WO2016038683A1 - 多相交流モータ駆動用インバータ装置 - Google Patents

多相交流モータ駆動用インバータ装置 Download PDF

Info

Publication number
WO2016038683A1
WO2016038683A1 PCT/JP2014/073791 JP2014073791W WO2016038683A1 WO 2016038683 A1 WO2016038683 A1 WO 2016038683A1 JP 2014073791 W JP2014073791 W JP 2014073791W WO 2016038683 A1 WO2016038683 A1 WO 2016038683A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching element
motor
circuit
inverter
Prior art date
Application number
PCT/JP2014/073791
Other languages
English (en)
French (fr)
Inventor
佑 川野
卓弘 岡上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/073791 priority Critical patent/WO2016038683A1/ja
Priority to US15/324,913 priority patent/US9793849B2/en
Priority to CN201480081758.0A priority patent/CN106716822B/zh
Priority to JP2016547290A priority patent/JP6157752B2/ja
Priority to EP14901792.3A priority patent/EP3193443B1/en
Publication of WO2016038683A1 publication Critical patent/WO2016038683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present invention relates to an inverter device for driving a multi-phase AC motor, and more particularly to an inverter device for driving a multi-phase AC motor that can cope with a failure in an inverter circuit.
  • a multiphase AC motor is used in various places, for example, an electric power steering device.
  • the electric power supplied to the polyphase AC motor is controlled by an inverter device for driving the polyphase AC motor.
  • an inverter device for driving the polyphase AC motor.
  • the electric power steering device is a device that reduces the steering torque of a driver by a driver, and is configured by combining a power source, a motor, a sensor, a three-phase AC motor driving inverter device, and a control device.
  • the direction and magnitude of the rotational angular speed of the steering torque is detected by a sensor, and the power of the power source is converted to the required magnitude by an inverter device for driving a three-phase AC motor and supplied to the motor. This is a system that applies steering torque.
  • Patent Document 1 when only one of the three phases of the motor fails, the drive of the motor is continued with a phase other than the failed phase as the energized phase, and the assist torque for steering is reduced.
  • a method for identifying the phase in which the failure occurred is proposed.
  • motor control is continued using two phases other than the energization failure phase as energization phases. It is disclosed.
  • the motor relay has a parasitic diode, and since a diode may be added to prevent reverse connection and to use regenerative energy by rotating the motor, depending on the parasitic diode of the motor relay or the added diode
  • a closed circuit is formed and a current flows through the closed circuit, there is a problem that brake torque is applied to the motor.
  • the present invention was made to solve the above-described problem of generation of brake torque.
  • An object of the present invention is to provide an inverter device.
  • the present invention is connected between a power source and a multiphase AC motor, and converts the power of the power source into the polyphase AC motor by converting it into a polyphase AC, and supplies the inverter circuit,
  • a first power supply switching element provided between a power supply and the inverter circuit for opening and closing an electric circuit between the power supply and the inverter circuit; an output point for each phase of the inverter circuit; and the multiphase AC motor;
  • a switching element for a motor relay that opens and closes an electric circuit between the output point and the multiphase AC motor, and is located downstream of the first power switching element when viewed from the power source.
  • the phase winding of the multiphase AC motor is arranged in parallel with the motor relay switching element. A diode in a direction flowing into the line is connected.
  • the phase of the multiphase AC motor is parallel to the motor relay switching element. A diode in the direction of flowing out of the winding is connected.
  • the phase in which the failure has occurred can be disconnected, and the motor drive can be continued with only the remaining phase, and the power relay and the motor relay
  • the direction of the diode connected in parallel with the switching element By defining the direction of the diode connected in parallel with the switching element, the formation of a closed circuit that causes a brake torque is prevented.
  • FIG. 1 is an overall configuration circuit diagram of an electric power steering device including an inverter device for driving a three-phase AC motor according to Embodiment 1.
  • FIG. FIG. 5 is an overall configuration circuit diagram of an electric power steering device including an inverter device for driving a three-phase AC motor according to a second embodiment.
  • FIG. 6 is a partial circuit diagram of an electric power steering device including an inverter device for driving a three-phase AC motor according to a third embodiment.
  • FIG. 6 is a partial circuit diagram of an electric power steering device including an inverter device for driving a three-phase AC motor according to a third embodiment.
  • FIG. 1 is an overall configuration circuit diagram of an electric power steering apparatus including an inverter apparatus according to Embodiment 1 of the present invention.
  • the inverter device 1 is configured to supply a current from a power source 6 mounted on the vehicle to the motor 2.
  • the inverter device 1 includes an inverter circuit 3 and a control circuit 4, a rotation sensor 5 is provided in the motor 2, and information detected by the rotation sensor 5 is input to the control circuit 4. Between the power supply 6 and the inverter circuit 3, an ignition switch 7 for starting the operation of the control circuit 4, a capacitor and a coil for noise suppression on the power supply line (+ B, ⁇ ground) of the power supply 6, and the inverter circuit 3 There is provided a first power supply switching element 15 having a relay function for turning on and off the current to the power source.
  • the first power supply switching element 15 is, for example, an FET of a semiconductor element, and a parasitic diode is disposed in the forward direction with respect to the current supply direction with respect to the FET, and the power supply 6 is erroneously reversed in the reverse direction. Even if connected, it is configured to protect by cutting off the current.
  • the inverter circuit 3 includes two switching elements 31U and 32U in the upper and lower arm circuits for each phase of the three-phase windings (U, V, W) of the motor 2, for a total of six (
  • 34U is provided.
  • a capacitor 30U is connected to each of the U-phase, V-phase, and W-phase arm circuits to suppress noise.
  • a shunt resistor 33U is provided for detecting the current flowing through the motor 2 for each phase of the arm circuit.
  • a second power switching element 35U is provided on the input side of each phase arm circuit. The current input to the arm circuit for each phase can be turned ON / OFF by the second power switching element 35U.
  • the switching elements 31U and 32U and the motor relay switching element 34U provided in the inverter circuit 3 are semiconductor elements, for example, N-channel MOSFETs, and parasitic diodes in the direction shown in the figure are arranged in parallel.
  • parasitic diodes are not entered on the circuit diagram, but are written in order to facilitate understanding of the relationship between the source and the drain, and instead of expressing the relationship between the source and the drain, the direction of the diode is used. expressing.
  • the switching elements 31U and 32U and the motor relay switching element 34U provided in the upper and lower arm circuits, respectively, are each controlled by PWM (pulse width modulation) based on a command from the control circuit 4, and the arm circuit
  • PWM pulse width modulation
  • the DC power supplied from the DC power supply 6 can be converted into AC and supplied to the three phases of the motor 2 by turning ON / OFF the switching elements 31U and 32U.
  • the second power switching element 35U is also composed of a semiconductor element such as an FET, the parasitic diode is disposed in the opposite direction to the current supply direction, and the gate is turned off. It is necessary to cut off the current completely.
  • a control circuit 4 in the inverter device 1 calculates a control amount for a current supplied to the winding of the motor 2 based on information from a sensor 8 such as a vehicle speed sensor and a torque sensor that detects steering torque of the steering.
  • the CPU calculates the current supplied to the windings of the motor 2 based on the input information from the sensor 8, and outputs the result to the drive circuit 11. Signals are output to the switching elements 31U, 32U, 34U, and 35U.
  • the switching elements 31 ⁇ / b> U, 32 ⁇ / b> U, 34 ⁇ / b> U, and 35 ⁇ / b> U of each phase are driven based on the drive signal from the drive circuit 11, and current flows through the windings of each phase of the motor 2. Further, the supplied current value is detected by the monitor circuit 12, and feedback control is performed according to the deviation from the calculated value (target value) of the CPU 10.
  • the drive circuit 11 controls the first power supply switching element 15 and the CPU 10 calculates the rotational position and speed of the motor 2 via the rotation sensor 5 and the rotation angle detection circuit 13.
  • the U phase is described, but the same handling is performed for the V phase and the W phase.
  • a failure of the switching element of the inverter circuit 3, particularly a short-circuit failure is assumed. Fault detection is performed by a configuration in which current detection is performed based on the voltage across the terminals of the shunt resistor 33U connected in series to the circuit. That is, the phase which has failed can be specified by comparing the current value acquired for each phase with the reference value. When the failure phase is specified in this manner, the failure phase is completely separated by turning off the second power supply switching element 35U and the motor relay switching element 34U in the failure phase.
  • connection is switched so as not to flow from the parasitic diode of the second power supply switching element 35U and from the parasitic diode of the motor relay switching element 34U, and only the phase in which the failure has occurred is completely removed. It is designed to be in a blocked state.
  • the motor relay switching element 34U and the second power switching element 35U are turned OFF so that the U-phase arm circuit of the inverter circuit 3 can be electrically disconnected.
