CN111781647B - Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well - Google Patents
Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well Download PDFInfo
- Publication number
- CN111781647B CN111781647B CN202010670672.9A CN202010670672A CN111781647B CN 111781647 B CN111781647 B CN 111781647B CN 202010670672 A CN202010670672 A CN 202010670672A CN 111781647 B CN111781647 B CN 111781647B
- Authority
- CN
- China
- Prior art keywords
- dzmig
- imaging
- depth
- shot
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
- G01V2210/51—Migration
- G01V2210/512—Pre-stack
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及地球物理勘探中地震数据偏移成像,特别是涉及一种大斜井炮检移动VSP自由表面多次波成像方法和装置。The invention relates to seismic data migration imaging in geophysical exploration, in particular to a method and device for multiple wave imaging of a mobile VSP free surface for heavy-inclined well inspection.
背景技术Background technique
炮检移动VSP是针对大斜井设计的观测系统,即炮线布设于地表、位于井中检波器的正上方,炮线随着检波器移动。炮检移动VSP的优势是覆盖次更加均匀。这种观测系统主要用于斜井钻进过程中的导向入靶。通常,自由表面多次波作为干扰波被衰减了。与反射相比,自由表面多次波具有易识别、照明宽、反射角小、传播路径长的特点。Shot detection mobile VSP is an observation system designed for highly deviated wells, that is, the shot line is arranged on the surface, just above the geophone in the well, and the shot line moves with the geophone. The advantage of offsetting mobile VSPs is more uniform coverage. This kind of observation system is mainly used for guiding and targeting during the drilling of inclined wells. Usually, free surface multiples are attenuated as interference waves. Compared with reflection, free surface multiples have the characteristics of easy identification, wide illumination, small reflection angle and long propagation path.
吴世萍等研究了《Walkaway VSP多次波成像技术研究》,文献将地震相干成像用于Walkaway VSP多次波成像。李建国等研究了《Walkaway VSP自由表面多次波叠前深度偏移成像》,文献采用单程波延拓实现了变偏移距VSP的自由表面多次波成像;但是由于针对炮检移动VSP的自由表面多次波成像的研究还不成熟,在地址研究、钻进导向等领域还存在着诸多不便。Shiping Wu et al. studied "Research on Walkaway VSP Multiple Wave Imaging Technology", and the literature uses seismic coherence imaging for Walkaway VSP multiple wave imaging. Li Jianguo et al. studied "Walkaway VSP Free Surface Multiple Wave Prestack Depth Migration Imaging". The literature uses one-way wave continuation to realize free surface multiple imaging of variable offset VSP; The research on surface multiple wave imaging is still immature, and there are still many inconveniences in the fields of site research and drilling guidance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种大斜井炮检移动VSP自由表面多次波成像方法和装置,有效利用自由表面多次波所携带的丰富信息,实现了炮检移动VSP自由表面多次波叠前深度偏移成像,为地质研究、钻井导向提供了准确的数据基础。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a method and device for imaging mobile VSP free surface multiples in a large-inclined well, which effectively utilizes the rich information carried by the free surface multiples to realize the mobile inspection. VSP free surface multiple wave prestack depth migration imaging provides an accurate data basis for geological research and drilling steering.
本发明的目的是通过以下技术方案来实现的:一种大斜井炮检移动VSP自由表面多次波成像方法,包括以下步骤:The object of the present invention is to be achieved through the following technical solutions: a method for imaging mobile VSP free surface multiples of large deviated wells, comprising the following steps:
S1.输入大斜井炮检移动VSP全波场共检波点道集、2维地质模型、偏移参数;S1. Input the high-inclined well shot detection mobile VSP full-wave field co-detection point gather, 2D geological model, and migration parameters;
S2.根据输入数据,建立炮点、检波点在2维地质模型中的坐标;S2. According to the input data, establish the coordinates of the shot point and the detection point in the 2D geological model;
S3.对输入的共检波点道集做快速傅里叶变换到频率波数域,设置频率域震源;S3. Perform fast Fourier transform on the input common detection point gathers to the frequency wavenumber domain, and set the frequency domain source;
S4.将频率域震源从检波点深度向上延拓至自由表面,频率波数域炮检移动VSP共检波点全波场、震源波场从自由表面向下延拓,实现单检波点的自由表面多次波单程波叠前深度偏移成像;S4. Extend the seismic source in the frequency domain from the depth of the receiver point upward to the free surface, the frequency wavenumber domain offsets the full wave field of the moving VSP common receiver point, and the source wave field extends downward from the free surface to realize the free surface of a single receiver point. Sub-wave one-way pre-stack depth migration imaging;
S5.循环执行步骤S4,完成所有检波点的炮检移动VSP自由表面多次波叠前深度偏移成像;S5. Execute step S4 in a loop to complete the detection of all the detection points and move the VSP free surface multiple wave pre-stack depth migration imaging;
S6.将步骤S5的成像重排成共成像道集,共成像道集叠加,得到炮检移动VSP自由表面多次波叠前深度偏移叠加成像。S6. Rearrange the imaging in step S5 into common imaging gathers, and superimpose the common imaging gathers to obtain multiple pre-stack depth migration stacking imaging of the offset moving VSP free surface.
