile data and use well constraints and well seismic data. Drive to process ground seismic data processing.
  • Seismic high-resolution processing method based on statistical adaptive signal theory for non-parametric spectrum analysis and high-resolution subsurface reflection information estimation method with fidelity, high resolution of 3D prestack depth migration processed data Rate processing.
  • the reflection information estimation method is based on statistical signal adaptive processing, using non-parametric spectrum analysis method and high-resolution subsurface reflection information estimation method with fidelity to minimize the original seismic data information and not lose the original data. Under the premise of geological information, a high-resolution complex seismic gather is obtained.
  • the reflection information estimation method is based on the statistical signal adaptive processing non-parametric spectrum analysis theory. By simulating the statistical characteristics of relative interference, the reflection amplitude of different time positions can be adaptively estimated stably and accurately, thereby improving the profile resolution and broadening the frequency band. Maximize the original seismic data information and not lose the micro geological information in the original data, and obtain the complex seismic gathers with high fidelity.
  • Steps 15) to 17) are to improve the resolution processing of the data after the three-dimensional prestack depth migration imaging process and to construct the shale reservoir, to extract the exact depth, thickness, and occurrence of the shale reservoir.
  • Information such as plane spreads.
  • KSOM unsupervised adaptive statistical model
  • Steps 18) to 21) are the inversion processing of the three-dimensional high-resolution post-stack seismic data, the neural network calculation, and then the distribution features of the subsurface fault, the fracture fissure and the structural boundary.
  • the elliptical velocity inversion is an elliptical velocity analysis of the azimuth data volume of the RMS (root mean square) velocity, and the crack orientation and longitudinal anisotropy parameters are obtained.
  • AVO amplitude varies with offset
  • longitudinal and transverse wave synchronous wave impedance inversion for 3D prestack seismic data.
  • the longitudinal and transverse wave synchronous wave impedance inversion is to calculate the gradient property of AVO (the amplitude varies with the offset), and invert the angular superimposed seismic data to obtain the longitudinal wave impedance, the shear wave impedance and other derived elastic properties, especially ⁇ (elastic modulus).
  • elastic modulus
  • the product of the density, ⁇ the product of the shear elastic modulus and the density
  • E ⁇ the product of the Young's modulus of elasticity and the density.
  • Ellipse inversion of anisotropic parameters of three-dimensional prestack seismic data. Ellipse inversion is an ellipse inversion of the azimuthal gradient and velocity to obtain the Thomsen parameter, which converts the Thomson parameter into the geomechanical anisotropy parameter of the target layer, such as Young's modulus. ,Poisson's ratio.
  • Step 22) to step 26) are to optimize and invert the prestack seismic trace set, and convert the elastic modulus obtained by the inversion into reservoir parameters of the target layer, such as rock brittleness, lithology, porosity, fluid, High total organic carbon (TOC) content, etc.
  • the elastic modulus obtained by the inversion into reservoir parameters of the target layer, such as rock brittleness, lithology, porosity, fluid, High total organic carbon (TOC) content, etc.
  • TOC High total organic carbon
  • Joint geological interpretation and calibration of various seismic attributes characterizing faults and fractures Joint geological interpretation and calibration of reservoir rock characteristic parameters are calibrated with logging curves, fractures are verified by wellbore imaging data and/or core analysis data, large-scale faults and micro-faults are measured by fracturing microseismic monitoring results and wellbore imaging data, stress Anisotropic fracturing microseismic monitoring results were used for local calibration.
  • the calibration process compares the calculated value with the measured result, finds the difference value or correlation coefficient between the two, and then systematically corrects or corrects the calculated value to ensure that the calculated value of the measured part in the underground is consistent with the measured result. .
  • step 2 According to the conversion relationship between the core dynamics and the static elastic modulus of step 2), the dynamic elastic modulus obtained by the anisotropic elastic wave synchronous inversion of the three-dimensional prestack seismic data is converted into the static elastic modulus.
  • Steps 27) through 32) are joint geological interpretations and calibrations of various seismic attributes that characterize faults and fractures. Through comprehensive interpretation, we obtain various favorable parameters of shale gas reservoirs in shale gas reservoirs, and finally determine the gas-bearing prospects and delineate the shale gas exploration and development of dessert areas (see the quantitative analysis process below in Figure 1).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Disclosed is a method for evaluating a shale gas reservoir and seeking a desert area, comprising the following steps: drilling core columns in different directions, measuring dynamic and static parameters of a saturated core column to obtain a conversion relational expression of dynamic and static elastic modulus, physically simulating anisotropic rocks, and calculating and intersecting elastic parameters; according to the intersection result, obtaining a corresponding correlation between a sensitive elastic parameter or a combination of sensitive elastic parameters and parameters of a shale gas desert area, and solving and predicting the parameters or combination of parameters of the shale gas desert area; correcting log data, and acquiring an optimal logging curve; employing a multi-mineral analysis method and a core test analysis method to obtain models, and serializing the obtained models; inverting three-dimensional high-resolution post-stack earthquake data; and integrating various acquired favourable parameters of the shale gas reservoir in combination with an accurate burial depth, thickness, occurrence and plane distribution of the shale gas reservoir to obtain a gas containing prospect of the shale gas reservoir and to circle the desert area for shale gas exploitation and development.