  • the motor relay switching element 34U and the second power switching element 35U are turned off.
  • the motor relay switching element 34U and the second power supply switching element 35U are turned off to electrically isolate the faulty phase from the inverter circuit 3, thereby preventing a closed circuit from being formed. The generation of torque can be prevented.
  • the inverter circuit is operated by the remaining two phases that operate normally, inverter switching is continued, and current supply to the motor 2 is continued as two-phase driving.
  • Embodiment 2 will be described with reference to FIG.
  • the difference between FIG. 1 of the first embodiment and FIG. 2 of the second embodiment is that the position of the second power switching element 37U provided in the inverter circuit 3 is the same as the second power switching element of FIG.
  • the difference from 35U and the direction of the parasitic diode of the motor relay switching element 36U are different from the direction of the parasitic diode of the motor relay switching element 34U of FIG. Since the others are the same, the same reference numerals are given.
  • the second embodiment was made to achieve the same effect for the same purpose and problem when the parasitic diode of the switching element 36U for motor relay uses an element opposite to that of the first embodiment. Is.
  • the switching element 31U or 32U for the upper or lower arm circuit when the switching element 31U or 32U for the upper or lower arm circuit is short-circuited, it is necessary to disconnect the U-phase arm circuit from the power supply line. Therefore, it is necessary to insert the second power supply switching element 37U either upstream or downstream of the switching elements 31U and 32U of the upper and lower arm circuits of the power supply line.
  • the direction of the parasitic diode of the motor relay switching element 36U is the direction in which the current flows out from the motor winding, for example, when the switching element 32U of the lower arm circuit is short-circuited, the motor relay A current path is made to the switching element 32U of the lower arm circuit through the switching element 36U.
  • the downstream end of the capacitor 30U is connected to the upstream of the second power switching element 37U, that is, the connection point with the shunt resistor 33U.
  • the V phase and the W phase are also configured in the same manner, so that only the phases can be separated at the time of a short circuit failure of each switching element 31U, 32U, and the capacitor 30U, so that a closed circuit is not configured.
  • the motor drive can be continued with the remaining two phases, and the generation of brake torque due to the failure phase can be avoided. That is, a capacitor is arranged for each phase in parallel with the switching elements 31U and 32U of the upper and lower arm circuits of each phase in the inverter circuit 3.
  • Embodiment 3 FIG. Next, a case where the number of shunt resistors 33 for current detection is one will be described. Even one shunt resistor 33 is considered in the same manner as in the first and second embodiments, and two types are conceivable depending on the location of the second power supply switching elements 35U and 37U.
  • FIG. 3 and FIG. 4 show two partial circuit diagrams of the single shunt 33 depending on the difference between the second power supply switching elements 35 and 37.
  • FIG. 3 shows that the second power switching element 35 is arranged upstream of the arm circuit of the inverter circuit 3 as shown in the first embodiment.
  • a shunt resistor 33 is connected to the downstream of the switching element 32 of the lower arm circuit, and one phase is connected. Further, the negative terminal of the capacitor 30 is connected to the ground line on the downstream side of the shunt resistor so that the phases can be separated even when the capacitor 30 is short-circuited.
  • FIG. 4 shows the second power supply switching element 37 according to the second embodiment arranged on the downstream side.
  • the shunt resistor 33 it is necessary to arrange the shunt resistor 33 on the most upstream side. That is, the same effect can be obtained by disposing the first power supply switching element 15 on the downstream side. Further, the positive terminal of the capacitor 30 is connected to the upstream side of the shunt resistor 30.
  • the current of each phase can be detected by the shunt resistor 33 by adjusting the current detection timing, and further, the detection timing is shifted by shifting the PWM drive phase of each phase. Acquiring accuracy is improved by performing processing to ensure the above.
  • the failure between each phase can be monitored by monitoring the drain-source voltage of each switching element. This is to detect a failure by detecting that the drain-source voltage is abnormally large when the switching element is turned on or that the drain-source voltage is abnormally small when the switching element is turned off. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 相毎のアーム回路の故障検出および正常な相だけによる運転の技術はあるが、故障の相の閉回路によるブレーキトルクの発生を問題視して、インバータ回路への電源ラインに第1の電源用スイッチング素子15と、インバータ回路のアーム回路の相毎に第2の電源用スイッチング素子35と、各相からの出力経路にモータリレー用スイッチング素子34とを設け、前記第1の電源用スイッチング素子15及び第2スイッチング素子35の寄生ダイオードが異なる方向の特性のダイオードとして閉回路の形成を防いだ多相交流モータ駆動用インバータ装置。

Description

多相交流モータ駆動用インバータ装置
 この発明は、多相交流モータ駆動用インバータ装置に関するもので、特に、インバータ回路に故障が発生した場合に対応し得る多相交流モータ駆動用インバータ装置に関するものである。
 多相交流モータは様々なところで使用され、例えば、電動パワーステアリング装置もその一つである。多相交流モータに供給される電力は多相交流モータ駆動用インバータ装置によって制御されている。以下、多相交流モータとして、三相交流モータを一例として取り上げて説明する。電動パワーステアリング装置は、運転者によるステアリングの操舵トルクを軽減する装置であって、電源、モータ、センサ、三相交流モータ駆動用インバータ装置及び制御装置が組み合わされて構成されており、運転者の操舵トルクの回転角速度の方向と大きさをセンサによって検出し、三相交流モータ駆動用インバータ装置によって、電源の電力を必要な大きさの電力に変換してモータに供給し、モータによるアシストトルクを操舵トルクに付与するシステムである。
 三相交流モータ駆動用インバータ装置が使用される電動パワーステアリング装置においては、従来から、モータあるいはインバータ装置に故障が発生した場合を想定して、様々な対応策が検討されてきた。また、故障の検出についても様々な提案が行われている。故障が検出された場合、故障部分を全体の回路構成から切り離すことが行われる。そのため、例えば、モータのU相、V相、W相のコイルに接続されるインバータ回路のU相、V相、W相のアーム回路のそれぞれの間にモータリレーを設け、モータが故障した場合にインバータ回路との切り離しを行うこと、およびインバータ装置と電源との間に電源リレーを設けて、電力の供給を遮断することが提案されている。確かに、全体的な系統の故障に対しては、速やかにモータを停止することが一策となるが、モータを停止することによって、ステアリング特性が大きく変化し、ステアリング操作に大きな操舵力が必要になるという問題がある。
 このため、特許文献1においては、モータの三相のうちの何れか一相のみが故障した場合に、故障した相以外の相を通電相として、モータの駆動を継続し、操舵に対するアシストトルクの付与を続行するために故障の発生した相の特定を行う方法を提案している。
 この提案の前提として、三相(U、V、W)のモータコイルのうちいずれか一相のみについての通電不良の場合に、通電不良の相以外の二相を通電相としてモータ制御を続行することが開示されている。
特開2009-1055号公報
 インバータ回路のアーム回路に故障が生じた場合を想定した対策として、モータの動作に注目し、モータトルクに大きな変動が生じないように、故障の相をモータリレーによって切り離す提案が行われているが、モータリレーには寄生ダイオードがあり、また、逆接続防止およびモータの回転による回生エネルギーの利用のために、ダイオードを付加していることがあるため、モータリレーの寄生ダイオードあるいは付加されたダイオードによって閉回路が形成され、その閉回路に電流が流れると、モータにブレーキトルクが加わるという問題がある。
 この発明は、前述のブレーキトルクの発生の問題を解決するために行われたもので、インバータ回路のアーム回路の1相に故障が発生した場合、この故障の相のみを切り離すことにより、残りの相でモータ駆動を継続し得ると共に、できる限り少ない部品の追加とその接続の向きに条件を付けるだけで、ブレーキトルクを発生させる要因となる閉回路の形成を防止し得る多相交流モータ駆動用インバータ装置を提供することを目的とするものである。
 この発明は、前述の目的を達成するために、電源と多相交流モータとの間に接続され、前記多相交流モータに前記電源の電力を多相交流に変換して供給するインバータ回路、前記電源と前記インバータ回路との間に設けられ前記電源と前記インバータ回路との間の電路を開閉する第1の電源用スイッチング素子、前記インバータ回路の各相毎の出力点と前記多相交流モータとの間に設けられ前記出力点と前記多相交流モータとの間の電路を開閉するモータリレー用スイッチング素子、前記電源から見て第1の電源用スイッチング素子よりも下流側で、前記インバータ回路の各相毎に設けられた第2の電源用スイッチング素子、および前記第1のスイッチング素子と前記第2のスイッチング素子と前記モータリレー用スイッチング素子と前記インバータ回路のスイッチング制御を行う制御回路を備え、前記第1のスイッチング素子に対して並列に、電流供給方向と順方向に接続された第1のダイオードが設けられ、前記第2のスイッチング素子に対して並列に、電流供給方向と逆方向に接続された第2のダイオードが設けられたものである。
 また、第2の電源用スイッチング素子を、インバータ回路内の上側のアーム回路のスイッチング素子の上流側に配置した場合には、モータリレー用スイッチング素子に対して並列に、多相交流モータの相巻線に流れ込む方向のダイオードを接続したものである。
 また、第2の電源用スイッチング素子を、インバータ回路内の下側のアーム回路のスイッチング素子の下流側に配置した場合には、モータリレー用スイッチング素子に対して並列に、多相交流モータの相巻線から流れ出る方向のダイオードを接続したものである。
 この発明によれば、各相に電源用スイッチング素子を独立に挿入することで、故障の発生した相を切り離して、残りの相のみでモータ駆動を継続することができると共に、電源リレーおよびモータリレー用スイッチング素子に対して並列に接続されるダイオードの方向を規定することによって、ブレーキトルクを発生させる要因となる閉回路の形成を防止するものである。
実施の形態1に係る三相交流モータ駆動用インバータ装置を含む電動パワーステアリング装置の全体構成回路図である。 実施の形態2に係る三相交流モータ駆動用インバータ装置を含む電動パワーステアリング装置の全体構成回路図である。 実施の形態3に係る三相交流モータ駆動用インバータ装置を含む電動パワーステアリング装置の部分回路図である。 実施の形態3に係る三相交流モータ駆動用インバータ装置を含む電動パワーステアリング装置の部分回路図である。
 以下、この発明による多相交流モータ駆動用インバータ装置(以下、インバータ装置という)の説明のため、三相交流モータ(以下、モータという)を用いた電動パワーステアリング装置を取り上げて、図面に基づいて説明する。なお、図面中、同一の符号はそれぞれ同一又は相当する部分を示している。
 実施の形態1.
 図1は、この発明の実施の形態1のインバータ装置を含む電動パワーステアリング装置の全体構成回路図である。電動パワーステアリング装置において、インバータ装置1は、車両に搭載された電源6からの電流をモータ2に供給するように構成されている。
 インバータ装置1は、インバータ回路3と制御回路4とを備えており、モータ2には回転センサ5が設けられ、回転センサ5によって検出された情報は制御回路4へ入力される。電源6からインバータ回路3の間には、制御回路4の動作を開始させるイグニッションスイッチ7と、電源6の電源ライン(+B、-グランド)にノイズ対策のためのコンデンサ及びコイルと、インバータ回路3への電流をON・OFFするリレー機能を有する第1の電源用スイッチング素子15が設けられている。この第1の電源用スイッチング素子15は、例えば、半導体素子のFETであって、このFETに対して寄生ダイオードは電流の供給方向に対して順方向に配置され、誤って電源6に逆方向に接続しても、電流を遮断することによって保護するように構成されている。
 インバータ回路3は、図1に示すように、モータ2の3相巻線(U、V、W)の各相に対して上下アーム回路にスイッチング素子31U、32Uが2個ずつ、計6個(U相のみ符号を記載、他の相はU相と同一として省略している)と、モータ2の巻線とスイッチング素子31U、32U間の電路を開閉するリレー機能を有したモータリレー用スイッチング素子34Uが設けられている。また、U相、V相およびW相のアーム回路毎に、ノイズを抑制するためにコンデンサ30Uが接続されている。また、各相のアーム回路毎に、モータ2に流れる電流を検出するためにシャント抵抗33Uが設けられている。更に、各相のアーム回路の入力側に第2の電源用スイッチング素子35Uが設けられている。この第2の電源用スイッチング素子35Uによって、相毎にアーム回路に入力される電流をON・OFFすることができる。
 インバータ回路3に設けられたスイッチング素子31U、32U、およびモータリレー用スイッチング素子34Uは、それぞれ半導体素子で、例えばNチャンネルMOSFETであり、図に示した方向の寄生ダイオードが並設されている。なお、一般的に、寄生ダイオードは、回路図上では記入しないが、ソースとドレインの関係を理解し易くするために敢えて記入し、ソースとドレインの関係を表わすことに代えて、ダイオードの向きで表現している。上側および下側のアーム回路にそれぞれに設けられたスイッチング素子31U、32Uおよびモータリレー用スイッチング素子34Uは、制御回路4からの指令に基づいて、それぞれPWM(パルス幅変調)制御され、アーム回路のスイッチング素子31U,32UのON・OFFにより直流電源6から供給される直流の電力を交流に変換してモータ2の三相に供給することができる。また、第2の電源用スイッチング素子35Uについても、FETのような半導体素子で構成する場合には、寄生ダイオードが電流供給方向に対して逆の方向になるように配置して、ゲートがOFFされた場合に電流を完全に遮断することが必要である。
 インバータ装置1内の制御回路4は、車速センサ、ステアリングの操舵トルクを検出するトルクセンサ等のセンサ8からの情報に基づいて、モータ2の巻線へ供給する電流のための制御量を演算するCPU10と、第1の電源用スイッチング素子15、アーム回路に設けられた各相のスイッチング素子31U、32U、モータリレー用スイッチング素子34Uおよび第2の電源用スイッチング素子35Uのスイッチング動作を制御する駆動回路11と、インバータ回路3内の各部の電圧又は電流を検出するモニタ回路12と、回転センサ5からの信号を受ける回転角検出回路13とを備えている。
 制御回路4において、CPUが、センサ8からの入力情報に基づき、モータ2の巻線へ供給する電流を演算し、その結果を駆動回路11に出力し、駆動回路11が、インバータ回路3の各スイッチング素子31U、32U、34U、35Uに対し信号を出力する。インバータ回路3において、各相のスイッチング素子31U、32U、34U、35Uが、駆動回路11からの駆動信号に基づいて駆動され、電流がモータ2の各相の巻線に流れる。また、その供給された電流値をモニタ回路12で検出し、CPU10の演算値(目標値)との偏差に応じてフィードバック制御する。一方、駆動回路11は、第1の電源用スイッチング素子15を制御すると共に、回転センサ5、回転角検出回路13を介してモータ2の回転位置、速度をCPU10によって演算している。なお、説明は、U相について説明しているが、V相およびW相についても同様の取り扱いが行われることになる。
 以上のように構成されたインバータ装置において、インバータ回路3のスイッチング素子の故障、特に短絡故障を想定する。故障の検出は、回路に対して直列接続されたシャント抵抗33Uの端子間電圧に基づき電流検出を行う構成によって行われる。すなわち、相毎に取得された電流値と基準値とを比較することによって故障している相を特定することができる。このように故障の相が特定されると、故障の相の第2の電源用スイッチング素子35Uとモータリレー用スイッチング素子34UとをOFFにすることによって、故障の相を完全に切り離す。すなわち、第2の電源用スイッチング素子35Uの寄生ダイオードからも流入しないように、また、モータリレー用スイッチング素子34Uの寄生ダイオードからも流出しないように接続を切替え、故障の発生した相のみを完全に遮断した状態になるようにしている。
 例えば、U相の上側アーム回路または下側アーム回路のスイッチング素子31Uまたは32Uのいずれかが故障であって、U相が故障の相であると特定された場合には、モータリレー用スイッチング素子34Uと第2の電源用スイッチング素子35UとをOFFにして、インバータ回路3のU相のアーム回路を電気的に切り離すことができるようにしている。
 また、各相のアーム回路内のコンデンサ30Uあるいはアーム回路内の配線において、何らかの故障が発生した場合においても同様に、モータリレー用スイッチング素子34Uと第2の電源用スイッチング素子35UとをOFFにして、相単位で、故障の相を電気的に切り離す。
 このように、モータリレー用スイッチング素子34Uと第2の電源用スイッチング素子35UとをOFFにして、インバータ回路3から故障の相を電気的に切り離すことによって、閉回路を形成することがなく、ブレーキトルクの発生を防止できることになる。
 故障の相を電気的に切り離した後は、正常に動作する残りの2相によってインバータ回路を動作させ、インバータスイッチングを継続し、2相駆動としてモータ2への電流の供給を継続する。
 実施の形態2.
 次に、実施の形態2について、図2を用いて説明する。実施の形態1の図1とこの実施の形態2の図2の差異は、インバータ回路3内に設けられた第2の電源用スイッチング素子37Uの位置が、図1の第2の電源用スイッチング素子35Uと異なる点と、モータリレー用スイッチング素子36Uの寄生ダイオードの向きが、図1のモータリレー用スイッチング素子34Uの寄生ダイオードの向きと異なるものである。その他は同一のため同一符号を付している。
 この実施の形態2は、モータリレー用スイッチング素子36Uの寄生ダイオードが、実施の形態1と逆向きとなる素子を使用した場合に、同一目的・課題に対して同一の効果を奏するためになされたものである。この実施の形態2においても、実施の形態1と同様に、上側又は下側アーム回路用のスイッチング素子31U、又は32Uが短絡した場合、U相のアーム回路を電源ラインから切り離す必要がある。そのために、第2の電源用スイッチング素子37Uを電源ラインの上側・下側アーム回路のスイッチング素子31U、32Uの上流、又は下流のいずれかに挿入する必要がある。実施の形態2ではモータリレー用スイッチング素子36Uの寄生ダイオードの向きが、モータ巻線より電流が流出する方向であるため、例えば下側アーム回路のスイッチング素子32Uが短絡故障した場合は、モータリレー用スイッチング素子36Uを介して、下側アーム回路のスイッチング素子32Uまで電流経路ができてしまう。そこで下側アーム回路のスイッチング素子32Uの下流であって、かつシャント抵抗33Uの下流側に第2の電源用スイッチング素子37Uを挿入することでこれを解決する。但し、シャント抵抗33Uは、電流を検出する目的のために設けたものであるので、電流の検出あるいは故障部分の検出手段として他の手段が存在するのであれば、必ずしもシャント抵抗33Uに対する第2の電源用スイッチング素子37Uの位置関係は必要な条件ではない。
 また、コンデンサ30Uの短絡故障も考慮して、コンデンサ30Uの下流端は第2の電源用スイッチング素子37Uの上流、つまりシャント抵抗33Uとの接続点に接続する。この構成は、V相、W相も同様に構成することで、各スイッチング素子31U、32U、コンデンサ30Uの短絡故障時にその相のみを切り離すことができることによって、閉回路を構成することがないため、残った2相でモータ駆動を継続できると共に、故障相によるブレーキトルクの発生も回避できる。すなわち、インバータ回路3内の各相の上下アーム回路のスイッチング素子31U、32Uと並列に、相毎にコンデンサを配置したものである。
 以上のように、第2の電源用スイッチング素子37Uを各相の電源ラインにそれぞれ挿入することで、故障した相のみを切り離し、残った相でモータ駆動を継続することができると共に、故障時の切り離しによりブレ-キトルクの発生を防止することができる。
 実施の形態3.
 次に、電流検出のためのシャント抵抗33を1本とした場合を説明する。1本のシャント抵抗33であっても実施の形態1、及び2と同様に考え、また第2の電源用スイッチング素子35U、37Uの配設場所により2種類が考えられる。図3及び図4に1本シャント33であって、第2の電源用スイッチング素子35、37の違いにより2通りの部分回路図を示した。
 図3は、実施の形態1として示したように、第2の電源用スイッチング素子35をインバータ回路3のアーム回路の上流側に配設したものである。シャント抵抗33は下側のアーム回路のスイッチング素子32の下流に3相をまとめて接続し、1本配配設している。さらにコンデンサ30の短絡時であってもその相を切り離すことができるようにコンデンサ30の-端子はシャント抵抗の下流側のグランド線にそれぞれ接続されている。
 同様に、図4は、実施の形態2における第2の電源用スイッチング素子37を下流側に配設したものである。この場合、シャント抵抗33は最上流側に配設する必要がある。つまり第1の電源用スイッチング素子15の下流側に配設することで同様な効果を奏することができる。さらにコンデンサ30についてもシャント抵抗30の上流側に+端子をそれぞれ接続する。
 以上のようにシャント抵抗33が1本であっても、第2の電源用スイッチング素子37を適切な場所に配設することにより、スイッチング素子31U,32Uが短絡した場合、さらにはコンデンサ30が短絡した場合にその相の電路のみを切り離すことができ、無駄なブレーキトルクを発生することもなく、モータ駆動を継続することができる。
 なお、シャント抵抗33を1本にした場合、シャント抵抗33による各相の電流の検出は、電流検出のタイミングを調整することで可能であり、さらには各相のPWM駆動位相をずらして検出タイミングを確実に確保する処理を行うことで取得精度が向上する。このように母線へのシャント抵抗33を1本にした場合でも任意の相の電流を検出することが可能なため、相毎の故障を検出することが可能である。
 また、シャント抵抗を3本または1本とした構成において,相毎の故障に関しては各スイッチング素子のドレイン―ソース間電圧を監視することでも可能である。これはスイッチング素子をオンした際のドレイン―ソース間電圧が異常に大きいことや、スイッチング素子をオフした際のドレイン―ソース間電圧が異常に小さいことを検出することによって等、故障を検出することが可能である。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (7)

  1.  電源と多相交流モータとの間に接続され、前記多相交流モータに前記電源の電力を多相交流に変換して供給するインバータ回路、前記電源と前記インバータ回路との間に設けられ前記電源と前記インバータ回路との間の電路を開閉する第1の電源用スイッチング素子、前記インバータ回路の相毎の出力点と前記多相交流モータとの間に設けられ前記出力点と前記多相交流モータとの間の電路を開閉するモータリレー用スイッチング素子、前記電源から見て第1の電源用スイッチング素子よりも下流側で、前記インバータ回路の相毎に設けられた第2の電源用スイッチング素子、および前記第1のスイッチング素子と前記第2のスイッチング素子と前記モータリレー用スイッチング素子と前記インバータ回路のスイッチング制御を行う制御回路を備え、前記第1のスイッチング素子に対して並列に、電流供給方向と順方向に接続された第1のダイオードが設けられ、前記第2のスイッチング素子に対して並列に、電流供給方向と逆方向に接続された第2のダイオードが設けられたことを特徴とする多相交流モータ駆動用インバータ装置。
  2.  前記インバータ回路の内には、相毎に上側及び下側の、スイッチング素子を有するアーム回路が設けられており、前記第2の電源用スイッチング素子は、前記インバータ回路の上側の前記アーム回路の前記スイッチング素子の上流側に配置されていることを特徴とする請求項1に記載の多相交流モータ駆動用インバータ装置。
  3.  前記インバータ回路の内には、相毎に上側及び下側の、スイッチング素子を有するアーム回路が設けられており、前記第2の電源用スイッチング素子は、前記インバータ回路の下側の前記アーム回路の前記スイッチング素子の下流側に配置されていることを特徴とする請求項1に記載の多相交流モータ駆動用インバータ装置。
  4.  前記モータリレー用スイッチング素子に対して並列に、前記多相交流モータの相巻線に流れ込む方向のダイオードを接続したことを特徴とする請求項2に記載の多相交流モータ駆動用インバータ装置。
  5.  前記モータリレー用スイッチング素子に対して並列に、前記多相交流モータの相巻線から流れ出る方向のダイオードを接続したことを特徴とする請求項3記載の多相交流モータ駆動用インバータ装置。
  6.  前記インバータ回路の内の各相の上下アーム回路のスイッチング素子と並列に、相毎にコンデンサを配置したことを特徴とする請求項1から5のいずれか1に記載の多相交流モータ駆動用インバータ装置。
  7.  電流を検出するためのシャント抵抗を、上下アーム回路のスイッチング素子に対して直列に配設し、前記コンデンサを前記上下アーム回路のスイッチング素子と前記シャント抵抗の直列接続された相に対して並列に挿入したことを特徴とする請求項6に記載の多相交流モータ駆動用インバータ装置。
PCT/JP2014/073791 2014-09-09 2014-09-09 多相交流モータ駆動用インバータ装置 WO2016038683A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/073791 WO2016038683A1 (ja) 2014-09-09 2014-09-09 多相交流モータ駆動用インバータ装置
US15/324,913 US9793849B2 (en) 2014-09-09 2014-09-09 Inverter apparatus for polyphase AC motor drive
CN201480081758.0A CN106716822B (zh) 2014-09-09 2014-09-09 多相交流电动机驱动用逆变器装置
JP2016547290A JP6157752B2 (ja) 2014-09-09 2014-09-09 多相交流モータ駆動用インバータ装置
EP14901792.3A EP3193443B1 (en) 2014-09-09 2014-09-09 Inverter device for driving multi-phase ac motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073791 WO2016038683A1 (ja) 2014-09-09 2014-09-09 多相交流モータ駆動用インバータ装置

Publications (1)

Publication Number Publication Date
WO2016038683A1 true WO2016038683A1 (ja) 2016-03-17

Family

ID=55458476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073791 WO2016038683A1 (ja) 2014-09-09 2014-09-09 多相交流モータ駆動用インバータ装置

Country Status (5)

Country Link
US (1) US9793849B2 (ja)
EP (1) EP3193443B1 (ja)
JP (1) JP6157752B2 (ja)
CN (1) CN106716822B (ja)
WO (1) WO2016038683A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109247058A (zh) * 2016-05-18 2019-01-18 三菱电机株式会社 具有多系统电路的电子控制装置
WO2019058676A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058675A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058677A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP2020036446A (ja) * 2018-08-29 2020-03-05 株式会社Subaru 電力変換装置および車両
JP2022187724A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200122B4 (de) * 2015-01-08 2016-11-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einer Sicherheitseinrichtung zur Kompensation fehlerhafter Drehmomente
JP6668897B2 (ja) * 2016-04-05 2020-03-18 株式会社オートネットワーク技術研究所 給電制御装置
EP3460989A4 (en) * 2016-05-17 2020-01-22 Microspace Corporation MOTOR DRIVE CONTROL DEVICE AND ELECTRIC DEVICE
US10322748B2 (en) * 2016-09-23 2019-06-18 Jtekt Corporation Motor controller and steering device
DE102017107125A1 (de) * 2017-04-03 2018-10-04 Wittenstein Se Schaltung zum selektiven Versorgen von Motoren mit Energie
US11356050B2 (en) * 2017-07-31 2022-06-07 Nidec Corporation Power conversion device, motor module, electric power steering device
WO2019058668A1 (ja) * 2017-09-21 2019-03-28 日本電産株式会社 モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
DE102018124998B4 (de) * 2018-10-10 2020-06-18 Vacon Oy Leistungselektronischer Umrichter und Verfahren zum Steuern desselben
US11128241B2 (en) 2019-04-04 2021-09-21 Mando Corporation Motor control system and method for selectively shorting motor windings
JP6608555B1 (ja) * 2019-05-17 2019-11-20 三菱電機株式会社 駆動装置、および電動パワーステアリング装置
KR102384184B1 (ko) * 2021-05-24 2022-04-08 주식회사 만도 조향 어시스트 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189633A (ja) * 2001-12-17 2003-07-04 Toshiba Corp 電力変換装置
JP2003219677A (ja) * 2002-01-23 2003-07-31 Toyota Motor Corp 交流発電電動機用インバータ
JP2003333862A (ja) * 2002-05-15 2003-11-21 Toshiba Corp 電力変換装置
JP2008220045A (ja) * 2007-03-05 2008-09-18 Honda Motor Co Ltd 電動機の制御装置および車両
JP2010279125A (ja) * 2009-05-27 2010-12-09 Sanden Corp モータ制御装置
JP2010288369A (ja) * 2009-06-11 2010-12-24 Toyota Industries Corp インバータ装置
WO2013183168A1 (ja) * 2012-06-08 2013-12-12 三菱電機株式会社 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023833B2 (ja) 2007-06-19 2012-09-12 株式会社ジェイテクト 電動パワーステアリング装置及び異常検出方法
DE102010035149B4 (de) * 2010-08-23 2019-03-21 Thyssenkrupp Presta Aktiengesellschaft Sicherheitsschaltung für einen Elektromotor einer elektromechanischen Lenkung
WO2012060123A1 (ja) * 2010-11-02 2012-05-10 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
JP2013079027A (ja) * 2011-10-05 2013-05-02 Denso Corp 電動パワーステアリング装置
JP2013223371A (ja) * 2012-04-18 2013-10-28 Denso Corp モータ駆動装置
JP5688689B2 (ja) * 2012-08-27 2015-03-25 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5569626B1 (ja) * 2013-06-17 2014-08-13 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP6286149B2 (ja) * 2013-08-02 2018-02-28 日立オートモティブシステムズ株式会社 電力変換装置、電動パワーステアリングシステム、電気自動車、電子制御スロットル、電動ブレーキ
JP6182385B2 (ja) * 2013-08-05 2017-08-16 日立オートモティブシステムズ株式会社 電動モータの制御装置
WO2015136918A1 (ja) * 2014-03-11 2015-09-17 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
WO2016063368A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189633A (ja) * 2001-12-17 2003-07-04 Toshiba Corp 電力変換装置
JP2003219677A (ja) * 2002-01-23 2003-07-31 Toyota Motor Corp 交流発電電動機用インバータ
JP2003333862A (ja) * 2002-05-15 2003-11-21 Toshiba Corp 電力変換装置
JP2008220045A (ja) * 2007-03-05 2008-09-18 Honda Motor Co Ltd 電動機の制御装置および車両
JP2010279125A (ja) * 2009-05-27 2010-12-09 Sanden Corp モータ制御装置
JP2010288369A (ja) * 2009-06-11 2010-12-24 Toyota Industries Corp インバータ装置
WO2013183168A1 (ja) * 2012-06-08 2013-12-12 三菱電機株式会社 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193443A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109247058A (zh) * 2016-05-18 2019-01-18 三菱电机株式会社 具有多系统电路的电子控制装置
CN109247058B (zh) * 2016-05-18 2022-03-15 三菱电机株式会社 具有多系统电路的电子控制装置
WO2019058676A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058675A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058677A1 (ja) * 2017-09-25 2019-03-28 日本電産株式会社 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP2020036446A (ja) * 2018-08-29 2020-03-05 株式会社Subaru 電力変換装置および車両
US10720923B2 (en) 2018-08-29 2020-07-21 Subaru Corporation Power conversion apparatus and vehicle
JP2022187724A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 電源システム及び移動体
JP7320561B2 (ja) 2021-06-08 2023-08-03 本田技研工業株式会社 電源システム及び移動体

Also Published As

Publication number Publication date
US9793849B2 (en) 2017-10-17
US20170201204A1 (en) 2017-07-13
EP3193443A4 (en) 2018-04-18
CN106716822A (zh) 2017-05-24
JPWO2016038683A1 (ja) 2017-04-27
JP6157752B2 (ja) 2017-07-05
CN106716822B (zh) 2019-09-17
EP3193443A1 (en) 2017-07-19
EP3193443B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP6157752B2 (ja) 多相交流モータ駆動用インバータ装置
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
US9882522B2 (en) Power conversion device, electric power steering system, electric vehicle, electronic control throttle, and electric brake
JP6150757B2 (ja) 負荷駆動装置
JP2015202019A (ja) 電動モータの制御装置
JP4772104B2 (ja) 電力変換装置
US10298165B2 (en) Rotary electric machine system
US10071762B2 (en) Detection and mitigation of inverter errors in steering system motors
JP2000014184A (ja) 少なくとも一つのブランチを有するパ―マネント励起されている電動機のための制御システム
JP5441481B2 (ja) インバータ装置の故障診断方法
JP2009035155A (ja) 電動パワーステアリング装置
WO2009125683A1 (ja) モータ制御装置及びその制御方法
CN107968612B (zh) 马达驱动电路
US10833614B2 (en) Motor drive device and electric power steering device
JP2016019385A (ja) モータ装置
US10840899B2 (en) Motor drive device and electric power steering device
JP6911570B2 (ja) 検出装置
JP2010028984A (ja) 電力変換器
JP6661760B2 (ja) 多系統回路を有する電子制御装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2010122861A1 (ja) インバーター保護装置
WO2019053974A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN110622411B (zh) 马达驱动装置和方法、电动助力转向装置以及记录介质
CN113165687B (zh) 马达控制装置、马达控制方法及电动助力转向系统
KR20170027186A (ko) 전자식 능동형 스테빌라이저 시스템의 제어 장치 및 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547290

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014901792

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15324913

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE