WO2019053974A1 - 電力変換装置、モータモジュールおよび電動パワーステアリング装置 - Google Patents

電力変換装置、モータモジュールおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019053974A1
WO2019053974A1 PCT/JP2018/022033 JP2018022033W WO2019053974A1 WO 2019053974 A1 WO2019053974 A1 WO 2019053974A1 JP 2018022033 W JP2018022033 W JP 2018022033W WO 2019053974 A1 WO2019053974 A1 WO 2019053974A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
phase separation
phase
legs
leg
Prior art date
Application number
PCT/JP2018/022033
Other languages
English (en)
French (fr)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019541654A priority Critical patent/JP7052801B2/ja
Publication of WO2019053974A1 publication Critical patent/WO2019053974A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to a first winding set of the motor, and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to a second winding set of the motor, and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the power supply relay receives from the power supply the failed system or the failed winding. Shut off the power supply to the grid connected to the wire set. It is possible to continue motor drive using the other system which has not failed.
  • Patent documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, the motor drive can be continued by the system which has not failed.
  • Patent Document 4 discloses a motor drive device having four electrical separation means and two inverters and converting power supplied to a three-phase motor.
  • one electrical separation means is provided between the power supply and the inverter, and one electrical separation means is provided between the inverter and the ground (GND).
  • GND ground
  • An embodiment of the present disclosure provides a power converter that can improve motor output in control at the time of abnormality.
  • An exemplary power converter of the present disclosure converts power from a power source into power supplied to a motor having n-phase (n is an integer of 3 or more) windings Y-connected at one end.
  • An inverter having n legs connected to the other end of the n-phase winding, each including a low-side switch element and a high-side switch element, the power supply, and the n-phase winding
  • a sub-inverter having a first phase separation relay circuit that switches connection / non-connection via an inverter for each phase, and at least one leg connected in parallel with the n legs of the inverter, the n-phase A neutral point node of the motor connecting Y ends of one end of the winding, a sub-inverter connected to the other end of the n-phase winding, the sub-inverter of the power supply and the n-phase winding Connection via inverter Switching the connection and, and a second phase separation relay circuit for switching the connection and disconnection between the power source and the neutral point
  • n-phase conduction control (typically, by appropriately determining the on / off states of the first phase separation relay circuit and the second phase separation relay circuit according to the control mode
  • Three-phase energization control or two-phase energization control can be performed continuously.
  • a power converter capable of improving a motor output in control at the time of abnormality, a motor module including the power converter, and an electric power steering apparatus including the motor module are provided.
  • FIG. 1 is a block diagram illustrating an exemplary block configuration of a motor module 1000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram showing a circuit configuration of the power conversion device 100 according to the exemplary embodiment 1.
  • FIG. 3 is a schematic view showing the configuration of the bidirectional switch SW_2W.
  • FIG. 4 is a block diagram showing a typical block configuration of control circuit 300.
  • FIG. 5 is a graph illustrating a current waveform (sine wave) obtained by plotting current values flowing through the windings M1, M2, and M3 in accordance with the three-phase conduction control.
  • FIG. 5 is a graph illustrating a current waveform (sine wave) obtained by plotting current values flowing through the windings M1, M2, and M3 in accordance with the three-phase conduction control.
  • FIG. 6A is a graph showing the relationship between the number of revolutions per unit time (rps) of the motor and torque T (N ⁇ m) when three-phase energization control is performed.
  • FIG. 6B is a graph showing the relationship between the number of revolutions per unit time (rps) of the motor and torque T (N ⁇ m) when two-phase energization control is performed.
  • FIG. 7 is a circuit diagram showing a circuit configuration of a power conversion device 100A according to an exemplary embodiment 2.
  • FIG. 8 is a schematic view showing a typical configuration of an electric power steering apparatus 2000 according to an exemplary embodiment 3.
  • the implementation of the present disclosure will be exemplified taking a power conversion apparatus that converts power from a power supply into power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings.
  • the form will be described.
  • a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
  • FIG. 1 schematically shows a typical block configuration of a motor module 1000 according to the present embodiment.
  • Motor module 1000 typically includes power converter 100, motor 200, control circuit 300, and angle sensor 500.
  • the angle sensor 500 may not be necessary depending on the motor control method (for example, sensorless control).
  • the motor module 1000 can be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • a system for driving a motor which can include components other than the motor among the components of the motor module can be referred to as a "motor drive system".
  • the motor drive system can also be modularized and manufactured and sold.
  • Power converter 100 includes an inverter 110, a sub-inverter 120, a first phase separation relay circuit 130, a second phase separation relay circuit 140, and a current sensor 400.
  • Power converter 100 can convert the power from power supply 101 (see FIG. 2) into the power to be supplied to motor 200.
  • Inverter 110 is connected to motor 200.
  • the inverter 110 can convert DC power into three-phase AC power which is a pseudo-sine wave of U-phase, V-phase and W-phase.
  • “connection” between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • the motor 200 has a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3.
  • One ends of the windings M1, M2 and M3 are Y-connected.
  • a node of the motor 200 in which one ends of the windings are Y-connected is referred to as a "neutral point node N".
  • the neutral point node N functions as a neutral point when the motor is driven.
  • the control circuit 300 is configured of a microcontroller or the like. Control circuit 300 controls power conversion device 100 based on input signals from current sensor 400 and angle sensor 500. As the control method, there are, for example, vector control, pulse width modulation (PWM) or direct torque control (DTC).
  • PWM pulse width modulation
  • DTC direct torque control
  • the angle sensor 500 is, for example, a resolver or a Hall IC.
  • the angle sensor 500 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet.
  • the angle sensor 500 detects the rotation angle (hereinafter referred to as “rotation signal”) of the rotor of the motor 200, and outputs a rotation signal to the control circuit 300.
  • FIG. 2 schematically shows the circuit configuration of the power conversion device 100 according to the present embodiment.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12 V).
  • a DC power supply is used as the power supply 101.
  • the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery).
  • a fuse 102 is connected between the power supply 101 and the inverter 110.
  • the fuse 102 can interrupt a large current that can flow from the power supply 101 to the inverter 110 or the sub-inverter 120.
  • a relay or the like may be used instead of the fuse.
  • a coil is provided between the power supply 101 and the inverter 110.
  • the coil functions as a noise filter and smoothes high frequency noise contained in the voltage waveform supplied to the inverter or high frequency noise generated by the inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of the inverter.
  • the capacitor is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
  • the inverter 110 comprises a bridge circuit having three legs. Each leg has a high side switch element and a low side switch element.
  • the U-phase leg has a high side switch element SW_AH and a low side switch element SW_AL.
  • the V-phase leg has a high side switch element SW_BH and a low side switch element SW_BL.
  • the W-phase leg has a high side switch element SW_CH and a low side switch element SW_CL.
  • a switch element for example, a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used.
  • a field effect transistor typically, a MOSFET
  • IGBT insulated gate bipolar transistor
  • the inverter 110 is, for example, a current sensor 400 (see FIG. 1) for detecting a current (sometimes referred to as “phase current”) flowing through the windings of each of the U, V and W phases. , Shunt resistance (not shown) on each leg.
  • the current sensor 400 has a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • a shunt resistor may be connected between the low side switch element and GND in each leg.
  • the number of shunt resistors is not limited to three.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
  • the U-phase leg of inverter 110 (specifically, node na between high-side switch element SW_AH and low-side switch element SW_AL) is connected to the other end of U-phase winding M1 of motor 200. Similar to the node na, the node nb of the V-phase leg is connected to the other end of the V-phase winding M2, and the node nc of the W-phase leg is connected to the other end of the W-phase winding M3.
  • Sub-inverter 120 can be connected to the other end of windings M 1, M 2, M 3 and neutral node N of motor 200.
  • the sub-inverter of the present disclosure may have at least one leg connected in parallel with the three legs of the inverter.
  • the sub-inverter 120 has one leg D connected in parallel to the three legs of the inverter 110.
  • the leg D has a high side switch element SW_DH and a low side switch element SW_DL.
  • the leg D like the leg of the inverter 110, can have a shunt resistance.
  • the node nd between the high side switch element SW_DH and the low side switch element SW_DL of the leg D can be connected to the windings M1, M2, and M3 via a second phase separation relay circuit 140 described later. Further, the node nd can be connected to the neutral point node N via the second phase separation relay circuit 140.
  • the inverter 110 can be regarded as an inverter provided with four phase legs of A phase, B phase, C phase and D phase.
  • the inverter 110 and the sub-inverter 120 can be manufactured as one bridge circuit comprising four legs including the leg D.
  • the first phase separation relay circuit 130 switches connection / disconnection between the power supply 101 and the inverter 110 for each phase.
  • the first phase separation relay circuit 130 can switch connection / disconnection between the power supply 101 and the windings M1, M2 and M3 via the inverter 110 for each phase.
  • the first phase separation relay circuit 130 is, in the inverter 110, three phase separation relays connected between a node on the high side, which is a power supply line, and three high side switch elements SW_AH, SW_BH and SW_CH. (First phase separation relay) ISW_AH, ISW_BH and ISW_CH are included.
  • the phase separation relay ISW_AH is in the U phase leg.
  • the phase separation relay ISW_BH is in the V phase leg.
  • the phase separation relay ISW_CH is in the W phase leg.
  • the first phase separation relay circuit 130 further includes three phase separation relays connected between the low side node, which is a GND line, and the three low side switch elements SW_AL, SW_BL, and SW_CL in the inverter 110.
  • (Second phase separation relay) ISW_AL, ISW_BL and ISW_CL are provided.
  • the phase separation relay ISW_AL is in the U phase leg.
  • Phase separation relay ISW_BL is in the V phase leg.
  • the phase separation relay ISW_CL is in the W phase leg.
  • a semiconductor switch such as a MOSFET can be used as the phase separation relay.
  • Other semiconductor switches such as thyristors and analog switch ICs or mechanical relays may be used.
  • a combination of IGBTs and diodes can be used.
  • a MOSFET having a parasitic diode inside is illustrated as a switch element of the inverter 110 and each phase separation relay.
  • the high side phase separation relay and the high side switch element are connected in series so that the forward current flows in the same direction to the internal parasitic diode.
  • the low-side phase separation relay and the low-side switch element are connected in series such that the forward current flows in the same direction to the internal parasitic diode.
  • the second phase separation relay circuit 140 switches connection / disconnection between the power supply 101 and the windings M1, M2 and M3 via the sub-inverter 120. Furthermore, the second phase separation relay circuit 140 switches connection / disconnection between the power supply 101 and the neutral point node N via the sub-inverter 120. Specifically, second phase separation relay circuit 140 can switch connection / disconnection between sub inverter 120 and windings M1, M2 and M3 for each phase, and further, sub inverter 120, a neutral point, and the like. The connection / disconnection with the node N can be switched.
  • Second phase separation relay circuit 140 switches between connection / disconnection between leg D of sub-inverter 120 and windings M1, M2 and M3.
  • the second phase separation relay circuit 140 further includes a phase separation relay ISW_N that switches connection / disconnection between the leg D and the neutral point node N.
  • the second phase separation relay circuit 140 has four phase separation relays.
  • phase separation relay ISW_AD is connected to the node nd of the leg D, and the other end is connected to the other end of the winding M1.
  • One end of the phase separation relay ISW_BD is connected to the node nd of the leg D, and the other end is connected to the other end of the winding M2.
  • One end of the phase separation relay ISW_CD is connected to the node nd of the leg D, and the other end is connected to the other end of the winding M3.
  • One end of the phase separation relay ISW_N is connected to the node nd of the leg D, and the other end is connected to the neutral point node N.
  • one end of the four phase separation relays ISW_AD, ISW_BD, ISW_CD and ISW_N is commonly connected to the node nd of the leg D.
  • FIG. 3 schematically shows the configuration of the bidirectional switch SW_2W.
  • a bi-directional switch SW_2W as illustrated can be used as the four phase separation relays ISW_AD, ISW_BD, ISW_CD and ISW_N.
  • the bi-directional switch SW_2W can be configured by combining the two one-way switches SW_1W such that the internal diodes face in opposite directions.
  • FIG. 4 schematically shows a typical block configuration of the control circuit 300. As shown in FIG. 4
  • the control circuit 300 includes, for example, a power supply circuit 310, an input circuit 320, a controller 330, a drive circuit 340, and a ROM 350.
  • Control circuit 300 is connected to power converter 100.
  • the control circuit 300 controls the power conversion device 100, specifically, by controlling the inverter 110, the sub-inverter 120, the first phase separation relay circuit 130, and the second phase separation relay circuit 140 (see FIG. 1).
  • the motor 200 can be driven.
  • the control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, and current of the rotor.
  • a torque sensor may be used instead of the angle sensor 500 (see FIG. 1). In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit.
  • Input circuit 32 0 receives a motor current value (hereinafter, referred to as “actual current value”) detected by the current sensor 400.
  • the input circuit 320 converts the level of the actual current value to the input level of the controller 330 as necessary, and outputs the actual current value to the controller 330.
  • the input circuit 320 is typically an analog-to-digital converter.
  • the controller 330 is an integrated circuit that controls the entire motor module 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the controller 330 receives the rotation signal of the rotor detected by the angle sensor 500.
  • the controller 330 sets a target current value in accordance with the actual current value, the rotation signal of the rotor, and the like, generates a PWM signal, and outputs the PWM signal to the drive circuit 340.
  • the controller 330 generates a PWM signal for controlling the switching operation (turn on or turn off) of each switch element in the inverter 110 and the sub-inverter 120 of the power conversion device 100.
  • the controller 330 can further generate a signal that determines the on / off state of each phase separation relay in each phase separation relay circuit of the power conversion device 100.
  • the drive circuit 340 is typically a gate driver (or predriver).
  • Drive circuit 340 generates a control signal (typically, a gate control signal) for controlling the switching operation of each switch element in inverter 110 and sub-inverter 120 in accordance with the PWM signal, and applies the control signal to each switch element.
  • the drive circuit 340 generates on / off control signals (analog signals) according to signals from the controller 330 that determine the on / off state of each phase separation relay, and those control signals are It is possible to give to
  • the gate driver may not be required. In that case, the function of the gate driver may be implemented in the controller 330.
  • the ROM 350 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 350 stores a control program including instructions for causing the controller 330 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • Control modes of the power conversion device 100 include control modes at normal and abnormal times.
  • the control circuit 300 (mainly the controller 330) can switch the control of the power conversion device 100 from the control mode in the normal state to the control mode in the abnormal state.
  • the on / off states of the phase separation relays of the first phase separation relay circuit 130 and the second phase separation relay circuit 140 are determined.
  • the first phase separation relay circuit 130 is turned on” means that all the phase separation relays ISW_AH, ISW_BH, ISW_CH, ISW_AL, ISW_BL and ISW_CL of the first phase separation relay circuit 130 are turned on. Do. "The first phase separation relay circuit 130 is turned off” means that all the phase separation relays ISW_AH, ISW_BH, ISW_CH, ISW_AL, ISW_BL and ISW_CL are turned off.
  • the inverter 110 When the first phase separation relay circuit 130 is turned on, the inverter 110 is electrically connected to the power supply 101. When the first phase separation relay circuit 130 is turned off, the inverter 110 is electrically separated from the power supply 101.
  • the U-phase leg is electrically separated from the power supply 101 by turning off the phase separation relays ISW_AH and ISW_AL.
  • the V-phase and W-phase legs remain connected to the power supply 101.
  • the second phase separation relay circuit 140 is turned on” means that all phase separation relays of the second phase separation relay circuit 140 are turned on.
  • the second phase separation relay circuit 140 is turned off means that all phase separation relays of the second phase separation relay circuit 140 are turned off.
  • sub inverter 120 when second phase separation relay circuit 140 is turned on, sub inverter 120, more specifically, leg D of sub inverter 120, includes windings M1, M2, M3 and a neutral point node N. Connected to When the second phase separation relay circuit 140 is turned off, the leg D is electrically separated from the windings M1, M2, M3 and the neutral point node N.
  • leg D can only be connected to winding M1 by turning on phase separation relay ISW_AD and turning off phase separation relays ISW_BD, ISW_CD and ISW_N.
  • phase separation relay ISW_AD phase separation relay
  • ISW_BD phase separation relay
  • ISW_CD phase separation relay
  • normal indicates that the inverter 110, the sub-inverter 120, and the windings M1, M2 and M3 of the motor 200 do not have a failure.
  • “Abnormal” means that a failure occurs in a switch element in a bridge circuit of an inverter or a failure occurs in a motor winding.
  • the failure of the switch element mainly refers to the open failure and the short failure of the semiconductor switch element (FET).
  • FET semiconductor switch element
  • Open fault refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and “short fault” is in the source-drain of FET Refers to a short circuit failure.
  • the failure of the winding is, for example, disconnection of the winding.
  • the control circuit 300 (mainly the controller 330) turns on the first phase separation relay circuit 130 and turns off the second phase separation relay circuit 140.
  • the inverter 110 is connected to the power supply 101 by this control.
  • windings M 1, M 2 and M 3 are electrically connected to power supply 101 via inverter 110.
  • leg D of sub-inverter 120 is electrically isolated from windings M 1, M 2, M 3 and neutral node N. Therefore, no power is supplied from the power supply 101 to the motor 200 via the sub-inverter 120.
  • the control circuit 300 is capable of energizing the three-phase windings M1, M2 and M3 by controlling the switching operation of the switch element of the inverter 110.
  • energization control is referred to as “three-phase energization control”.
  • FIG. 5 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the windings M1, M2 and M3 in accordance with the three-phase conduction control.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • I pk represents the maximum value (peak current value) of the phase current flowing in each phase.
  • the sum of the currents flowing through the three-phase windings in consideration of the current direction is “0” for each electrical angle.
  • the control circuit 300 controls the switching operation of each switch element of the inverter 110 so that, for example, the pseudo sine wave shown in FIG. 5 is obtained. Thereby, power conversion device 100 can receive power of control of control circuit 300 to energize windings M1, M2 and M3.
  • the drive circuit 340 detects the failure of the switch element by monitoring the voltage Vds between the drain and the source of the switch element and comparing the predetermined threshold voltage with Vds.
  • the threshold voltage is set in the drive circuit 340 by data communication with an external IC (not shown) and an external component, for example.
  • the drive circuit 340 is connected to the port of the controller 330 and notifies the controller 330 of a failure detection signal. For example, when the drive circuit 340 detects a failure of the switch element, the drive circuit 340 asserts a failure detection signal.
  • the controller 330 receives the asserted fault detection signal, it can read out the internal data of the drive circuit 340 to determine which switch element among the plurality of switch elements in the inverter 110 is faulty. is there.
  • the controller 330 can also detect a failure of the switch element based on the difference between the actual current value of the motor and the target current value. Furthermore, the controller 330 can also detect, for example, whether or not the winding of the motor 200 is broken based on the difference between the actual current value of the motor and the target current value.
  • the failure detection is not limited to these methods, and a wide variety of known methods for failure detection can be used.
  • the controller 330 switches control of the power conversion device 100 from normal control to abnormal control.
  • the timing at which control is switched from normal to abnormal is about 10 msec to 30 msec after the fault detection signal is asserted.
  • control circuit 300 causes inverter 110 to fail out of phase separation relays ISW_AH, ISW_BH and ISW_CH in first phase separation relay circuit 130. Turn off the phase separation relay connected to the failed leg and the phase separation relay connected to the failed leg among the phase separation relays ISW_AL, ISW_BL and ISW_CL, and the remaining 4 phase separation relays Turn on.
  • failure of a switch element of a leg may be referred to as “leg failure”.
  • Control circuit 300 further turns on the phase separation relay connected to the other end of the winding together with the failed leg among phase separation relays ISW_AD, ISW_BD and ISW_CD in second phase separation relay circuit 140, and the rest Turn off the three phase separation relays.
  • power conversion device 100 uses winding M 1, using two legs other than the failed leg of the three legs of inverter 110 and leg D of sub-inverter 120, It is possible to energize M2 and M3.
  • phase separation relay circuit 130 the control circuit 300 turns off the phase separation relays ISW_AH and ISW_AL of the U phase leg including the failed switch element, and four of the V phase and W phase legs.
  • the phase separation relays ISW_BH, ISW_BL, ISW_CH and ISW_CL are turned on.
  • control circuit 300 turns on phase separation relay ISW_AD connected to winding M1, and phase separation relays ISW_BD, ISW_CD, and to winding M2, M3.
  • the phase separation relay ISW_N connected to the neutral point node N is turned off.
  • control circuit 300 can continue three-phase conduction control using the V-phase leg of inverter 110, the W-phase leg, and leg D of sub-inverter 120. That is, the leg D of the sub-inverter 120 can function as the U-phase leg of the inverter 110.
  • control circuit 300 turns off the phase separation relays ISW_BH and ISW_BL of the V phase leg including the failed switch element, and four of the U and W phase legs.
  • the phase separation relays ISW_AH, ISW_AL, ISW_CH and ISW_CL are turned on.
  • control circuit 300 turns on phase separation relay ISW_BD connected to winding M2, and phase separation connected to windings M1 and M3 and neutral point node N1. Turn off relays ISW_AD, ISW_CD and ISW_N.
  • three-phase conduction control can be continued using the U-phase leg of the inverter 110, the W-phase leg, and the leg D of the sub-inverter 120. That is, the leg D of the sub-inverter 120 can function as the V-phase leg of the inverter 110.
  • the leg D of the sub-inverter 120 can be used as the leg of the broken phase.
  • the present disclosure can also be suitably used to drive a multiphase motor having four or more phase windings.
  • FIG. 6A shows the relationship between the number of revolutions per unit time (rps) of the motor and torque T (N ⁇ m) when three-phase energization control is performed.
  • the horizontal axis of the graph indicates the rotational speed, and the vertical axis indicates the value of the normalized torque.
  • the rotation speed Wmn represents the maximum rotation speed.
  • Wcn represents the number of revolutions at a change point at which the torque rapidly changes in the motor output characteristic.
  • the so-called TN curve shown in FIG. 6A shows the characteristics of the motor output obtained in the normal control and the motor output obtained in the abnormal control.
  • the torque value obtained by the control at the time of abnormality is a value normalized by the torque value obtained by the control at the normal time.
  • motor output characteristics in control at the time of abnormality obtained by the control method disclosed in Patent Documents 1 (Japanese Patent Laid-Open No. 2016-34204) and 4 (Japanese Patent No. 5797751) are shown in FIG. .
  • the motor is driven using one of the first system and the second system which has not failed in the control at the time of abnormality.
  • the maximum value of the phase current in abnormal control is reduced to about 50% compared to that in normal control, so the torque obtained in abnormal control is also reduced to about 50% compared to that in normal control.
  • the maximum rotation speed Wmn is maintained.
  • the motor drive device of Patent Document 4 it is possible to independently control the current flowing through the three-phase winding in the control at the normal time.
  • the motor in the control at the time of abnormality, the motor is driven substantially only by the inverter on one side using the neutral point of the failed inverter. Since the maximum value of the phase voltage applied to the windings of each phase is reduced to about 58% compared to that at normal time, the maximum rotational speed obtained by control at normal time is the maximum rotational speed Wmn at normal time It falls to about 58% compared with. As a result, the high speed rotation area is reduced to the low speed side, and the motor can not be driven at a higher speed. On the other hand, since the maximum value of the phase current of the motor does not change in the normal and abnormal control, the torque is maintained.
  • the same three-phase energization control as in the normal state can be performed even in the abnormal state. Therefore, in the control at the abnormal time, the same torque as the control at the normal time can be obtained. Furthermore, since the maximum value of the phase voltage applied to the windings of each phase does not change in the normal and abnormal control, the maximum rotational speed Wmn can be maintained, and the rotational speed Wcn can be maintained. Can. That is, the motor output characteristics do not change between normal and abnormal control.
  • the torque, the maximum number of revolutions Wmn of the motor, and the number of revolutions Wcn of the motor can be maintained at the same values as in normal.
  • the motor output that is, the drive range of the motor.
  • higher torque can be obtained in the high speed rotation region.
  • Motor output characteristics in control at the time of abnormality can be further improved.
  • Control circuit 300 includes two legs of the three legs of inverter 110 connected to two-phase windings other than the failed one and a leg of sub-inverter 120 connected to neutral point node N. Using D, control can be performed to energize the two-phase winding which has not failed.
  • Control circuit 300 turns off phase separation relays ISW_AH and ISW_AL of the U phase leg connected to the failed winding M1 in first phase separation relay circuit 130, and four phases of V phase and W phase leg.
  • the separation relays ISW_BH, ISW_BL, ISW_CH and ISW_CL are turned on.
  • the control circuit 300 turns off the phase separation relays ISW_AD, ISW_BD and ISW_CD, and turns on the phase separation relay ISW_N.
  • the U-phase leg connected to the failed winding M1 is electrically separated from the power supply 101, and the windings M2 and M3 are connected to the V-phase leg and the W-phase leg.
  • Windings M1, M2 and M3 are electrically isolated from leg D of sub-inverter 120.
  • the neutral point node N is connected to the power supply 101 via the leg D.
  • driving of the motor 200 can be continued by energizing the two phases of the windings M2 and M3.
  • control for energizing a two-phase winding using a two-phase leg is referred to as “two-phase energization control”.
  • phase current flowing from the node nb of the V phase leg through the winding M2 to the neutral point node N is denoted as I b, and from the node nc of the W phase leg through the winding M3 to the neutral point node N
  • the phase current flowing in is denoted as I c
  • I z the current flowing from the neutral point node N to the node nd of the leg D.
  • I b + I c I z is established.
  • a phase current Ib flows according to the potential difference between the node nb and the neutral point node N.
  • a phase current I c flows according to the potential difference between the node nc and the neutral point node N.
  • the control circuit 300 performs the same operation as in the case where the winding M1 fails.
  • the phase energization control can be performed.
  • the method of the two-phase conduction control of the present embodiment can be suitably applied when the two-phase leg fails.
  • the failed leg in the control at the time of abnormality, can be electrically separated from the power supply 101 using the first phase separation relay circuit 130, and the second phase separation relay circuit 140
  • the leg D can be connected to the neutral point node N using The leg D can function as a neutral point leg.
  • two-phase conduction control can be performed.
  • the motor 200 can be driven continuously.
  • FIG. 6B shows the relationship between the number of revolutions per unit time (rps) of the motor and the torque T (N ⁇ m) when two-phase energization control is performed. Similar to FIG. 6A, the horizontal axis of the graph indicates the number of rotations, and the vertical axis indicates the value of the normalized torque.
  • the torque value obtained by the two-phase energization control at the time of abnormality is a value normalized by the torque value obtained by the three-phase energization control at the normal time.
  • FIG. 6B shows motor output characteristics in control at the time of abnormality which are obtained by the control methods disclosed in Patent Documents 1 and 4.
  • the maximum value I pk of the phase current by two-phase current supply control at the time of abnormality theoretically, be of about 0.58 Intellectual It is done. Therefore, the torque obtained in the abnormal control is about 58% of that in the normal control.
  • the maximum rotational speed Wmn can be maintained. Also, the rotation speed Wcn can be maintained.
  • the maximum rotational speed Wmn and rotational speed Wcn of the motor can be maintained at the same values as in the normal state in control at the time of abnormality as compared with the conventional case.
  • the motor output that is, the drive range of the motor.
  • higher torque can be obtained in the high speed rotation region.
  • two-phase energization control can be performed even when three-phase energization control can not be performed by control at the time of abnormality.
  • Motor output characteristics can be further improved in any of the two-phase current control or the three-phase current control, as compared with the conventional case.
  • Second Embodiment Structure of Power Converter 100A
  • the structures of the sub-inverter 120 and the second phase separation relay circuit 140 of the power conversion device 100A according to the present embodiment are different from those of the power conversion device 100 according to the first embodiment.
  • the description common to the first embodiment will be omitted, and the difference will be mainly described.
  • FIG. 7 schematically shows the circuit configuration of the power conversion device 100A according to the present embodiment.
  • Sub-inverter 120 has four legs of U-phase leg, V-phase leg, W-phase leg and a neutral point leg.
  • the U-phase leg has a high side switch element SW_DAH and a low side switch element SW_DAL.
  • the V-phase leg has a high side switch element SW_DBH and a low side switch element SW_DBL.
  • the W-phase leg has a high side switch element SW_DCH and a low side switch element SW_DCL.
  • the neutral point leg has a high side switch element SW_DNH and a low side switch element SW_DNL.
  • the four legs of sub-inverter 120 are connected to the other end of windings M1, M2 and M3 and neutral node N.
  • the node nda between the high side switching device SW_DAH and the low side switching device SW_DAL in the U-phase leg is connected to the other end of the winding M1 together with the node na of the inverter 110.
  • Node ndb of the V-phase leg is connected to the other end of winding M2 together with node nb of inverter 110.
  • the node ndc of the W-phase leg is connected to the other end of the winding M3 together with the node nc of the inverter 110.
  • the node ndn of the neutral point leg is connected to the neutral point node N.
  • the second phase separation relay circuit 140 switches connection / disconnection between the power supply 101 and the sub-inverter 120.
  • the second phase separation relay circuit 140 has a phase separation relay (third phase separation relay) ISW_DH and a phase separation relay (fourth phase separation relay) ISW_DL.
  • the phase separation relay ISW_DH is connected between the high side node ndh connecting the four high side switch elements SW_DAH, SW_DBH, SW_DCH and SW_DNH of the sub-inverter 120 and the power supply 101.
  • the phase separation relay ISW_DL is connected between the low side node ndl and GND, which connect the four low side switch elements SW_DAL, SW_DBL, SW_DCL and SW_DLH of the sub-inverter 120 to one another.
  • control circuit 300 turns on the first phase separation relay circuit 130 and turns off the second phase separation relay circuit 140 as described in the first embodiment.
  • the inverter 110 is connected to the power supply 101, and the sub-inverter 120 is separated from the power supply 101.
  • Control circuit 300 performs three-phase conduction control using inverter 110.
  • control circuit 300 controls one of phase separation relays ISW_AH, ISW_BH and ISW_CH in first phase separation relay circuit 130 in an abnormal control.
  • phase separation relays connected to the failed leg of the inverter 110 and the phase separation relays connected to the broken leg of the phase separation relays ISW_AL, ISW_BL and ISW_CL, and the remaining four Turn on the phase separation relay of Control circuit 300 further turns on phase separation relays ISW_DH and ISW_DL of second phase separation relay circuit 140.
  • Control circuit 300 includes two legs other than the broken leg of the three legs of inverter 110 and the other end of the winding connected to the broken leg of the four legs of sub-inverter 120.
  • the three-phase conduction control can be performed using the legs connected together.
  • the control circuit 300 turns off the phase separation relays ISW_AH and ISW_AL of the U phase leg including the failed switch element, and four of the V phase and W phase legs.
  • the phase separation relays ISW_BH, ISW_BL, ISW_CH and ISW_CL are turned on.
  • Control circuit 300 further turns on phase separation relays ISW_DH and ISW_DL of second phase separation relay circuit 140.
  • control circuit 300 can continue three-phase conduction control using the V-phase leg of W, the U-phase leg of sub-inverter 120, and the V-phase leg of inverter 110. That is, the U-phase leg of sub-inverter 120 can be functioned as the U-phase leg of inverter 110.
  • control circuit 300 turns off the four phase separation relays ISW_AH, ISW_AL, ISW_BH and ISW_BL of the U phase leg including the failed switch element and the V phase leg, and , W phase leg phase separation relays ISW_CH, ISW_CL are turned on.
  • Control circuit 300 further turns on phase separation relays ISW_DH and ISW_DL of second phase separation relay circuit 140.
  • control circuit 300 can continue the three-phase conduction control using the W-phase leg of inverter 110, the U-phase leg and the V-phase leg of sub-inverter 120. That is, the U-phase leg and the V-phase leg of the sub-inverter 120 can function as the U-phase leg and the V-phase leg of the inverter 110.
  • control circuit 300 can continue the three-phase conduction control using the three legs of the sub-inverter 120 instead of the inverter 110.
  • control circuit 300 can perform two-phase conduction control as in the first embodiment.
  • control circuit 300 controls the first phase separation relay circuit 130 and the second phase separation relay circuit 140 in the same manner as in the case of the three-phase conduction control, and the failed U phase leg of the inverter 110 is It electrically disconnects and connects the windings M 2 and M 3 to the power supply 101 through the V-phase and W-phase legs of the inverter 110.
  • control circuit 300 energizes windings M2 and M3 using the non-faulty V-phase leg and W-phase leg of inverter 110 and the neutral point leg of sub-inverter 120. Can perform two-phase current control.
  • the control circuit 300 can perform two-phase conduction control as in the first embodiment. For example, when the winding M1 breaks down, the control circuit 300 disconnects the U-phase leg of the inverter 110 from the power supply 101 by turning off the phase separation relays ISW_AH and ISW_AL of the first phase separation relay circuit 130, Windings M 2 and M 3 are connected to power supply 101 via the phase and W phase legs. Control circuit 300 can perform two-phase conduction control of energizing windings M2 and M3 using the non-faulty V-phase leg and W-phase leg of inverter 110 and the neutral point leg of sub-inverter 120. .
  • the method of the two-phase conduction control according to the present embodiment can be suitably applied when the two-phase leg fails.
  • two-phase conduction control or three-phase conduction control can be performed by using the leg of the sub-inverter 120 in the control at the time of abnormality.
  • Motor output characteristics can be further improved in any of the two-phase current control or the three-phase current control, as compared with the conventional case.
  • FIG. 8 schematically shows a typical configuration of the electric power steering apparatus 2000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering (EPS) device.
  • the electric power steering apparatus 2000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 2000 generates an assist torque that assists a steering torque of a steering system generated by a driver operating a steering wheel. The assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles And 528A, 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, a reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 330 and the drive circuit 340 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 1000 according to Embodiment 1 or 2 can be suitably used for the unit.
  • Embodiments of the present disclosure are also suitably used in motor control systems such as shift by wire, steering by wire, X by wire such as brake by wire, and traction motors.
  • a motor control system according to an embodiment of the present disclosure may be mounted on an autonomous vehicle that complies with levels 0 to 4 (standards of automation) defined by the Japanese government and the United States Department of Transportation Road Traffic Safety Administration (NHTSA).
  • levels 0 to 4 standards of automation
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置は、n相(nは3以上の整数)の巻線の他端に接続されるインバータと、電源とn相の巻線との、インバータを介した接続・非接続を相毎に切替える第1相分離リレー回路と、インバータのn個のレグと並列接続された少なくとも1個のレグを有するサブインバータであって、n相の巻線の一端をY結線するモータの中性点ノードN、および、n相の巻線の他端に接続されるサブインバータと、電源とn相の巻線との、サブインバータを介した接続・非接続を切替え、かつ、電源と中性点ノードとの接続・非接続を切替える第2相分離リレー回路と、を備える。

Description

電力変換装置、モータモジュールおよび電動パワーステアリング装置
本開示は、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。
近年、電動モータ(以下、単に「モータ」と表記する。)、電力変換装置およびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 
特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示している。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統または故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。 
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示している。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。 
特許文献4は、4つの電気的分離手段、および、2つのインバータを有し、三相モータに供給する電力を変換するモータ駆動装置を開示している。1つのインバータに対し、電源とインバータの間に1つの電気的分離手段が設けられ、インバータとグランド(GND)の間に1つの電気的分離手段が設けられている。故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータを駆動することが可能である。そのとき、故障したインバータに接続された2つの電気的分離手段を遮断状態にすることによって、故障したインバータは電源およびGNDから分離される。
特開2016-34204号公報 特開2016-32977号公報 特開2008-132919号公報 特許第5797751号公報
上述した従来の技術では、異常時の制御におけるモータ出力のさらなる向上が求められていた。 
本開示の実施形態は、異常時の制御におけるモータ出力を向上させることが可能な電力変換装置を提供する。
本開示の例示的な電力変換装置は、電源からの電力を、一端同士がY結線されたn相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置あって、前記n相の巻線の他端に接続され、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を含むn個のレグを有するインバータと、前記電源と前記n相の巻線との、前記インバータを介した接続・非接続を相毎に切替える第1相分離リレー回路と、前記インバータの前記n個のレグと並列接続された少なくとも1個のレグを有するサブインバータであって、前記n相の巻線の一端をY結線する前記モータの中性点ノード、および、前記n相の巻線の他端に接続されるサブインバータと、前記電源と前記n相の巻線との、前記サブインバータを介した接続・非接続を切替え、かつ、前記電源と前記中性点ノードとの接続・非接続を切替える第2相分離リレー回路と、を備える。
本開示の例示的な実施形態によると、第1相分離リレー回路および第2相分離リレー回路のオン・オフ状態を制御モードに応じて適切に決定することによりn相通電制御(典型的には三相通電制御または二相通電制御)を継続して行うことができる。これにより、異常時の制御におけるモータ出力を向上させることが可能な電力変換装置、当該電力変換装置を備えるモータモジュール、および、当該モータモジュールを備える電動パワーステアリング装置が提供される。
図1は、例示的な実施形態1によるモータモジュール1000の典型的なブロック構成を示すブロック図である。 図2は、例示的な実施形態1による電力変換装置100の回路構成を示す回路図である。 図3は、双方向スイッチSW_2Wの構成を示す模式図である。 図4は、制御回路300の典型的なブロック構成を示すブロック図である。 図5は、三相通電制御に従って巻線M1、M2およびM3に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。 図6Aは、三相通電制御を行ったときの、モータの単位時間当たりの回転数(rps)とトルクT(N・m)との関係を示すグラフである。 図6Bは、二相通電制御を行ったときの、モータの単位時間当たりの回転数(rps)とトルクT(N・m)との関係を示すグラフである。 図7は、例示的な実施形態2による電力変換装置100Aの回路構成を示す回路図である。 図8は、例示的な実施形態3による電動パワーステアリング装置2000の典型的な構成を示す模式図である。
以下、添付の図面を参照しながら、本開示の電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。 

(実施形態1)

〔モータモジュール1000および電力変換装置100の構造〕

 図1は、本実施形態によるモータモジュール1000の典型的なブロック構成を模式的に示している。

 モータモジュール1000は、典型的に、電力変換装置100、モータ200、制御回路300および角度センサ500を備える。モータ制御手法(例えばセンサレス制御)によっては、角度センサ500は不要な場合がある。
モータモジュール1000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。また、モータを駆動するためのシステムであり、モータモジュールの構成要素のうちのモータ以外の構成要素を備え得るシステムを「モータ駆動システム」と呼ぶことができる。そのモータ駆動システムもモジュール化され、製造および販売され得る。 
電力変換装置100は、インバータ110、サブインバータ120、第1相分離リレー回路130、第2相分離リレー回路140および電流センサ400を有する。電力変換装置100は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。インバータ110は、モータ200に接続される。例えば、インバータ110は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。 
モータ200は、例えば三相交流モータである。モータ200は、U相の巻線M1、V相の巻線M2およびW相の巻線M3を有する。巻線M1、M2およびM3の一端同士はY結線されている。本明細書では、それらの巻線の一端同士をY結線するモータ200のノードを「中性点ノードN」と表記することとする。中性点ノードNは、モータ駆動時に中性点として機能する。 
制御回路300は、マイクロコントローラなどから構成される。制御回路300は、電流センサ400および角度センサ500からの入力信号に基づいて電力変換装置100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。 
角度センサ500は、例えばレゾルバまたはホールICである。角度センサ500は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ500は、モータ200のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号を制御回路300に出力する。 
図2を参照して、電力変換装置100の具体的な回路構成を説明する。 
図2は、本実施形態による電力変換装置100の回路構成を模式的に示している。 
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。 
ヒューズ102が、電源101とインバータ110との間に接続される。ヒューズ102は、電源101からインバータ110またはサブインバータ120に流れ得る大電流を遮断することができる。ヒューズの代わりにリレーなどを用いてもよい。 
図示されていないが、電源101とインバータ110との間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、インバータに供給する電圧波形に含まれる高周波ノイズ、またはインバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
インバータ110は、3個のレグを有するブリッジ回路を備える。各レグは、ハイサイドスイッチ素子およびローサイドスイッチ素子を有する。U相レグは、ハイサイドスイッチ素子SW_AHおよびローサイドスイッチ素子SW_ALを有する。V相レグは、ハイサイドスイッチ素子SW_BHおよびローサイドスイッチ素子SW_BLを有する。W相レグは、ハイサイドスイッチ素子SW_CHおよびローサイドスイッチ素子SW_CLを有する。スイッチ素子として、例えば寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。 
インバータ110は、例えば、U相、V相およびW相の各相の巻線に流れる電流(「相電流」と呼ぶ場合がある。)を検出するための電流センサ400(図1を参照)として、シャント抵抗(不図示)を各レグに有する。電流センサ400は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を有する。例えば、シャント抵抗は、各レグにおいて、ローサイドスイッチ素子とGNDの間に接続され得る。 
シャント抵抗の数は3つに限られない。例えば、U相、V相用の2つのシャント抵抗、V相、W相用の2つのシャント抵抗、または、U相、W相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。 
インバータ110のU相レグ(具体的には、ハイサイドスイッチ素子SW_AHおよびローサイドスイッチ素子SW_ALの間のノードna)は、モータ200のU相の巻線M1の他端に接続される。ノードnaと同様に、V相レグのノードnbは、V相の巻線M2の他端に接続され、W相レグのノードncは、W相の巻線M3の他端に接続される。 
サブインバータ120は、巻線M1、M2、M3の他端およびモータ200の中性点ノードNに接続することが可能である。本開示のサブインバータは、インバータの3個のレグと並列接続された少なくとも1個のレグを有し得る。図2に示す回路構成では、サブインバータ120は、インバータ110の3個のレグと並列接続された1個のレグDを有する。レグDは、ハイサイドスイッチ素子SW_DHおよびローサイドスイッチ素子SW_DLを有する。レグDは、インバータ110のレグと同様に、シャント抵抗を有することができる。 
レグDのハイサイドスイッチ素子SW_DHおよびローサイドスイッチ素子SW_DLの間のノードndは、後述する第2相分離リレー回路140を介して巻線M1、M2およびM3に接続することが可能である。さらに、ノードndは、第2相分離リレー回路140を介して中性点ノードNに接続することが可能である。 
例えば、インバータ110を、A相、B相、C相およびD相の四相のレグを備えるインバータと見なすことができる。インバータ110およびサブインバータ120は、レグDを含む4個のレグを備える1個のブリッジ回路として製造され得る。 
第1相分離リレー回路130は、電源101とインバータ110との接続・非接続を相毎に切替える。換言すると、第1相分離リレー回路130は、電源101と、巻線M1、M2およびM3との、インバータ110を介した接続・非接続を相毎に切替えることができる。 
第1相分離リレー回路130は、インバータ110において、電源ラインであるハイサイド側のノードと、3個のハイサイドスイッチ素子SW_AH、SW_BHおよびSW_CHとの間に接続された、3個の相分離リレー(第1相分離リレー)ISW_AH、ISW_BHおよびISW_CHを有する。相分離リレーISW_AHはU相レグにある。相分離リレーISW_BHはV相レグにある。相分離リレーISW_CHはW相レグにある。 
第1相分離リレー回路130は、さらに、インバータ110において、GNDラインであるローサイド側のノードと、3個のローサイドスイッチ素子SW_AL、SW_BLおよびSW_CLとの間に接続された、3個の相分離リレー(第2相分離リレー)ISW_AL、ISW_BLおよびISW_CLを有する。相分離リレーISW_ALはU相レグにある。相分離リレーISW_BLはV相レグにある。相分離リレーISW_CLはW相レグにある。 
相分離リレーとして、例えば、MOSFETなどの半導体スイッチを用いることができる。サイリスタ、アナログスイッチICなどの他の半導体スイッチまたはメカニカルリレーを用いても構わない。また、IGBTおよびダイオードの組み合わせを用いることができる。 
図2には、インバータ110のスイッチ素子および各相分離リレーとして、内部に寄生ダイオードを有するMOSFETを例示している。各相のレグにおいて、ハイサイド側の相分離リレーおよびハイサイドスイッチ素子は、順方向電流が、内部の寄生ダイオードに同方向に流れるよう直列に接続される。ローサイド側の相分離リレーおよびローサイドスイッチ素子は、順方向電流が、内部の寄生ダイオードに同方向に流れるよう直列に接続される。 
第2相分離リレー回路140は、電源101と、巻線M1、M2およびM3との、サブインバータ120を介した接続・非接続を切替える。さらに、第2相分離リレー回路140は、電源101と中性点ノードNとの、サブインバータ120を介した接続・非接続を切替える。具体的に、第2相分離リレー回路140は、サブインバータ120と、巻線M1、M2およびM3との接続・非接続を相毎に切替えることができ、さらに、サブインバータ120と、中性点ノードNとの接続・非接続を切替えることができる。 
第2相分離リレー回路140は、サブインバータ120のレグDと、巻線M1、M2およびM3との接続・非接続を切替える、3個の相分離リレー(第3相分離リレー)ISW_AD、ISW_BDおよびISW_CDを有する。第2相分離リレー回路140は、さらに、レグDと中性点ノードNとの接続・非接続を切替える相分離リレーISW_Nを有する。このように、第2相分離リレー回路140は、4個の相分離リレーを有する。 
相分離リレーISW_ADの一端は、レグDのノードndに接続され、その他端は、巻線M1の他端に接続される。相分離リレーISW_BDの一端は、レグDのノードndに接続され、その他端は、巻線M2の他端に接続される。相分離リレーISW_CDの一端は、レグDのノードndに接続され、その他端は、巻線M3の他端に接続される。相分離リレーISW_Nの一端は、レグDのノードndに接続され、その他端は、中性点ノードNに接続される。このように、4個の相分離リレーISW_AD、ISW_BD、ISW_CDおよびISW_Nの一端は、レグDのノードndに共通に接続される。 
図3は、双方向スイッチSW_2Wの構成を模式的に示している。 
4個の相分離リレーISW_AD、ISW_BD、ISW_CDおよびISW_Nとして、図示するような双方向スイッチSW_2Wを用いることができる。内部のダイオードが互いに逆方向を向くよう2個の一方向スイッチSW_1Wを組み合わせることによって、双方向スイッチSW_2Wを構成することができる。 
図4は、制御回路300の典型的なブロック構成を模式的に示している。 
制御回路300は、例えば、電源回路310と、入力回路320と、コントローラ330と、駆動回路340と、ROM350とを備える。制御回路300は、電力変換装置100に接続される。制御回路300は、電力変換装置100を、具体的には、インバータ110、サブインバータ120、第1相分離リレー回路130および第2相分離リレー回路140(図1を参照)を制御することにより、モータ200を駆動することができる。制御回路300は、目的とするロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、角度センサ500(図1を参照)に代えてトルクセンサを用いてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。 
入力回路32
0は、電流センサ400によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取る。入力回路320は、コントローラ330の入力レベルに実電流値のレベルを必要に応じて変換し、実電流値をコントローラ330に出力する。入力回路320は、典型的にはアナログデジタル変換回路である。 
コントローラ330は、モータモジュール1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。 
コントローラ330は、角度センサ500によって検出されたロータの回転信号を受信する。コントローラ330は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路340に出力する。 
コントローラ330は、電力変換装置100のインバータ110およびサブインバータ120における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。コントローラ330は、さらに、電力変換装置100の各相分離リレー回路内の各相分離リレーのオン・オフの状態を決定する信号を生成することができる。 
駆動回路340は、典型的にはゲートドライバ(またはプリドライバ)である。駆動回路340は、インバータ110およびサブインバータ120における各スイッチ素子のスイッチング動作を制御する制御信号(典型的にはゲート制御信号)をPWM信号に従って生成し、各スイッチ素子にその制御信号を与える。本実施形態では、駆動回路340は、コントローラ330からの、各相分離リレーのオン・オフの状態を決定する信号に従って、オン・オフの制御信号(アナログ信号)を生成し、その制御信号をそれらに与えることが可能である。 
駆動対象が低電圧で駆動可能なモータであるとき、ゲートドライバは必ずしも必要とされない場合がある。その場合、ゲートドライバの機能は、コントローラ330に実装され得る。 
ROM350は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM350は、コントローラ330に電力変換装置100を制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 

 電力変換装置100の制御モードに、正常時および異常時の制御モードがある。制御回路300(主としてコントローラ330)は、電力変換装置100の制御を正常時の制御モードから異常時の制御モードに切替えることができる。その制御モードに応じて、第1相分離リレー回路130および第2相分離リレー回路140の各相分離リレーのオン・オフの状態が決定される。
以下、第1相分離リレー回路130および第2相分離リレー回路140のオン・オフ状態と、オン・オフ状態における、電源101、インバータ110、サブインバータ120、巻線M1、M2、M3および中性点ノードNの電気的な接続関係と、を詳細に説明する。 
本明細書において、「第1相分離リレー回路130がオンする」とは、第1相分離リレー回路130の全ての相分離リレーISW_AH、ISW_BH、ISW_CH、ISW_AL、ISW_BLおよびISW_CLがオンすることを意味する。「第1相分離リレー回路130がオフする」とは、全ての相分離リレーISW_AH、ISW_BH、ISW_CH、ISW_AL、ISW_BLおよびISW_CLがオフすることを意味する。 
第1相分離リレー回路130がオンすると、インバータ110は電源101に電気的に接続される。第1相分離リレー回路130がオフすると、インバータ110は電源101から電気的に分離される。

 上述したとおり、電源101とインバータ110の3個のレグとの接続・非接続を相毎に切替えることが可能である。例えば、相分離リレーISW_AH、ISW_ALをオフすることにより、U相レグは電源101から電気的に分離される。V相およびW相レグは電源101に接続されたままである。
本明細書において、「第2相分離リレー回路140がオンする」とは、第2相分離リレー回路140の全ての相分離リレーがオンすることを意味する。「第2相分離リレー回路140がオフする」とは、第2相分離リレー回路140の全ての相分離リレーがオフすることを意味する。

 図2に示す回路構成では、第2相分離リレー回路140がオンすると、サブインバータ120、より具体的には、サブインバータ120のレグDは、巻線M1、M2、M3および中性点ノードNに接続される。第2相分離リレー回路140がオフすると、レグDは、巻線M1、M2、M3および中性点ノードNから電気的に分離される。
上述したとおり、サブインバータ120のレグDと、巻線M1、M2およびM3との接続・非接続を相毎に切替えることが可能である。例えば、相分離リレーISW_ADをオンにし、かつ、相分離リレーISW_BD、ISW_CDおよびISW_Nをオフにすることにより、レグDは巻線M1にのみ接続可能である。相分離リレーISW_AD、ISW_BDおよびISW_CDをオフし、かつ、相分離リレーISW_Nをオンすることにより、レグDは中性点ノードNにのみ接続可能である。

〔電力変換装置100の動作〕

 以下、モータモジュール1000の動作の具体例を説明し、主として電力変換装置100の動作の具体例を説明する。
(1.正常時の制御)

 先ず、電力変換装置100の正常時の制御方法の具体例を説明する。 
本明細書において、「正常」とは、インバータ110、サブインバータ120、モータ200の巻線M1、M2およびM3に故障が生じていないことを指す。「異常」とは、インバータのブリッジ回路内のスイッチ素子において故障が発生すること、または、モータの巻線に故障が発生することを指す。スイッチ素子の故障は、主として半導体スイッチ素子(FET)の、オープン故障およびショート故障を指す。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「ショート故障」は、FETのソース-ドレイン間が短絡する故障を指す。巻線の故障は、例えば巻線の断線である。 
正常時の制御モードでは、制御回路300(主にコントローラ330)は、第1相分離リレー回路130をオンし、かつ、第2相分離リレー回路140をオフする。この制御により、インバータ110は電源101に接続される。換言すると、巻線M1、M2およびM3は、インバータ110を介して電源101に電気的に接続される。また、サブインバータ120のレグDは、巻線M1、M2、M3および中性点ノードNから電気的に分離される。従って、電源101からサブインバータ120を介してモータ200に電力は供給されない。 
制御回路300は、インバータ110のスイッチ素子のスイッチング動作を制御することにより、三相の巻線M1、M2およびM3を通電することが可能である。本明細書では、このような通電制御を、「三相通電制御」と呼ぶ。 
図5は、三相通電制御に従って巻線M1、M2およびM3に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示している。Ipkは各相を流れる相電流の最大値(ピーク電流値)を表している。一般的なY結線の結線方式のモータでは、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に「0」である。 
制御回路300は、例えば、図5に示される擬似正弦波が得られるようにインバータ110の各スイッチ素子のスイッチング動作を制御する。これにより、電力変換装置100は制御回路300の制御を受けて、巻線M1、M2およびM3を通電することができる。 

(2.異常時の制御)

 電力変換装置100を長期間使用すると、インバータ110のスイッチ素子またはモータ200の巻線に故障が起こる可能性がある。これらの故障は、製造時に発生し得る製造故障とは異なる。そのような故障が発生すると、上述した正常時の制御は不可能となる。
故障検知の一例として、駆動回路340は、スイッチ素子のドレイン-ソース間の電圧Vdsを監視し、所定の閾値電圧とVdsとを比較することによって、スイッチ素子の故障を検知する。閾値電圧は、例えば外部IC(不図示)とのデータ通信および外付け部品によって駆動回路340に設定される。駆動回路340は、コントローラ330のポートと接続され、故障検知信号をコントローラ330に通知する。例えば、駆動回路340は、スイッチ素子の故障を検知すると、故障検知信号をアサートする。コントローラ330は、アサートされた故障検知信号を受信すると、駆動回路340の内部データを読み出して、インバータ110における複数のスイッチ素子の中でどのスイッチ素子が故障しているのかを判別することが可能である。 
故障検知の他の一例として、コントローラ330は、モータの実電流値と目標電流値との差に基づいてスイッチ素子の故障を検知することも可能である。さらに、コントローラ330は、例えば、モータの実電流値と目標電流値との差に基づいて、モータ200の巻線が断線したかどうかを検知することも可能である。ただし、故障検知は、これらの手法に限られず、故障検知に関する公知の手法を広く用いることができる。 
コントローラ330は、故障検知信号がアサートされると、電力変換装置100の制御を正常時の制御から異常時の制御に切替える。例えば、正常時から異常時に制御を切替えるタイミングは、故障検知信号がアサートされてから10msec~30msec程度である。 
インバータ110の3個のレグのうちの1個のレグが故障した場合、制御回路300は、第1相分離リレー回路130の中の相分離リレーISW_AH、ISW_BHおよびISW_CHのうちの、インバータ110の故障したレグに接続された相分離リレーと、相分離リレーISW_AL、ISW_BLおよびISW_CLのうちの、故障したレグに接続された相分離リレーと、をオフし、かつ、残りの4個の相分離リレーをオンする。本明細書では、レグのスイッチ素子が故障することを「レグが故障する」と呼ぶ場合がある。 
制御回路300は、さらに、第2相分離リレー回路140の中の相分離リレーISW_AD、ISW_BDおよびISW_CDのうちの、故障したレグと共に巻線の他端に接続された相分離リレーをオンし、残りの3個の相分離リレーをオフする。 
電力変換装置100は制御回路300の制御を受けて、インバータ110の3個のレグのうちの故障したレグ以外の2個のレグと、サブインバータ120のレグDとを用いて、巻線M1、M2およびM3を通電することができる。 
以下、例示的な故障パターンを挙げ、各相分離リレー回路内の相分離リレーの制御方法を詳細に説明する。 

 <2-1.三相通電制御>

 再び図2を参照する。 
例えば、インバータ110のU相レグにおけるハイサイドスイッチ素子SW_AHがオープン故障した場合を考える。その場合、制御回路300は、第1相分離リレー回路130において、その故障したスイッチ素子を含むU相レグの相分離リレーISW_AH、ISW_ALをオフし、かつ、V相およびW相レグの4個の相分離リレーISW_BH、ISW_BL、ISW_CHおよびISW_CLをオンする。さらに、制御回路300は、第2相分離リレー回路140において、巻線M1に接続された相分離リレーISW_ADをオンし、かつ、巻線M2、M3に接続された相分離リレーISW_BD、ISW_CD、および、中性点ノードNに接続された相分離リレーISW_Nをオフする。 
これらの制御により、故障したU相レグは電源101から電気的に分離される。巻線M2、M3は、インバータ110のV相およびW相レグを介して電源101に接続される。中性点ノードNは、電源101から電気的に分離される。一方、U相の巻線M1は、インバータ110のU相レグに代えてサブインバータ120のレグDに接続される。この接続状態において、制御回路300は、インバータ110のV相レグ、W相レグおよびサブインバータ120のレグDを用いて三相通電制御を継続することができる。つまり、サブインバータ120のレグDをインバータ110のU相レグとして機能させることが可能となる。 
例えば、インバータ110のV相レグにおけるハイサイドスイッチ素子SW_BHがオープン故障した場合を考える。その場合、制御回路300は、第1相分離リレー回路130において、その故障したスイッチ素子を含むV相レグの相分離リレーISW_BH、ISW_BLをオフし、かつ、U相およびW相レグの4個の相分離リレーISW_AH、ISW_AL、ISW_CHおよびISW_CLをオンする。さらに、制御回路300は、第2相分離リレー回路140において、巻線M2に接続された相分離リレーISW_BDをオンし、かつ、巻線M1、M3および中性点ノードN1に接続された相分離リレーISW_AD、ISW_CDおよびISW_Nをオフする。これらの制御により、インバータ110のU相レグ、W相レグおよびサブインバータ120のレグDを用いて三相通電制御を継続することができる。つまり、サブインバータ120のレグDをインバータ110のV相レグとして機能させることができる。 
例えば、四相交流モータを駆動する、四相のレグを有するインバータにおいて、一相のレグが故障した場合、サブインバータ120のレグDをその故障した相のレグとして用いることが可能となる。このように、本開示は、四相以上の巻線を有する多相モータの駆動にも好適に利用することができる。 
本実施形態によれば、異常時の制御において、サブインバータ120のレグDを代用することにより3個のレグを用いた三相通電制御を継続して行うことができる。 
図6Aは、三相通電制御を行ったときの、モータの単位時間当たりの回転数(rps)とトルクT(N・m)の関係を示している。グラフの横軸は、回転数を示し、縦軸は、正規化トルクの値を示す。回転数のWmnは最大回転数を表す。Wcnは、モータ出力特性において、トルクが急激に変化する変化点における回転数を表す。 
図6Aに示されるいわゆるT-N曲線は、正常時の制御で得られるモータ出力および異常時の制御で得られるモータ出力の特性を示す。異常時の制御で得られるトルク値は、正常時の制御で得られるトルク値で正規化した値を示す。また、比較例として、特許文献1(特開2016-34204号公報)および4(特許第5797751号公報)に開示された制御手法により得られる、異常時の制御におけるモータ出力特性を図6Aに示す。 
特許文献1のモータ駆動装置では、異常時の制御において第1系統および第2系統の故障していない一方を用いてモータは駆動される。異常時の制御における相電流の最大値は、正常時の制御におけるそれと比べ約50%に低下するので、異常時の制御で得られるトルクも、正常時の制御におけるそれと比べ約50%に低下する。一方、各相の巻線に印加される相電圧の最大値は、正常時および異常時の制御で変化しないので、最大回転数Wmnは維持される。 
特許文献4のモータ駆動装置では、正常時の制御において、三相の巻線に流れる電流を独立に制御することが可能である。これに対し、異常時の制御では、故障したインバータの中性点を利用して実質的に片側のインバータのみでモータは駆動される。各相の巻線に印加される相電圧の最大値は、正常時のそれと比べ約58%に低下するので、正常時の制御で得られる最大の回転数は、正常時の最大回転数Wmnと比べ約58%に低下する。これにより、高速回転領域が低速側に縮小され、モータをより高速に駆動することができない。一方、モータの相電流の最大値は、正常時および異常時の制御で変化しないので、トルクは維持される。 
本実施形態によると、正常時と同じ三相通電制御を異常時においても行うことができる。従って、異常時の制御において正常時の制御と同じトルクを得ることができる。さらに、各相の巻線に印加される相電圧の最大値は、正常時および異常時の制御で変化しないので、最大回転数Wmnを維持することができ、また、回転数Wcnを維持することができる。つまり、正常時と異常時の制御の間でモータ出力特性は変わらない。 
以上を纏めると、図6Aに示すように、従来と比較して、異常時の制御において、トルク、モータの最大回転数Wmnおよび回転数Wcnを正常時と同じ値に維持することができる。その結果、モータ出力、つまり、モータの駆動範囲を改善することが可能となる。特に、高速回転領域においてより高いトルクを得ることができる。異常時の制御におけるモータ出力特性をさらに向上させることができる。 

 <2-2.二相通電制御>

 例えば巻線M1が故障した場合を考える。三相の巻線のうちの一相の巻線が故障すると、三相通電制御は不可能となる。制御回路300は、インバータ110の3個のレグのうちの、故障した巻線以外の二相の巻線に接続された2個のレグと、中性点ノードNと接続したサブインバータ120のレグDとを用いて、故障していない二相の巻線を通電する制御を行うことができる。 
再び図2を参照する。 
制御回路300は、第1相分離リレー回路130において、故障した巻線M1に接続されたU相レグの相分離リレーISW_AH、ISW_ALをオフし、かつ、V相およびW相レグの4個の相分離リレーISW_BH、ISW_BL、ISW_CHおよびISW_CLをオンする。さらに、制御回路300は、第2相分離リレー回路140において、相分離リレーISW_AD、ISW_BDおよびISW_CDをオフし、相分離リレーISW_Nをオンする。 
これらの制御により、故障した巻線M1に接続されたU相レグは電源101から電気的に分離され、巻線M2、M3はV相レグ、W相レグに接続される。巻線M1、M2およびM3は、サブインバータ120のレグDから電気的に分離される。中性点ノードNは、レグDを介して電源101に接続される。この接続状態において、巻線M2、M3の二相を通電することによって、モータ200の駆動を継続することができる。本明細書では、二相のレグを用いて二相の巻線を通電する制御を「二相通電制御」と呼ぶこことする。 
V相用レグのノードnbから巻線M2を通って中性点ノードNに流れ込む相電流をIと表記し、W相用レグのノードncから巻線M3を通って中性点ノードNに流れ込む相電流をIと表記する。また、中性点ノードNからレグDのノードndに流れ出る電流をIと表記する。二相通電制御において、I+I=Iが成立する。 
制御回路300は、例えば、インバータ110のV相、W相レグ、および、レグDのスイッチ素子のスイッチング動作を制御することにより、巻線M2、M3を通電することができる。具体的に、I+I=Iを満足するよう、V相レグのノードnb、W相レグのノードncおよび中性点ノードNの電位を制御することにより、二相通電制御を行うことが可能となる。ノードnbおよび中性点ノードNの間の電位差に応じた相電流Iが流れる。ノードncおよび中性点ノードNの間の電位差に応じた相電流Iが流れる。 
例えば、U相レグのスイッチ素子SW_AHが故障した場合、または、U相レグのスイッチ素子SW_AH、SW_ALが同時に故障した場合においても、制御回路300は、巻線M1が故障した場合と同様に、二相通電制御を行うことができる。例えば、四相交流モータを駆動する、四相のレグを有するインバータにおいて、そのうちの二相のレグが故障した場合、本実施形態の二相通電制御の手法を好適に適用することができる。 
二相通電制御の手法によると、異常時の制御において、第1相分離リレー回路130を用いて故障したレグを電源101から電気的に分離することができ、かつ、第2相分離リレー回路140を用いてレグDを中性点ノードNに接続することができる。レグDを中性点用レグとして機能させることができる。レグDを用いて中性点ノードNの電位を適切に制御することにより、二相通電制御を行うことが可能となる。モータ200を継続して駆動することができる。 
図6Bは、二相通電制御を行ったときの、モータの単位時間当たりの回転数(rps)とトルクT(N・m)との関係を示している。図6Aと同様に、グラフの横軸は、回転数を示し、縦軸は、正規化トルクの値を示す。異常時の二相通電制御で得られるトルク値は、正常時の三相通電制御で得られるトルク値で正規化した値を示す。また、比較例として、特許文献1および4に開示された制御手法により得られる、異常時の制御におけるモータ出力特性を図6Bに示す。 
正常時の三相通電制御における相電流の最大値Ipkを1とした場合、異常時の二相通電制御による相電流の最大値Ipkは、理論上、約0.58になることが知られている。従って、異常時の制御で得られるトルクは、正常時の制御におけるそれと比べ約58%になる。一方、各相の巻線に印加される相電圧の最大値は、正常時および異常時の制御で変化しないので、最大回転数Wmnを維持することができる。また、回転数Wcnを維持することができる。 
以上を纏めると、図6Bに示すように、従来と比較して、異常時の制御において、モータの最大回転数Wmnおよび回転数Wcnを正常時と同じ値に維持することができる。その結果、モータ出力、つまり、モータの駆動範囲を改善することが可能となる。特に、高速回転領域においてより高いトルクを得ることができる。従来と比べ、得られるトルクは16%(=58/50)高くなる。 
本実施形態によれば、異常時の制御で三相通電制御ができない場合でも、二相通電制御を行うことができる。二相通電制御または三相通電制御のいずれにおいても、従来と比べてモータ出力特性をさらに向上させることができる。 

(実施形態2)

〔電力変換装置100Aの構造〕

 本実施形態による電力変換装置100Aのサブインバータ120および第2相分離リレー回路140の構造は、実施形態1による電力変換装置100のそれらの構造と異なる。以下、実施形態1との共通の説明は省略し、その差異点を中心に説明する。 
図7は、本実施形態による電力変換装置100Aの回路構成を模式的に示している。 
サブインバータ120は、U相レグ、V相レグ、W相レグおよび中性点用レグの4個のレグを有する。U相レグは、ハイサイドスイッチ素子SW_DAHおよびローサイドスイッチ素子SW_DALを有する。V相レグは、ハイサイドスイッチ素子SW_DBHおよびローサイドスイッチ素子SW_DBLを有する。W相レグは、ハイサイドスイッチ素子SW_DCHおよびローサイドスイッチ素子SW_DCLを有する。中性点用レグは、ハイサイドスイッチ素子SW_DNHおよびローサイドスイッチ素子SW_DNLを有する。 
サブインバータ120の4個のレグは、巻線M1、M2、M3の他端および中性点ノードNに接続される。具体的に説明すると、U相レグにおけるハイサイドスイッチ素子SW_DAHおよびローサイドスイッチ素子SW_DALの間のノードndaは、インバータ110のノードnaと共に、巻線M1の他端に接続される。V相レグのノードndbは、インバータ110のノードnbと共に、巻線M2の他端に接続される。W相レグのノードndcは、インバータ110のノードncと共に、巻線M3の他端に接続される。中性点用レグのノードndnは、中性点ノードNに接続される。 
第2相分離リレー回路140は、電源101とサブインバータ120との接続・非接続を切替える。第2相分離リレー回路140は、相分離リレー(第3相分離リレー)ISW_DHおよび相分離リレー(第4相分離リレー)ISW_DLを有する。相分離リレーISW_DHは、サブインバータ120の4個のハイサイドスイッチ素子SW_DAH、SW_DBH、SW_DCHおよびSW_DNH同士を接続するハイサイド側のノードndhと電源101の間に接続される。相分離リレーISW_DLは、サブインバータ120の4個のローサイドスイッチ素子SW_DAL、SW_DBL、SW_DCLおよびSW_DLH同士を接続するローサイド側のノードndlとGNDの間に接続される。 

〔電力変換装置100Aの動作〕

 正常時の制御では、制御回路300は、実施形態1で説明したように、第1相分離リレー回路130をオンして、第2相分離リレー回路140をオフする。これにより、インバータ110は電源101に接続されて、サブインバータ120は電源101から分離される。制御回路300は、インバータ110を用いて三相通電制御を行う。 
インバータ110の3個のレグのうちの1個のレグが故障した場合、異常時の制御において、制御回路300は、第1相分離リレー回路130の中の相分離リレーISW_AH、ISW_BHおよびISW_CHのうちの、インバータ110の故障したレグに接続された相分離リレーと、相分離リレーISW_AL、ISW_BLおよびISW_CLのうちの、故障したレグに接続された相分離リレーとをオフし、かつ、残りの4個の相分離リレーをオンする。制御回路300は、さらに、第2相分離リレー回路140の相分離リレーISW_DH、ISW_DLをオンする。 
制御回路300は、インバータ110の3個のレグのうちの故障したレグ以外の2個のレグと、サブインバータ120の4個のレグのうちの、故障したレグに接続された巻線の他端に共に接続されたレグとを用いて、三相通電制御を行うことができる。 
以下、例示的な故障パターンを挙げ、電力変換装置100Aの制御方法を詳細に説明する。

 例えば、インバータ110のU相レグにおけるハイサイドスイッチ素子SW_AHがオープン故障した場合を考える。その場合、制御回路300は、第1相分離リレー回路130において、その故障したスイッチ素子を含むU相レグの相分離リレーISW_AH、ISW_ALをオフし、かつ、V相およびW相レグの4個の相分離リレーISW_BH、ISW_BL、ISW_CHおよびISW_CLをオンする。制御回路300は、さらに、第2相分離リレー回路140の相分離リレーISW_DH、ISW_DLをオンする。
これらの制御により、故障したU相レグは電源101から電気的に分離される。巻線M2、M3は、インバータ110のV相およびW相レグを介して電源101に接続される。また、巻線M1は、インバータ110のU相レグに代えてサブインバータ120のU相レグを介して電源101に接続される。この接続状態において、制御回路300は、インバータ110のV相レグ、W相レグおよびサブインバータ120のU相レグを用いて、三相通電制御を継続することができる。つまり、サブインバータ120のU相レグをインバータ110のU相レグとして機能させることができる。 
例えば、インバータ110のU相レグのハイサイドスイッチ素子SW_AHおよびV相レグのハイサイドスイッチ素子SW_BHの2個のスイッチ素子がオープン故障した場合を考える。その場合、制御回路300は、第1相分離リレー回路130において、その故障したスイッチ素子を含むU相レグ、V相レグの4個の相分離リレーISW_AH、ISW_AL、ISW_BHおよびISW_BLをオフし、かつ、W相レグの相分離リレーISW_CH、ISW_CLをオンする。制御回路300は、さらに、第2相分離リレー回路140の相分離リレーISW_DH、ISW_DLをオンする。

 これらの制御により、故障したU相レグおよびV相レグは電源101から電気的に分離される。巻線M3は、インバータ110のW相レグを介して電源101に接続される。また、巻線M1、M2は、インバータ110のU相レグ、V相レグに代えて、サブインバータ120のU相レグ、V相レグを介して電源101に接続される。この接続状態において、制御回路300は、インバータ110のW相レグ、サブインバータ120のU相レグおよびV相レグを用いて、三相通電制御を継続することができる。つまり、サブインバータ120のU相レグ、V相レグをインバータ110のU相レグ、V相レグとして機能させることができる。
インバータ110の3個の全てのレグが故障した場合、制御回路300は、インバータ110に代えてサブインバータ120の3個のレグを用いて三相通電制御を継続することができる。 
本実施形態による電力変換装置100Aにおいても、制御回路300は、実施形態1と同様に、二相通電制御を行うことが可能である。 
例えば、インバータ110のU相レグにおけるハイサイドスイッチ素子SW_AHがオープン故障した場合を考える。その場合、制御回路300は、三相通電制御の場合と同様に、第1相分離リレー回路130および第2相分離リレー回路140を制御して、インバータ110の故障したU相レグを電源101から電気的に切り離し、インバータ110のV相およびW相レグを介して巻線M2、M3を電源101に接続する。制御回路300は、三相通電制御の場合とは異なり、インバータ110の故障していないV相レグ、W相レグおよびサブインバータ120の中性点用レグを用いて、巻線M2、M3を通電する二相通電制御を行うことができる。 
巻線が故障した場合、制御回路300は、実施形態1と同様に、二相通電制御を行うことができる。例えば巻線M1が故障した場合、制御回路300は、第1相分離リレー回路130の相分離リレーISW_AH、ISW_ALをオフすることにより、インバータ110のU相レグを電源101から切り離し、インバータ110のV相およびW相レグを介して巻線M2、M3を電源101に接続する。制御回路300は、インバータ110の故障していないV相レグ、W相レグおよびサブインバータ120の中性点用レグを用いて、巻線M2、M3を通電する二相通電制御を行うことができる。 
例えば、四相交流モータを駆動する、四相のレグを有するインバータにおいて、そのうちの二相のレグが故障した場合、本実施形態による二相通電制御の手法を好適に適用することができる。 
本実施形態によれば、実施形態1と同様に、異常時の制御において、サブインバータ120のレグを用いることにより二相通電制御または三相通電制御を行うことができる。二相通電制御または三相通電制御のいずれにおいても、従来と比べてモータ出力特性をさらに向上させることができる。 

(実施形態3)

 図8は、本実施形態による電動パワーステアリング装置2000の典型的な構成を模式的に示す。 
自動車等の車両は一般に、電動パワーステアリング(EPS)装置を有する。本実施形態による電動パワーステアリング装置2000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置2000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。 
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。 
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 
ECU542は、例えば、実施形態1によるコントローラ330および駆動回路340などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置2000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態1または2によるモータモジュール1000を好適に用いることができる。 
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態によるモータ制御システムは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から4(自動化の基準)に対応した自動運転車に搭載され得る。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
100、100A:電力変換装置、101:電源、102:ヒューズ、110:インバータ、120:サブインバータ、130:第1相分離リレー回路、140:第2相分離リレー回路、200:モータ、300:制御回路、310:電源回路、320:入力回路、330:マイクロコントローラ、340:駆動回路、350:ROM、400:電流センサ、500:角度センサ、1000:モータモジュール、2000:電動パワーステアリング装置

Claims (19)

  1. 電源からの電力を、一端同士がY結線されたn相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置あって、

     前記n相の巻線の他端に接続され、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を含むn個のレグを有するインバータと、

     前記電源と前記n相の巻線との、前記インバータを介した接続・非接続を相毎に切替える第1相分離リレー回路と、

     前記インバータの前記n個のレグと並列接続された少なくとも1個のレグを有するサブインバータであって、前記n相の巻線の他端、および、前記n相の巻線の一端をY結線する前記モータの中性点ノードに接続されるサブインバータと、

     前記電源と前記n相の巻線との、前記サブインバータを介した接続・非接続を切替え、かつ、前記電源と前記中性点ノードとの接続・非接続を切替える第2相分離リレー回路と、

    を備える電力変換装置。
  2. 前記第2相分離リレー回路は、前記サブインバータと前記n相の巻線との接続・非接続を切替え、かつ、前記サブインバータと前記中性点ノードとの接続・非接続を切替える、請求項1に記載の電力変換装置。
  3. 前記第2相分離リレー回路は、前記サブインバータの前記少なくとも1個のレグと前記n相の巻線との接続・非接続、および、前記少なくとも1個のレグと前記中性点ノードとの接続・非接続を切替えるn+1個の第3相分離リレーを有する、請求項2に記載の電力変換装置。
  4. 前記サブインバータの前記少なくとも1個のレグは、ローサイドスイッチ素子およびハイサイドスイッチ素子を含む1個のレグであり、

     前記n+1個の第3相分離リレーの一端は、前記1個のレグにおける前記ローサイドスイッチ素子と前記ハイサイドスイッチ素子の間のノードに共通に接続され、前記n+1個の第3相分離リレーのうちのn個の第3相分離リレーの他端は、前記n相の巻線の他端に接続され、残りの第3相分離リレーの他端は、前記中性点ノードに接続される、請求項3に記載の電力変換装置。
  5. 前記n+1個の第3相分離リレーの各々は、双方向スイッチである、請求項3または4に記載の電力変換装置。
  6. 前記第2相分離リレー回路は、前記電源と前記サブインバータとの接続・非接続を切替える、請求項1に記載の電力変換装置。
  7. 前記サブインバータの前記少なくとも1個のレグは、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を含むn+1個のレグであり、

     前記n+1個のレグのうちのn個のレグは、前記n相の巻線の他端に接続され、残りのレグは前記中性点ノードに接続される、請求項6に記載の電力変換装置。
  8. 前記第2相分離リレー回路は、

      前記n+1個のレグのn+1個のハイサイドスイッチ素子同士を接続するノードと前記電源の間に接続された第3相分離リレーと、

      前記n+1個のレグのn+1個のローサイドスイッチ素子同士を接続するノードとグランドの間に接続された第4相分離リレーと、を有する、請求項7に記載の電力変換装置。
  9. 前記第1相分離リレー回路は、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するハイサイド側のノードとn個のハイサイドスイッチ素子の間に接続されたn個の第1相分離リレーと、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するローサイド側のノードとn個のローサイドスイッチ素子の間に接続されたn個の第2相分離リレーと、

    を有する、請求項1から8のいずれかに記載の電力変換装置。
  10. 電力変換の制御モードとして正常時の制御モードと異常時の制御モードとを備え、

     前記正常時の制御モードにおいて、前記第1相分離リレー回路はオンし、かつ、前記第2相分離リレー回路はオフする、請求項1から9のいずれかに記載の電力変換装置。
  11. 電力変換の制御モードとして正常時の制御モードと異常時の制御モードとを備え、

     前記第1相分離リレー回路は、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するハイサイド側のノードとn個のハイサイドスイッチ素子の間に接続されたn個の第1相分離リレーと、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するローサイド側のノードとn個のローサイドスイッチ素子の間に接続されたn個の第2相分離リレーと、

    を有し、

     前記インバータの前記n個のレグのうちの1個のレグが故障した場合、前記異常時の制御において、

      前記n個の第1相分離リレーのうちの、前記インバータの故障したレグに接続された第1相分離リレーと、前記n個の第2相分離リレーのうちの、前記故障したレグに接続された第2相分離リレーと、はオフし、かつ、残りのn-1個の、第1相分離リレーおよび第2相分離リレーはオンし、

      前記n+1個の第3相分離リレーのうちの、前記故障したレグと共に巻線の他端に接続された第3相分離リレーはオンし、残りのn個の第3相分離リレーはオフする、請求項4に記載の電力変換装置。
  12. 前記インバータの前記n個のレグのうちの故障したレグ以外のn-1個のレグと、前記サブインバータの1個のレグとを用いて、前記n相の巻線を通電する、請求項11に記載の電力変換装置。
  13. 電力変換の制御モードとして正常時の制御モードと異常時の制御モードとを備え、

     前記第1相分離リレー回路は、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するハイサイド側のノードとn個のハイサイドスイッチ素子の間に接続されたn個の第1相分離リレーと、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するローサイド側のノードとn個のローサイドスイッチ素子の間に接続されたn個の第2相分離リレーと、

    を有し、

     前記インバータの前記n個のレグのうちのn-2個のレグが故障した場合、前記異常時の制御において、

      前記n個の第1相分離リレーのうちの、前記インバータの故障したレグに接続されたn-2個の第1相分離リレーと、前記n個の第2相分離リレーのうちの、前記故障したレグに接続されたn-2個の第2相分離リレーと、はオフし、かつ、残りの2個の、第1相分離リレーおよび第2相分離リレーはオンし、

      前記n+1個の第3相分離リレーのうちの、前記中性点ノードに接続された第3相分離リレーはオンし、かつ、残りのn個の第3相分離リレーはオフし、

     前記インバータの前記n個のレグのうちの故障したレグ以外の2個のレグと、前記中性点ノードに接続された前記サブインバータの1個のレグとを用いて、前記n相のうちの二相の巻線を通電する、請求項4に記載の電力変換装置。
  14. 電力変換の制御モードとして正常時の制御モードと異常時の制御モードとを備え、

     前記第1相分離リレー回路は、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するハイサイド側のノードとn個のハイサイドスイッチ素子の間に接続されたn個の第1相分離リレーと、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するローサイド側のノードとn個のローサイドスイッチ素子の間に接続されたn個の第2相分離リレーと、

    を有し、

     前記インバータの前記n個のレグのうちの1個のレグが故障した場合、前記異常時の制御において、

      前記n個の第1相分離リレーのうちの、前記インバータの故障したレグに接続された第1相分離リレーと、前記n個の第2相分離リレーのうちの、前記故障したレグに接続された第2相分離リレーと、はオフし、かつ、残りのn-1個の、第1相分離リレーおよび第2相分離リレーはオンし、

      前記第2相分離リレー回路はオンする、請求項8に記載の電力変換装置。
  15. 前記インバータの前記n個のレグのうちの故障したレグ以外のn-1個のレグと、前記サブインバータの前記n+1個のレグのうちの、前記インバータの故障したレグと共に巻線の他端に接続されたレグとを用いて、前記n相の巻線を通電する、請求項14に記載の電力変換装置。
  16. 電力変換の制御モードとして正常時の制御モードと異常時の制御モードとを備え、

     前記第1相分離リレー回路は、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するハイサイド側のノードとn個のハイサイドスイッチ素子の間に接続されたn個の第1相分離リレーと、

      前記インバータにおいて、前記インバータの前記n個のレグを接続するローサイド側のノードとn個のローサイドスイッチ素子の間に接続されたn個の第2相分離リレーと、

    を有し、

     前記インバータの前記n個のレグのうちのn-2個のレグが故障した場合、前記異常時の制御において、

      前記n個の第1相分離リレーのうちの、前記インバータの故障したレグに接続されたn-2個の第1相分離リレーと、前記n個の第2相分離リレーのうちの、前記故障したレグに接続されたn-2個の第2相分離リレーと、はオフし、かつ、残りの2個の、第1相分離リレーおよび2個の第2相分離リレーはオンし、

      前記第2相分離リレー回路はオンし、

     前記インバータの故障していない2個のレグと、前記サブインバータのn個のレグのうちの前記中性点ノードに接続されたレグとを用いて、前記n相のうちの二相の巻線を通電する、請求項8に記載の電力変換装置。
  17. 前記n相の巻線のうちの一相の巻線が故障した場合、

     前記インバータのn個のレグのうちの、故障した巻線以外の巻線の中の二相の巻線に接続された2個のレグと、前記中性点ノードに接続した前記サブインバータの前記少なくとも1個のレグとを用いて、前記二相の巻線を通電する、請求項1に記載の電力変換装置。
  18. モータと、

     請求項1から17のいずれかに記載の電力変換装置と、

     前記電力変換装置を制御する制御回路と、

    を有するモータモジュール。
  19. 請求項18に記載のモータモジュールを有する電動パワーステアリング装置。
PCT/JP2018/022033 2017-09-13 2018-06-08 電力変換装置、モータモジュールおよび電動パワーステアリング装置 WO2019053974A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541654A JP7052801B2 (ja) 2017-09-13 2018-06-08 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175461 2017-09-13
JP2017-175461 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019053974A1 true WO2019053974A1 (ja) 2019-03-21

Family

ID=65722535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022033 WO2019053974A1 (ja) 2017-09-13 2018-06-08 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Country Status (2)

Country Link
JP (1) JP7052801B2 (ja)
WO (1) WO2019053974A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508313A (ja) * 2019-10-11 2022-01-19 シーエムアール・サージカル・リミテッド ロボットアーム内の故障検出反応
US12000893B2 (en) 2019-10-11 2024-06-04 Cmr Surgical Limited Fault detection response in a robot arm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203300A1 (ja) * 2013-06-17 2014-12-24 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP2015033212A (ja) * 2013-08-02 2015-02-16 日立オートモティブシステムズ株式会社 電力変換装置、電動パワーステアリングシステム、電気自動車、電子制御スロットル、電動ブレーキ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507724A (en) * 1983-10-17 1985-03-26 Sundstrand Corporation Pulse width modulated inverter for unbalanced and variable power factor loads
JP4710528B2 (ja) 2005-10-04 2011-06-29 日本精工株式会社 電動パワーステアリング装置
US7619383B2 (en) 2006-08-04 2009-11-17 Stmicroelectronics Pvt. Ltd High steps brushless DC (BLDC) motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203300A1 (ja) * 2013-06-17 2014-12-24 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP2015033212A (ja) * 2013-08-02 2015-02-16 日立オートモティブシステムズ株式会社 電力変換装置、電動パワーステアリングシステム、電気自動車、電子制御スロットル、電動ブレーキ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508313A (ja) * 2019-10-11 2022-01-19 シーエムアール・サージカル・リミテッド ロボットアーム内の故障検出反応
JP7198929B2 (ja) 2019-10-11 2023-01-04 シーエムアール・サージカル・リミテッド ロボットアームのモータの故障をテストする方法
US12000893B2 (en) 2019-10-11 2024-06-04 Cmr Surgical Limited Fault detection response in a robot arm

Also Published As

Publication number Publication date
JP7052801B2 (ja) 2022-04-12
JPWO2019053974A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP7010281B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6874758B2 (ja) 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール
JP7014183B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7136110B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7063322B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6947184B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019054026A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7070575B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
CN110392977B (zh) 电力转换装置、马达驱动单元和电动助力转向装置
WO2018173425A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7052801B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019159663A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019159664A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019069919A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856156

Country of ref document: EP

Kind code of ref document: A1