Description

一种评价页岩气储层及寻找甜点区的方法Method for evaluating shale gas reservoir and searching for dessert zone 技术领域Technical field
本发明属于应用地球物理勘探方法,是一种综合应用岩石物理、测井数据、全方位或宽方位三维地震数据等综合地球物理勘探技术进行页岩气储层评价及寻找页岩气勘探开发甜点区的方法。The invention belongs to an applied geophysical exploration method, and is a comprehensive geophysical exploration technology such as petrophysical, well logging data, omnidirectional or wide-azimuth 3D seismic data for shale gas reservoir evaluation and searching for shale gas exploration and development dessert. District method.
背景技术Background technique
页岩气资源丰富,页岩气勘探开发有望缓解面临的能源危机,但页岩气作为一种油气资源,虽然其成藏模式有别于常规油气藏,勘探开发处于探索阶段,主要集中在页岩气的成藏模式、地质特征等方面研究,地球物理技术在页岩气勘探开发中的作用还有待开发。岩石地球物理、地球物理测井、地震勘探虽然在常规油气勘探中起着至关重要的作用,但对页岩气储层仅集中在页岩成藏模式、地质特点方面,少有用于页岩气的综合地球物理勘探方法,地球物理技术在页岩气勘探开发研究中处于边缘化状态。The shale gas resources are abundant, and shale gas exploration and development is expected to alleviate the energy crisis. However, shale gas is an oil and gas resource. Although its accumulation model is different from conventional oil and gas reservoirs, exploration and development are in the exploration stage, mainly concentrated on the page. The research on the accumulation model and geological characteristics of rock gas, the role of geophysical technology in the exploration and development of shale gas has yet to be developed. Although rock geophysics, geophysical logging and seismic exploration play a vital role in conventional oil and gas exploration, shale gas reservoirs are concentrated only in shale accumulation models and geological features, and are rarely used in shale. A comprehensive geophysical exploration method for gas, geophysical technology is marginalized in shale gas exploration and development research.
目前对页岩气的研究多集中在基础理论上,应用地球物理资料对页岩气进行研究还处于探索阶段。李志荣等在《四川盆地南部页岩气地震勘探新进展》(天然气工业,2011,31(4):40-43)一文中,在对四川盆地南部页岩层段地质、地球物理响应特征分析的基础上,通过地震资料采集、处理及解释技术攻关,形成了一套较为完整的页岩气地球物理勘探思路及技术流程,取得了页岩气地震勘探的新进展;齐宝权等在《应用测井资料评价四川盆地南部页岩气储层》(天然气工业,2011,31(4):44-47)一文中,将ΔlogR方法运用到四川盆地南部页岩气储层评价中,运用孔隙度和电阻率曲线重叠法识别页岩气时考虑到重叠基线的选取、岩性的变化等的影响,探索页岩气的测井解释模式;罗蓉等在 《页岩气测井评价及地震预测、监测技术探讨》(天然气工业,2011,31(4):34-39)一文中,针对页岩气与常规储层的差异,探讨了地球物理勘探技术在页岩气勘探开发中的应用,并提出发展专门针对页岩气的三维地球物理勘探、监测和开发技术;刘双莲和陆黄生在《页岩气测井评价技术特点及评价方法探讨》(测井技术,35(2):113-116)一文中,从调研北美页岩气成功勘探开发实例入手,在储层地质背景研究的基础上,分析了页岩气与常规油气层测井评价方法的主要差异。根据页岩气勘探开发需求,探讨了中国页岩气测井系列的选择依据与测井评价技术。提出页岩矿物成分和储层结构评价、页岩储层标准的建立、裂缝类型识别与岩石力学参数评价等方面的研究,可以作为页岩气测井技术评价的重点;付永强等在《页岩气藏储层压裂实验评价关键技术》(天然气工业,2011,31(4):51-54)一文中,从岩石弹性参数角度出发,分析对比了致密砂岩气与页岩气储层力学性质特征,针对页岩岩石脆性特征以及储层岩心敏感性等实验评价关键技术,开展了大量的实验评价研究,并与现场压裂缝高示踪剂监测、地面微地震压裂监测结果进行了对比分析,对页岩气的开发具有重大意义;刘振武等在《页岩气勘探开发对地球物理技术的需求》(石油地球物理勘探,2011,46(5):810-818)一文中,通过页岩气地球物理技术的需求分析和对未来发展的展望,明确指出地球物理技术作为页岩气储层评价和增产改造的关键技术,将在页岩气勘探开发中发挥重要的作用;聂昕等人在《测井技术在页岩气储层力学性质评价中的应用》(工程地球物理学报,2012,9(4):433-439)一文中,总结了声、电成像、阵列声波等几种测井方法在页岩气储层力学性质评价方面的应用及意义,并分析了各种测井方法的局限性和适用条件,说明了结合这几种测井方法可以有效地评价页岩气储层的力学性质;郝建飞等人在《页岩气地球物理测井评价综述》(地球物理学进展,2012,27(4):1624-1632)一文 中,文针对国外尤其是美国近期页岩气勘探开发的现状进行了广泛的文献调研,综述当前国外页岩气地球物理测井技术的发展现状,针对勘探开发的不同阶段介绍常用的含气页岩的测井系列,然后总结页岩气测井响应特征,并详细论述了页岩气储层评价方法及储层评价的重要参数,包括有机碳含量、岩石矿物组分及含量、孔隙度、含气量及岩石力学参数,最后提出页岩气地球物理测井研究存在的问题和发展趋势。At present, the research on shale gas is mostly concentrated on the basic theory. The application of geophysical data to the study of shale gas is still in the exploration stage. Li Zhirong et al., “New Progress in Seismic Exploration of Shale Gas in the Southern Sichuan Basin” (Natural Gas Industry, 2011, 31(4): 40-43), based on the analysis of geological and geophysical response characteristics of the shale interval in the southern Sichuan Basin. In the above, through the seismic data acquisition, processing and interpretation of technical breakthroughs, a relatively complete set of shale gas geophysical exploration ideas and technical processes have been formed, and new progress in shale gas seismic exploration has been achieved; Qi Baoquan et al. Evaluation of shale gas reservoirs in the southern Sichuan Basin (Natural Gas Industry, 2011, 31(4): 44-47), applying the ΔlogR method to shale gas reservoir evaluation in the southern Sichuan Basin, using porosity and resistivity The curve overlap method recognizes the influence of overlapping baseline selection and lithological changes when identifying shale gas, and explores the logging interpretation mode of shale gas. Luo Rong et al. In the article "Shale Gas Logging Evaluation and Earthquake Prediction and Monitoring Technology" (Natural Gas Industry, 2011, 31(4): 34-39), the geophysical exploration technology is discussed for the difference between shale gas and conventional reservoirs. In the application of shale gas exploration and development, and proposed to develop three-dimensional geophysical exploration, monitoring and development technology specifically for shale gas; Liu Shuanglian and Lu Huangsheng in "Shale gas logging evaluation technology characteristics and evaluation methods" (logging) Technology, 35(2): 113-116) In this paper, from the investigation of successful exploration and development examples of shale gas in North America, based on the study of reservoir geological background, the shale gas and conventional oil and gas reservoir logging evaluation methods are analyzed. The main difference. According to the shale gas exploration and development needs, the selection basis and logging evaluation technology of China's shale gas logging series are discussed. It is proposed that the shale mineral composition and reservoir structure evaluation, the establishment of shale reservoir standards, the identification of fracture types and the evaluation of rock mechanics parameters can be used as the focus of shale gas logging technology evaluation; Fu Yongqiang et al. In the article: Key Techniques for Experimental Evaluation of Fracture in Shale Gas Reservoirs (Natural Gas Industry, 2011, 31(4): 51-54), the tight sandstone gas and shale gas reservoirs are analyzed and compared from the perspective of rock elastic parameters. The characteristics of mechanical properties, the key techniques for experimental evaluation of shale rock brittleness and reservoir core sensitivity, and a large number of experimental evaluation studies, and the results of on-site pressure crack high tracer monitoring and ground microseismic fracturing monitoring results. Comparative analysis is of great significance for the development of shale gas; Liu Zhenwu et al., in the article “Requirements for geophysical technology for shale gas exploration and development” (Petroleum Geophysical Exploration, 2011, 46(5): 810-818), Demand analysis of shale gas geophysical technology and prospects for future development, clearly pointing out that geophysical technology as a key technology for shale gas reservoir evaluation and stimulation transformation will be on the page The role of gas exploration and development plays an important role; Nie et al. in the application of logging technology in the evaluation of mechanical properties of shale gas reservoirs (Journal of Engineering Geophysics, 2012, 9(4): 433-439) The application and significance of several logging methods such as acoustic, electrical imaging and array acoustic waves in the evaluation of mechanical properties of shale gas reservoirs are summarized. The limitations and applicable conditions of various logging methods are analyzed. Several logging methods can effectively evaluate the mechanical properties of shale gas reservoirs; Hao Jianfei et al. in Review of Geophysical Logging Evaluation of Shale Gas (Progress in Geophysics, 2012, 27(4): 1624-1632) One article In this paper, extensive literature research on the current status of shale gas exploration and development in foreign countries, especially in the United States, is carried out to review the current development status of foreign shale gas geophysical logging technology, and introduce common gas-containing pages for different stages of exploration and development. The rock logging series, then summarizes the shale gas logging response characteristics, and discusses in detail the important parameters of shale gas reservoir evaluation methods and reservoir evaluation, including organic carbon content, rock mineral composition and content, porosity, Gas content and rock mechanics parameters, and finally the problems and development trends of shale gas geophysical logging research.
综上所述,目前进行的页岩气勘探中,仅在试探进行测井或地震勘探技术的应用测试,尚未应用综合地球物理勘探技术评价页岩气储层的含气性前景及寻找勘探开发页岩气的甜点区,也未公开页岩气储层评价中如何综合应用地球物理勘探技术的详细描述和具体细节。In summary, in the current shale gas exploration, only the exploration and logging or seismic exploration techniques are applied, and the comprehensive geophysical exploration technology has not been applied to evaluate the gas bearing prospects of shale gas reservoirs and to seek exploration and development. The shale gas dessert area does not disclose the detailed description and specific details of how to apply geophysical exploration techniques in shale gas reservoir evaluation.
发明内容Summary of the invention
针对现有技术中存在的问题,本发明提供一种综合应用岩石物理、测井数据、全方位或宽方位三维地震数据评价页岩气储层及寻找甜点区的方法。In view of the problems existing in the prior art, the present invention provides a method for comprehensively applying petrophysical, well logging data, omnidirectional or wide-azimuth three-dimensional seismic data for evaluating shale gas reservoirs and finding a dessert zone.
本发明通过以下步骤实现:The invention is achieved by the following steps:
1)在探区所有钻井不同埋深的岩心柱上钻取不同方向岩心柱,将岩心柱抽真空并用与岩层矿化水电阻率相同的矿化水对其进行加压饱和;1) Drilling core columns of different directions on the core columns of different drilling depths in the exploration area, vacuuming the core columns and pressure-saturating them with mineralized water having the same resistivity as the mineralized water of the formation;
所述的不同方向是与地层产状垂直、水平和成45度夹角。The different directions are perpendicular to the formation of the formation, horizontal and at an angle of 45 degrees.
所述的岩心柱是直径2.5厘米,长度5厘米。The core column is 2.5 cm in diameter and 5 cm in length.
2)在实验室模拟地下围压和孔隙压力条件下,测量饱和后的岩心柱的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数,得到岩心动态和静态弹性模量的转换关系式,进行各向异性岩石物理模拟以及弹性参数计算与交会;2) Under the conditions of laboratory simulation of underground confining pressure and pore pressure, measure the dynamic and static elastic parameters of the saturated core column, the elastic wave attenuation coefficient, the dispersion effect and the anisotropy coefficient of the longitudinal and transverse wave velocity, and obtain the core dynamic and static. The transformation relationship of elastic modulus, anisotropic rock physics simulation and elastic parameter calculation and intersection;
根据交会结果,得到敏感弹性参数或敏感弹性参数的组合与页岩气甜点区参数 的对应相关关系,求取并预测页岩气甜点区的参数或参数组合;According to the results of the rendezvous, the combination of sensitive elastic parameters or sensitive elastic parameters and shale gas dessert zone parameters are obtained. Corresponding correlations, obtaining and predicting parameters or parameter combinations of shale gas dessert zones;
3)获取探区内的所有测井数据,对测区内所有钻孔的测井数据进行校正处理,消除井孔环境、井斜变化、井液变化、井温变化以及测井仪器误差等因素对测井曲线的影响,获得能够真实反映地层物理性质变化的最优测井曲线;3) Obtain all logging data in the exploration area, correct the logging data of all boreholes in the survey area, and eliminate factors such as wellbore environment, well deviation, well fluid change, well temperature change and logging instrument error. For the influence of the logging curve, obtain the optimal logging curve that can truly reflect the changes in the physical properties of the formation;
应用多矿物分析方法和岩心测试分析方法,计算地层矿物成分和含量、地层密度、纵横波速度和孔隙度,并根据全井段地球物理测井曲线建立从地表到井底的岩石物理模型;The multi-mineral analysis method and the core test analysis method are used to calculate the mineral composition and content of the formation, the formation density, the longitudinal and transverse wave velocity and the porosity, and establish a petrophysical model from the surface to the bottom of the well according to the geophysical logging curve of the whole well;
所述的最优测井曲线是消除钻孔内径变化、井斜变化、井液变化、井温变化、测井速度不均匀、井下仪器被卡住、非匀速旋转和测井仪器误差因素后,反映地层物理性质变化的最优测井曲线。The optimal logging curve is to eliminate the variation of the bore diameter, the well deviation, the well fluid change, the well temperature change, the logging speed is uneven, the downhole instrument is stuck, the non-uniform rotation and the logging instrument error factors. The optimal logging curve that reflects changes in the physical properties of the formation.
4)对校正处理后的测井曲线进行流体、孔隙度、岩性数据进行属性替换扰动分析;4) performing attribute substitution disturbance analysis on fluid, porosity and lithology data of the corrected logging curve;
所述的扰动分析是通过改变地层流体、孔隙度或岩性后得到的对应测井曲线,找出对应测井曲线变化规律。The disturbance analysis is a corresponding logging curve obtained by changing the formation fluid, porosity or lithology, and finds the variation law of the corresponding logging curve.
5)对最优测井曲线利用最优化测井原理结合矩阵求解方法做矿物组分分析,得到全井段内的矿物的含量及其分布规律,并计算矿物成分和地层总饱和度;5) Using the optimal logging principle and the matrix solution method for the optimal logging curve to analyze the mineral composition, obtain the mineral content and distribution law of the whole well segment, and calculate the mineral composition and total saturation of the formation;
所述的矿物是粘土、方解石、石英、黄铁矿、总有机碳含量(TOC)和白云岩等矿物。The minerals are minerals such as clay, calcite, quartz, pyrite, total organic carbon content (TOC) and dolomite.
所述的最优测井曲线是测井数据中的粘土矿物曲线、体积密度曲线、地层铀含量曲线、中子孔隙度曲线、电阻率曲线、纵波时差曲线和横波时差曲线。The optimal logging curve is a clay mineral curve, a bulk density curve, a formation uranium content curve, a neutron porosity curve, a resistivity curve, a longitudinal wave time difference curve and a transverse wave time difference curve in the log data.
6)建立全井段岩石物理模型,将根据岩石物理模型预测的纵波速度、横波速度、密度、纵横波波阻抗和泊松比曲线与实测的测井曲线进行对比,以预测 和实测曲线的吻合程度来验证岩石物理模型的可靠性和合理性;6) Establish a rock physics model for the whole well, and compare the longitudinal wave velocity, shear wave velocity, density, longitudinal and transverse wave impedance and Poisson's ratio curve predicted by the rock physics model with the measured logging curve to predict Verify the reliability and rationality of the petrophysical model by matching the measured curves;
7)用步骤2)的岩心柱测量的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数标定通过测井曲线计算或预测出来的结果;7) The dynamic and static elastic parameters measured by the core column of step 2), the elastic wave attenuation coefficient, the dispersion effect and the anisotropy coefficient of the longitudinal and transverse wave velocity are calibrated to calculate or predict the result through the logging curve;
8)对测井数据进行总有机碳含量、石英、粘土矿物等的岩石组分扰动分析;8) Perform analysis on the rock component of the total organic carbon content, quartz, clay minerals, etc. for the well logging data;
所述的岩石组分扰动分析是通过改变岩石物理模型中不同矿物的含量百分比,计算对应的测井曲线,根据计算出的测井曲线变化量的大小,找出所对应矿物变化最为敏感的属性参数或敏感属性参数的组合。The rock component disturbance analysis is to calculate the corresponding logging curve by changing the percentage of different minerals in the rock physics model, and find the most sensitive property of the corresponding mineral change according to the calculated variation of the logging curve. A combination of parameters or sensitive attribute parameters.
9)对各种储层属性参数进行多种属性交会,根据交会图结果得到有利页岩层段各属性特征,确定用于预测页岩气甜点区相关联的参数或参数组合;9) Performing a plurality of attribute intersections on various reservoir attribute parameters, and obtaining the attribute characteristics of the favorable shale interval according to the result of the intersection diagram, and determining parameters or parameter combinations used for predicting the shale gas dessert area;
所述的参数或参数组合是弹性模量、杨氏弹性模量、密度、剪切弹性模量、弹性模量与密度的乘积、剪切弹性模量与密度的乘积和杨氏弹性模量与密度的乘积。The parameter or parameter combination is elastic modulus, Young's modulus of elasticity, density, shear modulus, product of elastic modulus and density, product of shear modulus and density, and Young's modulus of elasticity. The product of the density.
10)利用步骤6)建立的全井段岩石物理模型,获取原始测井模型和岩石物理模型的人工合成记录或道集,进行井震标定处理,在页岩储层深度附近进行AVO(振幅随炮检距变化)和AVA(振幅随方位角变化)分析;10) Using the rock physics model of the whole well established in step 6), obtain the synthetic records or gathers of the original logging model and the petrophysical model, perform the well seismic calibration process, and perform AVO near the shale reservoir depth (amplitude Aircraft offset variation) and AVA (amplitude versus azimuth variation) analysis;
11)在探区采集全方位或宽方位三维地震数据;11) Collecting omnidirectional or wide-azimuth 3D seismic data in the exploration area;
12)在探区的井中采集二维Walkaway VSP(移动炮检距垂直地震剖面)或三维VSP(垂直地震剖面)数据;或者与地面三维地震数据同步采集二维Walkaway VSP(移动炮检距垂直地震剖面)或三维VSP(垂直地震剖面)数据;12) Collect two-dimensional Walkaway VSP (moving offset vertical seismic profile) or three-dimensional VSP (vertical seismic profile) data in the well of the exploration area; or acquire two-dimensional Walkaway VSP synchronously with ground three-dimensional seismic data (moving offset vertical seismic) Profile) or 3D VSP (Vertical Seismic Profile) data;
13)对探区内的二维或三维VSP(垂直地震剖面)数据根据井下检波器的深度和地震波从地面到达井下检波器的走时进行速度分析、偏移成像和反演,获取准确的地层速度、地层衰减系数(Q值)和各地层速度的各向异性参数;13) The 2D or 3D VSP (Vertical Seismic Profile) data in the exploration area is obtained according to the depth of the downhole detector and the travel time of the seismic wave from the ground to the downhole detector for velocity analysis, migration imaging and inversion to obtain accurate formation velocity. , formation attenuation coefficient (Q value) and anisotropic parameters of the velocity of each layer;
14)对地面全方位或宽方位三维地震数据进行高精度表层综合建模,计算 静校正量,进行静校正处理;用井约束和井中地震数据驱动处理地面地震数据,提高地面地震数据的分辨率和精度,然后进行精细切除和迭代速度计算,再完成速度建模以及三维叠前时间偏移和三维叠前深度偏移成像处理;14) High-precision surface layer comprehensive modeling of ground omnidirectional or wide-azimuth 3D seismic data, calculation Static correction, static correction processing; use well constraints and well seismic data to process ground seismic data, improve the resolution and accuracy of ground seismic data, then perform fine and iterative speed calculations, complete velocity modeling and 3D stacking Time offset and three-dimensional prestack depth migration imaging processing;
所述的表层综合建模静校正是:静校正处理、叠前去噪、振幅补偿、Q值(地层衰减)补偿、地表一致性反褶积和预测反褶积振幅相对保真处理。The surface integrated modeling static correction is: static correction processing, prestack denoising, amplitude compensation, Q value (formation attenuation) compensation, surface consistent deconvolution, and predicted deconvolution amplitude relative fidelity processing.
15)对三维叠前深度偏移成像处理后的资料进行提高分辨率处理;15) improving the resolution processing of the data after the three-dimensional prestack depth migration imaging processing;
16)用基于统计自适应信号理论的非参数化谱分析的地震道高分辨处理方法和具有保真度的高分辨地下反射信息估计方法,对三维叠前深度偏移处理后的资料进行高分辨率处理。16) Seismic high-resolution processing method based on statistical adaptive signal theory for non-parametric spectrum analysis and high-resolution subsurface reflection information estimation method with fidelity, high resolution of 3D prestack depth migration processed data Rate processing.
所述的反射信息估计方法是基于统计信号自适应处理,使用非参数谱分析方法和具有保真度的高分辨地下反射信息估计方法,在最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息的前提下,获得高分辨的复地震道集。The method for estimating reflection information is based on statistical signal adaptive processing, using a non-parametric spectrum analysis method and a high-resolution subsurface reflection information estimation method with fidelity to maximize the original seismic data information and not lose the original Under the premise of micro geological information in the data, a high-resolution complex seismic gather is obtained.
所述的反射信息估计方法基于统计信号自适应处理非参数谱分析理论,通过模拟相对干扰的统计特征,自适应地对不同时间位置的反射幅度进行稳定准确地估计,从而提高剖面分辨率,拓宽频带,能够最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息,获得保真度高分辨的复地震道集。The reflection information estimation method adaptively processes the non-parametric spectrum analysis theory based on the statistical signal, and adaptively estimates the reflection amplitude of different time positions stably and accurately by simulating the statistical characteristics of the relative interference, thereby improving the section resolution and widening. The frequency band can maximize the original seismic data information and not lose the micro geological information in the original data, and obtain the complex seismic gathers with high fidelity.
17)从三维高分辨率地震资料提取页岩储层的准确埋深、厚度、产状及平面展布;17) Extracting the exact depth, thickness, occurrence and plane distribution of shale reservoirs from three-dimensional high-resolution seismic data;
18)反演三维高分辨率叠后地震数据以获取叠后反演地震属性数据体,用于解释断层和裂缝;18) Inverting three-dimensional high-resolution post-stack seismic data to obtain post-stack inversion seismic attribute data body for explaining faults and cracks;
19)利用相干和相关属性(相似性、本征值相似性)倾角和倾角方位属性、最大最小曲率、正曲率和负曲率属性来描述并表征地下断层、裂缝裂隙和构造 边界的展布特征;19) Describe and characterize subsurface faults, fracture fissures and structures using coherence and related properties (similarity, eigenvalue similarity) dip and dip azimuth properties, maximum and minimum curvature, positive curvature and negative curvature properties Distribution characteristics of the boundary;
20)利用KSOM(无监督自适应统计模型)神经网络计算方法,通过非线性方式自动对相干性,最小和最大曲率,曲率形态指数,瞬时倾角及倾角方位等6种属性进行分类,根据裂缝密度的分布特征来确定地震相体,建立地震断裂相,绘制断层及断裂带分布数据体,用来表征地震相异常体和裂缝带;20) Using KSOM (unsupervised adaptive statistical model) neural network calculation method, automatically classify six attributes such as coherence, minimum and maximum curvature, curvature shape index, instantaneous dip angle and dip azimuth by nonlinear method, according to crack density The distribution characteristics are used to determine the seismic facies, establish the seismic fault facies, and map the fault and fault zone distribution data to characterize the seismic facies and fracture zones;
21)利用叠后属性数据进行自动断层拾取(基于相干体、本征值相似性或曲率体自动计算断面,确定宏观裂缝和小断层);21) Perform automatic tomographic picking using post-stack attribute data (automatic calculation of sections based on coherence, eigenvalue similarity or curvature, and determination of macroscopic cracks and small faults);
所述的断层拾取是基于相干体、本征值相似性或曲率体自动计算断面,确定宏观裂缝和小断层。The fault picking is to automatically calculate the section based on the coherence body, the eigenvalue similarity or the curvature body, and determine the macro crack and the small fault.
22)进行叠前地震道集的优化、去噪、拉伸改正和拉平处理;22) Perform optimization, denoising, stretching correction and leveling treatment of prestack seismic traces;
23)进行叠前地震数据的椭圆速度反演,同时根据页岩储层中层速度的变化和差异,确定地层压力并圈定页岩储层中的高压区;23) Perform elliptic velocity inversion of prestack seismic data, and determine formation pressure and delineate the high pressure zone in the shale reservoir according to the variation and difference of the middle velocity of the shale reservoir;
所述的椭圆速度反演是对RMS(均方根值)速度的方位角数据体进行椭圆速度分析,得到裂缝走向方位和纵波各向异性参数。The elliptical velocity inversion is an elliptical velocity analysis of the azimuth data volume of the RMS (root mean square) velocity, and the crack orientation and longitudinal anisotropy parameters are obtained.
24)进行三维叠前地震数据的AVO(振幅随炮检距变化)和纵横波同步波阻抗反演;所述的纵横波同步波阻抗反演是计算AVO(振幅随炮检距变化)的梯度属性,并反演角度叠加地震资料,同步得到纵波阻抗、横波阻抗以及其它派生弹性属性,特别是λρ(弹性模量与密度的乘积、μρ(剪切弹性模量与密度的乘积)、Eρ(杨氏弹性模量与密度的乘积)。24) Perform AVO (amplitude variation with offset) and longitudinal and transverse wave synchronous wave impedance inversion of 3D prestack seismic data; the longitudinal and transverse wave synchronous wave impedance inversion is to calculate the gradient of AVO (amplitude varies with offset) Attributes, and inversion angles are superimposed on seismic data, and longitudinal wave impedance, shear wave impedance and other derived elastic properties are obtained synchronously, especially λρ (product of elastic modulus and density, μρ (product of shear elastic modulus and density), Eρ ( The product of Young's modulus of elasticity and density).
25)进行三维叠前地震数据的各向异性参数的椭圆反演;25) performing an elliptical inversion of the anisotropic parameters of the three-dimensional prestack seismic data;
所述的椭圆反演是对方位角梯度和速度做椭圆反演,以得到汤姆逊(Thomsen)参数,通过岩石物理变换,将汤姆逊参数转换为目的层的地质力学各向异性参量,如杨氏模量、泊松比; The ellipse inversion is an ellipse inversion of the azimuth gradient and velocity to obtain the Thomsen parameter, and transform the Thomson parameter into the geomechanical anisotropy parameter of the target layer by rock physics transformation, such as Yang. Modulus, Poisson's ratio;
26)进行叠前地震数据的弹性模量λρ(弹性模量与密度的乘积)、μρ(剪切弹性模量与密度的乘积)、Eρ(杨氏弹性模量与密度的乘积)的椭圆反演,得到各向异性弹性模量,通过岩石物理分析,将各向异性弹性模量转换为目的层的储层参数;26) Perform the elliptical inverse of the elastic modulus λρ (the product of the elastic modulus and the density), μρ (the product of the shear elastic modulus and the density), and Eρ (the product of the Young's modulus of elasticity and the density) of the prestack seismic data. Performing an anisotropic elastic modulus, and transforming the anisotropic elastic modulus into a reservoir parameter of the target layer by petrophysical analysis;
所述的储层参数是岩石脆性、岩性、孔隙度、流体、高总有机碳(TOC)含量等。The reservoir parameters are rock brittleness, lithology, porosity, fluid, high total organic carbon (TOC) content, and the like.
27)对各种表征断层和裂缝的地震属性的联合地质解释与标定;27) Joint geological interpretation and calibration of various seismic attributes characterizing faults and fractures;
所述的联合地质解释与标定储层岩石特征参数体用测井曲线标定,裂缝用井筒成像资料和/或岩心分析资料标定,大尺度断层和微观断层用压裂微地震监测成果和井筒成像资料标定,应力各向异性用压裂微地震监测成果进行局部标定。标定过程即用计算值与实测结果进行对比,找出两者之间的差异值或相关系数,然后对计算值进行系统的改正或校正,以保证在地下局部实测点的计算值与测量结果一致。The joint geological interpretation and calibration of the reservoir rock characteristic parameters are calibrated with logging curves, the fractures are calibrated with wellbore imaging data and/or core analysis data, and the fracturing microseismic monitoring results and wellbore imaging data for large-scale faults and micro-faults are used. Calibration, stress anisotropy is partially calibrated using fracturing microseismic monitoring results. The calibration process compares the calculated value with the measured result, finds the difference value or correlation coefficient between the two, and then systematically corrects or corrects the calculated value to ensure that the calculated value of the measured part in the underground is consistent with the measured result. .
28)根据页岩层裂缝发育状况,确定可能的完井地层伤害区及压裂液干扰邻井的可能性;28) Determine the possible completion formation damage zone and the possibility of fracturing fluid interfering with adjacent wells based on the shale formation fracture conditions;
29)根据步骤2)的岩心动态和静态弹性模量的转换关系式,将三维叠前地震数据的各向异性弹性波同步反演获取的动态弹性模量转换为静态弹性模量;29) converting the dynamic elastic modulus obtained by the anisotropic elastic wave synchronous inversion of the three-dimensional prestack seismic data into a static elastic modulus according to the conversion relationship between the core dynamics and the static elastic modulus of step 2);
30)利用静态弹性模量与岩石脆性的相关性,确定页岩储层的脆性(可破裂性)分布规律和特征,优化水平井的完井和压裂方案设计;30) Using the correlation between static elastic modulus and rock brittleness, determine the distribution and characteristics of brittleness (breakability) of shale reservoirs, and optimize the completion and fracturing scheme design of horizontal wells;
所述的优化水平井的完井和压裂方案设计是将水平井布设在脆性较高且易于压裂的含高总有机碳的页岩中,并优化设计各个压裂段的间距。The completion and fracturing scheme of the optimized horizontal well is designed to lay horizontal wells in shale with high total organic carbon which is brittle and easy to fracturing, and optimize the spacing of each fracturing section.
31)利用静态弹性模量或派生静态弹性模量在页岩储层中的分布规律,圈定页岩储层中的高总有机碳(TOC)含量页岩区,确定页岩储层的脆性特征, 获取局部地应力的方位及强度,确定页岩储层中断层、裂缝和裂隙的方位走向和密集程度,预测页岩储层中的高总有机碳(TOC)含量和页岩储层中的高地层压力区;31) Using the distribution law of static elastic modulus or derived static elastic modulus in shale reservoirs, delineating the high total organic carbon (TOC) content shale zone in shale reservoirs, and determining the brittle characteristics of shale reservoirs , Obtain the azimuth and intensity of local geostress, determine the azimuthal strike and intensity of shale reservoir discontinuities, fractures and fissures, and predict high total organic carbon (TOC) content in shale reservoirs and high in shale reservoirs. Formation pressure zone;
32)综合获得的页岩气储层的各种有利参数,结合页岩储层的准确埋深、厚度、产状及平面展布,得到页岩气储层的含气性前景并圈定页岩气勘探开发的甜点区。32) Comprehensively obtained various favorable parameters of shale gas reservoirs, combined with accurate burial depth, thickness, occurrence and planar distribution of shale reservoirs, obtain gas bearing prospects of shale gas reservoirs and define shale Dessert area developed by gas exploration.
所述的有利参数,包括但不限于页岩的高总有机碳含量、页岩储层的脆性、断层、裂缝和裂隙的方位和密度、局部地应力的方位及强度、局部高压区和孔隙度分布。The advantageous parameters include, but are not limited to, high total organic carbon content of shale, brittleness of shale reservoirs, azimuth and density of faults, cracks and fissures, orientation and strength of local geostress, local high pressure zone and porosity distributed.
本发明可以分析储层参数和岩石地球物理特性之间的关系,精确确定页岩储层的准确埋深、厚度、产状及平面展布,准确地评价页岩气储层中总有机碳含量或有机质丰度的分布、预测探区内断层裂缝裂隙的发育程度、地应力的宏观和微观强度方位分布规律、计算地层的脆性和韧性特征、预测页岩储层中局部压力异常区和孔隙度分布,综合评价页岩气储层的含气性前景并圈定页岩气勘探开发的甜点区,利用综合地球物理成果进行水平井轨迹的设计和压裂方案优化,为页岩气的大规模勘探和成功开发提供重要的地球物理成果。The invention can analyze the relationship between reservoir parameters and rock geophysical properties, accurately determine the exact depth, thickness, occurrence and plane distribution of shale reservoirs, and accurately evaluate the total organic carbon content in shale gas reservoirs. Or the distribution of organic matter abundance, predicting the development degree of fault fissures in the exploration area, the macroscopic and microscopic azimuthal distribution of geostress, calculating the brittleness and toughness characteristics of the strata, and predicting local pressure anomalies and porosity in shale reservoirs. Distribution, comprehensive evaluation of the gas-bearing prospects of shale gas reservoirs and delineation of the shale gas exploration and development of dessert areas, the use of integrated geophysical results for horizontal well trajectory design and fracturing scheme optimization for large-scale exploration of shale gas And successful development provides important geophysical results.
本发明根据页岩储层的准确埋深、厚度、产状、平面展布、TOC(总有机碳含量)或有机质丰度的分布、断层裂缝裂隙的发育程度等强度方位分布规律等特征,可评价页岩气储层的含气性前景及预测甜点区分布,指导页岩气水平井轨迹的设计和压裂方案优化,为页岩气的大规模勘探和开发提供重要的地球物理技术保障。The invention according to the characteristics of accurate burial depth, thickness, occurrence, plane spread, TOC (total organic carbon content) or organic abundance distribution, development degree of fault cracks and the like, etc. Evaluate the gas-bearing prospects of shale gas reservoirs and predict the distribution of sweet spots, guide the design of shale gas horizontal well trajectory and optimize the fracturing scheme, and provide important geophysical technical support for large-scale exploration and development of shale gas.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。 The above and other objects, features, and advantages of the present invention will become more apparent and understood by the appended claims appended claims
附图说明DRAWINGS
图1为应用综合地球物理勘探技术评价页岩气储层及寻找甜点区的方法流程示意图。Figure 1 is a schematic flow chart of a method for evaluating shale gas reservoirs and searching for dessert zones using integrated geophysical exploration techniques.
具体实施方式detailed description
以下结合附图详细说明本发明。The invention will be described in detail below with reference to the accompanying drawings.
本发明通过以下步骤(如图1所示)来实现:The invention is implemented by the following steps (shown in Figure 1):
1)在探区所有钻井不同埋深的岩心柱上钻取不同方向岩心柱,将岩心柱抽真空并用与岩层矿化水电阻率相同的矿化水对其进行加压饱和。不同方向是与地层产状垂直、水平和成45度夹角,岩心柱是直径2.5厘米,长度5厘米。1) Drilling core columns of different directions on the core columns of different drilling depths in the exploration area, vacuuming the core columns and pressure-saturating them with mineralized water with the same resistivity of the mineralized water of the formation. The different directions are perpendicular to the formation of the formation, horizontal and at an angle of 45 degrees. The core column is 2.5 cm in diameter and 5 cm in length.
2)在实验室模拟地下围压和孔隙压力条件下,测量饱和后的岩心柱的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数,得到岩心动态和静态弹性模量的转换关系式,进行各向异性岩石物理模拟以及弹性参数计算与交会。根据交会结果,得到敏感弹性参数或敏感弹性参数的组合与页岩气甜点区参数的对应相关关系,求取并预测页岩气甜点区的参数或参数组合。2) Under the conditions of laboratory simulation of underground confining pressure and pore pressure, measure the dynamic and static elastic parameters of the saturated core column, the elastic wave attenuation coefficient, the dispersion effect and the anisotropy coefficient of the longitudinal and transverse wave velocity, and obtain the core dynamic and static. The transformation relationship of elastic modulus, anisotropic rock physics simulation and elastic parameter calculation and intersection. According to the results of the rendezvous, the corresponding correlation between the sensitive elastic parameters or the sensitive elastic parameters and the parameters of the shale gas dessert zone are obtained, and the parameters or parameter combinations of the shale gas dessert zone are obtained and predicted.
步骤1)和2)是图1中左侧的岩心动态和静态弹性参数的测定和分析计算。3)获取探区内的所有测井数据,对测区内所有钻孔的测井数据进行校正处理,消除井孔环境、井斜变化、井液变化、井温变化以及测井仪器误差等因素对测井曲线的影响,获得能够真实反映地层物理性质变化的最优测井曲线。应用多矿物分析方法和岩心测试分析方法,计算地层矿物成分和含量、地层密度、纵横波速度和孔隙度,并根据全井段地球物理测井曲线建立从地表到井底的岩石物理模型。最优测井曲线是消除钻孔内径变化、井斜变化、井液变化、井温变化、测井速度不均匀、井下仪器被卡住、非匀速旋转和测井仪器误差因素后, 反映地层物理性质变化的最优测井曲线。Steps 1) and 2) are the measurement and analytical calculations of the core dynamic and static elastic parameters on the left side of Figure 1. 3) Obtain all logging data in the exploration area, correct the logging data of all boreholes in the survey area, and eliminate factors such as wellbore environment, well deviation, well fluid change, well temperature change and logging instrument error. For the influence of the logging curve, obtain the optimal logging curve that can truly reflect the changes in the physical properties of the formation. The multi-mineral analysis method and core test analysis method were used to calculate the mineral composition and content of the formation, the formation density, the longitudinal and transverse wave velocity and the porosity, and the rock physical model from the surface to the bottom of the well was established based on the geophysical logging curve of the whole well. The optimal logging curve is to eliminate the variation of bore diameter, well deviation, well fluid change, well temperature change, uneven logging speed, stuck downhole instrument, non-uniform rotation and logging instrument error factors. The optimal logging curve that reflects changes in the physical properties of the formation.
4)对校正处理后的测井曲线进行流体、孔隙度、岩性数据进行属性替换扰动分析。4) Perform attribute substitution disturbance analysis on fluid, porosity and lithology data of the corrected logging curve.
扰动分析是通过改变地层流体、孔隙度或岩性后得到的对应测井曲线,找出对应测井曲线变化规律。Disturbance analysis is to find the corresponding logging curve by changing the corresponding logging curve obtained by the formation fluid, porosity or lithology.
5)对最优测井曲线利用最优化测井原理结合矩阵求解方法做矿物组分分析,得到全井段内的矿物的含量及其分布规律,并计算矿物成分和地层总饱和度。矿物是粘土、方解石、石英、黄铁矿、总有机碳含量(TOC)和白云岩等矿物。最优测井曲线是测井数据中的粘土矿物曲线、体积密度曲线、地层铀含量曲线、中子孔隙度曲线、电阻率曲线、纵波时差曲线和横波时差曲线。5) For the optimal logging curve, the optimized logging principle and the matrix solving method are used to analyze the mineral composition, and the mineral content and distribution law in the whole well are obtained, and the mineral composition and total saturation of the formation are calculated. Minerals are minerals such as clay, calcite, quartz, pyrite, total organic carbon (TOC) and dolomite. The optimal logging curve is the clay mineral curve, volume density curve, formation uranium content curve, neutron porosity curve, resistivity curve, longitudinal wave time difference curve and transverse wave time difference curve in the logging data.
6)建立全井段岩石物理模型,将根据岩石物理模型预测的纵波速度、横波速度、密度、纵横波波阻抗和泊松比曲线与实测的测井曲线进行对比,以预测和实测曲线的吻合程度来验证岩石物理模型的可靠性和合理性。6) Establish a rock physics model for the whole well, and compare the longitudinal wave velocity, shear wave velocity, density, longitudinal and transverse wave impedance and Poisson's ratio curve predicted by the rock physics model with the measured log curve to predict the coincidence with the measured curve. To verify the reliability and rationality of the rock physics model.
7)用步骤2)的岩心柱测量的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数标定通过测井曲线计算或预测出来的结果。7) The dynamic and static elastic parameters measured by the core column of step 2), the elastic wave attenuation coefficient, the dispersion effect, and the longitudinal and transverse wave velocity anisotropy coefficients are calibrated to calculate or predict the results through the well log.
8)对测井数据进行总有机碳含量、石英、粘土矿物等的岩石组分扰动分析。岩石组分扰动分析是通过改变岩石物理模型中不同矿物的含量百分比,计算对应的测井曲线,根据计算出的测井曲线变化量的大小,找出所对应矿物变化最为敏感的属性参数或敏感属性参数的组合。8) Analysis of rock component perturbation of total organic carbon content, quartz, clay minerals, etc. The rock component disturbance analysis is to calculate the corresponding logging curve by changing the percentage of different minerals in the rock physics model. According to the calculated variation of the logging curve, find the most sensitive attribute parameter or sensitivity of the corresponding mineral change. A combination of attribute parameters.
9)对各种储层属性参数进行多种属性交会,根据交会图结果得到有利页岩层段各属性特征,确定用于预测页岩气甜点区相关联的参数或参数组合。参数或参数组合是弹性模量、杨氏弹性模量、密度、剪切弹性模量、弹性模量与密度的乘积、剪切弹性模量与密度的乘积和杨氏弹性模量与密度的乘积。 9) Perform a variety of attribute intersections on various reservoir attribute parameters, and obtain the attributes of the favorable shale interval according to the results of the intersection diagram, and determine the parameters or parameter combinations used to predict the shale gas dessert area. The parameter or parameter combination is the product of elastic modulus, Young's modulus of elasticity, density, shear modulus, product of elastic modulus and density, product of shear modulus and density, and product of Young's modulus of elasticity and density. .
10)利用步骤6)建立的全井段岩石物理模型,获取原始测井模型和岩石物理模型的人工合成记录或道集,进行井震标定处理,在页岩储层深度附近进行AVO(振幅随炮检距变化)和AVA(振幅随方位角变化)分析。10) Using the rock physics model of the whole well established in step 6), obtain the synthetic records or gathers of the original logging model and the petrophysical model, perform the well seismic calibration process, and perform AVO near the shale reservoir depth (amplitude The offset of the offset is analyzed) and the AVA (amplitude varies with azimuth).
步骤3)到步骤10)是图1中对测井数据进行校正、矿物组分计算、地球物理测井数据分析及岩石物理建模、岩石组分和属性替换扰动分析、人工合成记录和AVO/AVA道集分析等工作。Steps 3) through 10) are the calibration of logging data, mineral composition calculations, geophysical logging data analysis and petrophysical modeling, rock composition and attribute replacement disturbance analysis, synthetic recording and AVO/ AVA gather analysis and other work.
11)在探区采集全方位或宽方位三维地震数据。11) Collect omnidirectional or wide-azimuth 3D seismic data in the exploration area.
12)在探区的井中采集二维Walkaway VSP(移动炮检距垂直地震剖面)或三维VSP(垂直地震剖面)数据;或者与地面三维地震数据同步采集二维Walkaway VSP(移动炮检距垂直地震剖面)或三维VSP(垂直地震剖面)数据。12) Collect two-dimensional Walkaway VSP (moving offset vertical seismic profile) or three-dimensional VSP (vertical seismic profile) data in the well of the exploration area; or acquire two-dimensional Walkaway VSP synchronously with ground three-dimensional seismic data (moving offset vertical seismic) Profile) or 3D VSP (Vertical Seismic Profile) data.
13)对探区内的二维或三维VSP(垂直地震剖面)数据根据井下检波器的深度和地震波从地面到达井下检波器的走时进行速度分析、偏移成像和反演,获取准确的地层速度、地层衰减系数(Q值)和各地层速度的各向异性参数。13) The 2D or 3D VSP (Vertical Seismic Profile) data in the exploration area is obtained according to the depth of the downhole detector and the travel time of the seismic wave from the ground to the downhole detector for velocity analysis, migration imaging and inversion to obtain accurate formation velocity. , formation attenuation coefficient (Q value) and anisotropy parameters of the velocity of each layer.
14)对地面全方位或宽方位三维地震数据进行高精度表层综合建模,计算静校正量,进行静校正处理;用井约束和井中地震数据驱动处理地面地震数据,提高地面地震数据的分辨率和精度,然后进行精细切除和迭代速度计算,再完成速度建模以及三维叠前时间偏移和三维叠前深度偏移成像处理。表层综合建模静校正是:静校正处理、叠前去噪、振幅补偿、Q值(地层衰减)补偿、地表一致性反褶积和预测反褶积振幅相对保真处理。14) Perform high-precision surface comprehensive modeling on ground omnidirectional or wide-azimuth 3D seismic data, calculate static correction amount, perform static correction processing; use well constraint and well seismic data to process ground seismic data and improve ground seismic data resolution And precision, then fine cut and iterative speed calculation, and then complete the speed modeling and 3D prestack time migration and 3D prestack depth migration imaging processing. The surface integrated modeling static correction is: static correction processing, prestack denoising, amplitude compensation, Q value (formation attenuation) compensation, surface consistent deconvolution, and predicted deconvolution amplitude relative fidelity processing.
步骤11)到步骤14)是采集全方位或宽方位三维地震数据和二维移动炮检距垂直地震剖面或三维垂直地震剖面数据,并进行垂直地震剖面数据的处理和用井约束和井中地震数据驱动处理地面地震数据处理。Steps 11) to 14) are to collect omnidirectional or wide-azimuth 3D seismic data and 2D moving offset vertical seismic profile or 3D vertical seismic profile data, and process vertical seismic profile data and use well constraints and well seismic data. Drive to process ground seismic data processing.
15)对三维叠前深度偏移成像处理后的资料进行提高分辨率处理。 15) Improve the resolution processing of the data after the three-dimensional prestack depth migration imaging processing.
16)用基于统计自适应信号理论的非参数化谱分析的地震道高分辨处理方法和具有保真度的高分辨地下反射信息估计方法,对三维叠前深度偏移处理后的资料进行高分辨率处理。反射信息估计方法是基于统计信号自适应处理,使用非参数谱分析方法和具有保真度的高分辨地下反射信息估计方法,在最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息的前提下,获得高分辨的复地震道集。反射信息估计方法基于统计信号自适应处理非参数谱分析理论,通过模拟相对干扰的统计特征,自适应地对不同时间位置的反射幅度进行稳定准确地估计,从而提高剖面分辨率,拓宽频带,能够最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息,获得保真度高分辨的复地震道集。16) Seismic high-resolution processing method based on statistical adaptive signal theory for non-parametric spectrum analysis and high-resolution subsurface reflection information estimation method with fidelity, high resolution of 3D prestack depth migration processed data Rate processing. The reflection information estimation method is based on statistical signal adaptive processing, using non-parametric spectrum analysis method and high-resolution subsurface reflection information estimation method with fidelity to minimize the original seismic data information and not lose the original data. Under the premise of geological information, a high-resolution complex seismic gather is obtained. The reflection information estimation method is based on the statistical signal adaptive processing non-parametric spectrum analysis theory. By simulating the statistical characteristics of relative interference, the reflection amplitude of different time positions can be adaptively estimated stably and accurately, thereby improving the profile resolution and broadening the frequency band. Maximize the original seismic data information and not lose the micro geological information in the original data, and obtain the complex seismic gathers with high fidelity.
17)从三维高分辨率地震资料提取页岩储层的准确埋深、厚度、产状及平面展布。17) Extract the exact depth, thickness, occurrence and plane distribution of shale reservoirs from three-dimensional high-resolution seismic data.
步骤15)到步骤17)是对三维叠前深度偏移成像处理后的资料进行提高分辨率处理并进行页岩储层的构造解释,提取页岩储层的准确埋深、厚度、产状及平面展布等信息。Steps 15) to 17) are to improve the resolution processing of the data after the three-dimensional prestack depth migration imaging process and to construct the shale reservoir, to extract the exact depth, thickness, and occurrence of the shale reservoir. Information such as plane spreads.
18)反演三维高分辨率叠后地震数据以获取叠后反演地震属性数据体,用于解释断层和裂缝。18) Inverting the three-dimensional high-resolution post-stack seismic data to obtain the post-stack inversion seismic attribute data body for explaining faults and cracks.
19)利用相干和相关属性(相似性、本征值相似性)倾角和倾角方位属性、最大最小曲率、正曲率和负曲率属性来描述并表征地下断层、裂缝裂隙和构造边界的展布特征。19) Using coherence and related properties (similarity, eigenvalue similarity) dip and dip azimuth properties, maximum and minimum curvature, positive curvature and negative curvature properties to describe and characterize the distribution characteristics of subsurface faults, fracture fissures and structural boundaries.
20)利用KSOM(无监督自适应统计模型)神经网络计算方法,通过非线性方式自动对相干性,最小和最大曲率,曲率形态指数,瞬时倾角及倾角方位等6种属性进行分类,根据裂缝密度的分布特征来确定(公知技术)地震相体, 建立地震断裂相,绘制断层及断裂带分布数据体,用来表征地震相异常体和裂缝带。20) Using KSOM (unsupervised adaptive statistical model) neural network calculation method, automatically classify six attributes such as coherence, minimum and maximum curvature, curvature shape index, instantaneous dip angle and dip azimuth by nonlinear method, according to crack density Distribution characteristics to determine (known techniques) seismic facies, The seismic fault facies are established, and the fault and fault zone distribution data bodies are drawn to characterize the seismic phase anomalies and fracture zones.
21)利用叠后属性数据进行自动断层拾取(基于相干体、本征值相似性或曲率体自动计算断面,确定宏观裂缝和小断层)。断层拾取是基于相干体、本征值相似性或曲率体自动计算断面,确定宏观裂缝和小断层。21) Automatic tomographic picking using post-stack attribute data (automatic calculation of sections based on coherence, eigenvalue similarity or curvature) to determine macroscopic cracks and small faults). Fault picking is the automatic calculation of sections based on coherence, eigenvalue similarity or curvature, to determine macroscopic cracks and small faults.
步骤18)到步骤21)是对三维高分辨率叠后地震数据进行反演处理,神经网络计算,然后获取地下断层、裂缝裂隙和构造边界的展布特征。Steps 18) to 21) are the inversion processing of the three-dimensional high-resolution post-stack seismic data, the neural network calculation, and then the distribution features of the subsurface fault, the fracture fissure and the structural boundary.
22)进行叠前地震道集的优化、去噪、拉伸改正和拉平处理。包括分方位速度分析、分方位、分角度以及全角度叠加等处理步骤。22) Perform optimization, denoising, stretching correction and leveling of prestack seismic traces. It includes processing steps such as sub-azimuth velocity analysis, sub-azimuth, sub-angle and full-angle superposition.
23)进行叠前地震数据的椭圆速度反演,同时根据页岩储层中层速度的变化和差异,确定地层压力并圈定页岩储层中的高压区。所述的椭圆速度反演是对RMS(均方根值)速度的方位角数据体进行椭圆速度分析,得到裂缝走向方位和纵波各向异性参数。23) Perform elliptic velocity inversion of prestack seismic data, and determine formation pressure and delineate high pressure zones in shale reservoirs based on changes and differences in shale reservoir mid-layer velocity. The elliptical velocity inversion is an elliptical velocity analysis of the azimuth data volume of the RMS (root mean square) velocity, and the crack orientation and longitudinal anisotropy parameters are obtained.
24)进行三维叠前地震数据的AVO(振幅随炮检距变化)和纵横波同步波阻抗反演。纵横波同步波阻抗反演是计算AVO(振幅随炮检距变化)的梯度属性,并反演角度叠加地震资料,同步得到纵波阻抗、横波阻抗以及其它派生弹性属性,特别是λρ(弹性模量与密度的乘积、μρ(剪切弹性模量与密度的乘积)、Eρ(杨氏弹性模量与密度的乘积)。24) AVO (amplitude varies with offset) and longitudinal and transverse wave synchronous wave impedance inversion for 3D prestack seismic data. The longitudinal and transverse wave synchronous wave impedance inversion is to calculate the gradient property of AVO (the amplitude varies with the offset), and invert the angular superimposed seismic data to obtain the longitudinal wave impedance, the shear wave impedance and other derived elastic properties, especially λρ (elastic modulus). The product of the density, μρ (the product of the shear elastic modulus and the density), and Eρ (the product of the Young's modulus of elasticity and the density).
25)进行三维叠前地震数据的各向异性参数的椭圆反演。椭圆反演是对方位角梯度和速度做椭圆反演,以得到汤姆逊(Thomsen)参数,通过岩石物理变换,将汤姆逊参数转换为目的层的地质力学各向异性参量,如杨氏模量、泊松比。25) Ellipse inversion of anisotropic parameters of three-dimensional prestack seismic data. Ellipse inversion is an ellipse inversion of the azimuthal gradient and velocity to obtain the Thomsen parameter, which converts the Thomson parameter into the geomechanical anisotropy parameter of the target layer, such as Young's modulus. ,Poisson's ratio.
26)进行叠前地震数据的弹性模量λρ(弹性模量与密度的乘积)、μρ(剪 切弹性模量与密度的乘积)、Eρ(杨氏弹性模量与密度的乘积)的椭圆反演,得到各向异性弹性模量,通过岩石物理分析,将各向异性弹性模量转换为目的层的储层参数。储层参数是岩石脆性、岩性、孔隙度、流体、高总有机碳(TOC)含量等。26) Perform the elastic modulus λρ (the product of the elastic modulus and the density) of the prestack seismic data, μρ (shear An elliptical inversion of the product of the elastic modulus and density, and the product of Eρ (the product of Young's modulus of elasticity and density), the anisotropic elastic modulus is obtained, and the anisotropic elastic modulus is converted into a purpose by petrophysical analysis. Reservoir parameters of the layer. Reservoir parameters are rock brittleness, lithology, porosity, fluid, and high total organic carbon (TOC) content.
步骤22)到步骤26)是对叠前地震道集进行优化、反演处理,将反演得到的弹性模量转换为目的层的储层参数,如岩石脆性、岩性、孔隙度、流体、高总有机碳(TOC)含量等。Step 22) to step 26) are to optimize and invert the prestack seismic trace set, and convert the elastic modulus obtained by the inversion into reservoir parameters of the target layer, such as rock brittleness, lithology, porosity, fluid, High total organic carbon (TOC) content, etc.
27)对各种表征断层和裂缝的地震属性的联合地质解释与标定。联合地质解释与标定储层岩石特征参数体用测井曲线标定,裂缝用井筒成像资料和/或岩心分析资料标定,大尺度断层和微观断层用压裂微地震监测成果和井筒成像资料标定,应力各向异性用压裂微地震监测成果进行局部标定。标定过程即用计算值与实测结果进行对比,找出两者之间的差异值或相关系数,然后对计算值进行系统的改正或校正,以保证在地下局部实测点的计算值与测量结果一致。27) Joint geological interpretation and calibration of various seismic attributes characterizing faults and fractures. Joint geological interpretation and calibration of reservoir rock characteristic parameters are calibrated with logging curves, fractures are verified by wellbore imaging data and/or core analysis data, large-scale faults and micro-faults are measured by fracturing microseismic monitoring results and wellbore imaging data, stress Anisotropic fracturing microseismic monitoring results were used for local calibration. The calibration process compares the calculated value with the measured result, finds the difference value or correlation coefficient between the two, and then systematically corrects or corrects the calculated value to ensure that the calculated value of the measured part in the underground is consistent with the measured result. .
28)根据页岩层裂缝发育状况,确定可能的完井地层伤害区及压裂液干扰邻井的可能性。28) Determine the possible completion formation damage zone and the possibility of fracturing fluid interfering with adjacent wells based on the shale formation fracture conditions.
29)根据步骤2)的岩心动态和静态弹性模量的转换关系式,将三维叠前地震数据的各向异性弹性波同步反演获取的动态弹性模量转换为静态弹性模量。29) According to the conversion relationship between the core dynamics and the static elastic modulus of step 2), the dynamic elastic modulus obtained by the anisotropic elastic wave synchronous inversion of the three-dimensional prestack seismic data is converted into the static elastic modulus.
30)利用静态弹性模量与岩石脆性的相关性,确定页岩储层的脆性(可破裂性)分布规律和特征,优化水平井的完井和压裂方案设计。优化水平井的完井和压裂方案设计是将水平井布设在脆性较高且易于压裂的含高总有机碳的页岩中,并优化设计各个压裂段的间距。30) Using the correlation between static elastic modulus and rock brittleness, determine the distribution and characteristics of brittleness (breakability) of shale reservoirs, and optimize the completion and fracturing scheme design of horizontal wells. The completion and fracturing schemes for optimizing horizontal wells are designed to lay horizontal wells in shale with high total organic carbon that is brittle and prone to fracturing, and optimize the spacing of each fracturing section.
31)利用静态弹性模量或派生静态弹性模量在页岩储层中的分布规律,圈定页岩储层中的高总有机碳(TOC)含量页岩区,确定页岩储层的脆性特征, 获取局部地应力的方位及强度,确定页岩储层中断层、裂缝和裂隙的方位走向和密集程度,预测页岩储层中的高总有机碳(TOC)含量和页岩储层中的高地层压力区。31) Using the distribution law of static elastic modulus or derived static elastic modulus in shale reservoirs, delineating the high total organic carbon (TOC) content shale zone in shale reservoirs, and determining the brittle characteristics of shale reservoirs , Obtain the azimuth and intensity of local geostress, determine the azimuthal strike and intensity of shale reservoir discontinuities, fractures and fissures, and predict high total organic carbon (TOC) content in shale reservoirs and high in shale reservoirs. Formation pressure zone.
32)综合获得的页岩气储层的各种有利参数,结合页岩储层的准确埋深、厚度、产状及平面展布,得到页岩气储层的含气性前景并圈定页岩气勘探开发的甜点区。32) Comprehensively obtained various favorable parameters of shale gas reservoirs, combined with accurate burial depth, thickness, occurrence and planar distribution of shale reservoirs, obtain gas bearing prospects of shale gas reservoirs and define shale Dessert area developed by gas exploration.
步骤27)到步骤32)是对各种表征断层和裂缝的地震属性的联合地质解释与标定。并通过综合解释得到页岩气储层的页岩气储层的各种有利参数,最后确定含气性前景并圈定页岩气勘探开发的甜点区(见图1下方的定量分析流程)。Steps 27) through 32) are joint geological interpretations and calibrations of various seismic attributes that characterize faults and fractures. Through comprehensive interpretation, we obtain various favorable parameters of shale gas reservoirs in shale gas reservoirs, and finally determine the gas-bearing prospects and delineate the shale gas exploration and development of dessert areas (see the quantitative analysis process below in Figure 1).
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。 The principles and embodiments of the present invention have been described in connection with the specific embodiments of the present invention. The description of the above embodiments is only for the understanding of the method of the present invention and the core idea thereof. At the same time, for those skilled in the art, according to the present invention The present invention is not limited by the scope of the present invention.

Claims (20)

  1. 一种评价页岩气储层及寻找甜点区的方法,其特征在于,通过以下步骤实现:A method for evaluating a shale gas reservoir and finding a dessert zone, which is characterized by the following steps:
    1)在探区所有钻井不同埋深的岩心柱上钻取不同方向岩心柱,将岩心柱抽真空并用与岩层矿化水电阻率相同的矿化水对其进行加压饱和;1) Drilling core columns of different directions on the core columns of different drilling depths in the exploration area, vacuuming the core columns and pressure-saturating them with mineralized water having the same resistivity as the mineralized water of the formation;
    2)在实验室模拟地下围压和孔隙压力条件下,测量饱和后的岩心柱的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数,得到岩心动态和静态弹性模量的转换关系式,进行各向异性岩石物理模拟以及弹性参数计算与交会;2) Under the conditions of laboratory simulation of underground confining pressure and pore pressure, measure the dynamic and static elastic parameters of the saturated core column, the elastic wave attenuation coefficient, the dispersion effect and the anisotropy coefficient of the longitudinal and transverse wave velocity, and obtain the core dynamic and static. The transformation relationship of elastic modulus, anisotropic rock physics simulation and elastic parameter calculation and intersection;
    根据交会结果,得到敏感弹性参数或敏感弹性参数的组合与页岩气甜点区参数的对应相关关系,求取并预测页岩气甜点区的参数或参数组合;According to the results of the rendezvous, the corresponding correlation between the sensitive elastic parameters or the sensitive elastic parameters and the parameters of the shale gas dessert zone are obtained, and the parameters or parameter combinations of the shale gas dessert zone are obtained and predicted;
    3)获取探区内的所有测井数据,对测区内所有钻孔的测井数据进行校正处理,消除井孔环境、井斜变化、井液变化、井温变化以及测井仪器误差等因素对测井曲线的影响,获得能够真实反映地层物理性质变化的最优测井曲线;3) Obtain all logging data in the exploration area, correct the logging data of all boreholes in the survey area, and eliminate factors such as wellbore environment, well deviation, well fluid change, well temperature change and logging instrument error. For the influence of the logging curve, obtain the optimal logging curve that can truly reflect the changes in the physical properties of the formation;
    应用多矿物分析方法和岩心测试分析方法,计算地层矿物成分和含量、地层密度、纵横波速度和孔隙度,并根据全井段地球物理测井曲线建立从地表到井底的岩石物理模型;The multi-mineral analysis method and the core test analysis method are used to calculate the mineral composition and content of the formation, the formation density, the longitudinal and transverse wave velocity and the porosity, and establish a petrophysical model from the surface to the bottom of the well according to the geophysical logging curve of the whole well;
    4)对校正处理后的测井曲线进行流体、孔隙度、岩性数据进行属性替换扰动分析;4) performing attribute substitution disturbance analysis on fluid, porosity and lithology data of the corrected logging curve;
    5)对最优测井曲线利用最优化测井原理结合矩阵求解方法做矿物组分分析,得到全井段内的矿物的含量及其分布规律,并计算矿物成分和地层总饱和度;5) Using the optimal logging principle and the matrix solution method for the optimal logging curve to analyze the mineral composition, obtain the mineral content and distribution law of the whole well segment, and calculate the mineral composition and total saturation of the formation;
    6)建立全井段岩石物理模型,将根据岩石物理模型预测的纵波速度、横波 速度、密度、纵横波波阻抗和泊松比曲线与实测的测井曲线进行对比,以预测和实测曲线的吻合程度来验证岩石物理模型的可靠性和合理性;6) Establish a rock physics model for the whole well, and predict the longitudinal wave velocity and shear wave according to the rock physics model. The velocity, density, longitudinal and transverse wave impedance and Poisson's ratio curve are compared with the measured log curves. The reliability and rationality of the petrophysical model are verified by the degree of agreement between the predicted and measured curves.
    7)用步骤2)的岩心柱测量的动态和静态弹性参数、弹性波衰减系数、频散效应和纵横波速度各向异性系数标定通过测井曲线计算或预测出来的结果;7) The dynamic and static elastic parameters measured by the core column of step 2), the elastic wave attenuation coefficient, the dispersion effect and the anisotropy coefficient of the longitudinal and transverse wave velocity are calibrated to calculate or predict the result through the logging curve;
    8)对测井数据进行总有机碳含量、石英、粘土矿物等的岩石组分扰动分析;8) Perform analysis on the rock component of the total organic carbon content, quartz, clay minerals, etc. for the well logging data;
    9)对各种储层属性参数进行多种属性交会,根据交会图结果得到有利页岩层段各属性特征,确定用于预测页岩气甜点区相关联的参数或参数组合;9) Performing a plurality of attribute intersections on various reservoir attribute parameters, and obtaining the attribute characteristics of the favorable shale interval according to the result of the intersection diagram, and determining parameters or parameter combinations used for predicting the shale gas dessert area;
    10)利用步骤6)建立的全井段岩石物理模型,获取原始测井模型和岩石物理模型的人工合成记录或道集,进行井震标定处理,在页岩储层深度附近进行振幅随炮检距变化和振幅随方位角变化分析;10) Using the rock physics model of the whole well established in step 6), obtain the synthetic records or gathers of the original logging model and the petrophysical model, perform the well seismic calibration, and perform amplitude detection along the shale reservoir depth. Distance change and amplitude as azimuth change analysis;
    11)在探区采集全方位或宽方位三维地震数据;11) Collecting omnidirectional or wide-azimuth 3D seismic data in the exploration area;
    12)在探区的井中采集二维移动炮检距垂直地震剖面或三维垂直地震剖面数据;或者与地面三维地震数据同步采集二维移动炮检距垂直地震剖面或三维垂直地震剖面数据;12) collecting two-dimensional moving offset vertical seismic section or three-dimensional vertical seismic section data in the well of the exploration area; or acquiring two-dimensional moving offset vertical seismic section or three-dimensional vertical seismic section data simultaneously with the ground three-dimensional seismic data;
    13)对探区内的二维或三维垂直地震剖面数据根据井下检波器的深度和地震波从地面到达井下检波器的走时进行速度分析、偏移成像和反演,获取准确的地层速度、地层衰减系数和各地层速度的各向异性参数;13) The 2D or 3D vertical seismic section data in the exploration area is obtained according to the depth of the downhole detector and the velocity analysis, offset imaging and inversion of the seismic wave from the ground to the downhole detector to obtain accurate formation velocity and formation attenuation. Coefficient and anisotropic parameters of the velocity of each layer;
    14)对地面全方位或宽方位三维地震数据进行高精度表层综合建模,计算静校正量,进行静校正处理;用井约束和井中地震数据驱动处理地面地震数据,提高地面地震数据的分辨率和精度,然后进行精细切除和迭代速度计算,再完成速度建模以及三维叠前时间偏移和三维叠前深度偏移成像处理;14) Perform high-precision surface comprehensive modeling on ground omnidirectional or wide-azimuth 3D seismic data, calculate static correction amount, perform static correction processing; use well constraint and well seismic data to process ground seismic data and improve ground seismic data resolution And precision, then perform fine cut and iterative speed calculations, then complete speed modeling and 3D prestack time migration and 3D prestack depth migration imaging processing;
    15)对三维叠前深度偏移成像处理后的资料进行提高分辨率处理; 15) improving the resolution processing of the data after the three-dimensional prestack depth migration imaging processing;
    16)用基于统计自适应信号理论的非参数化谱分析的地震道高分辨处理方法和具有保真度的高分辨地下反射信息估计方法,对三维叠前深度偏移处理后的资料进行高分辨率处理。16) Seismic high-resolution processing method based on statistical adaptive signal theory for non-parametric spectrum analysis and high-resolution subsurface reflection information estimation method with fidelity, high resolution of 3D prestack depth migration processed data Rate processing.
    17)从三维高分辨率地震资料提取页岩储层的准确埋深、厚度、产状及平面展布;17) Extracting the exact depth, thickness, occurrence and plane distribution of shale reservoirs from three-dimensional high-resolution seismic data;
    18)反演三维高分辨率叠后地震数据以获取叠后反演地震属性数据体,用于解释断层和裂缝;18) Inverting three-dimensional high-resolution post-stack seismic data to obtain post-stack inversion seismic attribute data body for explaining faults and cracks;
    19)利用相干和相关属性倾角和倾角方位属性、最大最小曲率、正曲率和负曲率属性来描述并表征地下断层、裂缝裂隙和构造边界的展布特征;19) Descriptive and characterizing the distribution characteristics of underground faults, fracture fissures and structural boundaries using coherence and related attribute dip and dip azimuth properties, maximum and minimum curvature, positive curvature and negative curvature properties;
    20)利用无监督自适应统计模型神经网络计算方法,通过非线性方式自动对相干性,最小和最大曲率,曲率形态指数,瞬时倾角及倾角方位属性进行分类,根据裂缝密度的分布特征来确定地震相体,建立地震断裂相,绘制断层及断裂带分布数据体,用来表征地震相异常体和裂缝带;20) Using the unsupervised adaptive statistical model neural network calculation method, the coherence, minimum and maximum curvature, curvature shape index, instantaneous dip and dip azimuth attributes are automatically classified by nonlinear method, and the earthquake is determined according to the distribution characteristics of the crack density. Phase body, establish seismic fault facies, draw fault and distribution data of fault zone, used to characterize seismic phase anomalies and fracture zones;
    21)利用叠后属性数据进行自动断层拾取;21) performing automatic tomographic picking using post-stack attribute data;
    22)进行叠前地震道集的优化、去噪、拉伸改正和拉平处理;22) Perform optimization, denoising, stretching correction and leveling treatment of prestack seismic traces;
    23)进行叠前地震数据的椭圆速度反演,同时根据页岩储层中层速度的变化和差异,确定地层压力并圈定页岩储层中的高压区;23) Perform elliptic velocity inversion of prestack seismic data, and determine formation pressure and delineate the high pressure zone in the shale reservoir according to the variation and difference of the middle velocity of the shale reservoir;
    24)进行三维叠前地震数据的振幅随炮检距变化和纵横波同步波阻抗反演;24) Performing the amplitude of the three-dimensional prestack seismic data with the offset of the offset and the inversion of the longitudinal and transverse wave synchronous wave impedance;
    25)进行三维叠前地震数据的各向异性参数的椭圆反演;25) performing an elliptical inversion of the anisotropic parameters of the three-dimensional prestack seismic data;
    26)进行叠前地震数据的弹性模量λρ弹性模量与密度的乘积、μρ剪切弹性模量与密度的乘积、Eρ杨氏弹性模量与密度的乘积的椭圆反演,得到各向异性弹性模量,通过岩石物理分析,将各向异性弹性模量转换为目的层的储层参数; 26) Elliptic inversion of the product of the elastic modulus λρ elastic modulus and density of the prestack seismic data, the product of the μρ shear elastic modulus and the density, and the product of the Eρ Young's modulus of elasticity and the density The modulus of elasticity, through the petrophysical analysis, converts the anisotropic elastic modulus into the reservoir parameters of the target layer;
    27)对各种表征断层和裂缝的地震属性的联合地质解释与标定;27) Joint geological interpretation and calibration of various seismic attributes characterizing faults and fractures;
    28)根据页岩层裂缝发育状况,确定可能的完井地层伤害区及压裂液干扰邻井的可能性;28) Determine the possible completion formation damage zone and the possibility of fracturing fluid interfering with adjacent wells based on the shale formation fracture conditions;
    29)根据步骤2)的岩心动态和静态弹性模量的转换关系式,将三维叠前地震数据的各向异性弹性波同步反演获取的动态弹性模量转换为静态弹性模量;29) converting the dynamic elastic modulus obtained by the anisotropic elastic wave synchronous inversion of the three-dimensional prestack seismic data into a static elastic modulus according to the conversion relationship between the core dynamics and the static elastic modulus of step 2);
    30)利用静态弹性模量与岩石脆性的相关性,确定页岩储层的脆性分布规律和特征,优化水平井的完井和压裂方案设计;30) Using the correlation between static elastic modulus and rock brittleness, determine the brittle distribution law and characteristics of shale reservoirs, and optimize the completion and fracturing scheme design of horizontal wells;
    31)利用静态弹性模量或派生静态弹性模量在页岩储层中的分布规律,圈定页岩储层中的高总有机碳含量页岩区,确定页岩储层的脆性特征,获取局部地应力的方位及强度,确定页岩储层中断层、裂缝和裂隙的方位走向和密集程度,预测页岩储层中的高总有机碳含量和页岩储层中的高地层压力区;31) Using the distribution law of static elastic modulus or derived static elastic modulus in shale reservoirs, delineating the high total organic carbon content shale zone in shale reservoirs, determining the brittle characteristics of shale reservoirs, and obtaining local The orientation and strength of the in-situ stress determine the azimuthal strike and intensity of the shale reservoir discontinuities, fractures and fissures, and predict the high total organic carbon content in the shale reservoir and the high formation pressure zone in the shale reservoir;
    32)综合获得的页岩气储层的各种有利参数,结合页岩储层的准确埋深、厚度、产状及平面展布,得到页岩气储层的含气性前景并圈定页岩气勘探开发的甜点区。32) Comprehensively obtained various favorable parameters of shale gas reservoirs, combined with accurate burial depth, thickness, occurrence and planar distribution of shale reservoirs, obtain gas bearing prospects of shale gas reservoirs and define shale Dessert area developed by gas exploration.
  2. 根据权利要求1的方法,其特征在于:步骤1)所述的不同方向是与地层产状垂直、水平和成45度夹角。The method of claim 1 wherein the different directions of step 1) are perpendicular to the formation of the formation, horizontally and at an angle of 45 degrees.
  3. 根据权利要求1的方法,其特征在于:步骤1)所述的岩心柱是直径2.5厘米,长度5厘米。The method of claim 1 wherein the core column of step 1) is 2.5 cm in diameter and 5 cm in length.
  4. 根据权利要求1的方法,其特征在于:步骤3)所述的最优测井曲线是消除钻孔内径变化、井斜变化、井液变化、井温变化、测井速度不均匀、井下仪器被卡住、非匀速旋转和测井仪器误差因素后,反映地层物理性质变化的最优测井曲线。 The method according to claim 1, wherein the optimal logging curve of step 3) is to eliminate borehole diameter change, well deviation change, well fluid change, well temperature change, log speed unevenness, downhole instrument being After the stuck, non-uniform rotation and logging instrument error factors, the optimal logging curve reflecting the physical properties of the formation is reflected.
  5. 根据权利要求1的方法,其特征在于:步骤4)所述的扰动分析是通过改变地层流体、孔隙度或岩性后得到的对应测井曲线,找出对应测井曲线变化规律。The method according to claim 1, wherein the disturbance analysis in step 4) is to determine a corresponding log curve by changing a corresponding log curve obtained by changing formation fluid, porosity or lithology.
  6. 根据权利要求1的方法,其特征在于:步骤4)所述的矿物是粘土、方解石、石英、黄铁矿、总有机碳含量(TOC)和白云岩等矿物。The method of claim 1 wherein the mineral of step 4) is a mineral such as clay, calcite, quartz, pyrite, total organic carbon content (TOC) and dolomite.
  7. 根据权利要求1的方法,其特征在于:步骤4)所述的最优测井曲线是测井数据中的粘土矿物曲线、体积密度曲线、地层铀含量曲线、中子孔隙度曲线、电阻率曲线、纵波时差曲线和横波时差曲线。The method according to claim 1, wherein the optimal logging curve of step 4) is a clay mineral curve, a bulk density curve, a formation uranium content curve, a neutron porosity curve, and a resistivity curve in the log data. , longitudinal wave time difference curve and transverse wave time difference curve.
  8. 根据权利要求1的方法,其特征在于:步骤8)所述的岩石组分扰动分析是通过改变岩石物理模型中不同矿物的含量百分比,计算对应的测井曲线,根据计算出的测井曲线变化量的大小,找出所对应矿物变化最为敏感的属性参数或敏感属性参数的组合。The method of claim 1 wherein the rock component disturbance analysis of step 8) is performed by changing the percentage of different minerals in the rock physics model to calculate a corresponding well log, based on the calculated log curve change. The size of the quantity, find the combination of the most sensitive attribute parameters or sensitive attribute parameters of the corresponding mineral change.
  9. 根据权利要求1的方法,其特征在于:步骤9)所述的参数或参数组合是弹性模量、杨氏弹性模量、密度、剪切弹性模量、弹性模量与密度的乘积、剪切弹性模量与密度的乘积和杨氏弹性模量与密度的乘积。The method of claim 1 wherein the parameter or combination of parameters of step 9) is a product of elastic modulus, Young's modulus of elasticity, density, shear modulus of elasticity, modulus of elasticity and density, shearing. The product of the modulus of elasticity and the density and the product of Young's modulus of elasticity and density.
  10. 根据权利要求1的方法,其特征在于:步骤14)所述的表层综合建模静校正是:静校正处理、叠前去噪、振幅补偿、Q值补偿、地表一致性反褶积和预测反褶积振幅相对保真处理。The method of claim 1 wherein the surface integrated modeling static correction of step 14) is: static correction processing, prestack denoising, amplitude compensation, Q value compensation, surface consistency deconvolution, and prediction inverse The convolution amplitude is relatively fidelity processed.
  11. 根据权利要求1的方法,其特征在于:步骤16)所述的反射信息估计方法是基于统计信号自适应处理,使用非参数谱分析方法和具有保真度的高分辨地下反射信息估计方法,在最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息的前提下,获得高分辨的复地震道集。 The method according to claim 1, wherein the method for estimating reflection information according to step 16) is based on statistical signal adaptive processing, using a non-parametric spectral analysis method and a high-resolution subsurface reflection information estimation method with fidelity. Under the premise of maximally maintaining the original seismic data information and not losing the micro geological information in the original data, a high-resolution complex seismic gather is obtained.
  12. 根据权利要求1的方法,其特征在于:步骤16)所述的反射信息估计方法基于统计信号自适应处理非参数谱分析理论,通过模拟相对干扰的统计特征,自适应地对不同时间位置的反射幅度进行稳定准确地估计,从而提高剖面分辨率,拓宽频带,能够最大限度地保持原有地震资料信息和不损失原有资料中微小地质信息,获得保真度高分辨的复地震道集。The method according to claim 1, wherein the method for estimating reflection information according to step 16) adaptively processes non-parametric spectrum analysis theory based on statistical signals, and adaptively reflects reflections at different time positions by simulating statistical features of relative interference. The amplitude is stably and accurately estimated, thereby improving the resolution of the section and broadening the frequency band, thereby maximally maintaining the original seismic data information and not losing the minute geological information in the original data, and obtaining the complex seismic gather with high fidelity.
  13. 根据权利要求1的方法,其特征在于:步骤21)所述的断层拾取是基于相干体、本征值相似性或曲率体自动计算断面,确定宏观裂缝和小断层。The method of claim 1 wherein said step 21) is to automatically calculate a section based on a coherence body, an eigenvalue similarity or a curvature body to determine macroscopic cracks and small faults.
  14. 根据权利要求1的方法,其特征在于:步骤23)所述的椭圆速度反演是对均方根值速度的方位角数据体进行椭圆速度分析,得到裂缝走向方位和纵波各向异性参数。The method of claim 1 wherein the elliptic velocity inversion of step 23) is performed by performing an elliptical velocity analysis on the azimuth data volume of the root mean square velocity to obtain a crack strike orientation and a longitudinal anisotropy parameter.
  15. 根据权利要求1的方法,其特征在于:步骤24)所述的纵横波同步波阻抗反演是计算振幅随炮检距变化的梯度属性,并反演角度叠加地震资料,同步得到纵波阻抗、横波阻抗以及其它派生弹性属性,特别是λρ弹性模量与密度的乘积、μρ剪切弹性模量与密度的乘积、Eρ杨氏弹性模量与密度的乘积。The method according to claim 1, wherein the longitudinal and transverse wave synchronous wave impedance inversion of step 24) is to calculate a gradient property of the amplitude with the offset of the offset, and inversely integrate the seismic data with the angle, and obtain the longitudinal wave impedance and the transverse wave synchronously. Impedance and other derived elastic properties, especially the product of λρ elastic modulus and density, the product of μρ shear modulus and density, and the product of Eρ Young's modulus of elasticity and density.
  16. 根据权利要求1的方法,其特征在于:步骤25)所述的椭圆反演是对方位角梯度和速度做椭圆反演,以得到汤姆逊参数,通过岩石物理变换,将汤姆逊参数转换为目的层的地质力学各向异性参量,如杨氏模量、泊松比。The method of claim 1 wherein the ellipse inversion of step 25) is an ellipse inversion of the azimuthal gradient and velocity to obtain a Thomson parameter, and the Thomson parameter is converted to a purpose by a petrophysical transformation. Geomechanical anisotropy parameters of the layer, such as Young's modulus, Poisson's ratio.
  17. 根据权利要求1的方法,其特征在于:步骤26)所述的储层参数是岩石脆性、岩性、孔隙度、流体、高总有机碳含量等。The method of claim 1 wherein the reservoir parameters of step 26) are rock brittleness, lithology, porosity, fluid, high total organic carbon content, and the like.
  18. 根据权利要求1的方法,其特征在于:步骤27)所述的联合地质解释与标定储层岩石特征参数体用测井曲线标定,裂缝用井筒成像资料和/或岩心分析资料标定,大尺度断层和微观断层用压裂微地震监测成果和井筒成像资料标定,应力各向异性用压裂微地震监测成果进行局部标定。标定过程即用计算值与实 测结果进行对比,找出两者之间的差异值或相关系数,然后对计算值进行系统的改正或校正,以保证在地下局部实测点的计算值与测量结果一致。The method according to claim 1, wherein the joint geological interpretation of step 27) and the calibration of the characteristic parameters of the reservoir rock are calibrated with a logging curve, and the fracture is calibrated with wellbore imaging data and/or core analysis data, large-scale faults. The micro-faults are measured by fracturing microseismic monitoring results and wellbore imaging data, and the stress anisotropy is locally calibrated by fracturing microseismic monitoring results. The calibration process uses the calculated value and the real The test results are compared to find the difference value or correlation coefficient between the two, and then the calculated value is systematically corrected or corrected to ensure that the calculated value of the measured part in the underground is consistent with the measured result.
  19. 根据权利要求1的方法,其特征在于:步骤30)所述的优化水平井的完井和压裂方案设计是将水平井布设在脆性较高且易于压裂的含高总有机碳的页岩中,并优化设计各个压裂段的间距。The method of claim 1 wherein the completion and fracturing scheme of the optimized horizontal well of step 30) is designed to lay horizontal wells on shale containing high total organic carbon that is relatively brittle and prone to fracturing. Medium, and optimize the design of the spacing of each fracturing section.
  20. 根据权利要求1的方法,其特征在于:步骤32)所述的有利参数,包括但不限于页岩的高总有机碳含量、页岩储层的脆性、断层、裂缝和裂隙的方位和密度、局部地应力的方位及强度、局部高压区和孔隙度分布。 The method of claim 1 wherein said advantageous parameters of step 32) include, but are not limited to, high total organic carbon content of shale, brittleness of shale reservoirs, orientation and density of faults, fractures and fractures, Azimuth and strength of local geostress, local high pressure zone and porosity distribution.
PCT/CN2014/086906 2014-09-19 2014-09-19 Method for evaluating shale gas reservoir and seeking desert area WO2016041189A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002782.0A CN104853822A (en) 2014-09-19 2014-07-19 Method for evaluating shale gas reservoir and searching sweet spot region
PCT/CN2014/086906 WO2016041189A1 (en) 2014-09-19 2014-09-19 Method for evaluating shale gas reservoir and seeking desert area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086906 WO2016041189A1 (en) 2014-09-19 2014-09-19 Method for evaluating shale gas reservoir and seeking desert area

Publications (1)

Publication Number Publication Date
WO2016041189A1 true WO2016041189A1 (en) 2016-03-24

Family

ID=53852828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086906 WO2016041189A1 (en) 2014-09-19 2014-09-19 Method for evaluating shale gas reservoir and seeking desert area

Country Status (2)

Country Link
CN (1) CN104853822A (en)
WO (1) WO2016041189A1 (en)

Cited By (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
CN109025982A (en) * 2018-07-16 2018-12-18 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 Classification evaluation method, device and the terminal device of shale gas exploitation interval
CN109164485A (en) * 2018-08-31 2019-01-08 中国石油化工股份有限公司 A kind of quantitative analysis method influencing low order fault accuracy of identification
CN109283577A (en) * 2017-07-20 2019-01-29 中国石油化工股份有限公司 A kind of seismic layer labeling method
CN109543352A (en) * 2018-12-29 2019-03-29 西南石油大学 Shale fracture toughness prediction technique, device and electronic equipment
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
CN109992741A (en) * 2019-03-15 2019-07-09 西安电子科技大学 A kind of serial FFT implementation method of mixed base 2-4 and device
CN110008596A (en) * 2019-04-08 2019-07-12 中南大学 Reserves positioned at the uniform thickness equal strength lamination mine on surface layer determine method
CN110390175A (en) * 2019-07-30 2019-10-29 西安幔源油气勘探开发研究有限公司 Curtain source Accumulation zone analyzing and predicting method based on crustal stress finite element
CN110529106A (en) * 2019-07-12 2019-12-03 中国石油天然气集团有限公司 A method of coal seam maceral content is determined using well-log information
CN110554427A (en) * 2019-07-23 2019-12-10 中国石油化工股份有限公司 Lithology combination prediction method based on forward modeling of seismic waveform
CN110618460A (en) * 2019-07-22 2019-12-27 中国石油化工股份有限公司 Micro-logging azimuth weighted interpolation modeling method combined with horizon information
CN110656933A (en) * 2019-10-08 2020-01-07 核工业北京地质研究院 Fracture density determination method and system for fractured zone
CN110656922A (en) * 2018-06-28 2020-01-07 中国石油化工股份有限公司 Shale isochronous stratum logging dividing method and system based on pencils and stone belt characteristics
CN110837117A (en) * 2018-08-16 2020-02-25 中国石油化工股份有限公司 Comprehensive evaluation method for depression in basin containing oil and gas
CN110851983A (en) * 2019-11-12 2020-02-28 湘潭大学 Novel method for searching large-range unstable fracture dislocation surface of stope in complex environment
CN111007568A (en) * 2018-10-08 2020-04-14 中国石油化工股份有限公司 Method for quantifying spatial distribution characteristics of classified reservoir
CN111159904A (en) * 2019-12-31 2020-05-15 核工业北京地质研究院 Method for estimating and evaluating geothermal resource quantity
CN111206921A (en) * 2018-11-22 2020-05-29 中石化石油工程技术服务有限公司 Description method suitable for favorable reservoir stratum of volcanic overflow phase
CN111287740A (en) * 2020-04-09 2020-06-16 中国石油天然气集团有限公司 Method for calculating dynamic reserves of abnormal high-pressure gas reservoir based on real strain
CN111429012A (en) * 2020-03-27 2020-07-17 中国石油天然气股份有限公司大港油田分公司 Shale brittle dessert evaluation method
CN111461386A (en) * 2019-12-27 2020-07-28 中国地质调查局成都地质调查中心 Shale gas sweet spot prediction method based on BP neural network
CN111596365A (en) * 2020-06-18 2020-08-28 中国海洋石油集团有限公司 Volcanic eruption rock earthquake interpretation method for carbonate reservoir section of lake-phase under salt
CN111696208A (en) * 2020-06-03 2020-09-22 中国地质调查局西安地质调查中心(西北地质科技创新中心) Geological-geophysical three-dimensional modeling method based on multi-data fusion
CN111735696A (en) * 2020-07-02 2020-10-02 科吉思石油技术咨询(北京)有限公司 Method for evaluating underground in-situ static elastic modulus of core sample of oil and gas reservoir
CN111737895A (en) * 2020-06-12 2020-10-02 鞍钢集团矿业有限公司 Method for dynamically evaluating stability of roof of underground goaf of strip mine
CN111856561A (en) * 2020-07-28 2020-10-30 清华大学 High-precision seismic structure curvature body calculation method based on deep learning
CN111852459A (en) * 2019-04-22 2020-10-30 中国石油天然气股份有限公司 Shale gas reservoir structure modeling method and device
CN111897008A (en) * 2020-08-07 2020-11-06 西南石油大学 Fracture grading prediction method based on seismic frequency division technology
CN111894563A (en) * 2019-05-05 2020-11-06 中国石油天然气股份有限公司 Method and system for determining classification of fractured reservoir in buried hill section
CN111897029A (en) * 2020-07-09 2020-11-06 西安石油大学 Method for determining spatial distribution of underground anticline cracks through core-logging interactive comparison
CN111913226A (en) * 2020-06-28 2020-11-10 中铁第一勘察设计院集团有限公司 Railway tunnel extremely-high ground stress identification method based on aviation geophysical prospecting three-dimensional inversion result
CN111948092A (en) * 2020-07-08 2020-11-17 长江大学 Shale reservoir gas content testing device and method
CN111983679A (en) * 2020-07-31 2020-11-24 中国石油天然气股份有限公司 Phase control type dolomite reservoir earthquake prediction method and device based on deposition parameters
CN112014876A (en) * 2019-05-31 2020-12-01 中国石油天然气股份有限公司 Reservoir prediction method and device based on pseudo-three-dimensional post-stack multi-attribute inversion
CN112034526A (en) * 2020-08-13 2020-12-04 中国石油大学(华东) Earthquake recognition method for thin turbid sand bodies in gray matter mudstone development area based on lithofacies combination
CN112065375A (en) * 2019-05-21 2020-12-11 中国石油化工股份有限公司 Method and system for calculating gas content of shale stratum
CN112130209A (en) * 2020-08-28 2020-12-25 中国石油天然气集团有限公司 Karst reservoir prediction method and device
CN112133377A (en) * 2020-08-28 2020-12-25 中国石油天然气集团有限公司 Method and system for distinguishing occurrence state of sea natural gas hydrate
CN112213781A (en) * 2020-07-30 2021-01-12 中国煤炭地质总局地球物理勘探研究院 Method and system for predicting coal seam thickness under big data
CN112305602A (en) * 2019-08-01 2021-02-02 中国石油天然气股份有限公司 Carbonate reservoir prediction method based on prestack multi-attribute and ancient landform fusion technology
CN112305598A (en) * 2019-07-29 2021-02-02 中国石油化工股份有限公司 Complex geological special-shaped body reservoir prediction method, storage medium and computing equipment
CN112307601A (en) * 2020-10-13 2021-02-02 中国石油大学(华东) Complex reservoir fracturing property evaluation method
CN112363220A (en) * 2020-10-26 2021-02-12 中国石油天然气集团有限公司 Fracture-cavity carbonate rock micro reservoir sweet spot prediction method and system
CN112415599A (en) * 2020-11-02 2021-02-26 中国石油天然气集团有限公司 Quality factor determination method and device for near-surface medium
CN112415588A (en) * 2019-08-22 2021-02-26 中国石油化工股份有限公司 Reservoir parameter oil-gas reserve calculation method and system based on three-dimensional seismic grid
CN112444859A (en) * 2019-08-27 2021-03-05 中国石油天然气集团有限公司 Shale reservoir fracture identification method and system for cooperative metamorphic ant body
CN112444883A (en) * 2019-08-30 2021-03-05 中国石油化工股份有限公司 Ocean data acquisition method and device and storage medium
CN112505769A (en) * 2020-11-25 2021-03-16 重庆地质矿产研究院 Shale gas earthquake monitoring intelligent evaluation method based on dynamic geological engineering big data
CN112558160A (en) * 2020-11-06 2021-03-26 中国海洋石油集团有限公司 Azimuth difference three-dimensional seismic prestack fusion processing method and system
CN112558155A (en) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 Gas-containing property detection method and detection system based on seismic waveform curvature
CN112558158A (en) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 Seismic data bidirectional frequency extension method and system based on logging curve
CN112578475A (en) * 2020-11-23 2021-03-30 中海石油(中国)有限公司 Compact reservoir dual-dessert identification method based on data mining
CN112630831A (en) * 2019-10-08 2021-04-09 中国石油化工股份有限公司 Method and system for calculating longitudinal dimension of carbonate karst cave
CN112649861A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Fractured reservoir rock physical modeling method and system
CN112649856A (en) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 Formation pressure pre-drilling prediction method and system based on VSP data
CN112649870A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Method and system for determining mineral elastic parameters in rock physical modeling
CN112649855A (en) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 Three-dimensional gas saturation prediction method and system
CN112649256A (en) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 Method for obtaining mineral elastic modulus based on artificially synthesized double-mineral rock
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
CN112731556A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Crack development region prediction method and computer storage medium for predicting crack development region
CN112766622A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for evaluating damage of reservoir of newly-produced gas well
CN112835096A (en) * 2019-11-25 2021-05-25 中国石油天然气股份有限公司 Gas layer identification method and device
CN112855126A (en) * 2019-11-27 2021-05-28 中国石油天然气股份有限公司 Shale gas reservoir classification method and device and storage medium
CN112904430A (en) * 2019-12-03 2021-06-04 中国石油化工股份有限公司 Computer-implemented method for nonlinear direct pre-stack seismic Poisson impedance inversion
CN112946782A (en) * 2021-03-15 2021-06-11 西南石油大学 Earthquake fine depicting method for dense oil-gas storage seepage body
CN112946746A (en) * 2019-12-11 2021-06-11 中国石油天然气股份有限公司 Method and device for improving AVO inversion accuracy of thin coal seam
CN112946739A (en) * 2021-01-27 2021-06-11 中国石油天然气股份有限公司 Deep carbonate reservoir seismic rock physical template construction method and reservoir parameter prediction method in fracture-erosion hole double-hole system
CN113050192A (en) * 2019-12-27 2021-06-29 中国石油天然气股份有限公司 Lithologic gas reservoir exploration method and device under special geological background
CN113075729A (en) * 2021-03-19 2021-07-06 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) Three-dimensional positioning method for mineral-forming position of fractured seepage alternating type mineralized deep mineral deposit
CN113126165A (en) * 2020-01-15 2021-07-16 中国石油天然气集团有限公司 Mosaic display method and device for two-dimensional inclined shaft synthetic seismic record
CN113138107A (en) * 2021-04-15 2021-07-20 东北石油大学 Rock brittleness evaluation method based on while-drilling rock debris logging information
CN113187471A (en) * 2021-04-26 2021-07-30 中国矿业大学(北京) Active measurement device and method for cross-fault interface Newtonian force in shale gas exploitation process
CN113218929A (en) * 2021-06-08 2021-08-06 中国石油大学(华东) Shale oil content analysis method based on fluorescence analysis technology
CN113219531A (en) * 2020-02-05 2021-08-06 中国石油天然气集团有限公司 Method and device for identifying gas-water distribution of tight sandstone
CN113216926A (en) * 2020-01-17 2021-08-06 中国石油天然气股份有限公司 Shale gas well screening method and device, terminal and storage medium
CN113236242A (en) * 2021-06-22 2021-08-10 中国石油天然气股份有限公司 Method for determining maximum operating pressure of expansion gas storage
CN113255155A (en) * 2021-06-11 2021-08-13 中海石油(中国)有限公司 Evaluation method for permeability resistance level of reservoir discontinuous boundary
CN113495304A (en) * 2020-04-01 2021-10-12 中国石油天然气集团有限公司 Three-dimensional modeling method for reservoir microfractures
CN113514883A (en) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 Fault-lithologic reservoir depicting method
CN113514892A (en) * 2021-05-06 2021-10-19 西安石油大学 Method for simulating and researching thin-layer compact sandstone distribution by utilizing earthquake forward modeling
CN113534253A (en) * 2020-04-22 2021-10-22 中国石油天然气集团有限公司 Shale gas three-dimensional seismic sweet spot optimization method and device
CN113534245A (en) * 2020-04-15 2021-10-22 中国石油天然气集团有限公司 Method and system for optimizing speed model through phase-controlled modeling based on shale oil
CN113530534A (en) * 2020-04-21 2021-10-22 中国石油天然气股份有限公司 Reservoir transformation method and device
CN113568049A (en) * 2021-04-21 2021-10-29 中国石油大学(华东) Method and device for identifying coal seam and computer readable storage medium
CN113589365A (en) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 Reservoir pinch-out line description method based on time-frequency domain information
CN113589384A (en) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 Pre-stack gather amplitude-preserving and denoising method based on signal characteristic changing along with offset distance
CN113622903A (en) * 2020-04-21 2021-11-09 中国石油天然气股份有限公司 Reservoir transformation method and device
CN113622905A (en) * 2021-07-20 2021-11-09 中国地质大学(武汉) Shale reservoir brittleness evaluation method based on multi-factor comprehensive analysis
CN113655523A (en) * 2020-05-12 2021-11-16 中国石油化工股份有限公司 Geophysical method and system for quantitatively predicting and evaluating local cover layer of deep carbonate rock
CN113671575A (en) * 2021-08-26 2021-11-19 中国石油大学(华东) Quantitative evaluation method for oil-containing property of fault trap
CN113687412A (en) * 2020-05-18 2021-11-23 中国石油化工股份有限公司 Method and device for predicting pressure of stratum between salts, electronic equipment and medium
CN113703044A (en) * 2020-05-20 2021-11-26 中国石油化工股份有限公司 Correction method and device for width of ancient river channel, electronic equipment and storage medium
CN113700466A (en) * 2020-05-22 2021-11-26 中国石油天然气股份有限公司 Method, device, equipment and medium for detecting oil gas of deep carbonate rock oil and gas reservoir
CN113738276A (en) * 2020-05-27 2021-12-03 中国石油化工股份有限公司 Control method and system for drilling horizontal well and drilling system for horizontal well
CN113740905A (en) * 2021-09-03 2021-12-03 北京珠玛阳光科技有限公司 Hydrocarbon direct detection method based on elastic earthquake new bright spot
CN113740910A (en) * 2021-09-06 2021-12-03 中南大学 VTI equivalent medium crack weakness parameter seismic inversion method and system
CN113759419A (en) * 2020-06-04 2021-12-07 中国石油化工股份有限公司 Reservoir prediction method and device, storage medium and electronic equipment
CN113777668A (en) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 Geostress calculation method and device for tight gas reservoir of sand-shale interbed
CN113777655A (en) * 2021-08-24 2021-12-10 中国石油化工股份有限公司 Method for predicting planar distribution of hydrocarbon source rocks in small layers of salt lake basin
CN113791457A (en) * 2021-09-08 2021-12-14 中国海洋石油集团有限公司 Method and device for calculating rock skeleton modulus of natural gas hydrate reservoir
CN113821956A (en) * 2021-09-26 2021-12-21 成都理工大学 Evaluation method for disturbance quantity of current geostress structure of deep shale reservoir
CN113848593A (en) * 2021-06-25 2021-12-28 中煤科工集团西安研究院有限公司 Method for quantitatively predicting rock slurry erosion area in coal-bearing stratum
CN113933897A (en) * 2020-07-13 2022-01-14 中国石油天然气股份有限公司 Method and system for predicting crescendo line of gypsum rock based on two-dimensional prestack data
CN113945973A (en) * 2020-07-17 2022-01-18 中国石油化工股份有限公司 Reservoir characteristic analysis method, storage medium and electronic equipment
CN113960660A (en) * 2021-10-21 2022-01-21 成都理工大学 Forward simulation based dynamic correction distortion area automatic identification and removal method
CN114060015A (en) * 2020-07-31 2022-02-18 中国石油化工股份有限公司 Method and device for evaluating gas content of tight sandstone
CN114076990A (en) * 2020-08-14 2022-02-22 中国石油化工股份有限公司 Method and system for determining oil shale reflection energy, storage medium and electronic equipment
CN114076991A (en) * 2020-08-14 2022-02-22 中国石油化工股份有限公司 Characterization method of reservoir macroscopic heterogeneity
CN114114424A (en) * 2020-08-28 2022-03-01 中国石油化工股份有限公司 Micro-logging interpretation of associated monitoring records and method for establishing result diagram
CN114109374A (en) * 2020-08-31 2022-03-01 中国石油天然气股份有限公司 Method and device for determining position of target window of shale gas reservoir
CN114114396A (en) * 2021-11-09 2022-03-01 成都理工大学 Transformer-terrace facies thick-layer limestone sedimentary facies characterization and prediction system and prediction method
CN114112651A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Rock dynamic and static mechanical parameter conversion method and system for artificial rock core
CN114114408A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Low-order fault identification method
CN114185090A (en) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 Lithofacies and elastic parameter synchronous inversion method and device, electronic equipment and medium
CN114185092A (en) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 Method and device for evaluating development degree of horizontal seam of reservoir, electronic equipment and medium
CN114198096A (en) * 2020-09-01 2022-03-18 中国石油天然气股份有限公司 Drilling error prediction method and device
CN114428303A (en) * 2020-09-30 2022-05-03 中国石油化工股份有限公司 High-resolution frequency division joint inversion method based on high-precision nonlinear inversion algorithm
CN114428368A (en) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 Shallow light spot gas distribution fine engraving method
CN114428372A (en) * 2020-09-09 2022-05-03 中国石油化工股份有限公司 Self-adaptive rock physical modeling method
CN114459911A (en) * 2022-01-24 2022-05-10 湖南继善高科技有限公司 Direction interpretation method for oil and gas fracturing fracture
CN114460639A (en) * 2020-11-09 2022-05-10 中国石油天然气股份有限公司 Method and device for predicting permeability of shale oil reservoir
CN114510808A (en) * 2020-11-17 2022-05-17 中国石油化工股份有限公司 Method for finely characterizing seam-following hole-finding acid fracturing numerical simulation seam hole attribute parameters
CN114578444A (en) * 2020-12-01 2022-06-03 中国石油化工股份有限公司 Astronomical stratum convolution dividing method based on wavelet multi-scale analysis
CN114595628A (en) * 2022-01-29 2022-06-07 延安中石大油气工程技术服务有限公司 Differential transformation method for volume fracturing of horizontal well
CN114594529A (en) * 2020-12-07 2022-06-07 中国石油化工股份有限公司 Method for predicting buried hill reservoir based on azimuth seismic attribute change rate
CN114594531A (en) * 2020-12-07 2022-06-07 中国石油化工股份有限公司 Continental facies shale oil earthquake rock physical modeling method for movable oil
CN114607334A (en) * 2020-12-08 2022-06-10 中国石油化工股份有限公司 Continental facies shale gas reservoir fracturing method
CN114645701A (en) * 2022-04-15 2022-06-21 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Carbonate rock geothermal well setting method based on constructional stress field
CN114706125A (en) * 2022-03-29 2022-07-05 中海石油(中国)有限公司 Method and system for predicting subsurface fracture reservoir based on wide-angle reflection information
CN114722590A (en) * 2022-03-23 2022-07-08 中石化石油工程技术服务有限公司 Random acquisition observation system design optimization method based on geophysical model
CN114910964A (en) * 2022-05-30 2022-08-16 中国石油化工股份有限公司 Prediction method for gravel rock mass dessert area on steep slope of fractured lake basin
CN114910499A (en) * 2022-02-23 2022-08-16 河海大学 Method for quantitatively predicting shale gas reservoir based on stratum difference diagenesis
CN114966826A (en) * 2021-02-18 2022-08-30 中国石油化工股份有限公司 High-low frequency fusion near-surface modeling method based on field near-surface survey data
CN115045646A (en) * 2022-06-07 2022-09-13 中国地质调查局油气资源调查中心 Shale gas well site optimization method
CN115061202A (en) * 2022-06-10 2022-09-16 吉林大学 Shale gas-bearing seismic reservoir direct detection method
CN115079261A (en) * 2022-06-06 2022-09-20 吉林大学 Compact sandstone gas reservoir evaluation method based on multi-parameter quantitative interpretation template
CN115184996A (en) * 2022-06-23 2022-10-14 吉林大学 Crack prediction method based on seismic reflection amplitude and azimuth anisotropy difference
CN115266782A (en) * 2022-09-27 2022-11-01 中国科学院地质与地球物理研究所 Method for evaluating unconventional reservoir dual desserts based on dual-energy CT technology
CN115291300A (en) * 2022-09-28 2022-11-04 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Three-dimensional exploration analysis system and evaluation method based on complex geological conditions
CN115343763A (en) * 2021-05-14 2022-11-15 中国石油化工股份有限公司 Ant body attribute dip angle correction method based on seismic event zero-phase discrimination
CN115749760A (en) * 2022-11-28 2023-03-07 中海石油(中国)有限公司海南分公司 Reservoir fluid property evaluation method based on measurement and recording combination
CN115822580A (en) * 2022-12-15 2023-03-21 吉林大学 Method for quantitatively predicting spatial distribution of deep volcanic gas layer
CN115860266A (en) * 2023-02-16 2023-03-28 东北石油大学三亚海洋油气研究院 Shale gas/coal bed gas well productivity evaluation method and system and electronic equipment
CN115877463A (en) * 2022-10-27 2023-03-31 西南石油大学 Shale gas reservoir TOC prediction method
CN115932968A (en) * 2023-01-09 2023-04-07 西南石油大学 Carbonate rock thin reservoir prediction method based on seismic amplitude ratio attribute
CN115985407A (en) * 2023-01-06 2023-04-18 西南石油大学 Low-resistance shale gas content prediction fusion model method
CN116066064A (en) * 2021-12-16 2023-05-05 中国石油天然气集团有限公司 Method for calculating shale gas reservoir porosity by using element logging
CN116068616A (en) * 2023-03-06 2023-05-05 西安石油大学 Reservoir abnormal formation pressure research method and system
US11668848B2 (en) 2021-06-24 2023-06-06 Saudi Arabian Oil Company Method and system for seismic imaging using S-wave velocity models and machine learning
CN116522688A (en) * 2023-06-29 2023-08-01 北京城建勘测设计研究院有限责任公司 Well control multi-information fusion engineering geological modeling method and device
CN116661019A (en) * 2023-06-02 2023-08-29 中国石油天然气股份有限公司 Microcrack evaluation method and device
CN116756788A (en) * 2023-04-06 2023-09-15 河海大学 Coarse open crack grid generation method adopting improved parting iteration method
CN116796453A (en) * 2023-04-18 2023-09-22 江汉大学 Vibration damping hole design method, device, equipment and readable storage medium
CN116819644A (en) * 2023-06-26 2023-09-29 中国石油天然气股份有限公司 Method and device for determining minimum horizontal principal stress of shale oil reservoir
CN116976705A (en) * 2023-09-19 2023-10-31 中国科学院地质与地球物理研究所 Deep oil gas accurate navigation sand shale stratum physical property evaluation method and system
CN117114208A (en) * 2023-10-23 2023-11-24 成都理工大学 Fully-coupled well factory dynamic adjustment integral fracturing optimization method
CN117171555A (en) * 2023-06-25 2023-12-05 西南石油大学 Comprehensive discrimination method for deep coal bed methane stitch net formation based on AdaBoost
CN117192605A (en) * 2023-09-15 2023-12-08 山西华煜智能科技有限公司 Method, device, equipment and medium for detecting development characteristics of three zones of coal mining
CN117275601A (en) * 2023-11-17 2023-12-22 核工业北京地质研究院 Determination method for sandstone type uranium deposit anomaly information
CN117574755A (en) * 2023-10-27 2024-02-20 中国石油大学(华东) Hierarchical multistage optimization method for fracturing parameters of horizontal well of shale reservoir well factory
CN117672387A (en) * 2023-12-01 2024-03-08 东北石油大学 Shale reservoir rock elastic mechanical property solving method from microscopic to macroscopic
CN117743948A (en) * 2024-02-20 2024-03-22 中国科学院地质与地球物理研究所 Method and system for intelligently evaluating dessert of clastic rock oil and gas reservoir through cooperation of logging and drilling data
CN114510808B (en) * 2020-11-17 2024-06-28 中国石油化工股份有限公司 Fine characterization method for numerical simulation of seam hole attribute parameters by using acid pressure of seam finding hole

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134156B (en) * 2015-09-29 2018-05-22 西南石油大学 A kind of modeling method for tight sandstone reservoir three-dimensional compressibility model
CN106568918B (en) * 2015-10-08 2020-07-14 中国石油化工股份有限公司 Shale organic carbon content TOC prediction method
CN106568919A (en) * 2015-10-13 2017-04-19 中国石油化工股份有限公司 Shale brittleness prediction method based on rock physical analysis
CN106401576A (en) * 2016-03-17 2017-02-15 成都创源油气技术开发有限公司 Complex shale stratum ground stress test method
CN107451310B (en) * 2016-05-31 2020-09-04 中国石油化工股份有限公司 Classification evaluation method and device based on shale source-storage correlation
CN106014369B (en) * 2016-06-24 2018-11-16 中国石油天然气集团公司 A kind of acquisition method and device of oil-gas reservoir
CN106503834A (en) * 2016-09-30 2017-03-15 中国石油天然气股份有限公司 A kind of Forecasting Methodology in the fine and close oil dessert area of the ultralow porosity permeability reservoir of lacustrine facies
CN106855485B (en) 2016-12-20 2019-08-06 中国石油天然气股份有限公司 A kind of conversion method of sound state elastic parameter
CN106842318B (en) * 2016-12-30 2019-01-18 中国石油天然气股份有限公司 Microcosmic erosion hole geophysics two-dimensional characterization determines method and apparatus
CN106772607A (en) * 2017-01-19 2017-05-31 山西省煤炭地质物探测绘院 A kind of method for predicting coal bed gas dessert
CN108459346B (en) * 2017-02-20 2020-02-21 中国石油化工股份有限公司 Shale horizontal bedding crack density earthquake prediction method
CN108661629B (en) * 2017-03-31 2021-05-14 中国石油化工股份有限公司 Engineering dessert quantitative evaluation method for shale stratum
CN108661628B (en) * 2017-03-31 2021-05-11 中国石油化工股份有限公司 Parameter optimization-based engineering dessert quantitative evaluation method
CN108661630B (en) * 2017-03-31 2021-05-11 中国石油化工股份有限公司 Geological dessert quantitative evaluation method based on parameter optimization
CN108756870A (en) * 2018-05-30 2018-11-06 中联煤层气有限责任公司 A kind of fracturing fluid in the coalbed methane injury performance and Injury Mechanism analysis method
CN110795513B (en) * 2018-07-17 2023-04-07 中国石油天然气股份有限公司 Method for predicting distribution of river facies source storage ectopic type compact oil gas dessert area
CN110927789B (en) * 2018-09-20 2021-07-13 中国石油化工股份有限公司 Method and device for predicting shale plane distribution based on loss data
CN110056345B (en) * 2018-10-30 2020-11-24 西安石油大学 Logging evaluation method suitable for shale gas reservoir
CN109581531A (en) * 2018-11-02 2019-04-05 中国石油天然气股份有限公司大港油田分公司 A kind of unconventional oil and gas dessert quantitative evaluation method
CN109492938B (en) * 2018-12-04 2022-06-14 同济大学 Dessert indicator factor-based deep carbonate reservoir quality evaluation method
CN111441758B (en) * 2018-12-29 2021-03-30 中国石油天然气股份有限公司 Shale oil gas dessert area prediction method and device
CN109887614B (en) * 2019-01-22 2021-03-09 中国石油天然气股份有限公司 Hydraulic fracture analysis method and device
CN110568150B (en) * 2019-04-28 2022-03-01 中国石油天然气股份有限公司 Oil shale identification method and device
CN111980685B (en) * 2019-05-22 2023-08-22 中国石油天然气股份有限公司 Logging curve processing method and device
CN112180443B (en) * 2019-07-04 2024-03-01 中国石油天然气集团有限公司 Shale gas two-dimensional seismic dessert area optimization method and device
CN111271055B (en) * 2020-02-26 2021-10-08 中国石油大学(北京) Method, device and equipment for determining brittleness index of shale
CN113466943B (en) * 2020-03-31 2023-04-07 中国石油天然气集团有限公司 Variable offset VSP earth surface consistency amplitude compensation method and device
CN111596351B (en) * 2020-04-28 2023-04-25 中国石油天然气股份有限公司 Carbonate rock conductor system quantitative evaluation method, system, device and storage medium
CN111411947B (en) * 2020-05-14 2023-09-15 中国石油天然气集团有限公司 Method for predicting formation pressure based on HTL parameters
CN111694855B (en) * 2020-06-11 2021-03-16 中国石油大学(北京) Intelligent prediction data processing method and device for reservoir sensitivity
CN111781647B (en) * 2020-07-13 2022-05-20 中油奥博(成都)科技有限公司 Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well
CN112253101B (en) * 2020-10-09 2023-02-03 中国石油大学(北京) Oil and gas resource exploration method, device, equipment and computer readable storage medium
CN112305617B (en) * 2020-11-02 2022-05-17 中国矿业大学(北京) Geophysical recognition method and device for unconventional gas reservoir of coal-containing rock series
CN113309511B (en) * 2021-07-13 2023-08-25 西安石油大学 Method for obtaining tight oil reservoir power
CN113494283B (en) * 2021-09-08 2021-11-16 中国科学院地质与地球物理研究所 Ultra-shallow layer shale gas geological engineering integrated development method
CN113901681B (en) * 2021-09-22 2022-09-09 中国石油大学(华东) Three-dimensional compressibility evaluation method for dual desserts of shale gas reservoir in whole life cycle
CN113914844B (en) * 2021-10-21 2024-05-28 中国石油化工股份有限公司 Effective reconstruction method for marl matrix reservoir
CN114034619B (en) * 2021-10-26 2022-08-16 重庆科技学院 Shale oil and gas reservoir brittleness evaluation method based on digital core simulation
CN114991745B (en) * 2021-11-01 2023-06-23 中国石油天然气股份有限公司 Shale oil reservoir dessert identification method and device
CN116168172B (en) * 2023-04-19 2023-07-11 武汉中旺亿能科技发展有限公司 Shale oil gas dessert prediction method, device, equipment and storage medium
CN116183875B (en) * 2023-04-21 2023-07-07 煤炭科学研究总院有限公司 Rock mass wave velocity determination method and device and electronic equipment
CN117094176B (en) * 2023-10-16 2023-12-15 中国矿业大学(北京) Method for evaluating shale seam forming capability by using bedding structure and micromechanics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157584A1 (en) * 2006-12-29 2008-07-03 Kieschnick John A System and method for identifying productive gas shale formations
CN103278866A (en) * 2013-06-07 2013-09-04 中国石油大学(华东) Evaluation method of shale oil resource potential in shale strata series
CN103912268A (en) * 2014-03-28 2014-07-09 中石化江汉石油工程有限公司测录井公司 Shale reservoir gas saturation determining method based on TOC
CN103983536A (en) * 2014-06-06 2014-08-13 陕西延长石油(集团)有限责任公司研究院 Method for obtaining gas content of shale gas by utilizing well log curve
CN103995301A (en) * 2014-05-07 2014-08-20 中国石油天然气集团公司 Method and device for evaluating total organic carbon content in shale gas reservoir

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157584A1 (en) * 2006-12-29 2008-07-03 Kieschnick John A System and method for identifying productive gas shale formations
CN103278866A (en) * 2013-06-07 2013-09-04 中国石油大学(华东) Evaluation method of shale oil resource potential in shale strata series
CN103912268A (en) * 2014-03-28 2014-07-09 中石化江汉石油工程有限公司测录井公司 Shale reservoir gas saturation determining method based on TOC
CN103995301A (en) * 2014-05-07 2014-08-20 中国石油天然气集团公司 Method and device for evaluating total organic carbon content in shale gas reservoir
CN103983536A (en) * 2014-06-06 2014-08-13 陕西延长石油(集团)有限责任公司研究院 Method for obtaining gas content of shale gas by utilizing well log curve

Cited By (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
CN109283577A (en) * 2017-07-20 2019-01-29 中国石油化工股份有限公司 A kind of seismic layer labeling method
CN109283577B (en) * 2017-07-20 2023-02-28 中国石油化工股份有限公司 Seismic horizon calibration method
CN110656922A (en) * 2018-06-28 2020-01-07 中国石油化工股份有限公司 Shale isochronous stratum logging dividing method and system based on pencils and stone belt characteristics
CN110656922B (en) * 2018-06-28 2022-08-05 中国石油化工股份有限公司 Shale isochronous stratum logging dividing method and system based on pencils and stone belt characteristics
CN109025982A (en) * 2018-07-16 2018-12-18 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 Classification evaluation method, device and the terminal device of shale gas exploitation interval
CN110837117B (en) * 2018-08-16 2023-03-10 中国石油化工股份有限公司 Comprehensive evaluation method for depression in basin containing oil and gas
CN110837117A (en) * 2018-08-16 2020-02-25 中国石油化工股份有限公司 Comprehensive evaluation method for depression in basin containing oil and gas
CN109164485A (en) * 2018-08-31 2019-01-08 中国石油化工股份有限公司 A kind of quantitative analysis method influencing low order fault accuracy of identification
CN111007568A (en) * 2018-10-08 2020-04-14 中国石油化工股份有限公司 Method for quantifying spatial distribution characteristics of classified reservoir
CN111206921A (en) * 2018-11-22 2020-05-29 中石化石油工程技术服务有限公司 Description method suitable for favorable reservoir stratum of volcanic overflow phase
CN109543352B (en) * 2018-12-29 2023-05-09 西南石油大学 Shale fracture toughness prediction method and device and electronic equipment
CN109543352A (en) * 2018-12-29 2019-03-29 西南石油大学 Shale fracture toughness prediction technique, device and electronic equipment
CN109992741A (en) * 2019-03-15 2019-07-09 西安电子科技大学 A kind of serial FFT implementation method of mixed base 2-4 and device
CN110008596A (en) * 2019-04-08 2019-07-12 中南大学 Reserves positioned at the uniform thickness equal strength lamination mine on surface layer determine method
CN110008596B (en) * 2019-04-08 2022-12-30 中南大学 Method for determining reserves of equal-thickness and equal-strength laminated ores on surface layer
CN111852459B (en) * 2019-04-22 2023-04-25 中国石油天然气股份有限公司 Shale gas reservoir structure modeling method and device
CN111852459A (en) * 2019-04-22 2020-10-30 中国石油天然气股份有限公司 Shale gas reservoir structure modeling method and device
CN111894563B (en) * 2019-05-05 2023-04-25 中国石油天然气股份有限公司 Classification determination method and system for crack type reservoir in submarine mountain section
CN111894563A (en) * 2019-05-05 2020-11-06 中国石油天然气股份有限公司 Method and system for determining classification of fractured reservoir in buried hill section
CN112065375A (en) * 2019-05-21 2020-12-11 中国石油化工股份有限公司 Method and system for calculating gas content of shale stratum
CN112065375B (en) * 2019-05-21 2024-01-30 中国石油化工股份有限公司 Method and system for calculating gas content of shale stratum
CN112014876A (en) * 2019-05-31 2020-12-01 中国石油天然气股份有限公司 Reservoir prediction method and device based on pseudo-three-dimensional post-stack multi-attribute inversion
CN110529106B (en) * 2019-07-12 2023-04-07 中国石油天然气集团有限公司 Method for determining content of coal seam micro-components by using logging information
CN110529106A (en) * 2019-07-12 2019-12-03 中国石油天然气集团有限公司 A method of coal seam maceral content is determined using well-log information
CN110618460A (en) * 2019-07-22 2019-12-27 中国石油化工股份有限公司 Micro-logging azimuth weighted interpolation modeling method combined with horizon information
CN110554427B (en) * 2019-07-23 2024-04-26 中国石油化工股份有限公司 Lithology combination prediction method based on forward modeling of seismic waveforms
CN110554427A (en) * 2019-07-23 2019-12-10 中国石油化工股份有限公司 Lithology combination prediction method based on forward modeling of seismic waveform
CN112305598A (en) * 2019-07-29 2021-02-02 中国石油化工股份有限公司 Complex geological special-shaped body reservoir prediction method, storage medium and computing equipment
CN112305598B (en) * 2019-07-29 2024-05-17 中国石油化工股份有限公司 Complex geological profile reservoir prediction method, storage medium and computing device
CN110390175A (en) * 2019-07-30 2019-10-29 西安幔源油气勘探开发研究有限公司 Curtain source Accumulation zone analyzing and predicting method based on crustal stress finite element
CN110390175B (en) * 2019-07-30 2022-11-29 西安幔源油气勘探开发研究有限公司 Curtain source oil-gas enrichment area analysis and prediction method based on ground stress finite element
CN112305602A (en) * 2019-08-01 2021-02-02 中国石油天然气股份有限公司 Carbonate reservoir prediction method based on prestack multi-attribute and ancient landform fusion technology
CN112415588A (en) * 2019-08-22 2021-02-26 中国石油化工股份有限公司 Reservoir parameter oil-gas reserve calculation method and system based on three-dimensional seismic grid
CN112444859A (en) * 2019-08-27 2021-03-05 中国石油天然气集团有限公司 Shale reservoir fracture identification method and system for cooperative metamorphic ant body
CN112444883A (en) * 2019-08-30 2021-03-05 中国石油化工股份有限公司 Ocean data acquisition method and device and storage medium
CN112558158B (en) * 2019-09-25 2024-04-09 中国石油化工股份有限公司 Seismic data bidirectional frequency expansion method and system based on logging curve
CN112558155B (en) * 2019-09-25 2023-10-13 中国石油化工股份有限公司 Gas-containing detection method and detection system based on seismic waveform curvature
CN112558158A (en) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 Seismic data bidirectional frequency extension method and system based on logging curve
CN112558155A (en) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 Gas-containing property detection method and detection system based on seismic waveform curvature
CN112630831A (en) * 2019-10-08 2021-04-09 中国石油化工股份有限公司 Method and system for calculating longitudinal dimension of carbonate karst cave
CN110656933B (en) * 2019-10-08 2022-12-13 核工业北京地质研究院 Method and system for determining fracture density of broken zone
CN112630831B (en) * 2019-10-08 2024-04-09 中国石油化工股份有限公司 Carbonate karst cave longitudinal scale calculation method and system
CN110656933A (en) * 2019-10-08 2020-01-07 核工业北京地质研究院 Fracture density determination method and system for fractured zone
CN112649256A (en) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 Method for obtaining mineral elastic modulus based on artificially synthesized double-mineral rock
CN112649855A (en) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 Three-dimensional gas saturation prediction method and system
CN112649855B (en) * 2019-10-11 2024-04-09 中国石油化工股份有限公司 Three-dimensional gas saturation prediction method and system
CN112649856A (en) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 Formation pressure pre-drilling prediction method and system based on VSP data
CN112649870A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Method and system for determining mineral elastic parameters in rock physical modeling
CN112649861A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Fractured reservoir rock physical modeling method and system
CN112766622B (en) * 2019-10-21 2024-04-05 中国石油化工股份有限公司 New production gas well reservoir damage evaluation method
CN112766622A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for evaluating damage of reservoir of newly-produced gas well
CN112731556A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Crack development region prediction method and computer storage medium for predicting crack development region
CN110851983A (en) * 2019-11-12 2020-02-28 湘潭大学 Novel method for searching large-range unstable fracture dislocation surface of stope in complex environment
CN112835096B (en) * 2019-11-25 2023-09-26 中国石油天然气股份有限公司 Gas layer identification method and device
CN112835096A (en) * 2019-11-25 2021-05-25 中国石油天然气股份有限公司 Gas layer identification method and device
CN112855126B (en) * 2019-11-27 2023-09-26 中国石油天然气股份有限公司 Shale gas reservoir classification method, device and storage medium
CN112855126A (en) * 2019-11-27 2021-05-28 中国石油天然气股份有限公司 Shale gas reservoir classification method and device and storage medium
CN112904430B (en) * 2019-12-03 2022-11-08 中国石油化工股份有限公司 Computer-implemented method for nonlinear direct pre-stack seismic Poisson impedance inversion
CN112904430A (en) * 2019-12-03 2021-06-04 中国石油化工股份有限公司 Computer-implemented method for nonlinear direct pre-stack seismic Poisson impedance inversion
CN112946746B (en) * 2019-12-11 2022-11-01 中国石油天然气股份有限公司 Method and device for improving AVO inversion accuracy of thin coal seam
CN112946746A (en) * 2019-12-11 2021-06-11 中国石油天然气股份有限公司 Method and device for improving AVO inversion accuracy of thin coal seam
CN113050192B (en) * 2019-12-27 2024-03-01 中国石油天然气股份有限公司 Lithologic gas reservoir exploration method and device under special geological background
CN111461386A (en) * 2019-12-27 2020-07-28 中国地质调查局成都地质调查中心 Shale gas sweet spot prediction method based on BP neural network
CN113050192A (en) * 2019-12-27 2021-06-29 中国石油天然气股份有限公司 Lithologic gas reservoir exploration method and device under special geological background
CN111461386B (en) * 2019-12-27 2023-08-22 中国地质调查局成都地质调查中心 Shale gas dessert prediction method based on BP neural network
CN111159904A (en) * 2019-12-31 2020-05-15 核工业北京地质研究院 Method for estimating and evaluating geothermal resource quantity
CN113126165A (en) * 2020-01-15 2021-07-16 中国石油天然气集团有限公司 Mosaic display method and device for two-dimensional inclined shaft synthetic seismic record
CN113216926A (en) * 2020-01-17 2021-08-06 中国石油天然气股份有限公司 Shale gas well screening method and device, terminal and storage medium
CN113219531B (en) * 2020-02-05 2024-05-28 中国石油天然气集团有限公司 Dense sandstone gas-water distribution identification method and device
CN113219531A (en) * 2020-02-05 2021-08-06 中国石油天然气集团有限公司 Method and device for identifying gas-water distribution of tight sandstone
CN111429012A (en) * 2020-03-27 2020-07-17 中国石油天然气股份有限公司大港油田分公司 Shale brittle dessert evaluation method
CN113495304A (en) * 2020-04-01 2021-10-12 中国石油天然气集团有限公司 Three-dimensional modeling method for reservoir microfractures
CN111287740A (en) * 2020-04-09 2020-06-16 中国石油天然气集团有限公司 Method for calculating dynamic reserves of abnormal high-pressure gas reservoir based on real strain
CN113534245B (en) * 2020-04-15 2024-05-28 中国石油天然气集团有限公司 Shale oil-based method and system for optimizing speed model through phased modeling
CN113534245A (en) * 2020-04-15 2021-10-22 中国石油天然气集团有限公司 Method and system for optimizing speed model through phase-controlled modeling based on shale oil
CN113622903B (en) * 2020-04-21 2023-09-26 中国石油天然气股份有限公司 Reservoir reconstruction method and device
CN113530534B (en) * 2020-04-21 2023-09-26 中国石油天然气股份有限公司 Reservoir reconstruction method and device
CN113530534A (en) * 2020-04-21 2021-10-22 中国石油天然气股份有限公司 Reservoir transformation method and device
CN113622903A (en) * 2020-04-21 2021-11-09 中国石油天然气股份有限公司 Reservoir transformation method and device
CN113534253A (en) * 2020-04-22 2021-10-22 中国石油天然气集团有限公司 Shale gas three-dimensional seismic sweet spot optimization method and device
CN113534253B (en) * 2020-04-22 2024-05-28 中国石油天然气集团有限公司 Shale gas three-dimensional seismic dessert area optimization method and device
CN113589365A (en) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 Reservoir pinch-out line description method based on time-frequency domain information
CN113589384A (en) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 Pre-stack gather amplitude-preserving and denoising method based on signal characteristic changing along with offset distance
CN113655523A (en) * 2020-05-12 2021-11-16 中国石油化工股份有限公司 Geophysical method and system for quantitatively predicting and evaluating local cover layer of deep carbonate rock
CN113655523B (en) * 2020-05-12 2024-02-06 中国石油化工股份有限公司 Geophysical method and system for quantitatively predicting and evaluating deep carbonate partial cap layer
CN113687412A (en) * 2020-05-18 2021-11-23 中国石油化工股份有限公司 Method and device for predicting pressure of stratum between salts, electronic equipment and medium
CN113687412B (en) * 2020-05-18 2024-03-26 中国石油化工股份有限公司 Method and device for predicting formation pressure between salts, electronic equipment and medium
CN113703044B (en) * 2020-05-20 2024-04-09 中国石油化工股份有限公司 Correction method and device for ancient river channel width, electronic equipment and storage medium
CN113703044A (en) * 2020-05-20 2021-11-26 中国石油化工股份有限公司 Correction method and device for width of ancient river channel, electronic equipment and storage medium
CN113700466A (en) * 2020-05-22 2021-11-26 中国石油天然气股份有限公司 Method, device, equipment and medium for detecting oil gas of deep carbonate rock oil and gas reservoir
CN113700466B (en) * 2020-05-22 2023-10-31 中国石油天然气股份有限公司 Method, device, equipment and medium for detecting oil gas in deep carbonate reservoir
CN113738276B (en) * 2020-05-27 2024-06-07 中国石油化工股份有限公司 Control method and system for drilling horizontal well and drilling system for horizontal well
CN113738276A (en) * 2020-05-27 2021-12-03 中国石油化工股份有限公司 Control method and system for drilling horizontal well and drilling system for horizontal well
CN111696208A (en) * 2020-06-03 2020-09-22 中国地质调查局西安地质调查中心(西北地质科技创新中心) Geological-geophysical three-dimensional modeling method based on multi-data fusion
CN111696208B (en) * 2020-06-03 2023-04-07 中国地质调查局西安地质调查中心(西北地质科技创新中心) Geological-geophysical three-dimensional modeling method based on multi-data fusion
CN113759419A (en) * 2020-06-04 2021-12-07 中国石油化工股份有限公司 Reservoir prediction method and device, storage medium and electronic equipment
CN113777668A (en) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 Geostress calculation method and device for tight gas reservoir of sand-shale interbed
CN111737895A (en) * 2020-06-12 2020-10-02 鞍钢集团矿业有限公司 Method for dynamically evaluating stability of roof of underground goaf of strip mine
CN111737895B (en) * 2020-06-12 2023-11-14 鞍钢集团矿业有限公司 Method for dynamically evaluating stability of top plate of underground goaf of strip mine
CN111596365B (en) * 2020-06-18 2023-11-21 中国海洋石油集团有限公司 Volcanic eruption rock seismic interpretation method aiming at undersalt lake-phase carbonate rock reservoir section
CN111596365A (en) * 2020-06-18 2020-08-28 中国海洋石油集团有限公司 Volcanic eruption rock earthquake interpretation method for carbonate reservoir section of lake-phase under salt
CN111913226B (en) * 2020-06-28 2023-08-08 中铁第一勘察设计院集团有限公司 Railway tunnel extremely high ground stress identification method based on aviation geophysical prospecting three-dimensional inversion result
CN111913226A (en) * 2020-06-28 2020-11-10 中铁第一勘察设计院集团有限公司 Railway tunnel extremely-high ground stress identification method based on aviation geophysical prospecting three-dimensional inversion result
CN111735696B (en) * 2020-07-02 2022-09-02 科吉思石油技术咨询(北京)有限公司 Method for evaluating underground in-situ Young modulus of core sample of oil and gas reservoir
CN111735696A (en) * 2020-07-02 2020-10-02 科吉思石油技术咨询(北京)有限公司 Method for evaluating underground in-situ static elastic modulus of core sample of oil and gas reservoir
CN111948092A (en) * 2020-07-08 2020-11-17 长江大学 Shale reservoir gas content testing device and method
CN111897029A (en) * 2020-07-09 2020-11-06 西安石油大学 Method for determining spatial distribution of underground anticline cracks through core-logging interactive comparison
CN113933897B (en) * 2020-07-13 2024-03-01 中国石油天然气股份有限公司 Two-dimensional prestack data-based method and system for predicting gaogite pinch-out line
CN113933897A (en) * 2020-07-13 2022-01-14 中国石油天然气股份有限公司 Method and system for predicting crescendo line of gypsum rock based on two-dimensional prestack data
CN113945973B (en) * 2020-07-17 2024-04-09 中国石油化工股份有限公司 Reservoir characteristic analysis method, storage medium and electronic equipment
CN113945973A (en) * 2020-07-17 2022-01-18 中国石油化工股份有限公司 Reservoir characteristic analysis method, storage medium and electronic equipment
CN111856561A (en) * 2020-07-28 2020-10-30 清华大学 High-precision seismic structure curvature body calculation method based on deep learning
CN112213781B (en) * 2020-07-30 2023-04-25 中国煤炭地质总局地球物理勘探研究院 Method and system for predicting thickness of coal seam under big data
CN112213781A (en) * 2020-07-30 2021-01-12 中国煤炭地质总局地球物理勘探研究院 Method and system for predicting coal seam thickness under big data
CN111983679B (en) * 2020-07-31 2023-02-10 中国石油天然气股份有限公司 Phase control type dolomite reservoir earthquake prediction method and device based on deposition parameters
CN114060015B (en) * 2020-07-31 2024-05-03 中国石油化工股份有限公司 Method and device for evaluating gas content of compact sandstone
CN114060015A (en) * 2020-07-31 2022-02-18 中国石油化工股份有限公司 Method and device for evaluating gas content of tight sandstone
CN111983679A (en) * 2020-07-31 2020-11-24 中国石油天然气股份有限公司 Phase control type dolomite reservoir earthquake prediction method and device based on deposition parameters
CN111897008B (en) * 2020-08-07 2022-03-01 西南石油大学 Fracture grading prediction method based on seismic frequency division technology
CN111897008A (en) * 2020-08-07 2020-11-06 西南石油大学 Fracture grading prediction method based on seismic frequency division technology
CN112034526A (en) * 2020-08-13 2020-12-04 中国石油大学(华东) Earthquake recognition method for thin turbid sand bodies in gray matter mudstone development area based on lithofacies combination
CN114076991B (en) * 2020-08-14 2024-02-23 中国石油化工股份有限公司 Characterization method of macroscopic heterogeneity of reservoir
CN114076990B (en) * 2020-08-14 2024-04-09 中国石油化工股份有限公司 Oil shale reflected energy determination method, system, storage medium and electronic equipment
CN114076990A (en) * 2020-08-14 2022-02-22 中国石油化工股份有限公司 Method and system for determining oil shale reflection energy, storage medium and electronic equipment
CN114076991A (en) * 2020-08-14 2022-02-22 中国石油化工股份有限公司 Characterization method of reservoir macroscopic heterogeneity
CN114114408B (en) * 2020-08-27 2023-12-12 中国石油化工股份有限公司 Low-order fault identification method
CN114114408A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Low-order fault identification method
CN114112651A (en) * 2020-08-27 2022-03-01 中国石油化工股份有限公司 Rock dynamic and static mechanical parameter conversion method and system for artificial rock core
CN112130209A (en) * 2020-08-28 2020-12-25 中国石油天然气集团有限公司 Karst reservoir prediction method and device
CN114114424A (en) * 2020-08-28 2022-03-01 中国石油化工股份有限公司 Micro-logging interpretation of associated monitoring records and method for establishing result diagram
CN112130209B (en) * 2020-08-28 2024-03-26 中国石油天然气集团有限公司 Karst reservoir prediction method and device
CN112133377B (en) * 2020-08-28 2023-11-28 中国石油天然气集团有限公司 Method and system for judging occurrence state of natural gas hydrate in sea area
CN112133377A (en) * 2020-08-28 2020-12-25 中国石油天然气集团有限公司 Method and system for distinguishing occurrence state of sea natural gas hydrate
CN114109374B (en) * 2020-08-31 2023-07-25 中国石油天然气股份有限公司 Shale gas reservoir target window position determination method and device
CN114109374A (en) * 2020-08-31 2022-03-01 中国石油天然气股份有限公司 Method and device for determining position of target window of shale gas reservoir
CN114198096A (en) * 2020-09-01 2022-03-18 中国石油天然气股份有限公司 Drilling error prediction method and device
CN114198096B (en) * 2020-09-01 2023-09-26 中国石油天然气股份有限公司 Well drilling error prediction method and device
CN114428372A (en) * 2020-09-09 2022-05-03 中国石油化工股份有限公司 Self-adaptive rock physical modeling method
CN114185090A (en) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 Lithofacies and elastic parameter synchronous inversion method and device, electronic equipment and medium
CN114185092A (en) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 Method and device for evaluating development degree of horizontal seam of reservoir, electronic equipment and medium
CN114185092B (en) * 2020-09-15 2024-05-07 中国石油化工股份有限公司 Reservoir horizontal seam development degree evaluation method and device, electronic equipment and medium
CN114185090B (en) * 2020-09-15 2024-04-05 中国石油化工股份有限公司 Lithology and elastic parameter synchronous inversion method and device, electronic equipment and medium
CN114428303A (en) * 2020-09-30 2022-05-03 中国石油化工股份有限公司 High-resolution frequency division joint inversion method based on high-precision nonlinear inversion algorithm
CN112307601A (en) * 2020-10-13 2021-02-02 中国石油大学(华东) Complex reservoir fracturing property evaluation method
CN114428368B (en) * 2020-10-15 2024-01-30 中国石油化工股份有限公司 Shallow layer 'bright spot' gas distribution fine characterization method
CN114428368A (en) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 Shallow light spot gas distribution fine engraving method
CN112363220A (en) * 2020-10-26 2021-02-12 中国石油天然气集团有限公司 Fracture-cavity carbonate rock micro reservoir sweet spot prediction method and system
CN112415599A (en) * 2020-11-02 2021-02-26 中国石油天然气集团有限公司 Quality factor determination method and device for near-surface medium
CN112558160A (en) * 2020-11-06 2021-03-26 中国海洋石油集团有限公司 Azimuth difference three-dimensional seismic prestack fusion processing method and system
CN112558160B (en) * 2020-11-06 2024-05-28 中国海洋石油集团有限公司 Direction difference three-dimensional earthquake prestack fusion processing method and system
CN114460639A (en) * 2020-11-09 2022-05-10 中国石油天然气股份有限公司 Method and device for predicting permeability of shale oil reservoir
CN114460639B (en) * 2020-11-09 2024-05-28 中国石油天然气股份有限公司 Shale oil reservoir permeability prediction method and device
CN114510808A (en) * 2020-11-17 2022-05-17 中国石油化工股份有限公司 Method for finely characterizing seam-following hole-finding acid fracturing numerical simulation seam hole attribute parameters
CN114510808B (en) * 2020-11-17 2024-06-28 中国石油化工股份有限公司 Fine characterization method for numerical simulation of seam hole attribute parameters by using acid pressure of seam finding hole
CN112578475A (en) * 2020-11-23 2021-03-30 中海石油(中国)有限公司 Compact reservoir dual-dessert identification method based on data mining
CN112505769A (en) * 2020-11-25 2021-03-16 重庆地质矿产研究院 Shale gas earthquake monitoring intelligent evaluation method based on dynamic geological engineering big data
CN112505769B (en) * 2020-11-25 2024-03-26 重庆地质矿产研究院 Shale gas earthquake monitoring intelligent evaluation method based on dynamic geological engineering big data
CN114578444A (en) * 2020-12-01 2022-06-03 中国石油化工股份有限公司 Astronomical stratum convolution dividing method based on wavelet multi-scale analysis
CN114594529B (en) * 2020-12-07 2023-12-01 中国石油化工股份有限公司 Method for predicting reservoir of buried hill based on azimuth seismic attribute change rate
CN114594531A (en) * 2020-12-07 2022-06-07 中国石油化工股份有限公司 Continental facies shale oil earthquake rock physical modeling method for movable oil
CN114594529A (en) * 2020-12-07 2022-06-07 中国石油化工股份有限公司 Method for predicting buried hill reservoir based on azimuth seismic attribute change rate
CN114607334A (en) * 2020-12-08 2022-06-10 中国石油化工股份有限公司 Continental facies shale gas reservoir fracturing method
CN112946739A (en) * 2021-01-27 2021-06-11 中国石油天然气股份有限公司 Deep carbonate reservoir seismic rock physical template construction method and reservoir parameter prediction method in fracture-erosion hole double-hole system
CN112946739B (en) * 2021-01-27 2022-12-02 中国石油天然气股份有限公司 Deep carbonate reservoir seismic rock physical template construction method and reservoir parameter prediction method in fracture-erosion hole double-hole system
CN114966826A (en) * 2021-02-18 2022-08-30 中国石油化工股份有限公司 High-low frequency fusion near-surface modeling method based on field near-surface survey data
CN112946782B (en) * 2021-03-15 2022-03-25 西南石油大学 Earthquake fine depicting method for dense oil-gas storage seepage body
CN112946782A (en) * 2021-03-15 2021-06-11 西南石油大学 Earthquake fine depicting method for dense oil-gas storage seepage body
CN113075729A (en) * 2021-03-19 2021-07-06 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) Three-dimensional positioning method for mineral-forming position of fractured seepage alternating type mineralized deep mineral deposit
CN113138107A (en) * 2021-04-15 2021-07-20 东北石油大学 Rock brittleness evaluation method based on while-drilling rock debris logging information
CN113568049A (en) * 2021-04-21 2021-10-29 中国石油大学(华东) Method and device for identifying coal seam and computer readable storage medium
CN113187471A (en) * 2021-04-26 2021-07-30 中国矿业大学(北京) Active measurement device and method for cross-fault interface Newtonian force in shale gas exploitation process
CN113187471B (en) * 2021-04-26 2023-06-06 中国矿业大学(北京) Active measurement device and method for Newton force crossing fault interface in shale gas exploitation process
CN113514892B (en) * 2021-05-06 2024-02-13 西安石油大学 Method for researching distribution of thin-layer compact sandstone by utilizing seismic forward modeling
CN113514892A (en) * 2021-05-06 2021-10-19 西安石油大学 Method for simulating and researching thin-layer compact sandstone distribution by utilizing earthquake forward modeling
CN115343763A (en) * 2021-05-14 2022-11-15 中国石油化工股份有限公司 Ant body attribute dip angle correction method based on seismic event zero-phase discrimination
CN113218929B (en) * 2021-06-08 2022-06-28 中国石油大学(华东) Shale oil content analysis method based on fluorescence analysis technology
CN113218929A (en) * 2021-06-08 2021-08-06 中国石油大学(华东) Shale oil content analysis method based on fluorescence analysis technology
CN113255155A (en) * 2021-06-11 2021-08-13 中海石油(中国)有限公司 Evaluation method for permeability resistance level of reservoir discontinuous boundary
CN113255155B (en) * 2021-06-11 2024-05-28 中海石油(中国)有限公司 Evaluation method for seepage resistance grade of reservoir discontinuous limit
CN113514883B (en) * 2021-06-18 2023-03-17 中国石油化工股份有限公司 Fault-lithologic reservoir depicting method
CN113514883A (en) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 Fault-lithologic reservoir depicting method
CN113236242B (en) * 2021-06-22 2023-08-08 中国石油天然气股份有限公司 Method for determining maximum operating pressure of capacity-expansion gas storage
CN113236242A (en) * 2021-06-22 2021-08-10 中国石油天然气股份有限公司 Method for determining maximum operating pressure of expansion gas storage
US11668848B2 (en) 2021-06-24 2023-06-06 Saudi Arabian Oil Company Method and system for seismic imaging using S-wave velocity models and machine learning
CN113848593A (en) * 2021-06-25 2021-12-28 中煤科工集团西安研究院有限公司 Method for quantitatively predicting rock slurry erosion area in coal-bearing stratum
CN113622905A (en) * 2021-07-20 2021-11-09 中国地质大学(武汉) Shale reservoir brittleness evaluation method based on multi-factor comprehensive analysis
CN113777655A (en) * 2021-08-24 2021-12-10 中国石油化工股份有限公司 Method for predicting planar distribution of hydrocarbon source rocks in small layers of salt lake basin
CN113671575A (en) * 2021-08-26 2021-11-19 中国石油大学(华东) Quantitative evaluation method for oil-containing property of fault trap
CN113671575B (en) * 2021-08-26 2023-08-15 中国石油大学(华东) Quantitative evaluation method for fault trap oiliness
CN113740905A (en) * 2021-09-03 2021-12-03 北京珠玛阳光科技有限公司 Hydrocarbon direct detection method based on elastic earthquake new bright spot
CN113740905B (en) * 2021-09-03 2024-03-08 北京珠玛阳光科技有限公司 Hydrocarbon direct detection method based on elastic earthquake' new bright spot
CN113740910A (en) * 2021-09-06 2021-12-03 中南大学 VTI equivalent medium crack weakness parameter seismic inversion method and system
CN113740910B (en) * 2021-09-06 2022-08-23 中南大学 VTI equivalent medium crack weakness parameter seismic inversion method and system
CN113791457A (en) * 2021-09-08 2021-12-14 中国海洋石油集团有限公司 Method and device for calculating rock skeleton modulus of natural gas hydrate reservoir
CN113791457B (en) * 2021-09-08 2022-11-15 中国海洋石油集团有限公司 Method and device for calculating rock skeleton modulus of natural gas hydrate reservoir
CN113821956A (en) * 2021-09-26 2021-12-21 成都理工大学 Evaluation method for disturbance quantity of current geostress structure of deep shale reservoir
CN113960660A (en) * 2021-10-21 2022-01-21 成都理工大学 Forward simulation based dynamic correction distortion area automatic identification and removal method
CN114114396A (en) * 2021-11-09 2022-03-01 成都理工大学 Transformer-terrace facies thick-layer limestone sedimentary facies characterization and prediction system and prediction method
CN116066064A (en) * 2021-12-16 2023-05-05 中国石油天然气集团有限公司 Method for calculating shale gas reservoir porosity by using element logging
CN116066064B (en) * 2021-12-16 2023-12-19 中国石油天然气集团有限公司 Method for calculating shale gas reservoir porosity by using element logging
CN114459911A (en) * 2022-01-24 2022-05-10 湖南继善高科技有限公司 Direction interpretation method for oil and gas fracturing fracture
CN114459911B (en) * 2022-01-24 2023-06-20 湖南继善高科技有限公司 Direction interpretation method for oil-gas fracturing cracks
CN114595628A (en) * 2022-01-29 2022-06-07 延安中石大油气工程技术服务有限公司 Differential transformation method for volume fracturing of horizontal well
CN114595628B (en) * 2022-01-29 2024-05-03 延安中石大油气工程技术服务有限公司 Differential transformation method for volume fracturing of horizontal well
CN114910499A (en) * 2022-02-23 2022-08-16 河海大学 Method for quantitatively predicting shale gas reservoir based on stratum difference diagenesis
CN114910499B (en) * 2022-02-23 2023-09-26 河海大学 Method for quantitatively predicting shale gas reservoir based on stratum difference diagenetic effect
CN114722590A (en) * 2022-03-23 2022-07-08 中石化石油工程技术服务有限公司 Random acquisition observation system design optimization method based on geophysical model
CN114722590B (en) * 2022-03-23 2024-03-22 中石化石油工程技术服务有限公司 Design optimization method of random acquisition observation system based on geophysical model
CN114706125A (en) * 2022-03-29 2022-07-05 中海石油(中国)有限公司 Method and system for predicting subsurface fracture reservoir based on wide-angle reflection information
CN114645701B (en) * 2022-04-15 2024-03-22 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Carbonate rock geothermal well setting method based on structural stress field
CN114645701A (en) * 2022-04-15 2022-06-21 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Carbonate rock geothermal well setting method based on constructional stress field
CN114910964B (en) * 2022-05-30 2023-04-14 中国石油化工股份有限公司 Prediction method for gravel rock mass dessert area on steep slope of fractured lake basin
CN114910964A (en) * 2022-05-30 2022-08-16 中国石油化工股份有限公司 Prediction method for gravel rock mass dessert area on steep slope of fractured lake basin
CN115079261A (en) * 2022-06-06 2022-09-20 吉林大学 Compact sandstone gas reservoir evaluation method based on multi-parameter quantitative interpretation template
CN115045646A (en) * 2022-06-07 2022-09-13 中国地质调查局油气资源调查中心 Shale gas well site optimization method
CN115061202B (en) * 2022-06-10 2024-03-15 吉林大学 Shale gas-bearing seismic reservoir direct detection method
CN115061202A (en) * 2022-06-10 2022-09-16 吉林大学 Shale gas-bearing seismic reservoir direct detection method
CN115184996A (en) * 2022-06-23 2022-10-14 吉林大学 Crack prediction method based on seismic reflection amplitude and azimuth anisotropy difference
US11734914B1 (en) 2022-09-27 2023-08-22 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Method for evaluating geological and engineering sweet spots in unconventional reservoirs based on dual-energy computed tomography (CT)
CN115266782A (en) * 2022-09-27 2022-11-01 中国科学院地质与地球物理研究所 Method for evaluating unconventional reservoir dual desserts based on dual-energy CT technology
CN115291300A (en) * 2022-09-28 2022-11-04 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Three-dimensional exploration analysis system and evaluation method based on complex geological conditions
CN115877463B (en) * 2022-10-27 2024-02-23 西南石油大学 Shale gas reservoir TOC prediction method
CN115877463A (en) * 2022-10-27 2023-03-31 西南石油大学 Shale gas reservoir TOC prediction method
CN115749760A (en) * 2022-11-28 2023-03-07 中海石油(中国)有限公司海南分公司 Reservoir fluid property evaluation method based on measurement and recording combination
CN115822580A (en) * 2022-12-15 2023-03-21 吉林大学 Method for quantitatively predicting spatial distribution of deep volcanic gas layer
CN115985407A (en) * 2023-01-06 2023-04-18 西南石油大学 Low-resistance shale gas content prediction fusion model method
CN115932968B (en) * 2023-01-09 2023-07-18 西南石油大学 Carbonate rock thin reservoir prediction method based on seismic amplitude ratio attribute
CN115932968A (en) * 2023-01-09 2023-04-07 西南石油大学 Carbonate rock thin reservoir prediction method based on seismic amplitude ratio attribute
CN115860266A (en) * 2023-02-16 2023-03-28 东北石油大学三亚海洋油气研究院 Shale gas/coal bed gas well productivity evaluation method and system and electronic equipment
CN116068616A (en) * 2023-03-06 2023-05-05 西安石油大学 Reservoir abnormal formation pressure research method and system
CN116756788A (en) * 2023-04-06 2023-09-15 河海大学 Coarse open crack grid generation method adopting improved parting iteration method
CN116756788B (en) * 2023-04-06 2024-01-23 河海大学 Coarse open crack grid generation method adopting improved parting iteration method
CN116796453A (en) * 2023-04-18 2023-09-22 江汉大学 Vibration damping hole design method, device, equipment and readable storage medium
CN116796453B (en) * 2023-04-18 2024-03-08 江汉大学 Vibration damping hole design method, device, equipment and readable storage medium
CN116661019B (en) * 2023-06-02 2024-03-08 中国石油天然气股份有限公司 Microcrack evaluation method and device
CN116661019A (en) * 2023-06-02 2023-08-29 中国石油天然气股份有限公司 Microcrack evaluation method and device
CN117171555B (en) * 2023-06-25 2024-05-28 西南石油大学 Comprehensive discrimination method for deep coal bed methane stitch net formation based on AdaBoost
CN117171555A (en) * 2023-06-25 2023-12-05 西南石油大学 Comprehensive discrimination method for deep coal bed methane stitch net formation based on AdaBoost
CN116819644A (en) * 2023-06-26 2023-09-29 中国石油天然气股份有限公司 Method and device for determining minimum horizontal principal stress of shale oil reservoir
CN116522688B (en) * 2023-06-29 2023-09-15 北京城建勘测设计研究院有限责任公司 Well control multi-information fusion engineering geological modeling method and device
CN116522688A (en) * 2023-06-29 2023-08-01 北京城建勘测设计研究院有限责任公司 Well control multi-information fusion engineering geological modeling method and device
CN117192605A (en) * 2023-09-15 2023-12-08 山西华煜智能科技有限公司 Method, device, equipment and medium for detecting development characteristics of three zones of coal mining
CN116976705B (en) * 2023-09-19 2023-12-22 中国科学院地质与地球物理研究所 Deep oil gas accurate navigation sand shale stratum physical property evaluation method and system
CN116976705A (en) * 2023-09-19 2023-10-31 中国科学院地质与地球物理研究所 Deep oil gas accurate navigation sand shale stratum physical property evaluation method and system
CN117114208B (en) * 2023-10-23 2024-06-04 成都理工大学 Fully-coupled well factory dynamic adjustment integral fracturing optimization method
CN117114208A (en) * 2023-10-23 2023-11-24 成都理工大学 Fully-coupled well factory dynamic adjustment integral fracturing optimization method
CN117574755B (en) * 2023-10-27 2024-05-07 中国石油大学(华东) Hierarchical multistage optimization method for fracturing parameters of horizontal well of shale reservoir well factory
CN117574755A (en) * 2023-10-27 2024-02-20 中国石油大学(华东) Hierarchical multistage optimization method for fracturing parameters of horizontal well of shale reservoir well factory
CN117275601B (en) * 2023-11-17 2024-02-20 核工业北京地质研究院 Determination method for sandstone type uranium deposit anomaly information
CN117275601A (en) * 2023-11-17 2023-12-22 核工业北京地质研究院 Determination method for sandstone type uranium deposit anomaly information
CN117672387A (en) * 2023-12-01 2024-03-08 东北石油大学 Shale reservoir rock elastic mechanical property solving method from microscopic to macroscopic
CN117743948A (en) * 2024-02-20 2024-03-22 中国科学院地质与地球物理研究所 Method and system for intelligently evaluating dessert of clastic rock oil and gas reservoir through cooperation of logging and drilling data

Also Published As

Publication number Publication date
CN104853822A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016041189A1 (en) Method for evaluating shale gas reservoir and seeking desert area
CN104977618B (en) A kind of method evaluated shale gas reservoir and find dessert area
Tsvankin Anisotropic parameters and P-wave velocity for orthorhombic media
CN113901681B (en) Three-dimensional compressibility evaluation method for dual desserts of shale gas reservoir in whole life cycle
CN106368691B (en) Three-dimensional abnormal pore pressure prediction method based on rock physics seismic information
CN108680951A (en) A method of judging that Enriching Coalbed Methane depositional control acts on based on earthquake information
WO2012058626A1 (en) Model based inversion of seismic response for determining formation properties
CN109799540B (en) Volcanic rock type uranium deposit magnetic susceptibility inversion method based on geological information constraint
CN103675907A (en) AVO inversion hydrocarbon detection method based on petrographic constraints
CN105277982A (en) Shale total organic carbon content earthquake prediction method
Yang et al. Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs
CN105607120A (en) Time-shifting-logging-based method for building initial model with seismic facies constraint
Huang et al. Zoeppritz equation-based prestack inversion and its application in fluid identification
Li et al. Identification of fractured carbonate vuggy reservoirs in the S48 well area using 3D 3C seismic technique: A case history from the Tarim Basin
CN103777245A (en) Method of quantitative evaluation on oil and gas accumulation conditions based on seismic data
CN113296166A (en) Method for constructing crack model
CN111308558B (en) Shale gas horizontal well longitudinal wave time difference correction method
CN102288996A (en) Method for quantificationally predicting gas containing probability through prestack automatic fault indication (AFI) inversion
Behm Feasibility of borehole ambient noise interferometry for permanent reservoir monitoring
Liu et al. Seismic characterization of fault and fractures in deep buried carbonate reservoirs using CNN-LSTM based deep neural networks
CN103529473B (en) The compensation method of differential compaction in a kind of seismic inversion process
CN115857047A (en) Comprehensive prediction method for seismic reservoir
CN109031423A (en) Pre-stack seismic texture analysis method based on gradient co-occurrence matrix
Kana et al. Fracture aperture and fill characterization in a limestone quarry using GPR thin‐layer AVA analysis
Ningkai et al. Stepped and detailed seismic prediction of shallow-thin reservoirs in Chunfeng oilfield of Junggar Basin, NW China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHS PURSUANT TO RULE 112(1)EPC DATED 28.08.2017 (F1205A).

122 Ep: pct application non-entry in european phase

Ref document number: 14902168

Country of ref document: EP

Kind code of ref document: A1