进一步地,所述步骤S1包括:Further, the step S1 includes:
S101.输入大斜井炮检移动VSP全波场共检波点道集{VSPData},读取炮点坐标{SX,SY}、炮点深度SZ、检波点坐标{RX,RY}、检波点深度RZ、井口大地坐标{WMX,WMY};S101. Input the mobile VSP full-wave field co-detection point gather {VSPData}, read the shot coordinates {SX, SY}, the shot depth SZ, the receiver coordinates {RX, RY}, the receiver depth RZ, geodetic coordinates of wellhead {WMX, WMY};
S102.输入纵波2维网格层速度地质模型{V},模型横坐标MX、模型横纵坐标MZ、井口模型坐标MWMX信息;S102. Input the longitudinal wave 2-dimensional grid layer velocity geological model {V}, model abscissa MX, model abscissa MZ, wellhead model coordinate MWMX information;
S103.输入成像算子最大倾角dip、成像终止深度zmig2、成像深度步长dzmig、波场{VSPData}最小频率fl、波场{VSPData}最大频率参数fh。S103. Input the maximum dip angle dip of the imaging operator, the imaging termination depth zmig2, the imaging depth step size dzmig, the minimum frequency fl of the wave field {VSPData}, and the maximum frequency parameter fh of the wave field {VSPData}.
所述步骤S2包括:The step S2 includes:
S201.利用步骤S1中的炮点坐标、炮点深度、检波点坐标、检波点深度、井口大地坐标、井口模型坐标,建立炮点、检波点在2维地质模型中的坐标:S201. Using the shot coordinates, shot depth, detection point coordinates, detection point depth, wellhead geodetic coordinates, and wellhead model coordinates in step S1 to establish the coordinates of the shot point and the detection point in the 2-dimensional geological model:
炮点在2维地质模型中的坐标为:The coordinates of the shot point in the 2D geological model are:
MSZi=SZi MSZ i =SZ i
其中,MSXi是第i个炮点在2维地质模型中的坐标,SXi、SYi是第i个炮点的大地坐标,SZi是第i个炮点的相对于2维地质模型的深度,WMX、WMY是井口的大地坐标,MWMX是井口模型坐标,sign是符号函数;Among them, MSX i is the coordinate of the ith shot in the 2D geological model, SX i and SY i are the geodetic coordinates of the ith shot, and SZ i is the ith shot relative to the 2D geological model. Depth, WMX, WMY are the geodetic coordinates of the wellhead, MWMX is the wellhead model coordinates, and sign is the sign function;
检波点在2维地质模型中的坐标为:The coordinates of the detection point in the 2D geological model are:
MRZj=RZj MRZj = RZj
其中,MRXj是第j个检波点在2维地质模型中坐标,RXj、RYj是第j个检波点的大地坐标,RZj是第j个检波点的深度,WMX、WMY是井口的大地坐标,MWMX是井口模型坐标,sign是符号函数。Among them, MRX j is the coordinate of the j-th detection point in the 2D geological model, RX j and RY j are the geodetic coordinates of the j-th detection point, RZ j is the depth of the j-th detection point, and WMX and WMY are the wellhead Geodetic coordinates, MWMX is the wellhead model coordinates, and sign is the sign function.
所述步骤S3包括:The step S3 includes:
S301.将步骤S1输入的第j个检波点的时间空间域全波场VSPDataj做快速傅里叶变换转换到频率波数域FVSPj;S301. the time-space domain full-wave field VSPData j of the j-th detection point input in step S1 is done fast Fourier transform and converted to frequency wavenumber domain FVSP j ;
S302.在步骤S2的坐标系下,将频率域震源FSouj设置在第j个检波点处。S302. In the coordinate system of step S2, set the frequency domain source FSou j at the jth detection point.
所述步骤S4包括:The step S4 includes:
S401.计算频率域震源向上延拓网格:S401. Calculate the upward extension grid of the frequency domain source:
kzmig=(k-1)·dzmigkzmig=(k-1)·dzmig
其中,MRZj是第j个检波点的模型深度,dzmig是成像深度步长,kzmig是第k个向上延拓的深度;Among them, MRZ j is the model depth of the j-th detection point, dzmig is the imaging depth step, and kzmig is the depth of the k-th upward extension;
S402.频率域震源用向上延拓一个深度步长:S402. Frequency Domain Source Extend one depth step upwards:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
gs0=1g s0 =1
gs1=-i·π·dzmig/kkg s1 =-i·π·dzmig/kk
gs2=(-i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g s2 =(-i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
gs3=(-i·π·dzmig·kk/8+π2·dzmig2·kk2/4-i·π3·dzmig3·kk3/6)/kk6 g s3 =(-i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4-i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
gs4=(-i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32+i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g s4 =(-i·π · dzmig · kk · 5/64-π2·dzmig2·kk2·5/32+i·π3· dzmig3 · kk3 / 8 + π4 · dzmig4 ·kk 4/24 )/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,表示频率从fl到fh间隔为df,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,km是最大倾角dip对应的最大波数,mutes是波数切除因子,kk、gs0-gs4、ts0-ts4是中间变量,是向上延拓一个深度步长的波场;where dip is the maximum inclination angle, fl is the minimum frequency, fh is the maximum frequency, f=[f l :df:f h ] is the frequency vector, indicating that the interval from f l to f h is df, V is the speed, k x is the wave number, dzmig is the imaging depth step, i is the imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, km is the maximum wave number corresponding to the maximum dip angle, mutes is the wave number cutoff factor, kk , g s0 -g s4 , t s0 -t s4 are intermediate variables, Yes Extend the wavefield up by one depth step;
S403.循环执行步骤S401~S402实现频率域震源向上延拓至自由表面;S403. Steps S401-S402 are executed cyclically to realize the upward extension of the frequency domain source to the free surface;
S404.计算向下延拓成像网格:S404. Calculate the downward extension imaging grid:
kzmig=(k-1)·dzmigkzmig=(k-1)·dzmig
其中,zmig2是成像终止深度,dzmig是成像深度步长,kzmig是第k个成像深度;Among them, zmig2 is the imaging termination depth, dzmig is the imaging depth step, and kzmig is the kth imaging depth;
S405.将频率波数域炮检移动VSP共检波点全波场用向下延拓一个深度步长:S405. Detect the full wave field of the moving VSP co-detection point in the frequency wavenumber domain Use downward continuation one depth step:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
g0=1g 0 =1
g1=-i·π·dzmig/kkg 1 =-i·π·dzmig/kk
g2=(-i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g 2 =(-i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
g3=(-i·π·dzmig·kk/8+π2·dzmig2·kk2/4-i·π3·dzmig3·kk3/6)/kk6 g 3 =(-i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4-i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
g4=(-i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32+i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g 4 =(-i·π·dzmig·kk·5/64-π 2 ·dzmig 2 ·kk 2 ·5/32+i·π 3 ·dzmig 3 ·kk 3 /8+π 4 ·dzmig 4 ·kk 4/24 )/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,km是最大倾角dip对应的最大波数,mute是波数切除因子,kk、g0-g4、t0-t4是中间变量,是向下延拓一个深度步长的波场;where dip is the maximum dip, fl is the minimum frequency, fh is the maximum frequency, f=[ fl :df: fh ] is the frequency vector, V is the velocity, kx is the wavenumber, dzmig is the imaging depth step, and i is Imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, km is the maximum wave number corresponding to the maximum dip angle dip, mute is the wave number cutoff factor, kk, g 0 -g 4 , t 0 -t 4 is the intermediate variable, Yes Extend the wavefield of a depth step down;
S406.将频率域震源向下延拓一个深度步长:S406. The frequency domain source Continue down one depth step:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
gs0=1g s0 =1
gs1=i·π·dzmig/kkg s1 =i·π·dzmig/kk
gs2=(i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g s2 = (i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
gs3=(i·π·dzmig·kk/8+π2·dzmig2·kk2/4+i·π3·dzmig3·kk3/6)/kk6 g s3 =(i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4+i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
gs4=(i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32-i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g s4 =(i·π · dzmig · kk · 5 /64-π2·dzmig2·kk2·5/32-i· π3 ·dzmig3·kk3/8+ π4 · dzmig4 · kk4 /24)/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,是向下延拓一个深度步长的波场;where dip is the maximum dip, fl is the minimum frequency, fh is the maximum frequency, f=[ fl :df: fh ] is the frequency vector, V is the velocity, kx is the wavenumber, dzmig is the imaging depth step, and i is Imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, Yes Extend the wavefield of a depth step down;
S407.相关成像条件提取成像值:S407. Extract imaging values from relevant imaging conditions:
其中,是向下延拓一个深度步长的波场,是向下延拓一个深度步长的波场,是提取的kzmig+dzmig深度的成像值,conj是复共轭函数;in, Yes Extending the wavefield down a depth step, Yes Extending the wavefield down a depth step, is the imaging value of the extracted kzmig+dzmig depth, and conj is the complex conjugate function;
S408.循环执行步骤S404~S407,至zmig2是成像终止深度,完成第j个检波点的炮检移动VSP自由表面多次波叠前深度偏移成像。S408. Steps S404 to S407 are performed cyclically until zmig2 is the imaging termination depth, and the offset imaging of the jth detection point is completed before moving the VSP free surface multiple wave stack depth migration.
一种大斜井炮检移动VSP自由表面多次波成像装置,包括:A mobile VSP free surface multiple wave imaging device for high-inclined well inspection, comprising:
数据输入模块,用于输入大斜井炮检移动VSP全波场共检波点道集、2维地质模型、偏移参数;The data input module is used to input the mobile VSP full-wave field co-detection point gather, 2D geological model, and migration parameters for the high-inclined well shot detection;
坐标建立模块,用于根据输入数据,建立炮点、检波点在2维地质模型中的坐标;The coordinate establishment module is used to establish the coordinates of the shot point and the receiver point in the 2D geological model according to the input data;
多次波叠前成像模块,用于对输入的共检波点道集做快速傅里叶变换到频率波数域,设置频率域震源;将频率域震源从检波点深度向上延拓至自由表面,频率波数域炮检移动VSP共检波点全波场、震源波场从自由表面向下延拓,实现单检波点的自由表面多次波单程波叠前深度偏移成像;并按照同样的方式完成所有检波点的炮检移动VSP自由表面多次波叠前深度偏移成像;The multiple wave prestack imaging module is used to perform fast Fourier transform on the input common receiver gathers to the frequency wavenumber domain, and set the frequency domain source; extend the frequency domain source from the depth of the receiver point upward to the free surface, and Wavenumber domain offsets the full wave field of the moving VSP common receiver point, and the source wave field extends downward from the free surface to realize the free surface multiple wave one-way wave prestack depth migration imaging of a single receiver point; and complete all the steps in the same way. Offsetting mobile VSP free surface multiple pre-stack depth migration imaging of the detection point;
叠加成像模块,用于将得到的多次波叠前深度偏移成像重排成共成像道集,共成像道集叠加,得到炮检移动VSP自由表面多次波叠前深度偏移叠加成像。The stacking imaging module is used for rearranging the obtained multiple pre-stack depth migration imaging into common imaging gathers, and stacking the co-imaging gathers to obtain the multiple pre-stack depth migration stacking imaging of the offset mobile VSP free surface.
本发明的有益效果是:本发明输入炮检移动VSP共检波点全波场、成像速度模型,给定频率域震源波场从检波点处向上延拓至自由表面,再从自由表面向下延拓共检波点全波场、上述的震源波场,采用相关成像条件提取成像值,实现炮检移动VSP自由表面多次波叠前深度偏移成像。The beneficial effects of the present invention are as follows: the present invention inputs the full wave field and imaging velocity model of the mobile VSP co-detection point, and the source wave field of a given frequency domain extends upward from the detection point to the free surface, and then extends downward from the free surface. Extend the full wave field of the common receiver point and the above-mentioned source wave field, and extract the imaging value by using the relevant imaging conditions to realize the multiple wave pre-stack depth migration imaging of the mobile VSP free surface.
附图说明Description of drawings
图1为本发明的方法流程图;Fig. 1 is the method flow chart of the present invention;
图2为实施例中大斜井炮检移动VSP全波场共检波点道集示意图;Fig. 2 is a schematic diagram of the collective detection point gathers of the mobile VSP full-wave field for artillery inspection of the highly deviated well in the embodiment;
图3为实施例中大斜井炮检移动VSP的检波点分布示意图;3 is a schematic diagram of the distribution of detection points of the mobile VSP in the high-inclined well shot detection in the embodiment;
图4为实施例中大斜井炮检移动VSP的炮点分布示意图;Fig. 4 is the shot distribution schematic diagram of the mobile VSP in the high-inclined well shot detection in the embodiment;
图5为实施例中成像速度模型示意图;5 is a schematic diagram of an imaging velocity model in an embodiment;
图6为实施例中炮检移动VSP自由表面多次波叠前深度偏移成像示意图。FIG. 6 is a schematic diagram of depth-migration imaging before multiple wave stacking of multiple waves of an offset mobile VSP free surface in an embodiment.
图7为实施例中炮检移动VSP自由表面多次波叠前深度偏移叠加成像示意图;7 is a schematic diagram of depth-migration stacking imaging before multiple wave stacking of mobile VSP free surface multiple waves in the embodiment;
图8为本发明的装置原理框图。FIG. 8 is a schematic block diagram of the apparatus of the present invention.
具体实施方式Detailed ways
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。The technical solutions of the present invention are further described in detail below with reference to the accompanying drawings, but the protection scope of the present invention is not limited to the following.
如图1所示,一种大斜井炮检移动VSP自由表面多次波成像方法,包括以下步骤:As shown in Fig. 1, a method for multiple wave imaging of mobile VSP free surface for high-inclined well inspection includes the following steps:
S1.输入大斜井炮检移动VSP全波场共检波点道集、2维地质模型、偏移参数:S1. Input the high-inclined well shot detection mobile VSP full-wave field co-detection point gather, 2D geological model, and migration parameters:
S101.输入大斜井炮检移动VSP全波场共检波点道集{VSPData},读取炮点坐标{SX,SY}、炮点深度SZ、检波点坐标{RX,RY}、检波点深度RZ、井口大地坐标{WMX,WMY};S101. Input the mobile VSP full-wave field co-detection point gather {VSPData}, read the shot coordinates {SX, SY}, the shot depth SZ, the receiver coordinates {RX, RY}, the receiver depth RZ, geodetic coordinates of wellhead {WMX, WMY};
S102.输入纵波2维网格层速度地质模型{V},模型横坐标MX、模型横纵坐标MZ、井口模型坐标MWMX信息;S102. Input the longitudinal wave 2-dimensional grid layer velocity geological model {V}, model abscissa MX, model abscissa MZ, wellhead model coordinate MWMX information;
S103.输入成像算子最大倾角dip、成像终止深度zmig2、成像深度步长dzmig、波场{VSPData}最小频率fl、波场{VSPData}最大频率参数fh。S103. Input the maximum dip angle dip of the imaging operator, the imaging termination depth zmig2, the imaging depth step size dzmig, the minimum frequency fl of the wave field {VSPData}, and the maximum frequency parameter fh of the wave field {VSPData}.
在本申请的实施例中,输入的大斜井炮检移动VSP全波场共检波点道集如图2所示,图2中横坐标为道号,纵坐标为时间(单位:毫秒);输入的大斜井炮检移动VSP的检波点分布如图3所示,图3中三角形为检波点所在位置,横坐标为长度(单位:米),纵坐标为深度(单位:米);输入的大斜井炮检移动VSP的炮点分布如图4所示,图4中,点线为炮线位置;横坐标为长度(单位:米);纵坐标表示第几次激发;输入的成像速度模型如图5所示,图5中,横坐标为长度(单位:米);纵坐标为深度(单位:米)。In the embodiment of the present application, the input high-inclined well shot detection mobile VSP full-wave field co-detection point gather is shown in Figure 2, where the abscissa in Figure 2 is the track number, and the ordinate is the time (unit: millisecond); Figure 3 shows the distribution of the detection points of the input high-inclined well shot detection mobile VSP. In Figure 3, the triangle is the location of the detection point, the abscissa is the length (unit: m), and the ordinate is the depth (unit: m); input The shot distribution of the mobile VSP in the high-inclined well inspection is shown in Fig. 4. In Fig. 4, the dotted line is the position of the shot line; the abscissa is the length (unit: m); the ordinate indicates the number of excitations; the input imaging The velocity model is shown in Figure 5. In Figure 5, the abscissa is the length (unit: m); the ordinate is the depth (unit: m).
S2.根据输入数据,建立炮点、检波点在2维地质模型中的坐标;S2. According to the input data, establish the coordinates of the shot point and the detection point in the 2D geological model;
S201.利用步骤S1中的炮点坐标、炮点深度、检波点坐标、检波点深度、井口大地坐标、井口模型坐标,建立炮点、检波点在2维地质模型中的坐标:S201. Using the shot coordinates, shot depth, detection point coordinates, detection point depth, wellhead geodetic coordinates, and wellhead model coordinates in step S1 to establish the coordinates of the shot point and the detection point in the 2-dimensional geological model:
炮点在2维地质模型中的坐标为:The coordinates of the shot point in the 2D geological model are:
MSZi=SZi MSZ i =SZ i
其中,MSXi是第i个炮点在2维地质模型中的坐标,SXi、SYi是第i个炮点的大地坐标,SZi是第i个炮点的相对于2维地质模型的深度,WMX、WMY是井口的大地坐标,MWMX是井口模型坐标,sign是符号函数;Among them, MSX i is the coordinate of the ith shot in the 2D geological model, SX i and SY i are the geodetic coordinates of the ith shot, and SZ i is the ith shot relative to the 2D geological model. Depth, WMX, WMY are the geodetic coordinates of the wellhead, MWMX is the wellhead model coordinates, and sign is the sign function;
检波点在2维地质模型中的坐标为:The coordinates of the detection point in the 2D geological model are:
MRZj=RZj MRZj = RZj
其中,MRXj是第j个检波点在2维地质模型中坐标,RXj、RYj是第j个检波点的大地坐标,RZj是第j个检波点的深度,WMX、WMY是井口的大地坐标,MWMX是井口模型坐标,sign是符号函数。Among them, MRX j is the coordinate of the j-th detection point in the 2D geological model, RX j and RY j are the geodetic coordinates of the j-th detection point, RZ j is the depth of the j-th detection point, and WMX and WMY are the wellhead Geodetic coordinates, MWMX is the wellhead model coordinates, and sign is the sign function.
S3.对输入的共检波点道集做快速傅里叶变换到频率波数域,设置频率域震源:S3. Perform fast Fourier transform on the input common-detection point gathers to the frequency wavenumber domain, and set the frequency domain source:
所述步骤S3包括:The step S3 includes:
S301.将步骤S1输入的第j个检波点的时间空间域全波场VSPDataj做快速傅里叶变换转换到频率波数域FVSPj;S301. the time-space domain full-wave field VSPData j of the j-th detection point input in step S1 is done fast Fourier transform and converted to frequency wavenumber domain FVSP j ;
S302.在步骤S2的坐标系下,将频率域震源FSouj设置在第j个检波点处。S302. In the coordinate system of step S2, set the frequency domain source FSou j at the jth detection point.
S4.将频率域震源从检波点深度向上延拓至自由表面,频率波数域炮检移动VSP共检波点全波场、震源波场从自由表面向下延拓,延拓算子为ω-x单程波算子,相关成像条件提取成像值,实现单检波点的自由表面多次波单程波叠前深度偏移成像:S4. Extend the seismic source in the frequency domain from the depth of the receiver point upward to the free surface, the frequency wavenumber domain offsets the full wave field of the moving VSP common receiver point, and the source wave field extends downward from the free surface, and the extension operator is ω-x The one-way wave operator, extracts the imaging value from the relevant imaging conditions, and realizes the free surface multiple wave one-way wave pre-stack depth migration imaging of a single detection point:
S401.计算频率域震源向上延拓网格:S401. Calculate the upward extension grid of the frequency domain source:
kzmig=(k-1)·dzmigkzmig=(k-1)·dzmig
其中,MRZj是第j个检波点的模型深度,dzmig是成像深度步长,kzmig是第k个向上延拓的深度;Among them, MRZ j is the model depth of the j-th detection point, dzmig is the imaging depth step, and kzmig is the depth of the k-th upward extension;
S402.频率域震源用向上延拓一个深度步长:S402. Frequency Domain Source Extend one depth step upwards:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
gs0=1g s0 =1
gs1=-i·π·dzmig/kkg s1 =-i·π·dzmig/kk
gs2=(-i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g s2 =(-i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
gs3=(-i·π·dzmig·kk/8+π2·dzmig2·kk2/4-i·π3·dzmig3·kk3/6)/kk6 g s3 =(-i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4-i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
gs4=(-i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32+i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g s4 =(-i·π · dzmig · kk · 5/64-π2·dzmig2·kk2·5/32+i·π3· dzmig3 · kk3 / 8 + π4 · dzmig4 ·kk 4/24 )/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,表示频率从fl到fh间隔为df,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,km是最大倾角dip对应的最大波数,mutes是波数切除因子,kk、gs0-gs4、ts0-ts4是中间变量,是向上延拓一个深度步长的波场;where dip is the maximum inclination angle, fl is the minimum frequency, fh is the maximum frequency, f=[f l :df:f h ] is the frequency vector, indicating that the interval from f l to f h is df, V is the speed, k x is the wave number, dzmig is the imaging depth step, i is the imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, km is the maximum wave number corresponding to the maximum dip angle, mutes is the wave number cutoff factor, kk , g s0 -g s4 , t s0 -t s4 are intermediate variables, Yes Extend the wavefield up by one depth step;
S403.循环执行步骤S401~S402实现频率域震源向上延拓至自由表面;S403. Steps S401-S402 are executed cyclically to realize the upward extension of the frequency domain source to the free surface;
S404.计算向下延拓成像网格:S404. Calculate the downward extension imaging grid:
kzmig=(k-1)·dzmigkzmig=(k-1)·dzmig
其中,zmig2是成像终止深度,dzmig是成像深度步长,kzmig是第k个成像深度;Among them, zmig2 is the imaging termination depth, dzmig is the imaging depth step, and kzmig is the kth imaging depth;
S405.将频率波数域炮检移动VSP共检波点全波场用向下延拓一个深度步长:S405. Detect the full wave field of the moving VSP co-detection point in the frequency wavenumber domain Use downward continuation one depth step:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
g0=1g 0 =1
g1=-i·π·dzmig/kkg 1 =-i·π·dzmig/kk
g2=(-i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g 2 =(-i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
g3=(-i·π·dzmig·kk/8+π2·dzmig2·kk2/4-i·π3·dzmig3·kk3/6)/kk6 g 3 =(-i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4-i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
g4=(-i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32+i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g 4 =(-i·π·dzmig·kk·5/64-π 2 ·dzmig 2 ·kk 2 ·5/32+i·π 3 ·dzmig 3 ·kk 3 /8+π 4 ·dzmig 4 ·kk 4/24 )/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,km是最大倾角dip对应的最大波数,mute是波数切除因子,kk、g0-g4、t0-t4是中间变量,是向下延拓一个深度步长的波场;where dip is the maximum dip, fl is the minimum frequency, fh is the maximum frequency, f=[ fl :df: fh ] is the frequency vector, V is the velocity, kx is the wavenumber, dzmig is the imaging depth step, and i is Imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, km is the maximum wave number corresponding to the maximum dip angle dip, mute is the wave number cutoff factor, kk, g 0 -g 4 , t 0 -t 4 is the intermediate variable, Yes Extend the wavefield of a depth step down;
S406.将频率域震源向下延拓一个深度步长:S406. The frequency domain source Continue down one depth step:
f=[fl:df:fh]f=[f l :df:f h ]
kk=f/Vk=f/V
gs0=1g s0 =1
gs1=i·π·dzmig/kkg s1 =i·π·dzmig/kk
gs2=(i·π·dzmig·kk/4-π2·dzmig2·kk2/2)/kk4 g s2 = (i·π·dzmig·kk/4-π 2 ·dzmig 2 ·kk 2 /2)/kk 4
gs3=(i·π·dzmig·kk/8+π2·dzmig2·kk2/4+i·π3·dzmig3·kk3/6)/kk6 g s3 =(i·π·dzmig·kk/8+π 2 ·dzmig 2 ·kk 2 /4+i·π 3 ·dzmig 3 ·kk 3 /6)/kk 6
gs4=(i·π·dzmig·kk·5/64-π2·dzmig2·kk2·5/32-i·π3·dzmig3·kk3/8+π4·dzmig4·kk4/24)/kk8 g s4 =(i·π · dzmig · kk · 5 /64-π2·dzmig2·kk2·5/32-i· π3 ·dzmig3·kk3/8+ π4 · dzmig4 · kk4 /24)/kk 8
其中,dip是最大倾角,fl是最小频率,fh是最大频率,f=[fl:df:fh]是频率向量,V是速度,kx是波数,dzmig是成像深度步长,i是虚数单位,fft是傅里叶变换函数,ifft是傅里叶逆变换函数,是向下延拓一个深度步长的波场;where dip is the maximum dip, fl is the minimum frequency, fh is the maximum frequency, f=[ fl :df: fh ] is the frequency vector, V is the velocity, kx is the wavenumber, dzmig is the imaging depth step, and i is Imaginary unit, fft is the Fourier transform function, ifft is the inverse Fourier transform function, Yes Extend the wavefield of a depth step down;
S407.相关成像条件提取成像值:S407. Extract imaging values from relevant imaging conditions:
其中,是向下延拓一个深度步长的波场,是向下延拓一个深度步长的波场,是提取的kzmig+dzmig深度的成像值,conj是复共轭函数;in, Yes Extending the wavefield down a depth step, Yes Extending the wavefield down a depth step, is the imaging value of the extracted kzmig+dzmig depth, and conj is the complex conjugate function;
S408.循环执行步骤S404~S407,至zmig2是成像终止深度,完成第j个检波点的炮检移动VSP自由表面多次波叠前深度偏移成像。S408. Steps S404 to S407 are performed cyclically until zmig2 is the imaging termination depth, and the offset imaging of the jth detection point is completed before moving the VSP free surface multiple wave stack depth migration.
S5.循环执行步骤S4,完成所有检波点的炮检移动VSP自由表面多次波叠前深度偏移成像;S5. Execute step S4 in a loop to complete the detection of all the detection points and move the VSP free surface multiple wave pre-stack depth migration imaging;
在本申请的实施例中,炮检移动VSP自由表面多次波叠前深度偏移成像如图6所示,与图2对应,横坐标为道号;纵坐标为深度(单位:米);In the embodiment of the present application, the pre-stack depth migration imaging of multiple waves of the offset mobile VSP free surface is shown in Figure 6, corresponding to Figure 2, the abscissa is the track number; the ordinate is the depth (unit: meter);
S6.将步骤S5的成像重排成共成像道集,共成像道集叠加,得到炮检移动VSP自由表面多次波叠前深度偏移叠加成像。S6. Rearrange the imaging in step S5 into common imaging gathers, and superimpose the common imaging gathers to obtain multiple pre-stack depth migration stacking imaging of the offset moving VSP free surface.
在本申请的实施例中,炮检移动VSP自由表面多次波叠前深度偏移叠加成像,如图7所示,横坐标为长度(单位:米);纵坐标为深度(单位:米)。In the embodiment of the present application, the multiple wave pre-stack depth migration stack imaging of the mobile VSP free surface is detected, as shown in Figure 7, the abscissa is the length (unit: m); the ordinate is the depth (unit: m) .
如图8所示,一种大斜井炮检移动VSP自由表面多次波成像装置,包括:As shown in Figure 8, a mobile VSP free surface multiple wave imaging device for high-inclined well inspection includes:
数据输入模块,用于输入大斜井炮检移动VSP全波场共检波点道集、2维地质模型、偏移参数;The data input module is used to input the mobile VSP full-wave field co-detection point gather, 2D geological model, and migration parameters for the high-inclined well shot detection;
坐标建立模块,用于根据输入数据,建立炮点、检波点在2维地质模型中的坐标;The coordinate establishment module is used to establish the coordinates of the shot point and the receiver point in the 2D geological model according to the input data;
多次波叠前成像模块,用于对输入的共检波点道集做快速傅里叶变换到频率波数域,设置频率域震源;将频率域震源从检波点深度向上延拓至自由表面,频率波数域炮检移动VSP共检波点全波场、震源波场从自由表面向下延拓,实现单检波点的自由表面多次波单程波叠前深度偏移成像;并按照同样的方式完成所有检波点的炮检移动VSP自由表面多次波叠前深度偏移成像;The multiple wave prestack imaging module is used to perform fast Fourier transform on the input common receiver gathers to the frequency wavenumber domain, and set the frequency domain source; extend the frequency domain source from the depth of the receiver point upward to the free surface, and Wavenumber domain offsets the full wave field of the moving VSP common receiver point, and the source wave field extends downward from the free surface to realize the free surface multiple wave one-way wave prestack depth migration imaging of a single receiver point; and complete all the steps in the same way. Offsetting mobile VSP free surface multiple pre-stack depth migration imaging of the detection point;
叠加成像模块,用于将得到的多次波叠前深度偏移成像重排成共成像道集,共成像道集叠加,得到炮检移动VSP自由表面多次波叠前深度偏移叠加成像。The stacking imaging module is used for rearranging the obtained multiple pre-stack depth migration imaging into common imaging gathers, and stacking the co-imaging gathers to obtain the multiple pre-stack depth migration stacking imaging of the offset mobile VSP free surface.
综上,本发明输入炮检移动VSP共检波点全波场、成像速度模型,给定频率域震源波场从检波点处向上延拓至自由表面,再从自由表面向下延拓共检波点全波场、上述的震源波场,采用相关成像条件提取成像值,实现炮检移动VSP自由表面多次波叠前深度偏移成像。To sum up, the present invention inputs the full wave field and imaging velocity model of the offset moving VSP common detection point, and the source wave field of the given frequency domain extends upward from the detection point to the free surface, and then extends the common detection point downward from the free surface. The full wave field, the above-mentioned source wave field, and the relevant imaging conditions are used to extract the imaging values to realize the multiple wave pre-stack depth migration imaging of the offset mobile VSP free surface.
以上所述是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应该看作是对其他实施例的排除,而可用于其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above are preferred embodiments of the present invention, it should be understood that the present invention is not limited to the form disclosed herein, should not be regarded as an exclusion of other embodiments, but can be used in other combinations, modifications and environments, and can be used herein Within the scope of the stated concept, modifications can be made through the above teachings or skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all fall within the protection scope of the appended claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010670672.9A CN111781647B (en) | 2020-07-13 | 2020-07-13 | Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010670672.9A CN111781647B (en) | 2020-07-13 | 2020-07-13 | Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111781647A CN111781647A (en) | 2020-10-16 |
CN111781647B true CN111781647B (en) | 2022-05-20 |
Family
ID=72767595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010670672.9A Active CN111781647B (en) | 2020-07-13 | 2020-07-13 | Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111781647B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO883738D0 (en) * | 1987-11-16 | 1988-08-19 | Western Atlas Int Inc | PROCEDURES FOR VERTICAL SEISMIC PROFILING (VSP). |
US4870580A (en) * | 1983-12-30 | 1989-09-26 | Schlumberger Technology Corporation | Compressional/shear wave separation in vertical seismic profiling |
US4894809A (en) * | 1985-05-23 | 1990-01-16 | Mobil Oil Corporation | Method for bin, moveout correction and stack of offset vertical seismic profile data in media with dip |
US5696735A (en) * | 1994-10-19 | 1997-12-09 | Exxon Production Research Company | Seismic migration using offset checkshot data |
CN103454680A (en) * | 2013-08-27 | 2013-12-18 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | Method for calculating vertical coverage times of Walk-away VSP observing system |
CN104853822A (en) * | 2014-09-19 | 2015-08-19 | 杨顺伟 | Method for evaluating shale gas reservoir and searching sweet spot region |
CN105911587A (en) * | 2016-04-22 | 2016-08-31 | 中国地质大学(北京) | Two-way wave pre-stack depth migration method through one-way wave operator |
CN109991662A (en) * | 2019-05-15 | 2019-07-09 | 中油奥博(成都)科技有限公司 | Apparatus and method for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow formation |
CN209946406U (en) * | 2019-05-15 | 2020-01-14 | 中油奥博(成都)科技有限公司 | Device for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow stratum |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10267937B2 (en) * | 2014-04-17 | 2019-04-23 | Saudi Arabian Oil Company | Generating subterranean imaging data based on vertical seismic profile data and ocean bottom sensor data |
-
2020
- 2020-07-13 CN CN202010670672.9A patent/CN111781647B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4870580A (en) * | 1983-12-30 | 1989-09-26 | Schlumberger Technology Corporation | Compressional/shear wave separation in vertical seismic profiling |
US4894809A (en) * | 1985-05-23 | 1990-01-16 | Mobil Oil Corporation | Method for bin, moveout correction and stack of offset vertical seismic profile data in media with dip |
NO883738D0 (en) * | 1987-11-16 | 1988-08-19 | Western Atlas Int Inc | PROCEDURES FOR VERTICAL SEISMIC PROFILING (VSP). |
US5696735A (en) * | 1994-10-19 | 1997-12-09 | Exxon Production Research Company | Seismic migration using offset checkshot data |
CN103454680A (en) * | 2013-08-27 | 2013-12-18 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | Method for calculating vertical coverage times of Walk-away VSP observing system |
CN104853822A (en) * | 2014-09-19 | 2015-08-19 | 杨顺伟 | Method for evaluating shale gas reservoir and searching sweet spot region |
CN105911587A (en) * | 2016-04-22 | 2016-08-31 | 中国地质大学(北京) | Two-way wave pre-stack depth migration method through one-way wave operator |
CN109991662A (en) * | 2019-05-15 | 2019-07-09 | 中油奥博(成都)科技有限公司 | Apparatus and method for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow formation |
CN209946406U (en) * | 2019-05-15 | 2020-01-14 | 中油奥博(成都)科技有限公司 | Device for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow stratum |
Non-Patent Citations (4)
Title |
---|
Walkaway VSP处理技术及应用;臧胜涛等;《石油地球物理勘探》;20171230;全文 * |
Walkaway VSP多次波成像技术研究;吴世萍等;《石油物探》;20110325(第02期);全文 * |
Walkaway VSP深度域叠前偏移成像;王欣等;《石油地球物理勘探》;20160815(第04期);第745-750页 * |
Walkaway VSP自由表面多次波叠前深度偏移成像;李建国等;《石油地球物理勘探》;20181230;第77-82页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111781647A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101907727B (en) | Multi-component converted wave static correction method by using surface waves | |
CN102053261B (en) | Method for processing seismic data | |
CN103713323B (en) | Omnibearing aeolotropy amplitude-preservation imaging and gather extracting method | |
CN107526101A (en) | A kind of collection for obtaining earthquake reflected wave and processing method | |
CN102540250A (en) | Azimuth fidelity angle domain imaging-based fractured oil and gas reservoir seismic exploration method | |
CN106526678B (en) | A kind of wave field separation method and device of reflected acoustic wave well logging | |
CN103454681B (en) | Evaluate the method and apparatus of 3 D seismic observation system imaging effect | |
CN113640881B (en) | Multi-offset two-dimensional lateral high-resolution transient surface wave detection method | |
Brodic et al. | Three-component seismic land streamer study of an esker architecture through S-and surface-wave imaging | |
CN117826248B (en) | Surface wave dispersion extraction method based on multi-scale observation background noise bunching | |
CN102053260B (en) | Method for acquiring azimuth velocity of primary wave and method for processing earthquake data | |
CN111751876B (en) | A method and device for variable offset VSP converted shear wave one-way wave prestack depth migration | |
CN105093318B (en) | A kind of adaptive wave equation wave field extrapolation static correcting method | |
CN111781647B (en) | Method and device for imaging free surface multiple of VSP (vertical seismic profiling) in shot-inspection mobile process in steep well | |
CN107340537A (en) | A kind of method of P-SV converted waves prestack reverse-time depth migration | |
Schapper et al. | Anisotropic velocities and offset vector tile prestack-migration processing of the Durham Ranch 3D, Northwest Colorado | |
Lei et al. | The application of ambient noise and reflection seismic exploration in an urban active fault survey | |
Panea et al. | Analysis of crooked-line 2D seismic reflection data recorded in areas with complex surface and subsurface conditions | |
Almholt et al. | High resolution 2D reflection seismic land streamer survey for groundwater mapping: Case study from south east Denmark | |
WO2020180857A1 (en) | Seismic surveys using two-way virtual source redatuming | |
Wang et al. | Research on the anisotropy of gas hydrate reservoirs in South China Sea | |
CN103576188B (en) | A kind of seismic source location method of release rate error impact | |
Li et al. | High-density analysis of surface wave profile imaging based on a multiple coverage common-midpoint signal-couple array | |
CN105242308A (en) | Superposition method and apparatus of wide-azimuth earthquake data | |
O'Connell et al. | Bullwiukle: A unique 3-D experiment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |